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Abstract. We formulate epidemiological models for the transmission of a pathogen that can
mutate in the host to create a second infectious mutant strain. The models account for mutation
rates that depend on how long the host has been infected. We derive explicit formulas for the
reproductive number of the epidemic based on the local stability of the infection-free equilibrium.
We analyze the existence and stability of the boundary equilibrium, whose infection components are
zero and positive, respectively, and the endemic equilibrium, whose components are all positive. We
establish the conditions for global stability of the infection-free and boundary equilibria and local
stability of the endemic equilibrium for the case where there is no age structure for the pathogen in
the infected population. We show that under certain circumstances, there is a Hopf bifurcation where
the endemic equilibrium loses its stability, and periodic solutions appear. We provide examples and
numerical simulations to illustrate the Hopf bifurcation.
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1. Introduction. One of the biggest challenges in preventing the spread of in-
fectious diseases is the genetic variations of pathogens. Pathogen mutations that
circumvent the protective effects of a patient’s immune response are common in in-
fectious diseases such as measles [5], hepatitis B [20], HIV [9], West Nile virus [8], and
influenza [18, 23, 24, 25].

The generation or selection of mutants that are a reflection of attempts of the
pathogen to resist immune attacks of the host and to survive may occur naturally
or in response to treatment with antibodies or antiviral drugs. Pathogens frequently
alter their antigen expression to escape the immune defense and ensure the persistent
infection in a host [10, 19].

There were only a few existing mathematical models accounting for genetic mu-
tations of a pathogen [2, 3, 11, 17, 21], and little has been done to directly model
dynamics of mutations which describe the attempts of the pathogen, after its infec-
tion in a host, to escape the immune defense of the host. In this paper, we propose
an infection-age-structured dynamic model for a pathogen that can mutate into a
second infectious strain in the host. The mutation could be the effect of selective
immunologic pressure or possibly adaptation to a more efficiently transmitted or a
better replicating pathogen resulting from conversion of the original viral pathogen.

The model formulation for the origin of the pathogen strain is based on a sus-
ceptible-infective-recovered (SIR) model with variable infection ages and is governed
by partial differential equations (PDEs). The dynamics of the mutant are based on
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an ordinary differential equation (ODE) SIR model. We characterize the threshold
conditions of the model epidemic with an explicit formula for the reproductive num-
ber of infection, which determines the stability of the infection-free equilibrium. We
analyze the stability of boundary equilibria of the model, where some, but not all,
of the infection components are zero. We then investigate the existence and stability
of the endemic equilibrium, whose components are all positive. We obtain explicit
formulas for the endemic equilibrium and the characteristic equation of this equilib-
rium, which determines its stability. We then consider the special case where the
rate at which the pathogen converts to its mutant and the transmission rate of the
original pathogen are both independent of infection age. In this simplified situation,
the model equations reduce to a system of ODEs. We obtain global stability of the
infection-free equilibrium and a unique boundary equilibrium. We show that under
certain conditions, the unique endemic equilibrium may undergo a Hopf bifurcation
resulting in a periodic solution. We provide examples and numerical simulations to
illustrate the stability change of the endemic equilibrium and the Hopf bifurcation.

2. Model formulation. We base our SIR model on the spread of a pathogen
that can mutate in the host to create a second, cocirculating, mutant strain. We as-
sume that after a certain period of infection, the original strain, referred to as Strain 1,
is selected against in the intrahost selection process and is converted to a mutant, re-
ferred to as Strain 2, such that a proportion of the individuals infected by Strain 1
are then carrying Strain 2. Let S(t) be the susceptibles and i(t, τ) the distribution of
infectives infected by Strain 1 with infection stage, or time since infection, τ , such that∫ τ2
τ1

i(t, τ)dτ is the total number of infectives with infection ages between τ1 and τ2
[1, 7, 13, 14, 22]. Let J(t) be the infectives infected by Strain 2 and R(t) the group
of individuals who are recovered and immune to both strains. We further assume
that the genetic difference between the two strains, or the drift of the mutation, is
relatively small so that there is perfect cross-immunity; that is, once an individual is
recovered from infection by one of the two strains, the individual is immune to both
strains.

The dynamics of the transmission in this model are governed by the system

dS(t)

dt
= µ(S0 − S(t)) −

(∫ ∞

0

β1(τ)i(t, τ)dτ + β2J(t)

)
S(t),

∂i(t, τ)

∂t
+

∂i(t, τ)

∂τ
= −(µ + γ1)i(t, τ) − κ(τ)i(t, τ),

i(t, 0) = S(t)

∫ ∞

0

β1(τ)i(t, τ)dτ,

i(0, τ) = ψ(τ),

dJ(t)

dt
= β2J(t)S(t) − (µ + γ2)J(t) +

∫ ∞

0

κ(τ)i(t, τ)dτ,

dR(t)

dt
= γ1

∫ ∞

0

i(t, τ)dτ + γ2J(t) − µR(t),

(2.1)

where µS0 is the input flow into the susceptible population, µ is the total removal rate
which accounts for both natural death and people moving in and out of the susceptible
population, γ1 and γ2 are the recovery rates from the infection, β1(τ) and β2 are the
transmission rates of Strain 1 and Strain 2, respectively, κ(τ) is the mutation rate, or
the rate at which Strain 1 is converted to Strain 2, and ψ(τ) is the initial distribution
of infectives infected by Strain 1.
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3. Thresholds of the epidemic. Assume that the initial distribution of the
infectives is zero. Then E0 := (S0, 0, 0) is the infection-free equilibrium. As is well
known, its stability determines the thresholds of the epidemic [6, 7, 13, 15, 16]. We
investigate the local stability of E0 as follows.

Since the dynamics of R(t) do not affect the evolution of S, i, and J , we omit the
equation for R(t) when studying the growth of the epidemic. Linearizing system (2.1)
about E0, by defining the perturbation variables x(t) = S(t) − S0, y(t, τ) = i(t, τ),
z(t) = J(t), we obtain the system

dx(t)

dt
= −µx(t) −

(∫ ∞

0

β1(τ)y(t, τ)dτ + β2z(t)

)
S0,⎧⎪⎨

⎪⎩
∂y(t, τ)

∂t
+

∂y(t, τ)

∂τ
= −(µ + γ1)y(t, τ) − κ(τ)y(t, τ),

y(t, 0) = S0

∫ ∞

0

β1(τ)y(t, τ)dτ,

dz(t)

dt
= β2z(t)S

0 − (µ + γ2)z(t) +

∫ ∞

0

κ(τ)y(t, τ)dτ.

(3.1)

Let x(t) = x0e
ρt, y(t, τ) = p(τ)eρ(t−τ), and z(t) = z0e

ρt, where x0, p(τ), z0, and ρ
are to be determined. Substituting them into (3.1), we obtain the equations

ρx0 = −µx0 − S0

∫ ∞

0

β1(τ)p(τ)e−ρτdτ − β2S
0z0,(3.2)

dp(τ)

dτ
= −(µ + γ1)p(τ) − κ(τ)p(τ),(3.3)

p(0) = S0

∫ ∞

0

β1(τ)p(τ)e−ρτdτ,(3.4)

ρz0 = (β2S
0 − µ− γ2)z0 +

∫ ∞

0

κ(τ)p(τ)e−ρτdτ(3.5)

for p(τ) �≡ 0, x0 �= 0, z0 �= 0, and ρ.
Equations (3.3) and (3.4) are decoupled from (3.2) and (3.5). Integrating (3.3)

from 0 to τ gives

p(τ) = p(0)e−(µ+γ1)τ−∆(τ),(3.6)

where ∆(τ) :=
∫ τ

0
κ(v)dv. Substituting (3.6) into (3.4) yields the characteristic equa-

tion

p(0) = S0p(0)

∫ ∞

0

β1(τ)e−ρτe−(µ+γ1)τ−∆(τ)dτ.(3.7)

Defining

C(ρ) = S0

∫ ∞

0

β1(τ)e−ρτe−(µ+γ1)τ−∆(τ)dτ,

we note that (3.7) has a nonzero solution p(0) if and only if there exists ρ such that
C(ρ) = 1.

We first consider the case where ρ is a real number. Since

C ′(ρ) = −S0

∫ ∞

0

τβ1(τ)e−ρτe−(µ+γ1)τ−∆(τ)dτ < 0,
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C(ρ) is a decreasing function of ρ. Noticing limρ→−∞ C(ρ) = ∞ and limρ→∞ C(ρ) =
0, if we define the number

R1 := C(0) = S0

∫ ∞

0

β1(τ)e−(µ+γ1)τ−∆(τ)dτ,(3.8)

then there exists a unique real solution ρ to the equation C(ρ) = 1, which is negative
if R1 < 1 and positive if R1 > 1.

If ρ := ρ1 + iρ2 is a complex number, where i =
√
−1, then by separating the real

and imaginary parts of C(ρ) = 1, the real part ρ1 satisfies

1 = S0

∫ ∞

0

β1(τ)e−ρ1τe−(µ+γ1)τ−∆(τ) cos(ρ2τ)dτ.(3.9)

However, since

S0

∫ ∞

0

β1(τ)e−ρ1τe−(µ+γ1)τ−∆(τ) cos(ρ2τ)dτ ≤ S0

∫ ∞

0

β1(τ)e−ρ1τe−(µ+γ1)τ−∆(τ)dτ,

solution ρ1 to (3.9) must be negative if R1 < 1. That is, equation C(ρ) = 1 can have
solutions with negative real part only if R1 < 1.

The solution ρ of C(ρ) = 1 can be used to determine p(τ). The initial values, x0

and z0, can now be defined from (3.2) and (3.5). The number R1 defined in (3.8) is a
threshold value for Strain 1 because if R1 > 1 the epidemic for Strain 1 grows, while
if R1 < 1 it delays. It is also the number of secondary infective cases generated by
infection of Strain 1. We refer to R1 as the reproductive number for Strain 1.

If initially no one is infected with Strain 1, i.e., i(t, τ) = 0, then p(τ) = 0 for all τ .
Equations (3.2) and (3.5) can be reduced to

ρx0 = −µx0 − β2S
0z0,

ρz0 = (β2S
0 − µ− γ2)z0,

(3.10)

and they determine threshold conditions for Strain 2. Define

R2 :=
β2S

0

µ + γ2
.(3.11)

All solutions ρ of system (3.10) are negative if and only if R2 < 1. Therefore, R2 is a
threshold value for Strain 2 and is the number of secondary infective cases generated
by infection of Strain 2. We refer to R2 as the reproductive number of Strain 2.

The thresholds for the epidemic can be summarized as follows.
Theorem 3.1. Define the reproductive number, R0, of infection in the total

population by

R0 := max {R1, R2} ,

that is,

R0 = max

{
S0

∫ ∞

0

β1(τ)e−(µ+γ1)τ−∆(τ)dτ,
β2S

0

µ + γ2

}
.

Then the infection-free equilibrium E0 is asymptotically stable if R0 < 1 and is un-
stable if R0 > 1.
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4. Boundary equilibrium. Cocirculating strains of the pathogen compete with
each other to infect the susceptible population. When only one strain is present, the
solution is on the boundary of the feasibility solution space and we call the stationary
solution a boundary equilibrium.

An equilibrium of system (2.1), (S, i(τ), J), satisfies the system

µ(S0 − S) −
(∫ ∞

0

β1(τ)i(τ)dτ + β2J

)
S = 0,(4.1a)

di(τ)

dτ
= −(µ + γ1)i(τ) − κ(τ)i(τ),(4.1b)

i(0) = S

∫ ∞

0

β1(τ)i(τ)dτ,(4.1c)

β2JS − (µ + γ2)J +

∫ ∞

0

κ(τ)i(τ)dτ = 0.(4.1d)

It follows from (4.1d) that if J = 0, then i(τ) = 0 for all τ . That is, there does
not exist a boundary equilibrium with i(τ) ≥ 0 and J = 0, and the only boundary
equilibrium has i(τ) = 0 for all τ and J �= 0. We denote it as E1 := (S1, i1(τ), J1).

Solving (4.1a) and (4.1d), we have

S1 =
µ + γ2

β2
, J1 =

µ

β2

(
S0β2

µ + γ2
− 1

)
=

µ

β2
(R2 − 1).(4.2)

Thus the boundary equilibrium E1 exists if and only if R2 > 1.
To study stability of this boundary equilibrium, we linearize system (2.1) about E1

by letting x(t) = S(t)−S1, y(t) = J(t)−J1, z(t, τ) = i(t, τ), and we obtain the system

dx(t)

dt
= −µx(t) − β2J1x(t) − β2S1y(t) − S1

∫ ∞

0

β1(τ)z(t, τ)dτ,

dy(t)

dt
= β2J1x(t) − (µ + γ2)y(t) + β2S1y(t) +

∫ ∞

0

κ(τ)z(t, τ)dτ,⎧⎪⎨
⎪⎩

∂z(t, τ)

∂t
+

∂z(t, τ)

∂τ
= −(µ + γ1)z(t, τ) − κ(τ)z(t, τ),

z(t, 0) = S1

∫ ∞

0

β1(τ)z(t, τ)dτ.

(4.3)

Using the same approach as in section 3, we first derive the characteristic equation
for E1,

1 = S1

∫ ∞

0

β1(τ)e−ρτe−(µ+γ1)τ−∆(τ)dτ,(4.4)

and define

Rb := S1

∫ ∞

0

β1(τ)e−(µ+γ1)τ−∆(τ)dτ.

If Rb < 1, then limt→∞ z(t, τ) = 0.
Next we locate the eigenvalues of the following matrix from system (4.3):[

−µ− β2J1 −β2S1

β2J1 −(µ + γ2 − β2S1)

]
=

[
−µ− β2J1 −β2S1

β2J1 0

]
.
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The trace and determinant of this matrix are negative and positive, respectively.
Therefore, its eigenvalues both have negative real part.

In summary we have the following.
Theorem 4.1. The unique boundary equilibrium

E1 = (S1, i1(τ), J1) =

(
µ + γ2

β2
, 0,

µ

β2

(
S0β2

µ + γ2
− 1

))

exists if and only if R2 > 1. It is locally asymptotically stable if

Rb =
µ + γ2

β2

∫ ∞

0

β1(τ)e−(µ+γ1)τ−∆(τ)dτ < 1

and is unstable if Rb > 1.
If R2 > 1, then S0 > (µ + γ2)/β2 := S̃1. Notice that Rb can be rewritten as

Rb = S̃1/S
0R1 = R1/R2. When the boundary equilibrium E1 exists, R2 > 1, and

hence S0 > S̃1 and Rb < R1. If R2 > 1 > R1, then Rb < 1, which implies that
the boundary equilibrium E1 is asymptotically stable. In the situation where R2 > 1
and R1 > 1, the infection-free equilibrium is unstable and the two strains cannot
both die out. If R2 > R1 > 1, then Rb < 1 and the boundary equilibrium E1

exists and is asymptotically stable. In the last possible case, if R1 > R2 > 1, then
although the boundary equilibrium E1 exists, it is unstable. This situation may lead
to the existence and stability of an endemic equilibrium or other dynamical features
of system (2.1).

5. Endemic equilibrium. The cocirculating strains of the pathogen can coex-
ist. The stationary coexistence solution is an endemic equilibrium whose components
are all positive.

5.1. Existence of the endemic equilibrium. Let E∗ := (S∗, i∗(τ), J∗) be an
endemic equilibrium of system (2.1). It follows from (4.1b) that

i∗(τ) = i∗(0)e−(µ+γ1)τ−∆(τ).

By substituting this into (4.1c), we arrive at the equation

i∗(0) = i∗(0)S∗
∫ ∞

0

β1(τ)e−(µ+γ1)τ−∆(τ)dτ = i∗(0)
S∗R1

S0
.(5.1)

Equation (5.1) has a solution i∗(0) > 0 if and only if

S∗ =
S0

R1
.(5.2)

It follows from (4.1c) that

i∗(0) = S∗W1,

where we define W1 :=
∫∞
0

β1(τ)i∗(τ)dτ . Then

i∗(τ) = S∗W1e
−(µ+γ1)τ−∆(τ).(5.3)

Define

W2 :=

∫ ∞

0

κ(τ)i∗(τ)dτ = S∗W1

∫ ∞

0

κ(τ)e−(µ+γ1)τ−∆(τ)dτ = S∗W1K,(5.4)
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where

K :=

∫ ∞

0

κ(τ)e−(µ+γ1)τ−∆(τ)dτ.

The equilibrium equations (4.1a) and (4.1d) can be expressed as

µS0 = (µ + W1 + β2J
∗)S∗,(5.5)

W2 = ((µ + γ2) − β2S
∗)J∗.(5.6)

Substituting (5.2) into (5.6) yields

(µ + γ2)

(
1 − β2S

∗

µ + γ2

)
J∗ = (µ + γ2)

(
1 − R2

R1

)
J∗ = W2.(5.7)

Since W2 > 0, there exists a positive solution J∗ of (5.7) if and only if

R2

R1
< 1.

Suppose R2 < R1. Then solving (5.7) for J∗ yields

J∗ =
W2

(µ + γ2)

(
1 − R2

R1

) .(5.8)

Substituting (5.8) into (5.5) gives

µ + W1 + β2
W2

(µ + γ2)

(
1 − R2

R1

) =
µS0

S∗ = µR1.(5.9)

We then substitute (5.4) into (5.9) to obtain

W1 +
β2S

0K

(µ + γ2)(R1 −R2)
W1 = µ(R1 − 1),(5.10)

which implies that W1 > 0 if R1 > 1.
Solving (5.10) for W1 yields

W1 =
µ (R1 − 1) (R1 −R2) (µ + γ2)

((µ + γ2) (R1 −R2) + β2KS0)
.(5.11)

W2 can be determined by substituting (5.11) into (5.4). Finally, substituting W2

and W1 into (5.3) and (5.8), we obtain the expression for the unique positive endemic
equilibrium.

Theorem 5.1. If R1 > 1 and R1 > R2, then there exists a unique endemic
equilibrium E∗ = (S∗, i∗(τ), J∗) given by

S∗ =
S0

R1
, i∗(τ) =

S0W1

R1
e−(µ+γ1)τ−

∫ τ
0

κ(v)dv, J∗ =
KS0W1

(µ + γ2) (R1 −R2)
,(5.12)

where W1 is defined in (5.11).
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5.2. Stability of the endemic equilibrium. We investigate the local stability
of the endemic equilibrium, E∗, by linearizing system (2.1) about E∗. Let x(t) =
S(t) − S∗, y(t, τ) = i(t, τ) − i∗(τ), and z(t) = J(t) − J∗. The linearization results in
the perturbation equations

dx(t)

dt
= − (µ + W1 + β2J

∗)x(t) − β2S
∗z(t) − S∗

∫ ∞

0

β1(τ)y(t, τ)dτ,⎧⎪⎨
⎪⎩

∂y(t, τ)

∂t
+

∂y(t, τ)

∂τ
= −(µ + γ1)y(t, τ) − κ(τ)y(t, τ),

y(t, 0) = S∗
∫ ∞

0

β1(τ)y(t, τ)dτ + W1x(t),

dz(t)

dt
= β2J

∗x(t) − (µ + γ2)z(t) + β2S
∗z(t) +

∫ ∞

0

κ(τ)y(t, τ)dτ.

(5.13)

Suppose x = x0e
ρt, y = ŷ(τ)eρ(t−τ), and z = z0e

ρt. Substituting these variables
into system (5.13) and solving for ŷ(τ), with initial condition ŷ(0), leads to the system

(ρ + µ + W1 + β2J
∗)x0 + β2S

∗z0 + S∗
∫ ∞

0

β1(τ)ŷ(τ)e−ρτdτ = 0,

−β2J
∗x0 + (ρ + µ + γ2 − β2S

∗)z0 −
∫ ∞

0

κ(τ)ŷ(τ)e−ρτdτ = 0,

ŷ(τ) =

(
S∗

∫ ∞

0

β1(τ)ŷ(τ)e−ρτdτ + W1x0

)
e−(µ+γ1)τ−∆(τ).

(5.14)

We simplify these notations by defining the functions

H(ρ) :=

∫ ∞

0

β1(τ)ŷ(τ)e−ρτdτ, Q(ρ) :=

∫ ∞

0

κ(τ)ŷ(τ)e−ρτdτ,

P1(ρ) :=

∫ ∞

0

β1(τ)e−ρτe−(µ+γ1)τ−∆(τ)dτ, P2(ρ) :=

∫ ∞

0

κ(τ)e−ρτe−(µ+γ1)τ−∆(τ)dτ.

Multiplying ŷ(τ) in (5.14) by β1(τ)e−ρτ and κ(τ)e−ρτ , respectively, and then inte-
grating from 0 to ∞ yields

H(ρ) =
W1P1(ρ)

1 − S∗P1(ρ)
x0(5.15)

and

Q(ρ) = (S∗H(ρ) + W1x0)P2(ρ) =

(
S∗W1P1(ρ)

1 − S∗P1(ρ)
+ W1

)
P2(ρ)x0.(5.16)

Substituting (5.15) and (5.16) into system (5.14), we obtain the characteristic equation

(
ρ + µ + β2J

∗ +
W1

1 − S∗P1(ρ)

)
(ρ + µ + γ2 − β2S

∗) +

(
β2J

∗ +
W1P2(ρ)

1 − S∗P1(ρ)

)
β2S

∗ = 0

(5.17)

and arrive at the following result.
Theorem 5.2. The endemic equilibrium, given in (5.12), is locally asymptotically

stable if all roots, ρ, of the characteristic equation (5.17) have negative real part.
The results obtained for the two-strain SIR model (2.1) are summarized in Table 1.

The stability of the endemic equilibrium is not listed because it requires knowledge of
the roots of the characteristic equation (5.17) and we have not established the explicit
criterion.
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Table 1

The existence conditions for the boundary and endemic equilibria, E1 and E∗, and stability
conditions for the infection-free and boundary equilibria, E0 and E1. These conditions are based on
the relations between the two reproductive numbers, R1 and R2, for the two strains.

R1 < 1, R2 < 1 R2 < 1 < R1 R1 < 1 < R2 1 < R1 < R2 1 < R2 < R1

E0 stable unstable unstable unstable unstable
E1 does not exist does not exist stable stable unstable
E∗ does not exist exists does not exist does not exists exists

6. Constant mutation rate. Because (5.17) is a transcendental equation, it is
difficult to determine when all the roots of the characteristic equation have negative
real part and, hence, whether the endemic equilibrium is stable. To gain insight into
the transmission dynamics of the disease governed by system (2.1), we consider the
special case where the mutation rate from Strain 1 to Strain 2 is constant and where
the infection rate of Strain 1 is independent of the infection stages. We define these
constant rates as κ(τ) := k and β1(τ) := β1.

Let the total infectives be I(t) :=
∫∞
0

i(t, τ)dτ . Integrating the equation for i(t, τ)
in (2.1) with respect to τ and using the initial condition i(t, 0) reduces the system of
PDEs to the system of ODEs,

dS

dt
= µ(S0 − S) − β1IS − β2JS,(6.1a)

dI

dt
= β1SI − (µ + γ1 + k)I,(6.1b)

dJ

dt
= β2SJ − (µ + γ2)J + kI.(6.1c)

The reproductive numbers of Strains 1 and 2, R1 and R2, for system (6.1) are

R1 =
S0β1

µ + γ1 + k
, R2 =

S0β2

µ + γ2
.(6.2)

The only boundary equilibrium with I = 0 and J > 0 exists if R2 > 1 and it has the
same expression as in section 4. This boundary equilibrium is stable if R1 < R2 and
is unstable if R1 > R2.

We now establish existence and local stability of the endemic equilibrium of system
(6.1).

For κ(τ) = k, the term K defined in (5.4) becomes

K =
k

µ + γ1 + k
.(6.3)

Substituting (6.2) and (6.3) into (5.12), we obtain the endemic equilibrium, E∗ =
(S∗, I∗, J∗), with

S∗ =
µ + γ1 + k

β1
,

I∗ =
µ
(
S0β1 − (µ + γ1 + k)

)(
β1(µ + γ2) − β2(µ + γ1 + k)

)
β1

(
β1(µ + γ2) − β2(µ + γ1)

)
(µ + γ1 + k)

,

J∗ =
µk

(
S0β1 − (µ + γ1 + k)

)(
β1(µ + γ2) − β2(µ + γ1)

)
(µ + γ1 + k)

.

(6.4)
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By solving (6.1) for an endemic equilibrium, we have the equivalent solution

S∗ =
S0

R1
,

I∗ =
µ(µ + γ1 + k)(R1 − 1)(R1 −R2)

β1

(
kR1 + (µ + γ1)(R1 −R2)

) ,

J∗ =
µkS0(R1 − 1)

(µ + γ2)
(
kR1 + (µ + γ1)(R1 −R2)

) .
Hence E∗ exists if and only if R1 > 1 and R1 > R2.

Based on µ+β2J
∗ = µS0/S∗ −β1I

∗, the characteristic equation for system (6.1)
has the form

(
ρ + µR1 +

γ1 + µ + k

ρ
β1I

∗
)

(ρ + µ + γ2 − β2S
∗) +

(
β2J

∗ +
k

ρ
β1I

∗
)
β2S

∗ = 0.

(6.5)

This can be expressed as

ρ3 + a1ρ
2 + a2ρ + a3 = 0,

where

a1 := µR1 + µ + γ2 − β2S
∗ = µ

S0

S∗ + k
I∗

J∗ ,

a2 := µR1(µ + γ2 − β2S
∗) + (µ + γ1 + k)β1I

∗ + β2
2J

∗S∗

= β2
1S

∗I∗ + β2
2S

∗J∗ + µ
S0

S∗ k
I∗

J∗ ,

a3 := ((µ + γ2)β1 − β2(µ + γ1)) (µ + γ1 + k)I∗ = β1S
∗k

I∗

J∗ (β1I
∗ + β2J

∗) .

Since a1 > 0 and a3 > 0, it follows from the Routh–Hurwitz criterion that all charac-
teristic roots of (6.5) have negative real part if and only if a1a2 > a3.

A straightforward calculation yields

a1a2 − a3 = µ
S0

S∗

(
β2

1S
∗I∗ + β2

2S
∗J∗ + µ

S0

S∗ k
I∗

J∗

)
+ µ

S0

S∗

(
k
I∗

J∗

)2

+ kS∗I∗β2(β2 − β1)

=
µ(R1 − 1)(R1 −R2)

(σ1 + k)R1 − σ1R2

(
µR1(σ1 + k)2 +

µσ2R
2
2k

R1 −R2

−
kσ2R2

(
R1(σ1 + k) −R2σ2

)
R2

1

)

+
µ(R1 −R2)

R2
1

(µσ2R
3
1 + σ2

2(R1 −R2)R1)

=
µ(R1 − 1)(R1 −R2)

R2
1

(
(σ1 + k)R1 − σ1R2

) (c2k
2 + c1k + c0),

(6.6)
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where

σ1 := µ + γ1, σ2 := µ + γ2,

c0 := µσ2
1R

3
1 + σ2R1

(
µR2

1 + σ2(R1 −R2)
)σ1(R1 −R2)

R1 − 1
,

c1 := 2µσ1R
3
1 +

µσ2R
2
1R

2
2

R1 −R2
+

σ2R
2
1

(
µR2

1 + σ2(R1 −R2)
)

R1 − 1
− σ2R2(σ1R1 − σ2R2),

c2 := µR3
1 − σ2R1R2.

Hence all roots of (6.5) have negative real part if c2k
2 + c1k + c0 > 0, and at least

one of the roots of (6.5) has positive real part if c2k
2 + c1k + c0 < 0.

We summarize the results in the following theorem.
Theorem 6.1. When the mutation rate is constant, the dynamical behavior of

epidemic model (6.1) can be described as one of the following cases:
1. If we define R0 := max {R1, R2} and R0 < 1, then the infection-free equi-

librium, E0 := (S0, 0, 0), is the only equilibrium and is locally asymptotically
stable. If R0 > 1, then E0 is unstable.

2. If R1 < 1 < R2, or 1 < R1 < R2, the only boundary equilibrium, given by

E1 :=
(
S̃, 0, J̃

)
=

(
S0R2, 0,

µS0

σ2R2
(R2 − 1)

)
,(6.7)

exists and is locally asymptotically stable. In this case, the endemic equilib-
rium, E∗, does not exist.

3. If R2 < 1 < R1, the endemic equilibrium, E∗, exists and is the only nontrivial
equilibrium. It is locally asymptotically stable if c2k

2 + c1k + c0 > 0 and
unstable if c2k

2 + c1k + c0 < 0.
4. If 1 < R2 < R1, the boundary equilibrium, E1, exists but is unstable. The

endemic equilibrium, E∗, exists and is locally asymptotically stable if c2k
2 +

c1k + c0 > 0 and unstable if c2k
2 + c1k + c0 < 0.

6.1. The global stability of the equilibria. In this section we establish that
when the infection-free equilibrium and the boundary equilibrium of system (6.1) are
locally asymptotically stable, they are globally stable.

Theorem 6.2.

1. If the infection-free equilibrium, E0, is locally asymptotically stable, then it is
globally stable; that is, E0 is globally asymptotically stable if R0 < 1.

2. If R1 < 1 < R2, the only boundary equilibrium, E1, given in (6.7), is globally
asymptotically stable.

Proof. It follows from (6.1b) that

I(t) = I(0)e
∫ t
0
β1S(τ)dτ−(µ+γ1+k)t

for all t ≥ 0. Hence, the hyperplane I = 0 is invariant for system (6.1).
If R1 < 1, we can further show that the hyperplane attracts all solutions started

in the first octant, S ≥ 0, I ≥ 0, J ≥ 0. That is, limt→∞ I(t) = 0. It can be seen
from (6.1a) that dS/dt ≤ µ(S0 − S) and hence S(t) ≤ S0 + S(0)e−µt and from (6.1b)
that

I(t) ≤ I(0)e
∫ t
0
β1(S0+S(0)e−µτ)dτ−(µ+γ1+k)t = I(0)e(µ+γ1+k)(R1−1)t+

β1S(0)
µ (1−e−µt)

≤ I(0)e
β1S(0)

µ e(µ+γ1+k)(R1−1)t → 0

as t → ∞.
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Based on the attractiveness of the hyperplane I = 0, to prove the global asymp-
totic stability of the infection-free equilibrium E0 or the boundary equilibrium E1 in
the first octant, it suffices to show that these two equilibria are globally asymptotically
stable in the hyperplane I = 0.

We first show that all the solutions of (6.1) in the hyperplane I = 0 approach E0

if R0 < 1. We use the Lyapunov function V1 defined by

V1(S, J) := J + S − S0 − S0 ln
S

S0

for system (6.1). Along the trajectories of system (6.1) in the hyperplane I = 0 we
have

dV1

dt

∣∣∣∣
(6.1)

= (β2S − (µ + γ2))J +
S − S0

S

(
µ(S0 − S) − β2JS

)

= −µ(S − S0)2

S
+
(
S0β2 − (µ + γ2)

)
J

= −µ(S − S0)2

S
+ J(R2 − 1)σ2 < 0

if R2 < 1. Hence it follows from Lyapunov stability theory that E0 is globally asymp-
totically stable.

We next assume R1 < 1 < R2 and show the global stability of the boundary
equilibrium E1 = (S̃, 0, J̃). We use

V2(S, J) = J − J̃ − J̃ ln
J

J̃
+ S − S̃ − S̃ ln

S

S̃

as a Lyapunov functions for system (6.1). In the hyperplane I = 0,

dV2

dt

∣∣∣∣
(6.1)

= (β2S − (µ + γ2)) (J − J̃) +
µ(S0 − S)(S − S̃)

S
− (S − S̃)β2J

= β2(S − S̃)(J − J̃) +
µ(S0 − S)(S − S̃)

S
− (S − S̃)β2J

= −β2(S − S̃)J̃ +
µ(S0 − S)(S − S̃)

S

= −S − S̃

S

(
Sβ2J̃ − µ(S0 − S)

)
= −S − S̃

S

(
(β2J̃ + µ)S − µS0

)

= −S − S̃

S

(
µS0

S̃
S − µS0

)
= −µS0(S − S̃)2

S̃S
≤ 0.

The maximum invariant subset of the set
{
(S, I, J)

∣∣ dV
dt = 0

}
in the hyperplane

I = 0 contains only E1. Then it follows from the LaSalle invariance principle that E1

is globally asymptotically stable on the hyperplane I = 0.
Note that we have not been able to prove the global stability of the boundary

equilibrium E1 for the case 1 < R1 < R2.

6.2. Hopf bifurcation near the endemic equilibrium. We know from The-
orem 6.1 that if R2 < 1 < R1 or 1 < R2 < R1, the boundary equilibrium either does
not exist or is unstable, and the positive endemic equilibrium is asymptotically stable
if c2k

2 + c1k+ c0 > 0 and is unstable if c2k
2 + c1k+ c0 < 0. We now show that as the
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endemic equilibrium loses stability, periodic solutions can bifurcate from the endemic
equilibrium.

To investigate the bifurcation and to simplify the mathematical analysis, we study
the bifurcation in terms of the mutation rate k and the two basic reproductive numbers
R1 and R2 and assume that individuals infected by the two strains have the same
recovery rate γ1 = γ2 := γ, and hence σ1 = σ2 := σ. Under these assumptions, and
after some tedious algebraic manipulations, (6.6) becomes

a1a2 − a3 = µ(R1 − 1)(R1 −R2)
(
µ− σR2

R2
1

)
k + σµ2R1(2R1 −R2 − 1) +

µσ2(R1 −R2)
2

R1
.

(6.8)

All terms in (6.8) are positive except µ− σR2/R
2
1. If µR2

1 ≥ σR2, then a1a2 > a3. It
follows from the Routh–Hurwitz criterion that the endemic equilibrium E∗ is locally
asymptotically stable.

Suppose µR2
1 < σR2. We define a critical number k0 as

k0 =
σµR3

1(2R1 −R2 − 1) + σ2(R1 −R2)
2R1

(R1 − 1)(R1 −R2)(σR2 − µR2
1)

(6.9)

such that E∗ is locally asymptotically stable if k < k0 and is unstable if k > k0.
For k = k0, the characteristic equation (6.5) for the linearization of system (6.1) has
two pure imaginary roots. The parameter k can be used as a bifurcation parameter
such that as k passes through k0, a Hopf bifurcation occurs and a periodic solution
bifurcates from the endemic equilibrium.

The reproductive numbers R1 and R2 can also be used as bifurcation parameters.
Rewrite a1a2 − a3 as a quadratic function of R1 −R2:

a1a2 − a3 = µd2(R1 −R2)
2 + µd1(R1 −R2) + µd0,

where

d0 := σµR1(R1 − 1),

d1 := (R1 − 1)(µ− σ/R1)k + σµR1,

d2 := σ2/R1 + σ(R1 − 1)k/R2
1.

Fixing R1 and then solving the equation d2(R1 −R2)
2 + d1(R1 −R2) + d0 = 0 for R2

yields the two solutions

R+
2 = R1 +

d1 +
√
d2
1 − 4d2d0

2d2
, R−

2 = R1 +
d1 −

√
d2
1 − 4d2d0

2d2
.

For R1 > 1, d2 > 0 and d0 > 0. If R1 > R2 and d2
1 < 4d2d0, the inequality

a1a2 − a3 > 0 always holds. The endemic equilibrium, E∗, is locally asymptotically
stable. If d2

1 > 4d2d0, E
∗ is locally asymptotically stable provided 0 < R2 < R−

2 or
R+

2 < R2 < R1 and is unstable provided R−
2 < R2 < R+

2 . As R2 passes through
R−

2 or R+
2 , periodic solutions bifurcate from the endemic equilibrium.

The dynamics of system (6.1) are summarized, based on R1 and R2, in Figure 1.
We divide the R1-R2 plane into five regions. In Region I, R1 < 1 and R2 < 1. The
infection-free equilibrium, E0, is the only equilibrium and is globally asymptotically
stable. In both Regions II and III, the boundary equilibrium, E1, is globally asymp-
totically stable, whereas the endemic equilibrium, E∗, does not exist in Region II
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Fig. 1. Schematic illustrations of dynamical behavior of system (6.1) based on the reproductive
numbers, R1 and R2. The infection-free equilibrium, E0, is the only equilibrium in Region I and is
globally asymptotically stable. The boundary equilibrium, E1, exists in Regions II, III, and V. It is
globally asymptotically stable in both Regions II and III but is unstable in Region V. The endemic
equilibrium, E∗, exists in Regions III, IV, and V. It is unstable in Region III and in the interior of
the region enclosed by the bifurcation curve L. It is locally asymptotically stable in the complement
of the region enclosed by curve L in IV and V. For a fixed R1 in the interval of the projection of
curve L on the R1-axis, as R2 crosses through curve L, periodic solutions are bifurcated.

and exists but is unstable in Region III. While E∗ exists in both Regions IV and V
and is the only nontrivial equilibrium in Region IV, and E1 exists but is unstable in
Region V, the stability of E∗ is determined by the closed bifurcation curve L in these
two regions. E∗ is unstable and a Hopf bifurcation takes place in the interior of the
region enclosed by L. E∗ is asymptotically stable elsewhere in Regions IV and V.

We illustrate these results by examples using k, or R1 and R2, as bifurcation
parameters.

Example 6.1. We use k as a bifurcation parameter and let σ1 = σ2 = 1/2,
µ = 1/100, R1 = 3, and R2 = 2. System (6.1) becomes

dS

dt
=

1

100
(S0 − S) −

(
3 + 6k

2S0
I +

1

S0
J

)
S,

dI

dt
=

3 + 6k

2S0
SI − 1 + 2k

2
I,

dJ

dt
=

1

S0
SJ − 1

2
J + kI

(6.10)

and has the endemic equilibrium

E∗ =

(
S0

3
,

S0

75(1 + 6k)
,

2kS0

25(1 + 6k)

)
= (S∗, I∗, J∗).

The linearization of system (6.10) at E∗ has the characteristic equation

f(ρ) = ρ3 +
59

300
ρ2 +

(
k

150
+

3

200

)
ρ +

k

300
+

1

600
= 0.(6.11)
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The critical number k0 defined in (6.9) can be determined as k0 = 33/52. Then,
if k < 33/52, all roots of (6.11) have negative real part, and hence the endemic
equilibrium of (6.10) is stable. If k > 33/52, there exist two roots with positive real
part, and hence the endemic equilibrium of system (6.10) is unstable. For k = 33/52,
(6.11) has a negative real root and two pure imaginary conjugates:

ρ1 = − 59

300
, ρ2 =

√
13

26
i, ρ3 = −

√
13

26
i.

For k greater than, but near 33/52, (6.11) has a negative real root ρ1(k) and a
pair of complex conjugates ρ2(k) = ρ̄3(k) := ξ(k) + iη(k). Substituting the complex
conjugates into (6.11) and then separating the real and imaginary parts yields the
equations for ξ(k) and η(k):

ξ3 − 3ξη2 +
59

300
ξ2 − 59

300
η2 +

k

150
ξ +

3

200
ξ +

k

300
+

1

600
= 0,

3ξ2η − η3 +
59

150
ξη +

k

150
η +

3

200
η = 0.

(6.12)

By differentiating (6.12) with respect to k, we have

(
3ξ2 − 3η2 +

59

150
ξ +

k

150
+

3

200

)
dξ

dk
−
(

6ξη +
59

150
η

)
dη

dk
+

1

150
ξ +

1

300
= 0,(

6ξη +
59

150
η

)
dξ

dk
+

(
3ξ2 − 3η2 +

59

150
ξ +

k

150
+

3

200

)
dη

dk
+

1

150
η = 0.

(6.13)

Solving (6.13) for dξ/dk and substituting k = 33/52, ξ = 0, and η =
√

13/26 into the
expression of dξ/dk yields dξ/dk = 169/9679 > 0. Therefore, system (6.10) undergoes
a Hopf bifurcation and a periodic solution is bifurcated near k = 33/52.

To determine the bifurcation direction, we first discuss the stability of the endemic
equilibrium of system (6.10) as k = 33/52. Let x1 = S − S∗, y1 = I − I∗, and
z1 = J − J∗ to transform the endemic equilibrium to the origin of a new system.
Using the linear transformation

x1 =
3125

√
13

767
y − 125

6
z,

y1 = x + z,

z1 =
639

236
x− 1125

√
13

3068
y − 539

39
z,

and rescaling t = 2
√

13 t̂, we transform the resulting system into

dx

dt̂
≈ y + 319.95

(
S0

)−1
xy − 453.74

(
S0

)−1
xz − 6.93

(
S0

)−1
y2

+ 243.20
(
S0

)−1
yz − 330.96

(
S0

)−1
z2,

dy

dt̂
≈ −x + 13.55

(
S0

)−1
xy − 19.22

(
S0

)−1
xz + 19.36

(
S0

)−1
y2

+ 228.07
(
S0

)−1
yz − 362.37

(
S0

)−1
z2,

dz

dt̂
≈ −1.42z + 40.63

(
S0

)−1
xy − 57.62

(
S0

)−1
xz + 6.93

(
S0

)−1
y2

+ 117.39
(
S0

)−1
yz − 180.40

(
S0

)−1
z2.

(6.14)
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The nonlinear terms of the right-hand side of system (6.14) are quadratic and satisfy
the existence conditions of the center manifold theorem [4, 12]. Hence, there exists a
manifold z = h(x, y) of system (6.14) which can be expanded as

z = h20x
2 + h11xy + h02y

2 + o(r2), r =
√
x2 + y2,(6.15)

where o(r2) denotes higher order terms and hij are to be determined.

Substituting (6.15) into system (6.14), we obtain

h20 = 8.38
(
S0

)−1
, h11 = 11.89

(
S0

)−1
, h02 = −3.50

(
S0

)−1
.

Substituting (6.15) with these hij again into the first two equations of system (6.14),
we have the following equations on the center manifold:

dx

dt̂
= y − 6.93

(
S0

)−1
y2 + 319.95

(
S0

)−1
xy − 3802.35

(
S0

)−2
x3 − 3357.04

(
S0

)−2
x2y

+ 4479.62
(
S0

)−2
xy2 − 851.17

(
S0

)−2
y3 + o(r3),

dy

dt̂
= −x + 13.55

(
S0

)−1
xy + 19.36

(
S0

)−1
y2 − 161.06

(
S0

)−2
x3

+ 1682.70
(
S0

)−2
x2y + 2779.06

(
S0

)−2
xy2 − 798.25

(
S0

)−2
y3 + o(r3).

(6.16)

Consider the function

V (x, y) = x2 + y2 − 239.10
(
S0

)−1
x3 − 38.71

(
S0

)−1
xy2 + 4.42

(
S0

)−1
y3

+ 59133.80
(
S0

)−2
x4 − 6381.38

(
S0

)−2
x3y − 151.46

(
S0

)−2
xy3

− 2462.13
(
S0

)−2
y4.

It is positive definite in a small neighborhood of the origin. Along the trajectories of
system (6.16),

dV (x, y)

dt

∣∣∣∣
(6.16)

= −1223.33
(
S0

)−2
(x2 + y2)2 + o(r4) < 0.

Therefore, V is a Lyapunov function for system (6.16) and the trivial solution of
system (6.16) is asymptotically stable. It follows from the reducible principle of the
center manifold theorem that the trivial solution of system (6.14), and hence the
endemic equilibrium of system (6.10), is asymptotically stable for k = 33/52. Since
the endemic equilibrium is unstable for k > 33/52, it follows from the Hopf bifurcation
theorem that there exists a stable periodic solution in the neighborhood of the endemic
equilibrium of system (6.10).

We illustrate the stable endemic equilibrium (k < k0) and the stable periodic
solutions (k > k0) in Figures 2 and 3. In Figure 2, k = 0.135 < k0 = 0.6346, and
the endemic equilibrium E∗ = (3.3363, 0.0074, 0.0059) is asymptotically stable. In
Figure 3, k = 0.9846 > k0 = 0.6346, and the endemic equilibrium E∗ is unstable. The
solutions quickly converge to the stable periodic solution.

Example 6.2. In this example, we use R1 and R2 as bifurcation parameters. Let
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Fig. 2. The solutions of system (6.1) for µ = 0.01, γ1 = γ2 = 0.49, R1 = 3, and R2 = 2.
The mutation rate k = 0.135 is used as a bifurcation parameter and is less than the critical value
k0 = 33/52. The endemic equilibrium (3.3363, 0.0074, 0.0059) is asymptotically stable. The top two
figures are the solutions of I and J versus time t. The bottom figure is the projected I-J phase plane
of the phase space.

σ1 = σ2 = 1/10, µ = 1/100, and k = 9/10 in system (6.1), so that we have

dS

dt
=

1

100
(S0 − S) −

(
R1

S0
I +

R2

10S0
J

)
S,

dS

dt
=

R1

S0
SI − I,

dS

dt
=

R2

10S0
SJ − 1

10
J +

9

10
I.

(6.17)

In region D := {(R1, R2) | R1 > R2, R1 > 1}, the endemic equilibrium of system
(6.17) is given by

E∗ =

(
S0

R1
,
S0(R1 − 1)(R1 −R2)

10(10R1 −R2)R1
,

9S0(R1 − 1)

10(10R1 −R2)

)
.

The characteristic equation of the linearization of system (6.17) at E∗ is

f(ρ) = ρ3 + a1ρ
2 + a2ρ + a3 = 0,(6.18)
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Fig. 3. All parameters are the same as those in Figure 2, except the mutation rate k = 0.9846 is
greater than the critical value k0 = 33/52. The endemic equilibrium is unstable and a stable periodic
solution is bifurcated from the endemic equilibrium. The top two figures show how the solutions with
initial values near the unstable endemic equilibrium rapidly converge to the stable periodic solution.
This can be also seen in the bottom figure of the I-J phase plane.

where

a1 =
R2

1 + 10R1 − 10R2

100R1
,

a2 =
11R2

1 − 10R1R2 − 10R1 + 9R2

1000R1
,

a3 =
(R1 − 1)(R1 −R2)

1000R1
.

E∗ is asymptotically stable if

a1a2 − a3 =
100R2

2R1 − 90R2
2 − 101R2R

2
1 + 90R1R2 − 10R3

1R2 + 11R4
1

100000R2
1

> 0.(6.19)

Define function H(R2) as the numerator in (6.19). Then

H(R2) = (100R1 − 90)R2
2 −

(
10R3

1 + 101R2
1 − 90R1

)
R2 + 11R4

1.

The two zeros R
(1)
2 < R

(2)
2 , for R1 and R2, are in D, if

Q(R1) :=
(
10R3

1 + 101R2
1 − 90R1

)2 − 44R4
1 (100R1 − 90) > 0.
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Fig. 4. The reproductive numbers R1 and R2 are used as bifurcation parameters. The param-

eters R1 = 3, R
(1)
2 = 1.5, and R2 = 0.2 are chosen so that R2 < R

(1)
2 . Then R1 and R2 are in

Region IV in Figure 1. The endemic equilibrium exists and is asymptotically stable.

Numerical computations verify that Q(R1) has two zeros, R
(1)
1 < R

(2)
1 , in the intervals

(1.01, 1.04) and (4.50, 4.60), respectively. If R1 < R
(1)
1 or R1 > R

(2)
1 , then Q(R1) < 0,

and if R
(1)
1 < R1 < R

(2)
1 , then Q(R1) > 0.

Suppose R1 < R
(1)
1 or R1 > R

(2)
1 . Then Q(R1) < 0 and H(R2) is always positive.

If R
(1)
1 < R1 < R

(2)
1 , then Q(R1) > 0 and there are two zeros of H(R1), R

(1)
2 < R

(2)
2

in D. If, moreover, R2 < R
(1)
2 or R2 > R

(2)
2 , then H(R2) > 0. Hence, in either

case, H(R2) > 0 and E∗ is asymptotically stable. However, if R
(1)
1 < R1 < R

(2)
1 but

R
(1)
2 < R2 < R

(2)
2 , then H(R2) < 0, for R2 in D, and the endemic equilibrium is

unstable.

For each R1 in the interval (R
(1)
1 , R

(2)
1 ), E∗ changes its stability as R2 increases

from 0 to R1. E
∗ is stable for R2 in (0, R

(1)
2 ), unstable for R2 in (R

(1)
2 , R

(2)
2 ), and stable

again for R2 in (R
(2)
2 , R1). At R2 = R

(1)
2 or R2 = R

(2)
2 , the roots of characteristic

equation (6.18) are imaginary indicating the existence of a periodic solution by Hopf
bifurcation theory.

In numerical simulations, we fix R1 = 3. The two roots of H(R2) = 0 are

R
(1)
2 = 3/2 and R

(2)
2 = 99/35. The characteristic roots of (6.18), with R

(1)
2 = 3/2,

are ρ = −2/25, ρ =
√

5/20i, and ρ = −
√

5/20i. The characteristic roots of (6.18), for

R
(2)
2 = 99/35, are ρ = −1/28, ρ =

√
2/25i, and ρ = −

√
2/25i.

In Figure 4, β1 = 0.3 and β2 = 0.002, and R2 = 0.2 < R
(1)
2 . The endemic equilib-
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Fig. 5. The parameters are chosen as in Figure 4, except R2 = 2 by increasing β2 to 0.02

whereas β2 = 0.002 in Figure 4. Then R
(1)
2 < R2 < R

(2)
2 = 2.829, and R1 and R2 are in the

interior of the region enclosed by the bifurcation curve L, in Figure 1. The endemic equilibrium
loses its stability. A periodic solution is bifurcated and is asymptotically stable.

rium E∗ = (3.3348, 0.02627, 0.6032) is locally asymptotically stable, as is shown. We

then increase β2 to 0.02 so that R2 = 2, which is between R
(1)
2 and R

(2)
2 . The endemic

equilibrium loses its stability and a periodic solution is bifurcated from the endemic
equilibrium, as is shown in Figure 5. We continue increasing β2 to 0.0286 such that

R2 = 2.8571 > R
(2)
2 . The periodic solution disappears and the endemic equilibrium,

E∗ = (3.3358, 0.0035, 0.6621), regains its stability, as is shown in Figure 6.

7. Concluding remarks. One of the challenges in modeling the spread of in-
fectious diseases is to understand and predict the spread of competing strains of the
same pathogen. After a strain of a pathogen infects a host, the mutation can be
caused by an attempt of a pathogen to evade the immune defense of the host, the
effect of selective immunologic pressure, or possibly adaptation to a more efficiently
transmitted or better replicating pathogen.

We have formulated a simple compartmental mathematical model for the compe-
tition, mutation, and spread of a pathogen and its mutant strain. The model accounts
for a continuous infection-age structure for the original pathogen, and the mutation
rate of the pathogen depends on how long the host has been infected.

We model the transmission dynamics of pathogens by a system of partial differ-
ential-integral equations. We established conditions for the existence and stability of
the infection-free equilibrium, the boundary equilibrium, and the endemic equilibrium.
We derived formulas for the reproductive numbers, R1 and R2, for the two strains
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Fig. 6. The parameters are chosen as in Figure 4 except β2 = 0.0286 so that R2 = 2.857 > R
(2)
2 .

Then R1 and R2 are in Region V and above the region enclosed by the bifurcation curve L. The
endemic equilibrium regains its stability.

based on the local stability of the infection-free equilibrium. We established the
conditions for existence of the boundary equilibrium, E1, where only one strain of
the pathogen is in circulation, and the endemic equilibrium, E∗, where both the
strain and its mutant are in circulation. We obtained stability conditions for E1.
These conditions, listed in Table 1, are expressed in terms of the two reproductive
numbers. We investigated the stability of E∗ and derived the characteristic equation
of the linearization about E∗. The roots of this transcendental equation determine
the stability of E∗.

To gain insight into transmission dynamics of the diseases with mutating strains,
we simplified the model to make it more analytically tractable. By assuming the
pathogen mutates with a constant rate, the PDE system is reduced into a system of
ODEs. For pathogens with a constant mutation rate, we extended the local stability
results for the infection-free and boundary equilibria of the ODE system, to prove
that if R0 < 1, E0 is not only locally but also globally asymptotically stable. We also
proved that if R1 < 1 < R2, then E1 is globally asymptotically stable.

We established explicit conditions for the stability of the endemic equilibrium E∗

when the mutation rate is constant. Furthermore, we identified the regions for the
parameters where E∗ loses its stability and periodic solutions bifurcate from E∗.
For the special case where the two strains have the same recovery rate, we proved
Hopf bifurcations using either the mutation rate, k, or the reproductive numbers, R1

and R2, as bifurcation parameters.
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For the case where R1 = 3 > R2 = 2 > 1, we used k as a bifurcation param-
eter and identified regions where E0 and E1 are both unstable. In Example 6.1,
we established a critical value, k0, such that if k < k0, the endemic equilibrium is
asymptotically stable, and if k > k0, the endemic equilibrium is unstable and periodic
solutions appear through a Hopf bifurcation. We presented numerical simulations to
illustrate that if both reproductive numbers exceed the threshold value, then the mu-
tant cannot completely wipe out the original pathogen strain. We also showed that
if the mutation rate is below the critical value, k0, the two strains can coexist and
eventually stay at a constant steady state level. On the other hand, if the mutation
rate is above the critical value, k0, there can be sustained periodic oscillations of the
two pathogen strains. This phenomenon may furnish us with an interpretation of
periodic appearance of pathogen strains of some diseases, such as influenza, and can
provide useful guidance for disease intervention programs. Note that in this example
we fixed R2. Since R2 is a function of the mutation rate, k, as we vary k we must
also adjust the infection rate β2 in the bifurcation analysis.

We also used R1 and R2 as bifurcation parameters, while fixing other param-
eters, including the mutation rate. Figure 1 illustrates the regions in the R1-R2

plane where the equilibria have different dynamics. We identified a closed bifurcation

curve, L, for R
(1)
1 < R1 < R

(2)
1 , where if R1 and R2 are within the curve, the endemic

solution is periodic. We showed that for R1 in the interval (R
(1)
1 , R

(2)
1 ), as R2 increases

and passes through curve L, the stable steady state equilibrium changes its stability
and becomes unstable. As R2 continues to increase and passes through curve L the
second time, the steady state equilibrium regains its stability. That is, the curve L
identifies the parameter values where the solution undergoes a Hopf bifurcation.

Example 6.2 illustrates the Hopf bifurcation for R
(1)
1 < R1 < R

(2)
1 . In Figure 4,

(R1, R2) is outside the region enclosed by L with R2 below L. In this case, the
endemic equilibrium is asymptotically stable and the two strains eventually coexist
at a steady state level with I∗ = 0.0035. Figure 5 shows how when (R1, R2) is within
the L the endemic solutions are periodic. In Figure 6, (R1, R2) are again outside L,
but R2 is above L. Once again, the two strains can coexist, but the steady state level
I∗ = 0.02627 is much higher than in Figure 4 because the mutant in the latter case
has a larger reproductive number.

These examples illustrate the wide range of behavior that can exist when a
pathogen mutates in the host to create a second infectious mutant strain. The explicit
formulas for the reproductive numbers and the detailed analysis for the existence and
stability of the boundary equilibrium can provide insight into the complexity of these
epidemics. For the simplified cases where the mutation rate is not infection-age depen-
dent, we were able to establish conditions for the global stability of the infection-free
and boundary equilibria. Our analysis of the situation where the steady state equilib-
rium loses its stability through a Hopf bifurcation, and periodic solutions appear, may
also help in understanding similar transitions in epidemics with mutating pathogens.

Acknowledgment. The authors thank two anonymous referees for their valu-
able comments and suggestions.
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COMPLETE TRANSMISSION THROUGH A TWO-DIMENSIONAL
DIFFRACTION GRATING∗
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Abstract. The propagation of a normally incident electromagnetic plane wave through a two-
dimensional metallic grating is modeled and analyzed. The period of the structure A is on the
order of the incident wave length λ, but the height of the channel H separating the blocks is very
small. Exploiting the small parameter H/A, an approximate transmission coefficient is obtained for
the grating. For a fixed frequency this coefficient is O(H/A) except near resonant lengths where it
is O(1). That is, for certain widths the structure is transparent. Similarly, for a fixed length the
transmission coefficient has the same resonant features as a function of frequency.

Key words. gratings, electromagnetics, diffraction, scattering matrices, asymptotic approxima-
tions
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1. Introduction. There has been considerable recent interest in the study of
electromagnetic propagation through a particular grating structure [1,2]. This struc-
ture is taken at first approximation to be an infinite slab in the X-Y plane, but
with a finite thickness L in the Z-direction. A periodic array of identical holes are
bored through the slab, parallel to the Z-axis. The period of the structure A in the
X-Y plane is on the order of the wavelength λ of the incident electromagnetic plane
wave, the holes are very small in comparison, and the thickness L ∼ λ. Experimen-
tal results [1, 2] show that very little of the wave propagates through the slab. This
makes sense due to the size of the holes compared to λ. However, at certain resonant
frequencies, there is significant transmission. It is precisely this feature that has gen-
erated interest in this structure as an element in photonic and microwave circuits. For
example, the complete transmission at select frequencies makes this grating structure
useful as a highly selective filter. On the other hand, utilizing its almost complete
reflection for bands of frequencies suggests that the grating can be used as a mirror
in Fabry–Perot resonators.

Although the electromagnetic boundary value problem describing this physical
problem is easy to state, it has no closed form solution even for simply shaped holes
such as circles [1], squares, and cross-like geometries [2]. This is basically because there
is a mismatch between the geometries of the hole and the fundamental cell in the X-Y
plane, and the complication of requiring continuity of tangential electromagnetic fields
across the hole boundary. An approximate method, based on heuristic reasoning, has
been employed to study this structure and to explain the phenomenon of complete
transmittance [3].

In this paper we consider a two-dimensional version of this problem in which the
structure is composed of perfectly conducting metal brick cylinders separated by thin
channels which take the place of the holes. A schematic of the structure is shown
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in Figure 1(a). The incident electromagnetic field is polarized so that the magnetic
field is parallel to the Z-axis. The boundary value problem describing this physical
configuration is scalar and amenable to analysis. We will show that this grating
structure has the property of complete transmission at certain resonant frequencies.

We attack this problem by using S-matrix theory; we divide the problem into
two pieces, analyze each separately, and then recombine the results to obtain a sim-
ple, explicit representation of the transmission coefficient. This approach is similar
in spirit to the technique we employed to study large resonant structures [4]. Our
analysis of the present problem shows that the transmission coefficient for the grating
depends, remarkably, upon only a single real number t(λ,H) which is a function of
the wavelength of the incident plane wave and the height of the channel. This is the
mathematical underpinning of the physics of the grating structure. The determination
of t requires the solution of a single auxiliary scattering problem which involves the
same grating structure with L = ∞. We solve this problem using a modal expansion
procedure that is similar to the one used in [5]. It yields a single infinite system of
algebraic equations. We make explicit use of the smallness of the channel height and
derive an asymptotic approximation of the solution to these equations from which
we deduce t. Our approximate transmission coefficient has the property seen in the
three-dimensional grating structures. It is essentially zero for small channel heights,
except at and near a discrete set of resonant frequencies.

A grating structure very similar to the one shown in Figure 1(a) was studied
using a straightforward modal analysis [5]. By matching the modal expansions of the
tangential electric and magnetic fields, which are valid inside the channel, with similar
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expansions outside the channel, the authors arrived at two coupled infinite systems
of linear equations whose solution yielded the required transmission and reflection
coefficients. This approach can be modified to handle our grating, and the results can
be simplified by considering a very narrow channel. The results of such an approach
have recently been stated [6]. Another approach has been used to study a similar
grating [7]. It involves a coordinate transformation, which reduces the grating to a
flat surface, and a Fourier analysis of the resulting periodic Helmholtz equation. The
novelty of our approach, compared to these, is its simplicity and its ability to produce
a simple formula for the transmission coefficient of the grating which depends upon
only t(λ,H).

We finish this section by briefly outlining the remainder of this paper. In section 2
we formulate the scattering problem in dimensionless quantities. Section 3 contains
the description of our S-matrix method. Specifically, we consider two auxiliary scat-
tering problems and discuss their individual S-matrices. We show that both of these
can be described by a single complex number τ0 which physically is the transmission
coefficient for the first auxiliary problem. Exploiting the unitary character of either
S-matrix we show that τ0 lies on a circle, C0, in the complex plane whose center and
radius are known. The number t described in the above paragraph is essentially the
angle pinning τ0 down. Using connection formulae, which ignore the effects of evanes-
cent modes in the channel, the formula for the transmission coefficient is derived.

In section 4 the boundary value problem required to determine τ0 is presented and
a normal mode method is described to solve the problem. We derive an asymptotic
approximation of the solution of these equations in the limit as H/A → 0. From this
result we obtain an approximation of t and hence τ0. We find that this approximation
of τ0 lies on the circle C0.

In section 5 we put all the ingredients together to obtain our approximation of the
transmission coefficient. From this simple formula we are able to easily deduce the
resonant structure of the problem. Specifically, we obtain a formula for the resonant
lengths, for a fixed frequency, at which the grating is essentially transparent. We
also show that there is very little transmission through the grating for other lengths,
especially for H/A � 1. Similarly, when the length is fixed, we deduce a formula for
the resonant frequencies of the structure. At these frequencies the grating is again
transparent, and for others it is opaque.

In section 6 we briefly discuss the case when the incident wave obliquely strikes
the grating. The problem is more difficult in general but asymptotically the same
for H/A � 1. There is one slight modification which does not significantly alter our
formulae and the resonant structure of the grating. Finally, in section 7 we offer a
short conclusion and further discussion.

2. Formulation. A TM polarized electromagnetic plane wave impinges, nor-
mally, upon the periodic structure shown in Figure 1(a). The shaded regions indicate
a perfectly conducting material. In all that follows the spatial variables have been
scaled with respect to the period of the structure A and are denoted by lower case
letters; the magnetic field P has been scaled with respect to the amplitude of the
incident wave.

Since the structure is periodic, it is sufficient to study the wave propagation and
scattering in the fundamental cell shown, in dimensionless form, in Figure 1(b). The
magnetic field within this region satisfies the Helmholtz equation

∂2

∂x2
P +

∂2

∂z2
P + k2P = 0,(1a)
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where k = ωA/c0, ω is the frequency in radians of the incident wave, and c0 is the
speed of light in air. The length of the structure, l = L/A, is order one in this scaling,
and the height of the air-filled channel, h = H/A � 1, is very small. On the walls of
the channel, the normal derivative of the magnetic field is zero; i.e.,

∂

∂z
P = 0.(1b)

On the boundaries of the fundamental cell the field is taken to periodic.
The field to the left of the structure, z < 0, is given by

P = eikzψ0 +

∞∑
n=0

Rnψn(x)e−iβnz(2a)

and to the right of the structure, z > l,

P =

∞∑
n=0

Tnψn(x)eiβnz,(2b)

where Rn and Tn are the unknown reflection and transmission coefficients, respec-
tively. The orthonormal eigenfunctions and propagation constants are

ψ0 = 1, ψn =
√

2 cos(2nπx), n �= 0,(2c)

βn =
√
k2 − 4n2π2,(2d)

where the sines have been omitted due to the symmetry of the incident wave about
the z-axis. The field inside the channel is given by

P =
∞∑

n=0

[Ane
−iknz + Bne

iknz]φn,(3a)
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where the An and Bn are unknown constants, and the orthonormal eigenfunctions
and propagation constants are

φ0 =
1√
h
, φn =

√
2

h
cos

2nπ

h

(
x +

h

2

)
, n ≥ 1,(3b)

kn =

√
k2 − 4n2π2

h2
,(3c)

where the sines again are omitted because of the symmetry of the incident field. It
is assumed here that the wave number k < 2π so that only β0 is real and hence all
of the other modes outside of the structure are evanescent. With this restriction on
k and the fact that h � 1 it follows that only k0 is real and all the other modes
in the channel are evanescent, too. Finally, from their definitions it is clear that
β0 = k0 = k.

3. The method. We shall begin this section by considering two auxiliary prob-
lems whose solutions can be used to construct an approximate solution to (1)–(3).
These problems involve the same Helmholtz equation and boundary conditions, but
now we let l → ∞ so that the structure becomes semi-infinite. Accordingly, the
fundamental cell becomes semi-infinite; its geometry is shown in Figure 2(a). These
problems are two-dimensional versions of the three-dimensional acoustic cases studied
in [8].

The auxiliary problems. In the first problem we consider an incident mode of unit
strength striking this structure from the left; this corresponds to a normally incident
plane wave. The field is given there by

P1 = eikzψ0 +

∞∑
n=0

rnψn(x)e−iβnz, z < 0.(4a)
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The resulting field within the channel is

P1 =

∞∑
n=0

τnφn(x)eiknz, z > 0,(4b)

where there are only modes propagating to the right. The determination of rn and
τn must be determined approximately by a numerical method; we shall describe a
particular method in section 4.

At this stage we shall quickly derive a relationship between r0 and τ0 which will
become very useful. It is

1 − r0 =
√
h τ0.(5)

This is derived by taking the partial derivative of (4a) with respect to z at z = −δ,
where δ � 1, i.e., just to the left of the channel. Then multiplying this result by ψ0,
integrating with respect to x, and using the orthonormality of the eigenfunctions, we
obtain ∫ 1/2

−1/2

∂

∂z
P1(x,−δ)ψ0 dx = ik(1 − r0)e

ikδ.(6a)

A similar calculation applied to (4b) at z = +δ yields∫ h/2

−h/2

∂

∂z
P1(x, δ)φ0 dx = ikτ0e

ikδ.(6b)

We now let δ → 0 in (6a) and recall from (1b) that P1z = 0 on the metal portion of
the structure. This implies that the range of integration is now (−h/2, h/2) in (6a).
The exponential on the right-hand side goes to one. A similar limiting process applied
to (6b) removes the exponential from its right-hand side. Since P1z is continuous at
z = 0 within the channel and φ0 = ψ0/

√
h, (6a) and (6b) can be combined to arrive

at (5).
In the second auxiliary problem we consider an incident mode of unit strength

striking the structure from the right. This corresponds to an incident mode in the
channel. The field is given by

P2 =

∞∑
n=0

γnψn(x)e−iβnz, z < 0,(7a)

and

P2 = e−ikzφ0(x) +

∞∑
n=0

ρnφn(x)eiknz, z > 0.(7b)

There is an analogous relation between γ0 and ρ0 that is very similar to (5) and is
obtained along parallel lines of reasoning. It is

√
h ρ0 + γ0 =

√
h.(8)

The determination of ρ0 and γ0 must be found numerically.
There is a final and very useful relationship between γ0 and τ0; it is simply

γ0 = τ0.(9)
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This follows from integrating the identity ∇·{P1∇P2−P2∇P1} = 0 in the region |z| <
z∞, applying the divergence theorem, using the boundary conditions, and neglecting
the evanescent modes. Here z∞ 	 1 is a fixed number.

Finally, we note that the relationships contained in (5), (8), and (9) can be com-
bined to express r0, ρ0, and γ0 in terms of τ0. Omitting the algebraic details, we list
them here as

r0 = 1 −
√
hτ0, γ0 = τ0,(10a)

ρ0 = 1 − τ0√
h
.(10b)

Thus, only the first auxiliary problem needs to be solved numerically to determine
the reflection and transmission coefficients, of the propagating mode, for the second
problem.

The S-matrix. The results of the proceeding subsection can be combined into two
simple linear statements that constitute classical S-matrix theory used to characterize
microwave circuits [9]. Let the semi-infinite structure, shown in Figure 2(a), be excited
by a normally incident plane wave of strength a0 from the left and by the lowest mode
with strength c0 from the right. A few wavelengths to the left of z = 0, where the
evanescent modes may be neglected, the field is given by

P = {a0e
ikz + b0e

−ikz}ψ0(x)(11a)

and a few wavelengths to the right of z = 0 by

P = {d0e
ikz + c0e

−ikz}φ0(x).(11b)

By the linearity of the Helmholtz equation and the boundary conditions (1), it follows
that

b0 = r0 a0 + γ0 c0,(12a)

d0 = τ0 a0 + ρ0 c0.(12b)

These can be rewritten with the aid of (10) as

b0 =
(
1 −

√
hτ0

)
a0 + τ0 c0,(13a)

d0 = τ0 a0 +

(
1 − τ0√

h

)
c0.(13b)

The coefficients in (13) form the S-matrix for our semi-infinite structure. We show
in Appendix A that this matrix is unitary and, accordingly, that τ0 must lie on the
circle ∣∣∣∣∣ τ0 −

√
h

1 + h

∣∣∣∣∣ =

√
h

1 + h
(14a)

in the complex plane, which has the equivalent representation

τ0 =
2
√
h

(1 + h) + iη
, −∞ < η < ∞.(14b)
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The real number η depends upon h and k: Remarkably, all of the scattering physics
of our semi-infinite structure is contained in this number.

Finally, we state the S-matrix for the related structure shown in Figure 2(b),
which is just the semi-infinite structure of Figure 2(a) shifted l units along the z-axis
and reflected. If ĉ0 is the strength of the incident mode to the left of z = l and â0 is
the amplitude of the plane wave striking from the right, then P is given by

P =
{
â0e

−ikz + b̂0e
ikz

}
ψ0(x)(15a)

a few wavelengths to the right of z = l, and by

P =
{
d̂0e

−ikz + ĉ0e
ikz

}
φ0(x)(15b)

a few to the left. The linear relationship analogous to (13) is

b̂0 =
(
1 −

√
hτ0

)
e−2ikl â0 + τ0 ĉ0,(16a)

d̂0 = τ0 â0 +

(
1 − τ0√

h

)
e2ikl ĉ0,(16b)

where the exponential factors take into account the shifted and reflected location of
the channel.

Connection formulae. We shall now return to our original problem and begin the
construction of its approximate solution. First, we reinterpret the modal structure
of the field given by (3a) at the hypothetical plane z = l/2. At this plane only the
propagating mode is present. This occurs because the evanescent modes are heavily
damped, due to the fact that their propagation constants are purely imaginary and
large in moduli; i.e., βm ∼ Imπ/h for m ≥ 1. For example, the largest evanescent
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mode occurs when m = 1, and it is O(e−πl/2h) as h → 0. Thus in the vicinity of the
hypothetical plane at z = l/2, we neglect these exponentially small terms and take

P = {A0e
−ikz + B0e

ikz}φ0.(17)

From the perspective of an observer near the aperture at z = 0, a mode of unit
strength impinges from the left and a mode of strength A0 impinges from the right.
The wave reflected to the left has an amplitude R0 and to the right the amplitude is
B0. These amplitudes are connected via the S-matrix (13). Setting a0 = 1, b0 = R0,
c0 = A0, and d0 = B0, (13) becomes

R0 =
(
1 −

√
hτ0

)
+ τ0 A0,(18a)

B0 = τ0 +

(
1 − τ0√

h

)
A0.(18b)

From the perspective of an observer near the aperture at z = l, there is no mode
impinging from the right, just a mode of strength B0 striking from the left. The wave
transmitted to the right has an amplitude T0 and reflected to the left A0. These
amplitudes are connected via the S-matrix (16). Setting â0 = 0, b̂0 = T0, ĉ0 = B0,

and d̂0 = A0, (16) becomes

T0 = τ0 B0,(19a)

A0 =

(
1 − τ0√

h

)
e2ikl B0.(19b)

Inserting (19b) into (18b) and solving for B0 yields

B0 =
τ0

1 −
(
1 − τ0√

h

)2

e2ikl

.(20)

Combining this result with (19a) gives

T0 =
τ2
0

1 −
(
1 − τ0√

h

)2

e2ikl

,(21a)

the transmission coefficient for our periodic structure. Finally, inserting (20) into
(19b) and the resulting expression into (18a) yields

R0 =
(
1 −

√
hτ0

)
+ T0

(
1 − τ0√

h

)
e2ikl,(21b)

the reflection coefficient of our periodic structure.
In closing this section it is interesting to note that the reflection and transmission

coefficients for our periodic structure are determined completely by τ0, the trans-
mission coefficient for our first auxiliary problem. Remarkably then by (14b), the
scattering properties of our grating are completely contained in the parameter η. All
that is left now is to find an accurate approximation of this number.
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4. An approximation of τ0. The solution of the first auxiliary problem and
the determination of τ0 cannot be determined exactly; a numerical approximation
must be sought. The approach we use here employs a Green’s function argument and
a normal mode expansion, using the φn as a basis, to obtain a system of equations
for the τn. We then exploit the fact that h � 1 to obtain an approximation of τ0.

We begin by representing the field P1 in the region z < 0 by P1 = 2 cos(kz)+PS ,
where the first term incorporates the incident field and its rigid reflection and ignores
the presence of the channel. The scattered field PS takes this into account. It is clear
from this representation that ∂

∂zP1 = ∂
∂zPS on z = 0. It then follows from (1a) that

∂
∂zPS = 0 for z = 0 with |x| > h/2. Using this information we deduce, using standard
Green’s functions arguments, that

P1(x, z) = 2 cos(kz) −
∫ h/2

−h/2

G(x, z|x′, 0)
∂

∂z′
P1(x

′, 0) dx′,(22a)

G(x, z|x′, 0) =

∞∑
n=−∞

1

iβn
e2nπi(x−x′) e−iβnz.(22b)

Here G is the Green’s function for the Helmholtz equation in z < 0 which is periodic
in x, and satisfies ∂

∂z′G = 0 when z′ = 0.
We next set z = 0 in (22) and use the representation of P1 given by (4b) in the

resulting expression. This can be done because both the field and its z derivative are
continuous across z = 0 with |x| < h/2. The result is

∞∑
m=0

τmφm = 2 − i

∫ h/2

−h/2

G0(x, 0|x′, 0)

∞∑
m=0

kmτmφm(x′) dx′.(23)

Multiplying this expression by φn, integrating between ±h/2, and using the orthonor-
mality of the {φn}, we arrive at the linear system

τn = 2
√
h δn0 − i

∞∑
m=0

kmτmZnm,(24a)

Znm =

∫ h/2

−h/2

∫ h/2

−h/2

G(x, 0|x′, 0)φn(x)φm(x′) dx′ dx,(24b)

where δn0 is the Kronecker delta function. Before proceeding to exhibit the formulae
for the Znm we rewrite the system (24a) in two pieces, singling out the leading order
coefficient τ0:

τ0 = 2
√
h− ikZ00τ0 +

∞∑
m=1

|km|Z0mτm,(25a)

τn = −ikZn0τ0 +

∞∑
m=1

|km|Znmτm.(25b)

Here we have recalled and used the fact that km = i|km| ≡ i
√
m2π2/h2 − k2 for

m ≥ 1.
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We now make the substitution τn = −ikτ0αn, for n ≥ 1, into (25b) and find that
the αn must satisfy

αn = Zn0 +

∞∑
m=1

|km|Znmαm, n ≥ 1.(26a)

Once this system is solved for the αn, then the τn are known for n ≥ 1. Making the
same substitution into (25a) and solving for τ0 we find that

τ0 =
2
√
h

1 + ikZ00 + ik
∞∑

m=1
|km|Zm0 αm

.(26b)

Thus, once the αm are known, τ0 is known, too.
The matrix elements are obtained by substituting (22b) into (24b) and interchang-

ing the order of summation and integration. The resulting integrals are elementary,
and we find that

Z00 = −i
h

k
− 2hS00,(27a)

Zn0 = Z0n = 2hS0n, n ≥ 1,(27b)

Znm = hSnm, n,m ≥ 1,(27c)

where the Snm are real and are defined by

S00 =

∞∑
l=1

1

|βl|
sin2(lπh)

(lπh)2
,(28a)

S0n =
√

2

∞∑
l=1

1

|βl|
sin2(lπh)

[(nπ)2 − (lπh)2]
, n ≥ 1,(28b)

Snm = −4

∞∑
l=1

(lπh)2 sin2(lπh)

|βl|[n2π2 − (lhπ)2][m2π2 − (lhπ)2]
, m, n ≥ 1.(28c)

Finally, inserting (27a) and (27b) into (26b) we obtain the result

τ0 =
2
√
h

(1 + h) + ih t
,(29a)

t = 2 k

{
−S00 +

∞∑
m=1

|km|S0mαm

}
.(29b)

Thus, τ0 satisfies (14b) with η = h t.
Now any approximation of τ0 using the above formulation requires an approxi-

mation of the αn. This is done by first truncating the infinite system (26a), so that
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1 ≤ n ≤ N . Then for a fixed h and k the series defining the Znm, (28a)–(28c), can be
truncated to yield a prescribed accuracy. Once this is done we can invert the finite
system to determine the approximations of αn , 1 ≤ n ≤ N . These will be denoted
by α̂n. Next, the infinite sum in (29b) is likewise truncated, so that 1 ≤ m ≤ N . We
denote this approximation by t̂. Finally, we insert this result into (29a) and obtain
our approximation of the transmission coefficient

τ̂o =
2
√
h

(1 + h) + i h t̂
.(30)

Remarkably, this approximation satisfies (14b) regardless of N and the errors induced
by truncating the series.

Up to this point we have not exploited the small channel width, h � 1, except
in neglecting the exponentially small contributions of the evanescent modes to (17).
From (27b) and (27c) we observe that the matrix elements Znm, n ≥ 1 and m ≥ 0,
are formally O(h) as h → 0. To show this is true we need to demonstrate that the
corresponding Snm are O(1). These sums are slowly convergent when h � 1. However,
careful numerical computations on (28b) and (28c) show that they are order one, and
a qualitative argument to this effect is presented in Appendix B.

Using the facts that Zn0 and Znm are small, it follows from (26a), truncated at
m = N , that

α̂n = 2hSn0 + O(h2), 1 ≤ n ≤ N,(31a)

as h → 0. Inserting this estimate into (29b), also truncated at m = N , and noting
that |km| ∼ mπ/h, we deduce that

t̂ = 2k

{
−S00 + 4π

N∑
m=1

mS2
0m

}
.(31b)

Now the sum (28a) defining S00 is also slowly convergent, and we present a qualitative
argument in Appendix B that S00 ∼ ln(1/h); careful numerical computations bear
this out, too. This suggests that the first term in (31b) is dominant and accordingly

t̂ = −2 k S00.(31c)

Inserting (31c) into (30) yields our approximation τ̂0 of the transmission coefficient of
our first auxiliary problem.

The above approximations of α̂n and t̂ are formal. To make them rigorous we
must prove that the O(h2) estimate in (31a) remains valid as N → ∞. Moreover, we
must show S0m = O(1/mp), where p > 1, so that the sum in (31b) converges in this
limit. Of these two problems the second is intuitive due to the presence of n2π2 in
the denominator of (28b). The first problem is not intuitive as it requires an estimate
of the effects of the terms ∞ > m > N . This is a difficult issue which we do not
address here. We have, however, done careful numerical experiments on (26a) and
the effects of truncation. We have found that for h < 0.25 and 0 < k < 2π, choosing
N ≥ 5 gives accurate approximations of the αn to six decimal places. Increasing N
further changed the results in the higher decimal places. Furthermore, the estimate
(31c) agreed to a similar degree of accuracy with (31b).
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5. Transparency. All the ingredients are now in place to determine an approx-
imation of the transmission coefficient T0 for our periodic structure. This is done by
inserting (30), with t̂ given by (31c), into (21a); we denote the result by T̂0. The
magnitude of this complex number is found, after some algebraic and trigonometric
simplifications, to be

|T̂0| =
4h√

16h2A2
1 + 4A2

2

,(32a)

A1 = cos kl − 2kh2S00 sin kl,(32b)

A2 = (1 + h2 − 4k2h2S2
00) sin kl + 2khS00 cos kl.(32c)

Now if A1 and A2 are both O(1), then |T0| = O(h). Since the channel width
h � 1, the field will be quite small in the region z > l. On the other hand, if A2 is
small, then |T0| may be order one and the field will be substantial in z > l. In fact,
for a fixed k and h we can force A2 to be zero by choosing the length of our structure
to satisfy

tan kl =
−2khS00

1 + h2(1 − 4k2S2
00)

.(33)

The approximate solution to this equation is

l =
Mπ

k
− 2hS00 + O(h2 S2

00),(34a)

as h → 0, where M is an integer and the O(h2S2
00) represents the error which is very

small, even though S00 = O(ln(1/h)), as h → 0. For these choices of resonant l we
find that |T̂0| = 1−O(h2 S2

00); that is, our periodic structure is virtually transparent.
In Figure 3(a) we have plotted |T̂0| as a function of l for k = π/2 and h = 0.1.

The peaks of this function are slightly less than 1, and occur for values of l slightly less
than 2, 4, 6, and 8, completely in agreement with (34a). The value of this function
away from these resonant lengths is relatively small and clearly on the order of h.
Figure 3(b) contains the plot of |T̂0| as a function of l for k = π/2 and h = 0.01. For
this smaller channel width the peaks of this function are much more localized and
occur even closer to l = 2, 4, 6, and 8. Furthermore, away from these peaks it is again
on the order of h which is now even smaller.

Now for a fixed l we can rewrite (34a), neglecting the error term, to obtain

k =
Mπ

l + 2hS00(k, h)
,(34b)

where the dependence of S00 on k and h is explicitly shown. This is an implicit
equation for the resonant k for our grating. However, the term involving hS00 is
small so that the resonant k will be slightly less than Mπ/l. This is borne out in
Figure 4(a), where |T̂0| is plotted as a function of k for h = 0.01 and l = 2. Here
we have restricted k to the interval (0, 2π) to ensure single mode propagation in the
regions z < 0 and z > l. We note that if l is increased from 2 to 4, then the function
|T̂0| will have 8 resonant spikes. This follows from (34b) and implies that the grating



COMPLETE TRANSMISSION THROUGH A DIFFRACTION GRATING 37

1 3 5 7 9
l

0

0.2

0.4

0.6

0.8

1

|T0|

h=0.1  k=π/2

Fig. 3(a).

1 3 5 7 9
l

0

0.2

0.4

0.6

0.8

1

|T0|

h=0.01  k=π/2

Fig. 3(b).

will be transparent at many frequencies as l increases, or equivalently as the structure
becomes wider. We also observe that the pass bands for this grating structure are
extremely localized about k = kM ∼ Mπ/l. This localization is mitigated somewhat
when losses in the metallic grating are taken into account. Nonetheless this resonant
structure suggests that the grating might be suitable as a highly selective filter.

In Figure 4(b) we plot R̂0 as a function of k for h = 0.01 and l = 2. This
approximate reflection coefficient is obtained by combining (21a), (21b), (30), and
(31c). It is evident from this plot that the grating stop bands are very broad, in
the absence of grating losses. It is this feature of the grating that might make it a
candidate for a lossy mirror in a Fabry–Perot resonator.
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Finally, we offer a comparison of our results with those given in [6], where the
transmission coefficient was determined from a full-modal solution of the entire grating
problem. Using A = 3.5µm, L = 4µm, and H = 0.5µm, we find that l = 1.14 and
h = 1/7. The full-modal solution predicted resonances at 4.9µm and 9.7µm which
correspond to k = 4.3 and k = 2.3, respectively. Our approximation transmission
coefficient for this case has resonances at k = 2.4 and k = 4.7 which differ by 4%
and 8%. These errors are completely consistent with our asymptotic theory, which is
accurate to O(h).
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6. Nonnormal incidence. The procedure developed and discussed in the pre-
vious sections can be modified to handle the case of an incident plane wave

Pinc = eik(x sin θ0+z cos θ0),(35)

where θ0 is the angle the wave makes with the positive z-axis. For an arbitrary channel
height the simple results given in (10) are no longer true. Higher order reflection and
transmission coefficients must be taken into account in these expressions. For example,
the simple relationship r0 = 1 −

√
h τ0 now becomes

r0 = 1 −
√
hτ0 sinc

(
kh sin θ0

2

)
− i2

√
h

k

∞∑
n=1

|kn|τnIn(36a)

where

sinc(x) =
sinx

x
, In =

∫ 1

0

e−ikht sin θ0 cosnπt dt.(36b)

Thus, our simple theory based upon the single scalar number t no longer holds. How-
ever, if we exploit the fact that h � 1, then the sinc function and the In in (36a) all
become 1 + O(h) and we obtain r0 = 1 −

√
hτ0 + O(h3/2). Ignoring the correction

term we arrive at our original relationship. Similar reasoning shows that the other
statements in (10) hold asymptotically and the rest of our argument proceeds accord-
ingly until we arrive at the approximation of τ0. A modified Green’s function must
be introduced at this point which takes into account the quasi-periodic nature of the
solution in x. The analysis here follows along the same path and the results are the
same with one exception. The formula for S00 must be modified by replacing |βl|
by

√
(2lπ − k sin θ0)2 − k2 which takes into account the nonnormal incidence. The

formulae (34a) and (34b) for the resonant length and wave number, respectively, still
remain valid with this change.

7. Conclusion. We have derived a simple approximation of the transmission
coefficient for the two-dimensional periodic structure shown in Figure 1. The as-
sumptions used in our analysis were threefold. First, the incident wave was taken to
be normally incident upon the structure. Second, the frequency of the incident wave
was restricted to ensure that only a single mode propagated in the regions z < 0
and z > l. Third, the air filled channels were taken to be very small compared to
the period of the structure. Our results show that for a fixed frequency and chan-
nel width h, the magnitude of the transmission coefficient is O(h) except at certain
resonant lengths where it is almost 1. Moreover, the smaller h is made, the more
localized is this resonant behavior. The same phenomenon occurs when the length
of the structure and the channel width are fixed. Then the magnitude of the trans-
mission coefficient is O(h) except in the neighborhood of resonant frequencies. These
phenomena will be mitigated somewhat in actual gratings with finite conductivity.
Nonetheless, our approximate transmission coefficient still gives accurate estimates
for resonant lengths and the resonant frequencies for highly conductive gratings.

Our approximate transmission coefficient depends fundamentally upon τ0, the
transmission coefficient of a related auxiliary problem. This coefficient is deduced from
the solution to an infinite system of linear algebraic equations. We have developed an
asymptotic approximation of the solution of these equations, and hence of τ0, in the
limit h → 0. Although these calculations were formal, careful numerical studies of the
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system and of the resulting approximation of τ0 strongly indicate that our asymptotic
results are highly accurate.

We have also briefly addressed the case of nonnormal incidence and have provided
the necessary changes. Finally, we note that removing the restriction on k so that
more modes are present in the region exterior to our structure will cause the analyses
to become much more involved. The dependence of the scattering physics on one
number, regardless of the small channel height, will no longer be true. However,
we conjecture that the resonant phenomena illustrated in this present work still will
remain.

Appendix A. In this appendix we show that the matrix given in (13) is unitary
and, accordingly, that τo satisfies (14a). We begin by letting P denote the solution
to the Helmholtz equation which satisfies the boundary conditions enumerated in the
text and behaves according to (11) away from z = 0. It follows from the former that
Im{∇ · P̄∇P )} = 0. Integrating this relationship in the region |z| < z∞, applying
boundary conditions, and using (11) we obtain

l|a0|2 + |c0|2 = |b0|2 + |d0|2.(A.1)

This is a statement of the conservation of power. We now insert the expressions for
b0 and d0 given by (13) into (A.1) and obtain

0 = {|1 −
√
hτ0|2 + |τ0|2 − 1}|a0|2 +

{∣∣∣∣1 − τ0√
h

∣∣∣∣
2

+ |τ0|2 − 1

}
|c0|2

+2 Re

[{
τ0

(
1 −

√
hτ̄0

)
+ τ̄0

(
1 − τ0√

h

)}]
ā0c0.

(A.2)

Setting a0 = 1 and c0 = 0, we deduce from (A.2) that |1 −
√
hτ0|2 + |τ0|2 = 1.

This can be rearranged to give (14a). Similarly, setting a0 = 0 and c0 = 1 gives
|1− τ0√

h
|2 + |τ0|2 = 1. This too can be rearranged to give (14a). Using these two pieces

of information it follows from (A.2) that 2 Re[{τ0(1−
√
hτ̄0)+ τ̄0(1− τ0√

h
)}] = 0. These

results show that the matrix defined in (13) is unitary.

Appendix B. In this appendix we shall give a qualitative argument that S0n,
defined by (28b), is O(1) as h → 0. That is, S0n is bounded in this limit. An analogous
argument for Snm has been developed, but for brevity will not be presented here.

We begin by rewriting (28b) as

S0n =

√
2

π

∞∑
l=1

∆x√
(2l∆x)2 − (k∆x)2

sin2(l∆x)

[(nπ)2 − (l∆x)2]
,

where ∆x = hπ. Now for small ∆x the sum above can be interpreted as the Riemann
sum which approximates the integral

I0n =

√
2

π

∫ ∞

∆x

1√
4x2 − (k∆x)2

sin2 x

[(nπ)2 − x2]
dx.

This integral can be split into three pieces:

I0n =

√
2

π
{J1 + J2 + J3},



COMPLETE TRANSMISSION THROUGH A DIFFRACTION GRATING 41

where

J1 =

∫ 1

k∆x/2

sin2 x√
4x2 − (k∆x)2 [(nπ)2 − x2]

dx,

J2 = −
∫ ∆x

k∆x/2

sin2 x√
4x2 − (k∆x)2 [(nπ)2 − x2]

dx,

J3 =

∫ ∞

1

sin2 x√
4x2 − (k∆x)2 [(nπ)2 − x2]

dx.

Now J1 and J3 can be approximated to O(∆x) by replacing ∆x by 0, yielding

J1 ∼
∫ 1

0

sin2 x

2x [(nπ)2 − x2]
dx,

J3 ∼
∫ ∞

1

sin2 x

2x [(nπ)2 − x2]
dx.

Both of these integrals are finite. After making the substitution x = (k∆x/2)p and
using ∆x � 1 the integral defining J2 becomes

J2 ∼ −
(
k∆x

2nπ

)2 ∫ 2/k

1

p2√
p2 − 1

dp.

Combining these three estimates we have

S0n ∼ I0n =

√
2

π
{J1 + J2 + J3} = O(1)

as h → 0.
Using similar reasoning on S00 we obtain

S00 ∼ 1

π
{K1 + K2 + K3},

where

K1 =

∫ 1

∆x

sin2 x√
4x2 − (k∆x)2

dx

x2
,

K2 =

∫ ∆x

k∆x/2

sin2 x√
4x2 − (k∆x)2

dx

x2
,

K3 =

∫ ∞

1

sin2 x√
4x2 − (k∆x)2

dx

x2
.
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Now K3 can be approximated to O(h) by replacing ∆x by 0, giving

K3 =

∫ ∞

1

sin2 x

2x3
dx,

which is finite. Making the same substitution, as above in J2, into K2 we deduce that

K2 =

∫ 2/k

1

1√
p2 − 1

dp,

which is also finite. Now the integral defining K1 is rewritten as

K1 =

∫ 1

∆x

dx√
4x2 − (k∆x)2

−
∫ 1

∆x

(
sin2 x

x2
− 1

)
dx√

4x2 − (k∆x)2
.

We observe that the second integral is bounded as ∆x → 0 and it can be approximated,
to O(∆x), by just setting ∆x = 0. The first integral can be solved exactly and as
∆x → 0 it becomes 1

2 ln( 4
k∆x ). Thus, we finally have

S00 ∼ 1

2π
ln (4/kh).
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Abstract. In this paper we consider numerical homogenization and correctors for nonlinear
elliptic equations. The numerical correctors are constructed for operators with homogeneous random
coefficients. The construction employs two scales, one a physical scale and the other a numerical
scale. A numerical homogenization technique is proposed and analyzed. This procedure is developed
within finite element formulation. The convergence of the numerical procedure is presented for the
case of general heterogeneities using G-convergence theory. The proposed numerical homogenization
procedure for elliptic equations can be considered as a generalization of multiscale finite element
methods to nonlinear equations. Using corrector results we construct an approximation of oscillatory
solutions. Numerical examples are presented.
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1. Introduction. Consider the nonlinear elliptic equations

−div(aε(x, uε, Duε)) + a0,ε(x, uε, Duε) = f, uε ∈ W 1,p
0 (Q).(1)

Here ε denotes the small scale of the problem. Direct numerical simulations of these
kinds of problems are difficult because of scale disparity. Our objective is to find the
approximation of the homogenized solution without solving the fine scale problem;
i.e., (1) is solved on a grid of size h, where h � ε. The numerical procedure intro-
duced for this purpose can be regarded as numerical homogenization. The numerical
homogenization procedure for (1) should account for the functional dependence of
the macroscopic quantities on the solution and its gradients. Our motivation in con-
sidering (1) mostly stems from the applications of flow in porous media (multiphase
flow in saturated porous media and flow in unsaturated porous media) and enhanced
diffusion due to nonlinear heterogeneous convection, though many applications of
nonlinear elliptic equations of these kinds occur in transport problems.

In this paper we consider two issues: (1) the calculation of the correctors and
(2) the computation of the homogenized solution. The homogenization of nonlinear
elliptic equations in a random media has been studied previously (see, e.g., [17]). It
was shown that a solution uε converges (up to a subsequence) to u in an appropriate
norm and where u ∈ W 1,p

0 (Q) is a solution of

−div(a∗(x, u,Du)) + a∗0(x, u,Du) = f.(2)

The homogenized coefficients can be computed if we make an additional assumption
on the heterogeneities such as periodicity, almost periodicity, or when the fluxes are
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strictly stationary fields with respect to spatial variables. In these cases one has an
auxiliary problem of calculating a∗ and a∗0. The numerical homogenization procedure
presented in this paper does not use the auxiliary problem for the calculation of the
approximation of homogenized solutions.

To construct the numerical correctors we use two scales, a physical scale and a
numerical scale that is much larger than the physical one, and construct the correctors
in each numerical coarse block. The convergence for the corrector is obtained. These
results show us a way to obtain numerically the fine scale features of the solution. We
would like to note that the computation of the oscillation of solutions is important
for the application to flow in porous media and other transport problems.

We present a procedure for calculating a coarse solution, the solution at the length
scales h, 1 � h � ε. Our numerical homogenization procedure is based on general
finite element computations of the coarse scale equations. It selectively solves the
required local problems that reduce overall computations even in the periodic case.
The solutions of the local problems are uniquely determined, which makes our discrete
operator single-valued. The convergence of the numerical method is presented for
general kinds of heterogeneities using G-convergence theory. Moreover, we show that
the numerical homogenization approach presented in this paper can be considered as a
generalization of multiscale finite element methods introduced in [10]. A related work
in multiscale computations involves generalized finite element methods [2], residual
free bubbles [3, 19], the variational multiscale method [12], two-scale finite element
methods [15], two-scale conservative subgrid approaches [1], and the heterogeneous
multiscale method (HMM) [6].

Some numerical examples are considered in this paper. We study numerically the
effect of enhanced diffusion due to heterogeneous nonlinear convection,

∂uε

∂t
+

1

ε
vε(x) ·DF (uε) − d∆uε = f.

Since the elliptic part does not depend on t, the theory developed previously can be
applied. In this application we are interested in the effect of the enhanced diffusion
due to heterogeneous nonlinear convection. More precisely, assuming the existence of
homogeneous stream function for the velocity field and zero mean drift, we calculate
the approximation of the enhanced diffusion due to the convection using Buckley–
Leverett flux that describes the convection. Other numerical examples for Richards
equations are also studied.

The paper is organized as follows. In the next section we present some basic
facts that are used later in the analysis. Section 3 is devoted to the construction of
a numerical corrector and its convergence. Section 4 is devoted to the calculation
of the homogenized solution and its analysis. In section 5 we present numerical
results.

2. Preliminaries. We start with a description of random homogeneous fields
on Rd, which are shown to be useful in homogenization problems (see, e.g., [13]). Let
(Ω,Σ, µ) be a probability space. A random homogeneous field is a measurable function
on Ω and f(T (x)ω) are realizations of the random field. The realizations are well-
defined measurable functions on Rd for almost all ω ∈ Ω. Consider a d dimensional
dynamical system on Ω, T (x) : Ω → Ω, x ∈ Rd, that satisfies the following conditions:
(1) T (0) = I, and T (x + y) = T (x)T (y); (2) T (x) : Ω → Ω preserve the measure µ
on Ω; (3) for any measurable function f(ω) on Ω, the function f(T (x)ω) defined on
Rd×Ω is also measurable (see [13, 18]). Let Lp(Ω) denote the space of all p-integrable
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functions on Ω. Then U(x)f(ω) = f(T (x)ω) defines a d-parameter group of isometries
in the space Lp(Ω), and U(x) is strongly continuous [13, 17]. Further, we assume that
the dynamical system T is ergodic; i.e., any measurable T -invariant function on Ω is
constant. Denote by 〈·〉 the mean value over Ω,

〈f〉 =

∫
Ω

f(ω)dµ(ω) = E(f).

Now we explain briefly the relation between the standard definition of random
homogeneous fields and the one we introduced here following, e.g., [17]. Let Ξ be
a probability space endowed with a probability measure P . Let f be a random
vector valued function, i.e., a measurable map f : Ξ × Rd → RN . f is a random
homogeneous field if all its finite dimensional distributions are translation invariant.
The latter means that for any x1, x2, . . . , xk ∈ Rd, and any Borel subsets B1, B2,
. . . , Bk ⊂ RN ,

P{ξ ∈ Ξ : f(ξ, x1 + h) ∈ B1, . . . , f(ξ, xk + h) ∈ Bk}

is independent of h ∈ Rd. Consider a new probability space Ω and a dynamical system
T (x) acting on Ω. We define Ω to be the set of all measurable functions ω : Rd → RN

and set T (x)ω(y) = ω(x + y), x, y ∈ Rd. Let F be the σ-algebra generated by
“cylinder” sets, i.e., the sets of the form B = {ω : ω(x1) ∈ B1, . . . , ω(xk) ∈ Bk},
where x1, x2, . . . , xk ∈ Rd and B1, B2, . . . , Bk are Borel subsets in RN . We
define the measure µ on “cylinder” sets by µ(B) = P{ξ ∈ Ξ : f(ξ, ·) ∈ B} and
then extend it to F by σ-additivity. Thus, the probability space Ω and the measure-
preserving dynamical system T (x), x ∈ Rd, on Ω are constructed. Moreover, consider

the µ-measurable function f̂ : Ω → RN defined by the formula f̂(ω) = ω(0). Then

f(ξ, x) = f̂(T (x)ω), where ω(·) = f(ξ, ·). More examples regarding the construction
of T can be found in [13].

Denote by ∂i
ω the generator of U(x) along the ith coordinate direction, i.e.,

∂i
ω = lim

δ→0

f(T (δei)ω) − f(ω)

δ
.

The domains Di of ∂i
ω are dense in L2(Ω), and the intersection of all Di is also dense.

Next, following [17], we define potential and solenoidal fields. A vector field
f ∈ Lp(Ω) is said to be potential (or solenoidal, respectively) if its generic realization
f(T (x)ω) is a potential (or solenoidal, respectively) vector field in Rd. Denote by
Lp
pot(Ω) (respectively, Lp

sol(Ω)) the subspace of Lp(Ω) that consists of all potential
(respectively, solenoidal) vector fields. Introduce the following notation:

V p
pot = {f ∈ Lp

pot(Ω), 〈f〉 = 0}, V p
sol = {f ∈ Lp

sol(Ω), 〈f〉 = 0}.

The following properties are known (see [17, page 138]):

Lp
pot(Ω) = V p

pot ⊕Rd, Lp
sol(Ω) = V p

sol ⊕Rd, Lq
sol(Ω) = (V p

pot)
⊥, Lq

pot(Ω) = (V p
sol)

⊥.

Consider uε ∈ W 1,p
0 (Q),

−div(a(T (x/ε)ω, uε, Duε)) + a0(T (x/ε)ω, uε, Duε) = f in Q,(3)

where f is a deterministic function that does not depend on ε and is sufficiently
smooth, and Q ⊂ Rd is a domain with Lipschitz boundaries.
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Assume for all ω ∈ Ω

(a(ω, η, ξ1) − a(ω, η, ξ2), ξ1 − ξ2) ≥ C(1 + |ξ1| + |ξ2|)p−β |ξ1 − ξ2|β ,(4)

|a(ω, η, ξ)| + |a0(ω, η, ξ)| ≤ C(1 + |η| + |ξ|)p−1,(5)

|a(ω, η1, ξ1) − a(ω, η2, ξ2)| + |a0(ω, η1, ξ1) − a0(ω, η2, ξ2)|

≤ C(1 + |η1|p−1 + |η2|p−1 + |ξ1|p−1 + |ξ2|p−1)ν(|η1 − η2|)

+ C(1 + |η1|p−1−s + |η2|p−1−s + |ξ1|p−1−s + |ξ2|p−1−s)|ξ1 − ξ2|s,

(6)

where 0 < s ≤ 1, β ≥ max(p, 2), p > 1. Here ν(r) is a continuity modulus; i.e., ν(r) is
a nondecreasing continuous function on [0,+∞) such that ν(0) = 0, ν(r) > 0 if r > 0
and ν(r) = 1 if r > 1, and ν(r1 + r2) ≤ C(ν(r1) + ν(r2)). For the existence of the
solution we need a coercivity condition,

(a(ω, η, ξ), ξ) + a0(ω, η, ξ)η ≥ C|ξ|p − C1.(7)

It is known (e.g., [17]) that, as ε → 0, Duε converges to Du weakly in Lp(Q)d for
almost every ω, and u is the solution of

−div(a∗(u,Du)) + a∗0(u,Du) = f, u ∈ W 1,p
0 (Q).(8)

Further, a∗ and a∗0 can be constructed using the solution of the following auxiliary
problem. Given η ∈ R and ξ ∈ Rd, define wη,ξ ∈ V p

pot such that

a(ω, η, ξ + wη,ξ(ω)) ∈ Lq
sol(Ω)d.(9)

Then a∗(η, ξ) and a0(η, ξ) are defined as

a∗(η, ξ) = 〈a(ω, η, ξ + wη,ξ(ω))〉,
a∗0(η, ξ) = 〈a0(ω, η, ξ + wη,ξ(ω))〉.

(10)

Moreover, a∗(η, ξ) and a∗0(η, ξ) satisfy estimates similar to those of a and a0 with
different constants [17].

Remark 2.1. We would like to note that G-convergence and homogenization
results presented in [17] were formulated under weaker than (4) conditions. In par-
ticular, it is assumed that

(a(ω, η, ξ1) − a(ω, η, ξ2), ξ1 − ξ2) ≥ C(1 + |η| + |ξ1| + |ξ2|)p−β |ξ1 − ξ2|β .(11)

It turns out that G-convergence and homogenization results hold under more general
assumptions such as (4). The proof is identical to the one presented in [17]. Moreover,
following [17], it can be easily shown that the homogenized operator is also coercive
and satisfies (7).

Throughout the paper C denotes a generic constant, ‖ · ‖p denotes Lp(Q) (or the
broken norm), and Lp(Q)d norms and q are defined by 1/p + 1/q = 1. The notation
a.e. (almost every) is often omitted.
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3. Two-scale correctors. The corrector results obtained in this section will be
used in the approximation of solution gradients. The importance of this approxima-
tion is motivated by some applications in which details of the fluxes play a key role in
a physical phenomenon (e.g., flow in porous media). For the construction we assume
that the homogenized solution is computed with a reliable accuracy in an appropriate
norm which will be specified later. In the next section we will propose a numerical
procedure for the computation of the homogenized solution for more general hetero-
geneities. For the construction of the correctors we introduce two scale correctors,
where one scale represents the numerical scale h and the other the physical scale ε.

Define Mhφ(x) in the following way:

Mhφ(x) =
∑
i

1Qi

1

|Qi|

∫
Qi

φ(y)dy,

where
⋃
Qi = Q. Here Qi are domains with diameter of order h, e.g., finite element

triangles or some unions of the triangles. Note that Mhφ → φ in Lp(Q) as h → 0 (see
[22]). Further, define

P (T (y)ω, η, ξ) = ξ + wη,ξ(T (y)ω),(12)

where wη,ξ ∈ V p
pot(Ω) is the solution of the auxiliary problem a(ω, η, ξ + wη,ξ(ω)) ∈

Lq
sol(Ω)d. Here wη,ξ(T (y)ω) satisfies

−div(a(T (y)ω, η, ξ + wη,ξ(T (y)ω))) = 0

in the sense of distribution [17, p. 155].
The main result of this section regarding the convergence of the correctors is the

following.
Theorem 3.1. Let uε and u be solutions of (3) and (8), respectively, and let P

be defined by (12) in each Qi. Then

lim
h→0

lim
ε→0

∫
Q

|P (T (x/ε)ω,Mhu,MhDu) −Duε|pdx = 0(13)

µ-a.e.
We will omit µ-a.e. notation in further analysis. To make the expressions in the

proof more concise we introduce the notation

Pε = P (T (x/ε)ω,Mhu,MhDu).

Theorem 3.1 indicates that the gradient of solutions can be approximated by
P (T (x/ε)ω,Mhu,MhDu). This quantity can be computed based on MhDu and Mhu,
i.e., the gradient of the coarse solution in each coarse block, as we will show later.
The following lemma [4] will be used in the proof.

Lemma 3.2. For any φ1 and φ2 belonging to Lp(Q) we have

‖φ1 − φ2‖p,Q ≤ C

(∫
Q

|φ1 − φ2|β(1 + |φ1| + |φ2|)p−βdx

)1/β

×(|Q|1/p + ‖φ1‖p,Q + ‖φ2‖p,Q)(β−p)/β .

(14)

For the proof of Theorem 3.1 we need the following lemma.
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Lemma 3.3. For every η ∈ R and ξ ∈ Rd

‖P (ω, η, ξ)‖pp,Ω ≤ C(1 + |η|p + |ξ|p).

Proof. Using Lemma 3.2 and (4), we obtain

‖P‖pp,Ω ≤ C(1 + ‖P‖pp,Ω)(β−p)/β

(∫
Ω

|P |β(1 + |P |)p−βdµ(ω)

)p/β

≤ Cδ(p−β)/p

∫
Ω

|P |β(1 + |P |)p−βdµ(ω) + Cδ(1 + ‖P‖pp,Ω).

With a suitable choice of δ and using (4) and (5), we get

‖P‖pp,Ω ≤ C + C

∫
Ω

|P |β(1 + |P |)p−βdµ(ω)≤C + C

∫
Ω

(a(ω, η, P ) − a(ω, η, 0), P )dµ(ω)

≤ C + C

∣∣∣∣
∫

Ω

(a(ω, η, P ), P )dµ(ω)

∣∣∣∣ +

∣∣∣∣
∫

Ω

(a(ω, η, 0), P )dµ(ω)

∣∣∣∣
≤ C +

∣∣∣∣
∫

Ω

(a(ω, η, P ), ξ)dµ(ω)

∣∣∣∣ + (1 + |η|p−1)

∣∣∣∣
∫

Ω

Pdµ(ω)

∣∣∣∣
≤ C + Cδ1‖P‖pp,Ω + Cδ

−1/(p−1)
1 |η|p + C

∫
Ω

(1 + |η| + |P |)p−1|ξ|dµ(ω)

≤ Cδ2‖P‖pp,Ω +Cδ
−1/(p−1)
2 (1+|ξ|p)+C +Cδ1(|η|p + ‖P‖pp,Ω)+Cδ

−1/(p−1)
1 |η|p.

With an appropriate choice of δ1 and δ2, we obtain the desired result.
It follows from Lemma 3.3 that P (T (y)ω, η, ξ) ∈ Lp

loc(R
d)d for a.e. ω and for each

η ∈ R, ξ ∈ Rd. The next lemma will be also used in the proof of Theorem 3.1.
Lemma 3.4. If uk → 0 in Lr(Q) (1 < r < ∞) as k → ∞, then∫

Q

ν(uk)|vk|pdx → 0 as k → ∞

for all vk either (1) compact in Lp(Q) or (2) bounded in Lp+α(Q), α > 0. Here ν(r)
is the continuity modulus defined previously (see (6)) and 1 < p < ∞.

Proof. Since uk converges in Lr, it converges in measure. Consequently, for any
δ > 0 there exists Qδ and k0 such that meas(Q \ Qδ) < δ and ν(uk) < δ in Qδ for
k > k0. Thus ∫

Q

ν(uk)|vk|pdx =

∫
Qδ

ν(uk)|vk|pdx +

∫
Q\Qδ

ν(uk)|vk|pdx

≤ Cδ + C

∫
Q\Qδ

|vk|pdx.
(15)

Next we use the fact that if (1) or (2) is satisfied, then the set vk has equi-absolute
continuous norm [14] (i.e., for any ε > 0 there exists ζ > 0 such that meas(Qζ) < ζ
implies ‖PQζ

vk‖p,Q < ε, where PDf = {f(x) if x ∈ D; 0 otherwise}. Consequently,
the second term on the right-hand side (r.h.s.) of (15) converges to zero as
δ → 0.

The proof of Theorem 3.1 will be based on the following estimate:∫
Q

|Pε −Duε|pdx ≤
∫
Q

|Pε −Duε|β(1 + |Pε| + |Duε|)p−βdx(|Q|1/p

+ ‖Pε‖p,Q + ‖Duε‖p,Q)(β−p)/p.

(16)
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‖Duε‖p,Q is uniformly bounded for a.e. ω. ‖Pε‖p,Q is also uniformly bounded since
Mhu and MhDu are bounded in Lp(Q) and Lp(Q)d, respectively. Thus it remains to
estimate

∫
Q
|Pε −Duε|β(1 + |Pε| + |Duε|)p−βdx. For this term, using (4), we have∫

Q

|Pε −Duε|β(1 + |Pε| + |Duε|)p−βdx

≤ C

∣∣∣∣
∫
Q

(a(T (x/ε)ω, uε,Pε) − a(T (x/ε)ω, uε, Duε),Pε −Duε)dx

∣∣∣∣
≤ C

∣∣∣∣
∫
Q

(a(T (x/ε)ω,Mhu,Pε) − a(T (x/ε)ω, uε, Duε),Pε −Duε)dx

∣∣∣∣
+ C

∣∣∣∣
∫
Q

(a(T (x/ε)ω, uε,Pε) − a(T (x/ε)ω,Mhu,Pε),Pε −Duε)dx

∣∣∣∣ .

(17)

To prove Theorem 3.1 we will need to estimate the first and second terms on the
r.h.s. of (17). For the first term we have

C

∫
Q

(
a(T (x/ε)ω,Mhu,Pε) − a(T (x/ε)ω, uε, Duε),Pε −Duε

)
dx

= C

∫
Q

(a(T (x/ε)ω,Mhu,Pε),Pε)dx− C

∫
Q

(a(T (x/ε)ω,Mhu,Pε), Duε)dx

− C

∫
Q

(a(T (x/ε)ω, uε, Duε),Pε)dx + C

∫
Q

(a(T (x/ε)ω, uε, Duε), Duε)dx.

(18)

We will investigate the r.h.s. of (18) in the limit as ε → 0. For the first term of
the r.h.s. of (18) we have the following convergence.

Lemma 3.5.∫
Q

(a(T (x/ε)ω,Mhu,Pε),Pε)dx →
∫
Q

(a∗(Mhu,MhDu),MhDu)dx

as ε → 0.
Proof.∫

Q

(a(T (x/ε)ω,Mhu,Pε),Pε)dx

=
∑
i

∫
Qi

(
a(T (x/ε)ω, ηi, ξi + wηi,ξi(T (x/ε)ω)), ξi + wηi,ξi(T (x/ε)ω)

)
dx

=
∑
i

∫
Qi

(
a(T (x/ε)ω, ηi, ξi + wηi,ξi(T (x/ε)ω)), ξi

)
dx

+
∑
i

∫
Qi

(
a(T (x/ε)ω, ηi, ξi + wηi,ξi(T (x/ε)ω)), wηi,ξi(T (x/ε)ω)

)
dx

→
∑
i

∫
Qi

1Qi(a
∗(ηi, ξi), ξi)dx

as ε → 0. In the last step we have used the Birkhoff ergodic theorem (see [13]) as well
as (9), (10), and wη,ξ ∈ V p

pot. Next we note that the limit can be written as∑
i

∫
Qi

1Qi
(a∗(ξi), ξi)dx =

∫
Q

(a∗(Mhu,MhDu),MhDu)dx.
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For the second term of the r.h.s. of (18) we have the following convergence.
Lemma 3.6.∫

Q

(a(T (x/ε)ω,Mhu,Pε), Duε)dx →
∫
Q

(a∗(Mhu,MhDu), Du)dx

as ε → 0.
Proof.∫

Q

(a(T (x/ε)ω,Mhu,Pε), Duε)dx =
∑
i

∫
Qi

(a(T (x/ε)ω, ηiP (T (x/ε)ω, ηi, ξi)), Duε)dx.

Duε is bounded in Lp(Q)d for a.e. ω. To show that a(T (x/ε)ω, P (T (x/ε)ω, ηi, ξi)) is
bounded in Lr(Qi)

d, where r > q, we will use Meyers’ theorem [16]. Since
−div(a(T (x/ε)ω, ηi, P (T (x/ε)ω, ηi, ξi))) = 0 in 3 × Qi (where 3 × Qi is a domain
that contains Qi and is surrounded with a ring of size Qi), using Meyers’ theorem we
can conclude that

‖P (T (x/ε)ω, ηi, ξi)‖p+η,Qi ≤ C‖P (T (x/ε)ω, ηi, ξi)‖p,3×Qi ,

where C is independent of ω and depends only on operator constants. Note that P ∈
Lp
loc(R

d)d. Since ‖P (T (x/ε)ω, ηi, ξi)‖p,3×Qi
is bounded for a.e. ω (see Lemma 3.3),

‖P (T (x/ε)ω, ηi, ξi)‖p+α,Qi is also bounded for a.e. ω. From here, using bounds for
a(T (y)ω, η, ξ), we can easily obtain that a(T (x/ε)ω, ηi, P (T (x/ε)ω, ηi, ξi)) is bounded
in Lr(Qi)

d, where r > q for a.e. ω. Indeed,∫
Qi

|a(T (x/ε)ω, ηi, P (T (x/ε)ω, ηi, ξi)) − a(T (x/ε)ω, ηi, 0)|rdx

≤ C

∫
Qi

(|1 + ηi + P (T (x/ε)ω, ηi, ξi)|)(p−2)r|P (T (x/ε)ω, ηi, ξi)|rdx

≤ C(‖P‖r,Qi
+ ‖P‖(p−1)r,Qi

).

Since P is in Lp+α(Qi)
d for a.e. ω, we can pick r = q + α/(p − 1). Consequently,

(a(T (x/ε)ω, ηi, ξi + wηi,ξi(T (x/ε)ω)), Duε) is bounded in Lσ(Qi)
d, σ > 1, for every

ηi and ξi. Thus it contains a subsequence that weak* converges to gi for any i and
a.e. ω. Since −div(a(T (x/ε)ω, ηi, P (T (x/ε)ω, ηi, ξi))) = 0 in Qi, using a compen-
sated compactness argument we can obtain that as ε → 0, gi = (a∗(ηi, ξi), Du).
The latter is true because Duε weakly converges to Du in Lp(Q)d for a.e. ω and
a(T (x/ε)ω, ηi, P (T (x/ε)ω, ηi, ξi)) weakly converges to a∗(ηi, ξi) in Lr(Q). The fact
that Duε weakly converges to Du for a.e. ω follows from general G-convergence results
[17], and the weak convergence of a(T (x/ε)ω, ηi, P (T (x/ε)ω, ηi, ξi)) is a consequence
of the Birkhoff ergodic theorem. Consequently,∑

i

∫
Qi

(a(T (x/ε)ω, ηi, P (T (x/ε)ω, ηi, ξi)), Duε)dx

→
∑
i

∫
Qi

(a∗(ηi, ξi), Du)dx =

∫
Q

(a∗(Mhu,MhDu), Du)dx.

For the third term of the r.h.s. of (18) we have the following convergence.
Lemma 3.7.∫

Q

(a(T (x/ε)ω, uε, Duε),Pε)dx →
∫
Q

(a∗(u,Du),MhDu)dx

as ε → 0.
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Proof.∫
Q

(a(T (x/ε)ω, uε, Duε),Pε)dx =
∑
i

∫
Qi

(a(T (x/ε)ω, uε, Duε), P (T (x/ε)ω, ηi, ξi))dx.

Since |a(ω, η, ξ)| ≤ C(1 + |η|p−1 + |ξ|p−1) and P (T (x/ε)ω, ηi, ξi) converges to ξi
in Lp(Q)d and is bounded in Lp+η(Q)d, similar to the analysis for the Lemma 3.6 we
can obtain that

∑
i

∫
Qi

(a(T (x/ε)ω, uε, Duε), P (T (x/ε)ω, ηi, ξi))dx

→
∑
i

∫
Qi

(a∗(u,Du), ξi)dx =

∫
Q

(a∗(u,Du),MhDu)dx.

For the fourth term of the r.h.s. of (18), we have the following.
Lemma 3.8.∫

Q

(a(T (x/ε)ω, uε, Duε), Duε)dx →
∫
Q

(a∗(u,Du), Du)dx

as ε → 0.
Proof. ∫

Q

(a(T (x/ε)ω, uε, Duε), Duε)dx

= −
∫
Q

(div(a(T (x/ε)ω, uε, Duε)), uε)dx = −
∫
Q

fuεdx

→ −
∫
Q

fudx =

∫
Q

(a∗(u,Du), Du)dx.

Next for the second term on the r.h.s. of (17), using (6), we have

C

∣∣∣∣
∫
Q

(a(T (x/ε)ω, uε,Pε) − a(T (x/ε)ω,Mhu,Pε),Pε −Duε)dx

∣∣∣∣
≤ C

δ1

∣∣∣∣
∫
Q

a(T (x/ε)ω, uε,Pε) − a(T (x/ε)ω,Mhu,Pε)

∣∣∣∣
q

dx + Cδ1

∫
Q

|Pε −Duε|pdx

≤ C

δ1

∑
i

∫
Qi

ν(|uε − ηi|)q(1 + |ξi|p)dx

+
C

δ1

∑
i

∫
Qi

ν(|uε − ηi|)q(1 + |wηi,ξi |p)dx + Cδ1

∫
Q

|Pε −Duε|pdx,

(19)

where ν(r) is a continuity modulus defined earlier (see (6)). Here we have used the
uniform boundedness of Duε as well as uε in Lp(Q)d and Lp(Q), respectively. The
first term on the r.h.s. converges to

∫
Q
ν(|u − Mhu|)q(1 + |MhDu|p)dx by Lemma

3.4. For the second term, using Meyers’ theorem (cf. Lemma 3.6), we obtain that
wηi,ξi is bounded in Lp+α(Qi)

d, α > 0. Thus, using Lemma 3.4, we have that the
second term for each i converges to

∫
Qi

ν(|u − ηi|)q(1 + 〈|wηi,ξi |p〉)dx, which is not
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greater than
∫
Qi

ν(|u − ηi|)q(1 + |ηi|p + |ξi|p)dx. Summing this over all i, we get∫
Q
ν(|u−Mhu|)q(1 + |Mhu|p + |MhDu|p)dx. Thus (19) is not greater than∫

Q

ν(|u−Mhu|)q(1 + |Mhu|p + |MhDu|p)dx + Cδ1

∫
Q

|Pε −Duε|pdx.

With an appropriate choice of δ1, combining all the estimates, we have for (17)
(cf. (16))

lim
ε→0

∫
Q

|Pε −Duε|pdx

≤ C

(∫
Q

(a∗(Mhu,MhDu),MhDu)dx−
∫
Q

(a∗(Mhu,MhDu), Du)dx

−
∫
Q

(a∗(u,Du),MhDu)dx +

∫
Q

(a∗(u,Du), Du)dx

)

+

∫
Q

ν(|u−Mhu|)q(1 + |Mhu|p + |MhDu|p)dx.

(20)

Next it is not difficult to show that the r.h.s. of (20) approaches zero as h → 0.
For this reason we write∫

Q

(a∗(Mhu,MhDu),MhDu)dx−
∫
Q

(a∗(Mhu,MhDu), Du)dx

−
∫
Q

(a∗(u,Du),MhDu)dx +

∫
Q

(a∗(u,Du), Du)dx

=

∫
Q

(a∗(u,Du) − a∗(Mhu,MhDu), Du−MhDu)dx.

(21)

Next, using the estimate |a∗(η1, ξ1)− a∗(η2, ξ2)| ≤ C(1 + |η1|p−1 + |η2|p−1 + |ξ1|p−1 +
|ξ2|p−1)ν(|η1 − η2|) + C(1 + |η1|p−1−s̃ + |η2|p−1−s̃ + |ξ1|p−1−s̃ + |ξ2|p−1−s̃)|ξ1 − ξ2|s̃,
0 < r̃ ≤ 1 (see [17]), we can obtain that the r.h.s. of (21) converges to zero as h → 0.
Indeed,

∫
Q

(a∗(u,Du) − a∗(Mhu,MhDu), Du−MhDu)dx

≤ C

∫
Q

(1 + |u|p−1+ |Du|p−1 + |Mhu|p−1+ |MhDu|p−1)ν(|u−Mhu|)|Du−MhDu|dx

+ C

∫
Q

(1 + |u|p−1−s̃ + |Du|p−1−s̃ + |Mhu|p−1−s̃ + |MhDu|p−1−s̃)|Du−MhDu|s̃dx.

(22)

Using the Holder inequality, it can be easily shown that the second term here converges
to zero as h → 0. Since Mhu converges to u in Lp(Q) and MhDu converges to Du in
Lp(Q)d from Lemma 3.4, the first term in (22) also converges to zero. Similarly one
can show that the last term on the r.h.s. of (20) converges to zero as h → 0. This
completes the proof of Theorem 3.1.

As an example we consider the correctors for

div(a(T (x/ε)ω)kr(uε)Duε) = f.(23)
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We assume that the operator satisfies the conditions stated previously. In this
case P (T (y)ω, η, ξ) = ξ + wη,ξ(T (y)ω), where wη,ξ ∈ Lp

pot(Ω) satisfies

−div(a(T (x/ε)ω)kr(η)(ξ + wη,ξ)) = 0.

Introducing a notation N such that wi
η,ξ(ω) = Nij(ω)ξj , we have the classical equation

(see [13]) for N(ω), i.e., a(ω)(I +N) ∈ Lq
sol(Ω). Consequently, the correctors for (23)

have the form

P (T (y)ω, η, ξ) = ξ(I + N(T (y)ω)).

From this we conclude that u satisfies

div(a∗kr(u)Du) = f,

where a∗ is the homogenized tensor corresponding to a linear elliptic operator. The
approximation for the gradient of the solution is defined by

P (T (x/ε)ω,Mhu,MhDu) = MhDu(I + N(T (x/ε)ω)).

Theorem 3.1 shows a way to compute an approximation for the gradient of uε,
although this computation is difficult since it involves the solution of the auxiliary
problem. In the next section we will present the numerical computation of the oscil-
latory solution.

4. Numerical computation of the homogenized solution.

4.1. Numerical homogenization method. Consider uε ∈ W 1,p
0 (Q),

−div(aε(x, uε, Duε)) + a0,ε(x, uε, Duε) = f,(24)

where aε(x, η, ξ) and a0,ε(x, η, ξ), η ∈ R, ξ ∈ Rd, satisfy (4)–(6) and (7). As we men-
tioned in the introduction, the numerical homogenization procedure and its analysis
can be studied for more general heterogeneities using G-convergence theory. The main
idea of the numerical homogenization procedure is to find the homogenized solution
without using the auxiliary problem. Consider a finite dimensional space over the
standard triangular partitions K of Q =

⋃
K, and let

Sh={vh ∈ C0(Q) : the restriction vh is linear for each element K and vh = 0 on ∂Q},
(25)

diam(K) ≤ Ch. Here we assume that h � ε is chosen for the approximation of the
homogenized solution. The numerical homogenization procedure consists of finding
an approximation, uh ∈ Sh, of a homogenized solution u such that

(Aε,huh, vh) =

∫
Q

fvhdx,(26)

where

(Aε,huh, vh) =
∑
K

∫
K

((aε(x, η
uh , Duε,h), Dvh) + a0,ε(x, η

uh , Duε,h)vh)dx.(27)
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Here uε,h satisfies

−div(aε(x, η
uh , Duε,h)) = 0 in K,(28)

uε,h = uh on ∂K, and ηvh(= Mhvh) = 1
|K|

∫
K
vhdx in each K. Our numerical homog-

enization procedure consists of (26), (27), and (28). In some sense, (27) attempts to
approximate

∫
Q

[(a∗(x, uh, Duh), Dvh)+a∗0(x, uh, Duh)vh]dx, which is a finite element

formulation of the homogenized equation. Note that solutions, uh, of (26) depend on
ε, which we do not explicitly write because uh ∈ Sh. We would like to point out
that different boundary conditions can be chosen; e.g., one can use an oversampling
technique [10], where the solution of the larger problem is used in the calculation of
the solution of local problems. We have implemented and shown the advantages of
an oversampling technique in our recent work [7]. In the next subsection we will show
that the numerical homogenization approach can be considered as a generalization of
MsFEM.

Next we briefly describe the numerical implementation of MsFEM for nonlinear
elliptic problems. For each uh =

∑
i θiφ

i
0(x) ∈ Sh, where φi

0(x) is a basis in Sh, (26)
is equivalent to solving

F (θ) = b,(29)

where F (θ) is defined by (27) with vh = φi
0(x) and bi =

∫
Q
fφi

0(x)dx. Equation

(29) can be solved using Newton’s method or its modifications. This involves the
inversion of the Jacobian corresponding to F (θ). When using MsFEM, the Jaco-
bian is a matrix assembled on the coarse grid, which gives us the advantage in the
computations.

The following convergence result will be shown.
Theorem 4.1. Let uh and u be solutions of (26) and (2), respectively. Then

lim
h→0

lim
ε→0

‖uh − u‖W 1,p
0 (Q) = 0(30)

(up to a subsequence) under some nonrestrictive assumptions on a∗(x, η, ξ).
Remark 4.1. Since the proof uses G-convergence theory, the limiting a∗ (as well

as a∗0) is not unique, and the convergence of the numerical solutions is up to a sub-
sequence in ε; i.e., uh converges to a solution of a homogenized equation. We note
that for the random homogeneous case the limiting operator is unique and the whole
sequence converges. In later analysis, all the limits are taken up to a subsequence.

Note that because of the lack of scale separation, the above result cannot be
improved, because there are all the scales α(ε), such that α(ε) → 0 as ε → 0 are
present. We have observed significant improvement in the numerical calculation when
an oversampling technique is used for problems without scale separation. To show
that uε,h approximates uε in W 1,p

0 (Q) we will use the corrector results presented in
the previous section.

4.2. Numerical homogenization method and MsFEM. To present the re-
lation between the numerical homogenization approach and MsFEM we introduce the
multiscale mapping, EMsFEM : Sh → V h

ε , a one-to-one operator which is constructed
in the following way. For each vh ∈ Sh, vε,h is the solution of

−div(aε(x, η
vh , Dvε,h)) = 0 in K;(31)
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in each K, vε,h = vh on ∂K, and ηvh = 1
|K|

∫
K
vhdx. In [11] the authors introduce

MsFEM, where a basis for V h
ε is constructed by mapping a basis of Sh. The extension

of this approach to nonlinear problems yields a nonlinear space for the approximation
of heterogeneities. Note that vε,h are uniquely determined because (31) enjoys the
monotonicity property. Now the numerical homogenization procedure can be written
in the following way. Find uh ∈ Sh (consequently, uε,h = EMsFEMuh ∈ V h

ε ) such
that

(Aε,huh, vh) =

∫
Q

fvhdx ∀vh ∈ Sh,(32)

where Aε,h is given by (26). Later on we will show that Duε,h approximates Duε in
Lp(Q)d, assuming that the fluxes aε(x, η, ξ) and a0,ε(x, η, ξ) are random homogeneous
fields. Clearly, for periodic problems, (31) can be solved in a period of size ε and
extended periodically to K. This solution will approximate the solution of (31) and
can be used in the construction of Aε,h and in setting up (32) (cf. HMM [6]). The
convergence analysis for this case can be easily carried out using periodic correctors,
and this will be presented elsewhere. Finally, we would like to note that one can adopt
the oversampling technique [10] for nonlinear multiscale finite element methods.

4.3. Proof of Theorem 4.1. The proof of Theorem 4.1 will be carried out in
the following way. First we show the coercivity of Aε,h defined by (27). Next we
study the limit as ε → 0 of (26) and show that the solution of the limiting equation
approximates homogenized solutions. For the sake of simplification of the proof, we
assume β = p in (4).

Lemma 4.2. Let Aε,h be defined by (27). Then for sufficiently small h, there
exists a constant C > 0 such that for any vh ∈ Sh

(Aε,hvh, vh) ≥ C‖Dvh‖pp,Q − C1.

Proof. Let ṽε,h = vε,h − vh. It follows that ṽε,h ∈ W 1,p
0 (K) satisfies the following

problem:

−div aε(x, η
vh , Dṽε,h + Dvh) = 0 in K.(33)

Using (33) and applying Green’s theorem and (7), we have the following estimate:

(Aε,hvh, vh) =
∑
K

∫
K

[(aε(x, η
vh , Dvε,h), Dvh) + a0,ε(x, η

vh , Dvε,h)vh]dx

=
∑
K

∫
K

[(aε(x, η
vh , Dvh +Dṽε,h), Dvh +Dṽε,h) + a0,ε(x, η

vh , Dvε,h)vh]dx

=
∑
K

∫
K

[(aε(x, η
vh , Dvh +Dṽε,h), Dvh +Dṽε,h)+ a0,ε(x, η

vh , Dvε,h)ηvh ]dx

+
∑
K

∫
K

a0,ε(x, η
vh , Dvε,h)(vh − ηvh)dx

≥ C
∑
K

∫
K

|Dvh + Dṽε,h|pdx− Ch

(
1 +

∑
K

∫
K

|Dvh|pdx
)

− C1.



56 Y. EFENDIEV AND A. PANKOV

Here we have also used the fact that
∫
K
|ηvh |pdx ≤ C

∫
K
|vh|pdx. Next we will show

that

∑
K

∫
K

|Dvh + Dṽε,h|pdx =
∑
K

∫
K

|Dvε,h|p dx ≥ C
∑
K

∫
K

|Dvh|pdx.

We note that vh is piecewise linear on ∂K for triangular mesh, i.e., vε,h|∂K =
vh = β + (Dvh, x − x0), for some constants β and x0 independent of Dvh. We set
v̄ε,h = vε,h−β. Then, by change of variable and homogeneity argument and applying
the trace theorem, we have

∑
K

∫
K

|Dvε,h|pdx ≥ C
∑
K

hd

hp

∫
Kr

|Dy v̄ε,h|pdy

≥ C
∑
K

hd

hp

∫
∂Kr

|(Dvh, y h)|pdy = C
∑
K

hd|Dvh|pC(eDvh
),

where Kr is a reference triangle of size of order 1, eDvh
is the unit vector in the

direction of Dvh, and

C(eDvh
) =

∫
∂Kr

|(eDvh
, y)|pdy.

Here we have used the trace inequality, ‖u‖Lp(∂Q) ≤ C‖u‖W 1,p(Q), and taken into
account the equivalence of finite dimensional norms for every h. One can further
show that C(eξ) is bounded from below independent of ξ and h. By contradiction,
suppose that the claim is not true. Then there exists a sequence {eξn} which has a
subsequence (denoted by the same notation) such that eξn → e∗ and C(eξn) → 0 as
n → ∞. Since C(eξ) is continuous, it follows that C(e∗) = 0. This further implies
that (e∗, y) = 0 on ∂Kr, and hence e∗ = 0. This is a contradiction.

Next we show that Aε,h is equicontinuous for any h in any compact set.
Lemma 4.3. For any vh ∈ Sh and wh ∈ Sh in a compact set we have

‖Aε,hvh −Aε,hwh‖p ≤ C

(∑
K

∫
K

(|D(vh − wh)|p + ν(|ηvh − ηwh |))dx
)1/p

,

where C does not depend on ε.
Since this result is for fixed h (i.e., finite dimensional), we do not specify the

norm.
Proof.

‖Aε,hvh −Aε,hwh‖ =
∑
K

∫
K

|aε(x, ηvh , Dvε,h) − aε(x, η
wh , Dwε,h)|dx

+
∑
K

∫
K

|a0,ε(x, η
vh , Dvε,h) − a0,ε(x, η

wh , Dwε,h)|dx.
(34)

Next we will estimate the first term on the r.h.s. of (34). The estimate for the second
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term is analogous.

∑
K

∫
K

|aε(x, ηvh , Dvε,h) − aε(x, η
wh , Dwε,h)|dx

≤ C
∑
K

∫
K

(1 + |ηvh | + |ηwh | + |Dvε,h| + |Dwε,h|)p−1ν(|ηvh − ηwh |)

+ C
∑
K

∫
K

(1 + |ηvh | + |ηwh | + |Dvε,h| + |Dwε,h|)p−1−s|Dvε,h −Dwε,h|s

≤ C

(∑
K

∫
K

ν(|ηvh − ηwh |)pdx
)1/p

+ C

(∑
K

∫
K

|Dvε,h −Dwε,h|p
)1/p

.

(35)

Here we have used the Cauchy inequality along with the facts that ‖Dvε,h‖p,K ≤
C‖Dvh‖p,K , ‖Dwε,h‖p,K ≤ C‖Dwh‖p,K , and ‖Dvh‖p,Q ≤ C, ‖Dwh‖p,Q ≤ C. It
remains to estimate the second term on the r.h.s. of (35).

∑
K

∫
K

|Dvε,h −Dwε,h|p

≤ C
∑
K

∫
K

(aε(x, η
vh , Dvε,h) − aε(x, η

vh , Dwε,h), Dvε,h −Dwε,h)dx

≤
∑
K

∫
K

(aε(x, η
vh , Dwε,h) − aε(x, η

wh , Dwε,h), Dvε,h −Dwε,h)dx

+
∑
K

∫
K

(aε(x, η
wh , Dwε,h) − aε(x, η

vh , Dwε,h), Dvε,h −Dwε,h)dx

≤ C
∑
K

∫
K

(aε(x, η
vh , Dvε,h) − aε(x, η

wh , Dwε,h), Dvh + Dṽε,h −Dwh −Dw̃ε,h)dx

+ C
∑
K

∫
K

(aε(x, η
wh , Dwε,h) − aε(x, η

vh , Dwε,h), Dvε,h −Dwε,h)dx

≤ C
∑
K

∫
K

(aε(x, η
vh , Dvε,h) − aε(x, η

wh , Dwε,h), Dvh −Dwh)dx

+ C
∑
K

∫
K

ν(|ηwh − ηvh |)pdx

≤ C

(∑
K

∫
K

|Dvh −Dwh|pdx
)1/p

+ C
∑
K

∫
K

ν(|ηwh − ηvh |)pdx.

(36)

Here we have used Holder and Cauchy inequalities along with the facts that ‖Dvε,h‖p,K
≤ C‖Dvh‖p,K , ‖Dwε,h‖p,K ≤ C‖Dwh‖p,K , and ‖Dvh‖p,Q ≤ C, ‖Dwh‖p,Q ≤ C, and

that vε,h = vh+ ṽε,h, where ṽε,h ∈ W 1,p
0 (K) satisfies −div aε(x, η

vh , Dvh+Dṽε,h) = 0.
The estimates (35) and (36) give us the estimate for the first term of the r.h.s. of
(34). A similar estimate for the second term can be obtained in a very analogous
manner.

The coercivity and continuity of Aε,h guarantee the existence of a solution for the
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discrete equation

(Aε,huε,h, wh) =

∫
Q

fwhdx.(37)

Lemma 4.4. For any vh ∈ Sh and wh ∈ Sh

lim
ε→0

(Aε,hvh, wh) = (Ahvh, wh)

(up to a sub-sequence), where the r.h.s. is defined as

(Ahvh, wh) =
∑
K

∫
K

[(a∗(x, ηvh , Dv0), Dwh) + a∗0(x, η
vh , Dv0)wh]dx

and v0 is the solution of v0 − vh ∈ W 1,p
0 (K),

−div(a∗(x, ηvh , Dv0)) = 0.

Here a∗(x, η, ξ) is a G-limit of the corresponding limit operator.
Proof. Using the theorem on G-convergence of arbitrary solutions [17, p. 87], we

obtain that solutions vε,h of (31) weakly converge to v0 in W 1,p(K), and aε(x, η
vh ,

Dvε,h) weakly converges to a∗(x, ηvh , Dv0) in Lq(K)d, and a0,ε(x, η
vh , Dvε,h)

weakly converges to a∗0(x, η
vh , Dv0) in Lq(K) (up to a subsequence), where a∗(x, η, ξ)

and a∗0(x, η, ξ) are the fluxes corresponding to a G-limit of the original operators.
Thus,

lim
ε→0

(Aε,hvh, wh) = lim
ε→0

∑
K

∫
K

[(aε(x, η
vh , Dvε,h), Dwh) + a0,ε(x, η

vh , Dvε,h)wh]dx

=
∑
K

∫
K

[(a∗(x, ηvh , Dv0), Dwh) + a∗0(x, η
vh , Dv0)wh]dx = (Ahvh, wh).

It can be easily shown that Ah is coercive for small h. Since Aε,h is equicontinuous
in any compact set, the results of Lemma 4.4 hold for any vh ∈ Sh and wh ∈ Sh that
are uniformly bounded (finite dimensional). Thus, taking the limit ε → 0 of (37) (up
to a subsequence), we obtain

(Ahuh, wh) =

∫
Q

fwhdx.

From Lemma 4.2 and the continuity of Ah (which can be easily verified) it follows
that uh exists and is uniformly bounded in W 1,p

0 (Q), and thus uh → u (up to a subse-
quence) weakly in W 1,p

0 (Q). Our task to show that u is a solution of the homogenized
equation. The following lemma is needed for this purpose.

Lemma 4.5. Assume that vh ∈ Sh and Dvh are uniformly bounded in Lp+α(Q)d

(with α > 0) and wh ∈ Sh and Dwh are uniformly bounded in Lp(Q)d. Then

lim
h→0

(Ahvh −A∗vh, wh) = 0,

where

(A∗vh, wh) =
∑
K

∫
K

[(a∗(x, vh, Dvh), Dwh) + a∗0(x, vh, Dvh)wh]dx.
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Proof.

(Ahvh −A∗vh, wh) =
∑
K

∫
K

[(a∗(x, ηvh , Dv0) − a∗(x, vh, Dvh), Dwh)

+ (a∗0(x, η
vh , Dv0) − a∗0(x, vh, Dvh))wh]dx.

(38)

Next we will show that the first and second terms on the r.h.s. of (38) converge to
zero. For the first term we have

∑
K

∫
K

(a∗(x, ηvh , Dv0) − a∗(x, vh, Dvh), Dwh)dx

≤ C
∑
K

∫
K

ν(|vh − ηvh |)(1 + |ηvh |p−1 + |vh|p−1 + |Dv0|p−1 + |Dvh|p−1)|Dwh|dx

+ C
∑
K

∫
K

(1 + |ηvh | + |vh| + |Dv0| + |Dvh|)p−1−s|Dvh −Dv0|s|Dwh|dx

≤ C
∑
K

(∫
K

ν(|vh − ηvh |)q(1 + |Dvh|p)dx
)1/q (∫

K

|Dwh|pdx
)1/p

+ C
∑
K

(∫
K

(1 + |Dvh|p)dx
)(p−qs)/pq (∫

K

|D(vh − v0|pdx
)s/p (∫

K

|Dwh|pdx
)1/p

= C

(∫
Q

ν(|vh − ηvh |)q(1 + |Dvh|p)dx
)1/q

+ C

(∫
Q

|D(vh − v0)|pdx
)s/p

.

(39)

Here we have used the Cauchy inequality along with the facts that ‖Dwh‖p,Q ≤
C,

∫
K
|Dv0|pdx ≤ C

∫
K
|Dvh|pdx,

∫
K
|vh|pdx ≤ C

∫
K
|Dvh|pdx, and

∫
K
|ηvh |pdx ≤

C
∫
K
|Dvh|pdx. Next we will show that ‖Dvh −Dv0‖p,Q → 0 as h → 0 under some

assumptions regarding the regularity of a∗(x, η, ξ) with respect to spatial variables.
Moreover, this convergence is uniform for a uniformly bounded family of Dvh. Define
a∗K(x, η, ξ) as a piecewise constant function on each K and η, ξ defined in each K by

a∗K(η, ξ) =
1

|K|

∫
K

a∗(x, η, ξ).

We assume that in each K

|a∗(x, η, ξ) − a∗K(η, ξ)| ≤ αh(1 + |η|p−1 + |ξ|p−1),(40)

where αh is a generic sequence such that αh → 0 as h → 0 and is independent of K.
For example, this condition is satisfied if a∗(x, η, ξ) is a Holder function with respect
to spatial variables. Note that for random homogeneous operators, (40) trivially holds
because a∗ is independent of x.
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Then

‖Dvh −Dv0‖pp,Q ≤ C
∑
K

∫
K

(a∗(x, ηvh , Dvh) − a∗(x, ηvh , Dv0), Dvh −Dv0)dx

= C
∑
K

∫
K

(a∗(x, ηvh , Dvh) − a∗K(ηvh , Dvh), Dvh −Dv0)dx

+ C
∑
K

∫
K

(a∗K(ηvh , Dvh) − a∗(x, ηvh , Dv0), Dvh −Dv0)dx

= C
∑
K

∫
K

(a∗(x, ηvh , Dvh) − a∗K(ηvh , Dvh), Dvh −Dv0)dx

≤ Cαh

∑
K

∫
K

(1 + |ηvh |p−1 + |Dvh|)p−1|Dvh −Dv0|dx

≤ Cαh(1 + ‖Dvh‖p/qp,Q)‖Dvh −Dv0‖p,Q.

From here it follows that ‖Dvh −Dv0‖p,Q → 0 as h → 0.
We note that the r.h.s. of (39) converges to zero because ‖Dvh −Dv0‖p,Q → 0 as

h → 0 and because of Lemma 3.4. Thus, the first term on the r.h.s. of (38) converges
to zero.

For the second term on the r.h.s. of (38) we have

∑
K

∫
K

(a∗0(x, η
vh , Dv0) − a∗0(x, vh, Dvh))whdx

≤ C
∑
K

∫
K

ν(|vh − ηvh |)(1 + |ηvh |p−1 + |vh|p−1 + |Dv0|p−1 + |Dvh|p−1)|wh|dx

+ C
∑
K

∫
K

(1 + |ηvh | + |vh| + |Dv0| + |Dvh|)p−1−s|Dvh −Dv0|s|wh|dx.

(41)

Clearly one can do the same manipulations as the those for the first term of the r.h.s.
of (38) to show that the r.h.s. of (41) converges to zero as h → 0.

For the proof of Theorem 4.1 we assume that Duh is uniformly bounded in
Lp+α(Q)d for some α > 0. One can assume additional nonrestrictive regularity as-
sumptions [16] for input data and obtain Meyers-type estimates, ‖Du‖p+α,Q ≤ C,
for the homogenized solutions. In this case it is reasonable also to assume that the
discrete solutions are uniformly bounded in Lp+α(Q)d. We have obtained results on
Meyers-type estimates for our approximate solutions in the case p = 2 (see [8]). We
are currently studying the generalization of these results to arbitrary p. One can im-
pose different kinds of assumptions for which the Lemma 4.5 holds without assuming
that Duh is uniformly bounded in Lp+α(Q)d, e.g.,

|a∗(x, η, ξ) − a∗(s, η′, ξ)| ≤ C(1 + |η|p−1 + |η′|p−1 + |ξ|p−1−r)|η − η′|r

(0 < r < 1).
To conclude the proof of Theorem 4.1 we note that uh → u (up to a sub-sequence)

weakly in W 1,p
0 (Q), and our goal is to show that u is a solution of the homogenized

equation. Using Lemma 4.5, we obtain that

(Ahuh −A∗uh, vh) =

∫
Q

fvhdx− (A∗uh, vh).



NUMERICAL HOMOGENIZATION OF ELLIPTIC EQUATIONS 61

Thus it follows from Lemma 4.5 that A∗uh → f weakly in W−1,p(Q). Moreover,
using Lemma 4.5, we obtain that (A∗uh, uh) →

∫
Q
fvhdx. Since the operator A∗ is

of type M (see [20]), we obtain that A∗u = f ; i.e., u is a solution of a homogenized
equation. Moreover, A∗ is also of type S+ (see [21]), which allows us to state that
uh → u strongly in W 1,p

0 (Q).
Remark 4.2. We would like to note that in the periodic and random homogeneous

cases Theorem 4.1 holds in the limit ε/h → 0; i.e., h = h(ε) � ε. This will be presented
elsewhere.

Remark 4.3. Finally we would like to note that Theorem 4.1 is proved under the
assumptions (40) and ‖Duh‖p+α,Q ≤ C, α > 0. The latter has been shown for p = 2
in [8].

4.4. Approximation of the oscillations. In order to approximate solutions
uε in the W 1,p-norm, we assume aε(x, η, ξ) = a(T (x/ε), η, ξ) and a0,ε(x, η, ξ) =
a0(T (x/ε), η, ξ). Then the following theorem holds.

Theorem 4.6.

lim
h→0

lim
ε→0

‖D(uε,h − uε)‖p,Q = 0,

where uε,h = EMsFEMuh, defined by (31) (or (28) in each K).
Proof. Because of Theorem 3.1 we need to show only that

lim
h→0

lim
ε→0

‖Duε,h − P (T (x/ε)ω,Mhu,MhDu)‖p,Q = 0.

Similarly,

lim
ε→0

‖Duε,h − P (T (x/ε)ω,Mhuh,MhDuh)‖p,K = 0.(42)

Equation (42) follows from the fact that −div(a∗(ηuh , Dxuh)) = 0, i.e., the homoge-
nized solution for uε,h is uh. Consequently,

lim
ε→0

‖Duε,h − P (T (x/ε)ω,Mhuh,MhDuh)‖p,Q = 0.

It remains to show that

lim
h→0

lim
ε→0

‖P (T (x/ε)ω,Mhuh,MhDuh) − P (T (x/ε)ω,Mhu,MhDu)‖p,Q = 0.

To show this we need the estimate for
∫
Ω
|P (ω, η1, ξ1) − P (ω, η2, ξ2)|pdµ(ω). Define

P1 = P (ω, η1, ξ1) and P2 = P (ω, η2, ξ2). Then∫
Ω

|P1 − P2|pdµ(ω) ≤ C

∫
Ω

(a(ω, η1, P1) − a(ω, η1, P2), P1 − P2)dµ(ω)

=

∫
Ω

(a(ω, η1, P1) − a(ω, η2, P2), P1 − P2)dµ(ω)

+

∫
Ω

(a(ω, η2, P2) − a(ω, η1, P2), P1 − P2))dµ(ω)

≤
∫

Ω

(a(ω, η1, P1) − a(ω, η2, P2), ξ1 − ξ2)dµ(ω)

+
C

δ1

∫
Ω

(1 + |η1|p + |η2|p + |P2|p)ν(|η1 − η2|)dµ(ω)

+ Cδ1

∫
Ω

|P1 − P2|pdµ(ω).
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Choosing δ1 appropriately small and using (10), we have

∫
Ω

|P1 − P2|pdµ(ω)

≤ (a∗(η1, ξ1) − a∗(η2, ξ2), ξ1 − ξ2) + C

∫
Ω

(1 + |η1|p + |η2|p + |P2|p)ν(|η1 − η2)dµ(ω).

(43)

Using (43), we have

lim
h→0

lim
ε→0

‖P (T (x/ε)ω,Mhuh,MhDuh) − P (T (x/ε)ω,Mhu,MhDu)‖p,Q

≤ lim
h→0

∑
K

∫
K

(a∗(Mhuh,MhDuh) − a∗(Mhu,MhDu),MhDuh −MhDu)dx

+ C lim
h→0

∑
K

∫
K

(1 + |Mhuh| + |Mhu| + |MhDu|)pν(|Mhuh −Mhu|)dx.

The r.h.s. of (4.4) converges to zero, which can be established in a manner similar to
the convergence analysis of the r.h.s. of (20).

5. Numerical results. Our first numerical example is a nonlinear convection
diffusion equation in two dimensions:

1

ε
v(T (x/ε)ω) ·DF (uε) − d∆uε = f,(44)

where divv = 0. Assuming that there exists a homogeneous stream function H(T
(x/ε)ω),

H =

(
0 H(T (x/ε)ω)
−H(T (x/ε)ω) 0

)
,

such that divH = v, we obtain

div(−dδijDuε + H(T (x/ε)ω)DF (uε)) = f

or

−div(a(T (x/ε)ω, uε)Duε) = f,

where

a =

(
−d H(T (x/ε)ω)F ′(u)
−H(T (x/ε)ω)F ′(u) −d

)
.

We assume that a satisfies the assumptions imposed in previous sections. The auxil-
iary problem is defined as follows: wη,ξ(ω) ∈ V p

pot is the solution of

div(a(T (y)ω, η)(ξ + wη,ξ(T (y)ω))) = 0.

Introducing N j
η (T (y)ω) ∈ V p

pot such that wi
η,ξ(T (y)ω) = N ij

η (T (y)ω)ξj , we have

div(a(T (y)ω, η)(I + Nη(T (y)ω))) = 0,
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where I is the identity matrix. Using wη,ξ, we can compute the homogenized operator
that is given by

div(a∗(u)Du) = f,

where a∗ij(η) = −dδij+〈HikF
′(η)Nkj

η 〉. Here we have taken into account that 〈N〉 = 0

since N ∈ V p
pot. The term 〈HikF

′(η)Nkj
η 〉 can be regarded as an enhanced diffusion

due to heterogeneous convection, similar to the linear case [9]. A numerical corrector
is defined as

Pε = MhDu(I + wMhu(T (x/ε)ω)).

Next we present numerical examples where the enhanced diffusivity is approxi-
mately computed locally. It is more transparent for this purpose to use a parabolic
equation,

∂uε

∂t
+

1

ε
v(T (x/ε)ω) ·DF (uε) = d∆uε.(45)

Using general G-convergence theory, we have the following equation for the homoge-
nized solution:

∂u

∂t
= div(a∗(u)u),(46)

where a∗(η) is the homogenized operator derived from the elliptic problem shown
above. In particular, a∗ij = dδij + acij , where acij(η) = −〈HikF

′(η)Nkj
η 〉 is the en-

hanced diffusion due to nonlinear heterogeneous convection. It can be shown that the
corrector has the same form as in the elliptic case

P (T (x/ε)ω,Mhu(t, x),MhDu(t, x)) = MhDu(t, x)(I + wMhu(t,x)(T (x/ε)ω)),

i.e., all the time dependence is in the homogenized solution. The proof is the same as
in the elliptic case.

To illustrate the significance of the enhanced diffusion, we present some numerical
examples. Numerical tests are performed using the finite element method. First we
present the total diffusivity as a function of η (i.e., average of the solution) for two
different heterogeneous velocity fields given by the stream functions H = sin(2πy/ε)+
sin(2

√
(2)πy/ε). We take ε = 0.1 and d = 0.1 (molecular diffusion). The flux function

is chosen to be the Buckley–Leverett function F (u) = u2/(u2+0.2(1−u)2)) motivated
by porous media flows. The enhanced diffusion is computed by solving the problem
in a unit square, and thus it is only an approximate value of it. In Figure 1 we
plot the total diffusivity. The left plot in this figure represents the total diffusivity
in the horizontal direction (along the layers), and the right plot represents the total
diffusivity in the vertical direction. Clearly, the diffusion is enhanced dramatically
in the horizontal direction, that is, along the convection (note the ten-fold difference
between the y-axis scales). As we see for η ≈ 0.4, there is a 15-fold increase in the
diffusion relative to molecular diffusion, d. Moreover, since F ′(0) = F ′(1) = 0, there
is no enhancement if η = 0 or η = 1 (this corresponds to pure phases). For the cellular
flow, H(x, y) = sin(2πy/ε) sin(2πx/ε), we obtain isotropic diffusion, which is shown
in Figure 2.
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Fig. 1. Horizontal (left) and vertical (right) effective diffusivity for the layered media with
stream function H(x, y) = sin(2πy/ε) and flux function F (u) = u2/(u2 + 0.2(1 − u)2).
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Fig. 2. Effective diffusivity for the isotropic media with stream function H(x, y) = sin(2πy/ε)×
sin(2πx/ε) and flux function F (u) = u2/(u2 + 0.2(1 − u)2).

The next set of numerical examples is designed to compare the solutions of the
original (fine scale equation) with the solutions of the equations obtained using nu-
merical homogenization with and without enhanced diffusion. Our goal here is to
illustrate the importance of nonlinear enhanced diffusion. We consider

∂uε

∂t
+

1

ε
vε ·DF (uε) = d∆uε(47)

in a unit square domain with boundary and initial conditions as follows: uε = 1 at the
inlet (x1 = 0), uε = 0 at the outlet (x1 = 1), and no flow boundary conditions on
the lateral sides x2 = 0 and x2 = 1. We have tested various heterogeneous fields for
the velocity, and we present here a result for the layered flow, H = sin(2πy/ε).

In Figure 3 we plot the average (over the whole domain) of the solutions of (47)
( 1
Q

∫
Q
uε(x, t)dx) as a function of time. We compare the fine scale solution with the
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Fig. 3. Comparison of the average u over the whole domain for three problems: (1) fine scale
(designated with a solid line), (2) homogenized solution with no enhanced diffusion (designated with
a dashed line), and (3) homogenized solution with enhanced diffusion (designated with a dotted line).
In this case H(x, y) = sin(2πy/ε) and F (u) = u2/(u2 + 0.2(1 − u)2).
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Fig. 4. Vertical average (across the heterogeneities) of the solution for the layered media with
stream function H(x, y) = sin(2πy/ε) and flux function F (u) = u2/(u2 + 0.2(1 − u)2) at time 0.4.

coarse scale solutions where the enhanced diffusivity is taken into account; i.e., it can
be considered as a numerical homogenization procedure with one coarse block. We
also consider the coarse scale solution where the enhanced diffusion is neglected, i.e,
ut = d∆u. As we see from this figure, the solution computed with enhanced diffusion
performs well and gives a reasonable approximation of the fine scale solution. On the
other hand, the average solution that does not account for enhanced diffusion performs
very poorly. In Figure 4 we plot the average along the horizontal direction (x2)
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Fig. 6. Average of the solution along the horizontal direction at t = 0.4 for Gaussian stream
function which has correlation lengths lx = ly = 0.1, mean zero, and variance 0.5. The flux function
is chosen as F (u) = u2/(u2 + 0.2(1 − u)2) and d = 0.1 (see (44)).

(across heterogeneities) of the solutions at time 0.4. The figure clearly indicates the
importance of having enhanced diffusion in the homogenized setting of the problem.
Next we present an example where the stream function H(x, y) is a realization of the
random field with Gaussian distribution. To generate a realization of the random
field with prescribed correlation lengths, we use GSLIB [5]. In particular, H(x, y) is a
realization of a Gaussian field with correlation lengths lx = ly = 0.1, and with mean
zero and variance 0.5. Here d = 0.1 and F (u) = u2/(u2 +0.2(1−u)2) are used in (44).
In Figure 5 we plot the total diffusivity. As we see, the enhancement of the diffusion
can be up to 6 times the molecular diffusion, d. Since the stream field is isotropic, it is
sufficient to consider total diffusion in one direction. In Figure 6 we plot a cross section
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Fig. 7. Left: the solutions are averaged in the vertical direction. Right: the fluxes are averaged
in the vertical direction.

of the solution at time 0.4. These results clearly indicate the importance of enhanced
diffusion. For different realizations of the random field we have observed similar
results. We note that this example can be easily generalized to nonlinear convection
diffusion of more general form, 1

ε v(T (x/ε)ω) ·DF (uε)−div(a(T (x/ε)ω, uε, Duε)) = f .
Finally, we consider an application of the numerical homogenization procedure

to Richards equations, div(aε(x, uε)Dxuε) = 0, where aε(x, η) = kε(x)/(1 + η)αε(x).
kε(x) = exp(βε(x)) is chosen such that βε(x) is a realization of a random field with the
spherical variogram [5], correlation lengths lx = 0.2, ly = 0.02, and variance σ = 1.5.
Here αε(x) is chosen such that αε(x) = kε(x)+ const with the spatial average of 2. In
Figure 7 we compare the solutions (uε) and the fluxes (−aε(x, uε)Dxuε) correspond-
ing to this equation with boundary and initial conditions given as previously. The
solutions are rescaled for comparison purposes. The solid line designates the fine scale
model results computed on a 120×120 grid, and the dotted line designates the coarse
scale results computed using the numerical homogenization procedure on a 12 × 12
coarse grid. These results demonstrate the robustness of our approach for anistropic
fields where h and ε are nearly the same. For different realizations of the random field
we have observed similar results. Currently, we are studying the application of the
oversampling technique to the numerical homogenization procedure.
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ANALYSIS OF A CANARD MECHANISM BY WHICH
EXCITATORY SYNAPTIC COUPLING CAN SYNCHRONIZE
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Abstract. A population of oscillatory Hodgkin–Huxley (HH) model neurons is shown numer-
ically to exhibit a behavior in which the introduction of excitatory synaptic coupling synchronizes
and dramatically slows firing. This effect contrasts with the standard theory that recurrent synaptic
excitation promotes states of rapid, sustained activity, independent of intrinsic neuronal dynamics.
The observed behavior is not due to simple depolarization block nor to standard elliptic bursting,
although it is related to these phenomena. We analyze this effect using a reduced model for a sin-
gle, self-coupled HH oscillator. The mechanism explained here involves an extreme form of delayed
bifurcation in which the development of a vortex structure through interaction of fast and slow
subsystems pins trajectories near a surface that consists of unstable equilibria of a certain reduced
system, in a canard-like manner. Using this vortex structure, a new passage time calculation is used
to approximate the interspike time interval. We also consider how changes in the synaptic opening
rate can modulate oscillation frequency and can lead to a related scenario through which bursting
may occur for the HH equations as the synaptic opening rate is reduced.

Key words. neuronal oscillations, Hodgkin–Huxley equations, synaptic excitation, slow passage,
canard

AMS subject classifications. 34C15, 34C23, 34C25, 37G15, 37N25, 92C20

DOI. 10.1137/S0036139903431233

1. Introduction. Recurrent excitatory networks of neurons are purported to
underlie persistent activity in the nervous system. Such networks have been used as
models for wave propagation and short-term memory [2, 17]. Long-lasting excitatory
synaptic connectivity is generally sufficient to enable such densely coupled neurons
to fire repetitively at high rates after some transient input, even when the individual
neurons do not intrinsically oscillate. The ability of an excitatory network to maintain
a persistent state depends on several interacting factors. In many types of cortical
neuron models, excitatory coupling leads to asynchronous firing when the synaptic
time course lasts long enough [10]. Shortening the time constant leads to two effects;
first, the neurons can synchronize, and second, thus synchronized, the network cannot
reignite due to the refractory period of the neurons. Studies of persistent activity have
not generally focused on differences from this standard scenario that arise due to the
intrinsic dynamics of individual neurons.

In this paper we report on a new mechanism through which persistent activity
is drastically slowed by excitatory coupling in a network of Hodgkin–Huxley (HH)
neurons. In fact, even if the neurons are intrinsically active (say, through current
injection), the excitatory coupling dramatically slows them down. We will show that
the mechanism for this slowing down is a consequence of an interesting mathematical
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structure (a canard) in which a trajectory passes close to a curve of points that are
critical points for the intrinsic neuronal dynamics without coupling and that switch
from attracting to repelling with respect to these dynamics as synaptic excitation
decays [3, 22]. While delayed bifurcation resulting from slow passage infinitesimally
close to such a critical curve has been studied previously [3, 15, 16, 4], we shall see
that the extreme slowing that we observe involves a novel “vortex” structure and does
not fit into the standard class of slow passage problems that have been considered.
Indeed, the dynamics controlling the slow passage here, namely, the synaptic decay, do
not need to be particularly slow for the extreme delay in activity to occur. Moreover,
the slowing phenomenon occurs over a broad parameter range, which distinguishes it
from typical canard scenarios.

Our results relate to those of Guckenheimer et al. [8, 9], who found prolonged
interspike intervals in a model of the lateral pyloric (LP) cell of the lobster stomato-
gastric ganglion (see Figure 5 in [8]) and analyzed a normal form of the subcritical
Hopf-homoclinic bifurcation that gives rise to this phenomenon in the LP model. To
compare our work to theirs, we note that the system we study has a unique, unstable
critical point, at which the synaptic variable is zero. This critical point can be made to
undergo a subcritical Hopf bifurcation as certain parameters are varied, although we
do not do this. It is also quite possible that we are working in a parameter regime that
is near a homoclinic bifurcation curve, although we do not consider this aspect of the
dynamics directly. What Guckenheimer et al. analyze, however, is not a slow passage
problem. Indeed, a crucial difference arising in the present work is that the decay of
the synaptic variable sweeps a critical point of a reduced subsystem through a Hopf
bifurcation, whereas their analysis treats periodic orbits with the full system held at a
fixed distance from bifurcation. The slow passage that we consider leads to a delayed
escape from a repelling branch of critical points for the subsystem; the normal form
asymptotic analysis in [9] does not involve delayed bifurcation, multiple timescales,
or reduced subsystems, although a slow variable does bring trajectories closer to the
Hopf bifurcation on successive oscillation cycles in the LP model. Further, we give
a directly computable estimate for the change in the synaptic variable during the
passage through the vortex structure that traps it, which translates directly into an
estimate of passage time, and we analyze the contribution of the synaptic decay rate
to the delay. The work in [9] does give an estimate for oscillation period, but this
is stated in terms of normal form variables and includes some abstract constants.
We note that a prolonged silent phase in the HH equations was also observed in the
thorough numerical study of Doi and Kumagai [5]. There, the slowing down was at-
tributed simply to a decrease in the instability of the unstable equilibrium of a certain
fast subsystem; no further analysis was given, and the vortex phenomenon was not
uncovered.

In section 2 of this paper, we begin by demonstrating the extreme delay effect,
first in a large network of HH neurons, then in a reduced model, and finally in a
single self-coupled neuron. Since we show that the HH networks oscillate in near
synchrony, the self-coupled neuron represents a reasonable approximation of the full
network behavior. In the self-coupled neuron, we show how the slowed firing rate
depends on the coupling strength, the time constant of the synapses, and the reversal
potential of the synapses. In section 3, we review the phase plane for the reduced HH
model for a single self-coupled neuron and illustrate the slowing mechanism there. In
section 4, we introduce a polynomial approximation of the model that encapsulates the
behavior of the reduced HH neuron in the silent phase. We analyze this model in some
detail, first showing that the usual approach to delayed bifurcations [3, 15, 16] does



CANARD MECHANISM FOR LOW-FREQUENCY NEURONAL FIRING 71

-80

-60

-40

-20

0

20

 

0 50 100 150 200 250 300 350 400

cell # cell #

t=0

t=400

B

t=20

t=0

A

time 

V
0,

 V
32

C

Fig. 1.1. Behavior of networks of excitatorily coupled neurons depends on the intrinsic dynam-
ics. (a) Persistent activity in a network of 50 cells with Traub’s pyramidal cell dynamics. Neurons
are indexed horizontally and time increases downward along the vertical axis. Grey scale depicts the
membrane potential. (b) A similar network using the dynamics due to Hodgkin and Huxley. The
first 50 milliseconds show the behavior of the uncoupled network; coupling is then turned on showing
rapid synchronization and a 10-fold increase in the oscillation period. (c) Voltage traces from cells
0 and 32 (out of 50) from the simulation in (b).

not capture the slowing down that we observe and then deriving a novel approach to
analyze the delay, including its dependence on the synaptic decay rate. This approach
focuses on the effect of a vortex structure in which the interaction of fast and slow
subsystems pins trajectories in a certain neighborhood of the critical curve mentioned
above. More specifically, we use this structure to derive an appropriate way-in–way-
out function [3, 15, 16] that can be used to compute a good estimate of the change
in the synaptic variable as a trajectory passes through the vortex. In section 5, we
show how this vortex mechanism carries over to the HH system, and we explore the
role of the active phase in the slow oscillations. In particular, we see how the slowing
mechanism can contribute to a form of bursting, or alternation of sustained silent
periods with periods of spiking, in the HH equations. Finally, in section 6, we give
a further discussion of how this work relates to some earlier results and of the open
questions that remain.

2. Numerical simulations of networks. If a network of excitatory cells is
coupled together, often the network activity is asynchronous and has a much higher
frequency than the individual cell [11, 12]. This is illustrated in Figure 1.1(a) for 50
cells coupled together in an all-to-all manner using a biophysical model for the fast
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currents in a hippocampal neuron and synapses with a decay constant of 5 milliseconds
[23]. Note that simulations shown in this figure, as well as all other simulations in this
paper, were done using XPPAUT [7]. In the model simulated, individual cells do not
fire on their own; the applied current is below threshold. However, coupled together,
they produce a rhythm that is nearly 400 Hz. This is an example of strong persistent
activity in an excitatory network. Contrast this behavior with another biophysical
model based on the HH equations [13], with the same initial conditions and all-to-all
coupling. The upper part of Figure 1.1(b) shows asynchronous output of the network
when there is no coupling; the frequency is around 100 Hz. Here the neurons receive
drive so that they fire spontaneously. After the first 50 milliseconds, the coupling
is turned on and the network rapidly synchronizes and fires at a frequency of only
about 10 Hz. Stronger coupling or longer decay rates lead to even lower frequencies.
Both networks contain only three currents: a transient sodium current, a potassium
current, and a leak. The individual voltage traces of two cells in Network B are
shown in Figure 1.1(c). They are nearly synchronous, with out-of-phase subthreshold
oscillations.

The difference in synchronization properties between these two example networks
is fairly well understood, at least in the weak coupling limit. It is known that excita-
tory coupling can synchronize or desynchronize coupled neurons depending on many
factors, such as the synaptic time constant. A very important factor is the nature of
the individual neuron. In models for which the onset of repetitive firing is through
a saddle node on a limit cycle (e.g., Figure 1.1(a)), excitatory coupling desynchro-
nizes [6], while in models for which the onset is through a Hopf bifurcation (e.g.,
Figure 1.1(b)), excitatory coupling synchronizes [11]. As it turns out, the extreme
slowing observed in the HH network also contributes to the synchronization through a
form of fast threshold modulation [20]. We will return to this point in the discussion.

Our goal in much of the rest of this paper is to understand how the frequency
of the synchronized oscillations is reduced to the extremely low rates observed in the
HH simulations. To understand this, we first reduce the four-variable model to a two-
variable system in the manner of Rinzel [18]. This will make the analysis simpler in the
subsequent sections. The same network of 50 cells for the reduced system exhibits the
same behavior as the full model (not shown); however, the cells synchronize perfectly,
unlike in the four-variable cell model. Since synchrony (or near synchrony) appears
to be a stable state of the network, we can understand the slowing down of the full
network by studying a single self-coupled reduced HH cell:

C
dV

dt
= −gL(V − VL) − gKn4(V − VK) − gNam

3h(V − VNa)

+ I0 − gsyns(V − Vsyn),

dh

dt
=

h∞(V ) − h

τh(V )
,

m = m∞(V ),(2.1)

n = max(.801 − 1.03h, 0),

ds

dt
= α(V )(1 − s) − s/τsyn.

The specific values of the gating functions and parameters in (2.1) are given in Ap-
pendix A. Note that the synapse has dynamics gated by the potential, V , and the
reversal potential of the synapse is Vsyn. Figure 2.1(a) shows the period of the self-
coupled cell as a function of the strength of coupling, gsyn, for several different synaptic
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Fig. 2.1. Properties of the self-coupled reduced HH model. (a) The variation of the period as
a function of the maximal synaptic conductance for different synaptic decay times. (b) Dependence
of the period on the reversal potential of the synapse; gsyn = 4 ms

cm2 and τsyn = 10s. The resting
potential of the neuron is about −65 mV. The discontinuities in the curve occur because the trajectory
cannot release until after an integral number of subthreshold oscillations (see Figure 1.1(c)). (c) V −s
phase plane during a slow oscillation (trajectory shown with circles and thick solid line) superimposed
on the bifurcation diagram (thin solid and dashed lines) for which s is treated as a parameter. The
arrow depicts the value of s at which there is a Hopf bifurcation. To compute the bifurcation diagram,
we replaced the piecewise linear definition of n in (2.1) with a smooth approximation.

decay rates, τsyn. This dramatic slowing down is not due to simple depolarization; the
period is a monotonically decreasing function of the applied current, I0. Furthermore,
for gsyn fixed and s held constant as a parameter, the period is roughly constant as s
increases. The mechanism for slowing down depends on the transient nature of s(t)
and its interplay with the intrinsic dynamics of the reduced HH model. Furthermore,
synaptic excitation is required for this; Figure 2.1(b) shows the period as a function
of the reversal potential of the synapse Vsyn.

We can give a rather crude explanation for the behavior by treating the synapse
as a slow variable. Thus, in (2.1), we treat s as a parameter in the voltage dynamics.
For sufficiently large values of s and for gsyn large, the membrane dynamics have a
stable fixed point corresponding to depolarization block of the sodium current. (The
resting potential is so large that the sodium channels are inactivated by the synapse.)
As s is decreased, there is a Hopf bifurcation leading to large amplitude periodic
solutions. Figure 2.1(c) shows the V − s phase plane with the bifurcation diagram
superimposed. The trajectory winds around in a clockwise motion. Essentially, the
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slow oscillation is a one-spike elliptic burster [19, 24, 14]. That is, for large values of
s, the resting state is stable and the neuron cannot fire. Thus, the synaptic gating
variable decays. As this variable gets smaller, the trajectory passes through the Hopf
bifurcation (shown by the arrow) and the resting state becomes unstable. However,
as can be seen in the figure and is known to occur in elliptic bursting, the trajectory
continues along the curve of unstable fixed points, to s-values well below the Hopf
point, before jumping away.

While this explanation seems somewhat satisfactory, it cannot account for the
drastic slowing down and extreme decay (to nearly 0) of s that we observe. Moreover,
the time constant of the decay in the figure (τsyn = 10 msec) is not particularly slow;
in this range it is about twice the decay rate of the inactivation variable, h. The
mechanism for the extended period is actually quite subtle, and it turns out to be
better to treat the recovery variable, h, as the slow variable and to study the dynamics
in the V −h plane. Moreover, we shall see that standard treatment of elliptic bursting
and associated delay does not predict the extent to which the period increases with
τsyn here, as seen in Figure 2.1(a).

3. The V − h plane. We rewrite the equations for the reduced HH model:

C
dV

dt
= f(V, h) − gsyns(V − Vsyn),(3.1)

dh

dt
= αh(V )(1 − h) − βh(V )h,(3.2)

where

f(V, h) = I0 − gNah(V − VNa)m
3
∞(V ) − gK(V − VK)n4(h) − gL(V − VL).

The equation for the synapse is

ds

dt
= α(V )(1 − s) − s/τsyn.(3.3)

While h and s have similar time courses, h evolves much more slowly than V ,
so we refer to (3.1) as the fast equation and (3.2) as the slow equation, and we refer
to this pair of equations as (PS), for projected system. For each fixed value of s,
the solution to the equation dV/dt = 0 forms a triple-branched curve in (V, h)-phase
space, which constitutes the fast nullcline (Figure 3.1). We will also refer to the slow
nullcline, given by dh/dt = 0 (Figure 3.1(b)). Note that as s evolves, the fast nullcline
of system (3.1)–(3.2) evolves correspondingly, while the slow nullcline is independent
of s. Alternatively, for the full system (3.1)–(3.3), there exist two-dimensional fast
and slow nullsurfaces in (V, h, s)-phase space.

Solutions to the system (3.1)–(3.3) are strongly attracted to the left and right
branches of the fast nullsurface, except during fast jumps between branches (see Fig-
ure 3.1(a)). We refer to a time period when a solution is near the left (right) branch
as a silent phase (active phase). For our analysis, we will make use of projections of
solutions to (V, h)-phase space, but it is important to note that s continues to evolve
along with V and h.

3.1. Attraction to the intersection of nullclines and extended delay.
The left panel of Figure 3.1 shows a numerically generated trajectory of (3.1)–(3.3),



CANARD MECHANISM FOR LOW-FREQUENCY NEURONAL FIRING 75

-0.1

0

0.1

0.2

0.3

0.4

-60 -40 -20 0 20 40

vnullcline

hnullcline

h

V
 100

 50

0

50

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

V

right
branch

s

h
left
branch

BA
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there is a small oscillation followed by a jump up to the active phase. τsyn = 20s in this figure.

superimposed on V -nullclines of (PS) that were numerically generated for several
different values of s. A projection of this trajectory into (V, h)-phase space appears
in the right panel, along with the V - and h-nullclines for an arbitrary fixed s near 0.
In Figure 3.1, we see that after jumping down to the left surface of the fast nullcline,
the orbit travels very close to this surface, although this is not apparent in the right
panel of Figure 3.1 because we have only plotted the fast nullcline for a single, very
small value of s. The orbit also appears to hug the slow nullcline as the synaptic
variable s slowly decays; in other words, the orbit is very close to the intersection
of the fast and slow nullclines for each fixed s. After a long delay, the orbit spirals
away from the intersection of the nullclines as if this intersection point, treated as a
critical point of (PS), had suddenly become unstable through a Hopf bifurcation at
some small s. This is not the case; although there is a Hopf bifurcation and a loss of
stability as s decays, the orbit remains near the nullcline until s reaches values well
below the bifurcation point.

The intersection of the nullclines may be viewed as a critical point of (PS) with
s fixed as a parameter. The stability of the critical point changes when s ≈ 0.222 for
the default parameter set, while the escape seen in Figure 3.1 occurs when s ≈ 0.003.
This means that the orbit is attracted toward the intersection (or not repelled) while
that intersection represents an unstable fixed point of (PS). The objectives for this
and the following section are to explain why this delayed exit occurs and to derive an
analytical expression that gives a good estimate of the duration of this delay.

3.2. Ingredients for the delay. The problem presented here is that orbits
appear to be attracted to a curve of unstable critical points. However, each critical
point is only unstable for fixed s. For the full system (3.1)–(3.3), s decays during
the silent phase, and so there are no true critical points with s > 0. Thus, we
cannot immediately assume that the intersection will repel the orbit once it is unstable
with respect to (PS). Linear stability analysis for critical points of (PS) may not be
appropriate for the system (3.1)–(3.3). Somehow, one needs to take into account the
dynamics of s to explain the delay in escape from the silent phase. Previous authors
have contended with this issue in slow passage problems [3, 15, 16, 1, 4] and in elliptic
bursting in particular [19, 24, 14, 21]. Unless 1/τsyn � dh/dt, however, (3.1)–(3.3)
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do not fit the standard slow passage assumptions.
Also, the h-coordinate of the fast nullcline increases as s decreases, and the slow

nullcline has negative slope with respect to the variable V (in the (V, h)-plane). Thus,
the intersection of the nullclines is moving up and to the left in the phase plane as
s decreases. Trajectories also move in this direction, as they approach the nega-
tively sloped slow nullcline. Thus, trajectories may approach the intersection of the
nullclines, even if the linearization about the intersection of the nullclines with fixed
s yields eigenvalues with positive real parts. Below, we will discuss an additional
trapping mechanism that holds trajectories near this intersection.

Finally, for a value of s near the Hopf bifurcation, the nullclines are in the fold
canard configuration [3]. Although this lasts for only a short period, it may provide
a mechanism for a canard to arise in the full system. In this paper we will not use a
singular slow-fast decomposition, and we will not use the tools of nonstandard analysis
[3]. Nevertheless, the canard configuration appears to be an imperative structural
feature in any system that demonstrates this extended delay, for reasons that we shall
see below.

4. A simple system. To do any analysis directly, a model simpler than (3.1)–
(3.3) is useful to characterize the relevant dynamics in the silent phase, although the
conclusions of the analysis are expected to hold for more general systems. For the sake
of analysis, the system ideally will have nullclines that are represented by polynomials.
Based on the observations from the previous subsection, our model must incorporate
the following characteristics:

• The slow nullcline has a negative slope with respect to the fast variable,
provided the trajectory approaches the slow nullcline from the left after it
enters the silent phase (see Figure 3.1). If the approach is from the right,
then the slope of the curve must be positive.

• The intersection of the fast and slow nullclines is a stable critical point (when
parameterized by s) of the intrinsic equations for large values of s, and then
changes stability via a Hopf bifurcation induced by a transversal crossing of
a conjugate pair of eigenvalues through the imaginary axis, away from the
origin, as s decays. For a value of s near the Hopf bifurcation, the nullclines
must be in the regular fold canard configuration, discussed in [3].

• The vector field of the system is analytic [15, 16] and autonomous during the
silent phase.

4.1. The model. The model used for all analysis during the silent phase is

dx

dt
= −f(x) + y − I(s)x,(4.1)

dy

dt
= −ε

(
y +

1

4
x5

)
,(4.2)

ds

dt
= − s

τsyn
,(4.3)

where 0 < ε � 1; note that we consider only x < 0. For simulations in this paper,
the function f in (4.1) is

f(x) =
1

4
x3 − 2x
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and the synaptic current function I is

I(s) =
3

2
s.

Note that this model does not oscillate, but trajectories do jump up from the silent
phase. This is sufficient for consideration of behavior during the silent phase. It is
not necessary to consider the active phase (when spikes occur) to explain the slow
release; however, we will return to the study of the role of the active phase for the
HH equations, and bursting in particular, later in the paper.

4.2. Some notation. For the remainder of the paper, the following notation
will be used. Nf (x, s) is the y-coordinate of the fast nullcline (dxdt = 0) for a given x

and s. Similarly, Ns(x) is the y-coordinate of the slow nullcline (dydt = 0) for a given
value of x. Note that ∂Nf/∂s < 0 for x < 0, that Ns(x) does not depend on s, and
that these two curves intersect for each fixed s. Let (x̃(s), ỹ(s)) denote the curve of
intersection points.

For the system given in (4.1), (4.2), the functions Nf (x, s) and Ns(x) are given
by

Nf (x, s) = f(x) + I(s)x,

Ns(x) = −1

4
x5.

The intersection of these curves is easily found for each value of s.

4.3. The usual approach. Though the trajectory is visibly separated from
the intersection of the fast and slow nullclines in the right panel of Figure 3.1, it is
still possible that the release value of s can be approximated using the variational
equation around (x̃(s), ỹ(s)). Indeed, this approach has been taken previously to
analyze delayed escape in slow passage through a Hopf bifurcation through use of a
way-in–way-out function [3, 15, 16]. This function relates the attraction of the orbit
before the Hopf bifurcation to the repelling of the orbit after the change of stability has
taken place. We shall see that in our case, this approach is not necessarily appropriate.

We now demonstrate the poor performance of the standard way-in–way-out, com-
puted using the equation of first variation along the curve (x̃(s), ỹ(s)). Let J be the
Jacobian matrix of the system defined by (4.1)–(4.2) along (x̃(s), ỹ(s)). We have that

J(s) =

(
−3

4 x̃
2(s) + 2 − I(s), 1
−ε 5

4 x̃
4(s), −ε

)
.(4.4)

The equation of first variation is

d

ds

(
x
y

)
= −τsyn

s
J(s)

(
x
y

)
.(4.5)

The solution to (4.5), taken from a starting point (x0, y0, senter), is(
x
y

)
= exp

(∫ s

senter

−τsyn
ω

J(ω)dω

)(
x0

y0

)
.(4.6)
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Given an senter, we may solve the equation∣∣∣∣
∣∣∣∣exp

(∫ s

senter

−τsyn
ω

J(ω)dω

)(
x0

y0

)∣∣∣∣
∣∣∣∣
2

=

∣∣∣∣
∣∣∣∣
(
x0

y0

)∣∣∣∣
∣∣∣∣
2

(4.7)

for s = sexit. The value sexit is an approximation of the value of s such that∣∣∣∣
∣∣∣∣
(
x
y

)∣∣∣∣
∣∣∣∣
2

=

∣∣∣∣
∣∣∣∣
(
x0

y0

)∣∣∣∣
∣∣∣∣
2

,

where x, y are functions of s since they solve (4.5).
In typical slow passage problems [3, 15, 16, 4], this sexit provides a good approxi-

mation for the release value of s. The results for the system under consideration here
are not good, especially for the lower values of τsyn tested. This poor performance
does not contradict the standard theory; this approach breaks down precisely when
the passage rate determined by the decay of s in (4.3) is not sufficiently slow in com-
parison with the rate of change in (4.2). The value of the approximated value of sexit
over a range of τsyn is shown in Figure 4.1. The standard way-in–way-out analysis
overestimates sexit. Since s decays in the silent phase, this means that this approach
underestimates the amount of time spent in the silent phase.

Notice further that the sexit curve generated here is rather flat. This is expected
because the linearization of the system when s is used as a parameter does not depend
on τsyn. The slight curvature of the sexit curve that is visible in Figure 4.1 is due to
the fact that different values of senter satisfy the entrance criterion (see caption) for
different τsyn. Simulations (solid line in Figure 4.1) suggest that the true value of sexit
varies as the logarithm of τsyn. Correspondingly, the passage time from senter to sexit
grows linearly with τsyn, and spike frequency decreases as 1/τsyn as τsyn increases.

It is now apparent this is not a standard way-in–way-out problem about the curve
of critical points of a slow-fast system. In the following sections, we will propose a
mechanism for the increased delay, perform the corresponding analysis, and demon-
strate that this approach gives a much better estimate of the observed delay than
that given by the usual analysis done in this section, up to values of τsyn for which
1/τsyn � ε. For values of τsyn greater than this, the usual approach is sufficient, and
as τsyn → ∞ the two approaches are identical.

4.4. The trapping mechanism. As s → 0, the fast nullcline moves upward in
the y-coordinate, since x < 0 and thus ∂Nf/∂s < 0. In simulations, it appears as if
orbits of (4.1)–(4.3) (or of (3.1)–(3.3)) track very close to the intersection curve of the
fast and slow nullclines. To understand what organizes the flow near this curve, it is
useful to define the following set:

A(s) =

{
(x0, y0)

∣∣∣∣dydt (x0, y0) <
dNf

ds
(x0, s)

ds

dt

}
.(4.8)

This set consists simply of the points in the (x, y)-plane such that a trajectory that
passes through the point (x0, y0) ∈ A travels more slowly in the vertical direction
(y-direction) than does the point on the fast nullcline with the same x-coordinate.

Because Nf (x, s) increases as s decreases for fixed x < 0, we have that
dNf

ds (x0, s)
ds
dt >

0, which guarantees that A(s) is nonempty for each s. As x → −∞, dy
dt → ∞ as

well (see (4.2)), so for each fixed y, there exists x sufficiently negative such that
dy
dt >

dNf

ds
ds
dt ; similarly, for each fixed x < 0, there exists y sufficiently negative such
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Fig. 4.1. Values of sexit computed numerically versus those computed from the usual way-in–
way-out function, as τsyn varies. The approximation obtained by solving (4.7) (dotted line) appears
to be fairly invariant with respect to τsyn, but simulations of (4.1)–(4.3) strongly suggest that this is
not the case (solid line). Here, ε = .01 and the entrance criterion used in (4.7) is ||x||2 = 0.1.
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Fig. 4.2. The curves Nf and Ns along with the boundary of the set A(s) for s = .0326. The
set A(s) also includes a region to the right of Ns(x), but only the shaded region is relevant.

that this inequality holds. Thus, A(s) is bounded to the left and below, and the
boundary ∂A(s) is a curve, which we denote y∂A(s)(x), in the (x, y) plane. For the
simple system (4.1)–(4.2), we can express the boundary curve ∂A(s) as the graph of
a function:

y∂A(s)(x) = −1

4
x5 +

3xs

2ετsyn
.(4.9)

Notice that y∂A(0)(x) = Ns(x), and that as τsyn → ∞, y∂A(s)(x) → Ns(x).
Figure 4.2 shows the curve ∂A(s) for s = .0326, along with Nf (x, s) and Ns(x).

For the value of s in Figure 4.2, if the trajectory lies to the right of the curve ∂A(s),
then Nf (x, s) will be moving upward faster than the trajectory. Likewise, if the
trajectory lies to the left of the curve, then the nullcline will be moving upward slower
than the trajectory.

The intersection of the curves ∂A(s) and Nf (x, s) turns out to be extremely
important for the delay phenomenon under study. The curve defined by these inter-
section points for a range of s values forms an attractor for values of s for which,
from the perspective of the analysis done in section 4.3, the intersection of Nf and Ns
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Fig. 4.3. A sample trajectory as viewed by an observer riding the intersection of ∂A(s) and
Nf (x, s). Trajectories to the left of ∂A(s) pass to y-values above the observer, trajectories to the
right fall behind. The left and right movement is dependent on whether the trajectory is above or
below the curve Nf (x, s).

corresponds to a repelling set. Suppose that a trajectory lies below Nf (x, s) and to
the right of ∂A(s). Thus, the trajectory and Nf (x, s) are separating, but dx

dt < 0, and
so eventually the trajectory crosses ∂A(s) and then begins to catch up to Nf (x, s).
This may result in a net contraction toward ∂A(s)∩Nf (x, s). The y-coordinate of the
trajectory will eventually increase through Nf (x, s), such that dx

dt > 0 results. This
causes the trajectory to again cross the curve ∂A(s), and another contraction toward
∂A(s)∩Nf (x, s) may occur as Nf (x, s) catches up to the trajectory. Thus, the inter-
section curve of ∂A(s) and Nf (x, s), while not itself invariant under the flow, creates
a moving vortex, or core about which the flow spirals. The flow diagram around this
core, projected to the (V, h)-phase plane, is shown in Figure 4.3.

This moving vortex structure generates a trapping mechanism within the flow.
Simulations show that trajectories follow the vortex curve very closely during the
silent phase. Using a change of variables, we next explore the stability of the vortex
curve and its impact on delayed escape from the silent phase.

4.5. Equations of the moving vortex. To focus on the moving vortex, we
will shift the system so that the intersection, say, (x̂(s), ŷ(s)), of ∂A(s) and Nf (x, s)
occurs at the origin for all s. For the simplified model, note that one can obtain explicit
expressions for this intersection point. A linear change of variables, z1 = x− x̂(s) and
z2 = y − ŷ(s), yields the following system:

dz1

dt
=

dx

dt
− dx̂

ds

ds

dt
,(4.10)

dz2

dt
=

dy

dt
− dŷ

ds

ds

dt
,(4.11)

which can also be written

dz1

dt
= f1(z1, z2, s),(4.12)

dz2

dt
= f2(z1, z2, s),(4.13)
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Fig. 4.4. Change of stability. The solid line represents the value of s where the sign of the real
part of the complex conjugate pair of eigenvalues changes along the curve (x̂(s), ŷ(s)). The dotted
line shows the value of s when the curve of critical points for (4.1)–(4.2) changes stability. This
value is not dependent on τsyn.

where s is governed by (4.3).
If s is fixed as a parameter, then we may compute the linearization of system

(4.12)–(4.13) about the vortex point (z1, z2) = (0, 0). Although (0, 0) is not a critical
point for system (4.12)–(4.13), the sign of the real part of the complex conjugate
pair of eigenvalues of the linearized system will still yield information about to what
extent the neighborhood around the point acts as an attractor, as discussed above.
Also, because the parameter τsyn was incorporated into the linear component of the
system during the change of variables, the value of s where the eigenvalues’ real part
changes sign is not invariant with respect to τsyn, as it is using the regular approach
discussed in section 4.3. The value of s where the eigenvalues’ real part changes sign
is shown in Figure 4.4. This is encouraging because it demonstrates a lower value
for the change of stability in addition to a dependence on τsyn, both of which are
apparent in simulations but lacking in the analysis in section 4.3.

4.6. Release value for s. Because the real part of the eigenvalues crosses
through zero for a smaller value of s in the linearization of system (4.12)–(4.13) about
(0, 0) than observed in the linearization of (4.1)–(4.2), we expect that the lineariza-
tion of system (4.12)–(4.13) will provide an improved estimate of the exit value for
s, relative to the analysis in section 4.3, at least until τsyn becomes extremely large.
In addition to the geometric argument given in section 4.4, an analytical justification
for this expectation is given in Appendix B.

Now that we have transformed to the frame of the moving vortex, the analysis
itself proceeds as in section 4.3. We rewrite (4.12)–(4.13) in vector form as

d�z

ds
= −τsyn

s
�f(�z, s).(4.14)

The equation of first variation on the vortex curve (z1, z2) = (0, 0) is

d�z

ds
= −τsyn

s
�f�z(0, 0, s)�z.(4.15)
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Fig. 4.5. Improved estimate of sexit. As a function of τsyn, the exit value sexit is derived from
solution of (4.17) (dashed line) and numerical solution of the full translated model (4.12)–(4.13)
(solid line). The entrance criterion for this figure was ||z||2 = 0.03, and again ε = 0.01.

The solution to (4.15) is given by

�z(s) = exp

(
−τsyn

∫ s

s0

1

w
�f�z(0, 0, w)dw

)
�z(s0).(4.16)

To approximate the value of s where release begins to occur, we choose a value senter
satisfying an entrance criterion, ||z||2 = η. We solve the equation

||�z(s)||2 =

∥∥∥∥exp

(
−τsyn

∫ s

senter

1

w
�f�z(0, 0, w)dw

)
�z(senter)

∥∥∥∥
2

= η.(4.17)

The results of this estimation for a range of τsyn are shown, along with results from
full numerical simulations, in Figure 4.5. The approximation is much better than the
one obtained in section 4.3 for low to moderately high values of τsyn.

Remark 4.1. In principle, there exists some curve, say, (xopt(s), yopt(s)), such
that linearization about this curve yields an optimal estimate of sexit. Numerical
simulation suggests that system (4.12)–(4.13) has a fixed point for each s, and this
is the natural candidate about which to linearize this translated system. (In terms
of Appendix B, linearization about this curve would yield a truly linear system in
(8.8).) However, it is not clear how to access this curve numerically, and the geo-
metric arguments and numerical computations done here, along with the analytical
calculation in Appendix B, show that the moving vortex curve is a good approxima-
tion to (xopt(s), yopt(s)) to use for estimation of sexit.

Remark 4.2. Unfortunately, for very large values of τsyn, the approximation
loses accuracy and gives a similar, but slightly less accurate, performance to the
standard approach. Recall that the moving vortex point is defined as the intersection
of ∂A(s) with the fast nullcline Nf (x, s) for each s. The boundary ∂A(s) is given by
dy
dt =

∂Nf

∂s
ds
dt = −∂Nf

∂s
s

τsyn
. As τsyn increases, ∂A(s) therefore approaches the slow

nullcline, and correspondingly the moving vortex point approaches the intersection
of the fast and slow nullclines, which is exactly the moving critical point used in
the standard analysis. This explains why the moving vortex analysis is similar to the
standard analysis for sufficiently large τsyn. However, the transformation (4.10)–(4.11)
brings τsyn into (4.12)–(4.13), so the two approaches remain nonidentical.



CANARD MECHANISM FOR LOW-FREQUENCY NEURONAL FIRING 83

450 700 950 1200
0.02

0.07

0.12

0.17

0.22

450 700 950 1200

Approximation
Actual

τsynτsyn

s e
x
it

Fig. 4.6. The approximation curve and the actual curve using the value η = 0.025 (left panel) or
η = 0.035 (right panel) as the entrance criterion. The results are not as good as those in Figure 4.5.

Remark 4.3. It is important to note that the results of our approach do depend on
the value of η chosen for the entrance criterion. Because we take the equation of first
variation of (4.12)–(4.13) about the vortex curve (z1, z2) = (0, 0), rather than about
the translated version of the optimal curve (xopt, yopt) discussed in Remark 4.1, we
cannot choose η arbitrarily small. The behavior in a very small neighborhood of the
origin, and the time to exit this neighborhood, do not perfectly capture the behavior
near the optimal curve. Also, η cannot be chosen too large. Large η will result in
failure of the approximation provided by the equation of first variation, and nonlinear
terms may dominate. There must be an ideal entrance value, in the sense that the
results obtained provide the most accurate approximations. Figure 4.6 shows the
results derived from less appropriate values of η than that used in Figure 4.5. Note,
however, that these results are still better than the standard approach (Figure 4.1)
over the lower range of τsyn values considered.

5. The HH equations.

5.1. Mechanism for slow oscillations. In section 4, a simplified model was
used to elucidate a mechanism, involving trapping of trajectories near a vortex curve,
by which slow synaptic decay results in an oscillation with a very long period. Because
our simplified model satisfies the conditions listed at the start of section 4, this model
is an appropriate subject for analysis, and we expect that the argument and findings
from sections 4.4–4.6 carry over directly to the reduced HH model (3.1)–(3.3).

Indeed, numerical study strongly suggests that the mechanism for slow oscillations
in the HH equations is identical to that of the simple model. Again, there is a vortex
curve which is stable longer (for smaller s) than is the fixed-point curve created by
the intersection of the fast and slow nullsurfaces. Figure 5.1 shows the analogue to
Figure 4.2 for the reduced HH equations.

5.2. The active phase. Up to this point, our analysis has concerned only what
occurs during the silent phase of oscillations. By changing the recovery capability of
the synapse, either we can make the slow behavior discussed above more pronounced or
we can eliminate the silent phase completely. The latter results in high-frequency oscil-
lations, and for appropriate values of τsyn this can induce bursting. Before discussing
bursting, however, we take a closer look at how the recovery of the synapse depends
on parameters in the model, assuming that a prolonged silent phase has occurred.
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Fig. 5.1. The set A(s) for the HH equations (3.1)–(3.3) for fixed s. The shaded region is the
numerically computed set of (V, h) (to the left of the slow h-nullcline) where the trajectory is moving
more slowly in the direction of increasing h than is the fast V -nullcline.

Under the flow of the reduced HH system (3.1)–(3.3), the synapse recovers (s in-
creases) during the active phase, which begins when the cell jumps up from the vicinity
of a left knee of the fast V -nullsurface and terminates when the cell jumps down from
a right knee of this nullsurface. If we let F (V, h, s) denote f(V, h)− gsyns(V − Vsyn),
then the knees are the two solutions of F (V, h, s) = ∂F (V, h, s)/∂V = 0, parametrized
by s. More precisely, we can solve F (V, h, s) = 0 for V = V (h, s), and then solve
∂F (V (h, s), h, s)/∂V = 0 for h = h(s), such that V = V (h(s), s).

We can implicitly differentiate the equation

f(V (h(s), s), h(s)) − gsyns(V (h(s), s) − Vsyn) = 0

with respect to s to obtain

∂f

∂V

[
∂V

∂h

dh

ds
+

∂V

∂s

]
+

∂f

∂h

dh

ds

− gsyns

(
∂V

∂h

dh

ds
+

∂V

∂s

)
− gsyn(V (h(s), s) − Vsyn) = 0.(5.1)

Substitution of ∂F (V (h(s), s), h(s), s)/∂V = 0 into (5.1) yields ∂f
∂h

dh
ds = gsyn

× (V (h(s), s) − Vsyn). Rewriting this as a formula for dh/ds and substituting the
currents in f from Appendix A, as well as Vsyn = 0, yields

dh

ds
=

gsynV

−gNam3(V )(V − Vna) − 4gKn3(h)(V − Vk)
dn
dh

,(5.2)

where V = V (h(s), s) and h = h(s). If we insert parameter values from Appendix A,
as well as the range of V values found in the silent phase (say, h = hL(s)) or the
active phase (say, h = hR(s)), into (5.2), we find that both dhL/ds and dhR/ds are
quite small, at most about .02. Thus, we will assume that there is a fixed value hL of
h at the jump up from the silent phase to the active phase and a fixed value hR of h
at the jump down from the active phase to the silent phase.

Now, in the active phase, we have

dh

ds
=

αh(V )(1 − h) − βh(V )h

α(V )(1 − s) − s/τsyn
.(5.3)
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Make the further approximations that α(V ) ≈ α and dh/dt ≈ −βh, for α, β constant,
in the active phase, and let τ = α + 1/τsyn. Then direct integration of (5.3) from
(h, s) = (hL, 0) to (h, s) = (hR, smax) yields

smax =
α

τ
(1 −Hτ/β),(5.4)

where H = hR/hL. Equation (5.4) gives an estimate of how the level to which the
synaptic variable s recovers in the active phase depends on the parameters of the
HH equations, particularly α (the approximate value of α(V ) in (3.3)), the synap-
tic decay rate τsyn, and the active phase decay rate of h from (3.2), approximated
by β.

In Figure 5.2, we compare this approximation of smax to the value obtained from
numerical simulation of (3.1)–(3.3) and to an alternative, naive approximation to
smax, namely, α/(α+ τ−1

syn). This corresponds to the value of s that would be reached
if synapses responded instantaneously to voltage. We show how smax depends on α
for several values of τsyn, and also how smax depends on τsyn for α = 2, corresponding
to the default value of α0 for the simulations in the other sections of this paper (see
Appendix A). Note that there is some ambiguity in how to select the approximate
decay rate β for h, since this rate typically remains near a constant value throughout
much of the active phase but then decreases near the right knee, as the decay of h
slows. We neglect the slowing near the right knee, which accounts for some of the
error in Figure 5.2.

It is interesting to note that for fixed α, the value of smax is roughly independent
of τsyn, such that the active phase contributes little to the slowing that occurs as
τsyn is increased, as discussed in the previous sections. As α increases, smax increases
correspondingly. This leads to a larger senter in (4.17), which in turn yields a smaller
sexit. Hence, the duration of the silent phase increases with α. We explore a further
implication of this dependence in section 5.3.

5.3. Bursting. Consider Figure 5.3(a). This figure shows the bifurcation struc-
ture for (3.1)–(3.2) as s varies for gsyn = 2, while Figure 5.3(b) shows the voltage trace
of a two-spike burst solution to (3.1)–(3.3). This solution was obtained by greatly re-
ducing the function α(V ), thereby reducing the turn-on of the synapse during the
active (spiking) phase. Any number of spikes can be seen in a burst by scaling the
recovery function appropriately.

As we have seen, during the time that a cell spends in the silent phase, its synaptic
variable decays beyond the point where the fixed point (intersection of fast and slow
nullclines) of the system (3.1)–(3.2) becomes unstable (s lies below the Hopf point at
s ≈ 0.22 in Figure 5.3(a)). During the active phase, the synaptic variable s increases
as specified in (3.3). If s does not recover enough to reach a value for which the fixed
point of (3.1)–(3.2) is stable (s > 0.22 in our example), then after it jumps down to the
silent phase, it will not be attracted toward the slow nullcline or the vortex structure.
Instead, the orbit tends toward the fast nullcline and the phase plane looks like a
standard (oscillatory) relaxation oscillator. This results in a subsequent rapid jump
to the active phase when the left knee of the fast nullcline is reached, corresponding
to a rapid second spike, as seen, for example, at the start of the simulation in the
right panel of Figure 5.3. Alternatively, if s does increase beyond the bifurcation
point, then the silent phase becomes prolonged again; however, if it is still close to
the bifurcation point, the silent phase duration is still reduced relative to that seen
for large s, based on (4.17). Figure 5.3 shows the recovery of the synaptic variable, s,
during the two-spike burst shown in the right panel of Figure 5.3.
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Fig. 5.2. The dependence of synaptic recovery level, smax, on the rate of synaptic rise (α)
and decay (τsyn). In each panel, the dashed line corresponds to the naive approximation smax ≈
α/(α+ τ−1

syn), the solid line corresponds to (5.4), and the thick dotted line corresponds to the actual
value of smax attained in numerical simulations of (3.1)–(3.3). (a) τsyn = 20, (b) τsyn = 100,
(c) τsyn = 500, (d) α = 2.

6. Discussion. It is generally assumed that synaptic connections between ex-
citatory neurons have the effect of strengthening and accelerating neuronal firing.
Indeed, part of the accepted theory of computation in cortical circuitry is that if
input is strong enough to make some excitatory cells fire, then recurrent excitation
among excitatory cells amplifies this activity, whereas if inhibitory input comes in be-
fore the excitatory cells can become active, then this inhibition shuts them down. In
this paper, we explore a scenario in which recurrent excitation instead causes a drastic
slowing of firing. We find this effect, over a broad range of parameter values, in a
network of standard, biophysically derived HH model neurons, coupled with slowly
decaying synaptic excitation. This highlights the important point that the effects of
synaptic inputs in neuronal networks depend on the intrinsic dynamics of the cells in
the network, together with the timescale of the synaptic inputs. It remains to explore
the functional consequences of this result, particularly in a network of interconnected
excitatory cells and inhibitory interneurons.

Since we find that synaptic excitation is strongly synchronizing in this model
network (up to small differences in subthreshold oscillations), we study the mechanism
behind this synaptic slowing in a self-coupled neuron. The synchronization seen here
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Fig. 5.3. Bursting in the HH model. (a) Bifurcation diagram for the HH equations with s
as the bifurcation parameter (as shown in Figure 2.1(c)). The curve at V ≈ −60 corresponds to
the critical point of system (3.1)–(3.2) formed by the intersection of the fast and slow nullclines.
This becomes unstable via a subcritical Hopf bifurcation as s decreases. Here, F.R. and S.R. refer
to the first and second return to the silent phase, respectively, of the dashed trajectory shown.
(b) Two-spike burst solution. During the first spike of a two-spike burst, the s value does not
recover enough to exit the regime where the critical point is unstable. The second recovery brings
s into the stable regime, which yields a prolonged silent phase. (c) Synaptic variable, s(t) during
this burst. The dashed horizontal line is the value of s where the critical point (parametrized by
s) changes stability. Because this stability is necessary to obtain a cycle with an arbitrarily long
period, the oscillator experiences a prolonged silent phase only once s has exceeded this threshold.
Parameter values for this plot are τsyn = 20 and α0 = 0.15.

in part results from the phase response properties of HH neurons [11]. Further, the
extreme slowing in the silent phase enhances the synchronization tendency. We have
seen that this slowing involves a prolonged residence near the left knee curve of a
fast nullsurface. In a population of many cells in a near-synchronized state, a strong
spatial compression occurs during this residence. As soon as one cell jumps up to
the active phase, fast threshold modulation (FTM) [20] will pull the other cells up as
well. This compression and FTM easily overwhelm any desynchronization that may
occur in the other stages of an oscillation.

We use a simplified model to elucidate the moving vortex canard mechanism by
which slowly decaying synaptic excitation prolongs the silent phase between spikes,
and this mechanism carries over to the HH model. The scenario that we study truly
meets the criteria for a canard, since the fast (V ) and slow (h) nullclines of the HH
model, with s taken as a parameter, are in a regular fold canard configuration for
an s-value near that at which the intersection of the nullclines loses stability via a
Hopf bifurcation [3]; see also [22]. Moreover, the solutions to the full system spend
a significant period of time traveling along the middle branch of the V -nullsurface
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(although they remain extremely close to the curve of knees; see Figure 3.1). Unlike
typical canards, however, the delayed solutions that we study are easy to find, occur-
ring over a broad range of synaptic decay rates. We do not discuss the precise size
of the region in phase space from which trajectories are drawn to the vortex region,
for fixed parameter values. This may relate to attraction to a stable manifold of the
s = 0 critical point of the HH model in the vicinity of a homoclinic bifurcation, as
discussed in [9], but we have not explored this issue.

According to previous analytical results, one should be able to estimate the change
in the slow variable s that will occur during the silent phase by using a way-in–way-
out function [3, 15, 16]. This function incorporates information from the projected
system derived by treating s as a parameter. Specifically, it involves the eigenvalues of
the linearization of the projected system about an appropriate curve of critical points
(parametrized by s). The eigenvalues correspond to rates of decay and growth toward
this critical point curve. This approach was used previously in neuronal networks to
study elliptic bursting, in which there is a delayed escape from a curve of critical points
that are unstable with respect to a fast subsystem [19, 24, 14, 21]. However, the novel
vortex phenomenon that we have identified causes this approach to underestimate the
change in s in the silent phase, and correspondingly the time spent there, for a large
range of synaptic decay rates.

The vortex structure develops through a breakdown in the distinction between
fast and slow dynamics in the vicinity of the critical point curve for the projected
system. The corresponding flow pins trajectories near a vortex curve, which itself lies
close to the curve of critical points, for a prolonged period, as the synaptic strength
gradually decays. We use the vortex curve to approximate a release threshold for
the synaptic variable s, relative to a specified criterion for entrance into the trapping
regime. This approach makes use of a set A, determined by the dynamics of the
system, that is central to the vortex effect. In particular, A relates to the relative
rates of change of the nonsynaptic slow variable and the position of the fast nullcline.
Note that the position of the fast nullcline depends on the size of the synaptic variable
s. Further, while there are three possible timescales corresponding to the rates of
change of the three dependent variables (V, h, s) in the problem, the rate of change of
the nonsynaptic slow variable (characterized by ε) and the synaptic decay rate 1/τsyn
are comparable over much of the range of τsyn that we consider. A full mathematical
analysis of the vortex mechanism, and in particular the types of vector fields and
range of timescales for which computations based on the vortex curve will always give
small errors, remains open for consideration.

While we introduce the vortex mechanism and perform relevant calculations in
the context of a simplified model related qualitatively to the silent phase features of
the HH system, we illustrate numerically that the same ingredients are also present
in the reduced HH equations (e.g., Figure 5.1). Numerical simulations of the full HH
model show a similar prolongation of the silent phase, with a strong dependence on
the synaptic decay rate τsyn; indeed, such simulations led us to note and seek an
explanation for the delay mechanism in the first place. In the reduced HH equations,
we connect the active phase of oscillations to the silent phase by considering how
the synaptic recovery rate α affects the level to which s recovers. This affects the
level of s at which trajectories enter the trapping region (quantified by our choice of
η), in turn affecting our estimation of s at release from the silent phase (see (4.17));
however, as discussed in section 5.2, the level of s at release feeds back little effect on
the level to which s recovers in the active phase. By exploiting our understanding of
the interaction of intrinsic and synaptic dynamics, we also describe how the fast-slow
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structure allows for bursting in the HH equations. While this can be considered as
elliptic bursting, the burst frequency can be quite slow, as the prolonged silent phase
again occurs in the intervals between bursts of spikes.

7. Appendix A. The gating functions for h in (3.2) are

αh(V ) = .07 exp(−(V + 65)/20),

βh(V ) = 1/(1 + exp(−(V + 35)/10)).

The m and n gating variables are slaved to V and h, respectively, by

m =
αm(V )

αm(V ) + βm(V )
,

n = max(.801 − 1.03h, 0),

where

αm(V ) =
0.1(V + 40)

1 − exp(−(V + 40)/10)
,

βm(V ) = 4 exp(−(V + 65)/18).

The synaptic recovery function, α(V ), is given by

α(V ) =
α0

1 + exp(−V/Vshp)
.

Parameter values for all simulations are VNa = 50, VK = −77, VL = −54.4, gNa = 120,
gK = 36, gL = 0.3, C = 1, Io = 13, Vshp = 5, gsyn = 2, and Vsyn = 0. Also, α0 = 2
in all sections except section 5.2, where it is varied, and section 5.3, where bursting
is discussed. The units for the voltages are mV , the conductances (g∗) have units
mS/cm2, and the current (Io) has units µA/cm2.

8. Appendix B. Consider the model system (4.1)–(4.3), which we express as

dx

dt
= y −Nf (x, s),

dy

dt
= −ε(y −Ns(x)),

ds

dt
= − s

τsyn
.

(8.1)

Note that we can express (8.1) as a pair of equations:

− s

τsyn

dx

ds
= y −Nf (x, s),

s

ετsyn

dy

ds
= y −Ns(x).

(8.2)
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To find the vortex point (x̂(s), ŷ(s)) about which to linearize, we solve

ŷ = Nf (x̂, s)(8.3)

and

dy(x̂, ŷ)/ds = ∂Nf (x̂, s)/∂s.(8.4)

Together with (8.4), the second equation of (8.2) gives

ετsyn(ŷ −Ns(x̂))/s = ∂Nf (x̂, s)/∂s.(8.5)

Implicit differentiation of (8.3) along the solution (x̂(s), ŷ(s)) gives

∂Nf (x̂, s)/∂s = dŷ/ds− (∂Nf (x̂, s)/∂x)(dx̂/ds).(8.6)

Together, (8.5) and (8.6) yield

dŷ

ds
=

ετsyn
s

(ŷ −Ns(x̂)) +
∂Nf (x̂, s)

∂x

dx̂

ds
.(8.7)

Substitute (x̂(s)+u(s), ŷ(s)+ v(s)) into (8.2) and linearize about (x̂, ŷ) to obtain

− s

τ

du

ds
=

s

τ

dx̂

ds
+ ŷ + v −Nf (x̂, s) − u(∂Nf (x̂, s)/∂x),

s

ετ

dv

ds
= − s

ετ

dŷ

ds
+ ŷ + v −Ns(x̂) − u(dNs(x̂)/dx).

(8.8)

In the first equation of (8.8), ŷ = Nf (x̂, s). From (8.7), we have

s

ετ

dŷ

ds
= ŷ −Ns(x̂) +

s

ετ

∂Nf (x̂, s)

∂x

dx̂

ds
.

Thus, (8.8) becomes

− s

τ

du

ds
=

s

τ

dx̂

ds
+ v − u(∂Nf (x̂, s)/∂x),

s

ετ

dv

ds
= v − u(dNs(x̂)/dx) − s

ετ
(∂Nf (x̂, s)/∂x)(dx̂/ds).

(8.9)

Note that while this is a linearized equation, the right-hand side is not linear in (u, v)
because the vortex point is not a critical point of (8.2).

At this point, we make a key assumption. Since the trajectory lies in the vicinity
of the knee during the time over which the vortex calculation is done, we henceforth
assume that ∂Nf (x̂, s)/∂x = 0. In some sense, this amounts to assuming that the
system is in a vortex canard configuration, since it specifies that the boundary ∂A(s)
should intersect Nf (x, s) at the knee of Nf (x, s). Clearly this assumption is not
precisely satisfied; however, a straightforward generalization of the calculation below
shows that any error resulting from the violation of this assumption will be of the
same order of magnitude as (∂Nf (x̂, s)/∂x)(dx̂/ds).

Next, we express (u(s), v(s)) = (u1(s), v1(s)) + (ũ(s), ṽ(s)), where (u1, v1) is a
zero of the right-hand side of (8.9) with ∂Nf/∂x = 0; that is, (u1, v1) solves

0 =
s

τ

dx̂

ds
+ v,

0 = v − u(dNs(x̂)/dx).
(8.10)
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Note that (u1(s), v1(s)) = O(1/τsyn), while (u′
1(s), v

′
1(s)) = O(1/τsyn) as well since

the determinant of coefficients (dNs(x̂)/dx) �= 0. Substitution of this decomposition
of (u(s), v(s)) into (8.9) yields

− s

τ

dũ

ds
=

s

τ

du1

ds
+

s

τ

dx̂

ds
+ v1 + ṽ

=
s

τ

du1

ds
+ ṽ

= O(1/τ2
syn) + ṽ,

s

ετ

dṽ

ds
= − s

ετ

dv1

ds
+ v1 − u1(dNs(x̂)/dx) + ṽ − ũ(dNs(x̂)/dx)

= − s

ετ

dv1

ds
+ ṽ − ũ(dNs(x̂)/dx)

= O(1/τsyn) + ṽ − ũ(dNs(x̂)/dx),

where we have assumed in the final line that ετsyn = O(1). Thus, when ετsyn = O(1),
the error in using the equation of variations in the vortex approach is of O(1/τsyn).

Contrast this with the usual approach, Here one solves 0 = y − Nf (x, s) and
0 = y −Ns(x) to obtain (x̃(s), ỹ(s)). As previously (see (8.2)), we have

− s

τ

dx

ds
= y −Nf (x, s),

s

ετ

dy

ds
= y −Ns(x),

and we now linearize about (x̃(s) + u(s), ỹ(s) + v(s)) to obtain, after cancellations,

− s

τ

du

ds
=

s

τ

dx̃

ds
+ v − u(∂Nf (x̃, s)/∂x),

s

ετ

dv

ds
= − s

ετ

dỹ

ds
+ v − udNs(x̃)/dx.

We can apply the same decomposition of (u(s), v(s)) = (u1(s), v1(s))+(ũ(s), ṽ(s))
as above. However, if we again assume that ετsyn = O(1), then we will have (u1, v1) =
O(1) from the dỹ/ds term, and an O(1) error can result from calculation with the
equation of variations.
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Abstract. We consider the passive scalar transport in an incompressible random flow. Our
basic result is a proof of the convergence of a certain numerical scheme for the computation of the
eddy diffusivity tensor. The scheme leads to the formula for the diffusivity expressed in terms of an
infinite series. We give a rigorous proof of the geometric bounds on the magnitude of the terms of
the series, provided that the Eulerian field is Markovian and Gaussian and its temporal dynamics
has a sufficiently large spectral gap. The principal tools used in the proofs are the decomposition
of the space of square integrable fields formed over the possible realizations of the Eulerian velocity
field in the Gaussian chaos and the hypercontractivity properties of Gaussian measures.
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1. Introduction. The transport of a passive scalar field T (·, ·) in a turbulent
flow can be modeled by the convection-diffusion equation with a random drift,{

∂tT (t,x) + u (t,x) · ∇xT (t,x) = κ∆xT (t,x),
T (0,x) = T0(x).

(1.1)

Here u = (u1, . . . , ud) : R×Rd×Ω → Rd is a d-dimensional, d ≥ 2, random field, usu-
ally called the Eulerian velocity, given over a certain probability space T := (Ω,V,P),
and T0(·) is a deterministic initial condition. The drift models the turbulent convec-
tion by a flow of a certain fluid. It is therefore assumed to be time-space homogeneous,
ergodic, centered, and incompressible, i.e., ∇x · u(t,x) :=

∑d
i=1 ∂xiui(t,x) ≡ 0. The

parameter κ > 0, called the molecular diffusivity, describes the strength of the diffusive
dispersion of the medium.

The passage from the microscopic to macroscopic description of transport is ob-
tained by an appropriate change of scales. For example, under the diffusive scaling the
macroscopic coordinates (t′,x′) are given by t ∼ t′/ε2 and x ∼ x′/ε, where ε � 1 is a
certain small parameter. Suppose also that the initial data varies on the macroscopic
scale, so it is of the form T0(εx). Then, in the macroscopic coordinates the rescaled
field Tε(t,x) = T (t/ε2,x/ε) (we omit primes here) satisfies{

∂tTε(t,x) + 1
εu
(

t
ε2 ,

x
ε

)
· ∇xTε(t,x) = κ∆xTε(t,x),

Tε(0,x) = T0(x).
(1.2)

One feature that can be proved about the scaled solution, under appropriate assump-
tions on the statistics of the drift, is the self-averaging property of the scaled scalar
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field. In the weak form it can be stated as follows:

lim
ε→0+

〈[∫
Rd

Tε(t,x)ϕ(x)dx −
∫

Rd

T ∗(t,x)ϕ(x)dx

]2〉
= 0 ∀ϕ ∈ C∞

0 (Rd).(1.3)

Here 〈·〉 denotes the averaging over the realizations of the drift and T ∗ is a (deter-
ministic) solution of a constant coefficient heat equation{

∂tT
∗(t,x) =

∑d
i,j=1 K

∗
i,j∂

2
xi,xj

T ∗(t,x),

T ∗(0,x) = T0(x).
(1.4)

K∗ = [K∗
i,j ]—the effective diffusivity tensor—is a constant matrix. Since the proce-

dure described above eliminates the inhomogeneity that appears in the convection-
diffusion equation on the microscopic level and leads to a space-time homogeneous
equation (1.4), it is sometimes referred to as homogenization. To substantiate the
averaging property claimed in (1.3) one could first rewrite (1.2) in the divergence
form. Since the drift u(t,x) is divergence-free, there exists an antisymmetric tensor-
valued potential H(t,x) = [Hp,q(t,x)], Hp,q(t,x) = −Hq,p(t,x) such that u(t,x) =
∇x·H(t,x) and the equation in question takes the form ∂tTε(t,x)−∇x·(a(t/ε2,x/ε)∇x

Tε(t,x)) = 0, where the diffusivity matrix a(t,x) = [ap,q(t,x)] is given by ap,q(t,x) =
κδp,q − Hp,q(t,x). A rigorous proof of self-averaging for parabolic operators of this
form, when the stream matrix H(t,x) is an L∞ bounded, time-space homogeneous,
and ergodic random field, follows from the results obtained by Zhikov, Kozlov, and
Olejnik in [13, Theorem 1, p. 187]. However, if H(t,x) admits unbounded realizations
but possesses an absolute pth moment, where p > d + 2, as is the case in the present
paper, then the averaging in the sense of (1.2) can be concluded from the quenched
version of the invariance principle for random characteristics of (1.2) and has been
shown in [1, 2]. The aforementioned homogenization results hold in both time de-
pendent and static (time independent) cases. In [7] self-averaging is also shown for
Gaussian time dependent drifts, for which the stream matrix need not exist. The
temporal dynamics of the field is assumed to be Markovian and uniformly mixing on
all spatial scales, i.e., possesses a spectral gap; see [7, Theorem 1, p. 528].

Because the proof of the existence of the effective diffusivity matrix is a result of
an application of an appropriate ergodic theorem, what is usually left unanswered by
the homogenization theorems is how to calculate the effective diffusivity tensor from
the statistics of the Eulerian velocity. In this paper we take up the task of providing
a formula for computing the effective diffusivity. We consider random drifts that
are space-time homogeneous, Gaussian, and Markov and whose spectral dynamics
possesses sufficiently strong spectral gap.

For the family of the Eulerian velocity fields described above we present a rigorous
scheme for calculation of the effective diffusivity matrix that results in an infinite series
expansion; see (3.18) below. In addition, we provide a geometric bound for the nth
term of this series (see Theorem 3.1 below), which results in the control of the series
tails (see Corollary 3.2). This control holds provided the spectral gap of the Eulerian
field dynamics is sufficiently large. The precise estimate of the size of the spectral gap
is possible thanks to formula (3.6).

Another interesting question pertaining to the model with a Gaussian drift is how
to relate K∗ to the autocovariance tensor

R(t− s,x − y) := [〈ui(t,x)uj(s,y)〉] ,(1.5)
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which, as is well known, characterizes the Gaussian drift u(·, ·). To simplify our
calculations we suppose further that the field is spatially isotropic and its spectral
gap is identical for all spatial scales. The specific form of the spectrum of the co-
variance matrix is presented in (2.1) below. However, as becomes apparent during
the course of the argument, our proofs do not depend on isotropy of the drift. We
could also admit fields whose mixing rates vary on different scales, so long as they are
bounded away from zero by a certain constant that is not too small. In section 4 we
give a formula for the nth term of the series for the effective diffusivity in terms of the
spectrum of the velocity field; see (4.10). Due to the fact that this term is in principle,
i.e., discarding some possible cancellations, a sum of n! terms, the computational value
of this formula would be severely limited. Thanks to Theorem 3.1, however, we are
able to control the size of a particular term of the series.

Let us describe briefly the main ideas used in the derivation of the formula for
the effective diffusivity. The computation is contingent on finding, in an appropriate
space, the solution of the cell problem (2.14); in the literature of the subject it is called
the corrector field. In section 3 below we propose a numerical scheme for computing
this field; see the formulas (3.1) and (3.5) for the definition of the scheme. The
corrector field is then given by (3.17), and the eddy diffusivity can be calculated using
(3.18). To gain appropriate estimates on the L2-norm of the nth term ψn appearing
in the scheme (see (3.4) for its definition), we use the decomposition of the space
of square integrable functionals formed over the Eulerian velocity field at the given
snapshot of time (say, when t = 0) into the Gaussian chaos. This together with the
hypercontractivity property of Gaussian measure and the spectral gap estimate for
the dynamics of the Eulerian field produce geometric bounds for the respective term;
see Proposition 3.1 for the precise statement of the bounds.

Finally, in section 4 we provide an explicit formula for the nth term of the series
(3.18); see Proposition 4.3. The formula is stated using the language of Feynman
graphs. As we have already mentioned, in practical calculations, this formula should
be coupled with the estimate (3.19) on the tails of the series expansion for the effective
diffusivity.

2. The description of the model.

2.1. Homogeneous Gaussian random drifts. We suppose the following:

(V1) u : R × Rd × Ω → Rd is a zero mean, space-time homogeneous, spatially
isotropic, Gaussian random field over the probability space T .

(V2) The autocovariance matrix of the field (cf. (1.5)) is given by

R(t− s,x − y) = b

∫
Rd

cos((x − y) · k) e−a|t−s|E(|k|)|k|1−d Γ̂(k) dk.(2.1)

Here a, b > 0, Γ̂(k) = [Γ̂i,j(k)], with Γ̂i,j(k) := δi,j − kikj |k|−2. We assume
that the power energy spectrum satisfies the power law

E(k) := 1[0,K0](k)k1−2α,(2.2)

where K0 > 0 is fixed and α < 1, to ensure the L2-integrability of the field.

Remark 2.1. It is well known that, thanks to (2.2), such a random field possesses
a modification that is P a.s. jointly locally Hölder continuous in (t,x) ∈ R × Rd and
C∞ smooth in x for any fixed t ∈ R.
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Remark 2.2. A direct calculation yields

〈|u(0,0)|2〉 = b(d− 1)ωd−1

∫ K0

0

dk

k2α−1
=

b

2
(d− 1)ωd−1K

2(1−α)
0 (1 − α)−1,(2.3)

where ωd−1 denotes the surface measure of Sd−1—the unit sphere in Rd.
Remark 2.3. The presence of the factor Γ̂(·) in the formula ensures that the

spatial realizations of the field are incompressible. The parameter a > 0, called the
spectral gap, controls the rate at which the field decorrelates in the temporal variable.
In our model we assume that this rate is constant on all spatial scales. Let us mention
here one particular case that has been widely studied in the literature. When a = b
and a → +∞, the autocovariance matrix converges (in the distribution sense) to the
autocovariance matrix of a δ-correlated velocity field, the so-called Kraichnan model
(see [10]) given by

R(t− s,x − y) = δ(t− s)

∫
Rd

cos((x − y) · k) E(|k|)|k|1−d Γ̂(k) dk.(2.4)

The effective diffusivity in this case is given explicitly and equals

κ∗ = κ +
1

2

∫
|k|≤K0

E(|k|)|k|1−dΓ̂11(k)dk = κ +
1

4
ωd−1

(
1 − 1

d

)
K

2(1−α)
0 (1 − α)−1.

2.2. Formula for effective diffusivity. An abstract cell problem. Thanks
to isotropy of the Eulerian velocity field u(·, ·), the effective diffusivity tensor must
commute with any rotation. Hence it is of the form

K∗ = κ∗I, where κ∗ = κ + d∗(2.5)

and d∗ is called eddy diffusivity. In order to determine eddy diffusivity, one needs
to solve an auxiliary cell problem for the corrector ; see, e.g., [7, (4.16), p. 537]. To
formulate this problem, we need to introduce an appropriate functional space that is
big enough to contain all possible spatial realizations of the velocity field at any given
time instant; see also [8].

Suppose that m is a positive integer and ϑρ(x) := (1 + |x|2)−ρ, x ∈ Rd, where
ρ > d/2. Let H be the Hilbert space of d-dimensional incompressible vector fields
that is the completion of C∞

0,div := {f ∈ C∞
0 (Rd; Rd) : ∇x · f = 0} w.r.t. the norm

||f ||2H :=

∫
Rd

(|f(x)|2 + |∇xf(x)|2 + · · · + |∇m
x f(x)|2)ϑρ(x) dx.

We can always assume that m is big enough (e.g., m > d/2 + 1), so, thanks to the
Sobolev embedding, any f ∈ H is of the C1 class of regularity. The presence of a
weight ϑρ(·) follows from the fact that for a given t the spatial realizations of the

Gaussian field u(t, ·) grow, as C log1/2 |x|, for |x| � 1; see, e.g., [12].
Let µ be the law in H of the Gaussian velocity field u(0, ·). Denote L2 := L2(µ),

L2
0 its subspace consisting of F such that

∫
F dµ = 0. The measure µ is Gaussian of

zero mean; i.e.,
∫
f(0)µ(df) = 0, with autocovariance∫

f(x) ⊗ f(y)µ(df) = b

∫
Rd

cos((x − y) · k)
E(|k|)
|k|d−1

Γ̂(k) dk.(2.6)
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For any two vectors a = (a1, . . . , ad), b = (b1, . . . , bd) the symbol a⊗b denotes a d×d
matrix [aibj ]. Equation (2.6) implies homogeneity of µ, i.e., µτx = µ ∀x ∈ Rd, where
τx : H → H is given by τxf(·) := f(x + ·). We define the abstract spatial gradient
operator ∇ as follows. Let

DpF (f) := ∂xp|x=0F (τx(f)), p = 1, . . . , d,(2.7)

for F ∈ L2, such that all the partial derivatives on the right-hand side of (2.7) exist
in the L2 sense. Let ∇F := (D1F, . . . ,DdF ). The abstract Laplace operator ∆ can
be defined as

∆F =

d∑
p=1

D2
pF

for those F for which the second partials exist in the L2 sense.
Remark 2.4. Observe that, due to incompressibility of u, we have

(ũ · ∇F,G)L2 = −(ũ · ∇G,F )L2 .(2.8)

Here

ũ(f) = (ũ1(f), . . . , ũd(f)) := f(0).(2.9)

Remark 2.5. The operator κ∆ is the generator of a semigroup of symmetric
Markov contractions on L2, given by

S(t)F (f) =

∫
Rd

rκ(t,y)F (τyf)dy, F ∈ L2,(2.10)

where

rκ(t,x) :=
1

(4κπt)d/2
exp

{
−|x|2

4κt

}
.(2.11)

It is therefore a self-adjoint, negative definite operator.
To introduce the temporal derivative D0F we need to describe in more detail the

dynamics of the H-valued stochastic process (u(t, ·))t≥0. This process can be thought
of as the time stationary solution of an H-valued linear stochastic differential equation

du(t) = −au(t)dt +
√

2aBdW (t),(2.12)

with u(0) = u(0, ·). Here W (·) is a cylindrical Wiener process on L2
div(R

d,Rd)—the
space of all square integrable incompressible d-dimensional vector fields—defined over
the probability space T , and B : L2

div(R
d,Rd) → H is a Hilbert–Schmidt operator

given by

B̂ψ(k) =
√

E (|k|)|k|(1−d)/2ψ̂(k).(2.13)

Both here and below ψ̂ denotes the Fourier transform of a given function ψ. We refer
the reader to [7] for details of this construction.

The Eulerian velocity field u(t,x) can be then identified with u(t)(x). Let D0 :
D(D0) → L2 be the generator of u(·) and (P (t))t≥0 the corresponding semigroup of
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Markov operators. It can easily be shown that the dynamics described by (2.12) and
(2.13) is reversible; i.e., each P (t) is self-adjoint (see [7, (3.4), p. 530]).

The abstract cell problem can be formulated as

κ∆χ + D0χ− ũ · ∇χ = ũ;(2.14)

see [7, (4.16), p. 537]. Here ũ is given by (2.9) and ũ denotes one of the components
of ũ. To fix our attention we shall admit ũ := ũ1. The unknown field χ is called a
corrector. Thanks to the assumed isotropy of the field, the eddy diffusivity d∗ is given
by

d∗ := −(ũ, χ)L2 ;(2.15)

see [7, (5.10), p. 544]. Unfortunately, (2.14) does not need to have a solution in L2.
This is, for instance, a typical situation in the case of static fields. Then, one can only
guarantee the existence of χ in a distribution sense. However, under the assumption
that the dynamics of u(·) possesses a spectral gap, i.e., its spectral measure is of the
form (2.1) with a > 0, one can show that there exists a unique χ ∈ L2 solving (2.14)
and satisfying

∫
χdµ = 0; see [7, (4.16), p. 537].

It is immensely difficult in general to perform explicit calculations of eddy diffu-
sivity with the help of formula (2.15). This is due to the fact that the cell problem
(2.14) is formulated for functionals defined over an infinite dimensional Hilbert space
and it is very seldom possible to solve it explicitly. However, in the Gaussian case it
is possible to give a numerical scheme for calculating eddy diffusivity with the help of
a decomposition of L2 into Gaussian chaos.

2.3. The decomposition of L2 using Gaussian chaos. Let Pn be the L2

closure of the linear space spanned by the monomials f �→ 〈ϕ1, f〉 . . . 〈ϕm, f〉, where
m ≤ n, ϕ1, . . . , ϕm ∈ Sd. Here Sd is the space of incompressible fields belonging to the
Schwartz class and 〈g, f〉 :=

∫
Rd f(x)·g(x)dx for any f ∈ Sd, g ∈ H. Hn := Pn�Pn−1

is called the space of nth degree Hermite polynomials. We denote by Πn the orthogonal
projection of L2 onto Hn. It is well known (see, e.g., [6, Theorem 2.6, p. 16]) that
L2 =

⊕
n≥0 Hn. Thanks to the fact that the group induced by shift UxF := Fτx

leaves each Hn invariant, we see from (2.10) that S(t)(Hn) = Hn for each n.
The Hermite polynomials also provide for a neat description of the operator D0.

Namely, for any F ∈ Hn we have F ∈ D(D0) and

D0F = −anF.(2.16)

Equation (2.16) can be seen by using the formula for the generator of (u(t, ·))t≥0

contained on p. 207 of [9]. A simple consequence of (2.16) is the following spectral gap
estimate of D0:

−(D0F, F )L2 ≥ a‖F‖2
L2 for any F ∈ L2 s.t.

∫
Fdµ = 0.(2.17)

Another consequence of (2.16) and the fact that each Hn is invariant under semigroup
S(·) is commutation relation P (t)S(s) − S(s)P (t) = 0 for arbitrary t, s ≥ 0. Hence
R(t) := S(t)P (t), t ≥ 0, defines a semigroup of self-adjoint operators, whose generator
equals κ∆+D0 on a sufficiently large subspace C that constitutes a core for both κ∆,
D0. One can, for instance, take

C :=
⋂

p∈(2,∞)

W 2,p ∩D(D0),
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where Wm,p denotes the closure of those F , for which x �→ Fτx possesses m derivatives
at 0 in the norm given by ‖F‖pm,p :=

∑
i1+···+id≤m ‖Di1

1 . . . Did
d F‖pLp .

2.4. The integral representation of the corrector. Let LF := κ∆F+D0F−
ũ · ∇F , F ∈ C. It can be shown (see [7, Proposition 3, p. 536]) that the closure of
L is a generator of a semigroup (Q(t))t≥0 of Markov operators on L2 that leaves C
invariant. This semigroup is exponentially stable with ‖Q(t)F‖L2 ≤ e−at‖F‖L2 for
any F satisfying

∫
Fdµ = 0 (see [7, (4.5), p. 536]). Using the semigroup, we can write

the unique zero mean solution to the Poisson equation (2.14) (cf. [7, (4.16), p. 537]):

χ := −
∫ ∞

0

Q(t)ũdt.(2.18)

Since ũ ∈ C we conclude that also χ ∈ C. From (2.14) and the spectral gap estimate
(2.17) we can also infer that for a nontrivial Eulerian velocity field

d∗ = −(Sχ, χ)L2 = κ‖∇χ‖2
L2 − (D0χ, χ)L2 > κ‖∇χ‖2

L2 > 0,

and in consequence κ∗ > κ. The latter inequality highlights a well-known physical fact
that in an incompressible medium a turbulent convection enhances diffusive properties
of the medium.

Remark 2.6. Note that in our case the “time derivation operator” D0 is self-
adjoint and satisfies the spectral gap estimate (2.17). A differentiation w.r.t. to time
operator D0 can be in fact introduced for environments that are only stationary in t
(with no additional assumption on the structure of their temporal dynamics); cf. [13,
p. 193]. However, when D0 is defined in such a general way, discarding additional
information about the dissipative properties of the evolution of the environment in
time, it is an anti-self-adjoint operator (conditioning on the environment up to a
given moment of time becomes averaging w.r.t. a trivial, deterministic, probabil-
ity measure), and the spectral gap inequality (2.17) fails to be true. In fact, then
(D0F, F )L2 = 0 ∀ F . In consequence, the definition of χ via (2.18) would not make
sense in L2 under such general circumstances, but one can make sense of it in an
appropriate distribution space (see [13, p. 194]).

3. Numerical scheme for calculation of the effective diffusivity. Since
ũ ∈ P1,

∫
ũdµ = 0, and the spectrum of κ∆ +D0 restricted to L2

0 has a gap of size at
least a > 0, we can find a unique ψ1 ∈ P1 that is the solution of

(κ∆ + D0)ψ1 = ũ(3.1)

and satisfies
∫
ψ1dµ = 0. In fact

ψ1 := −
∫ ∞

0

R(t)ũdt.(3.2)

Suppose we have already defined ψn ∈ Pn, n = 1, . . . , N , for a certain N . Set

uN := ũ · ∇ψN ∈ PN+1.(3.3)

Note that ∫
uNdµ =

∫
∇ · (ũψN )dµ = −

∫
∇1 · ũψNdµ = 0,
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so

ψN+1 := −
∫ ∞

0

R(t)uNdt ∈ PN+1(3.4)

is the unique zero mean solution of

(D0 + κ∆)ψN+1 = uN .(3.5)

Theorem 3.1. Let

q :=

(
6

aκ

)1/2

‖ũ‖L2 .(3.6)

Then,

‖ψN‖L2 ≤ qN−1‖ψ1‖L2 ∀N ≥ 1.(3.7)

Proof. Denote ψN,k := ΠkψN (the projection onto the space of kth degree Hermite
polynomials) and

‖|F |‖2 :=

+∞∑
k=1

k‖ΠkF‖2
L2 .

Obviously ψN,k = 0 for k > N . Projecting both sides of (3.5) onto Hk and taking the
scalar product against ψN+1,k, we obtain

ak‖ψN+1,k‖2
L2 + κ‖∇ψN+1‖2

L2(3.8)

= −(ũ · ∇ψN,k+1, ψN+1,k)L2 − (ũ · ∇ψN,k−1, ψN+1,k)L2 .

The last equality is a consequence of the following two observations. First, note that
Πk(ũ · ∇ψN,l) �= 0 only when l = k − 1, k, k + 1. In addition, thanks to (2.8),

(Πk(ũ · ∇ψN,k), ψN,k)L2 = (ũ · ∇ψN,k, ψN,k)L2 = 0.

To estimate the right-hand side of (3.8), we consider two cases. First, when k = 1,
the second term on the right-hand side vanishes. On the other hand, thanks to
incompressibility of u(·, ·), the first term equals (ũ · ∇ψN+1,1, ψN,2)L2 . Its absolute
value is, by virtue of the Cauchy–Schwarz inequality, less than or equal to

‖ψN,2‖L2

⎡
⎣ d∑
i,j=1

∫
ũ2
i (DjψN+1,1)

2dµ

⎤
⎦

1/2

≤ ‖ψN,2‖L2

⎡
⎣ d∑
i,j=1

(∫
ũ4
i dµ

)1/2(∫
(DjψN+1,1)

4dµ

)1/2
⎤
⎦

1/2

≤
√

3‖ψN,2‖L2‖u‖L2‖∇ψN+1,1‖L2 .

In the last inequality we used the fact that, for any centered Gaussian random variable
X, its fourth moment EX4 = 3(EX2)2.
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For k ≥ 2 we estimate as follows. The first term on the right-hand side of (3.8)
equals (ũ · ∇ψN+1,k, ψN,k+1)L2 , and its absolute value can be estimated from above
by

‖∇ψN+1,k‖L2

[∫
(|ũ||ψN,k+1|)2dµ

]1/2
(3.9)

≤
√
d ‖∇ψN+1,k‖L2‖ũ‖L2m‖ψN,k+1‖L2m/(m−1)

for an arbitrary m > 1. The hypercontractivity property of Gaussian measures on Lp

spaces (see [6, Theorem 5.10, p. 62]) allows us to estimate

‖ψN,k+1‖L2m/(m−1) ≤
(

2m

m− 1
− 1

)(k+1)/2

‖ψN,k+1‖L2(3.10)

=

(
m + 1

m− 1

)(k+1)/2

‖ψN,k+1‖L2 .

On the other hand, ũ is a Gaussian random variable under µ; hence

‖ũ‖L2m = [(2m− 1)!!]1/(2m)‖ũ‖L2 .(3.11)

Here (2m− 1)!! := 1 · 3 · · · · (2m− 1). Using Stirling’s formula (see, e.g., [5, paragraph
406]), n! =

√
2πn(ne−1)neθ/(12n) for some θ ∈ (0, 1), we conclude from (3.11) that

[(2m− 1)! !]1/(2m) =

[
(2m− 1)!

2m−1(m− 1)!

]1/(2m)

(3.12)

≤ (2e)−1/2 (2m− 1)(m− 1)−1/2 21/(4m)

(
1 − 1

2m− 1

)1/(4m)

exp
{
[24m(2m− 1)]−1

}
.

Summarizing, from (3.9)–(3.12) we conclude that

|(ũ · ∇ψN,k+1, ψN+1,k)L2 | ≤ C

(
k + 1

2
,m

)
‖ũ‖L2(k + 1)1/2‖ψN,k+1‖L2‖∇ψN+1,k‖L2

≤ 1

2κ
C2

(
k + 1

2
,m

)
‖ũ‖2

L2(k + 1)‖ψN,k+1‖2
L2 +

κ

2
‖∇ψN+1,k‖2

L2 .(3.13)

Here

C(p,m) := (2ep)−1/2(2m− 1)(m− 1)−1/2

(
m + 1

m− 1

)p/2

(3.14)

× 21/(4m)

(
1 − 1

2m− 1

)1/(4m)

exp
{
[24m(2m− 1)]−1

}
.

Likewise,

|(ũ · ∇ψN,k−1, ψN+1,k)L2 |(3.15)

≤ 1

2κ
C2

(
k − 1

2
,m′
)
‖ũ‖2

L2(k − 1)‖ψN,k−1‖2
L2 +

κ

2
‖∇ψN+1,k‖2

L2 .
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Note that for m = 2k + 1 we have

C((k + 1)/2, 2k + 1) ≤ 21/12e−1/2+1/360

(
2 +

1

2k

)(
1 +

1

k

)k/2

< 1.0595

(
2 +

1

2k

)
;

hence C2((k + 1)/2, 2k + 1) < 6 for k ≥ 2. A direct calculation also shows that
C2(1, 3) ≈ 5.1620. Likewise, for m′ = 2k−1 we have C2((k−1)/2, 2k−1) < 6, k ≥ 2.
Summing up (3.8) over k and using (3.13), (3.16), we conclude therefore that

a
N+1∑
k=1

k‖ψN+1,k‖2
L2 + κ‖∇ψN+1‖2

L2(3.16)

≤ κ‖∇ψN+1‖2
L2 +

6

κ
‖ũ‖2

L2

N+1∑
k=1

k‖ψN,k+1‖2
L2 .

Hence, from (3.16) we get

a‖|ψN+1|‖2 ≤ 6

κ
‖ũ‖2

L2‖|ψN |‖2,

and (3.7) follows.
The solution to (2.14) is given by

χ :=
+∞∑
n=1

ψn.(3.17)

The series in (3.17) converges in the L2 sense provided that q < 1; cf. (3.6). Also, as
we shall show in Proposition 4.1, we have (ψn, ũ)L2 = 0 if n is even. From (2.15) we
can write therefore that

d∗ = −
+∞∑
n=0

(ψ2n+1, ũ)L2 ;(3.18)

thus, using (3.7), we conclude the following.
Corollary 3.2.∣∣∣∣∣d∗ +

M∑
n=0

(ψ2n+1, ũ)L2

∣∣∣∣∣ ≤ q2M+2(1 − q2)−1‖ψ1‖L2‖ũ‖L2 .(3.19)

To calculate ‖ψ1‖L2 we use the spectral representation of ũ,

ũ(τxf) =

∫
eik·xû(dk; f),

where û(·) is its spectral measure that satisfies û∗(dk) = û(−dk) (because ũ is real-
valued) and

〈û∗(dk)û(dk′)〉 = bδ(k − k′)
E(|k|)
|k|d−1

Γ̂11(k)dkdk′.
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Also, because x �→ û(τxf) is a real Gaussian field, we have that (Re û(·), Im û(·)) is
jointly Gaussian. Hence,

ψ1 = (κ∆ + D0)
−1ũ = −

∫
û(dk)

κ|k|2 + a

and

‖ψ1‖2
L2 =

∫ ∫ 〈û∗(dk)û(dk′)〉
(κ|k|2 + a)(κ|k′|2 + a)

(3.20)

= bωd−1

(
1 − 1

d

)∫ K0

0

dk

(κk2 + a)2k2α−1
.

4. Calculation of (ψn, ũ)L2 . We start with some auxiliary notation. For any
function F (t1, . . . , tn,x1, . . . ,xn) of n temporal and spatial variables we define

DF (t1, . . . , t2n,x1, . . . ,xn) := ∇y|y=0F (t1, . . . , tn,x1 + y, . . . ,xn + y).

Wn(·) is defined inductively by

W0 ( s1,x1) := u(s1,x1),(4.1)

Wn ( s1, . . . , sn+1,x1, . . . ,xn+1) := u(sn+1,xn+1)(4.2)

·DWn−1(s1, . . . , sn,x1, . . . ,xn).

Let also ∆n := [(s1, . . . , sn) : s1 ≥ · · · ≥ sn ≥ 0].
Proposition 4.1. We have

−(ψn, ũ)L2 =

∫
. . .

∫
∆n

∫
. . .

∫
(Rd)n

〈Wn−1,1(s,x)u1(0,0)〉Rn−1(s,x)dsdx.(4.3)

Here s, x stand for the abbreviations of the ensemble of variables s = (s1, . . . , sn),
x = (x1, . . . ,xn), ds = ds1 . . . dsn, dx = dx1 . . . dxn,

Rn−1(s,x) :=

n∏
m=1

rκ(sm − sm+1,xm − xm+1),(4.4)

where rκ(·, ·) is the heat kernel defined in (2.11) and sn+1 := 0, xn+1 := 0.
Proof. To show (4.3) we prove that

ψn = −
∫
. . .

∫
∆n

∫
. . .

∫
(Rd)n

E0[Wn−1,1(s,x)]Rn−1(s,x)dsdx,(4.5)

where Et denotes the conditional expectation w.r.t. σ-algebra Ut generated by u(s, ·),
s ≤ t. We use an induction argument. For n = 1, (4.5) is a consequence of (3.2) and
the definition of the semigroup R(t).

Suppose that we have established (4.5) for a certain n ≥ 1. Note that

ψn+1 = −
∫ +∞

0

R(t)undt.(4.6)
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Recalling the definition of un (see (3.3)), we get

un = −
∫
. . .

∫
∆n

∫
. . .

∫
(Rd)n

u(0,0) · E0[DWn−1,1(s,x)]Rn−1(s,x)dsdx,

and in consequence

R(t)un = −
∫
. . .

∫
∆n

∫
. . .

∫
(Rd)n+1

E0[u(t, z) ·DWn−1,1(s + t,x + z)]Rn−1(s,x)rκ(t, z)dsdxdz.

Here s + t := (s1 + t, . . . , sn + t), x + z := (x1 + z, . . . ,xn + z). Setting s′n+1 := t,
s′i := si + t, x′

n+1 := z, x′
i := xi, i = 1, . . . , n, it is clear from (4.6) and definitions

(4.3), (4.4) that formula (4.5) holds for n + 1.
Remark 4.2. From (4.3) and elementary properties of Gaussian variables we

conclude that (ψ2n, ũ)L2 = 0 ∀ n.
To calculate 〈W2n,1(s,x)u1(0,0)〉 appearing in the formula for (ψ2n+1, ũ)L2 (cf.

Proposition 4.1), we need to compute the mathematical expectation of a multiple
product of Gaussian random variables (cf. [4]). For that purpose it is convenient to
use a graphical representation, borrowed from the quantum field theory; see, e.g.,
[6]. A Feynman diagram G of order n ≥ 0 and rank r ≥ 0 is a graph consisting of n
vertices made of elements of Zn := {1, . . . , n} that are positive integers and a set E(G)
of r ≤ n/2 edges without common endpoints. So there are r pairs of vertices, each
joined by an edge, and n − 2r unpaired vertices, called free vertices. An edge whose

endpoints are m,m′ ∈ B is represented by m̂m′; we always assume that m < m′.
Denote the set of all free vertices by A(G). The diagram is complete if A(G) is empty
and incomplete otherwise. Denote by Fn the family of all complete Feynman diagrams
based on Zn (n must then be even). For a given G ∈ Fn and any l ≤ n we denote by
Vl(G) all those vertices m ≤ l for which there is n > l such that m̂n ∈ E(G).

Suppose that G, G′ are Feynman diagrams based on Zn, Zn−1, respectively. We
call G′ an immediate predecessor of G and denote this G′ ↪→ G if E(G′) ⊆ E(G).
Diagram G is called admissible if A(G) �= ∅. For n ≥ 1 we define a class Sn that
consists of all sequences F := (Fk)

n
k=1 of Feynman diagrams F1 ↪→ F2 . . . ↪→ Fn,

such that each Fk, based on Zk, is admissible. For n even we denote by Sc
n the class

of those sequences F1 ↪→ F2 . . . ↪→ Fn for which (Fk)
n−1
k=1 ∈ Sn−1 and Fn ∈ Fn.

Let F ∈ Sn or Sc
n. Denote by Ak(F) := A(Fk), Ek(F) := E(Fk), k = 1, 2, . . . , n.

We also let ak(F) denote the cardinality of Ak(F). Let e1(F) := 0 and ek+1(F) :=
1/2[ak(F) + 1 − ak+1(F)], k = 1, . . . , n− 1.

Lemma 4.1. Let n ≥ 0 and s = (s1, . . . , s2n+1) ∈ ∆2n+1, x = (x1, . . . ,x2n+1),
k = (k1, . . . ,k2n+1). We have then

〈W2n,1(s,x)u1(0,0)〉(4.7)

= (−1)nbn+1
∑∫

. . .

∫
exp

{
i

2n+1∑
m=1

km · xm

}
Pj(s,k;F)Qj(k;F2n+2)dk.

The summation extends over all integer-valued multi-indices j = (j1, . . . , j2n+2) of
length 2n + 2, such that j1 = j2n+2 = 1 and all sequences F ∈ Sc

2n+2. Also, for a
given F
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Pj(s,k;F) = exp{−aa2n+1(F)s2n+1}(4.8)

×
2n∏
l=1

⎧⎨
⎩
⎛
⎝ ∑

m∈Al(F)

km,jl+1

⎞
⎠ exp{−aal(F)(sl − sl+1)}[1 − exp{−2a(sl − sl+1)}]el(F)

⎫⎬
⎭ ,

Qj(k;F2n+2) =
∏

m̂m′∈E(F2n+2)

E(|km|)
|km|d−1

Γ̂jm,jm′ (km)δ(km + km′).(4.9)

Here, for abbreviation’s sake, dk := dk1 . . . dk2n+2.
This lemma follows from an argument analogous to that used in the proof of

Lemma 1 of [4]. For the reader’s convenience we present it in the appendix below.
Using Proposition 4.1 and Lemma 4.1, contained in the following section we have

the following formula.
Proposition 4.3. We have

(ψ2n+1, ũ)L2 = (−1)n+1bn+1(2a)−2n−1
∑ 2n+1∏

l=1

el(F)!

∫
. . .

∫ 2n∏
l=1

⎛
⎝ ∑

m∈Vl(F2n+2)

km,jl+1

⎞
⎠

(4.10)

×
2n+1∏
l=1

⎡
⎢⎣el(F)∏

p=0

⎛
⎜⎝1

2
al(F) + p +

κ

2a

∣∣∣∣∣∣
∑

m∈Vl(F2n+2)

km

∣∣∣∣∣∣
2
⎞
⎟⎠
⎤
⎥⎦
−1

Qj(k1, . . . ,k2n+2;F2n+2)dk.

The summation range is the same as in Lemma 4.1.
Proof. Using the Fourier transform, we can write

R2n(s,x) =

∫
. . .

∫ 2n+1∏
m=1

exp
{
−κ|qm|2(sm − sm+1) + iqm · (xm − xm+1)

}
dq,

with dq = dq1 . . . dqn+1. Applying formula (4.3) to represent (ψ2n+1, ũ)L2 and sub-
stituting from (4.7) for 〈W2n,1(s,x)u1(0,0)〉, we obtain that

(ψ2n+1, ũ)L2 = (−1)n+1bn+1
∑∫

. . .

∫
∆n

∫
. . .

∫ 2n+1∏
m=1

exp
{
−κ|qm|2(sm − sm+1)

}(4.11)

×
2n+1∏
m=1

exp { i(km + qm − qm−1) · xm}Pj(k1, . . . ,k2n+1;F)

×Qj(k1, . . . ,k2n+2;F2n+2)dsdxdkdq;

here q0 := 0 and the summation range is the same as in Lemma 4.1. Performing the
integration over x variables yields the expression

∏2n+1
m=1 δ(km +qm−qm−1), which in

turn implies that q1 = −k1, qm = qm−1 − km. Hence ql = −
∑l

m=1 km. Changing
variables s′m := sm − sm+1, m = 1, . . . , 2n + 1 (s2n+2 = 0), and substituting for
Pj(k1, . . . ,k2n+1;F) from (4.8), we get
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(ψ2n+1, ũ)L2 = (−1)n+1bn+1
∑∫

. . .

∫ 2n∏
l=1

⎛
⎝ ∑

m∈Al(F)

km,jl+1

⎞
⎠Qj(k1, . . . ,k2n+2;F2n+2)

×
2n+1∏
l=1

⎡
⎣ +∞∫

0

exp

⎧⎨
⎩−

⎛
⎝aal(F) + κ

∣∣∣∣∣
l∑

m=1

km

∣∣∣∣∣
2
⎞
⎠ s′l

⎫⎬
⎭
(
1 − e−2as′l

)el(F)

ds′l

⎤
⎦ dk.

Substituting tl := e−2as′l into the integral w.r.t. s′l, we conclude that

(ψ2n+1, ũ)L2 = (−1)n+1bn+1(2a)−2n−1
∑∫

. . .

∫ 2n∏
l=1

⎛
⎝ ∑

m∈Al(F)

km,jl+1

⎞
⎠

× Qj(k1, . . . ,k2n+2;F2n+2)

×
2n+1∏
l=1

B

⎛
⎝1

2
al(F) +

κ

2a

∣∣∣∣∣
l∑

m=1

km

∣∣∣∣∣
2

, el(F) + 1

⎞
⎠ dk.

Here B(·, ·) denotes the Euler beta function. Note that for a fixed l ≤ 2n + 1 for any

m,m′ ≤ l such that m̂m′ ∈ E(F2n+2) we necessarily have km + km′ = 0; thus the
summation range in the sum of k’s reduces to Vl(F2n+2). Using the classical formula

B(x, n + 1) = n!

[
n∏

p=0

(x + p)

]−1

valid for any positive integer n, we conclude (4.10).
Computations of the terms appearing in (4.10). For n = 0 the class Sc

2 consists

of a single diagram sequence 1 ↪→ 1̂2. From (4.10), after a simple calculation, we
obtain

(ψ1, ũ)L2 = −b

∫
|k|≤K0

(
1 − k2

1

|k|2

)
1

a + κ|k|2 × dk

|k|2α+d−2
(4.12)

= −ωd−1b

(
1 − 1

d

)∫ K0

0

dk

(a + κk2)k2α−1
.

The second equality in (4.12) is a consequence of isotropy. For n = 1 there are only
four sequences of diagrams from Sc

4 for which the corresponding terms of (4.10) are

nonvanishing. They are (A) 1 ↪→ 12 ↪→ 123 ↪→ 1̂4 2̂3, (B) 1 ↪→ 12 ↪→ 123 ↪→ 1̂3 2̂4,

(C) 1 ↪→ 12 ↪→ 1̂3 2 ↪→ 1̂3 2̂4, and (D) 1 ↪→ 12 ↪→ 2̂3 1 ↪→ 2̂3 1̂4. The corresponding
terms of the sum appearing on the right-hand side of (4.10), after using isotropy, can
be calculated as follows:

A = b2
(

1 − 1

d

)∫ ∫
|k1|,|k2|≤K0

|k1|2
[
1 −
(

k1 · k2

|k1||k2|

)2
]

× 1

a + κ|k1|2
× 1

2a + κ|k1 + k2|2
× 1

3a + κ|k1|2
× dk1dk2

(|k1||k2|)2α+d−2
,
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B =
b2

d

∫ ∫
|k1|,|k2|≤K0

k1 · k2

[(
k1 · k2

|k1||k2|

)2

− 1

]

× 1

a + κ|k1|2
× 1

2a + κ|k1 + k2|2
× 1

3a + κ|k2|2
× dk1dk2

(|k1||k2|)2α+d−2
,

C =
2ab2

d

∫ ∫
|k1|,|k2|≤K0

k1 · k2

[(
k1 · k2

|k1||k2|

)2

− 1

]

× 1

a + κ|k1|2
× 1

a + κ|k2|2
× 1

2a + κ|k1 + k2|2
× 1

3a + κ|k2|2
× dk1dk2

(|k1||k2|)2α+d−2
,

D = 2ab2
(

1 − 1

d

)∫ ∫
|k1|,|k2|≤K0

|k1|2
[
1 −
(

k1 · k2

|k1||k2|

)2
]

× 1

(a + κ|k1|2)2
× 1

2a + κ|k1 + k2|2
× 1

3a + κ|k1|2
× dk1dk2

(|k1||k2|)2α+d−2
.

Adding all these terms, we conclude that

(ψ3, ũ)L2 =
b2

d

∫ ∫
|k1|,|k2|≤K0

[
1 −
(

k1 · k2

|k1||k2|

)2
] [

(d− 1)|k1|2
a + κ|k1|2

− k1 · k2

a + κ|k2|2

]

× 1

a + κ|k1|2
× 1

2a + κ|k1 + k2|2
× dk1dk2

(|k1||k2|)2α+d−2
.

A simple calculation shows that the approximation of the eddy diffusivity obtained by

using (3.19), with M = 1, has an error bounded by 0.1d−1/2‖u‖3/2
L2 ‖ψ1‖L2 provided

that aκ ≈ 22.

When n ≥ 2 we try to transform formula (4.10) a bit in order to drop the sum-
mation over multi-indices j and replace the summation over sequences of Feynman
diagrams by the sum over the complete diagrams of length 2n + 2. Let us fix then
a sequence of Feynman diagrams F ∈ Sc

2n+2 and denote by I(F) its corresponding
term appearing on the right-hand side of (4.10). Let us consider two cases.

Case 1, when bond ̂1, 2n + 2 ∈ E(F2n+2). Let m̂m′ ∈ E(F2n+2) be such that
1 < m < m′ < 2n + 2. Performing the summation over the respective multi-indices,
we get

∑
jm,jm′

⎛
⎝ ∑

p∈Vm−1(F2n+2)

kp,jm

⎞
⎠
⎛
⎝ ∑

p′∈Vm′−1(F2n+2)

kp′,jm′

⎞
⎠Γjm,j′m(km)

=
∑

p∈Vm−1(F2n+2)

p′∈Vm′−1(F2n+2)

(
kp · kp′ − (kp · km)(kp′ · km)

|km|2

)
.
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Denote by ̂m(p),m′(p), p = 1, . . . , n+1, all the edges of E(F2n+2) whose left endpoints
are enumerated in increasing order. We can write then that

I(F) =
(−b)n+1

(2a)2n+1

∏2n+1

l=1
el(F)!

∫
. . .

∫
|k1|,...,|kn+1|≤K0

(
1 −

k2
1,1

|k1|2

)
J (k1, . . . ,kn+1;F2n+2)

×
2n+1∏
l=1

⎡
⎢⎣el(F)∏

p=0

⎛
⎜⎝1

2
al(F) + p +

κ

2a

∣∣∣∣∣∣
∑

m(q)∈Vl(F2n+2)

kq

∣∣∣∣∣∣
2
⎞
⎟⎠
⎤
⎥⎦
−1

dk1 . . . dkn+1

(|k1| . . . |kn+1|)2α+d−2
.

(4.13)

Here for a given G ∈ F2n+2 such that ̂1, 2n + 2 ∈ E(G), we set

J (k1, . . . ,kn+1;G) :=

n+1∏
l=1

∑
m(p)∈Vm(l)−1(F2n+2)

m(p′)∈Vm′(l)−1(F2n+2)

(
kp · kp′ − (kp · kl)(kp′ · kl)

|kl|2

)
.(4.14)

As above we let 1 = m(1) < · · · < m(n + 1) denote the left vertices of all the edges
from E(G).

Using isotropy, we can further simplify the formula and obtain that

I(F) =

(
1 − 1

d

)
(−b)n+1

(2a)2n+1

∏2n+1

l=1
el(F)!

∫
. . .

∫
|k1|,...,|kn+1|≤K0

J (k1, . . . ,kn+1;F2n+2)

×
2n+1∏
l=1

⎡
⎢⎣el(F)∏

p=0

⎛
⎜⎝1

2
al(F) + p +

κ

2a

∣∣∣∣∣∣
∑

m(q)∈Vl(F2n+2)

kq

∣∣∣∣∣∣
2
⎞
⎟⎠
⎤
⎥⎦
−1

dk1 . . . dkn+1

(|k1| . . . |kn+1|)2α+d−2
.

Case 2, when bond ̂1, 2n + 2 �∈ E(F2n+2). Let q > 1 be such that ̂m(q), 2n + 2 ∈
E(F2n+2). After a calculation similar to the one in the previous case, we obtain that

I(F) =
(−b)n+1

d(2a)2n+1

∏2n+1

l=1
el(F)!

∫
. . .

∫
|k1|,...,|kn+1|≤K0

J (k1, . . . ,kn+1;F2n+2)

×
2n+1∏
l=1

⎡
⎢⎣el(F)∏

p=0

⎛
⎜⎝1

2
al(F) + p +

κ

2a

∣∣∣∣∣∣
∑

m(q)∈Vl(F2n+2)

kq

∣∣∣∣∣∣
2
⎞
⎟⎠
⎤
⎥⎦
−1

dk1 . . . dkn+1

(|k1| . . . |kn+1|)2α+d−2
.

Here for a given G ∈ F2n+2 such that ̂m(q), 2n + 2 ∈ E(G) for some q > 1, we set

J (k1, . . . ,kn+1;G) :=
∏

l/∈{1,q}

∑
m(p)∈Vm(l)−1(G)

m(p′)∈Vm′(l)−1(G)

(
kp · kp′ − (kp · kl)(kp′ · kl)

|kl|2

)
(4.15)
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×
∑

m(p)∈Vm′(1)−1(G)

m(p′)∈Vm(q)−1(G)

[
kp · kp′ +

(kq · kp′)(k1 · kp)(k1 · kq)

(|k1||kq|)2
− (kp · kq)(kp′ · kq)

|kq|2

− (kp · k1)(kp′ · k1)

|k1|2

]
.

Fix a Feynman diagram G ∈ F2n+2 and a sequence (el)
2n+2
l=1 such that el ≥ 0 and∑

el = n + 1. Let F ∈ Sc
2n+2 be such that

el(F) = el, l ∈ {1, . . . , 2n + 1}, and F2n+2 = G.(4.16)

Since F is admissible, (el)
2n+1
l=1 must belong to the set Sn of all sequences satisfying

e1 + · · ·+e2n+1 ≤ n, e1 + · · ·+e2p ≤ p−1 and e1 + · · ·+e2p−1 ≤ p−1, p ∈ {1, . . . , n}.
Let al be given by a1 = 1 and al+1 := al + 1 − 2el, l ≥ 1. With a given (el)

2n+1
l=1 and

G let us calculate the number of F ’s satisfying (4.16). The diagram F2n+1 may be
obtained from G by removing the bond containing 2n + 2 and e2n+2 − 1 out of the
remaining n bonds. There are

(
n

e2n+2−1

)
ways of doing that. Out of the remaining

n + 1 − e2n+2 bonds we can remove e2n+1 in
(
n+1−e2n+2

e2n+1

)
ways, etc. One can see

therefore that the number of sequences F corresponding to a given G ∈ F2n+2 and
(el)

2n+1
l=1 ∈ Sn equals n!/[e1! . . . e2n+1!(n− e1 −· · ·− e2n+1)!]. Summarizing the above,

we can rewrite (4.10) in the form

(ψ2n+1, ũ)L2 = (−1)n+1bn+1(2a)−2n−1
∑ n!

(n−
∑2n+1

l=1 el)!

∫
. . .

∫
J (k1, . . . ,kn+1;G)

(4.17)

×
2n+1∏
l=1

⎡
⎢⎣el(F)∏

p=0

⎛
⎜⎝1

2
al + p +

κ

2a

∣∣∣∣∣∣
∑

m(q)∈Vl(G)

kq

∣∣∣∣∣∣
2
⎞
⎟⎠
⎤
⎥⎦
−1

dk1 . . . dkn+1

(|k1| . . . |kn+1|)2α+d−2
.

The summation extends over all G ∈ F2n+2 and sequences (el)
2n+1
l=1 ∈ Sn. The cardi-

nality D2n−1 of the set Sn can be calculated using the counting method presented in
[11]; see, in particular, Lemma 1 on p. 16. We have the following recursive formula,
D0 := 1, and

Dk =

k−1∑
i=0

(−1)i
(

[(k − i + 1)/2] + k

i + 1

)
Dk−i−1, k = 1, . . . , 2n− 1.(4.18)

The number of terms that may, in principle, appear in the sum on the left-hand side
of (4.17) equals, therefore, (2n + 1)!!D2n−1; here (2n + 1)!! stands for the number
of complete Feynman diagrams of length 2n + 2. Note, however, that in fact the
number of nonvanishing terms is necessarily smaller than the one given above. All
terms corresponding to Feynman diagrams for which at least one of the sets Vl(G),
l = 1, . . . , 2n, is empty are equal to 0 (cf. (4.10)). Any G having that property shall
be called a null diagram.

For example, when n = 2, one calculates from (4.18) that D3 = 7. Out of 15

Feynman diagrams belonging to F6, all three diagrams containing bond 5̂ 6 are null
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diagrams. In addition, one can see that 1̂ 2 3̂ 5 4̂ 6, 1̂ 2 3̂ 6 4̂ 5 are also null. The sum in
(4.17) involves therefore at most 7 × 10 = 70 nonvanishing terms.

An estimate of D2n−1 for a general n can also be obtained from [11]. Namely,
using the counting argument contained on p. 14 and the upper bound (1.41) of [11],
one can see that D2n−1 ≤ 5

(
3n+1
2n−1

)
/(3n + 1).

Appendix. The proof of Lemma 4.1. Using the Fourier transform in the
spatial variable, we can write that

u(t,x) =

∫
eix·kû(t, dk),(A.1)

where û(t, dk) = (û1(t, dk), . . . , ûd(t, dk)) is a real-valued Gaussian spectral measure
with the structure function

〈û∗(t, dk) ⊗ û(s, dk′)〉 = be−a|t−s| E(|k|)
|k|d−1

Γ̂(k)δ(k − k′) dkdk′(A.2)

satisfying û∗(t, dk) = û(t,−dk).
To show the lemma it suffices only to prove that for arbitrary s = (s1, . . . , sn+1) ∈

∆n+1, sn+2 ≤ sn+1, we have

Esn+2Wn,1(s,x)(A.3)

= in
∑∫

. . .

∫
bfn+1(F) exp

{
i

n+1∑
m=1

km · xm

}
P̂j(s,k; sn+2,F)Q̂j(dk; sn+2,F).

Here fm(F) =
∑

l≤m el(F) denotes the cardinality of E(Fm). The summation extends
over all integer-valued multi-indices j = (j1, . . . , jn+1), such that j1 = 1 and all
Feynman diagrams F ∈ Sn+1. As we recall, Et is the conditional expectation w.r.t.
the σ-algebra Ut generated by u(s, ·), s ≤ t, and

P̂j(s,k; sn+2,F) := exp{−aan+1(F)(sn+1 − sn+2)}(A.4)

×
n∏

l=1

⎧⎨
⎩
⎛
⎝ ∑

m∈Al(F)

km,jl+1

⎞
⎠ exp{−aal(F)(sl − sl+1)}[1 − exp{−2a(sl − sl+1)}]el(F)

⎫⎬
⎭ ,

Q̂j(dk; sn+2,F)(A.5)

:=
∏

m̂m′∈En+1(F)

E(|km|)
|k|d−1

Γ̂jm,jm′ (km)δ(km +km′)dkmdkm′

∏
m∈An+1(F)

ûjm(sn+2, dkm).

We use the induction argument. Formula (A.3) obviously holds for n = 0. Sup-
pose that it holds for a certain n. Then

Esn+3Wn+1,1(s,x) = Esn+3

[
u(sn+2,xn+2) ·DEsn+2Wn,1(s1, . . . , sn+1,x1, . . . ,xn+1)

]
.

Calculate Esn+2Wn(·) using (A.3). Note that

Esn+3
Wn+1,1(s,x) = in

∑∫
. . .

∫
bfn+1(F) exp

{
i

n+2∑
m=1

km · xm

}
P̂j(s,k; sn+2,F)

(A.6)
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× Esn+3

[
ûjn+2(sn+2,kn+2)

∂

∂yjn+2 |y=0
exp

{
i

n+1∑
m=1

km · y
}
Q̂j(dk; sn+2,F)

]
.

The summation extends over all integer-valued multi-indices j = (j1, . . . , jn+2), such
that j1 = 1 and all Feynman diagrams F ∈ Sn+1. Differentiating w.r.t. yjn+2

and

using the identification rule km = −km′ , when m̂m′ ∈ En+1(F), we obtain that the
right-hand side of (A.6) equals

in+1
∑∫

. . .

∫
bfn+1(F) exp

{
i

n+2∑
m=1

km · xm

}
P̂j(s,k; sn+2,F)(A.7)

×

⎛
⎝ ∑

m∈An+1(F)

km,jn+2

⎞
⎠Esn+3

[
ûjn+2(sn+2,kn+2)Q̂j(dk; sn+2,F)

]
.

From elementary properties of Gaussian variables we conclude that

ûj(sn+2, dk; sn+3) := Esn+3 ûj(sn+2, dk) = e−a(sn+2−sn+3)ûj(sn+3, dk).

The spectral measure

û⊥
j (sn+2, dk; sn+3) := ûj(sn+2, dk) − Esn+3 ûj(sn+2, dk)

is independent of the σ-algebra Usn+2 . Moreover, note that

〈û⊥
j (sn+2, dk; sn+3)û

⊥
j′(sn+2, dk

′; sn+3)〉 =
[
1− e−2a(sn+2−sn+3)

]
〈ûj(0, dk)ûj′(0, dk

′)〉.

Replace each ûjm(sn+2, dkm) appearing in (A.7), i.e., ûjn+2
(sn+2,kn+2) and the spec-

tral measures that occur in Q̂j(dk; sn+2,F), by

e−a(sn+2−sn+3)ûjm(sn+3, dkm) + û⊥
jm(sn+2, dkm; sn+3).

The conditional expectation Esn+3
can be expressed using the expectation of the prod-

uct of the terms in the form û⊥
jm

(sn+2, dkm; sn+3) times the product of e−a(sn+2−sn+3)

× ûjm(sn+3, dkm). In order to finish the induction argument we apply the rules of
calculating the expectation of products of Gaussian random variables using Feynman
diagrams. To prove that out of the diagrams generated in that way we need only to
take into account those belonging to Sn+2, it suffices only to show that

in+1
∑∫

. . .

∫
bfn+1(F) exp

{
i

n+2∑
m=1

km · xm

}
P̂j(s,k; sn+2,F)(A.8)

×

⎛
⎝ ∑

m∈An+1(F)

km,jn+2

⎞
⎠〈û⊥

jn+2
(sn+2,kn+2; sn+3)Q̂

⊥
j (dk; sn+2, sn+3,F)

〉
= 0.

Here
Q̂⊥

j (dk; sn+2, sn+3,F)

:=
∏

m̂m′∈En+1(F)

E(|km|)
|km|d−1

Γ̂jm,jm′ (km)δ(km+km′)dkmdkm′
∏

m∈An+1(F)

û⊥
jm(sn+2, dkm; sn+3).
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To do so note that since
∑

jn+2
kn+2,jn+2

û⊥
jn+2

(sn+2, dkn+2; sn+3) = 0, the expression

appearing on the left-hand side of (A.8) equals

in
∑

bfn+1(F)P̂j(s,k; sn+2,F)

〈
û⊥
jn+2

(sn+2, dkn+2; sn+3)(A.9)

× ∂

∂yjn+2 |y=0

[∫
. . .

∫
exp

{
i

n+2∑
m=1

km · (xm + y)

}
Q̂⊥

j (dk; sn+2, sn+3,F)

]〉

= in
∑

bfn+1(F)P̂j(s,k; sn+2,F)
∂

∂yjn+2 |y=0

〈∫
. . .

∫
exp

{
i

n+2∑
m=1

km · xm

}

× û⊥
jn+2

(sn+2, dkn+2; sn+3)Q̂
⊥
j (dk; sn+2, sn+3,F)

〉
= 0.

The last equality in (A.9) is a consequence of spatial stationarity of the field.
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SIAM J. APPL. MATH. c© 2004 Society for Industrial and Applied Mathematics
Vol. 65, No. 1, pp. 113–130

Abstract. A new approach to parameter identification problems from the point of view of
symmetry analysis theory is given. A mathematical model that arises in the design of car windshield
represented by a linear second order mixed type PDE is considered. Following a particular case of the
direct method (due to Clarkson and Kruskal), we introduce a method to study the group invariance
between the parameter and the data. The equivalence transformations associated with this inverse
problem are also found. As a consequence, the symmetry reductions relate the inverse and the direct
problem and lead us to a reduced order model.
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AMS subject classifications. 58J70, 70G65, 35R30, 35R35

DOI. 10.1137/S0036139903434031

1. Introduction. Symmetry analysis theory links differential geometry to PDEs
theory [18], symbolic computation [9], and, more recently, to numerical analysis theory
[3], [6]. The notion of continuous transformation groups was introduced by Sophus
Lie [14], who also applied them to differential equations. Over the years, Lie’s method
has been proven to be a powerful tool for studying a remarkable number of PDEs
arising in mathematical physics (more details can be found for example in [2], [10],
and [21]). In the last several years a variety of methods have been developed in order
to find special classes of solutions of PDEs, which cannot be determined by applying
the classical Lie method. Olver and Rosenau [20] showed that the common theme
of all these methods has been the appearance of some form of group invariance. On
the other hand, parameter identification problems arising in the inverse problems
theory are concerned with the identification of physical parameters from observations
of the evolution of a system. In general, these are ill-posed problems, in the sense that
they do not fulfill Hadamard’s postulates for all admissible data: a solution exists, the
solution is unique, and the solution depends continuously on the given data. Arbitrary
small changes in data may lead to arbitrary large changes in the solution. The iterative
approach of studying parameter identification problems is a functional-analytic setup
with a special emphasis on iterative regularization methods [8].

The aim of this paper is to show how parameter identification problems can be
analyzed with the tools of group analysis theory. This is a new direction of research
in the theory of inverse problems, although the symmetry analysis theory is a com-
mon approach for studying PDEs. We restrict ourselves to the case of a parameter
identification problem modeled by a PDE of the form

F (x,w(m), E(n)) = 0,(1.1)

where the unknown function E = E(x) is called parameter, and, respectively, the
arbitrary function w = w(x) is called data, with x = (x1, . . . , xp) ∈ Ω ⊂ Rp a given
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domain (here w(m) denotes the function w together with its partial derivatives up
to order m). Assume that the parameters and the data are analytical functions.
The PDE (1.1) sometimes augmented with certain boundary conditions is called the
inverse problem associated with a direct problem. The direct problem is the same
equation but the unknown function is the data, for which certain boundary conditions
are required.

The classical Lie method allows us to find the symmetry group related to a PDE.
This is a (local) Lie group of transformations acting on the space of the independent
variables and the space of the dependent variables of the equation with the property
that it leaves the set of all analytical solutions invariant. Knowledge of these classi-
cal symmetries allows us to reduce the order of the studied PDE and to determine
group-invariant solutions (or similarity solutions) which are invariant under certain
subgroups of the full symmetry group (for more details see [18]). Bluman and Cole [1]
introduced the nonclassical method that allows one to find the conditional symmetries
(also called nonclassical symmetries) associated with a PDE. These are transforma-
tions that leave only a subset of the set of all analytical solutions invariant. Note
that any classical symmetry is a nonclassical symmetry but not conversely. Another
procedure for finding symmetry reductions is the direct method (due to Clarkson
and Kruskal [5]). The relation between these last two methods has been studied by
Olver [19]. Moreover, for a PDE with coefficients depending on an arbitrary function,
Ovsiannikov [21] introduced the notion of equivalence transformations, which are (lo-
cal) Lie group of transformations acting on the space of the independent variables,
the space of the dependent variables and the space of the arbitrary functions that
leave the equation unchanged. Notice that these techniques based on group theory
do not take into account the boundary conditions attached to a PDE.

To find symmetry reductions associated with the parameter identification problem
(1.1) one can seek classical and nonclassical symmetries related to this equation. Two
cases can occur when applying the classical Lie method or the nonclassical method,
depending if the data w is known or not. From the symbolic computation point
of view, the task of finding symmetry reductions for a PDE depending on an arbi-
trary function might be a difficult one, due to the lack of the symbolic manipulation
programs that can handle these kind of equations. Another method to determine
symmetry reductions for (1.1) might be a particular case of the direct method, which
has been applied by Zhdanov [24] to certain multidimensional PDEs arising in mathe-
matical physics. Based on this method and taking into account that (1.1) depends on
an arbitrary function, we introduce a procedure to find the relation between the data
and the parameter in terms of a similarity variable (see section 2). As a consequence,
the equivalence transformations related to (1.1) must be considered as well. These
final symmetry reductions are found by using any symbolic manipulation program de-
signed to determine classical symmetries for a PDE system—now both the data and
the parameter are unknown functions in (1.1). The equivalence transformations relate
the direct problem and the inverse problem. Moreover, one can find special classes
of data and parameters, respectively, written in terms of the invariants of the group
action, the order of the studied PDE can be reduced at least by one, and analytical
solutions of (1.1) can be found.

At the first step, the group approach of the free boundary problem related to
(1.1) can be considered and, afterwards, the invariance of the boundary conditions
under particular group actions has to be analyzed (see [2]). In the case of parameter
identification problems we sometimes have to deal with two pairs of boundary condi-
tions, for data and the parameter as well, otherwise we might only know the boundary
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conditions for the data. Thus, the problem of finding symmetry reductions for a given
data can be more complicated. At least by finding the equivalence transformations
related to the problem, the invariants of the group actions can be used to establish
suitable domains Ω on which the order of the model can be reduced.

In this paper we consider a mathematical model arising in the car windshield
design. Let us briefly explain the gravity sag bending process, one of the main industrial
processes used in the manufacture of car windshields. A piece of glass is placed over
a rigid frame, with the desired edge curvature and heated from below. The glass
becomes viscous due to the temperature rise and sags under its own weight. The final
shape depends on the viscosity distribution of the glass obtained from varying the
temperature. It has been shown that the sag bending process can also be controlled
(in a first approximation) in the terms of Young’s modulus E, a spatially varying
glass material parameter, and the displacement of the glass w can be described by
the thin linear elastic plate theory (see [11], [16], and [17] and references from there).
The model is based on the linear plate equation

(E (wxx + νwyy))xx + 2(1 − ν) (Ewxy)xy + (E (wyy + νwxx))yy = 12(1−ν2)f
h3 on Ω,

(1.2)

where w = w(x, y) represents the displacement of the glass sheet (the target shape)
occupying a domain Ω ⊂ R2, E = E(x, y) is Young’s modulus, a positive function that
can be influenced by adjusting the temperature in the process of heating the glass, f
is the gravitational force, ν ∈

(
0, 1

2

]
is the glass Poisson ratio, and h is thickness of the

plate. The direct problem (or the forward problem) is the following: for a given Young
modulus E, find the displacement w of a glass sheet occupying a domain Ω before
the heating process. Note that the PDE (1.2) is an elliptic fourth order linear PDE
for the function w. Until now, two problems related to (1.2) have been studied: the
clamped plate case and the simply supported plate case (more details can be found for
example in [15]). In this paper we consider the clamped case, in which the following
boundary conditions are required: the plate is placed over a rigid frame, i.e.,

w(x, y)|∂Ω = 0,(1.3)

and, respectively,

∂w

∂n
|∂Ω = 0,(1.4)

which means the (outward) normal derivative of w must be zero, i.e., the sheet of
glass is not allowed to freely rotate around the tangent to ∂Ω. The associated inverse
problem consists of finding Young’s modulus E for a given data w in (1.2). This is a
linear second order PDE for Young’s modulus that can be written as

(1.5) (wxx + νwyy)Exx + 2(1 − ν)wxyExy + (wyy + νwxx)Eyy

+ 2(∆w)xEx + 2(∆w)yEy + (∆2w)E = 1

after the scaling transformations w → 1
kw or E → 1

kE, with k = 12(1−ν2)f
h3 . In (1.5),

∆ denotes the Laplace operator. The main problem in the car windshield design is
that the prescribed target shape w is frequent such that the discriminant

D = (1 − ν)2w2
xy − (wxx + νwyy)(wyy + νwxx)
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of (1.5) changes sign in the domain Ω, so that we get a mixed type PDE. This is one
of the reasons for which optical defects might occur during the process. Note that
(1.5) would naturally call for boundaries conditions for E on ∂Ω in the purely elliptic
case (when D < 0), and Cauchy data on a suitable (noncharacteristic part) Γ ⊂ ∂Ω
in the purely hyperbolic part (for D > 0). There is a recent interest in studying this
inverse problem (see, e.g., [13]). It is known [15] that a constant Young’s modulus
corresponds to a data which satisfies the nonhomogeneous biharmonic equation (2.29).
A survey on this subject can be found in [23]. Salazar and Westbrook [22] studied
the case when the data and the parameter are given by radial functions; Kügler [12]
used a derivative free iterative regularization method for analyzing the problem on
rectangular frames; and a simplified model for the inverse problem on circular domains
was considered by Engl and Kügler [7].

So far it is not obvious which shapes can be made by using this technique. Hence,
we try to answer this question by finding out the symmetry reductions related to the
PDE (1.5) hidden by the nonlinearity that occurs between the data and the parameter.
In this sense, we determine (see section 3) the group of transformations that leave the
equation unchanged, and so, its mixed type form. Knowledge of the invariants of these
group actions allows us to write the target shape and the parameter in terms of them,
and, therefore, to reduce the order of the studied equation. We find again the obvious
result that a Young’s modulus constant corresponds to data which is a solution of
a nonhomogeneous biharmonic equation. The circular case problem considered by
Salazar and Westbrook is, in fact, a particular case of our study. We show that other
target shapes which are not radial functions can be considered. We prove that (1.5)
is invariant under scaling transformations. It follows that target shapes modeled by
homogeneous functions can be analyzed as well. In particular, we are interested in
target shapes modeled by homogeneous polynomials defined on elliptical domains or
square domains with rounded corners.

The paper is structured as follows. To reduce the order of the PDE (1.5) we
propose in section 2 a method for studying the relation between the data and the pa-
rameter in terms of the similarity variables. The equivalence transformations related
to this equation are given in section 3. The symbolic manipulation program DESOLV,
authors Carminati and Vu [4] has been used for this purpose. Table 1 contains a com-
plete classification of these symmetry reductions. In the last section, we discuss the
PDE (1.5) augmented with the boundary conditions (1.3) and (1.4), namely, how to
use the invariants of the group actions (on suitable bounded domains Ω) in order to
incorporate the boundary conditions. In this sense, certain examples of exact and of
numerical solutions of the reduced ODEs are given.

2. Conditional symmetries. The direct method approach to a second order
PDE

F(x, y, E(2)) = 0

consists of seeking solutions written in the form

E(x, y) = Φ(x, y, F (z)), where z = z(x, y), (x, y) ∈ Ω.(2.1)

In this case the function z is called similarity variable and its level sets {z = k} are
named similarity curves. After substituting (2.1) into the studied second order PDE,
we require that the result to be an ODE for the arbitrary function F = F (z). Hence,
certain conditions are imposed upon the functions Φ, z and their partial derivatives.
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The particular case

E(x, y) = F (z(x, y))(2.2)

consists of looking for solutions depending only on the similarity variable z. If z is an
invariant of the group action then the solutions of the form (2.2) are as well. Assume
that the similarity variable is such that ‖∇z‖ �= 0 on Ω̄.

In this section we apply this particular approach to (1.5) in order to study if the
parameter and the data are functionally independent, which means whether or not
they can depend on the same similarity variable. Assume that Young’s modulus takes
the form (2.2). In this case we get the relation

(2.3) F ′′(z)
[
z2
x(wxx + νwyy) + 2zxzy(1 − ν)wxy + z2

y(wyy + νwxx)
]

+ F ′(z) [zxx(wxx + νwyy) + 2(1 − ν)zxywxy + +zyy(wyy + νwxx)

+2zx(∆w)x + 2zy(∆w)y] + F (z)(∆2w) = 1,

which must be an ODE for the unknown function F = F (z). This condition is satisfied
if the coefficients of the partial derivatives of F are function of z only (note that these
coefficients are also invariant under the same group action). Denote them by

Γ1(z) = z2
x(wxx + νwyy) + 2zxzy(1 − ν)wxy + z2

y(wyy + νwxx),

Γ2(z) = zxx(wxx + νwyy) + 2(1 − ν)zxywxy + zyy(wyy + νwxx)

+ 2zx(∆w)x + 2zy(∆w)y,

Γ3(z) = ∆2w.

(2.4)

If these relations hold, then the PDE (1.5) is reduced to the second order linear ODE

Γ1(z)F
′′(z) + Γ2(z)F

′(z) + Γ3(z)F (z) = 1.(2.5)

2.1. Data and parameter invariant under the same group. If the target
shape is invariant under the same group action as Young’s modulus, then

w(x, y) = G(z(x, y)),(2.6)

where G = G(z). Substituting (2.6) into the relations (2.4) we get

Γ1 = G′′(z2
x + z2

y)
2 + G′ [(z2

x + νz2
y)zxx + 2(1 − ν)zxzyzxy + (z2

y + νz2
x)zyy

]
,

Γ2 = 2G′′′(z2
x + z2

y)
2 + G′′ {[7z2

x + (ν + 2)z2
y ]zxx + 2(5 − ν)zxzyzxy

+ [7z2
y + (ν + 2)z2

x]zyy
}

+ G′ {(∆z)2 + 2(1 − ν)(z2
xy − zxxzyy)

+ 2 [zx(∆z)x + zy(∆z)y]} ,

Γ3 = G′′′′(z2
x + z2

y)
2 + 2G′′′ [(3z2

x + z2
y)zxx + 4zxzyzxy + (z2

x + 3z2
y)zyy

+G′′ {3(∆z)2 + 4(z2
xy − zxxzyy) + 4 [zx(∆z)x + zy(∆z)y]

}
+ G′∆2z.

(2.7)

Next, the coefficients of the partial derivatives of the function G, denoted by Γi, must
depend only on z, i.e.,

Γ1 = α4G′′ + a1G
′,

Γ2 = 2α4G′′′ + a2G
′′ + a3G

′,

Γ3 = α4G′′′′ + 2a4G
′′′ + a5G

′′ + a6G
′,
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where

α2(z) = z2
x + z2

y ,

a1(z) = (z2
x + νz2

y)zxx + 2(1 − ν)zxzyzxy + (z2
y + νz2

x)zyy,

a2(z) =
[
7z2

x + (ν + 2)z2
y

]
zxx + 2(5 − ν)zxzyzxy +

[
7z2

y + (ν + 2)z2
x

]
zyy,

a3(z) = (∆z)2 + 2(1 − ν)(z2
xy − zxxzyy) + 2 [zx(∆z)x + zy(∆z)y] ,

a4(z) = (3z2
x + z2

y)zxx + 4zxzyzxy + (z2
x + 3z2

y)zyy,

a5(z) = 3(∆z)2 + 4(z2
xy − zxxzyy) + 4 [zx(∆z)x + zy(∆z)y] ,

a6(z) = ∆2z.

(2.8)

The first relation in (2.8) is a two-dimensional (2D) eikonal equation. From this we
get

z2
xzxx + 2zxzyzxy + z2

yzyy = α3(z)α′(z),

zxx = α(z)α′(z) − zy
zx
zxy,

zyy = α(z)α′(z) − zx
zy
zxy.

The last two equations imply

z2
yzxx − 2zxzyzxy + z2

xzyy = α3(z)α′(z) − α4(z)
zxy
zxzy

.(2.9)

Assume that there is a function β = β(z) such that

zxy = β(z)zxzy.(2.10)

Indeed, since the left-hand side in (2.9) depends only on z, one can easily check if
z satisfies both the 2D eikonal equation in (2.8) and (2.10), then all the functions
ai = ai(z) defined by (2.8) are written in terms of α and β. Therefore, the problem
of finding the similarity variable z is reduced to that of integrating the 2D eikonal
equation and the PDE system ⎧⎪⎪⎨

⎪⎪⎩
zxx = αα′ − βz2

y ,

zxy = βzxzy,

zyy = αα′ − βz2
x.

(2.11)

The system (2.11) is compatible if the following relation holds:

αα′′ + α′2 − 3βαα′ + α2
(
β2 − β′) = 0.

Denote µ = 1
2α

2. In this case, the above compatibility condition can be written as

µ′′ − 3βµ′ + 2µ
(
β2 − β′) = 0.(2.12)

On the other hand, if the function β is given by

β(z) = −λ′′(z)

λ′(z)
,(2.13)
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where λ is a nonconstant function, then (2.10) turns into

(λ(z))xy = 0.

The general solution of this equation is given by

λ(z(x, y)) = a(x) + b(y),(2.14)

with a and b being arbitrary functions. Substituting β from (2.13) into the compati-
bility condition (2.12) and after integrating once, we get

µ′λ′ + 2µλ′′ = k,(2.15)

where k is an arbitrary constant.
Case 1. If k �= 0, then after integrating (2.15) and substituting back µ = 1

2α
2, we

get

α2(z) =
2kλ(z) + C1

λ′2(z)
.(2.16)

The relation (2.14) implies λ′(z)zx = a′(x), and λ′(z)zy = b′(y). We substitute these
relations, (2.14) and (2.16), into the 2D eikonal equation (see (2.8)). It follows that
the functions a = a(x) and b = b(y) are solutions of the following respective ODEs:

a′2(x) − 2ka(x) = C2 and b′2(y) − 2kb(y) = C3,

with C2 +C3 = C1 (here Ci are real constants). The above ODEs admit the noncon-
stant solutions

a(x) =
1

2k

[
k2(x− C4)

2 − C2

]
and b(y) =

1

2k

[
k2(y − C5)

2 − C3

]
,

and so (2.14) takes the form

λ(z(x, y)) =
k

2

[
(x− C4)

2 + (y − C5)
2
]
− C1

2k
.(2.17)

Notice that 1
k1
λ or λ+k2 defines the same function β as the function λ does. Moreover,

since the PDE (1.5) is invariant under translations in the (x, y)-space, we can consider

λ(z(x, y)) = x2 + y2.(2.18)

If
√
λ is a bijective function on a suitable interval, and if we denote by Φ = (

√
λ)−1

its inverse function, then the similarity variable written in the polar coordinates (r, θ)
(where x = r cos(θ), y = r sin(θ)) is given by

z(x, y) = Φ(r).(2.19)

For simplicity, we consider Φ = Id, and from that we get

E = F (r) and w = G(r), where z(x, y) = r.(2.20)

Hence, the ODE (2.5) turns into

(2.21)

(
G′′ +

ν

r
G′

)
F ′′ +

(
2G′′′ +

ν + 2

r
G′′ − 1

r2
G′

)
F ′

+

(
G′′′′ +

2

r
G′′′ − 1

r2
G′′ +

1

r3
G′

)
F = 1,
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which can be reduced to the first order ODE(
G′′ +

ν

r
G′

)
F ′ +

(
G′′′ +

1

r
G′′ − 1

r2
G′

)
F =

r2 − r2
0

2r
+

γ

r
,(2.22)

where r0 ∈ [0, 1] with the property that

γ =

[
(rG′′ + νG′)F ′ +

(
rG′′′ + G′′ − 1

r
G′

)
F

]
|r=r0

is finite. The smoothness condition G′(0) = 0 implies that (2.22) can be written
as [15] (

G′′ +
ν

r
G′

)
F ′ +

(
G′′′ +

1

r
G′′ − 1

r2
G′

)
F =

r

2
.(2.23)

Case 2. If k = 0, similarly we get

z(x, y) = Φ(k1x + k2y),(2.24)

where k1 and k2 are real constants such that k2
1 + k2

2 > 0. In this case, for Φ = Id,
the parameter and the data are written as

E = F (z) and w = G(z), where z(x, y) = k1x + k2y,(2.25)

and the ODE (2.5) turns into

G′′(z)F ′′(z) + 2G′′′(z)F ′(z) + G′′′′(z)F (z) =
1

(k2
1 + k2

2)
2
,(2.26)

with {z|G′′(z) = 0} the associated set of singularities. Integrating the above ODE on
the set {z|G′′(z) �= 0} we obtain that Young’s modulus is given by

E(x, y) =
(k1x + k2y)

2 + C1(k1x + k2y) + C2

2(k2
1 + k2

2)
2G′′(k1x + k2y)

,

where Ci are arbitrary constants.

2.2. Data and parameter invariant under different groups. Consider two
functionally independent functions on Ω, say, z = z(x, y) and v = v(x, y), and let

w = H(v(x, y))(2.27)

be the target shape. In this case, the data and the parameter do not share the same
invariance. Similar to the above, substituting (2.27) into the relations (2.4) we get

Γ1 = H ′′ [(zxvx + zyvy)
2 + ν(zyvx − zxvy)

2
]

+H ′ [z2
xvxx + 2zxzyvxy + z2

yvyy + ν
(
z2
xvyy − 2zxzyvxy + z2

yvxx
)]

,

Γ2 = H ′′′(v2
x + v2

y)(zxvx + zyvy) + H ′′ [v2
xzxx + 2vxvyzxy + v2

yzyy

+ ν
(
v2
yzxx − 2vxvyzxy + v2

xzyy
)

+ 2zxvxvxx + 2(zxvy + zyvx)vxy + 2zyvyvyy

+ (zxvx + zyvy)(∆v)] + H ′ [zxxvxx + 2zxyvxy + zyyvyy + ν (zxxvyy − 2zxyvxy

+ zyyvxx) + zx(∆v)x + zy(∆v)y] ,

Γ3 = H ′′′′(v2
x + v2

y)
2 + 2H ′′′ [(3v2

x + v2
y)vxx + 4vxvyvxy + (v2

x + 3v2
y)vyy

]
+H ′′ [3v2

xx + 4v2
xy + 3v2

yy + 2vxxvyy + 4vx(∆v)x + 4vy(∆v)y
]
+ H ′∆2v.

(2.28)
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Recall that Γi’s are functions of z = z(x, y) only. Since each right-hand side in the
above relations contains the function H = H(v) and its derivatives, we require that
the coefficients of the derivatives of H to be functions of v. It follows that Γi must
be constant and denote them by γi. Therefore, the last condition in (2.28) becomes

∆2(w) = γ3,(2.29)

which is the biharmonic equation. According to the above assumption, we seek solu-
tions of (2.29) that are functions of v only. Similar to section 2.1, we get

v(x, y) = Ψ(r), or v(x, y) = Ψ(k1x + k2y),(2.30)

and thus, for Ψ = Id, the target shape is written as

w(x, y) = H(r), or w(x, y) = H(k1x + k2y).(2.31)

Since z = z(x, y) and v = v(x, y) are functionally independent, we get

z(x, y) = k1x + k2y, v(x, y) =
√

x2 + y2(2.32)

or

z(x, y) =
√

x2 + y2, v(x, y) = k1x + k2y.(2.33)

One can prove that if the coefficients γi are constant, and if z and v are given by
(2.32) or (2.33), respectively, then γ1 = γ2 = 0, and γ3 �= 0. On the other hand, the
solutions of the biharmonic equation (2.29) of the form (2.31) are the following:

w(x, y) =
γ3

64
z4 + C1z

2 + C2 ln(z) + C3z
2 ln(z) + C4 for z =

√
x2 + y2,

and, respectively,

w(x, y) =
γ3

24(k2
1 + k2

2)
2
v4 + C1v

3 + C2v
2 + C3v + C4 for v = k1x + k2y,

and these correspond to the constant Young’s modulus

E(x, y) =
1

γ3
.(2.34)

Notice that only particular solutions of the biharmonic equation have been found in
this case (i.e., solutions invariant under rotations and translations). Since this PDE
is also invariant under scaling transformations, which act not only on the space of the
independent variables but on the data space as well, it is obvious to extend our study
and to seek other types of symmetry reductions.

3. Equivalence transformations. Consider a one-parameter Lie group of trans-
formations acting on an open set D ⊂ Ω ×W × E , where W is the space of the data
functions, and E is the space of the parameter functions, given by⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x∗ = x + εζ(x, y, w,E) + O(ε2),

y∗ = y + εη(x, y, w,E) + O(ε2),

w∗ = w + εφ(x, y, w,E) + O(ε2),

E∗ = E + εψ(x, y, w,E) + O(ε2),

(3.1)
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where ε is the group parameter. Let

V = ζ(x, y, w,E)∂x + η(x, y, w,E)∂y + φ(x, y, w,E)∂w + ψ(x, y, w,E)∂E(3.2)

be its associated general infinitesimal generator. The group of transformations (3.1)
is called an equivalence transformation associated to the PDE (1.5) if this leaves the
equation invariant. This means that the form of the equation in the new coordinates
remains unchanged and the set of the analytical solutions is invariant under this trans-
formation. The equivalence transformations can be found by applying the classical
Lie method to (1.5), with E and w both considered as unknown functions (for more
details see [10] and [21]). Following this method we obtain⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ζ(x, y, w,E) = k1 + k5x− k4y,

η(x, y, w,E) = k2 + k4x + k5y,

φ(x, y, w,E) = k3 + k7x + k6y + (4k5 − k8)w,

ψ(x, y, w,E) = k8E,

(3.3)

where ki are real constants. The vector field (3.2) is written as V =
∑8

i=1 kiVi, where

V1 = ∂x, V2 = ∂y, V3 = ∂w, V4 = −y∂x + x∂y, V5 = x∂x + y∂y + 4w∂w,

V6 = y∂w, V7 = x∂w, V8 = −w∂w + E∂E .

(3.4)

Proposition 3.1. The equivalence transformations related to the PDE (1.5) are
generated by the infinitesimal generators (3.4). Thus, the equation is invariant under
translations in the x-space, y-space, w-space, rotations in the space of the independent
variables (x, y), scaling transformations in the (x, y, w)-space, Galilean transforma-
tions in the (y, w) and (x,w) spaces, and scaling transformations in the (w,E)-space,
respectively.

Notice that the conditional symmetries found in section 2 represent particular
cases of the equivalence transformations. Since each one-parameter group of trans-
formations generated by Vi is a symmetry group, if (w = G(x, y), E = F (x, y)) is a
pair of known solutions of (1.5), so are the following:

w(1) = G(x− ε1, y), E(1) = F (x− ε1, y),

w(2) = G(x, y − ε2), E(2) = F (x, y − ε2),

w(3) = G(x, y) + ε3, E(3) = F (x, y),

w(4) = G(x̃, ỹ), E(4) = F (x̃, ỹ),

w(5) = e4ε5G(e−ε5x, e−ε5y), E(5) = F (e−ε5x, e−ε5y),

w(6) = G(x, y) + ε6y, E(6) = F (x, y),

w(7) = G(x, y) + ε7x, E(7) = F (x, y),

w(8) = e−ε8G(x, y), E(8) = eε8F (x, y),

(3.5)



SYMMETRY ANALYSIS AND PARAMETER IDENTIFICATION PROBLEMS 123

where x̃ = x cos(ε4) + y sin(ε4), ỹ = −x sin(ε4) + y cos(ε4), and εi are real constants.
Moreover, the general solution of (1.5) constructed from a known one is given by

w(x, y) = e4ε5−ε8G(e−ε5(x̃− k̃1), e
−ε5(ỹ − k̃2)) + e4ε5−ε8ε6y+ e4ε5−ε8ε7x+ e4ε5−ε8ε3,

E(x, y) = eε8F (e−ε5(x̃− k̃1), e
−ε5(ỹ − k̃2)),

where k̃1 = ε1 cos(ε4) + ε2 sin(ε4), and k̃2 = ε1 sin(ε4) − ε2 cos(ε4).
The equivalence transformations form a Lie group G with an eight-dimensional

associated Lie algebra A. Using the adjoint representation of G, one can find the
optimal system of one-dimensional subalgebras of A (more details can be found in
[18, pp. 203–209]). This optimal system is spanned by the vector fields given in
Table 1. Denote by z, I, and J the invariants related to the one-parameter group
of transformations generated by each vector field Vi. Here F and G are arbitrary
functions, (r, θ) are the polar coordinates, and a, b, c are nonzero constants. To reduce
the order of the PDE (1.5) one can also integrate the first order PDE system{

ζ(x, y, w,E)wx + η(x, y, w,E)wy = φ(x, y, w,E),

ζ(x, y, w,E)Ex + η(x, y, w,E)Ey = ψ(x, y, w,E),
(3.6)

which defines the characteristics of the vector field (3.2). In Table 1, the associated
reduced ODEs are listed. The invariance of (1.5) under the one-parameter groups of
transformations generated by V1, V2, V1 + cV6, and V2 + cV7, respectively, leads us to
the same ODE,

F ′′(z)G′′(z) + 2F ′(z)G′′′(z) + F (z)G′′′′(z) = 1,(3.7)

with the general solution

F (z) =
z2 + C1z + C2

2G′′(z)
(3.8)

on the set {z|G′′(z) �= 0}. The invariance under the scaling transformation generated
by the vector field V5 yields the reduced ODE[

G′′ (z2 + 1
)2 − 6z(z2 + 1)G′ + 12(z2 + ν)G

]
F ′′

+ 2
[(
z2 + 1

)2
G′′′ − 5z(z2 + 1)G′′ + 3(4z2 + ν + 1)G′ − 12zG

]
F ′

+
[(
z2 + 1

)2
G′′′′ − 4z(z2 + 1)G′′′ + 4(3z2 + 1)G′′ − 24zG′ + 24G

]
F = 1.

(3.9)

The ODE

[(
z2 + 1

)2
G′′ + 2(c− 3)z(z2 + 1)G′ + (c− 3)(c− 4)(z2 + ν)G

]
F ′′

+
{

2
(
z2 + 1

)2
G′′′ + 2(2c− 5)z(z2 + 1)G′′ + 2(c− 3)[z2(c− 4) + ν(c− 1) − 1]G′

−2(c− 3)(c− 4)zG}F ′ +
{(

z2 + 1
)2

G′′′′ + 2(c− 2)z(z2 + 1)G′′′ +
[
(c− 3)(c− 4)z2

−2(c− 2) + νc(c− 1)]G′′ − 2(c− 4)(c− 3)zG′ + 2(c− 4)(c− 3)G}F = 1

(3.10)
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Table 1

Infintesimal generator Invariants w = w(x, y) E = E(x, y) ODE

1. V1 z = y w = G(z) E = F (z) (3.7)
I = w
J = E

2. V2 z = x w = G(z) E = F (z) (3.7)
I = w
J = E

3. V4 z = r w = G(z) E = F (z) (2.21)
I = w
J = E

4. V5 z = y
x

w = x4G(z) E = F (z) (3.9)
I = x−4w
J = E

5. cV3 + V4 z = r w = cθ + G(z) E = F (z) (2.21)
I = w − cθ

J = E

6. V5 + cV8 z = y
x

w = x4−cG(z) E = xcF (z) (3.10)
I = xc−4w
J = x−cE

7. V4 + cV8 z = r w = e−cθG(z) E = ecθF (z) (3.11)
I = ecθw
J = e−cθE

8. V4 + cV5 z = re−cθ w = r4G(z) E = F (z) (3.13)
I = r−4w
J = E

9. V4 + cX5 + bV8 z = re−cθ w = r4−
b
c G(z) E = r

b
c F (z) (3.14)

I = r
b
c
−4w

J = r−
b
c E

10. V1 + cV6 z = y w = cxy + G(z) E = F (z) (3.7)
I = w − cxy

J = E

11. V2 + cV7 z = x w = cxy + G(z) E = F (z) (3.7)
I = w − cxy

J = E

12. V1 + cV8 z = y w = e−cxG(z) E = ecxF (z) (3.15)
I = ecxw
J = e−cxE

13. V2 + cV8 z = x w = e−cyG(z) E = ecyF (z) (3.15)
I = ecyw
J = e−cyE

is obtained in case 6 of Table 1. The reduced equation

[
G′′ +

ν

r
G′ +

νc2

r2
G

]
F ′′ +

[
2G′′′ +

ν + 2

r
G′′ +

2νc2 − 1

r2
G′ − c2(1 + 2ν)

r3
G

]
F ′

(3.11)

+

[
G′′′′ +

2

r
G′′′ +

c2ν − 1

r2
G′′ +

1 − c2(2ν + 1)

r3
G′ +

2c2(ν + 1)

r4
G

]
F = 1
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is related to case 7. This can be written as the first order ODE

(
G′′ +

ν

r
G′ +

νc2

r2
G

)
F ′+

(
G′′′ +

1

r
G′′ +

c2ν − 1

r2
G′ − c2(1 + ν)

r3
G

)
F =

r2 − r2
0

2r
+

γ∗

r
,

(3.12)

where r0 ∈ [0, 1] with the property that

γ∗ =

[
F ′

(
rG′′ + νG′ +

ν

r
G

)
+ F

(
rG′′′ + G′′ +

c2ν − 1

r
G′ − c2(1 + ν)

r2
G

)]
|r=r0

is finite. In cases 8 and 9, after the change of the variable z = exp(t), the reduced
ODEs are the following:

{
(c2 + 1)2G′′ + (c2 + 1)(ν + 7)G′ + 4

[
ν(3c2 + 1) + c2 + 3

]
G
}
F ′′

+
{
2(c2 + 1)2G′′′+ (c2 + 1)(ν + 19)G′′+ 2[16 + (c2 + 1)(3ν + 13)]G′ + 8(ν + 7)G

}
F ′

+
{
(c2 + 1)2G′′′′ + 12(c2 + 1)G′′′ + 4(5c2 + 13)G′′ + 96G′ + 64G

}
F = 1,

(3.13)

and, respectively,

{
(c2 + 1)2G′′ +

(
1

c
+ c

)
[c(ν + 7) − 2b]G′ +

(
4

c
− b

c2

)
[c3(1 + 3ν) − c2νb

+ c(ν + 3) − b]G

}
F ′′ +

{
2(c2 + 1)2G′′′ +

(
1

c
+ c

)
[c(ν + 19) − 4b]G′′

+ 2

[
b2

c2
+ νb2 + c2(3ν + 13) − 4bc(ν + 1) − 12

b

c
+ 3ν + 29

]
G′

+

(
4

c
− b

c2

)
[2c(ν + 7) + b(ν − 5)]G

}
F ′ +

{
(c2 + 1)2G′′′′

+ 2

(
c +

1

c

)
(6c− b)G′′′ +

[
b2

c2
+

b

c
(ν − 17) + 20c2 − bc(ν + 7) + νb2 + 52

]
G′′

+

(
6

c
− b

c2

)
[16c + b(ν − 5)]G′ + 2

(
4

c
− b

c2

)
[8c + b(ν − 3)]G

}
F = 1.

(3.14)

In cases 12 and 13 we get the same equation,

(
G′′ + νc2G

)
F ′′ + 2

(
G′′′ + νc2G′)F ′ +

(
G′′′′ + νc2G′′)F = 1,(3.15)

with the general solution given by

F (z) =
z2 + C1z + C2

G′′(z) + νc2G(z)
(3.16)

on the set {z|G′′(z) + νc2G(z) �= 0}, where C1 and C2 are arbitrary real constants.
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4. Conclusions. The data w is the function that models the target shape of a
car windshield. Hence, we seek data with relevant physical and geometrical properties,
such as smoothness and a positive curvature graph at least in the center of the bounded
domain Ω, for which the boundary condition (1.3) is satisfied—which means that the
sheet of glass is placed over a rigid frame. Moreover, if there is no free rotation of
the plate around the tangent to ∂Ω, then the condition (1.4) is required. Applying
symmetry reductions theory to the PDE (1.5), we have shown that the data w and
Young’s modulus E can be expressed in terms of the invariants z, I, and J associated
with a certain group action, i.e., I = G(z) and J = F (z), where w occurs in I,
and E in J , respectively. Since now the technique of reducing the PDE (1.5) to an
ODE has been applied only in the case of the radial functions ([15], [22], and [23]).
Other symmetry reductions related to the studied model can be derived and these
are listed in Table 1. The data given by homogeneous polynomials can be related to
the invariance of the equation with respect to the scaling transformations (see cases
4 and 6, Table 1). The first two and last four cases in Table 1 allow us to construct
other kind of data (see (3.5)). Since Ω must be bounded, the most interesting cases
correspond to the rotational and the scaling symmetries. The problem of finding exact
solutions of the reduced equations, which are second order linear nonhomogeneous
ODEs, might be a difficult task depending on the form of the data. These equations
are also, in general, ill-posed, as the initial problem is, and hence, regularization
methods might be required in order to be studied, which is our current research.

One can make the following remarks: assume that ∂Ω = {(x, y)| z(x, y) = k} is
the k-level set of the function z (here k being a nonzero constant) and ||∇z|| > 0 on
Ω̄. If the target shape is given by w(x, y) = a(x, y)G(z(x, y)), where a = a(x, y) is a
suitable function according to Table 1, then the boundary conditions (1.3) and (1.4)
are equivalent to G(k) = 0 and G′(k) = 0. Therefore, the data might have the form

w(x, y) = a(x, y) (z(x, y) − k)
2
H(z(x, y)). This corresponds to the case when the

data and the bounded domain Ω are invariant under the same symmetry reduction.
In our case, this can be applied to rotational symmetries. For scaling invariance, we
have to incorporate the noninvariant boundary conditions in invariant solutions. As
a consequence, we can extend the study of the problem on elliptical domains and on
square domains with rounded corners. For instance, the class of target shapes of the
form w(x, y) = zm(x, y)−km, where m ≥ 1 is a natural number, satisfies the boundary
condition (1.3). In this case, the normal derivative of the data on the boundary is
∂w
∂n |∂Ω = mkm−1‖∇z‖|∂Ω. If this quantity is small then the condition (1.4) is almost
satisfied (i.e., there is a small free rotation of the plate around the tangent to ∂Ω). In
the following examples, we assume that the glass Poisson ration ν = 0.5.

Example 1. Rotational invariant data and parameter. Consider the target shape
of the form [23]

w(x, y) = G(r) = −1

6
(r − 1)

2
(2r + 1) , r =

√
x2 + y2,

defined on the unit disc (see Figure 4.1) which satisfies the boundary conditions (1.3)
and (1.4). Since G′(0) = 0, the reduced ODE is (2.23) and this has a singularity at
r = 3

5 . Since E > 0, we consider the constant of integration C1 = 1, and so,

E(x, y) = F (r) = − 1

11

(
r +

1

2

)
+ (5r − 3)

− 6
5 .

The PDE (1.5) is elliptic for r ∈
(

3
5 ,

3
4

)
, hyperbolic for r ∈

[
0, 3

5

)⋃ (
3
5 , 1

]
, and

parabolic if r = 3
5 or r = 3

4 , respectively.
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Fig. 4.1. The parameter E(x, y) = F (r) = − 1
11

(
r + 1

2

)
+ (5r − 3)−

6
5 and the target shape

w(x, y) = G(r) = − 1
6

(r − 1)2 (2r + 1), with r =
√

x2 + y2, defined on the unit disc.

Example 2. Particular target shapes on rounded square domains.
(a) Suppose the Lamé oval ∂Ω = {(x, y)| x2n + y2n = 1} is the boundary of the

domain (here n ≥ 2 is a natural number). For a target shape of the form

w(x, y) =
(
x2n + y2n

)m − 1,(4.1)

m ≥ 1 being a natural number, (1.5) is elliptic on Ω − {(0, 0)} and parabolic in
(0, 0). These target shapes are invariant with respect to V5 + cV8 + (4 − c)V3, where
c = 4 − 2mn. For x > 0 or x < 0, the functions (4.1) can be written as

w(x, y) = x2mnG(z) − 1, G(z) =
(
1 + z2n

)m
, z =

y

x
.

According to case 6 in Table 1, the associated Young’s modulus has the form

E(x, y) = x4−2mnF (z), z =
y

x
.

Since w(x, y) = w(y, x) = w(−x, y) = w(x,−y) = w(−x,−y), Young’s modulus also
shares these discrete symmetries. Thus, the reduced ODE (3.10) can be integrated for
z ∈ [0, 1]. In particular, for n = 2 and m = 1, the data is a solution of the biharmonic
equation and Young’s modulus is E = 48−1. For n = 3 and m = 1, the data and the
numerical solution F satisfying F (0) = 0.002 and F ′(0) = 0 are given in Figure 4.2.

(b) Assume that ∂Ω = {(x, y)| x2n + y2 = 1}, where n ≥ 1 is a natural number.
Consider the class of target shapes

w(x, y) = x2n + y2 − 1,

invariant under the vector field V2 + 2V6. Hence, (1.5) is reduced to the ODE (3.7).
For n = 3, the associated Young’s modulus is given by

E(x, y) = F (x) =
x2 + C1x + C2

2(30x4 + 1)
,

and since E > 0, we can set C1 = 0 and C2 = 2 (see Figure 4.3). Equation (1.5) is
elliptic on Ω −Oy and parabolic on the y-axis.
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Fig. 4.2. The parameter E(x, y) = x−2F (z), with z = y
x
, and the data w(x, y) = x6 + y6 − 1

defined on the rounded square domain {(x, y)| x6 + y6 < 1}.
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Fig. 4.3. The parameter E(x, y) = x2+2
2(30x4+1)

and the data w(x, y) = x6 + y2 − 1 defined on the

rounded square domain {(x, y)| x6 + y2 < 1}.

Example 3. Particular target shapes on elliptic domains. Consider the data

w(x, y) =

(
x2

a2
+

y2

b2

)m

− 1,(4.2)

on the elliptic domain Ω = {(x, y)| x2

a2 + y2

b2 < 1}, where m ≥ 1 is a natural number.
These target shapes are obtained from the invariance of the studied PDE with respect
to V5 + cV8 + (4 − c)V3, where c = 4 − 2m. The PDE (1.5) is elliptic on Ω − {(0, 0)}
and parabolic in the origin. For x > 0 or x < 0, the functions (4.2) can be written as

w(x, y) = x2mG(z) − 1, G(z) =

(
1

a2
+

z2

b2

)m

, z =
y

x
.
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Fig. 4.4. The parameter E(x, y) = x−2F (z), with z = y
x
, and the data w(x, y) =

(
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4
+ y2

)3
−1

defined on the elliptical domain {(x, y)| x2

4
+ y2 = 1}.

In this case, we look for solutions to (1.5) of the form

E(x, y) = x4−2mF (z), z =
y

x
.

If m = 2, the data is a solution of the biharmonic equation, and the related Young’s
modulus is E = 24

(
a−4 + b−4

)
+ 16a−2b−2. If m ≥ 3, the reduced ODE is (3.9). For

m = 3, the data and the numerical solution F of (3.9) satisfying F (0) = 0.001 and
F ′(0) = 0 are plotted in Figure 4.4.

In brief, suppose that the target shape w on a domain Ω is given. In order to see
if this is an invariant function with respect to the equivalence transformations related
to the studied model, we should check if this is a solution of the first equation in (3.6),
where the functions ζ, η, and φ are given by (3.3). Next, by integrating the second
PDE in (3.6) we can determine the form of the parameter in terms of the similarity
variables. The geometrical significance of the nonlinearity occurring between the data
and the parameter in the inverse problem (1.1) is reflected by the group analysis tools.
Investigating special groups of transformations connected to this equation, the order of
the model can be reduced. The equation will be then written in terms of the invariants
of the group actions. Another advantage of this approach is that of relating the direct
and inverse problems through these symmetry reductions. It might be interesting for
future study to link these results to the common approach of the inverse problems
theory, especially in expressing the regularization methods in terms of the similarity
variables. For other target shapes defined by functions which are not invariant under
the listed symmetry reductions, the classical theory of the linear second order PDEs
can be applied, but this might be quite difficult due to the form of the discriminant.
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Abstract. We show how a one-dimensional excitatory neural network can exhibit a symmetry
breaking front bifurcation analogous to that found in reaction diffusion systems. This occurs in
a homogeneous network when a stationary front undergoes a pitchfork bifurcation leading to bidi-
rectional wave propagation. We analyze the dynamics in a neighborhood of the front bifurcation
using perturbation methods, and we establish that a weak input inhomogeneity can induce a Hopf
instability of the stationary front, leading to the formation of an oscillatory front or breather. We
then carry out a stability analysis of stationary fronts in an exactly solvable model and use this to
derive conditions for oscillatory fronts beyond the weak input regime. In particular, we show how
wave propagation failure occurs in the presence of a large stationary input due to the pinning of a
stationary front; a subsequent reduction in the strength of the input then generates a breather via
a Hopf instability of the front. Finally, we derive conditions for the locking of a traveling front to a
moving input, and we show how locking depends on both the amplitude and velocity of the input.
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neous media
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1. Introduction. Nonlinear integro-differential equations of the form

τs
∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− x′)f(u(x′, t))dx′ − βv(x, t) + I(x),

1

ε

∂v(x, t)

∂t
= −v(x, t) + u(x, t)(1.1)

have arisen as continuum models of one-dimensional cortical tissue [1, 12], in which
u(x, t) is a neural field that represents the local activity of a population of excitatory
neurons at position x ∈ R, I(x) is an external input current, τs is a synaptic time
constant (assuming first-order synapses), f(u) denotes the output firing rate function,
and w(x− x′) is the strength of connections from neurons at x′ to neurons at x. The
distribution w(x) is taken to be a positive, even function of x. The neural field
v(x, t) represents some form of negative feedback mechanism such as spike frequency
adaptation or synaptic depression, with β, ε determining the relative strength and rate
of feedback. If additional nonlocal terms in v are introduced, then v represents instead
the activity of a population of inhibitory neurons [17, 1]. The nonlinear function f is
usually taken to be a smooth sigmoid function

f(u) =
1

1 + e−γ(u−κ)
(1.2)

with gain γ and threshold κ. The units of time are fixed by setting τs = 1; a typical
value of τs is 10 msec. It can be shown [12] that there is a direct link between the above
model and experimental studies of wave propagation in cortical slices where synap-
tic inhibition is pharmacologically blocked [4, 7, 18]. Since there is strong vertical
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coupling between cortical layers, it is possible to treat a thin cortical slice as an
effective one-dimensional medium. Analysis of the model provides valuable informa-
tion regarding how the speed of a traveling wave, which is relatively straightforward
to measure experimentally, depends on various features of the underlying cortical
circuitry.

A number of previous studies have considered the existence and stability of trav-
eling wave solutions of (1.1) in the case of a uniform input I, which is equivalent to
a shift in the threshold κ. In particular, it has been shown that in the absence of
any feedback (β = 0), the resulting scalar network can support the propagation of
traveling fronts [5, 10], whereas traveling pulses tend to occur when there is significant
negative feedback [17, 1, 12]. In this paper, we show that such feedback can also have
a nontrivial effect on the propagation of traveling fronts. This is due to the occurrence
of a symmetry breaking front bifurcation analogous to that found in reaction diffusion
systems [14, 8, 16, 9, 2, 15, 13, 11]. We begin by deriving conditions for the existence of
traveling wavefronts in the case of a homogeneous network (section 2). We then carry
out a perturbation expansion in powers of the wavespeed c to show that a stationary
front can undergo a supercritical pitchfork bifurcation at a critical rate of negative
feedback, leading to bidirectional front propagation (section 3). As in the case of
reaction diffusion systems, the front bifurcation acts as an organizing center for a va-
riety of nontrivial dynamics including the formation of oscillatory fronts or breathers.
We show how the latter can occur through a Hopf bifurcation from a stationary front
in the presence of a weak stationary input inhomogeneity (section 4). Finally, we
analyze the existence and stability of stationary fronts in an exactly solvable model,
which is obtained by taking the high gain limit γ → ∞ of the sigmoid function f
such that f(u) = H(u− κ), where H is the Heaviside function (section 5). As briefly
reported elsewhere [3], the exactly solvable model allows us to study oscillatory fronts
beyond the weak input regime. Rather than perturbing about the homogeneous case,
we now consider a large input amplitude for which wave propagation failure occurs
due to the pinning of a stationary front. A subsequent reduction in the amplitude
of the input then induces a Hopf instability, leading to the formation of a breather.
We conclude our analysis of the exactly solvable model by deriving conditions for the
locking of a traveling front to a moving input, and we show how locking depends on
both the amplitude and speed of the input.

The major advantage of the exactly solvable model is that it allows us to explicitly
determine the existence and stability of stationary and traveling fronts in the presence
of external inputs, without any restrictions on the size of the input. However, it has
the disadvantage of restricting the nonlinear function f to be a step function. This is
less realistic than the smooth nonlinearity (1.2), which matches quite well the input–
output characteristics of populations of neurons. The lack of smoothness also makes it
difficult to carry out a nonlinear analysis in order to determine whether or not the Hopf
instability is supercritical, for example. As we show in this paper, such an analysis
can be carried out for smooth f provided that the input amplitude is sufficiently
weak. The fact that the nonlocal integro-differential equation (1.1) exhibits behavior
similar to a reaction–diffusion system might not be surprising, particularly given that
for the exponential weight distribution w(x) = e−|x|, equation (1.1) can be reduced
to a PDE of the reaction–diffusion type. It is important to emphasize, however,
that our results hold for a more general class of weight distribution w(x) for which
a corresponding (finite-order) PDE cannot be constructed. Hence, the analysis is a
nontrivial extension of known results for reaction–diffusion equations.
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2. Traveling fronts in a homogeneous network. In this section we inves-
tigate the existence of traveling front solutions of (1.1) for homogeneous inputs by
combining results on scalar networks [5] with an extension of the analysis of front
bifurcations in nonscalar reaction–diffusion equations [8, 2].

2.1. The scalar case. The existence of traveling front solutions in scalar, ho-
mogeneous networks was previously analyzed by Ermentrout and McLeod [5]. Their
analysis can be applied to a scalar version of (1.1) obtained by taking ε → ∞ so
that v = u and setting I(x) = −h with h a constant input. This leads to the scalar
integro-differential equation

∂u(x, t)

∂t
= −(1 + β)u(x, t) +

∫ ∞

−∞
w(x− x′)f(u(x′, t))dx′ − h.(2.1)

Without loss of generality we choose h such that κ = 0 in the sigmoid function (1.2).
The weight distribution w is assumed to be a positive, even, continuously differentiable
function of x with unit normalization

∫∞
−∞ w(y)dy = 1. Suppose that the function

Fh,β(u) = f(u) − (1 + β)u− h(2.2)

has precisely three zeros at u = U±(h, β), U0(h, β) with U− < U0 < U+ and F ′
h,β(U±) <

0. It can then be shown that (modulo uniform translations) there exists a unique trav-
eling front solution of (2.1) such that u(x, t) = U(ξ), ξ = x− ct, with U(ξ) → U± as
ξ → ∓∞ [5]. Moreover, the speed of the wave satisfies

c = c(h, β) =
Γh,β∫∞

−∞ u′2f ′(u)dξ
,(2.3)

where

Γh,β =

∫ U+

U−

Fh,β(u)du.(2.4)

Since the denominator of (2.3) is positive definite, the sign of c is determined by the
sign of the coefficient Γh,β . In particular, suppose that h = 0.5 and f is given by the
sigmoid function (1.2) so that f(u)−h = tanh(u/2γ)/2. It follows that, for 0 < 1+β <
γ/4, there exists a pair of stable homogeneous fixed points with U− = −U+, which in
turn implies that Γh,β = 0 and the front solution is stationary; see Figure 2.1. The
corresponding function Fh,β(u) has the inflection symmetry Fh,β(−u) = −Fh,β(u).
Note that the stationary solution of (2.1) is also an ε-independent solution of the full
system (1.1) with I(x) = −h, but it is not necessarily the only solution (see below).

2.2. The regime ε � 1. In the large ε regime, the neural field v varies on a
much faster time scale than u. Introducing the stretched time coordinate τ = t/δ
with δ = ε−1 � 1, we have

∂u(x, τ)

∂τ
= δ

(
−u(x, τ) +

∫ ∞

−∞
w(x− x′)f(u(x′, τ))dx′ − βv(x, τ) − h

)
,

∂v(x, τ)

∂τ
= −v(x, τ) + u(x, τ).(2.5)
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Fig. 2.1. Balance condition for the speed of a traveling wavefront in a scalar excitatory network
with u(x, t) = U(x−ct) such that U(∓∞) = U±. The solid curve is f(u) = 1/(1+e−γu) with γ = 8,
and the dashed line is g(u) = (1 +β)u+h. The wavespeed c is positive (negative) if the gray shaded
area is larger (smaller) than the black shaded area. (a) h = 0.5, β = 0.5 such that c = 0. (b)
h = 0.4, β = 0.5 such that c > 0.

To leading order in δ, u is independent of τ so that we can explicitly solve for v
according to

v(x, t) = v0(x)e−εt + u(x, t)(1 − e−εt).(2.6)

Thus after an initial transient of duration t ∼ O(ε−1), the field v adiabatically follows
the field u, with the latter evolving according to the scalar equation (2.1). It follows
that in the large ε regime there exists a unique traveling wave solution of the full
system with (u(x, t), v(x, t)) = (U(x− ct), V (x− ct)) such that (U, V ) → (U±, U±) as
ξ → ∓∞ and c = c(h, β), U± = U±(h, β). The front is stable in the large ε regime
provided that the solution of the corresponding scalar equation is stable, which is
found to be the case numerically. If Γh,β = 0, then the front is stationary and persists
for all ε but may become unstable as ε is reduced.

2.3. The regime 0 < ε � 1. In the small ε regime, additional front solutions
can be constructed that connect the two fixed points (u, v) = (U±(h, β), U±(h, β)).
This follows from the observation that the neural field v remains approximately con-
stant on the length scale over which u varies, that is, within the transition layer of
the front. Suppose that the system is prepared in the down state (U−, U−) and is
perturbed on its left-hand side to induce a transition to the upper state (U+, U+). In
this case v ≈ U− within the transition layer, and this generates a front propagating
to the right whose speed is approximately given by (2.3) with h → h + βU−, that
is, c = c(h + βU−, 0). If, on the other hand, the system is prepared in the up state
(U+, U+) and is perturbed on its right-hand side to induce a transition to the down
state (U−, U−), then a left-propagating front is generated with c = c(h + βU+, 0).
Note from (2.4) that

Γh+βU−,0 > Γh,β + β

∫ U+

U−

(u− U−)du, Γh+βU+,0 < Γh,β + β

∫ U+

U−

(u− U+)du

(2.7)

so that Γh+βU−,0 > Γh,β > Γh+βU+,0. Hence, the existence of fronts propagating in
opposite directions clearly holds when h, β are chosen such that Γh,β = 0.

3. Front bifurcation. The above analysis suggests that if Γh,β = 0, then at
some critical rate of feedback ε = εc, a pair of counterpropagating fronts bifurcate
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from a stationary front. Moreover, all the front solutions have the same asymptotic
behavior (U(ξ), V (ξ)) → (U±, U±) as ξ → ∓∞. Following along lines analogous to
Hagberg and Meron [8], we carry out a perturbation expansion in powers of the speed
c about this critical point, and we show that the stationary solution undergoes a
pitchfork bifurcation.

First, set I(x) = −h and (u(x, t), v(x, t)) = (U(x − ct), V (x − ct)) in (1.1) to
obtain the pair of equations

−cU ′ = −U + w ∗ f(U) − βV,

−cV ′ = ε[−V + U ],(3.1)

where U ′ = dU/dξ and ∗ denotes the convolution operator,

w ∗ U =

∫ ∞

−∞
w(ξ − ξ′)U(ξ′)dξ′.(3.2)

Suppose that β and h are fixed such that Γh,β = 0, and denote the corresponding
stationary solution by (U, V ). Expand the fields U, V as power series in c:

U(ξ) = U(ξ) + cU1(ξ) + c2U2(ξ) + · · · ,
V (ξ) = V (ξ) + cV1(ξ) + c2V2(ξ) + · · · .(3.3)

Note that the higher order terms Un(ξ), Vn(ξ), n ≥ 1, should all decay to zero as
ξ → ±∞, since the stationary solution already has the correct asymptotic behavior.
Also expand ε according to

ε = εc + cε1 + c2ε2 + · · · .(3.4)

Substitute these expansions into (3.1) and Taylor expand the nonlinear function f(U)
about U :

f(U) = f(U) +
∑
n≥1

fn(U − U)n, fn =
1

n!

dnf

dUn

∣∣∣∣
U=U

.(3.5)

Collecting all terms at successive orders of c then generates a hierarchy of equations for
the perturbative corrections Un, Vn. The lowest order equation recovers the conditions
for a stationary solution:

(1 + β)U + h = w ∗ f(U),

V = U.(3.6)

At order c we have

−U
′
= −U1 + w ∗ [f1U1] − βV1,

−V
′
= εc[−V1 + U1] + εc[−V + U ].(3.7)

The term −βV1 in the first line can be eliminated using the second. Since V = U , we
thus find that

MU1 =

(
β

εc
− 1

)
U

′
, V1 = U1 +

U
′

εc
,(3.8)
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where M is the linear operator

MU = −(1 + β)U + w ∗ [f1U ].(3.9)

Since the functions Un(ξ), Vn(ξ) decay to zero as ξ → ±∞, we will assume that M
acts on the space L2(R) and introduce the generalized inner product

〈U |V 〉 =

∫ ∞

−∞
f ′(U(ξ))U(ξ)V (ξ)dξ(3.10)

for all U, V ∈ L2(R). With respect to this space, M is self-adjoint and has the null

vector U
′1:

MU
′
= M†U

′
= 0.(3.11)

Applying the Fredholm alternative to (3.8) then gives the solvability condition

〈U ′|U ′〉
(
β

εc
− 1

)
= 0.(3.12)

Since f ′(U(ξ)) > 0 for all ξ, it follows that 〈U ′|U ′〉 > 0 and thus εc = β. This in

turn means that MU1 = 0 and hence U1 = AU
′
for some constant A. Since U

′
is the

generator of uniform translations, we are free to choose the origin such that A = 0.
Under this choice,

U1 = 0, V1 =
U

′

εc
.(3.13)

At order c2 we obtain

−U ′
1 = MU2 + β[−V2 + U2] + w ∗ [f2U

2
1 ],

−V ′
1 = εc[−V2 + U2] + ε1[−V1 + U1] + ε2[−V + U ].(3.14)

Substituting for −V2 +U2 in the first line, taking V = U , β = εc, and using equation
(3.13) then gives

MU2 =
1

εc

(
U

′′ − ε1U
′)

, V2 = U2 +
1

ε2
c

(U
′′ − ε1U

′
).(3.15)

Applying the Fredholm alternative to (3.15) yields the solvability condition

〈U ′|U ′′〉 = ε1〈U
′|U ′〉.(3.16)

In order to evaluate the inner product 〈U ′|U ′′〉, we use the result

(1 + β)
d2U

dξ2
=

∫ ∞

−∞
w(ξ − ξ′)

d2f(U(ξ′))

dξ′2
dξ′,(3.17)

1We could equally well proceed by taking the standard inner product 〈U |V 〉 =
∫ ∞
−∞ U(ξ)V (ξ)dξ.

The adjoint of M is then given by M†U = −(1 + β)U + f1w ∗ U , which has the null vector f1U
′

where f1 = f ′(U).
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which follows from differentiating (3.6) with respect to ξ and using the asymptotic
properties of w. Then

〈U ′|U ′′〉 =

∫ ∞

−∞
f ′(U(ξ))U

′
(ξ)U

′′
(ξ)dξ

=

∫ ∞

−∞

df(U(ξ))

dξ
U

′′
(ξ)dξ

=
1

1 + β

∫ ∞

−∞

∫ ∞

−∞

df(U(ξ))

dξ
w(ξ − ξ′)

d2f(U(ξ′))

dξ′2
dξ′dξ

=
1

1 + β

∫ ∞

−∞

∫ ∞

−∞

df(U(ξ))

dξ
w′(ξ − ξ′)

df(U(ξ′))

dξ′
dξ′dξ

= 0,(3.18)

since w′(ξ) is an odd function of ξ. Hence, ε1 = 0 and

MU2 =
U

′′

εc
, V2 = U2 +

U
′′

ε2
c

.(3.19)

At order c3 we obtain

−U ′
2 = MU3 + β[−V3 + U3] + 2w ∗ [f2U1U2] + w ∗ [f3U

3
1 ],

−V ′
2 = εc[−V3 + U3] + ε1[−V2 + U2] + ε2[−V1 + U1] + ε3[−V + U ].(3.20)

Substituting for −V2 + U2 in the first line, taking V = U , β = εc, ε1 = 0, and using
(3.13) and (3.19) then gives

MU3 =
1

ε2
c

(
U

′′′ − ε2εcU
′)

, V3 = U3 +
1

ε3
c

(U
′′′

+ ε2
cU

′
2 − ε2εcU

′
).(3.21)

Applying the Fredholm alternative to (3.21) yields the solvability condition

ε2 =
〈U ′|U ′′′〉
εc〈U

′|U ′〉
< 0.(3.22)

The sign of ε2 can be determined using (3.17),

〈U ′|U ′′′〉 =

∫ ∞

−∞
f ′(U(ξ))U

′
(ξ)U

′′′
(ξ)dξ

=

∫ ∞

−∞

df(U(ξ))

dξ
U

′′′
(ξ)dξ

= −
∫ ∞

−∞

d2f(U(ξ))

dξ2
U

′′
(ξ)dξ

= − 1

1 + β

∫ ∞

−∞

∫ ∞

−∞

d2f(U(ξ))

dξ2
w(ξ − ξ′)

d2f(U(ξ′))

dξ′2
dξ′dξ

< 0,(3.23)

since w(ξ) is an even, monotonically decreasing function of |ξ|. Hence ε2 < 0.
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Combining these various results, we find that

U(ξ) = U(ξ) + O(c2),

V (ξ) = U(ξ) +
c

εc
U

′
(ξ) + O(c2),(3.24)

and

ε = εc + c2ε2 + O(c3).(3.25)

Equation (3.25) implies that the stationary front undergoes a pitchfork bifurcation,
which is supercritical since ε2 < 0. (This assumes of course that the stationary front
is stable for ε > εc. This can be confirmed numerically, and also proven analytically
in the high gain limit; see section 5.) Close to the bifurcation point the shape of the
propagating fronts is approximately the same as the stationary front, except that the
recovery variable V is shifted relative to U by an amount proportional to the speed
c, that is,

U(ξ) ≈ U(ξ), V (ξ) ≈ U(ξ + c/εc).(3.26)

An analogous result was previously obtained for reaction–diffusion equations [8]. It
is important to emphasize that the occurrence of a pitchfork bifurcation from a sta-
tionary front does not require any underlying inflection symmetries of the nonlinear
function f (see also [2]). We only require that the scalar equation (2.1) supports a
stationary front for appropriate choices of h, β. The fact that the weight distribu-
tion w(x) is even means that there must be a pitchfork bifurcation from a stationary
solution rather than a transcritical bifurcation as in the case of a nonsymmetric w.

4. The effect of a weak input inhomogeneity. Now suppose that both ε
and h are allowed to vary. We then expect a codimension 2 cusp bifurcation in which
the pitchfork bifurcation unfolds into a saddle-node bifurcation, with the stationary
front replaced by a traveling front in the large ε regime. More interestingly, as in
the case of reaction–diffusion systems [16, 9, 2], the pitchfork bifurcation acts as an
organizing center for a variety of dynamical phenomena, including the formation of
breathers due to the presence of a weak input inhomogeneity or due to curvature (in
the case of two spatial dimensions). These breathers consist of periodic reversals in
propagation that can be understood in terms of a dynamic transition between the pair
of counterpropagating fronts that is induced by the weak intrinsic perturbation. Such
a transition involves an interaction between a translational degree of freedom and an
order parameter that determines the direction of propagation. In order to unravel
this interaction, it is necessary to extend the perturbation analysis of section 3 along
lines analogous to previous treatments of reaction–diffusion systems [16, 9, 2].

Suppose that the system (1.1) undergoes a pitchfork bifurcation from a stationary
state when ε = εc = β and I(x) = −h. Introduce the small parameter δ according to
ε−εc = δ2χ and introduce a weak input inhomogeneity by taking I(x) = −h+δ3η(x).
Since any fronts are slowly propagating, we rescale time according to τ = δt so that
(1.1) becomes

δ
∂u(x, τ)

∂τ
= −u(x, t) +

∫ ∞

−∞
w(x− x′)f(u(x′, τ))dx′ − βv(x, τ) − h + δ3η(x),

δ
∂v(x, τ)

∂τ
= (εc + δ2χ) [−v(x, τ) + u(x, τ)] .(4.1)
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Motivated by (3.24), we introduce the ansatz that, sufficiently close to the pitchfork
bifurcation, the solutions of (4.1) can be expanded in the form

u(x, τ) = U(x− p(τ)) + δ2u2(x, τ) + δ3u3(x, τ) + · · · ,

v(x, τ) = U(x− p(τ)) + δ
a(δτ)

εc
U

′
(x− p(τ)) + δ2v2(x, τ) + δ3v3(x, τ) + · · · .(4.2)

Here p is identified with the translational degree of freedom, whereas a represents
the order parameter associated with changes in propagation direction. Note that a is
assumed to evolve on a slower time scale than p. We now substitute the ansatz (4.2)
into (4.1) and expand in powers of δ along lines similar to the perturbation calculation
of section 3.

At order δ we find that

pτ = a,(4.3)

where pτ = dp/dτ . At order δ2 we obtain the pair of equations

Mu2 = a2U
′′

εc
, v2 = u2 + a2U

′′

ε2
c

(4.4)

after setting pτ = a. The solvability condition for (4.4) is automatically satisfied. At
order δ3 we have

∂u2

∂τ
= Mu3 + β[−v3 + u3] + η,

∂v2

∂τ
+

U
′
aτ̂
εc

= εc[−v3 + u3] − aχ
U

′

εc
(4.5)

with τ̂ = δτ . Using (4.4), the following equation for u3 is obtained:

Mu3 =
1

ε2
c

(
a3U

′′′ − aχεcU
′ − aτ̂εcU

′)− η.(4.6)

Applying the Fredholm alternative to (4.6) yields an amplitude equation for a:

aτ̂ = −χa + a3 〈U ′|U ′′′〉
εc〈U

′|U ′〉
− εc

〈U ′|η〉
〈U ′|U ′〉

.(4.7)

Finally, rescaling p, a, and η, we obtain the pair of equations

pt = a,

at = (εc − ε)a +
〈U ′|U ′′′〉
εc〈U

′|U ′〉
a3 − εc

〈U ′|η〉
〈U ′|U ′〉

.(4.8)

Note that U = U(x − p), so that the final coefficient on the right-hand side of (4.8)
will be p-dependent in the case of an inhomogeneous input η = η(x).

Cusp bifurcation for homogeneous inputs. It is clear from (4.8) that when η = 0
we recover the pitchfork bifurcation of a stationary front as found in section 3. In
particular, for ε < εc there are three constant speed solutions of (4.8) such that
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at = 0, Pt = a = c, corresponding to an unstable stationary front and a pair of stable
counterpropagating fronts with speeds

c = ±

√√√√(εc − ε)εc
〈U ′|U ′〉

|〈U ′|U ′′′〉|
.(4.9)

If η is nonzero but constant, on the other hand, the final term on the right-hand

side of (4.8) reduces to the constant coefficient εcη(f(U+)− f(U−))/〈U ′|U ′〉, and the
pitchfork bifurcation unfolds to a saddle-node bifurcation. There are two saddle-
node lines in the (η, ε)-plane corresponding to the condition dG(a)/da = 0, where
at = G(a):

ηsn = ± 2

3
√

3

(εc − ε)3/2

ε
1/2
c

〈U ′|U ′〉3/2

(f(U+) − f(U−))|〈U ′|U ′′′〉|1/2
,(4.10)

and the corresponding speed along these lines is

csn = ±

√√√√(εc − ε)εc
〈U ′|U ′〉

3|〈U ′|U ′′′〉|
.(4.11)

Hopf bifurcation for a weak inhomogeneity. The introduction of a weak input
inhomogeneity can lead to a Hopf instability of the stationary front. We shall illustrate
this by considering the particular example of the step inhomogeneity

η(x) =

{
s/2 if x ≤ 0,
−s/2 if x > 0

(4.12)

with s > 0. For such an input we find that

〈U ′|η〉 =
s

2
[2f(U(−p)) − f(U+) − f(U−)].(4.13)

Recall from section 2 that when h = 0.5 the homogeneous network with f given by
(1.2) supports a stationary front solution for which U± = ±0.5/(1+β), and U(0) = 0
such that f(U+) + f(U−) = 2f(0). Hence, (4.8) has a fixed point at p = 0, a = 0.
Linearization about this fixed point shows that there is a Hopf bifurcation of the
stationary front at ε = εc with Hopf frequency

ωH =

√√√√sεcf ′(0)|U ′
(0)|

〈U ′|U ′〉
.(4.14)

The supercritical or subcritical nature of the Hopf bifurcation can then be determined
by evaluating higher order terms in a, p. However, this is complicated by the fact
that we do not have an analytical expression for the stationary front solution U , in
contrast to the case of a reaction–diffusion equation with a cubic nonlinearity [2].
(Note that, as in the case of reaction–diffusion equations [2], one can develop a more
intricate perturbation analysis that takes into account O(δ2) inhomogeneities and
corresponding shifts in the Hopf bifurcation point. Here we have followed a simpler
approach in order to illustrate the basic ideas underlying the perturbative treatment
of the integro-differential equation (1.1).)
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5. Exactly solvable model. We now consider the high gain limit γ → ∞, for
which (1.2) reduces to f(u) = H(u− κ), where H is the Heaviside function H(u) = 1
if u > 0 and H(u) = 0 if u ≤ 0. The advantage of using a threshold nonlinearity is
that explicit analytical expressions for front solutions can be obtained, which allows
us to derive conditions for the Hopf instability of a stationary front without any
restrictions on the size of the input inhomogeneity. Numerical simulations of the
full system establish that the bifurcation is supercritical and that it generates an
oscillatory modulation of the stationary front in the form of a breather [3]. (For a
corresponding analysis of reaction–diffusion equations, see Prat and Li [13].)

5.1. Traveling fronts (homogeneous case). We begin by deriving exact trav-
eling front solutions of (1.1) for f(u) = H(u− κ) and a homogeneous input I(x) = 0.
That is, we seek a solution of the form u(x, t) = U(ξ), ξ = x − ct, c > 0, such that
U(0) = κ, U(ξ) < κ for ξ > 0 and U(ξ) > κ for ξ < 0. Setting v(x, t) = V (ξ), we then
have

−cU ′(ξ) + U(ξ) =

∫ 0

−∞
w(ξ − ξ′)dξ′ − βV (ξ),(5.1)

− c

ε
V ′(ξ) = −V (ξ) + U(ξ).(5.2)

Differentiating the first equation and substituting into the second, we obtain a second-
order ODE with boundary conditions at ξ = 0 and ±∞:

−c2U ′′(ξ) + c[1 + ε]U ′(ξ) − ε[1 + β]U(ξ) = −cw(ξ) − εW (ξ),

U(0) = κ,

U(∓∞) = U±,(5.3)

where

W (ξ) =

∫ ∞

ξ

w(y)dy.(5.4)

Here U± are the homogeneous fixed point solutions

U+ =
1

1 + β
, U− = 0.(5.5)

We have used the fact that w has unit normalization, W (−∞) ≡
∫∞
−∞ w(y)dy = 1. It

follows that a necessary condition for the existence of a front solution is κ < U+.
In order to establish the existence of a traveling front, we solve the boundary

value problem in the domains ξ ≤ 0 and ξ ≥ 0 and match the solutions at ξ =
0. For further mathematical convenience, we take the weight distribution to be an
exponential function

w(x) =
1

2d
e−|x|/d,(5.6)

where d determines the range of the synaptic interactions. We fix the spatial scale by
setting d = 1; a typical value of d is 1 mm. We first consider the case of right-moving
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waves (c > 0). On the domain ξ ≥ 0, the particular solution is U>(ξ) = κe−ξ, with κ
related to the speed c according to the self-consistency condition

κ =
c + ε

2(c2 + c[1 + ε] + ε[1 + β])
, c ≥ 0.(5.7)

In the domain ξ ≤ 0 the solution consists of complementary and particular parts:

U<(ξ) = A+eµ+ξ + A−eµ−ξ + Aeξ + U+,(5.8)

where

µ± =
1

2c

[
1 + ε±

√
(1 + ε)2 − 4ε(1 + β)

]
.(5.9)

The coefficient A is obtained by direct substitution into the differential equation for
U , whereas the coefficients A± are determined by matching solutions at the boundary
ξ = 0, that is, U<(0) = κ and U ′

<(0) = −κ. Thus we find

A =
c− ε

2(c2 − c[1 + ε] + ε[1 + β])
,(5.10)

A+ =
µ−U+ + (µ− − 1)A− (1 + µ−)κ

µ+ − µ−
,(5.11)

A− =
−µ+U+ + (1 − µ+)A + (1 + µ+)κ

µ+ − µ−
.(5.12)

In the limit β → 0 we recover the standard result for an excitatory network without
feedback [5]:

U(ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2(c + 1)
e−ξ for ξ > 0,

1 + (κ− 1)eξ/c +
1

2(c− 1)

[
eξ − eξ/c

]
for ξ < 0

(5.13)

with

κ =
1

2(c + 1)
, c ≥ 0.(5.14)

A similar analysis can be carried out for left-moving waves. Now the speed c is
determined by the particular solution in the domain ξ ≤ 0, which takes the form
U<(ξ) = −κ̂eξ + U+ with κ̂ = (1 + β)−1 − κ. This leads to the self-consistency
condition

κ̂ = − c− ε

2(c2 − c[1 + ε] + ε[1 + β])
, c ≤ 0.(5.15)

The existence of traveling front solutions can now be established by finding posi-
tive real solutions of (5.7) and negative real solutions of (5.15). For concreteness, we
will assume that the threshold κ is fixed and determine the solution branches as a
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Fig. 5.1. Plot of wavefront speed c as a function of ε for various values of β and a fixed
threshold κ = 0.25: (i) 2κ(1 + β) = 1, (ii) 2κ(1 + β) > 1, (iii) 2κ(1 + β) < 1. Stable (unstable)
branches are shown as solid (dashed) curves.

function of the feedback parameters ε, β with 1/κ − 1 > β > 0. The roots of (5.7)
and (5.15) can be written explicitly as

c =
1

2

⎡
⎣−(

1 + ε− 1

2κ

)
±

√(
1 + ε− 1

2κ

)2

− 4ε

(
1 + β − 1

2κ

)⎤⎦(5.16)

and

c =
1

2

⎡
⎣(1 + ε− 1

2κ̂

)
±

√(
1 + ε− 1

2κ̂

)2

− 4ε

(
1 + β − 1

2κ̂

)⎤⎦ .(5.17)

Using the fact that sign
(
1 + β − 1

2κ

)
= −sign

(
1 + β − 1

2κ̂

)
, we find that there are

three bifurcation scenarios, as shown in Figure 5.1:
(i) If 2κ(1 + β) = 1, then there exists a stationary front for all ε. At a critical

value of ε the stationary front undergoes a pitchfork bifurcation, leading to
the formation of a left- and a right-moving wave. This is the high gain limit
of the front bifurcation analyzed in section 3 for smooth f .

(ii) If 2κ(1 + β) > 1, then there is a single left-moving wave for all ε. There also
exists a pair of right-moving waves that annihilate in a saddle-node bifurcation
at a critical value of ε that approaches zero as β → 0.

(iii) If 2κ(1+β) < 1, then there is a single right-moving wave for all ε. There also
exists a pair of left-moving waves that annihilate in a saddle-node bifurcation
at a critical value of ε that approaches zero as β → 0.

5.2. Stability analysis of stationary fronts (inhomogeneous case). Sta-
tionary front solutions of (1.1) with f(u) = H(u−κ) in the case of an inhomogeneous
input I(x) satisfy the equation

(1 + β)U(x) =

∫ x0

−∞
w(x− x′)dx′ + I(x).(5.18)

Suppose that I(x) is a monotonically decreasing function of x. Since the system is no
longer translation invariant, the position of the front is pinned to a particular location
x0, where U(x0) = κ. Monotonicity of I(x) ensures that U(x) > κ for x < x0 and
U(x) < κ for x > x0. The center x0 satisfies

(1 + β)κ =
1

2
+ I(x0)(5.19)
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under the normalization
∫∞
0

w(y)dy = 1/2. Equation (5.19) implies that in contrast
to the homogeneous case, there exists a stationary front over a range of threshold
values (for fixed β); changing the threshold κ simply shifts the position of the center
x0. In the particular case of the exponential weight distribution (5.6), we have

(1 + β)U(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ex0−x

2
+ I(x), x > x0,

1 − ex−x0

2
+ I(x), x < x0.

(5.20)

If the stationary front is stable, then it will prevent wave propagation. Stability
is determined by writing u(x, t) = U(x) + p(x, t) and v(x, t) = V (x) + q(x, t) with
V (x) = U(x) and expanding (1.1) to first-order in (p, q):

∂p(x, t)

∂t
= −p(x, t) +

∫ ∞

−∞
w(x− x′)H ′(U(x′))p(x′, t)dx′ − βq(x, t),

1

ε

∂q(x, t)

∂t
= −q(x, t) + p(x, t).(5.21)

We assume that p, q ∈ L2(R). The spectrum of the associated linear operator is found
by taking p(x, t) = eλtp(x) and q(x, t) = eλtq(x). Using the identity

dH(U(x))

dU
=

δ(x− x0)

|U ′(x0)|
(5.22)

we obtain the equation

(λ + 1)p(x) =
w(x− x0)

|U ′(x0)|
p(x0) −

εβp(x)

λ + ε
.(5.23)

Equation (5.23) has two classes of solution. The first consists of any function p(x)

such that p(x0) = 0, for which λ = λ
(0)
± , where

λ
(0)
± =

−(1 + ε) ±
√

(1 + ε)2 − 4ε(1 + β)

2
.(5.24)

Note that λ
(0)
± belong to the essential spectrum since they have infinite multiplicity.

The second class of solution is of the form p(x) = Aw(x− x0), A �= 0, for which λ is
given by the roots of the equation

λ + 1 +
εβ

λ + ε
=

1

2|U ′(x0)|
.(5.25)

Since

U ′(x0) =
1

1 + β

[
I ′(x0) −

1

2

]
,(5.26)



FRONT BIFURCATIONS IN AN EXCITATORY NEURAL NETWORK 145

it follows that λ = λ±, where

λ± =
−Λ ±

√
Λ2 − 4(1 − Γ)ε(1 + β)

2
(5.27)

with

Λ = 1 + ε− (1 + β)Γ(5.28)

and

Γ =
1

1 + 2D
, D = |I ′(x0)|.(5.29)

We have used the fact that I ′(x0) ≤ 0. The eigenvalues λ± determine the discrete
spectrum.

5.3. Hopf bifurcation to a breathing front. Equation (5.27) implies that the
stationary front is locally stable, provided that Λ > 0 or, equivalently, the gradient of
the inhomogeneous input at x0 satisfies

D > Dc ≡
1

2

β − ε

1 + ε
.(5.30)

Since D ≥ 0, it follows that the front is stable when β < ε, that is, when the feedback is
sufficiently weak or fast. On the other hand, if β > ε, then there is a Hopf bifurcation
at the critical gradient D = Dc. The corresponding critical Hopf frequency is

ωH =

√
2Dcε(1 + β)

2Dc + 1
=

√
ε(β − ε).(5.31)

Note that the frequency depends only on the size and rate of the negative feedback
but is independent of the details of the synaptic weight distribution and the size of the
input. This should be contrasted with the corresponding Hopf frequency in the case
of a smooth nonlinearity f and a weak step-inhomogeneity; see (4.14). The latter
depends on the input amplitude and the form of the stationary solution U , which
itself depends on the weight distribution w.

In order to investigate the nature of solutions around the Hopf bifurcation point,
we consider the particular example of a smooth ramp inhomogeneity

I(x) = −s

2
tanh(γx),(5.32)

where s is the size of the step and γ determines its steepness. A stationary front will
exist provided that

s > s̄ ≡ |1 − 2κ(1 + β)|.(5.33)

The gradient D = sγ sech2(γx0)/2 depends on x0, which is itself dependent on β and
κ through (5.19). Using the identity sech2x = 1 − tanh2 x, it follows that

D =
γ

2s

(
s2 − s̄2

)
.(5.34)
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Fig. 5.2. Stability phase diagram for a stationary front in the case of a step input I(x) =
−s tanh(γx)/2, where γ is the steepness of the step and s its height. Hopf bifurcation lines (solid
curves) in s−β parameter space are shown for various values of ε. In each case the stationary front
is stable above the line and unstable below it. The shaded area denotes the region of parameter space
where a stationary front solution does not exist. The threshold κ = 0.25 and γ = 0.5.

Combining (5.30) and (5.34), we obtain an expression for the critical value of s that
determines the Hopf bifurcation points:

sc =
1

2γ

⎡
⎣β − ε

1 + ε
+

√(
β − ε

1 + ε

)2

+ 4s̄2γ2

⎤
⎦ .(5.35)

The critical height sc is plotted as a function of β for various values of ε and fixed
κ, γ in Figure 5.2. Note that in the homogeneous case (s = 0) a stationary solution
exists only at the particular value of β given by β = 1/(2κ)−1. This solution is stable
for ε > β and unstable for ε < β, which is consistent with the pitchfork bifurcation
shown in Figure 5.1. Close to the front bifurcation ε = β, the Hopf bifurcation
occurs in the presence of a weak input inhomogeneity, which is the case considered
in section 2. Now, however, it is possible to determine the bifurcation curve without
any restrictions on the size of the input.

Numerically solving the full system of equations (1.1) for a step input I(x), ex-
ponential weights w(x), and threshold nonlinearity f(u) = H(u − κ) shows that the
Hopf bifurcation is supercritical, in which there is a transition to a small amplitude
breather whose frequency of oscillation is approximately equal to the Hopf frequency
ωH . As the input amplitude s is reduced beyond the Hopf bifurcation point, the am-
plitude of the oscillation increases until the breather itself becomes unstable and there
is a secondary bifurcation to a traveling front. This is illustrated in Figure 5.3, which
shows a space-time plot of the developing breather as the input amplitude is slowly
reduced. Note that analogous results have been obtained for pulses in the presence
of stationary Gaussian inputs, where a reduction in the input amplitude induces a
Hopf bifurcation to a pulse-like breather [3, 6]. Interestingly, the localized breather
can itself undergo a secondary instability leading to the periodic emission of traveling
waves. In one dimension such waves consist of pairs of counterpropagating pulses,
whereas in two dimensions the waves are circular target patterns [6].
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Fig. 5.3. Breather-like solution arising from a Hopf instability of a stationary front due to a slow
reduction in the size s of the step input inhomogeneity (5.32). Here ε = 0.5, γ = 0.5, β = 1, κ = 0.25.
The input amplitude s = 2 at t = 0 and s = 0 at t = 180. The amplitude of the oscillation steadily
grows until it destabilizes at s ≈ 0.05, leading to the generation of a traveling front.

5.4. Locking to a moving input. We conclude our analysis of the exactly
solvable model by considering the effects of a moving input stimulus. This is inter-
esting from a number of viewpoints. First, introducing a persistent stationary input
into an in vitro cortical slice can damage the tissue, whereas a moving input (at least
if it is localized) will not. Second, in vivo inputs into the intact cortex are typically
nonstationary, as exemplified by inputs to the visual cortex induced by moving visual
stimuli. We consider the particular problem of whether or not a traveling front can
lock to a step-like input I(x) = I0χ(x− vt) traveling with constant speed v, where

χ(x) =

⎧⎨
⎩

−1, x > 0,
0, x = 0,

+1, x < 0.

Such a front moves at the same speed as the input but may be shifted in space relative
to the input.

We proceed by introducing the traveling wave coordinate ξ = x− vt and deriving
existence conditions for a front solution U(ξ) satisfying U(ξ) → 0 as ξ → ∞, U(ξ) →
(1 + β)−1 as ξ → −∞, and U(ξ0) = κ. Substituting into (1.1) gives

−vU ′(ξ) = −U(ξ) +

∫ ξ0

−∞
w(ξ − η)dη − βV (ξ) + I0χ(ξ),(5.36)

−vV ′(ξ) = ε(−V (ξ) + U(ξ)).(5.37)

Setting W (ξ) =
∫∞
ξ

w(η)dη, we can rewrite this pair of equations in the matrix form

LS ≡
(

vU ′ − U − βV
vV ′ + εU − εV

)
= −

(
NE

0

)
,(5.38)

where

S = (U, V )T , NE(ξ) = W (ξ − ξ0) + I0χ(ξ).(5.39)
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We use variation of parameters to solve this linear equation. The homogeneous prob-
lem LS = 0 has the two linearly independent solutions,

S+(ξ) =

(
β

m+ − 1

)
exp(µ+ξ),(5.40)

S−(ξ) =

(
β

m− − 1

)
exp(µ−ξ),(5.41)

where

µ± =
m±
v

, m± =
1

2

(
1 + ε±

√
(1 − ε)2 − 4εβ

)
.

By variation of parameters we define

S(ξ) = [S+(ξ)|S−(ξ)]

(
a(ξ)
b(ξ)

)
,

where [A|B] denotes the matrix whose first column is defined by the vector A and
whose second column is defined by the vector B. Then

LS = v
∂

∂ξ

(
[S+(ξ)|S−(ξ)]

(
a(ξ)
b(ξ)

))
−
(

1 β
−ε ε

)(
[S+(ξ)|S−(ξ)]

(
a(ξ)
b(ξ)

))

= v[S+(ξ)|S−(ξ)]
∂

∂ξ

(
a(ξ)
b(ξ)

)
,(5.42)

since LS± = 0. Thus (5.38) reduces to

[S+(ξ)|S−(ξ)]
∂

∂ξ

(
a(ξ)
b(ξ)

)
= −1

v

(
NE

0

)
.(5.43)

The matrix [S+(ξ)|S−(ξ)] is invertible. Introducing the vector-valued functions

Z+(ξ) =

(
1 −m−

β

)
exp(−µ+ξ),(5.44)

Z−(ξ) = −
(

1 −m+

β

)
exp(−µ−ξ),(5.45)

we have

[S+|S−][Z+|Z−]T = [Z+|Z−]T[S+|S−] = β(m+ −m−)I,

where I denotes the identity matrix. Multiplying (5.43) by [Z+|Z−]T finally yields the
first-order equation

∂

∂ξ

(
a(ξ)
b(ξ)

)
= − 1

vβ(m+ −m−)
[Z+(ξ)|Z−(ξ)]T

(
NE(ξ)

0

)
.(5.46)

In order to solve (5.46) we need to specify the sign of v. First, suppose that v > 0,
which corresponds to a right-moving front. Integrating over the interval [ξ,∞) gives(

a(ξ)
b(ξ)

)
=

(
a∞
b∞

)
+

1

vβ(m+ −m−)

∫ ∞

ξ

[Z+(η)|Z−(η)]T
(

NE(η)
0

)
dη,
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where a∞, b∞ denote the values of a, b at ∞. Since we seek a bounded solution S(ξ),
we must require that a∞ = b∞ = 0. Hence the solution is(

a(ξ)
b(ξ)

)
=

1

vβ(m+ −m−)

∫ ∞

ξ

[Z+(η)|Z−(η)]T
(

NE(η)
0

)
dη,

so that

S(ξ) =
1

vβ(m+ −m−)
[S+(ξ)|S−(ξ)]

∫ ∞

ξ

[Z+(η)|Z−(η)]T
(

NE(η)
0

)
dη.(5.47)

Further simplification occurs by introducing the functions

M±(ξ) =
1

v

(
1

m+ −m−

)∫ ∞

ξ

eµ±(ξ−η)NE(η)dη.

We can then express the solution for (U(ξ), V (ξ)) as follows:

U(ξ) = (1 −m−)M+(ξ) − (1 −m+)M−(ξ),(5.48)

V (ξ) = β−1(m+ − 1)(1 −m−) [M+(ξ) −M−(ξ)] .(5.49)

To ensure that such a front exists we require that U(ξ0) = κ, i.e.,

κ = (1 −m−)M+(ξ0) − (1 −m+)M−(ξ0).(5.50)

Taking w(x) = e−|x|/2 so that

W (ξ) =

⎧⎪⎪⎨
⎪⎪⎩

1 − 1

2
eξ, ξ < 0,

1

2
e−ξ, ξ ≥ 0,

we can calculate M±(ξ0) explicitly as

M±(ξ0) =
1

(m+ −m−)

(
1

2(v + m±)
− 1

m±
F (ξ0)

)
,

where

F (ξ0) =

⎧⎨
⎩

I0(2e
µ±ξ0 − 1), ξ0 < 0,

I0, ξ0 ≥ 0.

The case of a left-moving front for which v < 0 follows along similar lines by
integrating (5.46) over (−∞, ξ0]:

U(ξ) = (m− − 1)M̆+(ξ) − (m+ − 1)M̆−(ξ),(5.51)

V (ξ) = β−1(m+ − 1)(1 −m−)
[
M̆+(ξ) − M̆−(ξ)

]
,(5.52)
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Fig. 5.4. Locking of a traveling front to a moving step input with velocity v and amplitude I0.
Other parameter values are β = 1, ε = 0.1, κ = 0.25. Unshaded regions show where locking can occur
in the (v, I0)-plane. When I0 = 0 there are three front solutions corresponding to a stationary front
(v = 0) and two counterpropagating fronts, which is consistent with the front bifurcation shown
in Figure 5.1. Each of these solutions forms the vertex of a distinct locking region whose width
increases monotonically with I0 so that ultimately the locking regions merge.

where

M̆±(ξ0) =
1

(m+ −m−)

(
1

2

m± − 2v

m±(v −m±)
− 1

m±
G(ξ0)

)

and

G(ξ0) =

⎧⎨
⎩

−I0, ξ0 < 0,

I0(1 − 2eµ±ξ0), ξ0 ≥ 0.

This leads to the following threshold condition for v < 0:

κ = (m− − 1)M̆+(ξ0) − (m+ − 1)M̆−(ξ0).(5.53)

We can now numerically solve (5.50) and (5.53) to determine the range of input
velocities v and input amplitudes I0 for which locking occurs. For the sake of illustra-
tion, we assume the threshold condition 2κ(1 + β) = 1 and take ε < β. This ensures
that, in the absence of any input, there exists an unstable stationary front and a
pair of stable counterpropagating waves (see Figure 5.1). The continuation of these
stationary and traveling fronts as I0 increases from zero is shown in Figure 5.4. Since
2κ(1+β) = 1, equations (5.50) and (5.53) are equivalent under the interchange v → −v
and ξ0 → −ξ0. This implies that the locking regions are symmetric with respect to
v. For nonzero v the traveling front is shifted relative to the input such that ξ0 < 0
when v > 0 and ξ0 > 0 when v < 0. In other words, the wave is dragged by the input.

Figure 5.4 determines where locking can occur but not whether the resulting
traveling wave is stable or unstable. Indeed, the stability analysis of traveling fronts
is considerably more involved than that of stationary fronts. Nevertheless, we expect
that for sufficiently small I0 the locking regions around the counterpropagating fronts
are stable, whereas the central region containing the stationary front is unstable. On
the other hand, since β > ε, we know that the stationary front is stable for large
inputs I0 and undergoes a Hopf bifurcation as I0 is reduced. This suggests that the
Hopf bifurcation point at v = 0 lies on a Hopf curve within the locking region so that
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a traveling front locked to a moving input can also be destabilized as the strength of
the input is reduced (or as the input velocity changes relative to the intrinsic velocity
of waves in the homogeneous network). Recently, Zhang [19] analyzed the asymptotic
stability of traveling wave solutions of (1.1) in the case of homogeneous inputs by
deriving the associated Evans function and evaluating it in the singular limit ε � 1.
In future work we will extend this analysis to the case of inhomogeneous inputs and
finite ε, thus determining the stability of the locking regions shown in Figure 5.4. We
will also construct corresponding locking regions for traveling pulses in the presence
of moving Gaussian inputs, and numerically explore the types of oscillatory solutions
bifurcating from these waves.
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Abstract. We construct a continuum model for the motion of biological organisms experiencing
social interactions and study its pattern-forming behavior. The model takes the form of a conserva-
tion law in two spatial dimensions. The social interactions are modeled in the velocity term, which is
nonlocal in the population density and includes a parameter that controls the interaction length scale.
The dynamics of the resulting partial integrodifferential equation may be uniquely decomposed into
incompressible motion and potential motion. For the purely incompressible case, the model resembles
one for fluid dynamical vortex patches. There exist solutions which have constant population density
and compact support for all time. Numerical simulations produce rotating structures which have
circular cores and spiral arms and are reminiscent of naturally observed phenomena such as ant mills.
The sign of the social interaction term determines the direction of the rotation, and the interaction
length scale affects the degree of spiral formation. For the purely potential case, the model resembles
a nonlocal (forwards or backwards) porous media equation. The sign of the social interaction term
controls whether the population aggregates or disperses, and the interaction length scale controls
the balance between transport and smoothing of the density profile. For the aggregative case, the
population clumps into regions of high and low density. The characteristic length scale of the density
pattern is predicted and confirmed by numerical simulations.

Key words. aggregation, integrodifferential equation, pattern, swarming, vortex
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1. Introduction. Examples of collective motion abound in nature. Swarming,
schooling, flocking, and herding have been observed among zooplankton, locusts, fish,
birds, wolves, and other organisms; see [2, 21, 24] for discussions of some of these
groups. These biological aggregations all consist of individuals moving in a coordi-
nated manner, and yet they still represent a rich spectrum of phenomena [23]. For
instance, length scales of different swarms may vary widely, ranging up to 100 km2 in
cross-sectional area for African migratory locust swarms [11]. Groups may also have
different dimensionalities, from the three-dimensional rolling structure formed by the
locusts [11] to the flat, two-dimensional structure of vortex-like ant mills [26]. Aggre-
gations also vary in their degree of organization. Some groups, such as fish schools,
are made up of individuals with highly correlated velocities, while other groups, such
as mosquito swarms, accomplish their movement in a more disorganized manner [21].
Nonetheless, a common, remarkable aspect of these aggregations is that coordinated
movement is achieved even though interactions between individuals via sight, smell,
hearing, or other senses are typically limited to much shorter distances than the size
of the group. Swarming, then, constitutes an example of how a global structure can
arise from more localized rules.

While studies of emergent global structure and pattern formation have a long
history in the realm of physics [7], the corresponding endeavors in biology are more
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nascent. It is only over the past few decades that scientists have begun to address
swarming from a mathematical perspective. The mathematical investigations are
of interest not only because swarming is a widespread phenomenon, and not only
because it provides a rich example of biological pattern formation, but because ideas
from swarming have applications to other fields. For instance, swarming has recently
been used by engineers, computer scientists, and others as a paradigm for developing
efficient algorithms to accomplish routing, cooperative transport, and other tasks [5].

Previous theoretical investigations of swarms have been carried out in a wide va-
riety of mathematical settings. We briefly mention some of these here; an overview
of modeling issues is also available in sources such as [10, 19, 21]. One fruitful ap-
proach to modeling swarms has been to treat each individual as a discrete particle.
These “individual-based” models have been employed in quite a few biological and
mathematical studies, including [1, 8, 12, 13, 15, 18, 27, 29, 30]. These works be-
gin with simple rules of motion for each individual, involving some combination of
self-propulsion, random movement, and interaction with neighboring organisms. The
models typically take the form of coupled nonlinear difference or differential equations,
which may be stochastic or deterministic, depending on the particular ingredients of
each model. Numerical simulations have indeed revealed collective behavior. However,
a principal disadvantage of such models is that, for realistic numbers of individuals,
analytical results for the collective motion are difficult or impossible to obtain. It is
worth mentioning that some progress has been made in obtaining analytical results
for stationary groups. In [18], a discrete model is formulated, and a Lyapunov func-
tional is used to successfully predict an equilibrium state of equally spaced organisms.
However, to our knowledge, analytical (nonstatistical) descriptions of nonequilibrium
states in discrete swarming models are scarce.

Other investigations of swarming have been carried out in a continuum setting, in
which relevant quantities are described as scalar or vector fields. This approach was
perhaps first popularized in [20]; reviews are provided in [14, 19]. Continuum models,
such as those in [11, 15, 17, 29], may be constructed a priori or by coarse-graining a
particle model. In general, continuum models provide a convenient setting in which to
study large populations, since one may apply machinery from the analysis of partial
differential equations. In the context of swarming, the focus has generally been on
models in which the population density satisfies a convection-diffusion equation of the
form

ρt + ∇ · (�vρ) = ∇ · (D∇ρ).(1.1)

Here, ρ(�x, t) is the population density, �v(�x, t) is the velocity field, and �x is the (one-,
two-, or three-dimensional) spatial coordinate. This equation states that the density
is conserved while individuals travel with average velocity �v. The motion may involve
diffusion, whose strength is measured by D ≡ D(�x,�v, ρ).

Swarming models may also be classified as either dynamic or kinematic, depending
on how velocities are determined. In dynamic models, velocities are determined by
Newton’s second law. For continuum models, a dynamic rule would couple (1.1) to a
momentum equation for the velocity field, such as

�vt + �v · ∇�v = �f(�v) − �k(ρ,�v) + ν∇2�v + �Fext.(1.2)

Here, the left-hand side is the material (or convective) derivative; i.e., the time deriva-
tive in a reference frame moving with the velocity field �v. The right-hand side is simply
a sum of forces. The force �f represents the self-propulsion of individuals, and �k is a
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nonlocal force due to interactions with other members of the population, to be dis-
cussed momentarily. The remaining terms on the right-hand side of (1.2) represent
a “viscosity,” with strength proportional to ν, and an external (environmental) force
�Fext. An example of a dynamic model for swarming may be found in [15]. In that

work, ν = 0, �Fext = �0, and �f(�v) = α�v/|�v| − β�v, so that in the absence of social in-
teractions, individuals experience a self-propulsion of strength α in their direction of
motion and a frictional drag of strength β.

In contrast, in kinematic models such as that in [17], inertial effects are not impor-
tant. The motion of bodies is determined without consideration of the forces acting
upon them. For continuum models, then, the velocity does not satisfy a momentum
equation, but rather is simply a functional of the population density, i.e.,

�v = �V (ρ).(1.3)

The functional �V may include effects like those captured in (1.2), such as self-propulsion,
social interactions, and environmental influence.

The essence of animal aggregations is the presence of social interactions. (Here we
distinguish from animal “congregations,” which may arise when organisms gather at
a common attractant, such as a food or light source.) For the velocity equation (1.2),

these interactions are represented by the term �k(ρ,�v), and for (1.3), they are contained

in the functional �V (ρ). The social interaction terms might describe effects such as
attraction or repulsion between individuals sufficiently close to each other (a brief
review of attraction/repulsion between organisms is provided in [21]) or the tendency
of individuals to orient themselves similarly to their neighbors. Within the context
of continuum models, then, the social term takes the form of an integral operator
(most often of convolution form), and the governing equations are actually partial
integrodifferential equations, as in [15, 17].

One challenge associated with continuum models has been the difficulty of obtain-
ing swarm solutions with biologically realistic characteristics such as sharp boundaries,
relatively constant internal population densities, and long lifetimes [23]. For swarms
in one spatial dimension, some progress was made in [17], which also contains exten-
sive background and an associated literature review on this issue. We believe that
a related issue is the dimensionality of the model. Most continuum swarm models,
such as those in [11, 17, 31], have been investigated in only one spatial dimension. We
expect swarming dynamics in higher-dimensional models to be qualitatively different,
since those cases allow for organisms to vary their orientations continuously, as in the
“mill” or “vortex” states that have been observed in fish schools, ant colonies, and
other groups [3, 22, 23, 25, 26].

In this paper, we consider a two-dimensional continuum kinematic model for the
motion of biological organisms experiencing nonlocal social interactions, characterize
the dynamics which may occur, and explore the pattern-forming behavior. Our model
is general and abstract, since one of our goals in this paper is to highlight a difference
between the swarming problems for one and two dimensions. The possibility of ro-
tational motion in two spatial dimensions allows for cohesively moving swarms with
sharp boundaries and infinite lifetimes, even in the absence of a local drift velocity,
which is a key ingredient for one-dimensional models. Another goal is to demonstrate
a natural way of classifying swarming dynamics in two spatial dimensions, namely
by using the Hodge decomposition theorem. Our final goal is to determine explicitly
how properties of the social interaction terms (for instance, their associated length
scales and signs) affect the large-scale dynamics of the population. Throughout, we
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highlight connections between our continuum swarming model and fluid-dynamical
phenomena such as vortex patches and flow through porous media.

This paper is organized as follows. In section 2 we mention some results for
constant density traveling band solutions of a class of one-dimensional swarm mod-
els. These solutions, which are the appropriate mathematical descriptions of one-
dimensional swarms, rely on the presence of local drift in the model. These results
are presented for contrast with the two-dimensional case, the study of which consti-
tutes the bulk of this paper.

In section 3 we formulate an abstract kinematic model for the motion of biological
organisms experiencing nonlocal social interactions. We also discuss how the Hodge
decomposition theorem provides a useful way of understanding the two-dimensional
motion of the group, namely by decomposing it into incompressible motion and po-
tential motion.

In section 4 we focus on the case of incompressible motion. The resulting problem
bears many similarities to fluid-dynamical vortex patches. Since we wish to study the
motion of a biologically realistic swarm, we assume the initial condition to be a finite
group with constant internal population density and sharp edges (compact support).
We show that such a swarm retains these characteristics for all time. Numerical sim-
ulations demonstrate that the dynamics of the swarm are rotational, and that the
asymptotic states are vortex-like structures with circular cores and a potentially com-
plex arrangement of spiral arms. The sign of the social interaction term determines
the direction of rotation of the swarm, and the characteristic length scale of the in-
teractions determines the degree of spiral formation. The spiral states we observe are
qualitatively similar to the mill states observed in [3, 22, 23, 25, 26].

In section 5 we consider the complementary case of potential motion. In this case,
the resulting problem resembles a (forwards or backwards) porous media equation.
The sign of the social interaction term determines whether the interaction represents
nonlocal repulsion or attraction. These effects lead, respectively, to dispersion or
aggregation of the population. For the dispersive case, shorter interaction length
scales result in smoothing of the population density profile, while larger interaction
length scales lead to motion which is more convective. For the case of aggregation, a
simple linear stability analysis enables us to identify a maximally unstable wavelength
and thus to make a prediction about the characteristic length scale of the clumped
population distribution that will form. We demonstrate these results by means of
numerical simulations.

Finally, we conclude in section 6 with a brief summary and a discussion of direc-
tions for future investigation.

2. Elementary results for one-dimensional kinematic swarms. A detailed
investigation of a swarming model in one spatial dimension has been carried out in [17].
In that work, the population density ρ is assumed to obey (1.1). The kinematic
velocity rule is

v = aeρ + (Aa −Arρ)(K ∗ ρ), ae, Aa, Ar ∈ R.(2.1)

Here, the first term represents a local density-dependent drift. The remaining terms
are nonlocal components describing attraction and repulsion, with the asterisk oper-
ator having the meaning of convolution. Note that the repulsive effects are higher
order in the population density than are the attractive ones. The interaction kernel
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K is odd, piecewise constant, and has compact support. It is given by

K(x) =

{
1
2d if |x| ≤ r,

0 otherwise,
(2.2)

where d is an interaction length scale parameter that may be freely chosen.
Analysis and numerical simulations in [17] reveal that the model supports swarm

solutions with biologically realistic characteristics, namely, a nearly constant internal
population density and sharp edges. For density-independent diffusion, the cohesive
swarm has an exponentially long lifetime before the population is lost through “tails”
in the density profile. For the case of small density-dependent diffusion, the model
has true “traveling band” solutions which have compact support. In either case,
the cohesive motion of the swarm is achieved by an effective cancellation of the social
interactions. The internal density of the swarm is precisely that at which the attractive
and repulsive effects cancel each other, so that the only remaining component of the
velocity is local drift. We mention this for contrast with the results to be presented
later in this paper, which demonstrate a nonlocal, i.e., cooperative, means by which
a constant density swarm may move cohesively.

With purely nonlocally determined velocities, traveling band solutions are difficult
to obtain even in the absence of diffusion. We now mention some simple existence
and uniqueness results for one-dimensional swarms with no diffusion. The population
density ρ satisfies the convection equation

ρt + ∂x(vρ) = 0.(2.3)

We will show how, in one dimension, realistic velocity rules that are purely nonlocal
cannot lead to a constant-speed translation of the population, and thus cohesive
swarms cannot be maintained. Again, these results are presented for contrast with
the two-dimensional results given later in this paper.

Since we are interested in making statements about constant density swarms with
sharp boundaries, we make the constant-density traveling band (CDTB) ansatz

ρ(x, t) = ρ0WL(x− ct),(2.4)

WL(x− ct)v(x, t) = cWL(x− ct).(2.5)

Here, ρ0 is the constant population density, c is the speed of the traveling band, and
WL(x) is the window function defined without loss of generality as

WL(x) =

{
1 if x ∈ ΩL, ΩL = [0, L],

0 otherwise.
(2.6)

The ansatz (2.4)–(2.5) automatically satisfies the governing equation (2.3) in ΩL, the
support of ρ. Note that we have not placed any restrictions on the velocity field
outside the support of ρ since the velocity in unpopulated areas is irrelevant to the
propagation of the swarm.

We must also consider an equation defining the velocity field. For contrast, we
consider two velocity rules, each of which may be written as a (degenerate) version of
the generalized kinematic velocity rule

v(x, t) = F (ρ) + G1(ρ) [K1 ∗H1(ρ)] + G2(ρ) [K2 ∗H2(ρ)] .(2.7)
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This rule is a generalization of (2.1) from [17]. F is a functional which captures the
local density-dependence of the velocity. It represents the drift velocity of organisms,
irrespective of social forces. K1 and K2 are interaction kernels, and thus the G[K ∗H]
terms represent nonlocal effects which arise from repulsion and attraction between
organisms. G represents the strength of the interaction, and H represents the depen-
dence of the convolution on the population density. We will further assume that K1

and K2 are integrable. In contrast to [17], we will also assume that these interaction
kernels are decreasing in their arguments, so that the influence of the population on a
given organism’s velocity weakens with distance. We allow the functionals F,G,H to
be nonlinear for generality. We assume that F,G1, G2, H1, H2 are smooth, and that
H1(0) = H2(0) = 0, so that velocities from social interactions are induced only by
nonzero population.

The swarm density ρ0 and the constant band speed c must satisfy a consistency
condition via the velocity equation (2.7) in order for the ansatz (2.4)–(2.5) to be a
solution to (2.3).

We first consider the case F = 0, G2 = 0, so that (2.7) becomes

v = G1(ρ) [K1 ∗H1(ρ)] ,(2.8)

where the argument of ρ is understood to be z = x− ct. Equivalently, we may obtain
a rule of this form by choosing F = 0, G1 = G2, H1 = H2, so that

v = G1(ρ) [(K1 + K2) ∗H1(ρ)] ,(2.9)

and both attractive and repulsive effects are represented. Note that for these velocity
rules, in the absence of interactions, there is no underlying (i.e., local) drift velocity.

Combining (2.4)–(2.5) and (2.8), we obtain the consistency condition

WLc = WLG1(ρ0WL) [K1 ∗H(ρ0WL)] ,(2.10)

which may be rewritten as

c = G0
1H

0
1

∫ z

z−L

K1(ζ) dζ for z ∈ ΩL,(2.11)

where

G0
1 ≡ G1(ρ0)(2.12)

and

H0
1 ≡ H1(ρ0).(2.13)

By differentiating (2.11) with respect to z and applying the first fundamental
theorem of calculus, we see that

K1(z) = K1(z − L) for z ∈ ΩL.(2.14)

Thus, K1 satisfying (2.14) must be L-periodic on [−L,L] in order to admit a CDTB
solution. (The structure of K1 outside of [−L,L] is not relevant.) We will call the
set of such kernels Υ. The logical implication goes in the reverse direction as well, as
can be seen from writing down a Fourier series for K1 ∈ Υ, so that (2.11) is satisfied
if and only if K1 ∈ Υ. In this case, (2.11) becomes

c = G0
1H

0
1K

a
1 ,(2.15)
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where

Ka
1 ≡

∫ L

0

K(ζ) dζ.(2.16)

There may be families of traveling band solutions parameterized by c, which bifurcate
depending on the structure of the nonlinear functions G1 and H1.

It is important to realize that the choice K1 ∈ Υ is not biologically meaningful and
contradicts our earlier assumption regarding the spatial decay of interaction kernels.
As discussed above, biologically realistic kernels are expected to satisfy dK1/d|z| ≤ 0,
so that, for a given individual, the effect of other individuals does not increase with
distance. However, K1 ∈ Υ cannot satisfy dK1/d|z| < 0, so at best the kernel would
be a constant, but even this choice is not expected to be a good biological model,
except perhaps for very small L.

In contrast to the results just mentioned, we may now consider the case G2 = 0,
so that (2.7) becomes

v = F (ρ) + G1(ρ) [K1 ∗H1(ρ)] .(2.17)

Equivalently, we may choose K1 = K2, H1 = H2. (The velocity rule (2.1) in [17]
takes this form.) Note that now there is a local drift, a self-induced contribution to
the velocity, which is captured by F . Combining (2.4)–(2.5) and (2.17), we obtain the
consistency condition

WLc = WL {F (ρ0WL) + G1(ρ0WL) [K1 ∗H(ρ0WL)]} ,(2.18)

which may be rewritten as

c = F 0
1 + G0

1H
0
1

∫ z

z−L

K1(ζ) dζ for z ∈ ΩL.(2.19)

Here,

F 0
1 ≡ F1(ρ0),(2.20)

and H0
1 and G0

1 are given by (2.13) and (2.12).
There are two cases to consider. If H0

1G
0
1 �= 0, then (2.19) becomes

c− F 0
1

G0
1H

0
1

=

∫ z

z−L

K1(ζ) dζ for z ∈ ΩL.(2.21)

This is similar to the previous case. The condition (2.21) may be met only for K1 ∈ Υ,
in which case the existence and uniqueness of solutions depend on the structure of
(c− F 0

1 )/(G0
1H

0
1 ). For K1 /∈ Υ, CDTB solutions are not possible.

On the other hand, if H0
1G

0
1 = 0, then CDTBs are possible for any choice of

kernel K1. In this case, the number of possible CDTB solutions depends on the
number of roots of H0

1G
0
1 for positive ρ, of which there are expected to be a finite

number. Looking at the problem from the forward (rather than inverse) perspective,
for biologically realistic choices of K1, the velocity rule (2.17) will lead to a finite
number of CDTB solutions. The densities correspond to the solutions ρ∗0 > 0 of
H0

1G
0
1 = 0, and the wave speeds are given by F1(ρ

∗
0). Thus, the combination of local

and nonlocal velocity terms selects particular densities and band speeds, rather than
allowing entire families of solutions, as in the purely nonlocal case. The allowed CDTB
densities are those at which the nonlocal interactions disappear. Further, since we
imagine the total population to be fixed in number, this velocity rule actually dictates
preferred swarm sizes L. These conclusions are similar to those reached in [17] for the
particular choice of F1, G1, H1,K1 given by (2.1).
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3. A kinematic two-dimensional swarm model. For the remainder of this
paper, we study the dynamics of a two-dimensional swarming model. In constructing
our model, we make the following assumptions:

1. The population is conserved; birth, death, immigration, and emigration of
organisms are negligible on the time scale of the swarming dynamics.

2. The motion of organisms is due solely to social interactions, and thus velocities
depend nonlocally on the population density.

3. Interactions between organisms are pairwise.
4. The social interactions are a linear functional of the population density.
5. The social interactions depend only on the distance between organisms, and

become weaker with increasing distance.
Implicit in the second assumption is the supposition that random movement (e.g.,
due to fluctuations in the organisms’ medium, or noise in their ability to move) is
negligible. The third, fourth, and fifth assumptions are made for tractability of the
model. The third assumption is made so that interaction effects on a given organism
will be summable, and this will lead to a convolution in our model, similar to that of
the model in [17].

In the spirit of the work in [17], we construct an abstract model, and thus we do
not incorporate many biological specifics. Our model might be interpreted as a one
for “flat” (two-dimensional) groups in the absence of disturbances such as predators
or food sources. Even with the simple assumptions we have made, the dynamics are
complex. As discussed in section 6, relaxing some of our assumptions to obtain a
more biologically realistic model will be interesting for future work.

Under the assumptions described above, the model takes the form

ρt + ∇ · (�vρ) = 0,(3.1)

�v =

∫
R2

�K(|�x− �y|)ρ(�y) d�y ≡ �K ∗ ρ.(3.2)

Here, �x = (x, y) is the two-dimensional spatial coordinate. Note that (3.1) is sim-
ply (1.1) with D = 0, and (3.2) is a two-dimensional analogue of a degenerate case

of the velocity rule (2.7). �K is our two-dimensional social interaction kernel, which is
spatially decaying and isotropic.

Since our model includes no drift term, velocities decay in the far field, and we
may apply the Hodge decomposition theorem (see, for instance, [16]). This theorem
states that a vector field in the plane may be uniquely decomposed into a divergence-
free component and a gradient component. That is to say, the velocity may be written
as

�v = ψ + ∇Φ, ∇ · ψ = 0.(3.3)

For smooth vector fields decaying at infinity, the divergence-free part has a scalar
stream function Ψ satisfying ∇⊥Ψ = 0. Thus, we can write

�v = ∇⊥Ψ + ∇Φ.(3.4)

Using an analogy to fluid flow, we may think of Ψ as a stream function for the
incompressible part of the flow and Φ as a pressure due to interactions. For functions
with integrable gradients, convolution commutes with derivatives; i.e., (∇P ) ∗ ρ =
∇(P ∗ ρ). Thus, for the model (3.1)–(3.2), we can directly apply the Hodge decom-

position to the interaction kernel �K:

�K = ∇⊥N + ∇P,(3.5)
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where P models the interaction pressure (motion towards and away from concentra-
tions of density) and N models additional motion, which, as we will see, allows for
rotation and a cohesive swarm.

To better understand the model (3.1)–(3.2), we separate the dynamics into the
two cases which we have just discussed, namely incompressible motion and potential
motion. In the following two sections we study each case in turn, and demonstrate
how the macroscopic motion of the population is affected by the interaction kernel �K.

4. Incompressible motion. In this case,

�K = ∇⊥N(4.1)

so that ∇ · �v = 0. Incompressible motion in two spatial dimensions is the analogue of
translational drift in one dimension, in that they both allow for cohesive movement
of a swarm. However, while drift terms such as F (ρ) in (2.7) cannot lead to pattern
formation, incompressible velocities do lead to pattern formation (in particular, vortex
patterns, as we demonstrate below) for the two-dimensional case.

The governing equations (3.1)–(3.2) may be written compactly as

ρt + ∇ · [ρ(∇⊥N ∗ ρ)] = 0.(4.2)

We take the scalar interaction function N to be a Gaussian of width d; i.e.,

Gd(|�x|) ≡
1

d2
e

−|�x|2

d2 .(4.3)

One might include an additional constant prefactor, but this would represent a velocity
scale and may be removed by rescaling the time variable in the equations. The length
scale d could also be removed by rescaling, in which case the only parameter remaining
in the problem would be the initial condition. We choose to retain the length scale
parameter d since it has a clear biological interpretation and since it is more convenient
to vary than the length scale of the initial condition.

A Gaussian interaction was also considered for a linear stability analysis in [17].
Other works have used power functions or decaying exponentials [15, 18]. Our in-
teraction function has a somewhat different meaning than the ones used in those
previous works since it will be applied in two dimensions and thus has a rotationally
symmetric structure. We choose Gaussian interaction functions since they are biologi-
cally realistic (in terms of being spatially decaying) and because they have convenient
mathematical properties such as bounded norms and infinite differentiability. Many
of our qualitative results will hold true for other classes of smooth spatially decaying
interaction functions with normalized integral.

We begin by making some general statements about the effect of varying the
interaction length scale d. For very small values of d, the interaction function N
resembles a δ-function of strength π. For the limiting case d → 0, (4.2) may be
written as

ρt + π∇ · [ρ∇⊥ρ] = 0(4.4)

since ∇⊥ commutes with convolution and the δ-function acts as the identity under
convolution. A little algebra reveals that (4.4) is actually ρt = 0, and thus the
swarm will be stationary. This makes intuitive sense. In the case that motion is
perpendicular to population gradients in a completely local sense, the population
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density profile cannot change, by construction. Of course, in a Lagrangian frame
(tracking the coordinates of individual organisms) motion is possible, as long as it is
perpendicular to the gradient.

On the other hand, for very large values of d, N is nearly a constant, namely
zero. In the formal limit d → ∞, ∇⊥N = 0, and once again (4.2) becomes ρt = 0.
This result also makes intuitive sense. In this case, organisms can sense population
gradients infinitely far away, but these gradients have no influence on velocity since
social interactions are infinitely weak, and thus the organisms are stationary.

For simplicity, and for analogy with the results mentioned in section 2 and in
[17], we now focus on constant density solutions of compact support. That is to say,
we assume that the initial condition is a swarm patch with finite area and constant
population density ρ0. By making such a choice, we are not modeling the initial
formation of a constant-density swarm. Rather, this model should be interpreted as
a macroscopic description of a swarm in which attractive and repulsive forces have
already come into balance. We will study the subsequent movement of such a swarm.

We use Green’s formula to rewrite (3.1)–(3.2) as an integral over the boundary:

�v(�x) = ρ0

∫
∂Ω

N(|�x− �y|)�t(�y)ds(��y),(4.5)

where Ω is the support of ρ and the boundary ∂Ω is parameterized in a clockwise
orientation. Here s is the arc length, and �t is the unit tangent vector to the boundary.
Following the strategy from fluid dynamics, we adopt a Lagrangian framework and
track points on the boundary of the swarm patch. That is to say, we write down a
Lagrangian formulation of (4.5) which will be useful for numerical simulations. Taking
α to parameterize the boundary of the swarm, we have the equation for �z(α, t), the
patch boundary:

d�z(α, t)

dt
=

∫ 2π

0

N(�z(α, t) − �z(α′, t))�zα(α′, t)dα′,(4.6)

where the subscript α indicates a derivative along the boundary.
This equation describes a self-deforming curve (which encloses a constant area).

From a computational standpoint, this formulation is convenient because the dimen-
sion of the problem has been reduced by one. More importantly, we see that since the
boundary is a self-deforming curve, the swarm patch retains constant internal density
and compact support for all time. Equation (4.6) is similar to the contour-dynamics
formulation of the two-dimensional Euler equations [33], which describe how a fluid
region of constant vorticity, or a vortex patch, evolves in time. The difference is that
for the swarm patch case, the interaction function N is expected to be spatially decay-
ing in order to be biologically meaningful (cf. our modeling assumptions at the start of
section 3, and our choice in (4.3)), while for the vortex patch problem, N = 1

2π log |�x|.
Before presenting numerical results for our model, we remark on the smoothness

of the patch boundary, which historically, for the fluid vortex patches, has been a
subject of interest. It is now known that, for the fluid vortex patches, solutions
of (4.6) with smooth initial data stay smooth for all time [4, 6]. This turns out to be
the case for our present swarm patch problem as well. See the appendix for a sketch
of the proof.

Equation (4.6) may be solved numerically to find the evolution of the swarm patch
boundary. We now briefly describe our simple numerical algorithm. An initial swarm
patch shape is selected, and the boundary is discretized into n nodes. Depending on
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our initial condition, we take the initial number of Lagrangian nodes to be between
n = 40 and n = 60. The shape of the patch is evolved by using the discretized version
of (4.6). The position of each node may be updated by computing its velocity and then
using a time-stepping rule. We perform the spatial integral in (4.6) using Simpson’s
rule, which is an O(n2) operation. As a start-up procedure, we take three time steps
using a fourth-order Runge–Kutta method. However, since the Runge–Kutta method
involves many evaluations of the right-hand side of (4.6), it is computationally expen-
sive. Thus, we use a fourth-order multistep Adams–Bashforth rule for the remainder
of the time steps. We take a time step of size ∆t = 0.02. Checks are performed with
smaller time steps and varying initial discretizations of the swarm patch boundary to
verify that our solutions are sufficiently well converged.

Despite the fact that the boundary stays smooth, numerical simulations reveal
that it develops complex structure (as we show below), which is also a feature of
vortex patches. As the swarm patch evolves, it may be necessary to rediscretize the
boundary in order to have an accurate solution, i.e., to have a fine enough mesh
to capture new spatial complexity. Sophisticated “contour surgery” techniques have
been developed to address this issue for vortex patches; see, for example, [9]. We use
a simpler technique, which we apply at every time step. Nodes which are adjacent
with respect to the Lagrangian parameter α are checked for spacing. If the Euclidean
distance becomes too large, a node is inserted between them using linear interpolation.
Similarly, if nodes become too close together, they are replaced with a node whose
position is the spatial average of the original ones. While this latter step discards detail
below a certain length scale, we perform it nonetheless so that the total number of
nodes does not grow so quickly as to make the computation prohibitively slow. Finally,
we periodically perform a check to verify that the swarm-patch boundary is not self-
intersecting. (Self-intersection of the boundary would break the uniqueness of particle
paths which the problem must obey.) If the boundary is found to self-intersect, the
simulation is aborted and must be repeated with a finer threshold of spatial detail.

We note that, by symmetry arguments, a rotating disk is an exact solution to
(4.2) (though the rotation is not solid-body rotation). This is true for fluid vortex
patches as well; see [16] for a discussion. We assume that N is the Gaussian interaction
function given by (4.3) and calculate the resulting velocity of points on the swarm
boundary, a circle of radius R. After some algebra, we find the velocity |�v(R)|, from
which we may compute the period of rotation

T (D) =
2πR

|�v(R)| =
d2

ρ0
e

2R2

d2

{
I1

(
2R2

d2

)}−1

,(4.7)

where I1 is the modified Bessel function of the first kind of order one. Figure 4.1 shows
the period of rotation of the boundary, T (d), for a swarm patch of radius R = 1 and
population density ρ0 = 1. The exact expression (4.7) is plotted as a line, while data
from a numerical simulation, obtained by tracking one of the Lagrangian nodes, is
plotted as dots. These results not only serve as a check on our algorithm, but also
demonstrate our previous conclusions about the behavior of (4.2) in the limits d → 0
and d → ∞ for the particular case of a circular patch.

This example also illustrates the effect of the interaction function N on the direc-
tion of rotation. Since the boundary of the patch has a direction associated with its
parameterization, the rotation is clockwise or counterclockwise according to whether
the interaction function N is chosen to have, respectively, a positive or negative sign.
This limitation results from our choice of kinematic velocity rule. In the case of a
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Fig. 4.1. Period of rotation T for the boundary of a circular swarm patch under the model (4.2)
with the interaction function (4.3). Here, T is shown as a function of d, the interaction length scale
in (4.3). The line corresponds to the exact expression T = 2πR/|�v(R)| given by (4.7). The dots
correspond to a numerical simulation of the contour dynamics equation (4.6). For this example, the
radius of the patch is R = 1, and the constant population density is ρ0 = 1.

dynamic velocity rule, inertial effects would give any initial swarm patch a natural
direction of rotation. That is to say, for a dynamic rule, the swarm will have the free-
dom to nucleate a rotational state, for instance, as seen in simulations of the model in
[15]. For simplicity, we present simulations in which N has a positive sign, resulting
in clockwise rotation.

We now turn to a discussion of the behavior of the model for other (noncircular)
initial conditions and for intermediate values of d when some nontrivial evolution
occurs. We find that for the present case of incompressible velocity the dynamics are
characterized by an overall rotational motion. The solutions at sufficiently long times
are vortex-like, as we now illustrate with several examples.

Figure 4.2 shows the evolution of a swarm patch using the interaction func-
tion (4.3) with d = 1. The initial boundary of the population is the polar curve
r(θ) = 1 + (1/10)(cos 4θ). The square-like initial swarm patch experiences clockwise
rotation. At time t = 1, the beginnings of spiral arms are visible at the corners of the
patch, where the initial curvature was greatest. By time t = 3, the spirals have grown
longer and the core of the patch is becoming circular. This trend continues through
the end of the simulation at t = 10, at which point the spiral arms have grown even
longer and the core is nearly a perfect circle.

The evolution is qualitatively similar even for swarm patches whose initial shape
is far from circular. For instance, Figure 4.3 shows the evolution of an elongated
swarm patch, again with the interaction function (4.3) and d = 1. The boundary
of the initial shape is an ellipse with a major semiaxis of 1 and a minor semiaxis of
0.1. As with the previous example, the swarm patch rotates in a clockwise direction.
Spiral arms develop at the points of greatest curvature, and there is a movement of
the population towards a developing circular core, which is noticeable at time t = 8
and well defined by t = 10.
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Fig. 4.2. Evolution of a swarm patch under model (4.2). The boundary of the initial shape
is a polar curve with radius given by r(θ) = 1 + (1/10)(cos 4θ). The constant population density
is ρ0 = 1.The interaction function N is the Gaussian given by (4.3) with interaction length scale
d = 1. The constant density swarm patch rotates clockwise and develops spiral arms.

Finally, we comment that a similar evolution occurs even for irregularly shaped
swarm patches. Figure 4.4 shows the evolution of such a patch with the same inter-
action function as in the previous two examples. The initial shape is generated by
the polar function r = f(θ), where f is a superposition of cosine components with
randomly chosen amplitudes and randomly chosen low-integer frequencies. As with
the previous examples, the patch rotates clockwise, developing a circular core and an
irregular arrangement of spiral arms.

We have shown in this section that, in the case of incompressible motion, our
simple nonlocal kinematic model has constant density solutions of compact support.
It was seen directly from (4.2) that the evolution of any initial swarm patch slows for
very large or very small values of the interaction length scale d. For intermediate values
of d, numerical simulations demonstrated that the evolution of these swarm patches
is rotational, with the direction of motion set a priori by the sign on the interaction
function N . There is a movement of population towards the rotational center of the
swarm, where a circular core develops. Spiral arms form at regions of the boundary
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Fig. 4.3. Evolution of an elongated swarm patch under model (4.2). The interaction function N
is the Gaussian given by (4.3) with interaction length scale d = 1. The constant population density
is ρ0 = 1. The initial shape is an ellipse with a major semiaxis of 1 and a minor semiaxis of 0.1.
The patch eventually evolves into a circular core with two spiral arms.

where the curvature is very high. We saw that all of our numerical simulations
resulted in asymptotic vortex states reminiscent of those observed in bacteria [3], fish
[23], ants [26], cellular slime molds [25], and zooplankton [22]. Similar vortex-like
states have also been observed in discrete dynamic swarming models such as those in
[15, 8]. Of course, these discrete dynamic models are quite different from the model
we study here. As previously discussed, the direction of swarm rotation is necessarily
determined by the sign of the kernel in our kinematic model, whereas in dynamic
models, the swarm has the capability to nucleate a natural direction of rotation. The
work in [17] alludes to this difference between kinematic and dynamic models in the
context of one-dimensional motion; the difference is more dramatically highlighted by
considering the more general two-dimensional case.

We close this section by discussing the biological significance of incompressible
velocities. A common characteristic of biological swarms is their ability to move and
evolve in shape while maintaining a constant density. Within the class of kinematic
models, the general incompressible type of model we consider here is the only one
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Fig. 4.4. Evolution of an irregular swarm patch under model (4.2). The interaction function N
is the Gaussian given by (4.3) with interaction length scale d = 1. The constant population density
is ρ0 = 1. The initial shape is generated by the polar function r = f(θ), where f is a superposition of
cosine components with randomly chosen amplitudes and randomly chosen low-integer frequencies.
The patch eventually evolves into a circular core with an irregular arrangement of spiral arms. We
begin the simulation with 84 Lagrangian nodes on the swarm-patch boundary and end with 485 nodes.

which captures precisely this effect. Stated differently: for a constant density swarm
in which attractive and repulsive effects are in balance, organisms wishing to main-
tain constant population density must move with incompressible velocities. Potential
velocities, discussed in the next section, will lead to variations in population density.
Thus, one may think of the incompressible velocity terms as those which model the
aggregate cooperative dynamics of organisms striving to maintain equal spacing.

5. Potential motion. Some models based on potential forces are reviewed in
[21, 19]. For our model, potential motion means that

�K = ∇P,(5.1)

so that the model (3.1)–(3.2) may be written compactly as

ρt + ∇ · [ρ(∇P ∗ ρ)] = 0.(5.2)



SWARMING PATTERNS 167

We take the scalar interaction function P = ∓Gd, where Gd is the Gaussian distribu-
tion of width d given by (4.3). In section 4, we made the same choice for the scalar
interaction function N . In that case, the sign of N simply determined the direction
of rotation of the swarm. For the present case, we will see that the sign of P has
a much more dramatic effect on the evolution of the population. Specifically, it will
determine whether organisms disperse or aggregate, as we discuss in the following two
subsections.

5.1. Dispersion. Here, we take P = −Gd. Note that (5.2) has an analogy to
Darcy’s law for flow in porous media. In fact, in the limit d → 0, −Gd becomes
a δ-function of strength π, and the governing equation (5.2) is the porous media
equation. This is a well studied partial differential equation, and it possesses an exact
self-similar solution, called Barenblatt’s solution. For an initial population of size Q
placed at the origin, Barenblatt’s solution is

ρ(r, t) =

{
1
2π

√
Q
t − r2

8πt , r ≤ 2 (Qt)
1/4

,

0, r > 2 (Qt)
1/4

.
(5.3)

A discussion of the porous media equation as it relates to biological dispersal, along
with a more general statement of Barenblatt’s solution, may be found in [19]. In the
opposite limit d → ∞, i.e., when social interactions are extremely nonlocal, a bit
of algebra again reveals that the equation becomes simply the steady state ρt = 0.
The intuitive statement of this limiting case is similar to that in the previous section:
organisms can sense population gradients infinitely far away, but these gradients have
no influence on velocity because the strength of the social interactions is infinitely
weak.

For intermediate values of the interaction length scale d, the population density
profile experiences diffusion and convection. We may understand this better by writing
the governing equation (5.2) in an alternate form. After some algebra, we obtain

ρt = ∇ρ · (∇Gd ∗ ρ) + ρ(∇2Gd ∗ ρ).(5.4)

The first term on the right-hand side of (5.4) is convective and, due to the single
derivative on G, scales like 1/d4. In contrast, the second term is diffusive and scales
like 1/d6. Thus, for a given population density profile, as d is increased, we expect
that convection will be more dominant than diffusion.

We demonstrate the role played by the interaction length scale d by means of
numerical simulations. For these examples, we focus on a radially symmetric model,
so that the density ρ(r, t) is a function of the radial coordinate r, and the velocity v is
as given above. Note that if ρ is radially symmetric and P is also radially symmetric,
then the velocity field for this gradient flow points in the radial direction and is itself
radially symmetric. We solve the governing equation on the unit disk with boundary
condition ρ = 0 on the circumference. We use MacCormack’s method, which is
second-order accurate in space and time; see, for instance, [28]. We use n = 64 grid
points with time steps of ∆t = 1× 10−5 − 5× 10−4. Checks are performed with finer
meshes in space and time to verify that solutions are sufficiently well converged.

Two example simulations are shown in Figure 5.1. We choose as a random initial
condition the function

ρ(r, 0) = f(r)

{
1

2
+

1

2
tanh(5 − 15r)

}
.(5.5)
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Fig. 5.1. Time evolution of an identical random initial condition under (5.2) for two differ-
ent social interaction length scales in a radially symmetric geometry with the potential interaction
function P = −Gd given by (4.3). The graphs show the population density ρ versus the radial co-
ordinate r. (a) Interaction length scale d = 0.01. Interactions are very localized, and the dynamics
are similar to those of the porous media equation. The curve labeled “Barenblatt” is a snapshot of
the self-similar solution to the porous media equation given by (5.3) and should be compared to the
numerical solution at time t = 0.009. (See text for details). (b) Interaction length scale d = 0.5.
For this case of more nonlocal interactions, the population is convected away from the origin, and
the smoothing of the population density profile occurs more slowly.

Here, f(r) is created by superposing Fourier modes with low integer wave numbers
and random coefficients. Multiplication by the bracketed combination is carried out
so that the initial condition decays smoothly towards zero. For the first example,
this state is evolved with d = 0.01, so that social interactions are only very slightly
nonlocal. In this case, (5.2) is nearly the porous media equation, and the “bumpy”
initial condition quickly smooths out and approaches the parabolic profile given by
Barenblatt’s solution, which we verify in the following manner. We fit the numerical
solution at time t = 0.006 to (5.3). Then the numerical solution is evolved numerically,
and the fit to Barenblatt’s solution is evolved analytically. The two are compared
again at time t = 0.009. Both curves are contained in Figure 5.1(a). The curves
nearly overlay each other, and the maximum error between the two is 3%.

For contrast, we have taken the same random initial condition and integrated it
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with the more nonlocal interaction length scale d = 0.5. In this case, shown in Figure
5.1(b), Fourier modes are damped much more slowly, and the bumpy initial conditions
retain their shape much longer. The motion of the swarm is much more convective,
and the population is transported away from the origin.

5.2. Aggregation. In this case, we take P = Gd. Whereas P was strictly
negative in the previous subsection, it is now strictly positive, and this change has
dramatic consequences for the dynamics. Now the governing equation states that
velocities are up, rather than down, population gradients (nonlocally), so that the
population will tend to form groups.

We may understand this grouping by means of a linear stability analysis. To do
so, we consider small perturbations ρ̂ to a constant density steady state ρ0. Lineariz-
ing (5.2), we obtain

ρ̂t = −ρ0Gd ∗ ∇2ρ̂,(5.6)

and thus we see that the perturbation obeys a nonlocal backwards heat equation.

Taking a Fourier ansatz for the perturbation, i.e., ρ̂ = ρ̂0e
i(�k·�x+σt), we find that the

linear growth rate is given by

σ(k) = πρ0k
2e

−k2

(4d2) ,(5.7)

where k = |�k|. By computing the critical points of (5.7), we see that the most unstable
modes are those with wave number ku = 2/d. The growth of this most unstable mode
provides a mechanism for the clumping of organisms. We expect that extremely
localized interactions will lead to the formation of a larger number of small groups,
i.e., a density distribution pattern with a small characteristic length scale. On the
other hand, more nonlocal interactions will result in a smaller number of large groups,
i.e., a density distribution pattern with a larger characteristic length scale.

We confirm this prediction by means of numerical simulations. Using a pseu-
dospectral Fourier method with 128 modes on each axis, we integrate (5.2) on a
2π × 2π box with periodic boundary conditions. We choose the initial density distri-
bution to be ρ = 1 plus a small random perturbation constructed by superposing low
wave number (k < 15) Fourier modes with random coefficients. For time-stepping,
we initialize with a forward Euler step and then use a second-order Adams–Bashforth
method. Depending on the value of the interaction length scale d, we take time steps
of ∆t = 4× 10−5 − 1× 10−3. Checks are performed with different numbers of modes
and different time steps to verify convergence.

Our results are shown in Figure 5.2. Figure 5.2(a) shows the initial condition
used for the two simulations. Dark patches correspond to regions of higher density.
Figure 5.2(b) shows the center of the power spectrum of the initial perturbation,
which is noisy. Figure 5.2(c) shows the evolution of the state in Figure 5.2(a) at time
t = 0.132 with interaction length scale d = 0.4. Notice the patches of high population
density. By the linear stability arguments given above, the characteristic wave number
of the grouping pattern is predicted to be ku = 2/d = 5. Figure 5.2(d) shows a blow-
up of the center part of the power spectrum of the evolution of the perturbation. As
predicted, the strongest peaks are centered around the circle k = 5. Figures 5.2(e)
and 5.2(f) are analogous to 5.2(c) and 5.2(d), but at time t = 2.74 and with the more
nonlocal interaction length scale d = 1. In this case, fewer groups form, and they are
larger. The most unstable wave number from linear analysis is ku = 2, and indeed
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Fig. 5.2. Results from integrating (5.2) on a 2π×2π periodic box with interaction function P =
Gd given by (4.3). (a) Initial population density, given by ρ = 1 plus a small random perturbation.
(b) Center of the power spectrum of the initial perturbation. (c) Population density at t = 0.132
with interaction length scale d = 0.4. Note the formation of small, high-density groups. (d) Center
of the power spectrum of the perturbation at t = 0.132. The strongest peaks are at wave number
k = 5, which is the most unstable mode as predicted by linear analysis. Figures (e) and (f) are
analogous to (c) and (d), but data is taken at t = 2.74, and the longer interaction length scale d = 1
is used. In this more nonlocal case, the most unstable wave number is k = 2, and the population
clumps into fewer, larger groups.

this is the wave number corresponding to the strongest peaks in the power spectrum.
Finally, we comment that these simulations are not continued for longer times because
they experience exponential blow-up, due to the lack of any effects to counterbalance
the attractive forces in the model. See the appendix for a mathematical discussion of
the blow-up. Modifications to the model to prevent blow-up will be a key aspect of
future work, as mentioned in the next section.

6. Conclusions. Our work on biological groups in two dimensions is in the
spirit of the one-dimensional study in [17]. The overarching goal in this paper is to
make specific statements about how social interactions between organisms affect the
large-scale motion of a biological group. In summary, we formulated and studied a
simple kinematic continuum model which includes nonlocal spatially decaying social
interactions between individuals. We decomposed the dynamics of our model into
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incompressible motion and potential motion, or alternatively, motion perpendicular
to population gradients and motion along gradients.

Whereas a constant drift and cancellation of nonlocal effects are necessary for
maintaining a cohesive swarm in one dimension, this is not the case in two dimensions.
For the special case of an incompressible kernel, where organisms move perpendicular
to population gradients (in a nonlocal sense), the equations have constant density
solutions of compact support. Through numerical simulations beginning with a variety
of initial conditions, we showed that the dynamics for incompressible interactions are
rotational, and that swarm patches eventually develop vortex-like structure. This
rotational motion is a cooperative mechanism by which a swarm may maintain motion
and cohesion once potential (attractive and repulsive) effects have come into balance.
The sign of the social interaction term determines the direction of rotation, and the
social interaction length scale determines the degree of macroscopic group movement.
The observed asymptotic vortex states are intriguingly similar to actual mill vortices
seen in biological systems [3, 22, 23, 25, 26].

In contrast, potential kernels model repulsion or attraction between organisms.
For the repulsive case, the interaction length scale determines a balance between
diffusive motion and convective motion. Very localized interactions lead to greater
smoothing, while more nonlocal interactions result in slower smoothing but more
outward convection motion. For the attractive case, the length scale determines a
most-unstable mode, the growth of which results in the clumping of the population
into regions of high and low density.

This work leaves open many possibilities for future research using nonlocal con-
tinuum models and ideas from fluid dynamics. One route would be to conduct fully
two-dimensional simulations of biological groups under the simultaneous influence of
incompressible and potential interactions. Another would be to relax some of the
simplifying modeling assumptions made in section 3. The focus would be on more
complicated velocity rules containing both nonlocal and local components, each of
which may be nonlinear. Additional future work might consider dynamic, rather
than kinematic, velocity rules. These rules would take into account inertial forces
that might capture “phase changes” in animal group behaviors such as the transition
from milling to translational motion.

While a model ultimately should base interaction rules on specific biological so-
cialization functions of the organisms, field and laboratory data leading to such models
is, unfortunately, very limited. We hope that the general discussion of this paper will
help to focus further research in this direction. Furthermore, our results do suggest
some additional measurements for future experimental work. One such measurement
is motivated by our observation that (at least within the simple class of kinematic
models we have considered here) we see quite different kinds of patterns depending on
whether we consider incompressible or compressible motion. Thus, measuring local
density variations for different swarm morphologies might elucidate the relationship
between typical swarming patterns (like the vortex states) and the mechanisms that
create them. Additionally, careful measurements of the nucleation of such patterns
will also help in understanding the dynamics of their creation and their robustness to
disturbances and other influences.

Appendix. In this appendix we sketch proofs for two results mentioned in the
body of this paper, namely regularity of a swarm-patch boundary for the model
examined in section 4 and an exponential upper bound for the blow-up of the model
examined in section 5.2.
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A.1. Regularity of the boundary of swarm patches. In this subsection
we discuss the swarm-patch model of section 4 and the regularity of the swarm-patch
boundary. The boundary parametrized by �z(α, t) is a solution of the integrodifferential
equation

d�z

dt
= �v(�z, t), �v(�x, t) = �K ∗ ρ(�x, t), ρ(�x, t) = χΩ,(A.1)

where Ω(t) is the interior of the swarm patch.
If we consider the problem as an integrodifferential equation for ρ,

dρ

dt
+ �v · ∇ρ = 0, �v = �K ∗ ρ,(A.2)

where �K = ∇⊥N for a smooth radial function N decaying at infinity, then the
swarm patch is an example of a weak solution of this problem with initial condition
ρ0 ∈ L1 ∩L∞(R2). Existence and uniqueness of this problem can be proved following
the classical theory of Yudovich for vortex patches [32] which is also detailed in [16].
Such a discussion is beyond the scope of this paper. However, we present some
straightforward estimates that can be used to prove that the boundary of the patch
remains smooth if initially smooth, as in the case of vortex patches for which the
kernel �K is more singular (and the proof is correspondingly more difficult).

If the swarm density persists as the characteristic function of a domain Ω(t), then

it is uniformly bounded in L1 ∩L∞ for all time. Since �v = �K ∗ ρ with �K ∈ C∞, then
we have an a priori bound for all derivatives of �v, Dk�v < ∞ for all multi-indices k.
Smoothness of the patch boundary then follows from the fact that the map �z satisfies
the ODE (A.1) with initial condition

�z|t0 = �z0(α)(A.3)

for smooth �z0. Since �v is C∞ by standard regularity theory for solutions of ODEs, we
see that �z itself is smooth. Note that the mapping �z cannot develop a critical point
at a later time t because the Lagrangian derivative of �z, �zα satisfies the ODE

d�zα
dt

= ∇�v |�z(α,t) �zα.(A.4)

Since ∇�v is bounded for all time, �zα remains bounded away from zero and infinity if
it is so bounded at time zero, by Grönwall’s lemma.

A.2. Boundedness of the swarm density for a general velocity rule. In
section 5.2 we presented numerical computations that showed ρ(�x, t) can exhibit blow-

up when the convolution kernel �K = ∇P = ∇Gd is positive. In the limit as d → 0
this formally corresponds to a backward time porous media equation.

Here we derive an a priori bound that shows that, for a smooth kernel of any
sign, the maximum of ρ is bounded by an exponential in time. Thus the blow-up seen
numerically must be an infinite time blow-up, not finite time. The bound we derive
depends on the L∞ norm of the convolution kernel. Thus as d → 0, the bound itself
becomes unbounded, as it should because we are approaching the ill-posed limit in
the positive kernel case.

In Eulerian coordinates, ρ satisfies a reaction convection equation

ρt + �v · ∇ρ = −ρ∇ · �v.(A.5)
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This problem can be transformed to Lagrangian coordinates using the method of
characteristics. Let �X(α, t) denote the solution of the ODE

d �X

dt
= �v( �X, t), �X|t=0 = α.(A.6)

Then in the Lagrangian coordinate α, ρ satisfies

dρ

dt
= −(∇ · �v)| �X(α,t)ρ.(A.7)

Thus we have a differential inequality for the L∞ norm of ρ,

d

dt
‖ρ‖L∞ ≤ C‖∇ · �v‖L∞‖ρ‖L∞ .(A.8)

Since ρ is a density, it has an a priori L1 bound,∫
ρ(�x, t)d�x =

∫
ρ(�x, 0)d�x = ‖ρ‖L1 .(A.9)

Since �v = �K ∗ ρ for smooth �K, we have

‖∇ · �v‖L∞ ≤ ‖∇ · �K‖L∞‖ρ‖L1 .(A.10)

Combining this with (A.8) and the a priori bound on the L1 norm of ρ, we have

d

dt
‖ρ‖L∞ ≤ C‖ρ‖L1‖ρ‖L∞ , C = ‖∇ · �K‖L∞ .(A.11)

Grönwall’s lemma then gives

‖ρ‖L∞ ≤ exp (C‖ρ0‖L1t)‖ρ0‖L∞ .(A.12)
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Abstract. A nondimensional model of the multifrequency radiation diffusion equation is derived.
A single material ideal gas equation-of-state is assumed. Opacities are proportional to the inverse
of the cube of the frequency. Inclusion of stimulated emission implies a Wien spectrum for the
radiation source function. It is shown that the solutions are uniformly bounded in time and that
stationary solutions are stable. The spatially independent solutions are asymptotically stable, while
the spatially dependent solutions of the linearized equations approach zero.
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1. Introduction. This paper derives asymptotic stability properties for a sys-
tem of equations modeling the frequency dependent radiation diffusion equation cou-
pled to the matter energy balance equation. In order to obtain a tractable system, we
simplify the equations and first derive a system in nondimensional form. Our derived
system preserves the salient features of the original dimensional set of equations—in
particular, frequency dependent opacities and a nonlinear relationship between the
matter temperature and the radiation emission term. We assume matter to consist
of a single material characterized by an ideal gas equation-of-state, i.e., a specific
energy proportional to temperature. In the analysis, we impose zero flux boundary
conditions on the radiation field. However, since we are interested in studying how
the two fields (radiation and temperature) equilibrate, and since the radiation diffu-
sion equation is itself derived assuming near isotropy, i.e., short mean free paths, our
boundary condition is not overly restrictive.

We begin with the multifrequency radiation diffusion equations (CGS units)

∂tuν = ∇Dν∇uν + c κν (Bν − uν ) ,(1)

ρ∂te = − c

∫ ∞

0

dν κν (Bν − uν ) .(2)

Equations (1)–(2) simulate diffusive transport and emission-absorption. The equa-
tions do not contain scattering or effects due to fluid motion (advection and spectral
shifts.) The variable uν (erg sec cm−3) represents the spectral energy density of the
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radiation field, ν (sec−1) is the frequency coordinate, ρ is the mass density (assumed
fixed), and e is the matter specific energy density. The latter’s temporal derivative is
expressed in terms of the specific heat cv and the matter temperature T ,

∂te =
∂e

∂T
∂tT

.
= cv∂tT.(3)

On the right side of (1), the diffusion coefficient Dν = c/3κν , where c is the speed
of light and κν (cm−1) is the inverse mean free path.1 (In most applications, Dν is
modified by including the total scattering cross-section (Mihalas and Weibel-Mihalas
[9]) and a flux limiter (Lund and Wilson [7].) Section 6 discusses how such general-
izations impact our model. The coefficient κν is a complicated function of frequency.
In this paper, we consider one valid for free-free transitions [12],

κν = (2π/3m3
ek)1/2 (4Z2

e e
6N+Ne/3hc) T

−1/2 ν−3 ,(4)

where me is the electron mass, k is the Boltzmann constant, Ze is the ionic charge, e
is the fundamental charge, N+ and Ne are the number densities (# cm−3) of the ions
and free electrons, and h is the Planck constant. We focus our attention on a fully
ionized hydrogen plasma of density ρ. Thus, Ze = 1, and N+ = Ne = ρA, where A is
the Avogadro constant. This implies that

κν = κ0 ν−3 , κ0 = 1.34 · 1056 ρ2/
√
T .(5)

In order to obtain a tractable set of equations, we ignore the weak temperature de-
pendence of κ0 and, since ρ is assumed to be fixed, absorb ρ2/

√
T into κ0.

2 Thus,
taking characteristic values for ρ and T , we let κ0ρ

2/
√
T → κ0. Since κν has units of

cm−1, κ0 now has units of cm−1 sec−3.
Last, we define the radiation emission term Bν . To simplify the algebra, instead

of the usual Planck function we assume a Wien distribution and write

Bν = (8πh/c3) ν3 exp(−hν/kT ).(6)

The difference between (6) and the Planck function is that the latter replaces the
exponential term with [exp(hν/kT ) − 1]−1. For our purposes, this is of little conse-
quence. Both distributions, Planck and Wien, have the same exponential decay at
high frequencies. At low frequencies, (6) and the Planck function are proportional to
ν3 and ν2, respectively. Equation (6) and the Planck function peak at hν/kT = 3
and 2.82, respectively. Also, the frequency integrated emission term∫ ∞

0

dν Bν = 7.00 · 10−15 T 4 ,

which is approximately 8% less than the Planck result, 7.56 · 10−15 T 4. The relative
error of the two distributions, (Planck − Wien)/Planck = exp(−hν/kT ). Thus, the
error is greatest at ν = 0, but at the peak of the Planck function, the error is less
than 6%.

We now derive the nondimensional system of equations and begin by choosing
characteristic values for the density ρ, specific heat cv, and temperature T0. As

1Some authors express the mean free path as (ρκν)−1, where κν (cm2/g) is the opacity.
2Section 6 discusses the effect of keeping the 1/

√
T dependence of κν .
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mentioned above, incorporating these values into (5) yields κν = κ0ν
−3. Denoting the

normalization values with zero subscripts and the normalized variables with primes,
we define ν′ = ν/ν0, T

′ = T/T0, u
′ = u/u0, t

′ = t/t0, and if x is the spatial coordinate,
x′ = x/x0. This implies that κν = κ0(ν0ν

′)−3, ∂t = (1/t0) ∂t′ , ∇ = (1/x0)∇′, etc.
The constants ν0, t0, etc. may be expressed in terms of the original three, ρ, cv, and
T0. The choices

ν0 = kT0/h ,

t0 = ν3
0/(c κ0) ,

x0 = ν3
0/(

√
3κ0) ,

u0 = 8π h ν3
0/c

3 ,

R = ρ cv c
3/(8π k ν3

0)(7)

yield the desired system,

∂tu = ∇ · ν3 ∇u + (ν3e−ν/T − u ) / ν3 ,(8)

R∂tT = −T +

∫ ∞

0

(u/ν3) dν ,(9)

where u = u(x, t, ν) and T = T (x, t). In (8)–(9) and henceforth, we drop the primes
from the nondimensional variables, t, ν, u, etc. Note that the first term on the right
side of (9) stems from integrating over frequency, i.e.,∫ ∞

0

dν (ν3e−ν/T )/ν3 =

∫
dν e−ν/T = T .

It is instructive to choose characteristic values for T0, ρ, and cv and evaluate
the normalization constants in (7). For example, the choices T0 = 105 ◦K, ρ =
10−6 g cm−3, and cv = 108 erg/(g ◦K) imply ν0 = 2.08 · 1015 Hz (≈ 10 eV), t0 =
7.12 · 10−7 sec, x0 = 1.24 · 104 cm, u0 = 5.59 · 10−11 erg sec/cm3, and R = 85.8. Note
that the above value for ν0 corresponds to a wavelength λ0 = 1.44 · 10−5 cm, which
lies just outside the so-called near UV range 2–4 · 10−5 cm.

The nondimensional equations (8)–(9) preserve important properties of the origi-
nal system (1)–(2). Conservation of total energy follows by ignoring boundary fluxes
(e.g., by imposing homogeneous Neumann boundary conditions on u) and integrating
the total energy density RT +

∫
dν u over the spatial domain. The high frequency

photons, i.e., u with large ν, in (8)–(9) are characterized by fast transport and slow
absorption. In (8), 1/ν3 plays the role of a coupling coefficient, the low frequen-
cies coupling the fastest. Matter preferentially emits radiation into frequencies where
ν3 e−ν/T is maximal.

Before launching into our theme, we summarize previously published related work.
Andreev, Kozmanov, and Rachilov [1] consider the system coupling the matter energy
equation to either the equation of radiative transfer (i.e., for the radiation intensity
I) or to the radiation diffusion equation. They examine the grey, i.e., frequency-
integrated, as well as the spectral cases. Andreev, Kozmanov, and Rachilov assume
Dirichlet boundary conditions; that is, the incoming intensity is specified, or, in the
diffusion limit, the radiation energy density. Isotropic scattering is included in the
transfer equation. Assuming existence of solutions, the paper proves a maximum
principle (MP), viz., that the solution is bounded by the initial data and the boundary
values. The paper does not discuss whether the equilibrium solution is an attractor.
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Mercier [8] considers the system coupling the spectral radiative transfer and mat-
ter energy equations. The system includes Thomson scattering, i.e., no energy ex-
change due to scattering. By applying the theory of accretive operators, Mercier
shows that (1) a solution exists, (2) the solution is bounded by the initial and bound-
ary data, and (3) as time progresses, the distance between the solution and the equi-
librium point decreases, i.e., the latter is an attractor. Mercier makes the following
assumptions regarding the behavior of the coefficients of the equations: The matter
internal energy has a positive minimum and the specific heat has a finite upper bound.
For the opacity κ, there is Lipschitz continuity with respect to T , a finite upper bound
for all frequency, and κ decreases with T . And radiation emission κB increases with
T . These assumptions are largely satisfied by our model, with the exceptions that our
κ diverges with decreasing frequency (as ν−3) and that κ is independent of T .

The existence of an MP has implications for the design of numerical methods for
these equations. Ideally, the schemes should also satisfy an MP. In [6], Larsen and
Mercier apply the theoretical work of [1] and [8] to analyze the Monte Carlo method
of Fleck and Cummings [5]. Larsen and Mercier prove that for sufficiently small time
steps, the algorithm does satisfy the MP but that it fails to do so for large time
steps. The analysis is confirmed by their numerical simulations and by Fleck and
Cummings’s own results [5, Figure 4, p. 332].

There are two competing Monte Carlo schemes for the equations of radiative
transfer. One is the previously mentioned one of Fleck and Cummings [5]; another
is the method of Carter and Forest [2]. Both schemes rewrite the matter energy
equation in terms of the integrated radiation energy density function ur(T ) = aT 4,
where a is the radiation constant. The schemes require a value of ur throughout
the course of the time step, but they differ in how that term is approximated. The
choice of approximation impacts the stability of the scheme, i.e., whether or not the
numerical solution satisfies the MP. In [3], Densmore and Larsen apply the Larsen
and Mercier analysis [6] to the Carter–Forest scheme. Densmore and Larsen’s analysis
shows that the Fleck–Cummings scheme appears to allow larger time steps than the
Carter–Forest scheme before the numerical solution violates the MP. The analysis is
confirmed by numerical results on a problem simulating radiative flow into initially
cold matter.

In this paper, we extend the work just cited by analyzing the rate at which
solutions equilibrate. Since our interests lie with the multifrequency radiation diffusion
equations, we restrict our attention to the normalized system derived above.

We now summarize the rest of the paper. Section 2 confirms that solutions
are positive and uniformly bounded by the initial conditions. Section 3 shows that
the stationary solution is unique and if the initial conditions of a given problem lie
within an envelope about the stationary solution, so does the solution for all time. In
section 4, we consider a linearized form of (8)–(9) and prove that a small perturbation
about the stationary solution decays to zero exponentially fast if the perturbation is
spatially varying. Section 5 considers the nonlinear system (8)–(9) and shows that
nonspatially varying perturbations also decay to zero. However, we are unable to give
an estimate for the rate of decay and surmise that the decay may be slow. A summary,
motivation for this work, and a description of ongoing related research appear in
section 6. Section 6 also discusses the impact that more realistic assumptions, e.g.,
nonideal gases, have on our model.
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2. A priori bounds. Let U be an open, bounded, and connected subset of R3

with smooth boundary. We consider the equations

∂tu(x, t, ν) +
1

ν3
u(x, t, ν) = ν3∆u(x, t, ν) + e−ν/T (x,t),(10)

R∂tT (x, t) + T (x, t) =

∫ ∞

ν=0

u(x, t, ν)

ν3
dν(11)

for x ∈ U , t > 0, and 0 < ν < ∞ with boundary conditions

∂u

∂n
(x, t, ν) = 0, x ∈ ∂U,(12)

and initial conditions

u(x, 0, ν) = u0(x, ν), T (x, 0) = T0(x), x ∈ U.

Here T (x, t) is the matter temperature at position x and time t, u(x, t, ν) denotes

the radiation energy density at frequency ν, and ∆u =
∑3

i=1 ∂
2
xi
u. The constant R is

positive.
Lemma 1. Let u(x, t, ν), T (x, t) be smooth solutions of (10)–(12). If

0 ≤ u(x, 0, ν) ≤ ν3e−ν/T2 and 0 < T (x, 0) < T2,

then, for t > 0,

0 < u(x, t, ν) < ν3e−ν/T2 and 0 < T (x, t) < T2.

Remark. Lemma 1 shows that the solutions of (10)–(12) are uniformly bounded
in time. This is to be expected as the temperature and the radiation energy are
nonnegative quantities and there is no energy flowing through the boundary. The
result is also valid when U is a box with periodic boundary conditions.

Proof. The idea is to rewrite (10)–(11) as integral equations and use proof by
contradiction. It follows from (10) that for each ν > 0,

∂t(e
t/ν3

u) = ν3∆(et/ν
3

u) + et/ν
3

e−ν/T .

Using Duhamel’s principle [4, p. 49], we obtain

u(x, t, ν) = e−t/ν3

∫
U

Gν(x, y, t)u(y, 0, ν)dy

+

∫ t

s=0

e−(t−s)/ν3

∫
U

Gν(x, y, t− s)e−ν/T (y,s)dy ds .(13)

Here Gν(x, y, t) is the Green’s function for ∂tw = ν3∆w with Neumann boundary
conditions. From (11) we see that

∂t(e
t/RT ) =

et/R

R

∫ ∞

ν=0

u

ν3
dν.
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Integrating with respect to t and using (13) yield

T (x, t) = e−t/R T (x, 0)

+

∫ t

τ=0

e−(t−τ)/R

R

∫ ∞

ν=0

e−τ/ν3

ν3

∫
U

Gν(x, y, τ)u(y, 0, ν)dy dν dτ

+

∫ t

τ=0

e−(t−τ)/R

R

∫ ∞

ν=0

∫ τ

s=0

e−(τ−s)/ν3

ν3

∫
U

Gν(x, y, τ − s)e−ν/T (y,s)dydsdνdτ.(14)

To bound T we assume that either minŪ T (x, t) = 0 or maxŪ T (x, t) = T2 for
some t > 0. Let t2 be the smallest such t. Then 0 < T (x, t) < T2 for 0 ≤ t < t2.
Since T0 > 0, Gν > 0, u0 ≥ 0, R > 0, and e−ν/T > 0, for t < t2 we conclude from
(14) that T (x, t2) > 0. Thus, the upper bound must hold at t = t2. Let x2 define the
point where T (x2, t2) = T2. Recall that

∫
Gνdy ≡ 1. Since u(y, 0, ν) ≤ ν3e−ν/T2 and

e−ν/T (y,s) < e−ν/T2 , for s < t2 it follows from (14), after integrating over s, that

T2 = T (x2, t2) ≤ e−t2/RT (x2, 0)

+

∫ t2

τ=0

e−(t2−τ)/R

R

∫ ∞

ν=0

e−τ/ν3

e−ν/T2dνdτ

+

∫ t2

τ=0

e−(t2−τ)/R

R

∫ ∞

ν=0

(1 − e−τ/ν3

)e−ν/T2dνdτ .

Cancelling the terms involving e−τ/ν3

and evaluating the remaining integrals yield
the contradiction

T2 ≤ e−t2/R [T (x2, 0) − T2] + T2 < T2 .

Thus, the bounds for T (x, t) hold for all time.
To bound u(x, t, ν), we let t > 0 be given and choose ε > 0 such that

ε < min
y∈Ū, 0≤s≤t

T (y, s) ≤ max
y∈Ū, 0≤s≤t

T (y, s) < T2 − ε .

Since u(x, 0, ν) ≥ 0, Gν > 0, and
∫
Gνdy ≡ 1, it follows from (13) that u(x, t, ν) ≥

(1 − e−t/ν3

)e−ν/ε > 0, which establishes the lower bound. For the upper bound, we
use the inequalities u(x, 0, ν) ≤ ν3e−ν/T2 and e−ν/T (y,s) < e−ν/(T2−ε). Doing the
integrals in (13) gives

u(x, t, ν) ≤ e−t/ν3

ν3e−ν/T2 + (1 − e−t/ν3

)ν3e−ν/(T2−ε)

≤ ν3e−ν/T2 − (1 − e−t/ν3

)ν3e−ν/T2( 1 − e−νε/[T2(T2−ε)] )

< ν3e−ν/T2 .

This completes the proof.

3. Stationary solutions. In this section we consider stationary solutions of
(10)–(12). We shall show that such solutions cannot depend on x and that they are
stable. The problem of asymptotic stability is discussed in sections 4 and 5.

Lemma 2. Let u(x, ν), T (x) be a stationary solution of (10)–(12) and satisfy the
bounds in Lemma 1. Then u, T are independent of x, and there is a constant M such
that

u(ν) = ν3e−ν/M , T = M.
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Proof. It is clear that u = ν3e−ν/M , T = M is a stationary solution of (10)–(12).
We will show that there are no others. It follows from (10)–(12) that

−ν6∆u(x, ν) + u(x, ν) = ν3e−ν/T (x),

T (x) =

∫ ∞

ν=0

u(x, ν)

ν3
dν,(15)

where u satisfies the boundary condition (12). Since −ν6∆w+w = f with ∂w/∂n = 0
has a unique solution and w = 1 if f = 1, we see that

u(x, ν) =

∫
U

gν(x, y)ν
3e−ν/T (y)dy,(16)

1 =

∫
U

gν(x, y)dy.(17)

One can show that the Green’s function satisfies gν(x, y) = gν(y, x) > 0 when x 
= y
and is singular when x = y. Let M = maxŪ T (y). Then M = T (x) for some x in Ū
and by using (17), (15), and (16), we find

0 = M − T (x)

=

∫ ∞

ν=0

e−ν/M

∫
U

gν(x, y)dydν −
∫ ∞

ν=0

1

ν3

∫
U

gν(x, y)ν
3e−ν/T (y)dydν

=

∫ ∞

ν=0

∫
U

gν(x, y) [e−ν/M − e−ν/T (y)]dydν .

Since gν > 0 and [e−ν/M − e−ν/T (y)] ≥ 0, we conclude that T (y) = M for all y in U .
Equations (16)–(17) then imply that u(x, ν) = ν3e−ν/M for all x in U . This completes
the proof.

How do we determine the stationary solution corresponding to particular initial
data? Let

K(t) =

∫
U

[
RT (x, t) +

∫ ∞

ν=0

u(x, t, ν)dν

]
dx(18)

define the total (matter and radiation) energy for the system. Differentiating with
respect to t and using (10)–(12), we see that K(t) is independent of time. If T (x, t) →
M and u(x, t, ν) → ν3e−ν/M as t → ∞, we can find M by solving

RM + 6M4 = K(0) / vol(U) .(19)

If K(0) > 0, this equation has a unique solution. We will now show that the stationary
solution is stable.

Theorem 1. Let u(x, t, ν), T (x, t) be a smooth solution of (10)–(12). If

ν3e−ν/T1 ≤ u(x, 0, ν) ≤ ν3e−ν/T2 and T1 < T (x, 0) < T2,

then for t > 0

ν3e−ν/T1 < u(x, t, ν) < ν3e−ν/T2 and T1 < T (x, t) < T2.



182 OLE H. HALD AND ALEKSEI I. SHESTAKOV

Remark. Equations (18)–(19) show that if u and T satisfy the assumptions in
Theorem 1, then RT1 +6T 4

1 < RM +6M4 < RT2 +6T 4
2 . Therefore, the temperature

M for the stationary solution lies in the interval T1 < M < T2.
Proof. We have already established the upper bounds in Lemma 1. Our proof

for the lower bounds is similar. Assume minŪ T (x, t) = T1 for some t > 0, and let
t1 be the first such t. Then, T1 = T (x1, t1) for some x1 ∈ Ū , and T (y, s) > T1 for
y ∈ U and s < t. Since

∫
Gνdy ≡ 1, u(y, 0, ν) ≥ ν3e−ν/T1 , and e−ν/T (y,s) > e−ν/T1

for s < t1, it follows from (14), after integrating over s, that

T1 = T (x1, t1) ≥ e−t1/RT (x1, 0)

+

∫ t1

τ=0

e−(t1−τ)/R

R

∫ ∞

ν=0

e−τ/ν3

e−ν/T1dνdτ

+

∫ t1

τ=0

e−(t1−τ)/R

R

∫ ∞

ν=0

(1 − e−τ/ν3

)e−ν/T1dνdτ.

Cancelling the e−τ/ν3

terms and evaluating the remaining integrals, we get

T1 ≥ e−t1/R [T (x1, 0) − T1] + T1 > T1 .

The contradiction shows that the lower bound for T (x, t) holds for all time.
To bound u(x, t, ν) from below we let t > 0 be given and choose ε > 0 such that

T1 + ε < min
y∈Ū, 0≤s≤t

T (y, s) .

Since u(x, 0, ν) ≥ ν3e−ν/T1 and e−ν/T (y,s) > e−ν/(T1+ε), it follows from (13) that

u(x, t, ν) ≥ e−t/ν3

ν3e−ν/T1 + (1 − e−t/ν3

)ν3e−ν/(T1+ε)

≥ ν3e−ν/T1 + (1 − e−t/ν3

)ν3e−ν/(T1+ε)(1 − e−νε/[T1(T1+ε)])

> ν3e−ν/T1 .

This completes the proof.

4. Linearized equations. In section 3 we have shown that (10)–(12) have a
stable stationary solution. The important question is whether the stationary solution
is asymptotically stable; i.e., will nearby solutions tend to the stationary solution as
time increases? We approach this from two directions. In this section we linearize
(10)–(12) around the stationary solution and prove that the linearized equation is
asymptotically stable when the initial data are orthogonal to constant functions. In
the next section we show that (10)–(12) are asymptotically stable if the initial data
are expressed in terms of constant functions.

To get the linearized equations we assume that u = ν3e−ν/M +u′ and T = M+T ′,
where u′ and T ′ are small. Inserting (10)–(12), expanding e−ν/T in a Taylor series,
and discarding the higher order terms lead to the linearized equations

∂tu
′(x, t, ν) +

1

ν3
u′(x, t, ν) = ν3∆u′(x, t, ν) +

νe−ν/M

M2
T ′(x, t),(20)

R∂tT
′(x, t) + T ′(x, t) =

∫ ∞

ν=0

u′(x, t, ν)

ν3
dν,(21)
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where u′ satisfies the original boundary condition (12). Since M satisfies (19), we
conclude from (18) that for every t ≥ 0,∫

U

[
RT ′(x, t) +

∫ ∞

ν=0

u′(x, t, ν)dν

]
dx = 0.

We solve (20)–(21) by separation of variables. Let

u′(x, t, ν) =

∞∑
k=0

ak(t, ν)ek(x), T ′(x, t) =

∞∑
k=0

αk(t)ek(x),(22)

where ∆ek + λkek = 0 in U , (∂/∂n)ek = 0 on ∂U , and
∫
U
eiejdx = δij . It can

be shown that λ0 = 0 < λ1 ≤ λ2 ≤ · · · with e0 = 1/
√

vol(U). Inserting (22) into
(20)–(21), we get

d

dt
ak(t, ν) +

(
1

ν3
+ λkν

3

)
ak(t, ν) =

νe−ν/M

M2
αk(t),(23)

R
d

dt
αk(t) + αk(t) =

∫ ∞

ν=0

ak(t, ν)

ν3
dν,(24)

Rα0(t) +

∫ ∞

ν=0

a0(t, ν)dν = 0.

Note that the last equation, which follows from energy conservation, (18)–(19), and
the orthogonality property of the ek, does not constrain the coefficients αk, ak for
k ≥ 1. Following the proof of Lemma 1, we can show that solutions of (23)–(24)
satisfy |ak(t, ν)| ≤ ν4M−2e−ν/MB and |αk(t)| < B for t > 0 if the conditions hold at
t = 0.

To analyze the solutions of (23)–(24) we need the following result.
Lemma 3. Let M,R > 0. For every λ > 0 there exist a σ = σ(λ) > 0 such that∫ ∞

ν=0

νe−ν/M

M2(1 + λν6 − σν3)
dν = 1 −Rσ.

The function σ(λ) is an increasing function of λ, and there is an η > 0 such that
1 + λν6 − σ(λ)ν3 > η2 for all λ > 0, ν > 0.

Proof. Since 1 + λν6 − σν3 = 1 − σ2/(4λ) + λ[ν3 − σ/(2λ)]2, we see that the
integral—call it f(σ)—is positive and well defined for σ < 2

√
λ. It is a smooth

increasing function of σ and becomes unbounded as σ → 2
√
λ. Using the property that

1−Rσ decreases with σ and the inequality 0 < f(0) < 1, we can find a σ = σ(λ) > 0
such that f(σ) = 1−Rσ. Note that σ < min(1/R, 2

√
λ). Differentiating the identity

in Lemma 3 with respect to λ, we obtain

d

dλ
σ(λ) =

∫ ∞

ν=0

ν7e−ν/M dν

M2(1 + λν6 − σν3)2

/(
R +

∫ ∞

ν=0

ν4e−ν/M dν

M2(1 + λν6 − σν3)2

)

and (d2/dλ2)σ(λ) < 0. This implies that σ(λ) is an increasing function of λ and
concave down. If λ is small and positive, we have

σ(λ) = 0 +
5040M6

R + 24M3
λ− · · · .



184 OLE H. HALD AND ALEKSEI I. SHESTAKOV

Let g(λ) = 1 − σ2(λ)/(4λ) with g(0) = 1. Then, g(λ) > 0 for all λ > 0. Since
σ2(λ)/(4λ) → 0 as λ → 0 and g(λ) ≥ 3/4 when λ ≥ 1/R2, we see that g(λ) is
continuous at λ = 0 and conclude that g(λ) > η2 for all λ ≥ 0. But 1+λν6−σ(λ)ν3 ≥
g(λ). This completes the proof.

Theorem 2. Let ak(t, ν), αk(t) be solutions of (23)–(24) satisfying

|ak(0, ν)| ≤ ν4e−ν/M

M2
bk , |αk(0)| ≤ bk ,

for k = 0, 1, . . . and ν > 0. Let σ > 0 satisfy the nonlinear equation in Lemma 3 with
λ = λ1, where λ1 is the smallest nonzero eigenvalue of ∆e(x) + λe(x) = 0, x ∈ U ,
with (∂/∂n)e(x) = 0 for x ∈ ∂U . If b0 = 0 and

∑∞
k=1 b

2
k < ∞, there is a C > 0 such

that for t ≥ 0

‖u′(x, t, ν)‖L2(U) ≤
ν4e−ν/M

M2
Ce−0.9σt , ‖T ′(x, t)‖L2(U) ≤ Ce−0.9σt .

Remarks. (1) The theorem asserts that if u′, T ′ initially consist of only spatially
varying components, i.e., a0(0, ν) = α(0) = 0, the ak, αk modes for k ≥ 1 decay to
zero exponentially. Thus, for such perturbations about the stationary solution, the
latter is an attractor. (2) If a0(0, ν), α(0) 
= 0, it is possible to show that a0(t, ν) and
α0(t) tend to zero. However, the decay is very slow and requires a different proof. We
discuss this in section 5.

Proof. To prove Theorem 2, we derive bounds for ak, αk as functions of time.
One might think that the higher Fourier coefficients go to zero rapidly, but this is not
the case. The relaxation to equilibrium depends on R and the size of the domain and
can be slow for large R and large domains.

Let k ≥ 1 be fixed and replace ak, αk, λk in (23)–(24) by a, α, λ. We will show
that a particular linear combination of a and α goes to zero. Let σ > 0 be determined
as in Lemma 3. If we subtract σa from both sides of (23), divide throughout by
1 + λν6 − σν3, integrate for ν > 0, and apply Lemma 3, we obtain

d

dt

∫ ∞

ν=0

a(t, ν) dν

1 + λν6 − σν3
+

∫ ∞

ν=0

a(t, ν) dν

ν3

=

∫ ∞

ν=0

(ν/M2) e−ν/M dν

1 + λν6 − σν3
α(t) − σ

∫ ∞

ν=0

a(t, ν) dν

1 + λν6 − σν3

= (1 −Rσ)α(t) − σ

∫ ∞

ν=0

a(t, ν) dν

1 + λν6 − σν3
.

Combining this result with (24) leads to

d

dt

[
Rα(t) +

∫ ∞

ν=0

a(t, ν) dν

1 + λν6 − σν3

]
= −σ

[
Rα(t) +

∫ ∞

ν=0

a(t, ν) dν

1 + λν6 − σν3

]
.

We can solve this differential equation and get

Rα(t) +

∫ ∞

ν=0

a(t, ν) dν

1 + λν6 − σν3
= C1e

−σt,(25)

where C1 is the initial value of the left-hand side.
Our next goal is to derive a differential inequality for

A(t) =

∫ ∞

ν=0

M2eν/Ma2(t, ν) dν

ν(1 + λν6 − σν3)
.(26)
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This time we multiply both sides of (23) by 2ν−1M2eν/Ma/(1+λν6 −σν3), integrate
for ν > 0, and obtain

d

dt
A(t) + 2

∫ ∞

ν=0

M2eν/Ma2(t, ν)

ν4
dν

= 2

∫ ∞

ν=0

a(t, ν)

1 + λν6 − σν3
dν α(t) − 2σA(t) .(27)

Using (25) and completing the square, we write the penultimate term as

2

∫ ∞

ν=0

a(t, ν)

1 + λν6 − σν3
dν α(t)

= − 2

R

(∫ ∞

ν=0

a(t, ν)

1 + λν6 − σν3
dν − 1

2
C1e

−σt

)2

+
C2

1

2R
e−2σt .(28)

Inserting (26) and (28) into (27) yields

d

dt
A(t) + 2σA(t) + 2

∫ ∞

ν=0

M2eν/Ma2(t, ν)

ν4
dν

+
2

R

(∫ ∞

ν=0

a(t, ν)

1 + λν6 − σν3
dν − 1

2
C1e

−σt

)2

=
C2

1

2R
e−2σt .

Neglecting the integral terms gives a differential inequality for A(t) with the solution

A(t) ≤
(
A(0) +

C2
1

2R
t

)
e−2σt .

In the arguments below it is inconvenient to carry the term proportional to t. However,
as te−σt/5 ≤ 5/(σe) for t ≥ 0 we can use the weaker result

A(t) ≤
(
A(0) +

C2
1

Rσ

)
e−1.8σt .(29)

Our next task is to estimate α(t) and a(t, ν). Using Cauchy–Schwarz in (25), we
see that

|α(t)| =
1

R

∣∣∣∣C1e
−σt −

∫ ∞

ν=0

a(t, ν)

1 + λν6 − σν3
dν

∣∣∣∣
≤ 1

R

[
|C1|e−σt +

(∫ ∞

ν=0

M2eν/Ma2(t, ν)

ν(1 + λν6 − σν3)
dν

)1/2

×
(∫ ∞

ν=0

νe−ν/M

M2(1 + λν6 − σν3)
dν

)1/2
]
.

In the product, the first integral is A(t), while the second is 1 − Rσ; see (26) and
Lemma 3. Since Rσ < 1 and

√
a + b ≤

√
a +

√
b, we find from (29) that

|α(t)| ≤ 1

R

[
|C1|e−σt +

(
A(0) +

C2
1

Rσ

)1/2

e−0.9σt(1 −Rσ)1/2

]

≤ 1

R

[√
A(0) +

2|C1|√
Rσ

]
e−0.9σt

= C2e
−0.9σt .(30)
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To estimate a(t, ν) we rewrite (23) as

a(t, ν) = e−(ν−3+λν3)ta(0, ν) +

∫ t

s=0

νe−ν/M

M2
e−(ν−3+λν3)(t−s)α(s)ds .

Using (30) and integrating with respect to s, we obtain

|a(t, ν)| ≤ e−(ν−3+λν3)t|a(0, ν)| + νe−ν/M

M2
C2

e−0.9σt − e−(ν−3+λν3)t

ν−3 + λν3 − 0.9σ
.

Since 1 + λν6 − σν3 > η2 (see Lemma 3), it follows that −(ν−3 + λν3) < −0.9σ and

|a(t, ν)| ≤ ν4e−ν/M

M2

(
bk +

C2

η2

)
e−0.9σt

=
ν4e−ν/M

M2
C3 e

−0.9σt .(31)

Next, we derive bounds for A(0), C1, C2, and C3. After setting t = 0 in (26) and
recalling the assumption |a(0, ν)| ≤ ν4M−2e−ν/Mbk, it follows from Lemma 3 that

|A(0)| ≤
∫ ∞

ν=0

ν7 e−ν/Mb2k
M2(1 + λν6 − σν3)

dν

≤ 7!M6 b2k
η2

.

Similar arguments applied to (25) give

|C1| ≤ R|α(0)| +
∫ ∞

ν=0

|a(0, ν)|
1 + λν6 − σν3

dν

≤
(
R +

24M3

η2

)
bk.

Combining these bounds, we conclude from (30) and (31) that

C2 ≤ 1

R

[
71M3

η
+

2√
Rσ

(
R +

24M3

η2

)]
bk and

C3 ≤
(

1 +
1

Rη2

[
71M3

η
+

2√
Rσ

(
R +

24M3

η2

)])
bk.(32)

So far we have assumed that k is fixed. However, note that M , R, and η are
independent of k. Since λ1 ≤ λ2 ≤ · · · and σ(λ) is an increasing function of λ, we see
that σ(λ1) ≤ σ(λk) for k ≥ 1. Thus, if we replace σ by σ(λ1) in the bounds for C2,
C3, we find that C2, C3 ≤ C4 bk, where C4 is independent of k. Observe also that
the slowest decay in (30), (31) occurs for σ = σ(λ1), where λ1 is the eigenvalue of the
lowest spatially varying eigenmode.

Finally, we must reassemble the Fourier series for u′, T ′. Since
∑∞

k=1 b
2
k < ∞, it

follows from (22), (31), and (32) that

‖u′(x, t, ν)‖L2(U) =

∥∥∥∥∥
∞∑
k=1

ak(t, ν) ek(x)

∥∥∥∥∥
L2(U)

=

( ∞∑
k=1

a2
k(t, ν)

)1/2

≤ ν4e−ν/M

M2
C e−0.9σt ,
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where C = C4

(∑
b2k
)1/2

. We can use the same arguments for T ′. This completes the
proof.

5. Asymptotic stability. In section 4, we linearized (10)–(12) around a sta-
tionary solution and showed that the solution of the linearized equations tends to
zero exponentially. We therefore expect that for every ν the solutions of the original
equations will be approximately constant as times increases. In this section we con-
sider a class of functions which are independent of x and show that they tend to a
stationary solution. The stationary solution is therefore asymptotically stable for this
class of initial data.

Theorem 3. Let u(t, ν), T (t) be independent of x and satisfy (10)–(11) and the
bounds in Lemma 1. If

RT (0) +

∫ ∞

ν=0

u(0, ν) dν = RM + 6M4(33)

and (∫ ∞

ν=0

M2 eν/M

ν
|u(0, ν) − ν3e−ν/M |2 dν

)1/2

<
RM

7
,(34)

then

u(t, ν) → ν3e−ν/M as t → ∞, ν > 0 fixed,

T (t) → M as t → ∞ .

Proof. As in the proof of Theorem 2 we set u′ = u− ν3e−ν/M and T ′ = T −M ,
but now we do not assume that u′, T ′ are small. It follows from (10)–(11) and the
constraint (33) that

∂

∂t
u′(t, ν) +

1

ν3
u′(t, ν) = e−ν/[M+T ′(t)] − e−ν/M ,(35)

R
d

dt
T ′(t) + T ′(t) =

∫ ∞

ν=0

u′

ν3
dν,(36)

RT ′(t) +

∫ ∞

ν=0

u′(t, ν) dν = 0.(37)

Equation (37) follows from the energy conservation property. We proceed as in the
previous proof. This time we derive a differential inequality for

A(t) =

∫ ∞

ν=0

M2eν/M

ν
|u′(t, ν)|2 dν(38)

and show that A(t) decays. The function A(t) defined in (38) is the analogue of the
one defined in (26), except now we are considering the λ = 0 case, which according
to Lemma 3 corresponds to σ = 0. Note that (34) and (38) imply that

0 < A(0) < (RM/7)2 .(39)
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Using Cauchy–Schwarz in (37) yields

R|T ′(t)| ≤
∫ ∞

ν=0

|u′(t, ν)| dν

≤
(∫ ∞

ν=0

νe−ν/M

M2
dν

)1/2 (∫ ∞

ν=0

M2eν/M

ν
|u′(t, ν)|2 dν

)1/2

= 1 ·
√
A(t) .(40)

To analyze (35), we expand the right-hand side using Taylor’s formula,

e−ν/(M+T ′) − e−ν/M =
νe−ν/M

M2
T ′

+
1

2
e−ν/(M+θT ′)

[
ν2

(M + θT ′)4
− 2ν

(M + θT ′)3

]
(T ′)2 ,(41)

where 0 < θ < 1.
We now prove that |T ′(t)| < M/7 for all t and do this by contradiction. Equations

(40), (38), and (39) show that at least for small t,

|T ′(t)| ≤ R−1
√
A(t) < M/7.

Let t = t2 be the first time for which the inequality fails; thus, |T ′(t2)| = M/7. Since
|T ′(t)| ≤ M/7 for t ≤ t2, we see that the absolute value of the term multiplying (T ′)2

in (41) is bounded by

N(ν) =
1

2
e−7ν/(8M)

[
ν2

(6M/7)4
+

2ν

(6M/7)3

]
.

Hence, there exists a γ(ν) with |γ| ≤ 1 such that

e−ν/(M+T ′) − e−ν/M =
νe−ν/M

M2
T ′ + γ N(ν) (T ′)2 .

Inserting this expression in (35), multiplying both sides by ν−1M2eν/Mu′(t, ν), and
integrating over ν > 0, we find

1

2

d

dt

∫ ∞

ν=0

M2eν/M

ν
|u′|2 dν +

∫ ∞

ν=0

M2eν/M

ν4
|u′|2 dν

=

(∫ ∞

ν=0

u′dν

)
T ′ +

(∫ ∞

ν=0

M2eν/M

ν
u′ γ N(ν) dν

)
(T ′)2 .(42)

Note that the first term is (1/2)dA/dt. Let E1, E2 denote the terms on the right-hand
side of (42). It is clear from (37) that E1 = −R [T ′(t) ]2. To estimate E2, we recall
that |γ| ≤ 1, apply Cauchy–Schwarz, and get

|E2| ≤
(∫ ∞

ν=0

M2eν/M

ν
|u′(t, ν)|2 dν

)1/2

×
(∫ ∞

ν=0

[
M eν/(2M)

√
ν

N(ν)

]2

dν

)1/2

(T ′)2 .
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The first integral is A(t) (see (38)), while an elementary but tedious calculation
shows that the second integral is less than 36/M2. Thus, |E2| ≤ (6/M)

√
A(t). In-

serting the expressions for E1, E2 in (42), we obtain the desired differential inequality

1

2

d

dt
A(t) +

∫ ∞

ν=0

M2 eν/M

ν4
|u′(t, ν)|2 dν +

(
R− 6

M

√
A(t)

)
|T ′(t) |2 ≤ 0.(43)

We note that for the linearized problem discussed in the previous section, we
would have arrived at the same inequality, but without the term (6/M)

√
A(t) and

with u′, T ′ replaced by a0, α0.
Equations (39) and (43) show that A(t) is a decreasing function of t for t ≤ t2.

Thus, A(t)2 ≤ A(0)2 < RM/7. However, (40) shows that |T ′(t)| ≤ R−1
√
A(t) < M/7

for 0 ≤ t ≤ t2, which contradicts the definition of t2. Thus, the bound

|T ′(t)| ≤ M/7(44)

holds for all time.
We now show that T ′(t) decays to zero. If in (43) we ignore the middle term,

note that R− 6
√

A(t)/M > R/7, and integrate, we obtain

A(t) + 2

∫ t

τ=0

R

7
|T ′(τ)|2 dτ ≤ A(0) .

The function |T ′(t)|2 is therefore integrable on (0,∞). However, this is insufficient for
our purposes since we wish to show that T ′(t) → 0 as t → ∞ (which implies T → M).

To prove T ′ → 0, we first show that |(d/dt)[T ′(t)]2| is bounded. Equation (44)
leads to ∣∣∣∣d(T ′)2

dt

∣∣∣∣ ≤ 2 |T ′(t)|
∣∣∣∣dT ′

dt

∣∣∣∣ ≤ 2M

7

∣∣∣∣dT ′

dt

∣∣∣∣ .(45)

Using (36), (44), and the definition of u′(x, ν), we obtain∣∣∣∣dT ′

dt

∣∣∣∣ ≤ 1

R

[
M

7
+

∣∣∣∣
∫

ν−3 (u− ν3e−ν/M ) dν

∣∣∣∣
]
.

If T2 is the upper bound defined in Lemma 1, then max(M, T2 − M) < T2 bounds
the last integral. Substituting these results into (45) yields

|(d/dt)[T ′(t)]2| ≤ (2M/7) (1/R) (T2 + M/7)
.
= c .

Thus, the function |T ′(t)|2 is integrable and has a uniformly bounded derivative.
Clearly, |T ′(t)|2, for large t, cannot stray too far from zero. In fact, for any ε > 0,
|T ′(t)|2 can only have a finite number of spikes above ε no less than 2ε/c apart, because
every neighborhood with radius ε/c of a spike contributes at least ε2/c toward the
area under the curve. Thus |T ′(t)|2 < ε for t sufficiently large.

To show that u′ → 0 when ν is fixed and t → ∞, we solve (35) and get

u′(t, ν) = e−t/ν3

u′(0, ν) +

∫ t

τ=0

e−(t−τ)/ν3
(
e−ν/[M+T ′(τ)] − e−ν/M

)
dτ

.
= E3 + E4 .
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Clearly E3 → 0 as t → ∞. For E4 we use l’Hôpital. Since et/ν
3 → ∞ and T ′(t) → 0

as t → ∞, it follows that

lim
t→∞

E4(t) = lim
t→∞

∫ t

τ=0
eτ/ν

3
(
e−ν/[M+T ′(τ)] − e−ν/M

)
dτ

et/ν3

= lim
t→∞

e−ν/[M+T ′(t)] − e−ν/M

(1/ν3)
= 0 .

Combining the results for E3, E4 completes the argument. Our proof is nonconstruc-
tive and gives no rate of convergence. However, numerical experiments indicate very
slow convergence. This completes the proof.

6. Concluding remarks. We have derived a nondimensional form of the system
that couples the multifrequency radiation diffusion equations to the matter energy
balance equation. In deriving the nonlinear system, we strived for equations that
preserve the salient properties of the underlying physics yet are amenable to analysis.
Our equations may be applied in multiple spatial dimensions and arbitrarily sized
domains on which one may impose boundary conditions appropriate to parabolic
systems.

Our nondimensional system conserves total energy and a unique stationary solu-
tion is eventually established. For homogeneous Neumann boundary conditions, the
stationary solution is spatially constant. We have shown that the decay to equilibrium
is constrained by an envelope whose extent depends on the initial conditions. Spa-
tially varying perturbations about the stationary solution decay to zero exponentially.
Spatially constant perturbations also decay. However, we are unable to estimate the
speed of decay; it may be very slow.

Although our nondimensional system is a valid model for multifrequency radiation
diffusion, it is instructive to recall how it differs from equations typically used in high
energy density computer codes.

We assume the matter to be composed of a single material, of constant density,
characterized by an ideal gas equation-of-state. For “real” materials, the internal
energy is a nonlinear function of temperature [12, p. 177]. This implies a temperature
dependence for the specific heat, cv = cv(T ). Recalling (7), we obtain the dependence
R = R(T ) for our model.

If matter density were to vary with position, so would the opacities. This implies
spatial variations for the diffusion coefficient ν3 in (8), the coupling coefficient 1/ν3

in (8)–(9), and the coefficient R in (9). For real materials, especially for those of high
atomic number and/or at low temperatures, the opacity is a complicated nonmono-
tonic function of frequency [12, p. 246]. Most notably, it features occasional spikes
corresponding to the “bound-bound” transitions of the electrons.

Our model ignores the 1/
√
T dependence of the opacity. As we show below,

including 1/
√
T leads to spatial variations of the diffusion and coupling coefficients.

This complicates the analysis significantly. We are then unable to invoke Duhamel’s
principle since a general Green’s function Gν(x, y, t) does not exist.

We chose a Wien ν3e−ν/T rather than a Planck ν3/(eν/T − 1) distribution for
radiation emission. The difference between the two is most pronounced for small ν
yielding a smaller radiation source. However, since our absorption opacity ignores
induced emission [12], multiplying our κν by a Wien distribution gives the correct
total radiation source if we ignore the 1/

√
T dependence of the opacity. To see this,
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recall that to include induced emission, one multiplies κν by the factor (1 − e−y),
where y = hν/kT . Then, if instead of (6) we use the Planck function, the exponential
is replaced by the factor 1/(ey − 1). Hence, if Bν denotes the Planck function and
κ′
ν the absorption coefficient corrected for stimulated emission, the (ey − 1) factors

cancel and we obtain the same total radiation source,

c

∫ ∞

0

dν κ′
ν Bν = constT.

Choosing a Wien rather than a Planck function brings an additional benefit when the
system is discretized in the frequency direction in order to derive the “multigroup”
equations. For this endeavor, one defines a spectral mesh

0 = ν0 < ν1 < · · · < νN .

If Bν is the Wien function, integrals of the form∫ νj

νj−1

dν νn Bν

can be done analytically. If Bν is the Planck function, the integrals can only be
approximated.

Last, we did not include a flux limiter in the diffusion coefficient. This leads
to unphysically large photon speeds for our model, especially for those with high
frequencies. To incorporate a flux limiter into our model, we note that (physically)
the distance x that radiation can travel in a time interval t is limited by x ≤ c t.
Recalling the nondimensional variables x′ and t′, the inequality reduces to x′ ≤

√
3 t′.

Hence, if we introduce a Lund–Wilson-type flux limiter, our nondimensional flux
becomes

−ν3 ∇u → −1

1/(ν3
√
T ) + |∇u|/(

√
3u)

∇u
.
= −Dν ∇u.(46)

Note that we have kept the dependence of κν on 1/
√
T .

We conclude the discussion of how to modify our model to account for some of the
above effects. If we include the

√
T dependence of the opacity, allow for a nonconstant

cv, write the emission function in the general form Bν = B0 ν
3 g(ν/T ), but do not

include effects of stimulated emission, the nondimensional equations become

∂tu = ∇ ·Dν∇u + (ν3 g(ν/T ) − u ) /
√
T ν3,

R(T ) ∂tT = − 1√
T

(∫ ∞

0

dν
1

ν3
(ν3 g(ν/T ) − u )

)
,

where Dν may be defined as in (46), with or without the flux limiter and/or the
√
T

factor, and g(y) is chosen appropriate to either the Wien or Planck distribution.
The analysis described in this paper was motivated by an unexpected result from

simulations and [10] and [11], which solve the multigroup system derived from (8)–(9).
The papers simulate the relaxation to steady state of an initial condition in which the
two fields, u and T , are wildly out of equilibrium.

In the problem of interest, the spatial domain is |x| < 1. Initially, T is sharply
peaked:

T |t=0 =

{
6.4775 if |x| < 0.04,
0.0027 otherwise.
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Using a “specific heat” R = 2.0 yields an initial matter energy Em(t)|t=0 = 1.0469.
The spectral radiation energy density u is initialized with a Wien profile characterized
with a spatially constant “radiation temperature” Tr = 0.0172. Hence, the initial
radiation energy Er(0) = 1.0469 ·10−6. The conditions imply that initially 99% of the
total energy Em + Er is contained in the central region |x| < 0.04. The problem is
designed so that the stationary solution consists of spatially uniform fields with the
matter energy equal to 1, i.e., with T = 0.25.

In the simulation, the hot central region pumps a prodigious amount of energy
into the high frequencies. (This is a result consistent with the Wien profile which
peaks at ν/T = 3.) The high frequencies are characterized by fast transport. Thus,
this energy quickly diffuses away from the hot spot. However, the high frequency
energy is slow to absorb since the coupling coefficient is 1/ν3. In effect, the high
frequency energy is trapped for a time proportional to ν3. Because of the trapping,
the ratio Er(t)/Em(t) exhibits a surprising behavior. It quickly rises to approximately
0.6 (more than 10 times the equilibrium value), then gradually decays, albeit very
slowly. That very slow relaxation to equilibrium is the subject of section 5. During
the slow-relaxation phase, the fields have little spatial variation.
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Abstract. A technique introduced by Kress and Päivärinta to establish differentiability of the
solution to obstacle scattering problems with respect to the boundary is extended to the case of
the impedance boundary condition. For acoustic scattering an alternative proof of a differentiability
result due to Hettlich is provided, and in electromagnetic scattering a new differentiability result is
proven.

Key words. Helmholtz equation, Maxwell equations, acoustic scattering, electromagnetic scat-
tering, obstacle scattering, impedance condition, far field pattern, inverse scattering, Fréchet deriva-
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1. Introduction. In time-harmonic inverse obstacle scattering, for the mathe-
matical foundation and implementation of approximate solution methods by regular-
ized iteration schemes via linearization, it is necessary to investigate the differentia-
bility of the boundary to far field operator that maps the boundary of the obstacle
onto the far field pattern of the scattered wave. In acoustic scattering, differentiabil-
ity with respect to the boundary was considered by Roger [18], who first employed
Newton-type iterations for inverse obstacle scattering problems. Rigorous foundations
for the Fréchet differentiability including characterizations of the derivative both for
the Dirichlet and Neumann boundary condition, i.e., for sound-soft and sound-hard
obstacles, were given by Kirsch [7] and Hettlich [3] in the sense of a domain derivative
via variational methods and by Potthast [15, 16] via boundary integral equation tech-
niques. Alternative proofs were contributed by Hohage [6] and Schormann [19] via the
implicit function theorem and by Kress and Päivärinta [11] via Green’s theorems and
a factorization of the difference of the far field for neighboring domains. Hettlich [3]
also established differentiability for the impedance boundary condition.

In electromagnetic obstacle scattering from perfect conductors Fréchet differen-
tiability was considered by Potthast [17] via boundary integral equations. Hettlich [5]
treated the transmission problem for penetrable obstacles via variational methods.
The technique due to Kress and Päivärinta was extended to the Maxwell equations
for the perfect conductor case in [9]. The impedance boundary condition for electro-
magnetic obstacle scattering has not yet been considered in the literature.

It is the purpose of the present paper to extend the method introduced by Kress
and Päivärinta to the case of the impedance boundary condition. In section 2 we will
reestablish the results of Hettlich through an alternative proof, and in section 3 we will
establish Fréchet differentiability with respect to the boundary for the electromagnetic
impedance problem and provide a characterization of the derivative. In principle,
one of the key ideas of the method is to extend the continuous dependence of the
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solution on the boundary that can be obtained via boundary integral equations to
differentiability via the application of Green’s integral and Green’s representation
theorems.

The paper will be concluded with a few remarks on the difficulties that arise
in connection with investigating the nullspace of the linearization, i.e., the Fréchet
derivative.

2. Impedance problem in acoustic scattering. Let D ⊂ R3 be a bounded
domain with a connected boundary ∂D of class C2 and outward unit normal ν. Con-
sider the exterior impedance boundary value problem for acoustic waves: Given a
continuous function f on ∂D and a constant λ ∈ C find a solution v ∈ C2(R3 \ D̄) ∩
C1(R3 \D) to the Helmholtz equation

�v + k2v = 0 in R3 \ D̄(2.1)

with wave number k > 0 that satisfies the impedance boundary condition

∂v

∂ν
+ ikλv = f on ∂D(2.2)

and the Sommerfeld radiation condition

lim
r→∞

r

(
∂v

∂r
− ikv

)
= 0, r = |x|,(2.3)

uniformly for all directions. The impedance coefficient λ is assumed to satisfy the
condition

Reλ ≥ 0(2.4)

that ensures uniqueness of a solution via Rellich’s lemma. For existence of a solution
we refer to [1, 2].

For an impedance obstacle D the scattering problem for time-harmonic waves is,
given an incident field ui as an entire solution of the Helmholtz equation, to find the
total field u = ui + us as a solution to the Helmholtz equation in the exterior R3 \ D̄
of D, such that u satisfies the impedance boundary condition

∂u

∂ν
+ ikλu = 0 on ∂D

and us fulfills the Sommerfeld radiation condition. Clearly, this scattering problem is
a special case of the above boundary value problem (2.1)–(2.3).

We introduce the fundamental solution to the Helmholtz equation in R3 by

Φ(x, y) :=
1

4π

eik|x−y|

|x− y| , x �= y.

For x ∈ R3 \ D̄ let ws(x, ·) be the solution of (2.1)–(2.3) for the boundary values

f = −∂Φ(x, ·)
∂ν

− ikλΦ(x, ·) on ∂D

and let w(x, ·) := Φ(x, ·) + ws(x, ·); that is, ws(x, ·) and w(x, ·) are the scattered and
the total field, respectively, for the scattering of a point source located at x ∈ R3 \ D̄.
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Note that the function w is the Green function for the boundary value problem (2.1)–
(2.3) and that it enjoys the symmetry, i.e., the reciprocity

w(x, y) = w(y, x), x, y ∈ R3 \ D̄, x �= y,

which can be easily derived from Green’s integral theorem. From Green’s represen-
tation theorem and Green’s integral formula it follows that (see also the proof of
the following lemma) the unique solution of the impedance boundary value problem
(2.1)–(2.3) can be represented in the form

v(x) = −
∫
∂D

w(x, y)f(y) ds(y), x ∈ ∂D.(2.5)

We now consider a family of scatterers Dh with boundaries represented in the
form

∂Dh = {x + h(x) : x ∈ ∂D} ,(2.6)

where h : ∂D → R3 is of class C2. Provided h is sufficiently small in the C2 norm on
∂D, then ∂Dh is well defined and the boundary of a C2 domain Dh. By νh we denote
its exterior unit normal and, in what follows, we will distinguish the above quantities
related to the impedance scattering problem for the domain Dh through the subscript
h.

Lemma 2.1. Assume that D̄ ⊂ Dh. Then

us
h(x) − us(x) =

∫
∂Dh

uh

{
∂w(x, ·)
∂νh

+ ikλw(x, ·)
}
ds(2.7)

for x ∈ R3 \ D̄h.
Proof. Let x ∈ R3 \ D̄h. Combining Green’s integral theorem for the incident

field ui and Green’s representation theorem for the scattered field us we have that

us(x) =

∫
∂D

{
u
∂Φ(x, ·)

∂ν
− Φ(x, ·) ∂u

∂ν

}
ds.(2.8)

From the impedance boundary condition for u and w(x, ·) by straightforward calcu-
lations we obtain

u
∂Φ(x, ·)

∂ν
− Φ(x, ·) ∂u

∂ν
= −u

∂ws(x, ·)
∂ν

+ ws(x, ·) ∂u

∂ν
on ∂D.

Hence, using Green’s integral theorem and the radiation condition, (2.8) implies that

us(x) = −
∫
∂D

{
ui ∂ws(x, ·)

∂ν
− ws(x, ·) ∂ui

∂ν

}
ds(2.9)

and then again via Green’s theorem

us(x) = −
∫
∂Dh

{
ui ∂ws(x, ·)

∂νh
− ws(x, ·) ∂ui

∂νh

}
ds.(2.10)

From this, once again using Green’s integral theorem and the radiation condition, we
find that

us(x) = −
∫
∂Dh

{
uh

∂ws(x, ·)
∂νh

− ws(x, ·) ∂uh

∂νh

}
ds
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and in view of the boundary condition for uh we finally arrive at

us(x) = −
∫
∂Dh

uh

{
∂ws(x, ·)

∂νh
+ ikλws(x, ·)

}
ds.

On the other hand, from (2.8) applied to uh and ∂Dh and the boundary condition for
uh we have that

us
h(x) =

∫
∂Dh

uh

{
∂Φ(x, ·)
∂νh

+ ikλΦ(x, ·)
}
ds(2.11)

and the statement (2.7) follows by combining the last two equations.
Remark 2.2. We note that (2.7) remains valid for x �∈ D̄ ∪ D̄h if we drop the

assumption that D̄ ⊂ Dh and assume that ws can be extended as a solution to
the Helmholtz equation in the exterior of Dh. By Theorem 5.7.1′ in [13, p. 169],
this can be assured if ∂D is analytic and Dh does not differ too much from D. In
this case, obviously, (2.10) follows from (2.9) via Green’s theorem by introducing the
corresponding integral over a sufficiently large sphere as an intermediate step.

In a neighborhood of ∂D we introduce a coordinate system via

z = x + tν(x), x ∈ ∂D, t ∈ [−T, T ],(2.12)

with some sufficiently small T > 0. Straightforward calculations show that the deter-
minant G of the metric in the neighborhood

UT := {z = x + tν(x) : x ∈ ∂D, t ∈ [−T, T ]}

and the determinant g of the metric on ∂D are related via

G(z) = g(x)[1 − 2tH(x) + t2K(x)]2,(2.13)

where H denotes the mean curvature and K the Gaussian curvature of the surface
∂D (with respect to the exterior normal direction). In the neighborhood UT we define
an extension ν of the exterior unit normal ν to ∂D by setting

ν(x + tν(x)) := ν(x), x ∈ ∂D, t ∈ [−T, T ].

If we chose an orthonormal coordinate system at the point x ∈ ∂D, then we have that

div ν(x) =
1√
G(z)

∂
√
G(z)

∂t

∣∣∣∣∣
t=0

and therefore (2.13) implies that

div ν = −2H on ∂D.(2.14)

We would like to point out that, in the literature, there is some ambiguity for the sign
in the definition of the mean curvature. In this paper, in order to be consistent with
[1, 3, 5] we choose the sign according to the classical definition in differential geometry.
However, other authors prefer a definition where the sign in (2.14) is reversed (see,
for example, Nédélec [14]).



198 HOUSSEM HADDAR AND RAINER KRESS

We assume that h is small enough to ensure that ∂Dh is contained in UT . For
the further analysis we need to relate the normal νh to ∂Dh and the extended normal
ν. To achieve this, we consider a fixed point x0 ∈ ∂D and a local parameterization

∂D ∩ V = {ϕ(ξ) : ξ ∈ U}

for a neighborhood V of x0 and an open set U ⊂ R2. For convenience, we may assume
that ϕ(0) = x0 and that the tangential vectors satisfy∣∣∣∣ ∂ϕ∂ξ1 (0)

∣∣∣∣ =

∣∣∣∣ ∂ϕ∂ξ2 (0)

∣∣∣∣ = 1,
∂ϕ

∂ξ1
(0) · ∂ϕ

∂ξ2
(0) = 0,

and

ν(x0) =
∂ϕ

∂ξ1
(0) × ∂ϕ

∂ξ2
(0) .

The perturbed boundary ∂Dh is locally described by

ψ(ξ) = ϕ(ξ) + h̃(ξ), ξ ∈ U,

where h̃ = h ◦ ϕ. We compute

∂ψ

∂ξ1
(0) × ∂ψ

∂ξ2
(0) = ν(x0) + δ + O

(
‖h‖2

C1(∂D)

)
,

where we have set

δ :=
∂h̃

∂ξ1
(0) × ∂ϕ

∂ξ2
(0) +

∂ϕ

∂ξ1
(0) × ∂h̃

∂ξ2
(0) .

From this it follows that

νh(x0 + h(x0)) = ν(x0) + δ − [ν(x0) · δ] ν(x0) + O
(
‖h‖2

C1(∂D)

)
.

Straightforward computations exploiting the orthonormality of the tangent vectors at
x0 yield that

δ − [ν(x0) · δ] ν(x0) = ν(x0) × [δ × ν(x0)]

= −
2∑

j=1

[
ν(x0) ·

∂h̃

∂ξj
(0)

]
∂ϕ

∂ξj
(0)

=

2∑
j=1

[
h(x0) ·

∂ν

∂ξj
(0)

]
∂ϕ

∂ξj
(0) − Grad[ν · h](x0),

where Grad denotes the surface gradient on ∂D. Combining this with the previous
equation we find that

νh(x0 + h(x0)) − ν(x0) =

2∑
j=1

[
h(x0) ·

∂ν

∂ξj
(0)

]
∂ϕ

∂ξj
(0)

−Grad[ν · h](x0) + O
(
‖h‖2

C1(∂D)

)
.

(2.15)
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From Taylor’s formula and ∇ν · ν = 0, using the coordinate system (2.12) we obtain

ν(x0 + h(x0)) − ν(x0) = [∇ν](x0)h(x0) + O
(
‖h‖2

C1(∂D)

)

=
2∑

j=1

[
h(x0) ·

∂ϕ

∂ξj
(0)

]
∂ν

∂ξj
(0) + O

(
‖h‖2

C1(∂D)

)
.

Subtracting this from (2.15) yields

νh(x0 + h(x0)) − ν(x0 + h(x0)) =

2∑
j=1

[
∂ν

∂ξj
(0) × ∂ϕ

∂ξj
(0)

]
× h(x0)

−Grad[ν · h](x0) + O
(
‖h‖2

C1(∂D)

)
.

From this, in view of

ν · ∂ϕ
∂ξj

= 0, j = 1, 2,

and

∂ν

∂ξj
· ∂ϕ
∂ξ�

= −ν · ∂2ϕ

∂ξj ∂ξ�
=

∂ν

∂ξ�
· ∂ϕ
∂ξj

, j, 	 = 1, 2,

we finally obtain the following technical lemma.
Lemma 2.3. The normal νh to ∂Dh and the extended normal ν are related by the

estimate

νh(x + h(x)) − ν(x + h(x)) = −Grad[ν · h](x) + O
(
‖h‖2

C1(∂D)

)
(2.16)

uniformly for all x ∈ ∂D.
In particular, from (2.16) we can conclude that

ν · (νh − ν) = O
(
‖h‖2

C1(∂D)

)
.(2.17)

Lemma 2.4. Let ∂D be analytic and K be a compact subset of R3 \ D̄. Then

us
h(x) − us(x) = −

∫
∂D

w(x, y) (Bu)(y) ds(y) + o
(
‖h‖C2(∂D)

)
(2.18)

uniformly for x in K, where

Bu := [k2(1 − λ2) + 2ikλHu](ν · h) + Div[(ν · h) Gradu]

and Div and Grad denote the surface divergence and surface gradient, respectively.
Proof. From (2.11), with the aid of the jump relations we obtain the boundary

integral equation

uh(x) = 2ui(x) + 2

∫
∂Dh

{
∂Φ(x, ·)
∂νh

+ ikλΦ(x, ·)
}
uh ds, x ∈ ∂Dh.(2.19)
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Employing a perturbation argument based on pointwise convergence and collective
compactness of the single- and double-layer boundary integral operators as h → 0,
from (2.19) it can be deduced that

|uh(y + h(y)) − u(y)| → 0, ‖h‖C2(∂D) → 0,

uniformly for all y ∈ ∂D. From this, in view of (2.7), using the impedance bound-
ary condition for w together with Taylor’s formula and the continuity of the second
derivatives of w up to the boundary ∂D it follows that

us
h(x) − us(x) =

∫
∂Dh

u

{
∂w(x, ·)
∂νh

+ ikλw(x, ·)
}
ds + o

(
‖h‖C2(∂D)

)
(2.20)

uniformly for x on compact subsets of R3 \ D̄. Abbreviating w = w(x, ·), from (2.20)
and the divergence theorem in view of (2.17) and the boundary condition for w we
obtain

us
h(x) − us(x) =

∫
D∗

h

div {u gradw + ikλuwν}χdy + o
(
‖h‖C2(∂D)

)
.(2.21)

Here

D∗
h := {y ∈ Dh : y �∈ D} ∪ {y ∈ D : y �∈ Dh}

and χ(y) = 1 if y ∈ Dh and y �∈ D and χ(y) = −1 if y ∈ D and y �∈ Dh. Approximating
the integral over D∗

h in (2.21) by an integral over ∂D, with the aid of (2.13) and
Taylor’s formula, we readily obtain that

us
h(x) − us(x) =

∫
∂D

div {u gradw + ikλuwν} (ν · h) ds + o
(
‖h‖C2(∂D)

)
.

Straightforward computations using the Helmholtz equation for w, the impedance
boundary conditions for u and w, and (2.14) yield that

div {u gradw + ikλuwν} = Gradu · Gradw − k2(1 − λ2)uw − 2ikλHuw.

Inserting this into the previous equation and applying the Gauss surface divergence
theorem we finally arrive at (2.18).

The Sommerfeld radiation condition (2.3) implies an asymptotic behavior in the
form of a spherical wave

v(x) =
eik|x|

|x|

{
v∞(x̂) + O

(
1

|x|

)}
, |x| → ∞,

uniformly for all directions x̂ = x/|x| where the function v∞, defined on the unit
sphere Ω := {z ∈ R3 : |z| = 1}, is known as the far field pattern.

For a fixed incident field ui, we define the operator

F : ∂Dh → u∞,h

that maps the boundary ∂Dh onto the far field pattern u∞,h of the scattered wave
for scattering from the impedance obstacle Dh. For this operator we now are ready
to prove the following result on Fréchet differentiability.



FRÉCHET DERIVATIVE FOR IMPEDANCE CONDITION 201

Theorem 2.5. Let ∂D be analytic. Then the boundary to far field operator
F : C(∂D) → L2(Ω) is Fréchet differentiable with the Fréchet derivative given through

F ′(∂D)h = v∞,h,

where v∞,h is the far field pattern of the solution vh to the Helmholtz equation in
R3 \ D̄ that satisfies the Sommerfeld radiation condition and the impedance boundary
condition

∂vh
∂ν

+ ikλvh = [k2(1 − λ2) + 2ikλHu](ν · h) + Div[(ν · h) Gradu] on ∂D.

Proof. This is an immediate consequence of Lemma 2.4 and the representation
formula (2.5).

We expect that proceeding as in [11] Theorem 2.5 can be extended to the case of
C2 boundaries.

3. Impedance problem in electromagnetic scattering. Now we consider
the exterior impedance boundary value problem for electromagnetic waves: Given
a Hölder continuous tangential field c on ∂D and a constant λ ∈ C find a solution
E,H ∈ C1(R3 \ D̄) ∩ C(R3 \D) to the time-harmonic Maxwell equations

curlE − ikH = 0, curlH + ikE = 0 in R3 \ D̄(3.1)

that satisfies the impedance or Leontovich boundary condition

ν ×H − λ(ν × E) × ν = c on ∂D(3.2)

and the Silver–Müller radiation condition

lim
r→∞

(H × x− rE) = 0,(3.3)

where r = |x| and the limit holds uniformly for all directions x/|x|. The impedance
coefficient λ is assumed to satisfy the condition

Reλ ≥ 0(3.4)

that ensures uniqueness and existence of a solution to (3.1)–(3.3) (see [1]). The
limiting case λ = 0 corresponds to the case of a perfectly conducting obstacle with
the roles of the fields E and H interchanged. We note that in this case the existence
of a classical solution requires the existence and Hölder continuity of the surface
divergence Div c of the given boundary data.

For an impedance obstacle D the scattering problem for time-harmonic waves is,
given an incident field Ei, Hi as an entire solution of the Maxwell equations, to find
the total field E = Ei + Es, H = Hi + Hs as a solution to the Maxwell equations in
the exterior R3 \ D̄ of D, such that E,H satisfies the impedance boundary condition

ν ×H − λ(ν × E) × ν = 0 on ∂D

and Es, Hs satisfies the Silver–Müller radiation condition. Clearly, this scattering
problem is a special case of the above boundary value problem (3.1)–(3.3).

On occasion, as an abbreviation we will use

ET := (ν × E) × ν
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for the tangential component of E on the boundary ∂D. For a matrix M =(m1,m2,m3)
in C3×C3 with columns m1,m2,m3 we define matrices ν×M and M×ν by ν×M :=
(ν ×m1, ν ×m2, ν ×m3) and M × ν := −ν ×M .

Describing the electromagnetic field of an electric dipole with polarization p ∈ R3

located at a point y ∈ R3 we introduce matrices Ei
e, H

i
e through

Ei
e(x, y)p :=

i

k
curlx curlx pΦ(x, y), Hi

e(x, y)p := curlx pΦ(x, y)

in terms of the fundamental solution Φ to the Helmholtz equation. Note the symme-
tries

Ei
e(x, y) = [Ei

e(x, y)]
� = Ei

e(y, x) and Hi
e(x, y) = [Hi

e(y, x)]�, x �= y.

For z ∈ R3 \ D̄ denote by Es
e(·, z), Hs

e (·, z) the matrices for which the pairs of corre-
sponding columns are the solution of (3.1)–(3.3) for the boundary values given by the
columns of

c = −ν ×Hi
e(·, z) + λ(ν × Ei

e(·, z)) × ν on ∂D.

Then define Ee := Ei
e + Es

e , He := Hi
e + Hs

e ; that is, Es
e , H

s
e and Ee, He describe

the scattered and the total field, respectively, for the scattering of an electric dipole
located at x ∈ R3 \ D̄. In view of the symmetry

Ee(x, y) = [Ee(y, x)]�, x, y ∈ R3 \ D̄, x �= y,

that can be shown with the aid of the Gauss divergence theorem (see also section 7
in [8]), from the Stratton–Chu representation theorem it follows that (see also the
proof of the following lemma) the unique solution of the impedance boundary value
problem (3.1)–(3.3) can be represented in the form

E(x) = −
∫
∂D

Ee(x, y)c(y) ds(y), x ∈ R3 \ D̄.(3.5)

As in the previous section we consider a family of domains Dh as defined in (2.6)
and distinguish the above quantities related to the impedance scattering problem for
the domain Dh through the subscript h.

Lemma 3.1. Assume that D̄ ⊂ Dh. Then

Es
h(x) − Es(x) = −

∫
∂Dh

{
[He(·, x)]� + λ [νh × Ee(·, x)]�

}
[νh × Eh] ds(3.6)

for x ∈ R3 \ D̄h.
Proof. Let x ∈ R3 \ D̄h. Combining the Stratton–Chu representation theorem for

the incident field Ei, Hi and for the scattered field Es, Hs we have that

Es(x) = −
∫
∂D

{
[Ei

e(·, x)]�[ν ×H] + [Hi
e(·, x)]�[ν × E]

}
ds(3.7)

(see Corollary 2.2 in [8]). From the impedance boundary condition for E,H, and
Ee(·, x), He(·, x) by straightforward calculations we obtain

[Ei
e(·, x)]�[ν ×H] + Hi

e(·, x)]�[ν × E] = −[Es
e(·, x)]�[ν ×H] − [Hs

e (·, x)]�[ν × E]
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on ∂D. Hence, using the Gauss divergence theorem (see Lemma 2.1 in [8]) and the
Silver–Müller radiation condition, (3.7) implies that

Es(x) =

∫
∂D

{
[Es

e(·, x)]�[ν ×Hi] + [Hs
e (·, x)]�[ν × Ei]

}
ds(3.8)

and then again via the Gauss divergence theorem

Es(x) =

∫
∂Dh

{
[Es

e(·, x)]�[νh ×Hi] + [Hs
e (·, x)]�[νh × Ei]

}
ds.(3.9)

From this, applying once again the Gauss divergence theorem and the radiation con-
dition, we obtain that

Es(x) =

∫
∂Dh

{
[Es

e(·, x)]�[νh ×Hh] + [Hs
e (·, x)]�[νh × Eh]

}
ds,

and in view of the boundary condition for Eh, Hh we finally arrive at

Es(x) =

∫
∂Dh

{
[Hs

e (·, x)]� + λ [νh × Es
e(·, x)]�

}
[νh × Eh] ds.

On the other hand, from (3.7) applied to Eh, Hh, ∂Dh and the boundary condition
for Eh, Hh we have that

Es
h(x) = −

∫
∂Dh

{
[Hi

e(·, x)]� + λ [νh × Ei
e(·, x)]�

}
[νh × Eh] ds(3.10)

and the statement (3.6) follows by combining the last two equations.
Remark 3.2. Again (3.6) remains valid for x �∈ D̄∪ D̄h if we drop the assumption

that D̄ ⊂ Dh and assume that Es, Hs can be extended as a solution to the Maxwell
equations in the exterior of Dh. By the regularity results on elliptic boundary value
problems this can be assured if ∂D is analytic and Dh does not differ too much from D.
This follows from sections 6.1 and 6.6 in [13] by considering the impedance boundary
value problem for the Maxwell equation equivalently as a boundary value problem for
the vector Helmholtz equation.

In the neighborhood of ∂D we define the curvature operator R by the matrix with
the columns

R :=

(
∂ν

∂x1
,

∂ν

∂x2
,

∂ν

∂x3

)
.

Then the curl operator trace on ∂D can be expressed in terms of surface operators in
the form

curlE = [Div(E × ν)]ν + Grad(E · ν) × ν +

(
R + 2H∂D − ∂

∂ν

)
(E × ν) on ∂D,

where we use the subscript ∂D to distinguish the mean curvature H∂D from the
magnetic field (see Theorem 2.5.20 in [14]). From this we derive

curl(ν × E) = [DivET ]ν +

(
R + 2H∂D − ∂

∂ν

)
ET on ∂D,(3.11)
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and, in particular, since ET is tangential

ν · curlE = Div(E × ν) on ∂D(3.12)

and

ν · curl(ν × E) = DivET on ∂D.(3.13)

Lemma 3.3. Let ∂D be analytic and let K be a compact subset of R3 \ D̄. Then

Es
h(x) − Es(x) = −

∫
∂D

[Ee(y, x)]� (NE)(y) ds(y) + o
(
‖h‖C2(∂D)

)
(3.14)

uniformly for x in K, where

NE := −ν × {Grad[(ν ·H)(ν · h)] + λE × Grad(ν · h)}

+(ν · h)

[
ik − λ

(
R + 2H∂D − ∂

∂ν

)]
ET .

Proof. From (3.10), with the aid of the jump relation we obtain the hypersingular
boundary integral equation

νh(x) × Eh(x) = 2 νh(x) × Ei(x)

−2 νh(x) ×
∫
∂Dh

{
[Hi

e(·, x)]� + λ [νh × Ei
e(·, x)]�

}
[νh × Eh] ds, x ∈ ∂Dh.

From this, regularizing the integral equation and employing a perturbation argument
it can be deduced that

|νh(y + h(y)) × Eh(y + h(y)) − ν(y) × E(y)| → 0, ‖h‖C2(∂D) → 0,

uniformly for all y ∈ ∂D. Hence, in view of (3.6), using the impedance boundary
condition for Ee, He together with Taylor’s formula and the estimate νh(y + h(y)) −
ν(y) = O(‖h‖C2(∂D)) (see (2.15)) it follows that

Es
h(x) − Es(x) = −

∫
∂Dh

{
[He(·, x)]� + λ [νh × Ee(·, x)]�

}
[νh × E] ds

+o
(
‖h‖C2(∂D)

)
uniformly for x on compact subsets of R3 \ D̄. From this, abbreviating Ee = Ee(x, ·)
and He = He(x, ·), and using the Gauss divergence theorem in view of (2.17), the
boundary condition for Ee, He, and the Maxwell equations we obtain

Es
h(x) − Es(x) = −λ

∫
∂Dh

[ν × Ee]
�[(νh − ν) × E] ds

−
∫
D∗

h

ik
{
H�

e [H + λ ν × E] + E�
e E∗}χdy

+o
(
‖h‖C2(∂D)

)
,

(3.15)
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where D∗
h and χ are defined as in the proof of Lemma 2.4 and

E∗ := E − λ

ik
curl[ν × E].(3.16)

In (3.15), we estimate the integral over ∂Dh with the aid of (2.16) and approximate
the integral over D∗

h by an integral over ∂D. Then with the aid of (2.13), Taylor’s
formula, and the boundary condition for E,H we obtain that

Es
h(x) − Es(x) =

∫
∂D

{
λE�

e [ν × {E × Grad(ν · h)}]

− ik
[
H�

e {(H · ν) ν} + E�
e E∗] (ν · h)

}
ds

+o
(
‖h‖C2(∂D)

)
.

(3.17)

With the aid of Maxwell’s equation for E, the vector identities (3.12) and (3.13), and
the boundary condition for E, H, we observe that

E∗ · ν =
1

ik
Div(ν ×H − λET ) = 0 on ∂D.

Using the Maxwell equation for He, the identity (3.12), and the Gauss surface diver-
gence theorem we can transform∫

∂D

ik H�
e (ν ·H)(ν · h)ν ds = −

∫
∂D

E�
e [ν × Grad{(ν ·H)(ν · h)}] ds.

Inserting this into (3.17) we conclude that

Es
h(x) − Es(x) =

∫
∂D

{
E�

e [ν × {Grad[(ν ·H)(ν · h)] + λE × Grad(ν · h)}]

−ik E�
e [ν × (E∗ × ν)(ν · h)]

}
ds

+o
(
‖h‖C2(∂D)

)
.

From this, the statement (3.14) follows with the help of the definition (3.16) and the
identity (3.11).

The Silver–Müller radiation condition (3.3) implies an asymptotic behavior in the
form of a spherical wave

E(x) =
eik|x|

|x|

{
E∞(x̂) + O

(
1

|x|

)}
, |x| → ∞,

uniformly for all directions x̂ = x/|x| where the tangential field E∞ on the unit sphere
Ω is known as the electric far field pattern.

For a fixed incident field Ei, Hi, we define the operator

F : ∂Dh → E∞,h

that maps the boundary ∂Dh onto the electric far field pattern E∞,h of the scattered
wave for scattering from the impedance obstacle Dh. For this operator we now are
ready to prove the following result on Fréchet differentiability.
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Theorem 3.4. Let ∂D be analytic. Then the boundary to far field operator
F : C(∂D) → L2(Ω) is Fréchet differentiable with the Fréchet derivative given through

F ′(∂D)h = E∞,h,

where E∞,h is the far field pattern of the solution Eh, Hh to the Maxwell equations in
R3\D̄ that satisfies the Silver–Müller radiation condition and the impedance boundary
condition

ν ×Hh − λ(ν × Eh) × ν

= −ν × {Grad[(ν ·H)(ν · h)] − λE × Grad(ν · h)}

+(ν · h)

[
ik − λ

(
R + 2H∂D − ∂

∂ν

)]
[(ν × E) × ν] on ∂D.

(3.18)

Proof. This is an immediate consequence of Lemma 3.3 and the representation
formula (3.5).

We expect that, proceeding as in [11], Theorem 3.4 can be extended to the case
of C2 boundaries.

We will conclude with a few remarks on the injectivity of the Fréchet derivative
as given in the previous theorem, i.e., the characterization of the nullspace of the
derivative as the space of tangential fields ν · h = 0. In acoustic scattering, on
one hand for the Dirichlet condition this result is an immediate consequence of the
characterization of the derivative via Holmgren’s uniqueness theorem (see Theorem
5.15 in [2]). On the other hand, the injectivity for the Neumann problem based
on the characterization of Theorem 2.5 for λ = 0 remains an open problem. For
the impedance problem for large λ, i.e., for the impedance condition close to the
Dirichlet case, Kress and Rundell [12] (see also [10]) have settled the injectivity of the
linearization.

The ideas for proving injectivity as applied in [12] fail for the Neumann boundary
condition due to the occurrence of two definite integrals with opposite signs. Unfor-
tunately the same happens in the electromagnetic case for λ = 0. In this case, in view
of (3.18) we would want to conclude from

ν × Grad[(ν ·H)(ν · h)] − ik ν × [E × ν] (ν · h) = 0 on ∂D(3.19)

that ν · h = 0. Taking the dot product of (3.19) with the conjugate complex Ē and
integrating over

U := {x ∈ ∂D : ν(x) · h(x) ≥ 0}

with the aid of (3.12), the Maxwell equations and the Gauss divergence theorem yields∫
U

{
|ν × E|2 − |ν ·H|2

}
(ν · h) ds = 0

and no further conclusions are possible from this equation.
The following example actually shows that further assumptions on the incident

field are required for establishing that the nullspace of the derivative consists only of
the tangential fields. Consider as the incident field the vector spherical wave function

Ei(x) = curl

{
xjn(k|x|)Yn

(
x

|x|

)}
, Hi(x) =

1

ik
curlEi(x),



FRÉCHET DERIVATIVE FOR IMPEDANCE CONDITION 207

where jn is the spherical Bessel function of order n and Yn a spherical harmonic of
order n. Elementary computations (see Theorem 6.24 in [2]) show that for D a ball
of radius R centered at the origin the scattered wave is given by

Es(x) = An(R) curl

{
xh(1)

n (k|x|)Yn

(
x

|x|

)}
, Hs(x) =

1

ik
curlEs(x),(3.20)

where h
(1)
n is the spherical Hankel function of order n and

An(R) = − (1 + ikλR)jn(kR) + k j′n(kR)

(1 + ikλR)h
(1)
n (kR) + k h

(1)′
n (kR)

.(3.21)

The denominator in (3.21) is nonzero, since for the radiating solution

un(x) = h(1)
n (k|x|)Yn

(
x

|x|

)

to the Helmholtz equation we have the impedance boundary values

∂un

∂ν
+ (1 + ikRλ)un =

{
k h(1)′

n (kR) + (1 + ikλR)h(1)
n (kR)

}
Yn(3.22)

on ∂D. Therefore, due to the uniqueness result for the acoustic impedance boundary
value problem as mentioned in section 2 the right-hand side of (3.22) cannot vanish
identically.

The tangential component of the total electric field on ∂D is of the form

ν × E = an(R) GradYn,

where

an(R) := jn(kR) + An(R)h(1)
n (kR).

Then, with the aid of the Maxwell equations, the identities (3.12), and

Div GradYn + n(n + 1)Yn = 0

for R = 1, λ = 0, and ν · h = 1, the right-hand side of (3.18) becomes

ν × Grad[(ν ·H)(ν · h)] − ik ν × [E × ν] (ν · h) =
an(1)

ik
[n(n + 1) − k2] ν × GradYn.

Hence, for k2 = n(n + 1) we have vanishing boundary data and consequently a van-
ishing Fréchet derivative for a nontangential field h.

This observation, of course, can also be based on differentiating with respect to
the radius R. The far field pattern E∞ of (3.20) is given by

E∞ =
An(R)

k in+1
GradYn × ν

with the exterior unit normal ν to the unit sphere Ω (see Theorem 6.26 in [2]).
Straightforward calculations using the differential equation and the Wronskian for
the spherical Bessel and Hankel functions (see section 2.4 in [2]) shows that

A′
n(1) =

i[k2(1 − λ2) − n(n + 1)]

k[(1 + ikλ)h
(1)
n (k) + k h

(1)′
n (k)]2

,
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i.e., the derivative vanishes for k2(1 − λ2) = n(n + 1) leading to vanishing Fréchet
derivatives for a nontangential field h if λ is real and less than one. However, according
to the symmetry of the Maxwell equations, if E,H solves the impedance boundary
value problem with impedance constant λ, then H,−E solves the impedance boundary
value problem with impedance 1/λ. Hence, our example also provides vanishing
Fréchet derivatives for impedance values larger than one. These counter examples
suggest that for proving injectivity of the derivative, for example, for plane wave
incidence, the special structure of the plane waves has to be incorporated.
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Abstract. A mathematical model of competition between two species for two growth-limiting,
essential (complementary) resources in the unstirred chemostat is considered. The existence of a
positive steady-state solution and some of its properties are established analytically. Techniques
include the maximum principle, the fixed point index, and numerical simulations. The simulations
also seem to indicate that there are regions in parameter space for which a globally stable positive
equilibrium occurs and that there are other regions for which the model admits bistability and even
multiple positive equilibria.
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index, numerical simulation
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1. Introduction. An apparatus called the chemostat, used for the continuous
culture of microorganisms, has played an important role in ecology. It has been
thought of as a lake in a laboratory. See [9, 25, 29] for a description of the apparatus
and the general theory.

In the basic set up, the culture vessel is assumed to be well stirred. One or
more populations of microorganisms grow and/or compete exploitatively for a single,
nonreproducing, growth-limiting nutrient that is supplied at a constant rate. The
contents of the culture vessel are removed at the same constant rate as the medium
containing the nutrient is supplied, and thus the volume of the culture vessel remains
constant. Species-specific parameters can be measured one species at a time, and
based on these parameters the theory predicts the qualitative outcome in advance of
actual competition. In particular, the theory predicts that the species with the lowest
break-even concentration excludes all other competitors (see [6, 14, 29]). Experiments
confirmed this prediction in the case of auxotrophic bacterial strains competing for
limiting tryptophan [11].

Mathematical analysis of chemostat models involving two limiting resources under
the assumption that the culture vessel is well stirred can be found, for example, in
[2, 3, 7, 13, 12, 17, 18, 19, 28]. When more than one resource is limiting, it is necessary
to consider how these resources promote growth. At one extreme are resources that
are sources of different essential substances that must be taken together, because each
substance fulfills different physiological needs with respect to growth, for example, a
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carbon source and a nitrogen source. Such resources are called complementary by
Leon and Tumpson [17], Rapport [22], and Baltzis and Fredrickson [4]; essential by
Tilman [28]; and heterologous by Harder and Dijkhuizen [12].

The model of exploitative competition for two essential resources in the well-
stirred case is given by

St = (S0 − S)D − 1
ys1

g1(S,R)u− 1
ys2

g2(S,R)v,

Rt = (R0 −R)D − 1
yr1

g1(S,R)u− 1
yr2

g2(S,R)v,

ut = [−D + g1(S,R)]u,

vt = [−D + g2(S,R)]v.

S(t), R(t) denote the nutrient concentrations at time t, and u(t) and v(t) denote the
biomass of each population in the culture vessel. S0 > 0 and R0 > 0 are constants
that represent the input concentrations of nutrients S and R, respectively, D is the
dilution rate, and ysi and yri , i = 1, 2, are the corresponding growth yield constants.
The response functions are denoted gi(S,R) = min(pi(S), qi(R)), i = 1, 2, where pi(S)
denotes the response function of the ith population when only resource S is limiting
and qi(R) denotes the response function of the ith population when only resource R is
limiting. We will consider the case that the Monod model for exploitative competition

for one resource is generalized to the two essential resources case, i.e., pi(S) =
msi

S

Ksi
+S ,

qi(R) =
mri

R

Kri
+R , i = 1, 2, where msi , mri , Ksi , Kri , are positive constants.

In this paper, we study the unstirred chemostat and consider two species’ compe-
tition for two, growth-limiting, nonreproducing essential resources. Motivated by the
work on the unstirred chemostat in the case of one limiting resource (see [5, 8, 15, 16,
20, 23, 24, 25, 26, 30, 31] ) and in the case of two limiting resources in [32], the model
takes the form of the following reaction-diffusion equations:

St = dSxx − 1
ys1

g1(S,R)u− 1
ys2

g2(S,R)v, 0 < x < 1, t > 0,

Rt = dRxx − 1
yr1

g1(S,R)u− 1
yr2

g2(S,R)v, 0 < x < 1, t > 0,

ut = duxx + g1(S,R)u, 0 < x < 1, t > 0,

vt = dvxx + g2(S,R)v, 0 < x < 1, t > 0,

with boundary conditions

Sx(0, t) = −S0, Rx(0, t) = −R0, ux(0, t) = 0, vx(0, t) = 0,

Sx(1, t) + γS(1, t) = 0, Rx(1, t) + γR(1, t) = 0,

ux(1, t) + γu(1, t) = 0, vx(1, t) + γv(1, t) = 0.

The boundary conditions are very intuitive. Readers may refer to [5, 16, 26] for
their derivation.

These equations can be simplified using the nondimensional variables and pa-

rameters defined as follows: S̄ = S
S0 , R̄ = R

R0 , α =
S0ys1

R0yr1
, β =

R0yr2

S0ys2
, ḡi(S̄, R̄) =

min(
msi

S̄

K̄si
+S̄

,
mri

R̄

K̄ri
+R̄

), i = 1, 2, ū = u
ys1S

0 , v̄ = v
yr2R

0 , where K̄si =
Ksi

S0 , K̄ri =
Kri

R0 ,

i = 1, 2. For more convenient notation, we drop the bars on the nondimensional
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variables and parameters, yielding the following model:

St = dSxx − g1(S,R)u− βg2(S,R)v, 0 < x < 1, t > 0,

Rt = dRxx − αg1(S,R)u− g2(S,R)v, 0 < x < 1, t > 0,

ut = duxx + g1(S,R)u, 0 < x < 1, t > 0,

vt = dvxx + g2(S,R)v, 0 < x < 1, t > 0,

(1)

with boundary conditions

Sx(0, t) = −1, Rx(0, t) = −1, ux(0, t) = 0, vx(0, t) = 0,

Sx(1, t) + γS(1, t) = 0, Rx(1, t) + γR(1, t) = 0,

ux(1, t) + γu(1, t) = 0, vx(1, t) + γv(1, t) = 0,

and initial conditions

S(x, 0) = S0(x) ≥ 0, R(x, 0) = R0(x) ≥ 0, u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0.

Denote ϕ1 = S + u + βv, ϕ2 = R + αu + v, where ϕi, i = 1, 2, is the solution of

ϕit = dϕixx, 0 < x < 1, t > 0,

ϕix(0, t) = −1, ϕix(1, t) + γϕi(1, t) = 0,

ϕi(x, 0) = ϕi0(x).

Then u and v satisfy

ut = duxx + ug1(ϕ1 − u− βv, ϕ2 − αu− v), 0 < x < 1, t > 0,

vt = dvxx + vg2(ϕ1 − u− βv, ϕ2 − αu− v), 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) + γu(1, t) = 0, t > 0,

vx(0, t) = 0, vx(1, t) + γv(1, t) = 0, t > 0.

(1′)

This paper is devoted to determining the positive solution of this two-species
model of exploitative competition for two essential resources in the unstirred chemo-
stat. Since the reaction terms are Lipschitz continuous, but not C1, many methods
used to analyze elliptic systems do not apply. This makes the analysis more diffi-
cult. Some methods used to prove the existence of the positive equilibrium in the
region D = {(λ̂1, λ̂2) : λ̂1 > 1, λ̂2 > 1} occupy a major portion of the paper, where

λ̂i, i = 1, 2, is defined in the next section. The main result is established in Theo-
rem 3. The other related results are also obtained in section 2. Extensive numerical
studies were run, and some conclusions are summarized in section 3. The simulations
convince us that much more complex dynamics can occur in region D.

The paper is organized as follows. In section 2, the existence of a positive steady-
state solution and some of its properties are established by using the maximum prin-
ciple and fixed point index theory, which is closely related to bounding the principal
eigenvalues of certain differential operators. Some results on extensive numerical stud-
ies are reported in section 3, complementing the mathematical results in section 2,
and a number of typical figures chosen from many simulations are also given in this
section.
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2. The positive steady-state solution. First, we consider the steady state of
system (1):

dSxx − g1(S,R)u− βg2(S,R)v = 0, 0 < x < 1,

dRxx − αg1(S,R)u− g2(S,R)v = 0, 0 < x < 1,

duxx + g1(S,R)u = 0, 0 < x < 1,

dvxx + g2(S,R)v = 0, 0 < x < 1,

(2)

with boundary conditions

Sx(0) = −1, Rx(0) = −1, ux(0) = 0, vx(0) = 0,

Sx(1) + γS(1) = 0, Rx(1) + γR(1) = 0, ux(1) + γu(1) = 0, vx(1) + γv(1) = 0.

It follows that S + u + βv = z, R + αu + v = z, where z = z(x) = 1+γ
γ − x. Then u

and v satisfy

duxx + ug1(z − u− βv, z − αu− v) = 0, 0 < x < 1,

dvxx + vg2(z − u− βv, z − αu− v) = 0, 0 < x < 1,

ux(0) = 0, ux(1) + γu(1) = 0,

vx(0) = 0, vx(1) + γv(1) = 0.

(3)

Let λi be the principal eigenvalue and let φi(x) > 0 on [0, 1], i = 1, 2, be the
corresponding eigenfunction, normalized as maxx∈[0,1] φi(x) = 1, of the following
problem:

dφixx + λiφigi(z, z) = 0, 0 < x < 1, φix(0) = 0, φix(1) + γφi(1) = 0.(4)

Let U(x) be the solution of

dUxx + Ug1(z − U, z − αU) = 0, 0 < x < 1,

Ux(0) = 0, Ux(1) + γU(1) = 0,
(5)

and let U(x, t) be the solution of

Ut = dUxx + Ug1(ϕ1 − U,ϕ2 − αU), 0 < x < 1, t > 0,

Ux(0, t) = 0, Ux(1, t) + γU(1, t) = 0,

U(x, 0) = U0(x) ≥ 0.

(6)

From Lemmas 2.2–2.4 and Theorem 2.5 in [32] we have the following lemma.
Lemma 1. If λ1 < 1, then there exists a unique positive solution U(x) of (5),

satisfying 0 < U < min{1, 1
α}z on [0, 1]. If λ1 ≥ 1, the only nonnegative solution of

(5) is U = 0. Furthermore, limt→∞ U(x, t) = U(x) if λ1 < 1, and limt→∞ U(x, t) = 0
if λ1 > 1.

Remark 1. If λ2 < 1, a similar result holds for V (x), where V (x) is the unique
positive solution of

dVxx + V g2(z − βV, z − V ) = 0, 0 < x < 1,

Vx(0) = 0, Vx(1) + γV (1) = 0.
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Since we are only concerned with the nonnegative steady-state solutions of (3),
there is no loss of generality if we redefine

pi(S) =

{
msi

S

Ksi
+S , S ≥ 0,

0, S < 0,
qi(R) =

{
mri

R

Kri
+R , R ≥ 0,

0, R < 0.

Lemma 2. Suppose (u, v) is the nonnegative solution of (3). Then (i) u > 0 or
u ≡ 0, and v > 0 or v ≡ 0; (ii) u+ βv < z, αu+ v < z; (iii) u ≤ U, v ≤ V. Moreover,
u < U or u ≡ U, and v < V or v ≡ V.

Proof. (i) This part can be proved by the maximum principle, in the usual way,
and the details are omitted here.

(ii) Define w = u + βv − z. Note that by (3) it follows that

dwxx + ug1(−w, z − αu− v) + βvg2(−w, z − αu− v) = 0,

wx(0) = 1 and wx(1) + γw(1) = 0.

First we show that w ≤ 0 on [0, 1]. Suppose not. If w(1) > 0, then wx(1) < 0.
Therefore, there exists a ∈ [0, 1) so that for all x ∈ (a, 1], w(x) > 0, and either a = 0
or w(a) = 0. But then for all x ∈ [a, 1], wxx = 0 and so wx(x) = wx(1) < 0, i.e., w(x)
is decreasing there. Since wx(0) = 1 > 0, a �= 0. But a > 0 is also impossible since
then w(a) = 0, w(x) is decreasing in [a, 1], and w(1) > 0. Therefore, w(1) ≤ 0. Next,
assume there exists x̄ ∈ [0, 1) with w(x̄) > 0. Then there exist δ1 ≥ 0 and δ2 > 0 such
that w(x) > 0 for all x ∈ (x̄− δ1, x̄+ δ2) ⊂ (0, 1), w(x̄+ δ2) = 0, and either x̄− δ1 = 0
or w(x̄ − δ1) = 0. But then for all x ∈ [x̄ − δ1, x̄ + δ2], wxx(x) = 0 and so wx(x) is
constant. Since w(x̄ + δ2) = 0, it follows that wx(x̄ + δ2) ≤ 0, and so w(x) is non-
increasing on [x̄− δ1, x̄+ δ2]. Then x̄− δ1 �= 0, since wx(0) = 1, and so w(x̄− δ1) = 0.
Therefore, w(x) ≡ 0 on [x̄− δ1, x̄ + δ2], a contradiction. Hence, u + βv ≤ z on [0, 1].
That αu + v ≤ z follows similarly. It is easy to see that u + βv �≡ z, αu + v �≡ z;
otherwise we have duxx = 0, dvxx = 0, with the usual boundary condition, which
gives u ≡ 0, v ≡ 0, a contradiction. Let w1 = z − u − βv, w2 = z − αu − v. Then
wi ≥ 0, �≡ 0, and w1 satisfies

−dw1xx + ug1(w1, w2) + βvg2(w1, w2) = 0,

w1x(0) = −1, w1x(1) + γw1(1) = 0,

which leads to

−dw1xx + w1

(
ms1

u

Ks1+w1
+

ms2
βv

Ks2+w1

)
≥ 0,

w1x(0) = −1, w1x(1) + γw1(1) = 0.

If w1(x0) = 0 for some point x0 ∈ [0, 1], by applying the strong maximum principle
(see [21]) we obtain a contradiction. Hence w1 > 0 on [0, 1]. The proof that w2 > 0
on [0, 1] is similar.

(iii) It follows by the monotone method and the uniqueness of U that u ≤ U ≤
min{1, 1

α}z. By the Lipschitz continuity of g1(S,R), there exists a constant L > 0,

such that 0 ≤ g1(z−u, z−αu)− g1(z−U, z−αU) ≤ L(U −u). Let Û = U −u. Then
Û ≥ 0 satisfies

dÛxx + Û [g1(z − U, z − αU) − uL] ≤ 0, 0 < x < 1,

Ûx(0) = 0, Ûx(1) + γÛ(1) = 0.

If Û �≡ 0, then the maximum principle leads to Û > 0. Thus either u < U or u ≡ U .
The proof for v is similar.
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Remark 2. It follows from Lemmas 1 and 2 that, for λi ≥ 1, i = 1, 2, the only
nonnegative solution of (3) is (0, 0). In order to guarantee the existence of a positive
solution of (3), we must assume that λi < 1 for i = 1, 2.

Let λ̂i be the principal eigenvalues and let φ̂i(x) > 0, x ∈ [0, 1], i = 1, 2, be the
corresponding eigenfunctions of the problem

dφ̂1xx + λ̂1φ̂1g1(z − βV, z − V ) = 0, 0 < x < 1, φ̂1x(0) = 0, φ̂1x(1) + γφ̂1(1) = 0,

dφ̂2xx + λ̂2φ̂2g2(z − U, z − αU) = 0, 0 < x < 1, φ̂2x(0) = 0, φ̂2x(1) + γφ̂2(1) = 0.

Theorem 1. Suppose λ̂i < 1 for i = 1, 2. Then there exists a positive steady-state
solution (u, v) of (3) satisfying 0 < u(x) < U(x), 0 < v(x) < V (x) for x ∈ [0, 1].

Proof. It is easy to check that (U, V ) is the sup-solution of (3). Let (u, v) =

(δφ̂1, δφ̂2)(δ > 0). Then for δ sufficiently small, we have

duxx + ug1(z − u− βV, z − αu− V )

= [ug1(z − u− βV, z − αu− V ) − λ̂1ug1(z − βV, z − V )]

= u[(1 − λ̂1)g1(z − βV, z − V )

+ (g1(z − u− βV, z − αu− V ) − g1(z − βV, z − V ))] > 0.

Hence there exists a solution (u, v) of (3) satisfying (δφ̂1, δφ̂2) ≤ (u, v) ≤ (U, V ) for
small δ. By Lemma 2 we obtain the strict inequalities in Theorem 1.

Now we consider the special case that g1 = g2 = g, and we find that there exist
infinitely many positive solutions of (3).

Theorem 2. Suppose that λi < 1 for i = 1, 2 and g1 = g2 = g. Then there
exist infinitely many positive solutions (uρ, vρ) (ρ > 0) of (3) satisfying 0 < vρ ≤
min{ 1

ρ+β ,
1

αρ+1}z, uρ = ρvρ.

Proof. Set ω = u
v . Then ω satisfies

−dωxx − 2dvx
v

ωx = 0, ωx(0) = ωx(1) = 0.

By the maximum principle it follows that ω ≡ ρ, a positive constant, i.e., u = ρv.
Thus v satisfies

dvxx + vg(z − (ρ + β)v, z − (αρ + 1)v) = 0, vx(0) = 0, vx(1) + γvx(1) = 0.

For ρ > 0 fixed, arguing as for the existence of U or V, and noting that λ2 < 1,
it follows that there exists a unique positive solution of the above problem, say, vρ,
satisfying 0 < vρ ≤ min{ 1

ρ+β ,
1

αρ+1}z. Thus (uρ, vρ) (ρ > 0), where uρ = ρvρ, is the

positive solution of (3). This completes the proof.
Remark 3. Suppose that g1 ≤ g2, g1 �≡ g2 or g1 ≥ g2, g1 �≡ g2. Then there exists

no positive solution of (3). This conclusion is consistent with the analysis in [9] for
the pure and simple competition model. In fact, suppose u > 0, v > 0 satisfy (3).
We consider the first case, since the second case can be proved similarly. Denoting
ω = u

v , we have

−dωxx − 2dvx
v

ωx + ω[g2(z − u− βv, z − αu− v) − g1(z − u− βv, z − αu− v)] = 0,

ωx(0) = ωx(1) = 0.

Then ω = constant, and hence ω = 0, a contradiction.



COMPETING FOR RESOURCES IN THE UNSTIRRED CHEMOSTAT 215

Theorem 3. Suppose λi < 1 and λ̂i > 1 for i = 1, 2. Then there exists a positive
solution (u, v) of (3).

Proof. Let CB [0, 1] = {u(x) ∈ C[0, 1] : ux(0) = 0, ux(1) + γu(1) = 0} be the
Banach space, with the usual maximum norm, denoted by ‖ · ‖, X = CB [0, 1] ×
CB [0, 1], K = C+

B [0, 1] × C+
B [0, 1], the positive cone of X. Let N = (−d∆)−1, the

inverse operator of −d∆ in CB [0, 1]. Then system (3) can be written as

u−N(ug1(z − u− βv, z − αu− v)) = 0,

v −N(vg2(z − u− βv, z − αu− v)) = 0.

Let T (u, v) = (N(ug1(z− u− βv, z−αu− v)), N(vg2(z− u− βv, z−αu− v))). Then
the fixed points of T in K are the corresponding nonnegative solutions of (3). Define
D = {(u, v) ∈ K : ‖u‖+ ‖v‖ ≤ R0}, where R0 = 2 max{1, 1

α ,
1
β }‖z‖, and let Ḋ denote

the interior of D in K. Since the proof is long, we divide it into three lemmas.
Lemma 3. For λ ≥ 1, the equation T (u, v) = λ(u, v) has no solution in K

satisfying ‖u‖ + ‖v‖ = R0.
Proof. Suppose (u, v) ∈ K satisfies T (u, v) = λ(u, v). Then we have

duxx + λ−1ug1(z − u− βv, z − αu− v) = 0,

dvxx + λ−1vg2(z − u− βv, z − αu− v) = 0,

with the boundary conditions as above. As in the proof of Lemma 2, it follows that
u+βv < z, αu+v < z. Thus u+v < max{1, 1

α ,
1
β }z. Hence there exists no fixed point

of T (u, v) = λ(u, v) in K satisfying ‖u‖ + ‖v‖ = R0.
Remark 4. It follows from Lemma 12.1 in [1] that indexK(T, Ḋ) = 1.
Let Pσ(0, 0) = {(u, v) ∈ K : ‖u‖ + ‖v‖ < σ} be the neighborhood of (0, 0) in K

with radius σ.
Lemma 4. For σ > 0 small enough, indexK(T, Pσ(0, 0)) = 0.
Proof. Given ε0 > 0 sufficiently small, noting the definition of U, V, we can take

0 < σ < σ0 � 1 such that σ
γ < min{U − ε0, V − ε0}. Denote S+

σ = {(u, v) ∈ K :

‖u‖ + ‖v‖ = σ
γ }. Thus ‖u‖ ≤ σz, ‖v‖ ≤ σz whenever (u, v) ∈ S+

σ .

Let ψ = (2 + γ) − γx2. Then ψ > 0 on [0, 1] and satisfies

ψxx < 0, 0 < x < 1, ψx(0) = 0, ψx(1) + γψ(1) = 0.

Take p = (ψ,ψ)(∈ K). We show next (by contradiction) that for λ ≥ 0, (u, v) −
T (u, v) = λ(ψ,ψ) has no solution on S+

σ for small σ. Assume that this problem has a
solution (u, v) on S+

σ . Then (u, v) satisfies

duxx + ug1(z − u− βv, z − αu− v) = dλψxx, 0 < x < 1,

dvxx + vg2(z − u− βv, z − αu− v) = dλψxx, 0 < x < 1.

Hence by the definition of ψ, we have

duxx + ug1((1 − σβ)z − u, (1 − σ)z − αu) ≤ 0, 0 < x < 1,

dvxx + vg2((1 − σ)z − βv, (1 − σα)z − v) ≤ 0, 0 < x < 1.

Since λi < 1, we can take sufficiently small σ, say, σ < σ1 � 1, such that λ1(g1((1 −
σβ)z, (1 − σ)z)) < 1, λ2(g2((1 − σ)z, (1 − σα)z)) < 1, where λ1(g1((1 − σβ)z, (1 −
σ)z)), λ2(g2((1 − σ)z, (1 − σα)z)) are the principal eigenvalues of (4) with g1 and g2
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replaced by g1((1 − σβ)z, (1 − σ)z) and g2((1 − σ)z, (1 − σα)z), respectively. As in
the proof of Lemma 3.2 in [31] we can prove the existence and uniqueness of U∗, V ∗

of the following problem:

dU∗
xx + U∗g1((1 − σβ)z − U∗, (1 − σ)z − αU∗) = 0, 0 < x < 1,

dV ∗
xx + V ∗g2((1 − σ)z − βV ∗, (1 − σα)z − V ∗) = 0, 0 < x < 1,

with the usual boundary conditions. By an Lp estimate and the Sobolev embedding
theorem (see [27]), we proceed as in the proof of Theorem 2.5 in [32] to obtain

lim
σ→0

U∗ = U, lim
σ→0

V ∗ = V.

Thus there exists σ2 > 0, such that for σ < σ2, U
∗ > U − ε0, V

∗ > V − ε0. It follows
from the monotone method and the uniqueness of U∗, V ∗ that u ≥ U∗, v ≥ V ∗.
Now take σ < σ̄ = min{σ0, σ1, σ2}. Then for σ < σ̄, we have u > σ

γ , v > σ
γ , which

contradicts (u, v) ∈ S+
σ . Lemma 12.1 of [1] can be applied to complete the proof of

this lemma.
Let O+(U, 0) be a small neighborhood of (U, 0) in K. Then we have the following

lemma.
Lemma 5. Suppose that T has no fixed point in Ḋ. Then indexK(T,O+(U, 0)) = 1

if λ̂2 > 1, λ1 < 1.
Proof. Define T (θ)(u, v) = (N(ug1(z − u − θβv, z − αu − θv)), N(vg2(z − u −

θβv, z − αu− θv))). It follows from (u, v) = T (θ)(u, v) that

duxx + ug1(z − u− θβv, z − αu− θv) = 0,

dvxx + vg2(z − u− θβv, z − αu− θv) = 0.

If (u, v) is a fixed point of T (θ) on ∂O+(U, 0), the boundary of O+(U, 0) in K, it
is easy to see that u > 0, v ≥ 0. Furthermore, we have v > 0; otherwise we have
(u, v) = (U, 0), contradicting (u, v) ∈ ∂O+(U, 0). We claim that for θ ∈ [0, 1], T (θ)

has no fixed point on ∂O+(U, 0). Otherwise, for θ = 0, by noting λ̂2 > 1 and λ1 < 1,
we find u = U, v = 0, a contradiction; for θ > 0, this implies that (u, θv) > (0, 0) is a
fixed point of T in Ḋ, contradicting a hypothesis of this lemma. It follows from the
homotopy invariance of topological degree that

indexK(T,O+(U, 0)) = indexK(T (1), O+(U, 0)) = indexK(T (0), O+(U, 0)),(7)

where T (0)(u, v) = (N(ug1(z − u, z − αu)), N(vg2(z − u, z − αu))).
The fixed point (u, v) of T (0) in O+(U, 0) satisfies

duxx + ug1(z − u, z − αu) = 0, 0 < x < 1,

dvxx + vg2(z − u, z − αu) = 0, 0 < x < 1,
(8)

with the boundary conditions

ux(0) = 0, vx(0) = 0, ux(1) + γu(1) = 0, vx(1) + γv(1) = 0.

Since λ1 < 1, we have u = U. Noting λ̂2 > 1, we determine that the principal
eigenvalue λ′

2 of the following problem is negative:

dφ′
xx + φ′g2(z − U, z − αU) = λ′

2φ
′, φ′

x(0) = 0, φ′
x(1) + γφ′(1) = 0.
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Substituting u = U into the second equation of (8), we have v = 0. Hence (U, 0) is
the unique fixed point of T (0) in O+(U, 0); thus

indexK(T (0), O+(U, 0)) = indexK(T (0), (U, 0)).(9)

Let I(θ) (θ ∈ [0, 1]) be defined by I(θ)(u, v) = (N(ug1(z − u, z − αu)), N(vg2(z −
(θU + (1 − θ)u), z − α(θU + (1 − θ)u)))). Then (u, v) = I(θ)(u, v) satisfies

duxx + ug1(z − u, z − αu) = 0, 0 < x < 1,

dvxx + vg2(z − (θU + (1 − θ)u), z − α(θU + (1 − θ)u)) = 0, 0 < x < 1,
(10)

with the usual boundary conditions. We claim that I(θ) has no fixed point on
∂O+(U, 0) in K. Otherwise, from the first equation of (10), we have u = U, and
substituting this into the second equation of (10), we find v = 0, so the only fixed
point of I(θ) on ∂O+(U, 0) is (U, 0), a contradiction. By the definition of I(θ), we
obtain

T (0) = I(0), I(1) = T1 × T2,(11)

where T1u = N(ug1(z − u, z − αu)), T2v = N(vg2(z −U, z − αU)), (T1 × T2)(u, v) =
(T1u, T2v). (u, v) = I(1)(u, v) satisfies

duxx + ug1(z − u, z − αu) = 0, 0 < x < 1,

dvxx + vg2(z − U, z − αU) = 0, 0 < x < 1.

It follows from (7)–(11) and the product theorem for fixed points (see [33]) that

indexK(T (0), (U, 0)) = indexK(I(0), (U, 0)) = indexK(I(1), (U, 0))

= indexCB
(T1, U) · indexC+

B
(T2, 0).

(12)

Since T2 is a linear compact operator and λ̂2 > 1, then T2 has no eigenvalue > 1 with
positive eigenfunction in C+

B . It follows from Lemma 13.1 of [1] that indexC+
B
(T2, 0) =

1.
We show next that indexCB

(T1, U) = 1. Let τ = 2 min{1, 1
α}‖z‖, Pτ = {u ∈ C+

B :

‖u‖ ≤ τ}, ∂Pτ = {u ∈ C+
B : ‖u‖ = τ}. For λ ≥ 1, if T1u = λu, dλuxx + ug1(z −

u, z − αu) = 0. Arguing as in the proof of Lemma 1, we have u ≤ min{1, 1
α}z < τ.

Hence for λ ≥ 1, T1u = λu has no solution on ∂Pτ . It follows from Lemma 12.1
of [1] that indexC+

B
(T1, Pτ ) = 1. Let 0 < τ0 ≤ 1

2 min[0,1]{U(x)}. Suppose that for

λ ≥ 0, p = ψ(x), such that u − T1u = λp has a solution u on ∂Pτ0 , where ψ(x) is
defined as in the proof of Lemma 4. Then, duxx + ug1(z − u, z − αu) = dλψxx ≤ 0.
Thus u is a sup-solution of (5). From the monotone method and the uniqueness of
U it follows that u ≥ U, a contradiction to ‖u‖ = τ0. Hence, indexC+

B
(T1, Pτ0) = 0.

Since u = U is the unique fixed point of T1 in Pτ\P̄τ0 , we obtain indexCB
(T1, U) =

indexC+
B
(T1, Pτ\P̄τ0) = indexC+

B
(T1, Pτ ) − indexC+

B
(T1, Pτ0) = 1.

Combining the above result with equations (7), (9), and (12), it follows that
indexK(T,O+(U, 0)) = 1.

Remark 5. Suppose that T has no fixed point in Ḋ. We can proceed as above to
obtain indexK(T,O+(0, V )) = 1 if λ̂1 > 1, λ2 < 1.

Now we turn to the proof of Theorem 3. Suppose that T has no fixed point in Ḋ.
Then the following equation holds:

indexK(T, Ḋ) = indexK(T,O+(0, 0)) + indexK(T,O+(U, 0)) + indexK(T,O+(0, V )),
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contradicting Lemmas 3–5. This completes the proof of Theorem 3.
Noting Lemma 1, and using the same process as in the proof of Theorem 3.6 in

[15], we have the following theorem.
Theorem 4. If λ1 > 1 and λ2 > 1, then the solution of system (1) satisfies

lim
t→∞

(S,R,U, V ) = (z, z, 0, 0).

If λ1 > 1 and λ2 < 1, then the solution of system (1) satisfies

lim
t→∞

(S,R,U, V ) = (z − βV, z − V, 0, V ).

If λ1 < 1 and λ2 > 1, then the solution of system (1) satisfies

lim
t→∞

(S,R,U, V ) = (z − U, z − αU,U, 0).

Theorem 5. Suppose λ̂i < 1, i = 1, 2. Then the solution of system (1) is
uniformly persistent ([10]).

Proof. It follows from system (1′) that v(x, t) ≤ V (x, t), where V (x, t) is the
solution of the problem

Vt = dVxx + V g2(ϕ1 − βV, ϕ2 − V ), 0 < x < 1, t > 0,

Vx(0, t) = 0, Vx(1, t) + γV (1, t) = 0,

V (x, 0) = v0(x).

Since λ̂2 < 1, then λ2 < 1. We can proceed as in Theorem 2.5 in [32] to show that if
λ2 < 1, then limt→∞ V (x, t) = V (x), where V (x) < min{1, 1

β }z is the unique positive
solution of

dVxx + V g2(z − βV, z − V ) = 0, 0 < x < 1,

Vx(0) = 0, Vx(1) + γV (1) = 0.

Since λ̂1 < 1, we can take 0 < ε � 1, such that for the following principal eigenvalue
λ̃1 < 1,

dφ̃1xx + λ̃1φ̃1g1((1 − ε(1 + β)/2)z − βV (x), (1 − ε)z − V (x)) = 0, 0 < x < 1,

φ̃1x(0) = 0, φ̃1x(1) + φ̃1(1) = 0.

There exists τ ′ > 0 such that for x ∈ [0, 1], t ≥ τ ′, the following inequalities hold:

ϕ1 ≥ z − (ε/2)z, ϕ2 ≥ z − (ε/2)z, v(x, t) ≤ V (x) + (ε/2)z.

Using the comparison theorem, it follows that for t ≥ τ ′, u(x, t) ≥ u(x, t), where
u(x, t) is the solution of

ut = duxx + ug1((1 − (ε(1 + β)/2))z − u− βV (x), (1 − ε)z − αu− V (x)),

0 < x < 1, t > τ ′,

ux(0, t) = 0, ux(1, t) + γu(1, t) = 0,

u(x, τ ′) = min{(1 − ε(1 + β)/2)z − βV (x), ((1 − ε)z − V (x))/α, u(x, τ ′)}.
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Noting λ̃1 < 1, we have limt→∞ u(x, t) = uε(x), where uε(x) is the unique positive
solution of

duεxx + uεg1((1 − ε(1 + β)/2)z − uε − βV (x), (1 − ε)z − αuε − V (x)) = 0

with the usual boundary conditions. It follows from an Lp estimate and the embedding
theorem (see [27]) that limε→0 uε(x) = û(x), where û(x) is the unique positive solution
of the following problem on [0, 1]:

dûxx + ûg1(z − û− βV (x), z − αû− V (x)) = 0(13)

with the usual boundary conditions. A similar result holds for v if λ̂2 < 1. Hence,
there exist constants η1 > 0, τ1 ≥ τ ′ such that u(x, t) ≥ η1, v(x, t) ≥ η1 for x ∈
[0, 1], t ≥ τ1.

By the equation of S in system (1) and the definition of gi, i = 1, 2, we have

St = dSxx − g1(S,R)u− βg2(S,R)v

≥ dSxx − max
{

ms1

Ks1
,
ms2

Ks2

}
S(u + βv).

Then there exists τ ′′ > 0, and for t ≥ τ ′′, the following inequality holds:

St ≥ dSxx − max

{
ms1

Ks1

,
ms2

Ks2

}
S(z + ε− S).

A similar result holds for R. Thus we can proceed as in Lemma 3.8 in [15] to show that
there exist η2 > 0, τ2 > 0 such that S(x, t) ≥ η2, R(x, t) ≥ η2 for x ∈ [0, 1], t ≥ τ2.
Denote τ = max{τ1, τ2}, η = max{η1, η2}. Then we have S ≥ η, R ≥ η, u ≥ η, v ≥ η
for x ∈ [0, 1], t ≥ τ. This completes the proof.

3. Numerical simulations. The goal of this section is to present the results
of numerical simulations that complement the analytic results of the previous sec-
tion. The simulations reported below represent a small fraction of those made. We
wish to make a few general comments based on our observations. First, in most
simulations performed, convergence to equilibrium was observed. Second, competi-
tive exclusion, the elimination of one population by another, was observed. Finally,
nonuniqueness of the positive equilibrium and bistability of the semitrivial equilib-
rium were observed. Our simulations are consistent with the analytic results of the
previous sections. Furthermore, the simulations reveal that much more complicated
dynamics are also possible in the region D defined below. Our numerical simulations
also seemed to indicate that coexistence is more likely in the case of competition for
two limiting complementary resources in the unstirred chemostat, than in the case of
competition for a single limiting resource in the unstirred chemostat (see [26]).

Define A = {(λ̂1, λ̂2) : 0 < λ̂1 < 1, 0 < λ̂2 < 1}, B = {(λ̂1, λ̂2) : 0 < λ̂1 < 1, λ̂2 >

1}, C = {(λ̂1, λ̂2) : λ̂1 > 1, 0 < λ̂2 < 1}, and D = {(λ̂1, λ̂2) : λ̂1 > 1, λ̂2 > 1}.
Our numerical simulations seem to indicate the following:
(1) Coexistence in the form of a positive equilibrium can be observed when

(λ̂1, λ̂2) ∈ A ∪ B ∪ C (see Figures 1–2 and Tables 1–2), and apparently a globally

stable positive equilibrium can always be observed when (λ̂1, λ̂2) ∈ A;
(2) Competitive exclusion in the form of an apparently globally stable semitrivial

positive equilibrium can occur when (λ̂1, λ̂2) ∈ B∪C (see Figures 1–2 and Tables 1–2);
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(3) Both stable and unstable positive equilibria can exist, and there can be bista-
bility with two stable semitrivial equilibria and an unstable positive equilibrium, re-
sulting in initial condition dependent outcomes when (λ̂1, λ̂2) ∈ D (see Figures 3–4);

(4) Existence of multiple stable and/or unstable positive equilibria can be ob-

served when (λ̂1, λ̂2) ∈ D (see Figures 4–5);
(5) The parameters have an apparent effect on the density of both organisms,

i.e., the density u can be nondecreasing and the density v can be nonincreasing as α
increases (see Figures 6(a)–6(c)). Similar results for v and u hold as β increases. But
the density of both organisms can decrease as γ increases (see Figures 6(b) and 6(d)).

Now we describe an indirect method used for determining either λ̂i > 1 or λ̂i < 1
from numerical simulations. The method will be described for determining the sign
of λ̂1 − 1 only, since the other case is similar. Consider the following system:

ut = duxx + ug1(z − u− βv, z − αu− v), 0 < x < 1, t > 0,

vt = dvxx + vg2(z − βv, z − v), 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) + γu(1, t) = 0,

vx(0, t) = 0, vx(1, t) + γv(1, t) = 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, �≡ 0,

(14)

where u0 + βv0 ≤ z, αu0 + v0 ≤ z. Taking initial conditions characterized by a very
small density of u0, we can prove and observe numerically that v rapidly approaches
the equilibrium V (x). Hence for large times, t, we take v(x, t) as V (x) in the first
equation of (14). Then we have

ut = duxx + ug1(z − u− βV, z − αu− V ), 0 < x < 1, t > 0(15)

with the usual boundary and initial conditions. We can use the comparison theorem
and the Liapunov function method to prove that the solution u(x, t) of (15) satisfies

limt→∞ u(x, t) = 0 if λ̂1 ≥ 1 and limt→∞ u(x, t) = û if λ̂1 < 1, where û is the unique
positive solution of (13). Therefore, what happens to u depends essentially on the

sign of λ̂1 − 1. If λ̂1 ≥ 1, we observed the decay of the solution u of (15) to very small

values; if λ̂1 < 1, we observed the growth of the solution u of (15) to the value of

the solution of (13). Therefore, we can determine the sign of λ̂1 − 1 numerically by
observing whether there is decay to very small values or growth to the value of the
solution of (13).

We next simulate the corresponding time-dependent system of (3), which deter-
mines the limiting system of (1):

ut = duxx + ug1(z − u− βv, z − αu− v), 0 < x < 1, t > 0,

vt = dvxx + vg2(z − u− βv, z − αu− v), 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) + γu(1, t) = 0,

vx(0, t) = 0, vx(1, t) + γv(1, t) = 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0.

We have chosen to discretize the spatial variables in the above system using a
second-order finite-difference scheme. The derivative terms in the boundary conditions
are approximated using second-order centered differencing. The temporal variable is
approximated using the Crank–Nicholson method. In all of the simulations the domain
is divided uniformly into 40 cells.
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Table 1

The equilibria corresponding to the parameters given in Tables 1 and 2 are shown in Figures 1
and 2.

ms λ̂1 λ̂2 Area Equilibrium
(2.06, 2.04) < 1 > 1 B (U, 0)

(2.045, 2.055) < 1 > 1 B Coexistence
(2.04, 2.06) < 1 < 1 A Coexistence
(1.8, 2.3) < 1 < 1 A Coexistence
(1.6, 2.5) < 1 < 1 A Coexistence

(1.55, 2.55) > 1 < 1 C (0, V )

Table 2

ms λ̂1 λ̂2 Area Equilibrium
(4.55, 4.45) < 1 > 1 B (U, 0)
(4.48, 4.52) < 1 > 1 B Coexistence
(4.45, 4.55) < 1 < 1 A Coexistence
(2.2, 6.8) < 1 < 1 A Coexistence
(2.1, 6.9) > 1 < 1 C Coexistence

(1.95, 7.05) > 1 < 1 C (0, V )

In the following, we denote ms = (ms1 ,ms2), mr = (mr1 ,mr2), Ks = (Ks1 ,Ks2),
Kr = (Kr1 ,Kr2).

Coexistence and competitive exclusion. In Figures 1 and 2 a sequence of simula-
tions is reported where different growth rates were used, but all of the other param-
eter values remain fixed. The parameter values used were α = β = 0.5, γ = 1,Ks =
(1, 1),Kr = (1, 1.2). In Figure 1 and Table 1, mr = (3, 3), and in Figure 2 and
Table 2, mr = (6, 6). In Figure 1, ms took the values indicated in Table 1, and in
Figure 2, ms took the values indicated in Table 2. In each simulation in Figures 1
and 2, the densities were plotted at the final time, t = 1000. This appeared to be long
enough to allow the solutions to be very close to steady state. A similar procedure
was used in the other figures. We observed from Figures 1 and 2, as well as from
many other simulations, that at the highest growth rate of u and the lowest growth
rate of v, u is dominant with v barely present for any initial conditions. In this case,
we checked that (λ̂1, λ̂2) ∈ B. As the growth rate of u is decreased or the growth
rate of v is increased, the amount of v increases at the expense of the amount of u.
Both organisms coexist at a positive equilibrium. In this case, we also checked that
(λ̂1, λ̂2) ∈ A or B or C. All the simulations show that the coexistence is unique and

an apparently globally stable positive equilibrium exists when (λ̂1, λ̂2) ∈ A. As the
growth rate of u is further decreased or the growth rate of v is further increased, v
is dominant with u barely present for any initial condition. In addition, we checked
(λ̂1, λ̂2) ∈ C in this case. Coexistence in the form of a positive equilibrium can occur

when (λ̂1, λ̂2) ∈ A or B or C. The nonexistence of a positive equilibrium can also

occur when (λ̂1, λ̂2) ∈ B or C.
Bistability and the existence of positive equilibria. (i) In Figure 3, we provide

numerical evidence of bistability; i.e., each of the two semitrivial equilibria is stable
to invasion by its rival and attracts solutions corresponding to nearby initial data.
As well, an unstable positive equilibrium is observed. We took ms = (3, 2), mr =
(2.4, 3.6), and the other parameter values as in Figure 1. In this case we checked that

(λ̂1, λ̂2) ∈ D. The simulations in Figures 3(a) and 3(b) show a plot of the L1 norms of
u and of v versus time t. In Figure 3(a) the initial conditions used were u0 = 0.5 and
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Fig. 1. Equilibria for mr = (3, 3) and the different values of ms from Table 1 (in the order
given in that table). The other parameters used are Ks = (1, 1), Kr = (1, 1.2), α = β = 0.5, and
γ = 1.
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Fig. 2. Equilibria for mr = (6, 6) and the different values of ms from Table 2 (in the order
given in that table). All the other parameters are the same as those in Figure 1.
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Fig. 3. Convergence to equilibria. All parameters except ms and mr are the same as those
in Figure 1. In (a)–(c) ms = (3, 2) and mr = (2.4, 3.6). In (a)–(b) the L1 norms of u and of v
versus time are shown for two semitrivial equilibria. In (c) a plot of the positive equilibrium for
each x ∈ [0, 1] is shown. In (d)–(f) ms = (2, 2) and mr = (2, 4). The L1 norms of u and of v versus
time are shown for several different equilibria.
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Fig. 4. Several positive equilibria. All parameters are the same as those in Figure 1, except
ms = (2, 2) and mr = (2, 4). Note that u and v are indistinguishable in (d).

v0 = 0.1. In Figure 3(b) the initial conditions used were u0 = 0.1 and v0 = 0.5. The
positive equilibrium is plotted in Figure 3(c). After many simulations, in this case we
believe that this is the only positive equilibrium and that it is unstable.

(ii) In Figures 3(d)–(f), we took ms = (2, 2) and mr = (2, 4). All other parameters
are the same as in Figure 1. Both semitrivial equilibria are stable. Only one of them
is shown (see Figure 3(d)). As well, nonuniqueness and stability of more than one

positive equilibrium are observed. In this case, we checked that (λ̂1, λ̂2) ∈ D.
Existence of multiple positive equilibria. Based on extensive simulations, we be-

lieve that much more complicated dynamical behavior can occur when (λ̂1, λ̂2) ∈ D.
(i) In Figure 4 we took the same parameters as in Figures 3(d)–(f) and used

continuation (numerical analysis) to find the equilibria. Simulations (not shown)
seem to indicate that there are at least four positive equilibria in this case, and
strongly suggest that one of them is unstable (see Figure 4(d), where u and v are
indistinguishable), and that the other three are stable (see Figures 4(a)–(c)). Note
that the equilibria depicted in Figures 4(b)–(c) correspond to those in Figures 3(e)–(f),
respectively.

(ii) In Figures 5(a)–(c) we took ms = (1.5, 1.8) and mr = (1.75, 1.42). In Fig-
ures 5(d)–(f) we took ms = (2.1, 2.75) and mr = (2.8, 2.13). The other parameters
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Fig. 5. Positive equilibria. All parameters are the same as those in Figure 1, except that in
(a)–(c) ms = (1.5, 1.8) and mr = (1.75, 1.42), and in (d)–(f) ms = (2.1, 2.75) and mr = (2.8, 2.13).
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Fig. 6. Parameters α and γ have an effect on the densities of the equilibria. In (a)–(d)
ms = (2, 2.1), mr = (3, 3), Ks = (1, 1), Kr = (1, 1.2), and β = 0.5. In (a)–(c) γ = 1, and in (d)
γ = 0.6. In (a) α = 0.3, in (b) α = 0.5, in (c) α = 0.7, and in (d) α = 0.5.

were taken as in Figure 1. In both cases, we checked that (λ̂1, λ̂2) ∈ D. For each
case, we used numerical analysis to find the three positive equilibria depicted in Fig-
ure 5. Subsequent simulations strongly indicated that all these positive equilibria are
unstable.

Effects of the parameters. In Figure 6 a sequence of simulations shows that the
parameters α, β, γ have an apparent effect on the density of both populations. Param-
eter values taken are ms = (2, 2.1), mr = (3, 3), Ks = (1, 1), Kr = (1, 1.2). Values
for α, β, and γ are given in the caption of Figure 6. The initial data are u0 = 1 and
v0 = 1. We observed that the density of u can be nondecreasing and the density of
v can be nonincreasing as α increases (see Figures 6(a)–6(c)). A similar result holds
for v and u as β increases. We also observed that the density of both u and v can
decrease as γ increases (see Figures 6(b) and 6(d)).
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Abstract. Wave dynamics in a system of coupled Burgers equations is studied. This model
describes the long-wave nonlinear evolution of an oscillatory pattern-forming system in the presence
of the Goldstone mode caused by the translation symmetry, for example, the oscillatory instability
of a propagating combustion front. It is shown that the system of coupled Burgers equations reveals
several new types of instabilities, which are studied both analytically and numerically. In some
limiting cases, secondary amplitude equations governing these instabilities are derived. The nonlinear
development of these instabilities is studied by numerical simulations.
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1. Introduction. In the last decades, the spontaneous formation of spatially
inhomogeneous patterns was a subject of extensive investigations [1]. A deep under-
standing of various phenomena was achieved by studying nonlinear amplitude equa-
tions valid near the onset of instability. The role of these equations in the description
of bifurcations in distributed systems is similar to the role of normal forms in the de-
scription of bifurcations in systems with a finite number of degrees of freedom. In the
case of short-wavelength instabilities (i.e., those occurring with a nonzero wavenumber
at the threshold), a complex Ginzburg–Landau (CGL) equation [2, 3, 4, 5] turns out to
be a generic equation for an envelope function governing the evolution of patterns near
the instability threshold. In the case of long-wavelength instabilities (i.e., those occur-
ring with a zero wavenumber at the threshold) the situation is much more intricate.
Depending on the features of the linear dispersion relation and the symmetries of the
problem, the nonlinear dynamics of patterns is governed by different kinds of ampli-
tude equations [6]. Among them are the CGL equation [7], the Kuramoto–Sivashinsky
equation [8, 9, 10, 11], the perturbed Korteweg–de Vries equation [12, 13, 14], and
others.

A basic problem, which is typically solved by means of amplitude equations, is
the stability of spatially periodic waves generated by the primary instability. In many
cases, there exists a stability interval of periodic waves (“Busse balloon”). Specifically,
such an interval was revealed for wavy patterns governed by the Ginzburg–Landau
equation [3, 15], the Kuramoto–Sivashinsky equation [8, 16, 17], and the perturbed
Korteweg–de Vries equation [18, 19]. The boundaries of this interval are determined
by long-wavelength modulational instabilities. The growth rate σ of these instabil-
ities usually depends on the perturbation wavenumber k as σ = O(k2) (“negative
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viscosity”), but sometimes as σ = O(k) (see [6, 17, 19]). The nonlinear develop-
ment of modulational instabilities is governed by secondary amplitude equations (see
[4, 10, 14, 20]). It leads either to a change of the pattern wavelength or to the ap-
pearance of more complicated, e.g., spatially quasi-periodic, or chaotic, dynamics.

Recently, a new class of pattern-forming systems started attracting considerable
attention. The dynamics of these systems is characterized by the nonlinear interac-
tion of an unstable mode coupled with a stable but slow Goldstone mode (see [21, 22]
for review) associated with the symmetry of the problem or a conservation law. An
interesting example of such a system in which the long-wave oscillatory mode is cou-
pled to the slow Goldstone mode caused by the translation symmetry is a uniformly
propagating planar flame front governed by sequential reactions [23, 24]. The nonlin-
ear dynamics of this system near the instability threshold is governed by two coupled
equations: a CGL equation for the frontal oscillation amplitude P and a Burgers
equation for the frontal deformation Q [23],

∂tP + ∇P · ∇Q = P + (1 + iu)∇2P − (1 + iv)|P |2P − sP∇2Q,(1.1)

∂tQ = m∇2Q− 1

2
|∇Q|2 − w|P |2,

where s = sr + isi is a complex constant, and u, v, m, and w are real constants.
The parameter m is assumed to be positive; otherwise the deformational mode is
intrinsically unstable and should be described by the Kuramoto–Sivashinsky equation
rather than by the Burgers equation [23]. Although the system of equations (1.1) was
derived for a particular physical system it should be considered as generic for a class of
systems that have left-right symmetry and the same linear dispersion relation and are
characterized by the presence of the Goldstone mode associated with the translation
symmetry. Evolution equations for the interaction between an unstable mode and the
zero mode in systems with other symmetries were studied, for example, in [21, 22, 25].

In [23], the stability of spatially uniform pulsations of the front was investigated,
and some new types of nonlinear dynamics were revealed, including modulated stand-
ing waves, blinking states, and intermittent states. In [24] it was found that the
long-wave instabilities of spatially periodic patterns, essentially different from the
usual Benjamin–Feir instability, are of major importance. They can produce either
modulated waves or oscillating cells separated by domain walls.

In the present paper we investigate long waves governed by the system (1.1).
These waves are generated by the long-wavelength instabilities caused by the cou-
pling between the phase θ = arg(P ) and the slow mode Q. We will show that in
the long-wave limit, the problem is governed, to the leading order, by two coupled
Burgers equations and has an additional symmetry with respect to the scaling trans-
formation. A similar approach was used in [26] for the investigation of a secondary
Hopf bifurcation of a stationary periodic structure possessing a translation symmetry.
Note that several other systems of coupled Burgers-type equations were studied in
different contexts in [27, 28, 29, 30, 31, 32]. Linear stability analysis presented be-
low reveals a new type of modulational instability of traveling waves, which does not
have its analogy for homogeneous oscillations. It leads to an unusual situation when
the Busse balloon includes the single wavenumber k0 = 0 rather than an interval of
wavenumbers. Depending on the parameters, this instability is characterized by the
growth rate dependence σ = O(k2) or σ = O(k). In some limiting cases, we derive
secondary amplitude equations governing both types of instabilities. The nonlinear
development of these instabilities is studied by numerical simulations.
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2. Instabilities of patterns governed by coupled Burgers equations.

2.1. Derivation of the system of coupled Burgers equations. Consider
large-scale solutions of the system (1.1). Define P = ρ exp (iθ) and rewrite the system
(1.1) in the form

ρt + ∇ρ·∇Q = ∇2ρ− ρ|∇θ|2 − u(2∇ρ·∇θ + ρ∇2θ) + ρ(1 − ρ2 − sr∇2Q),(2.1)

ρθt + ρ∇θ·∇Q = u(∇2ρ− ρ|∇θ|2) + 2∇ρ·∇θ + ρ∇2θ − ρ(vρ2 + si∇2Q),(2.2)

Qt = m∇2Q− 1

2
|∇Q|2 − wρ2.(2.3)

The system (2.1)–(2.3) has the solution

ρ = 1, θ = −vt, Q = −wt,(2.4)

which corresponds to a planar front moving with the velocity −w and pulsating with
the frequency v.

In the case of a pure CGL equation, it is known that the behavior of long-wave so-
lutions is of major importance. They are responsible for the Benjamin–Feir instability
of homogeneous oscillations [3, 4, 7] that leads to the development of spatiotemporal
chaos (“phase turbulence”) [10]. The goal of the present section is to analyze the
behavior of long waves governed by the system (2.1)–(2.3).

Introduce a formal small parameter ε � 1, and assume that the characteristic
wavenumbers in the Fourier expansion of the solution are small, k = O(ε), i.e., the
solution slowly depends on the spatial coordinates. Also, we assume that the solution
slowly evolves in time. Define new variables, X = εx, T = ε2t, so that ∂t → ∂t +
ε2∂T , ∇ → ε∇X, and consider

ρ = ρ0 + ε2ρ̃(X, T ), θ = −ω0t + θ̃(X, T ), Q = c0t + Q̃(X, T ),(2.5)

where the functions ρ̃, θ̃, and Q̃ are expanded in series as

ρ̃ = ρ̃0 + ε2ρ̃2 + . . . , θ̃ = θ̃0 + ε2θ̃2 + . . . , Q̃ = Q̃0 + ε2Q̃2 + . . . .(2.6)

Substitute (2.5)–(2.6), together with (2.4) into (2.1)–(2.3) and equate the terms
of the same order in ε. In the leading order one obtains ρ0 = 1, ω0 = v, c0 = −w,
which coincides with (2.4). In the next order, one obtains

(∇θ̃)2 + u∇2θ̃ + 2ρ̃0 + sr∇2Q̃ = 0,(2.7)

−ω0ρ̃0 + θ̃T + ∇θ̃·∇Q̃ = −u(∇θ̃)2 + ∇2θ̃ − (2vρ̃0 + si∇2Q̃) − vρ̃0 ,(2.8)

Q̃T = m∇2Q̃− 1

2
(∇Q̃)2 − 2wρ̃0 ,(2.9)

where the subscripts are omitted in θ̃0, Q̃0, and ∇X. From (2.7) one gets

ρ̃0 = −1

2

[
(∇θ̃)2 + u∇2θ̃ + sr∇2Q̃

]
.(2.10)

Substitute (2.10) into (2.8), (2.9) to obtain the coupled Burgers equations for θ̃ and
Q̃:

θ̃T = A∇2θ̃ + C(∇θ̃)2 + B∇2Q̃−∇θ̃·∇Q̃,

Q̃T = D∇2Q̃− 1

2
(∇Q̃)2 + w(∇θ̃)2 + E∇2θ̃,

(2.11)



WAVES IN COUPLED BURGERS EQUATIONS 233

where

A = 1 + uv, B = vsr − si, C = (v − u), D = m + wsr, E = wu,(2.12)

and the subscripts have been dropped.
The system (2.11) describes the interaction between long-wave phase disturbances

and long-wave modulations of the zero mode; in the case of a flame instability the
latter corresponds to the large-scale deformations of the flame front. Note that for
w = 0 the equation for Q in the system (2.11) is decoupled from the equation for the
phase disturbances. It is important that the system (2.11), unlike the original system
(1.1), is invariant with respect to (the group of) scaling transformations X → X′ =
αX, T → T ′ = α2T. Note also the specific nonlinear coupling in the system (2.11);
it is related to the particular form of the system (1.1). In other systems the coupling
can be different [27, 28, 29, 30, 31, 32].

2.2. Linear stability of traveling waves. The system (2.11) has a class of
traveling wave solutions,

θ̃0 = F · X − ωT, Q̃0 = G · X − cT,(2.13)

corresponding to planar waves (F �= 0) propagating on the background of an inclined
front (G �= 0), where ω = F · G − CF 2, c = G2/2 − wF 2. In this section we study
the instabilities of these solutions in the framework of the system (2.11).

Consider the perturbed solution, θ̃ = θ̃0 + θ̂, Q̃ = Q̃0 + Q̂, with (θ̂, Q̂) =
(Â, B̂) eik·X+σT , and linearize the system (2.11) to obtain the dispersion relation∣∣∣∣ σ + Ak2 − i(2Ck·F − k·G) Bk2 + ik·F

Ek2 − i2wk·F σ + Dk2 + ik·G

∣∣∣∣ = 0.(2.14)

For homogeneous frontal oscillations, F = G = 0, one finds σ = Σk2 [23], where
Σ satisfies the quadratic equation Σ2 + tr(M) · Σ + det(M) = 0, with tr(M) =
1 + uv + m + wsr and det(M) = m(1 + uv) + w(sr + usi) being the trace and the
determinant of the matrix

M =

(
A B
E D

)
.(2.15)

Spatially homogeneous oscillations of the planar front, corresponding to F = G = 0,
are monotonically unstable (ImΣ = 0,ReΣ > 0) if det(M) < 0, and oscillatory un-
stable (ImΣ �= 0, ReΣ > 0) if tr(M) < 0, det(M) > [tr(M)]2/4. Both the monotonic
instability boundary,

1 + uv = −w

m
(sr + usi),(2.16)

and the oscillatory instability boundary,

1 + uv = −(m + wsr), (m + wsr) <
w

m
(sr + usi),(2.17)

can be considered as modifications of the Benjamin–Feir instability boundary, 1 +
uv = 0, of the CGL equation, caused by the coupling with the Burgers equation.
The homogeneous oscillations are stable with respect to long-wave perturbations if
tr(M) > 0, det(M) > 0, i.e., for

1 + uv > max

{
−(m + wsr), −w

m
(sr + usi)

}
.(2.18)
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Let us emphasize that the nonlinear development of the Benjamin–Feir instability
cannot be studied in the framework of the system (2.11) because the latter has no
short-wave cut-off and becomes ill-posed when the Benjamin–Feir instability appears.
To describe the saturation of the Benjamin–Feir instability, the terms with fourth-
order derivatives are necessary [7, 10]. Later on, we shall assume that there is no
instability of the homogeneous oscillations, i.e., det(M) > 0, tr(M) > 0.

Consider now the stability of traveling wave solutions with F �= 0, which is de-
termined by the dispersion relation (2.14). Since σ(k;F,G) = σ(k;F, 0) − ik·G, the
stability of traveling waves is not affected by the inclination of the front characterized
by the vector G, and we shall further consider G = 0. In this case, the dispersion
relation (2.14) can be written as

Σ2 + [tr(M) − 2iCα]Σ + det(M) − iαζ − 2wα2 = 0,(2.19)

where Σ ≡ σ/k2, α ≡ k·F/k2, ζ = 2m(v − u) + w[2si + u(1 − 2sr)]. If k = 0, then
σ = 0 independently of F; thus, traveling waves are neutrally stable with respect to
homogeneous perturbations with k = 0. If k and F are orthogonal, the dispersion
relation coincides with that for F = 0. Thus, if the condition (2.18) is not satisfied,
traveling wave solutions with any F are unstable at least with respect to transverse
perturbations, with k⊥F. Later on, we shall investigate the stability of traveling wave
solutions with F �= 0 with respect to disturbances with k �= 0 for the parameter region
defined by (2.18).

In the limit α → 0 (i.e., for knF � k2) (2.19) is reduced to the quadratic equation
for Σ corresponding to F = 0; thus there is no instability for small α if tr(M) > 0,
det(M) > 0. For finite values of α, the instability can occur for

2w − C2 +
Z2

[tr(M)]2
> 0,(2.20)

when there exists a solution of the equation Re(Σ(α∗)) = 0,

α2
∗ =

[tr(M)]2det(M)

[tr(M)]2(2w − C2) + Z2 , Z = ζ − C tr(M).(2.21)

If (2.20) is satisfied, a traveling wave is unstable with respect to the disturbances
with | α |> α∗. Thus, the solution characterized by the wavevector F is unstable with
respect to perturbations with the wavevector k within the region

(
k

F
± n

2α∗

)2

<
1

4α2
∗
,(2.22)

where n = F/F , i.e., within two disks of the radius 1/2α∗ with the centers in the
points k = ±nF/2α∗ (see Figure 1; kn = k · n, kτ = k · τ , n · τ = 0). At the
instability boundary, σ = iΩk2, Ω = α∗ζ/tr(M).

The instability inside the region (2.22) is a new type of instability which is absent
in the case of the pure CGL equation. Indeed, if the CGL equation is decoupled from
the Burgers equation (w = 0), the condition (2.20) is not satisfied for 1 + uv > 0,
m > 0. An unusual feature of this new kind of long-wave instability is the fact that
if the conditions (2.18), (2.20) hold, then all traveling wave solutions with F �= 0 are
unstable, while homogeneous oscillations with F = 0 are stable; therefore the Busse
balloon contains the single wavenumber F = 0. This property is not the result of the
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( k/F± n/2α
*
)2 < 1/4α

*
2

Fig. 1. Regions of instability (dashed) of the traveling wave (2.13) with the wavevector F,
kn = k · n, kτ = k · τ ; n and τ are orthogonal unit vectors; n = F/F.

long-wave approximation of the system (1.1) by the coupled Burgers equations (2.11)
but it also remains in the full system (1.1) [24]. The same property was obtained for
modulated waves governed by a generalized Ginzburg–Landau equation [33] and [34].
Note that the inequality (2.22) contains only the ratio k/F , which is the result of the
similarity properties of the system of coupled Burgers equations.

It is instructive to analyze the asymptotics of the solution Σ(α) defined by (2.19)
in the limit α → ∞, i.e., for knF � k2 (note that in this case (kτ/F )2 � kn/F � 1).
For 2w − C2 �= 0, one expands Σ(α) ∼ Σ1α + Σ0 + Σ−1α

−1 + . . . , where

Σ1 = iC ±
√

2w − C2, Σ0 = −1

2
tr(M)± Z

2
√
C2 − 2w

.(2.23)

If 2w − C2 < 0 (specifically, near the instability boundary, where 2w − C2 =
−Z2/[tr(M)]2), then Σ1 is purely imaginary and Σ0 is real. It is easy to show that
in the case tr(M) > 0 the instability condition Σ0 > 0 is equivalent to (2.20). In
this case, Re(σ) = Σ0k

2 to the leading order; i.e., the instability is of the negative
viscosity type.

If 2w − C2 > 0, one of the roots Σ1 has a positive real part. In this case,
the growth rate Re(σ) = ±

√
(2w − C2) · k · F depends linearly on the perturbation

wavenumber. In the order O(k), the frequency of the disturbances, ω(k) = iσ(k), is
determined by the eigenvalues of the matrix (2.14). Since the matrix is not symmetric
it can have a pair of complex conjugate eigenvalues that corresponds to the instability.



236 E. A. GLASMAN, A. A. GOLOVIN, AND A. A. NEPOMNYASHCHY

This phenomenon is known to be the origin of similar instabilities in several hydro-
dynamic problems, e.g., the Kelvin–Helmholtz instability in ideal fluid flows [35] and
kinetic instability of viscous flows with two or more interfaces (“kinetic α-effect”) [36]
(see also [37]). Note that on the boundary 2w − C2 = −Z2/[tr(M)]2 the instability
always appears as a negative-viscosity one, while the kinetic α-effect develops only in
the interior of the instability region in the parameter space where 2w − C2 > 0 (see
Figure 2).

w

stable "negative−viscosity" "α − effect"

↑ ↑

1/2(c2−Z2/tr(M)2) c2/2

Fig. 2. Instability types.

On the boundary 2w − C2 = 0, the growth rate of the unstable mode is described

by the relation Re(Σ(α)) ∼
√

|α|Z
2 ; thus Re(σ(k2)) ∼ k(k · F)1/2.

2.3. Weakly nonlinear amplitude equations for long-wave disturbances.
In this section we analyze the nonlinear evolution of the new type of instability of
the traveling wave solutions described in the previous section, in the case when the
size of the instability region in the plane (kn, kτ ) is small. Consider finite-amplitude

perturbations of the traveling wave solution (2.13), θ̂ = θ − θ0, Q̂ = Q − Q0, and
choose a new reference frame, X′ = X − GT . In the new frame of reference, the
evolution of θ̂ and Q̂ is described by the following system of equations:

θ̂T = A∇2θ̂ + B∇2Q̂ + 2CF·∇θ̂ − F·∇Q̂ + C
(
∇θ̂

)2

−∇θ̂ · ∇Q̂,(2.24)

Q̂T = D∇2Q̂ + E∇2θ̂ + 2wF·∇θ̂ + w
(
∇θ̂

)2

− 1

2

(
∇Q̂

)2

.

In the present section, we derive the weakly nonlinear amplitude equations valid
near the instability boundary determined by (2.20), where the instability takes place
only with respect to disturbances with k/F � 1. In order to obtain the asymptotic
equation equally valid for the negative viscosity instability and for the α-effect insta-
bility, we will consider in the present section the case when the boundaries of both
types of the instabilities mentioned above are close to each other. According to the
results of the linear stability analysis (see Figure 2) the two boundaries are close to
each other if [Z/tr(M)]2 � 1. Below we consider the case |Z| � 1, tr(M) = O(1).
Also, we assume that the parameter w is close to the two boundaries, so that the
instability takes place with respect to perturbations with |kn| � 1 and |kτ | � 1.
Below we derive a long-wave asymptotic limit for the system (2.24).

Define s0
i = −2m/C + u(sr − 1/2) and assume si = s0

i + Rε, w = C2/2 + Wε2.
Under these assumptions, the width of the instability interval F

α∗
(see Figure 1) is

O(ε). Introduce slow time variables, T1 = εT, T2 = ε2T , and a new, long-scale

spatial variable, z = εX′ +FCT1; expand θ̂ = ε−1θ̂−1 + θ̂0 + εθ̂1 + . . . , Q̂ = ε−1Q̂−1 +

Q̂0 + εQ̂1 + . . . ; and substitute this expansion in the system (2.24) to obtain the

series of problems for θ̂i, Q̂i, i = −1, 0, 1, . . . , in the successive orders of the small
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parameter ε. Using solvability conditions for i = −1, 0 one obtains the following
system of equations for renormalized functions θ and φ (see Appendix A for details):

∂ θ

∂T2
= D1∇z

2θ −∇zθ·∇zφ,(2.25)

∂φ

∂T2
= D2∇z

2φ− 1

2
(∇zφ)2 + ∇z

2θ + µ(∇zθ)
2.

The function θ has a nonzero average gradient and therefore is unbounded for |z| → ∞;
the function φ has a nonzero average time derivative and thus is unbounded for
T2 → ∞. It is convenient to introduce new functions, θ̃ = θ − z · n and φ̃ = φ − µt,
where z = C2RFz, T2 = t/(C2RF)2, n = F/F , that will be bounded for |z| → ∞
and t → ∞. The system (2.25) will then become

θ̃t = D1∇z
2θ̃ − (n + ∇zθ̃) · ∇zφ̃,(2.26)

φ̃t = D2∇z
2φ̃− 1

2
(∇zφ̃)2 + ∇z

2θ̃ + µ(∇zθ̃)
2 + 2µn · ∇zθ̃.

The system (2.26) can be considered as a simplified version of the system (2.24)
which is still capable of describing both types of the long-wave instabilities. Indeed,
the linear dispersion relation for the system (2.26),∣∣∣∣ σ + D1k

2 ikn
−2µikn + k2 σ + D2k

2

∣∣∣∣ = 0,(2.27)

keeps all characteristic features of the general dispersion relation (2.14). The oscilla-
tory instability of the negative viscosity type occurs in the region

µ > µ∗ = − 1

2(D1 + D2)
2 ,(2.28)

with the boundary of the instability region in k-space described by

(k ± km · n)2 = km
2 ≡ µ− µ∗

2D1D2
.(2.29)

The α-effect occurs for µ > 0.

2.4. Absolute and convective instability. At this point one needs to distin-
guish between the absolute instability and the convective instability [38, 39]. Consider
the one-dimensional version of the dispersion relation for the system (2.26),

σ2 + D1D2k
4 + (D1 + D2)k

2σ − 2µk2 − ik3 = 0.(2.30)

In order to find the boundary of the absolute instability, consider the roots k(σ) for
Reσ � 1, separate them into two classes: Imk(σ) > 0 and Imk(σ) < 0, and follow
the appearance of double roots ki = ki(σ), i = 1, 2, . . . , with the decrease of Reσ.
The double roots correspond to dσ/dk = 0, but only those that appear by merging
of the roots corresponding to different classes are relevant to the development of the
absolute instability. The latter takes place for Reσ(ki) > 0.

For |µ| � 1 dispersion relation (2.30) is simplified under the assumption k =
O(|µ|), σ = O(|µ|3/2), and in the leading order becomes

−ik3 − 2µk2 + σ2 = 0.(2.31)
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Similar to [38], we shall use the complex frequency ω(k) = ω′(k) + iω′′(k) = iσ(k).
Let us analyze the “motion” of roots in the complex k-plane with the decrease of ω′′.
In the limit ω′′ � 1, the equation (2.31) has three roots k(ω): one pure imaginary
root with Imk > 0 and two roots of the type ±a + ib in the lower half-plane (b < 0).

For µ < 0, one obtains that the two roots in the lower half plane can merge on
the imaginary axis, but this is not a sign of the appearance of an absolute instability,
because both merging roots belong to the same class.

For µ > 0, one gets that neither of the two roots ±a + ib crosses the imaginary
axis and, therefore, cannot merge. The double root can occur in the upper half-plane,
Imk > 0, due to merging of one of these roots and the pure imaginary root. Positive
values of Reσ for these double roots show that an absolute instability appears.

Finally, one comes to the conclusion that µ = 0 is the boundary of the absolute
instability which coincides with the transition from the negative viscosity instability
type to the α-effect instability type in the long-wave limit, so that for −|µ∗| < µ < 0
the instability is convective and of the negative viscosity type, and for µ > 0 the
instability is absolute and of the α-effect type.

2.5. Nonlinear waves near the threshold µ = µ∗. Now we study the
spontaneous generation of nonlinear waves near the threshold µ = µ∗, described by
(2.26), in more detail. For small deviations of the parameter µ near the threshold,

µ = µ∗+µ2δ
2+ . . . , we expand θ̃ = δθ1+δ2θ2+δ3θ3+ . . . , φ̃ = δφ1+δ2φ2+δ3φ3+ . . .

and use ∇z = δ∇z, ∂t = δ∂t1 + δ2∂t2 + δ3∂t3 + δ4t4 + . . . .
For the lowest order, one obtains

∂θ1

∂t1
= −n · ∇zφ1,

∂φ1

∂t1
= 2µ∗n · ∇zθ1,(2.32)

which can be transformed to

∂2θ1

∂t1
2 + 2µ∗(n · ∇z)

2θ1 = 0.(2.33)

Introduce the coordinates (x, y) as x = n · z, y = τ · z. Then (2.33) becomes
∂t1t1θ1 + 2µ∗∂xxθ1 = 0, whose solution is

θ1 = θ+
1 (x +

√
2|µ∗|t1, y) + θ−1 (x−

√
2|µ∗|t1, y),(2.34)

φ1 =
√

2|µ∗|[−θ+
1 (x +

√
2|µ∗|t1, y) + θ−1 (x−

√
2|µ∗|t1, y)].(2.35)

In the next order, O(δ3), one obtains

θ2 = θ+
2 (x+, y) + θ−2 (x−, y), φ2 = φ+

2 (x+, y) + φ−
2 (x−, y),(2.36)

where x± = x ±
√

2|µ∗|t1. Using solvability conditions in the successive orders of δ,
after appropriate rescaling, one finally obtains the following evolution equation for a
single function Θ ∝ θ+

1 + δθ+
2 :

∂Θ

∂T
+ C̃

∂Θ

∂X
+ I[∇2Θ] + 3(∇Θ)2(2.37)

+δ̃
{
∇2Θ + I2[∇2Θ] + D̃I[(∇Θ)2] + Ẽ∇Θ · I[∇Θ]

}
+ O(δ̃2) = 0,

where I[f(X,Y )] ≡
∫X

0
∇2f(X ′, Y ) dX ′. The coefficients and other details of the

derivation are given in Appendix B.
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In the one-dimensional case, Θ = Θ(X,T ), (2.37) is reduced to the perturbed
Korteweg–de Vries equation for the function U = ∂Θ

∂X :

∂U

∂T
+ C̃

∂U

∂X
+

∂3U

∂X3 + 6U
∂U

∂X
+ δ̃

[
∂2U

∂X2 +
∂4U

∂X4

]
= 0.(2.38)

This equation has been derived formerly in different physical problems (see [12, 13,
14]). Several two-dimensional generalizations of (2.38) are known (see [40, 41, 42, 43,
44]). However, to our knowledge, (2.37) is obtained here for the first time.

2.6. Numerical simulations. Far from the threshold µ = µ∗, full equations
(2.26) should be used. The advantage of the system (2.26) is that it governs both the
negative viscosity instability and the α-effect instability.

First, we have performed numerical simulations of the system (2.26) in one di-
mension by means of a pseudospectral code, with periodic boundary conditions. The
time-integration has been carried out in the Fourier space using the Crank–Nicolson
scheme for the linear operator, and the Adams–Bashford scheme for the nonlinear
one. Figure 3 shows typical snapshots of traveling wave solutions obtained numer-
ically for different values of the parameter µ. For µ < 0, as well as for very small
positive values of µ, we have observed the formation of spatially periodic uniformly
traveling waves; see Figure 3(a). These waves correspond to spatiotemporal periodic
modulations of the original wave (2.13) coupled to the traveling wave of the zero mode
(frontal deformations). With the increase of the parameter µ > 0 (corresponding to
the α-effect-type instability of the original wave (2.13)), this wave structure becomes
unstable with respect to spatial modulations; see Figures 3(b) and 3(c). Patterns
shown in Figures 3(b) and 3(c) are snapshots of waves that travel from right to left
and also undergo very small modulations on a very slow time scale. Note that these
modulated wave structures resulted from a very slow evolution of a spatially irregu-
lar system of typical “Burgers shocks” that forms initially from random initial data.
This intermediate system of Burgers shocks is similar to that shown in Figure 3(d)
for µ = 0.15; it produces spatially irregular modulations of the original wave (2.13)
coupled to the modulations of the zero mode. On the fast time scale, the pattern
shown in Figure 3(d) travels from right to left as a whole with almost constant speed,
while it also changes on a very slow time scale. For example, in the case µ = 0.1, this
evolution results in a spatially modulated wave structure shown in Figure 3(c). With
the increase of the parameter µ, the time required for the formation of a modulated
wave pattern from the spatially irregular one increases drastically. Probably, with
the increase of µ, the attractor corresponding to a modulated wave pattern becomes
unstable and transition to chaos occurs. However, in order to verify this assumption,
one needs to perform extremely long computations which are beyond the scope of this
paper. Note that the characteristic spatial scale of the wave patterns increases with
the increase of µ. At the same time, once established, the characteristic spatial scale
does not change, so no coarsening has been observed when the value of the parameter
µ is fixed.

Our numerical simulations of the system (2.26) in two dimensions (by means of
a pseudospectral code with periodic boundary conditions), both for µ∗ < µ < 0 and
µ > 0, exhibit two-dimensional wavy patterns shown in Figure 4. Here, the pattern is
rapidly moving along the x-axis in the negative direction and undergoes slow evolution
in the transversal direction: the cells shown in Figure 4 slowly merge together and
then split, forming new cells. The average spatial scale of the cells remains the same,
so no coarsening has been observed in the two-dimensional case either.
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Fig. 3. Typical traveling wave structures (travel from right to left): numerical solutions of the
system (2.26) in one dimension for D1 = 0.1, D2 = 0.6 and various values of µ: (a) µ = −0.3; (b)
µ = 0.051; (c) µ = 0.1; (d) µ = 0.15.

Fig. 4. Numerical solution of the system (2.26) in two dimensions at a particular moment of
time; D1 = 0.1, D2 = 0.6; µ = −0.3.
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Fig. 5. Numerical solutions of the system (2.26) in one dimension with Neumann boundary
conditions, at different moments of time (time increases from top to bottom and from left to right),
demonstrating the convective instability. Solid lines—θ(z); dashed lines—φ(z).

Note that the formation of the modulated traveling wave structure is caused by
the periodic boundary conditions. With these conditions, no difference between the
absolute and convective instabilities can be observed since the wave leaving the com-
putational domain comes back from the other side. In order to demonstrate the
difference between these two instability types, we have performed numerical simula-
tions of the system (2.26) in one dimension by means of a finite-difference code (using
the semi-implicit Crank–Nicolson scheme) with Neumann boundary conditions. The
results of the simulations are presented in Figures 5 and 6. Figure 5 shows the
development of the convective instability for µ∗ < µ < 0. One can see that growing
perturbations are transported by the convective terms from right to left but gradually
escape from the domain and leave behind a trivial steady state, θ = const, φ = const.
On the contrary, in the case of µ > 0 corresponding to the absolute instability, shown
in Figure 6, one can see that, although the perturbations are still transported to the
left by the convective terms, they are too slow to leave the domain so that finally they
grow in the whole domain and form a nontrivial spatially nonuniform structure. This
structure is not stationary but continues to evolve in time.

In concluding this section we present some typical results of numerical simulations
of the full system (2.24) in one dimension, with periodic boundary conditions. Figure 7
shows a snapshot of a wave, traveling from right to left, resulting from the instability
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Fig. 6. Numerical solutions of the system (2.26) in one dimension with Neumann boundary
conditions, at different moments of time (time increases from top to bottom and from left to right),
demonstrating the absolute instability. Solid lines—θ(z); dashed lines—φ(z).

of the solution (2.13) with F = 4.0. Other parameters have been taken equal to
those used in the computations of the full system of CGL–Burgers equations (1.1)
performed in [24] that showed the instability of a harmonic traveling wave resulting
in a modulated traveling wave. One can see that it corresponds to the formation of a
modulated traveling wave that was observed in the numerical simulations of the full
system (1.1) performed in [24].

3. Domain wall solutions. In the previous section, we investigated the sta-
bility of solutions (2.13) with the constant values of F and G. One can think of a
situation when several waves with different wavevectors F and different front-slope
vectors G develop in different parts of the domain. In this case, regions occupied by
the waves with different wavevectors will be divided by domain walls.

In the present section, we investigate a particular case of a one-dimensional sta-
tionary domain wall between traveling waves with equal values of the parameters ω
and c (see (2.13)). Consider the one-dimensional version of the system (2.25) and
define θz = F (z), φz = H(z) and consider solutions with F (+∞) = −F (−∞) and
H(+∞) = −H(−∞). Such solutions correspond to the domain walls between two
traveling waves with the opposite wavenumbers, each wave traveling on the back-
ground of an inclined front.



WAVES IN COUPLED BURGERS EQUATIONS 243

0 50 100 150 200 250
−15

−10

−5

0

5

10

x

θ

0 50 100 150 200 250

−6

−4

−2

0

2

4

6

x

Q

Fig. 7. Numerical solution of the system (2.24) for A = 3.0, B = −3.0, C = 1.0, D =
10.45, E = −0.9, w = 0.45: Spatially periodic wave traveling from right to left.

Assume that θT2 = Ω, φT2 = Φ are constants and rewrite the system (2.25) in
the form

D1Fz = Ω + FH,(3.1)

D2Hz + Fz = Φ +
1

2
H2 − µF 2.

The dynamical system (3.1) determines stationary profiles F (z), H(z). The crit-
ical points of this dynamical system correspond to traveling waves, while the domain
walls are governed by the separatrices joining different critical points.

For Φ �= 0, Ω �= 0, the critical points of system (3.1), F (z) = f = const, H(z) =
h = const, must satisfy the conditions

f2 = f2
± ≡ −Φ ±

√
Φ2 + 2µΩ2

(−2µ)
, h = h± ≡ − Ω

f±
.(3.2)

Thus, for µ < −Φ2/(2Ω2), the dynamical system (3.1) has no critical points. For
µ = −Φ2/(2Ω2), a pair of critical points appears in the case Φ < 0; otherwise, there
are no critical points. For −Φ2/(2Ω2) < µ < 0 and Φ < 0 there exist two pairs of
critical points. In the special case µ = 0, there is one pair of critical points while
the other pair of critical points approaches infinity. For µ > 0, there is one pair of
critical points for any Φ. Thus, the critical points always appear in pairs (f±, h±),
(−f±,−h±). Later on, we shall define f± > 0.
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The analysis of the eigenvalues of the linearized system (3.1) near the critical
points leads to the following conclusions. For Φ < 0, Ω > 0, −Φ2/2Ω2 < µ < 0,
the points (±f+,±h+) are saddles, and the point (f−, h−) is a stable node, while the
point (−f−,−h−) is an unstable node. For Φ < 0, Ω < 0, −Φ2/2Ω2 < µ < 0, the
points (±f+,±h+) are saddles, and for µ < −1/[2(D1−D2)

2], the points (±f−,±h−)
are nodes. However, for −1/[2(D1 − D2)

2] < µ < 0, there always exists such an
interval of |Φ/Ω| that the point (f−, h−) is a focus. This focus is unstable for |µ| >
1/[2(D1 + D2)

2] and stable otherwise.
Consider now solutions corresponding to the domain walls. The trajectories in

the phase plane (F,H) are governed by the equation

D2

D1

dH

dF
= − 1

D1
+

Φ + H2/2 − µF 2

Ω + FH
.(3.3)

Any trajectory that leads from one critical point to another corresponds to a domain
wall. There exists a class of symmetric domain walls that are described by trajectories
invariant with respect to the transformation F → −F , H → −H. Such a trajectory
connects the critical points (−f,−h) and (f, h) passing through the point (0, 0).

A trajectory that leaves the point (0, 0) is generically attracted to the stable
critical point or leads to infinity. However, there exists a codimension-1 manifold
in the parameter space (Ω,Φ, µ) where the trajectory is “nongeneric” and leads to
a saddle critical point. This manifold separates the region of the attraction to the
stable critical point and the region where the trajectory tends to infinity.

Generally, (3.3) is not analytically integrable. However, some classes of analytical
exact solutions can be found. There exist surfaces in the parameter space (Ω,Φ, µ)
where a trajectory that passes through the point (0, 0) is just H(z) = kF (z), k �= 0.
These surfaces are determined by the conditions

Φ

Ω
=

sD2 + D1

D1
, s =

1 ±
√

1 − 2µD1(2D2 −D1)

2D2 −D1
,(3.4)

where 1 − 2µD1(2D2 −D1) > 0. The corresponding solutions are

F = f± tanhβ(z − z0), H = h tanhβ(z − z0),(3.5)

where

f± =
1 ±

√
1 − 2µD1(2D2 −D1)

2µ
β, h = −D1β,(3.6)

and µ < 0, β and z0 are arbitrary constants (β can be taken positive without loss of
generality).

One can show that for (2D2 − D1) > 0, Ω < 0, the exact solution (3.5) corre-
sponds to a nongeneric trajectory that leads to the saddle critical point (f−, h) if
µ < −1/[2(D2 −D1)

2]. Otherwise, the point (f−, h) determined by (3.6) corresponds
to a node. For 2D2 −D1 < 0, |µ| > 1/[2D1

2], Ω < 0, the trajectory (3.5) leads to a
saddle for µ > −1/[2(D2−D1)

2], and to a node for µ < −1/[2(D2−D1)]
2. For Ω < 0,

|µ| > 1/[2D1
2], D2 −D1 < 0, the point (f+, h) is a node for µ < −1/[2(D2 −D1)

2].
For 2D2 −D1 = 0, the point (f−, h) is a node, and the point (f+, h) is a saddle for
µ > −2/D2

1. Otherwise, the point (f+, h) is a node. In the case Ω > 0, D2 > D1 the
point (f, h) is a node for µ > −1/[2(D2 −D1)

2]. Otherwise, the trajectory (3.5) leads
to a saddle.
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Note that there is one more class of exact solutions, corresponding to the case
Ω = 0,

F = 0, H(z) = h tanhβz,(3.7)

where h = −2D2β, β > 0. In this case, the point (0, h) is a node.
We have studied the family of solutions that correspond to the domain walls

between two traveling waves with the opposite wavenumbers by rewriting the system
(2.25) in one dimension for χ(z, t) = θz and ψ(z, t) = φz, and solving it numerically,
by means of a finite-difference, semi-implicit Crank–Nicholson scheme, with Neumann
boundary conditions. We have found that, depending on the initial conditions and the
values of the parameters D1, D2, and µ, the solutions evolve either toward stationary
domain walls described above or tend to constant solutions, χ = const, ψ = const,
corresponding to a single traveling wave on a slant planar front. Examples of stable
domain wall solutions are shown in Figure 8. We have checked that they compare
very well with the analytical solutions (3.5), (3.6).
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Fig. 8. Numerical solution of the system (2.25) in one dimension for θz = F and φz = H
in the form of stationary domain walls: (a) D1 = 2.0, D2 = 6.0, µ = −5.0; (b) D1 = 0.2, D2 =
0.6, µ = −5.0.

In concluding this section we note that there also exists a family of solutions in the
form of moving domain walls: indeed, if F0(z) = θz, H0(z) = φz is a solution of (3.1)
that describes a stationary domain wall with the definite values of Ω0 = θT2 , Φ0 =
φT2 , then a moving domain wall F (z, T2) = θz(z, T2) = F0(z − cT2), H(z, T2) =
φz(z, T2)z = c+H0(z − cT2) with Ω = Ω0, Φ = Φ0 + c2/2 (θ(z, T2) =

∫
F (z, T2) dz +

ΩT2, φ(z, T2) =
∫
H(z, T2) dz + ΦT2) is a solution of (2.25) (in one dimension).

4. Conclusions. We have investigated the stability and nonlinear dynamics of
traveling waves in a system with translation symmetry that exhibits a long-wave
oscillatory instability. Near the instability threshold, the nonlinear dynamics of this
system is governed by a CGL equation for the unstable mode coupled to the Burgers
equation for the Goldstone mode generated by the translation symmetry. We have
demonstrated that, in the long-wave limit, this system of coupled nonlinear evolution
equations is reduced to the system of two coupled Burgers equations—for the phase of
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the unstable mode and for the Goldstone mode—and we have studied the nonlinear
dynamics of waves described by this system.

We have shown that the derived system of coupled Burgers equations captures
well the main effect of the coupling between the unstable oscillatory mode and the
Goldstone mode, namely, the change of the Benjamin–Feir stability region as well as
the unique situation when all waves, except the one with the zero wavenumber (planar
oscillations), are unstable. Also, the derived system of the coupled Burgers equations
describes the two main instability types: the convective instability of the negative
viscosity type, and the absolute instability of the α-effect type. At the boundaries of
these instabilities we have derived the weakly nonlinear evolution equations describing
the weakly nonlinear dynamics of unstable waves near the instability thresholds. We
have also performed numerical simulations of the coupled Burgers equations and stud-
ied the strongly nonlinear dynamics of the discovered instabilities. We have observed
the formation of periodically and chaotically modulated traveling waves, in both one
and two dimensions. The similar type of nonlinear behavior was also observed earlier
in simulating the coupled CGL and Burgers equations. Finally, we have shown that
the derived system of coupled Burgers equations also describes the domain boundaries
between waves with different wavenumbers.

Thus, the derived system of coupled Burgers equations can be considered as a
generic system that describes the long-wave dynamics of waves in systems that exhibit
an oscillatory instability at a zero wavenumber in the presence of the Goldstone mode
associated with the translation symmetry. This situation is typical of physical systems
with uniformly propagating fronts, such as planar flame fronts in combustion [23],
[24], solidification in a hypercooled melt [45], as well as in general reaction-diffusion
systems [46]. In this paper we considered combustion fronts as an example, but
the results obtained also can be applied to any other system of this class. Waves on
uniformly propagating fronts were observed in experiments on premixed-flame gaseous
combustion [47], solid combustion (self-propagating high-temperature synthesis) [48],
as well as frontal polymerization [49]. These systems would be natural candidates for
experimental verification of theoretical conclusions presented in this paper.

Appendix A. Derivation of (2.25). We introduce slow time variables, T1 =
εT, T2 = ε2T , and a new, long-scale spatial variable, z = εX′ + FCT1; we expand
θ̂ = ε−1θ̂−1 + θ̂0 + εθ̂1 + . . . , Q̂ = ε−1Q̂−1 + Q̂0 + εQ̂1 + . . . ; and we substitute this
expansion in the system (2.24). As a leading-order problem, one obtains

∂θ̂−1

∂T1
= C(∇z θ̂−1)

2 −∇z θ̂−1·∇zQ̂−1 + CF · ∇z θ̂−1 − F · ∇zQ̂−1,(A.1)

∂Q̂−1

∂T1
=

C2

2
(∇z θ̂−1)

2 − 1

2
(∇zQ̂−1)

2 + C2F · ∇z θ̂−1 − CF · ∇zQ̂−1,

where ∇z is the gradient with respect to the new long-scale variable z. Taking Q̂−1 =

Cθ̂−1 + φ−1, one obtains from (A.1)

∂φ−1

∂T1
= −1

2
(∇zφ−1)

2.(A.2)

If φ−1 is initially nonzero, |∇zφ−1| becomes infinite in a finite time.1 Thus, in order

1Indeed, the equation ut + uuz = 0, u =
∂φ−1

∂z
for any initial condition has an exact solution

z = f(u) + ut; therefore uz = 1
f ′(u)+t

. Except the case when f ′(u) > 0 everywhere, uz → ∞ in a

finite time.
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to describe smooth solutions we have to assume φ−1 = 0. Therefore,

Q̂−1 = Cθ̂−1.(A.3)

From (A.3) and (A.1) one finds ∂θ̂−1/∂T1 = ∂Q̂−1/∂T1 = 0, and hence the
solution does not depend on T1.

In the next order one obtains

∂θ̂−1

∂T2
= (A + B0C)∇z

2θ̂−1 + C(∇z θ̂−1 + F)·∇z θ̂0 − (∇z θ̂−1 + F)·∇zQ̂0,(A.4)

C
∂θ̂−1

∂T2
= (CD + E)∇z

2θ̂−1 + C2(∇z θ̂−1 + F)·∇z θ̂0 − C(∇z θ̂−1 + F)·∇zQ̂0,

where B0 = vsr − s0
i , and we take Q̂0 = Cθ̂0 + φ0. The solvability condition for the

problem (A.4) is

E − 2w0B
0 − C(A−D) = 0,(A.5)

where C2 = 2w0. One can see that the solvability condition (A.5) is automatically
satisfied. From (A.4) one obtains

∂θ̂−1

∂T2
= (A + B0C)∇z

2θ̂−1 − (∇z θ̂−1 + F) · ∇zφ0.(A.6)

Taking a corresponding linear combination of the equations for θ̂0 and Q̂0, which
are obtained in the next order, one gets the following problem:

∂φ0

∂T2
= (D−CB0)∇z

2φ0−
1

2
(∇zφ0)

2+RC2∇z
2θ̂−1+W (∇z θ̂−1+2F)·∇z θ̂−1.(A.7)

Define D1 = A + CB0, D2 = D − CB0, φ = φ0 + WF 2T2, θ = C2R(θ̂−1 +
F · z), µ = W/(RC2)2. Since tr(M) > 0, det(M) > 0, the coefficients D1 and D2 are

positive. Note that if the function θ̂−1 is bounded for |z| → ∞, the asymptotics of
the function θ is θ ∼ F · z. Then (A.6) and (A.7) can be written in the form of the
system (2.25).

Appendix B. Derivation of (2.37). The functions θ2
±, φ2

± from (2.36) satisfy
the following equations:

±
√

2|µ∗|
∂θ±2
∂x±

+
∂θ±1
∂t2

= D1

(
∂2θ±1
∂x±

2 +
∂2θ±1
∂y2

)
− 2

∂φ±
2

∂x±
,(B.1)

±
√

2|µ∗|
∂φ±

2

∂x±
∓
√

2|µ∗|
∂θ±1
∂t2

=
(
1 ∓

√
2|µ∗|D2

)(
∂2θ±1
∂x±

2 +
∂2θ±1
∂y2

)
− 2|µ∗|

∂θ±2
∂x±

,(B.2)

which can be transformed to

∓2
√

2|µ∗|
∂θ±1
∂t2

=
[
1 ∓ (D1 + D2)

√
2|µ∗|

](∂2θ±1
∂x2

±
+

∂2θ±1
∂y2

)
.(B.3)

Taking into account the definition of µ∗ in (2.28), one finds that θ+
1 does not depend

on t2, while θ−1 is governed by the equation
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∂θ−1
∂t2

= (D1 + D2)

(
∂2θ−1
∂x2

−
+

∂2θ−1
∂y2

)
,(B.4)

where (D1 + D2) = (A + D) > 0. Therefore, θ−1 → 0, φ−
1 → 0 on the time scale t2,

and one obtains from (B.1) the following problem:

∂

∂x+

[
φ+

2 +
√

2|µ∗|θ+
2

]
= D1∇2θ+

1 ,(B.5)

∂

∂x−

[
φ−

2 −
√

2|µ∗|θ−2
]

= 0,(B.6)

where ∇2θ+
1 = ∂2θ+

1 /∂x
2
+ + ∂2θ+

1 /∂y
2. The solution of (B.6) is

φ−
2 =

√
2|µ∗|θ−2 + c−(t3, . . .),(B.7)

and the solution of (B.5) can be written formally as

φ+
2 = D1I[θ+

1 ] −
√

2|µ∗|θ+
2 + c+(t3, . . .),(B.8)

where

I[f(x+, y)] ≡
∫ x+

0

dx′
+∇2f(x′

+, y).(B.9)

In the next order, O(δ4), one obtains

θ3 = θ+
3 (x+, y) + θ−3 (x−, y), φ3 = φ+

3 (x+, y) + φ−
3 (x−, y),(B.10)

where the functions θ3
±, φ3

± satisfy the following equations:

±
√

2|µ∗|
∂θ±3
∂x±

+
∂φ±

3

∂x±
= D1(∇2θ±2 ) ±

√
2|µ∗|(∇2θ±1 )2 − ∂θ±1

∂t3
,(B.11)

±
√

2|µ∗|
∂φ±

3

∂x±
∓
√

2|µ∗|
∂θ±1
∂t3

+ 2|µ∗|
∂θ±3
∂x±

= D2∇2φ±
2 + ∇2θ±2

+2µ2
∂θ±1
∂x±

+ 2|µ∗|(∇2θ±1 )2.(B.12)

Equations (B.11) and (B.12) can be transformed to

∂θ+
1

∂t3
=

√
2|µ∗|(∇θ+

1 )2 − µ2√
2|µ∗|

∂θ+
1

∂x+
− D1D2

2
√

2|µ∗|
I[∇2θ+

1 ] + c+(t3, . . .),(B.13)

∇2θ−2 = 0.(B.14)

Also, one obtains from (B.11), (B.12) the following problem for φ±
3 :

∂

∂x+

[
φ+

3 +
√

2|µ∗|θ+
3

]
= D1∇2θ+

2 +
µ2√
2|µ∗|

∂θ+
1

∂x+
+

D1D2

2
√

2|µ∗|
I
[
∇2θ+

1

]
,(B.15)

∂

∂x−

[
φ−

3 −
√

2|µ∗|θ−3
]

= 0.(B.16)
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The solutions of (B.15), (B.16) are

φ+
3 = −

√
2|µ∗|θ+

3 + D1I
[
θ+
2

]
+

µ2θ
+
1√

2|µ∗|
+

D1D2

2
√

2|µ∗|
I
[
∇2θ+

2

]
,(B.17)

φ−
3 =

√
2|µ∗|θ−3 + c̃−(t3, . . .).

In the next order, O(δ5), one obtains

θ4 = θ+
4 (x+, y) + θ−4 (x−, y), φ4 = φ+

4 (x+, y) + φ−
4 (x−, y),(B.18)

where the functions θ4
± and φ4

± satisfy the two equations:

(B.19)

±
√

2|µ∗|
∂θ±4
∂x±

+
∂φ±

4

∂x±
+

∂θ±1
∂t4

+
∂θ±2
∂t3

= D1

(
∇2θ±3

)
−∇θ±1 · ∇φ±

2 −∇θ±2 · ∇φ±
1 ,

±
√

2|µ∗|
(
∂φ±

4

∂x±
− ∂θ±1

∂t4

)
+

∂φ±
2

∂t3
= D2∇2φ±

3 + ∇2θ±3 + 2µ2
∂θ±2
∂x±

−2|µ∗|
(
∂θ±4
∂x±

+ ∇θ±1 · ∇θ±2

)
−∇φ±

1 · ∇φ±
2 .(B.20)

Using (2.35), (B.7), (B.8), (B.17) one gets

∂θ+
1

∂t4
+

∂θ+
2

∂t3
=

−1

2
√

2|µ∗|

(
2µ2

∂θ+
2

∂x+
+ D1D2I[∇2θ+

2 ] +
D1D2

4|µ∗|
I2[∇2θ+

1 ] +
µ2

2|µ∗|
∇2θ+

1

)

+2
√

2|µ∗|∇θ+
1 · ∇θ+

2 −D1∇θ+
1 I[∇θ+

1 ] +
D1

2
I[(∇θ+

1 )2] ,(B.21)

∂θ−2
∂t3

=
1√
2|µ∗|

(
∇2θ−3 + µ2

∂θ−2
∂x−

)
.(B.22)

Equations (B.13) and (B.21) can be combined as the following single equation:

∂ϑ

∂τ
= − µ2√

2|µ∗|
∂ϑ

∂x+
− D1D2

2
√

2|µ∗|
I[∇2ϑ] +

√
2|µ∗|(∇ϑ)2

+ δ

(
− µ2

4|µ∗|
√

2|µ∗|
∇2ϑ + Ψ) + O(δ2

)
,(B.23)

where

Ψ = − D1D2

8|µ∗|
√

2|µ∗|
I2[∇2ϑ] +

D1

2
I[(∇ϑ)2] −D1∇ϑ · I[∇ϑ] ,

I[f(x+, y)] ≡
∫ x+

0

dx′
+∇2f(x′

+, y) ,

and ϑ = θ+
1 + δθ+

2 + . . . , ∂τ = ∂τ3 + δ∂τ4 + . . . .
By means of the scaling transformation ϑ = C1Θ, x+ = C2X̃, y = C2Ỹ , τ =

C3T̃ , where

C1 = −3
√

2µ2D1D2

4|µ∗|
, C2 =

(
D1D2

2µ2

)1/2

, C3 =
2
√

2|µ∗|D1D2

(2µ2)
3/2

,
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(B.23) can be written in the form (2.37), where ∇ = �eX∂X + �eY ∂Y , the coefficients
are

C̃ = 1, δ̃ = δ
(2|µ∗|)3/2

6µ2
2

, D̃ = −D1

2

(
3µ2

2|µ∗|

)2 √
2µ2

D1D2
, Ẽ = D1

(
3µ2

2|µ∗|

)2 √
2µ2

D1D2
,

and tildes in X̃, Ỹ , ∇̃, T̃ have been dropped.
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Abstract. We consider an inverse conductivity problem arising in anomaly detections with its
mathematical model based on the T-Scan system (breast cancer detection system). In this model,
we try to detect an anomaly D from one or two sets of measured data that are available only on
a small portion Γ of the boundary of the subject Ω. In practice, Ω differs in each subject, so our
detection algorithm should not depend much on the global geometry of Ω. The purpose of this work
is to provide a mathematical ground for the reconstruction of a rough feature of D which is stable
against any measurement noise and any change of geometry ∂Ω. Based on rigorous estimates with a
simplified model, we found an approximation that gives a noniterative detection algorithm of finding
a useful feature of anomaly. We also present a multifrequency approach to handling the case where
the complex conductivity of the background is not homogeneous and is not known a priori.

Key words. breast cancer detection, electrical conductivity, T-Scan, anomaly estimation algo-
rithm
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1. Introduction. Bioimpedance techniques such as electrical impedance tomog-
raphy (EIT) have been used as a diagnostic tool for breast cancer detection due to
the high contrast of the complex conductivity between cancerous and healthy tissues.
Among them, the T-Scan is one of the most successful systems that has received
FDA approval for adjunctive clinical uses with X-ray mammography [3]. Use of the
T-Scan is to decrease equivocal findings and thereby reduce unnecessary biopsies.
However, diagnostic information from the currently available T-Scan system lacks a
sophisticated reconstruction method of finding lesions. Increasing the ability to accu-
rately detect breast cancer requires improvements in the sensitivity and accuracy of
the T-Scan system. Although some observations on processing data from the T-Scan
system have been published [3, 21], rigorous mathematical theory for supporting their
results has not been presented. Systematic studies are essential to achieve higher per-
formance in breast cancer detection, and it is necessary to derive agreements between
experimental results and mathematical theory that provide the relationship between
lesions and measured data acquired by a scanning probe through the breast skin.

The mathematical model of the T-Scan can be viewed essentially as a realistic or
practical version of a general EIT system, so any developed theory from this model
can be applied to other areas in EIT, especially in anomaly detection problems. In the
T-Scan system, a patient holds in one hand a metallic cylindrical reference electrode
through which a constant voltage of 1 to 2.5 V is applied with frequencies spanning
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Fig. 1.1. T-Scan configuration (left) and the breast region of interest (right).

100 Hz to 100 KHz. A scanning probe with a planar array of electrodes kept at
the ground potential is placed on the breast as shown in Figure 1.1. The voltage
difference between the hand and the breast skin produces current flows from the
reference electrode to each electrode of the probe through the breast. We can extract
some information of the complex conductivity distribution within a breast region
under the probe by measuring the exit current through each electrode of the probe.

Let the human body occupy a three-dimensional region Ω bounded by a smooth
surface ∂Ω. Let Γ and γ be portions of ∂Ω, denoting the probe plane placed on
the breast and the surface of the metallic reference electrode contacting the hand,
respectively. Since Γ is a planar domain, without loss of generality, we let x3 be the
label of the axis normal to Γ so that Γ is in the plane {x = (x1, x2, x3) ∈ R3 : x3 = 0}.
Suppose the diameter of Γ is between 4ρ and 6ρ; {x3 = 0}∩B2ρ ⊂ Γ ⊂ {x3 = 0}∩B3ρ,
where Bρ := {x ∈ R3 | |x| < ρ} and denote Γρ = Γ ∩ Bρ. Then the breast region
of interest is the half ball Ωρ := Ω ∩ Bρ. If we apply a boundary voltage f with a
frequency ω on Γ ∪ γ, the resulting internal complex voltage u(x) at the position x
in Ω satisfies the following mixed boundary value problem:

⎧⎨
⎩

∇ · ((σ + iωε)∇u(x)) = 0, x ∈ Ω,
u(x) = f, x ∈ Γ ∪ γ,
(σ + iωε)∇u(x) · ν(x) = 0, x ∈ ∂Ω \ Γ ∪ γ.

(1.1)

Here, ν is the unit outward normal vector to the boundary, σ = σ(x, ω) is the con-
ductivity, and ε = ε(x, ω) is the permittivity. As in the T-Scan system, we use f = 0
on Γ and f = 1 to 2.5 V on γ with ω = 2π × 102 to 2π × 105 rad/s. The goal is
to extract some core information of the complex conductivity (σ + iωε) in the breast
region Ωρ from the Cauchy data given only on the small portion Γ.

Let us denote a breast tumor by D and suppose D ⊂ Ωρ. Since there is an abrupt
change in the complex conductivity across ∂D, it is convenient to write

σ + iωε =

{
σ1 + iωε1 := τ1 in Ω \D,
σ2 + iωε2 := τ2 in D.

(1.2)

Our anomaly detection problem is to identify D near Γ from the exit current data
g := (σ + iωε)∇u(x) · ν(x)|Γ under the following limitations:
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• We measure the data only in a small surface Γ instead of the whole surface ∂Ω.
• Since Ω differs for each subject, our detection algorithm should not depend

much on the global geometry of Ω.
• Electrical safety regulations limit the amount of the total current flowing

through the human subject and therefore the range of the applied voltage is
also limited.

Although this type of anomaly detection problem has been studied in many papers
[1, 2, 4, 5, 6, 7, 11, 12, 16, 17, 18], these limitations are indispensable in practice and
raise serious difficulties in applying previous techniques. The challenge of this problem
is to develop a proper analysis for a quantitative information of D in the breast
region with some measured data in such a way that a reconstruction formula for D is
reasonably stable to any change of the conductivity distributions outside the breast
region. In this work we fix the voltage f = 0 on Γ as in the T-Scan system instead
of applying various voltages f . Keeping f = 0 on Γ has a great advantage because it
forces the level surface of the voltage in the breast region to be approximately parallel
to the probe plane Γ and its electric field −∇u will be in the direction perpendicular
to the level surface, so more current will flow along D of which the conductivity σ2 is
much higher than the surrounding. Although one could apply many different f on Γ
to acquire additional information of D, technical difficulties related with measurement
noise make us hesitate to use various patterns of voltages f .

The purpose of this work is to provide a mathematical ground for reconstruction
of a rough feature of D which is stable against any measurement noise and any change
of geometry ∂Ω. We carry out some quantitative analysis for a simplified model with
a single applied voltage f = 0 on Γ. We relate D to (g − g0), where g0 is the
corresponding Neumann data of (1.1) in the absence of D. This analysis provides the
reconstruction method of extracting a rough feature of D, although we do not know
the overall structure of the complex conductivity distribution in Ω.

To end this section, let us review some previous results toward the T-Scan model.
Assenheimer et al. [3] and Scholtz [21] studied the model, and their results were
based on the physical insight that an anomaly can be viewed as a distribution of
aligned dipoles. However, their expressions lack generality and flexibility without
a rigorous mathematical theory. To perform a quantitative analysis of the T-Scan
model and increase the accuracy of lesion detection, we need to develop a rigorous
mathematical theory counting on the effects of the anomaly. In the recent paper
by Seo et al. [22], a framework for analyzing the mathematical model of the T-Scan
system was presented, providing a stable reconstruction algorithm for locating D,
and numerical simulations showed that their methods can extract key features of D.
However, rigorous mathematical theory has not yet been provided to support all these
results and so their accuracy has not been confirmed.

We should also note that there have been different approaches to detecting breast
cancers based on the current-injection EIT system. Kerner et al. placed a circular
array of electrodes around the breast and produced cross-sectional conductivity im-
ages [15]. Larson-Wiseman [19], Mueller, Isaacson, and Newell [20], and Kao et al. [14]
investigated the usefulness of planar electrode arrays instead of conventional circular
electrode arrays. They studied the optimal injection current patterns, distinguisha-
bility, and image reconstruction algorithms using the measured voltage data on the
electrode arrays. Cherepenin et al. used a planar array of 256 electrodes to recon-
struct so-called electrical impedance mammograms by sequentially injecting currents
through chosen electrodes and measuring voltage data on other electrodes in the array
[8, 9].
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Although there could be various approaches in breast cancer detection using EIT
techniques, we focus on the T-Scan model in this paper. Although we deal only with
the problem in three-dimensional space, all results in this paper work for general
dimension n ≥ 2 with minor modifications.

2. Anomaly detection in half space. The problem we consider in this section
is a simplified version of the T-Scan model in (1.1). Let Ω be the lower half space
Ω = R3

− := {x = (x1, x2, x3) | x3 < 0}. Let Br(x) = {y ∈ R3 : |x − y| < r} and
simply Br = Br(0). Let ρ be a fixed positive number and let D be a domain contained
in Ωρ = Ω ∩ Bρ with connected C2-boundary. Let Γ be a portion of the plane ∂Ω
such that {x3 = 0} ∩B2ρ ⊂ Γ ⊂ {x3 = 0} ∩B3ρ and let Γρ = Γ ∩Bρ.

We consider the following mixed boundary value problem:⎧⎨
⎩

∇ · ((1 + µχD)∇v(x)) = 0, x ∈ Ω = R3
−,

v(x) = 1, x ∈ Γ,
∂v
∂x3

(x) = 0, x ∈ Γext := ∂Ω \ Γ,
(2.1)

where µ is a positive constant. The H1(Ω)-solution u of (1.1) is related to the solu-
tion v of (2.1) in such a way that u = 1− v when τ1 = 1, τ2 = 1 +µ, and γ = ∞. For
related works of this simplified model, see [3] and [21].

The inverse problem is to determine D from the Neumann data g = ∂v
∂x3

|Γ. We
assume that

ξ ∈ D ⊂ Ωρ, diam(D) ≤ r0, and r0 ≤ dist(D,Γ) ≤ Ar0,

where A is a fixed positive constant. We assume that the ratio r0/ρ is small. Here, we
exclude two possible cases; (i) dist(D,Γ) < r0 and (ii) D is far away from Γ. For the
first case where D is very close to Γ, the Neumann data g manifest the presence of D
that was used in the original T-Scan system, so any aid of mathematical analysis
is not necessary. For the second case where D is far away from Γ, the change of
the Neumann data g due to D will be negligibly small so that any analysis in this
case may not have practical meaning if we consider inevitable measurement noise and
ill-posedness of this inverse problem.

Let v0 be the solution of (2.1) in the absence of D and g0 = ∂v0

∂x3
|Γ. We try to

find a relation between D and the difference (g− g0). Recall that v and v0 satisfy the
following integral representations [13]: for x ∈ Ω,

v0(x) = −
∫

Γ

Φ(x,y)g0(y)dsy +

∫
Γ∪Γext

∂x3
Φ(x,y) v0(y)dsy,

v(x) = −
∫

Γ

Φ(x,y)g(y)dsy +

∫
Γ∪Γext

∂x3Φ(x,y)v(y)dsy +

∫
D

µ∇yΦ(x,y) · ∇v(y)dy.

(2.2)

The next theorem enables us to approximate

1

2µ
[g(x) − g0(x)] ≈

∫
D

∇y
∂

∂x3
Φ(x,y) · ∇v(y)dy, x ∈ Γρ.

Here, Φ(x,y) denotes the fundamental solution to Laplace’s equation: Φ(x,y) =
−1

4π|x−y| . Throughout this section, the constant C will be different in each occurrence,

but all Cs are independent of r0, ρ, and Γ.
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Theorem 2.1. The difference (g − g0) on Γ can be expressed as

1

2µ
[g(x) − g0(x)] =

∫
D

∇y

[
∂

∂x3
Φ(x,y) + T (x,y)

]
· ∇v(y)dy, x ∈ Γρ,(2.3)

where T (x,y) satisfies the following estimate:

|∇yT (x,y)| ≤ C ρ−3, y ∈ D, x ∈ Γρ.(2.4)

Proof. Using (2.2) and v = v0 on Γ, we have

v(x) − v0(x) = −
∫

Γ

Φ(x,y)[g − g0](y)dsy +

∫
D

µ∇yΦ(x,y) · ∇v(y)dy

+

∫
Γext

∂x3Φ(x,y)[v(y) − v0(y)]dsy

(2.5)

for x ∈ Ω. Applying ∂
∂x3

over both sides of the identity (2.5) for x ∈ Γ yields

g(x) − g0(x) =
∂

∂x3
[v(x) − v0(x)] = − lim

x3→0−

∂

∂x3

∫
Γ

Φ(x,y)[g − g0](y)dsy

+
∂

∂x3

∫
D

µ∇yΦ(x,y) · ∇v(y)dy +

∫
Γext

(v(y) − v0(y))∂2
y3

Φ(x,y)dsy.

(2.6)

Since limx3→0−
∂

∂x3

∫
Γ

Φ(x,y)[g− g0](y)dsy = − 1
2 [g− g0](x) for x ∈ Γ from the trace

formula for the single layer potential in [10], the identity (2.6) becomes

1

2
[g(x) − g0(x)] = µ

∂

∂x3

∫
D

∇yΦ(x,y) · ∇v(y)dy

+

∫
Γext

(v(y) − v0(y))∂2
y3

Φ(x,y)dsy, x ∈ Γ.

(2.7)

Now, we investigate [v− v0]|Γext . For a fixed x ∈ R3 \Γ, let h(x, ·) be the H1(R3 \Γ)-
solution of the following: ⎧⎪⎨

⎪⎩
∆yh(x,y) = 0, y ∈ R3 \ Γ,

h(x,y) = 1
2π|x−y| , y ∈ Γ,

h(x,y) = 0, as |y| → ∞.

Let N(x,y) denote the Neumann function for the half space R3
−; N(x,y) := Φ(x,y)+

Φ(x,y+), where y+ = (y1, y2,−y3) is the reflection point of y by the plane {y3 = 0}.
Then Ψ(x,y) := N(x,y) + h(x,y) satisfies⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∆xΨ(x,y) = δ(x − y), x,y ∈ Ω,

Ψ(x,y) = 0, x ∈ Γ, y ∈ Ω,
∂

∂x3
Ψ(x,y) = 0, x ∈ Γext, y ∈ R3

−,

Ψ(x,y) → 0 as |x − y| → ∞.

It is easy to see from the standard argument in PDE that Ψ(x,y) = Ψ(y,x), x,y ∈ Ω.
Since −N(x,y) = h(x,y) for y ∈ Γ and x ∈ Ω, in view of the maximum principle, we
have |h(x,y)| ≤ |N(x,y)| for x,y ∈ Ω, and so

|Ψ(x,y)| ≤ 2|N(x,y)|, x,y ∈ Ω.(2.8)
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Using Ψ and following the process in (2.5), the difference v − v0 can be expressed as

v(y) − v0(y) = µ

∫
D

∇zΨ(y, z) · ∇zv(z)dz, y ∈ Ω.

Hence, the second term in (2.7) can be written as∫
Γext

(v(y) − v0(y))∂2
y3

Φ(x,y)dsy = µ

∫
D

∇zT (x, z) · ∇v(z)dz,

where

T (x, z) =

∫
Γext

Ψ(y, z)∂2
y3

Φ(x,y)dsy.

The term ∇zT (x, z) can be estimated as

|∇zT (x, z)| ≤
∫

Γext

|∇zΨ(y, z)| 1

|x − y|3 dsy for z ∈ D,x ∈ Γext.

For a fixed y ∈ Γext, Ψ(y, ·) is harmonic in the lower half ball Ω2ρ and zero on Γ, so
Ψ(y, ·) has the harmonic extension Ψ̄(y, ·) to the entire ball B2ρ. Using (2.8) and the
interior estimate, we have

|∇zΨ(y, z)| =
1

|Bρ(z)|

∣∣∣∣∣
∫
Bρ(z)

∇zΨ(y, z̃)dz̃

∣∣∣∣∣ =
1

|Bρ(z)|

∣∣∣∣∣
∫
∂Bρ(z)

ν(z̃)Ψ(y, z̃)dsz̃

∣∣∣∣∣
≤ C

1

ρ|y − z| , z ∈ D, y ∈ Γext.

Since Γext ⊂ ∂Ω \B2ρ, we obtain

|∇zT (x, z)| ≤
∫

Γext

1

ρ|y − z|
1

|x − y|3 dsy ≤ Cρ−3, z ∈ D, x ∈ Γρ.

This completes the proof.
In the next theorem, we provide a more precise estimate by investigating ∇v|D.
Theorem 2.2. Let ξ∗ = (ξ1, ξ2, 0), the projection of ξ to Γ. Then

1

2µ
[g(x) − g0(x)] = g0(ξ

∗)

∫
D

∂

∂x3

(x − y) · [e3 + µ∇V (y)]

4π|x − y|3 dy + Err(x), x ∈ Γρ,

(2.9)

where the error term Err(x) satisfies the estimate

|Err(x)| ≤ Cg0(ξ
∗)|D|

(
r0

ρ|x − ξ|3 +
1

ρ3

)
, x ∈ Γρ.(2.10)

Here, V is the H1(Ω)-solution of⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∆V = 0 in Ω \ ∂D,

V + = V − on ∂D,

(1 + µ)
∂V +

∂ν
− ∂V −

∂ν
= −ν · e3 on ∂D,

χΓV + (1 − χΓ)
∂V

∂ν
= 0 on ∂Ω,

where V + = V |Ω\D̄ and V − = V |D.
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Proof. The v can be decomposed into

v(x) = v0(x) + µg0(ξ
∗)V (x) + µw(x), x ∈ Ω,(2.11)

where w is the H1(Ω)-solution of⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∆w = 0 in Ω \ D̄,

(1 + µ)
∂w+

∂ν
− ∂w−

∂ν
= [−∇v0 + g0(ξ

∗)] · ν on ∂D,

wχΓ +
∂w

∂ν
(1 − χΓ) = 0 on ∂Ω.

Substituting v = v0 + µg0(ξ
∗)V + µw into (2.3), the error term in (2.9) is

Err(x) =

∫
D

∇x
∂

∂x3
Φ(x,y) · [∇v0(y) − g0(ξ

∗)e3]dy + µ

∫
D

∇x
∂

∂x3
Φ(x,y) · ∇w(y)dy

+

∫
D

∇yT (x,y) · ∇v(y)dy := I1(x) + I2(x) + I3(x).

To estimate I1, we begin with proving the estimate

|∇v0(y) − g0(ξ
∗)e3| ≤ C

r0
ρ
g(ξ∗).(2.12)

Since ∂v0

∂x3
is harmonic in Ω and ∂v0

∂x3
|∂Ω ≥ 0, from the maximum principle ∂v0

∂x3
> 0

in Ω. Let v̄0 be the harmonic extension of v0 from Ω2ρ to B2ρ across Γ in such a way
that v̄0(x1, x2,−x3) = 2 − v0(x) for x ∈ Ω2ρ. It is easy to see ∂v̄0

∂x3
> 0 in Ω2ρ. Now,

let y ∈ D be fixed and y∗ = (y1, y2, 0). Note that ∇v0(y
∗) = ∂v̄0

∂y3
(y∗)e3 = g(y∗)e3

because v0 = 1 on Γ. We have

|∇v0(y) − g(ξ∗)e3| =

∣∣∣∣∇v0(y) −∇v0(y
∗) + e3

[
∂v0

∂y3
(y∗) − ∂v0

∂y3
(ξ∗)

]∣∣∣∣
≤ C|y3|

∫ 1

0

∣∣∣∣ ∂

∂y3
∇v0(ty + (1 − t)y∗)

∣∣∣∣ dt
+ |y∗ − ξ∗|

∫ 1

0

∣∣∣∣ ∂

∂y3
∇v0(ty

∗ + (1 − t)ξ∗)

∣∣∣∣ dt
≤ Cr0

∥∥∥∥∇ ∂

∂y3
v0

∥∥∥∥
L∞(Ωρ)

≤ C
r0
ρ

∥∥∥∥ ∂

∂y3
v̄0

∥∥∥∥
L∞(B3ρ/2)

.

(2.13)

In the above inequalities, we use that |y3|, |y∗ − ξ∗| < r0 and the standard interior
estimate for the harmonic function ∇ ∂

∂y3
v̄0. Since ∂

∂y3
v̄0 > 0 in B2ρ, from the Harnack

inequality we have ∥∥∥∥ ∂

∂y3
v̄0

∥∥∥∥
L∞(B3ρ/2)

≤ Cg0(ξ
∗),

and so (2.12) follows from (2.13) and the above estimate. From (2.12), we have

|I1(x)| ≤ C
1

|x − ξ|3
∫
D

|∇v0(y) − g(ξ∗)e3|dy ≤ Cg0(ξ
∗)

r0|D|
ρ|x − ξ|3 , x ∈ Γρ.
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Next, we will estimate I2. Using (2.12) and the definition of w, we have

(1 + µ)

∫
D

|∇w|2dy +

∫
Ω\D̄

|∇w|2dy =

∫
∂D

w[−∇v0 + g0(ξ
∗)e3] · νdsy

=

∫
D

∇w · [∇v0 − g0(ξ
∗)e3]dy ≤ Cg0(ξ

∗)
r0
√
|D|

ρ

(∫
D

|∇w|2
)1/2

and so

(∫
D

|∇w|2
)1/2

≤ Cg0(ξ
∗)

r0
√
|D|

(1 + µ)ρ
.(2.14)

Hence, we have

|I2(x)| ≤ C
1

|x − ξ|3
∫
D

|∇w|dy ≤ C

√
|D|

|x − ξ|3

(∫
D

|∇w|2
)1/2

≤ Cg(ξ∗)
r0|D|

ρ|x − ξ|3 , x ∈ Γρ.

Finally, I3 can be estimated using (2.4) and the previous estimates (2.12) and (2.14):

|I3| ≤ C
1

ρ3

∫
D

|∇v|dy ≤ C
1

ρ3

∫
D

|∇v0| + |g(ξ∗)||∇V | + |∇w|dy ≤ Cg(ξ∗)
|D|
ρ3

.

This completes the proof.

The theorem suggests an idea of reconstructing D approximately. Since D is
small and ξ ∈ D, (2.9) can be expressed roughly as follows. For x ∈ Γρ,

1

2µ
[g(x) − g0(x)] ≈ |D|g0(ξ

∗)

4π|x − ξ|3

⎛
⎜⎜⎜⎝

−2ξ2
3 + (x1 − ξ1)

2 + (x2 − ξ2)
2

|x − ξ|2

[
1 + µ

∂V

∂y3
(ξ)

]

+ 3µ
ξ3(x1 − ξ1)

∂V
∂y1

+ ξ3(x2 − ξ2)
∂V
∂y2

|x − ξ|2

⎞
⎟⎟⎟⎠

(2.15)

because, according to the estimate (2.10), the term Err(x) does not contribute to the
distribution of 1

2µ [g(x)−g0(x)] significantly compared with the major term described

in the above approximation; r0
ρ is small and 1

|x−ξ|3 � { r0
ρ|x−ξ|3 + 1

ρ3 } for x ∈ Γρ and

|x − ξ| < ρ/2.

Next, we will roughly estimate V . Suppose that D = Br(ξ) and r < r0. Define

Ṽ (y) =
1

3 + µ

∫
D

z3 − y3

4π|z − y|3 dz,

which satisfies the following properties:

Ṽ (y) =
1

3 + µ
(ξ3 − y3) for y ∈ D, Ṽ (y) =

r3

3 + µ

ξ3 − y3

|ξ − y|3 for y ∈ R3 \ D̄,

(1 + µ)
∂Ṽ +

∂ν
(y) − ∂Ṽ −

∂ν
(y) = −ν · e3 for y ∈ ∂D,
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where Ṽ + = V |D and Ṽ − = V |R3\D̄ (see [18]). Hence, V can be decomposed into

V (y) = Ṽ (y) + U(y), where U satisfies

∇((1 + µχD)∇U) = 0 in Ω, U |Γ =
r3

3 + µ

−ξ3
|y − ξ|3 .

Then U can be expressed as

U(y) = U0(y) + µ

∫
D

∇z[Φ(y, z) − Φ(y+, z)] · ∇U(z)dz, y ∈ Ω,(2.16)

where U0 is the H1(Ω)-solution of the Dirichlet problem:

∆U0 = 0 in Ω, U0|∂Ω = U |∂Ω.

From the boundary condition U0|Γ, U0 can be approximated as

U0(y) ≈ r3

3 + µ

−y3 − ξ3
|y+ − ξ|3 , y ∈ Ωρ,

and so ∇U0(ξ) ≈ r3

(3+µ)16π|ξ3|3 e3. Therefore, in view of (2.16) we may approximate

∇V (ξ) ≈ e3

3 + µ

(
−1 +

r3

16π|ξ3|3

)
.(2.17)

This leads to the approximation

1

2µ
[g(x) − g0(x)] ≈ |D|g0(ξ

∗)

3 + µ

(
1 − r3

16π|ξ3|3

)
2ξ2

3 − (x1 − ξ1)
2 − (x2 − ξ2)

2

4π|x − ξ|5 , x ∈ Γρ,

or simply

1

2
[g(x) − g0(x)] ≈ µ|D|g(ξ∗)

3 + µ

2ξ2
3 − (x1 − ξ1)

2 − (x2 − ξ2)
2

4π|x − ξ|5 , x ∈ Γρ,(2.18)

since r3

16π|ξ3|3 < 1
16π is small. This approximation gives an accurate reconstruction

algorithm for finding the location ξ and the size |D|. This will be discussed in the
following sections.

3. Anomaly detection algorithm in the T-Scan model. In this section,
based on the mathematical analysis for the simplified model given in the previous
section, we will derive a rough detection algorithm for the T-Scan model. With a re-
alistic model, the background complex conductivity τ1 may not be homogeneous, and
we met many technical difficulties in carrying out rigorous mathematical analysis that
requires various approximations. We will not do all the analysis with the complicated
model but will suggest several desired estimates to the reader.

Let Ω be a bounded domain in R3 with a smooth boundary ∂Ω. The real and
imaginary parts of complex conductivities τ1 = σ1 + iωε1 and τ2 = σ2 + iωε2 are
positive and bounded. As in the previous section, let Γ ⊂ ∂Ω be a smooth planar
domain lying on the plane ∂R3

− such that B2ρ(0) ∩ {x3 = 0} ⊂ Γ ⊂ B3ρ(0), where
Bρ(z) = {x ∈ R3 : |x − z| < ρ}. We denote Ωρ = Ω ∩Bρ(0) and Γρ = Γ ∩Bρ(0). As
before, assume that D is a simply connected smooth domain and

ξ ∈ D ⊂ Ωρ, diam(D) ≤ r0, and r0 ≤ dist(D,Γ) ≤ Ar0.
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The mathematical model of the T-Scan system is the following:⎧⎪⎪⎨
⎪⎪⎩

∇ · (τ1 + (τ2 − τ1)χD)∇u(r)) = 0, r ∈ Ω,
u(r) = 0, r ∈ Γ,
u(r) = 1, r ∈ γ,
τ1∇u(r) · ν(r) = 0, r ∈ ∂Ω \ Γ ∪ γ.

(3.1)

For a fixed frequency ω, let u be the H1(Ω)-solution of (3.1) and g = ∂u
∂z |Γ, f = u|∂Ω.

Our goal is to reconstruct D from g.
To derive a reconstruction algorithm, we need to introduce layer potentials over

a smooth surface Υ. The single and double layer potentials are defined by

SΥ[ϕ](x) =

∫
Υ

Φ(x,y)ϕ(y)dsy, x ∈ R3,

DΥ[ϕ](x) :=

∫
Υ

ν(y) · ∇yΦ(x,y)ϕ(y) dsy, y ∈ R3 \ Υ.

Suppose that u0 is the solution of (3.1) in the absence of D and g0 = ∂u0

∂x3
|Γ. It

must be noted that we cannot compute u0 explicitly because the background complex
conductivity τ1 is unknown. However, let us begin by finding a relation between
D and (g − g0).

Theorem 3.1. Let Λ2ρ = ∂Ω2ρ \ Γ. Then

1

2
[g(x) − g0(x)] =

∂

∂x3

∫
D

(τ2 − τ1)∇yΦ(x,y) · ∇u(y)dy + E1(x) + E2(x), x ∈ Γ2ρ,

(3.2)

where

E1(x) =
∂

∂x3

∫
Ω2ρ

[u(y) − u0(y)]∇yΦ(x,y) · ∇τ1(y)dy,

and E2(x) =
∂

∂x3
SΛ2ρ

[
∂(u− u0)

∂ν

]
(x) − ∂

∂x3
DΛ2ρ [τ1(u− u0)](x).

Moreover,

E1(x) ≤ C‖∇τ1‖Lp(Ω2ρ) for x ∈ Γ2ρ,

where p > 3.
Proof. For x ∈ Ω2ρ, we have

τ1u(x) = −
∫

Ω2ρ

∇yΦ(x,y) · ∇[τ1u(y)]dy + DΛ2ρ
[τ1 u](x)

= −
∫

Ω2ρ

τ1(y)∇yΦ(x,y) · ∇u(y)dy + D∂Ω2ρ
[τ1 u](x)

+

∫
Ω2ρ

∇yΦ(x,y) · ∇τ1(y) u(y)dy

= −
∫

Ω

[τ1 + (τ2 − τ1)χD]∇yΦ(x,y) · ∇u(y)dy +

∫
D

[τ2 − τ1]∇yΦ(x,y) · ∇u(y)dy

+ D∂Ω2ρ [τ1 u](x) +

∫
Ω2ρ

∇yΦ(x,y) · ∇τ1(y) u(y)dy
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= −SΓg(x) − SΛ2ρ

[
τ1

∂u

∂ν

]
(x) +

∫
D

[τ2 − τ1]∇yΦ(x,y) · ∇u(y)dy

+ D∂Ω2ρ [τ1 u](x) +

∫
Ω2ρ

∇yΦ(x,y) · ∇τ1(y) u(y)dy.

Similarly, u0 can be expressed as

τ1u0(x) = −SΓg0(x) − SΛ2ρ

[
τ1

∂u0

∂ν

]
(x) + D∂Ω2ρ [τ1 u0](x)

+

∫
Ω2ρ

∇yΦ(x,y) · ∇τ1(y) u0(y)dy,
x ∈ Ω2ρ.

Since (u− u0) = 0 on Γ, for x ∈ Ω2ρ

τ1[u(x) − u0(x)] = SΓ[g0 − g](x) +

∫
D

[τ2 − τ1]∇yΦ(x,y) · ∇u(y)dy

+ SΛ2ρ

[
τ1

∂(u0 − u)

∂ν

]
(x) + DΛ2ρ [τ1(u− u0)](x)

+

∫
Ω2ρ

∇yΦ(x,y) · ∇τ1(y) [u(y) − u0(y)]dy.

Hence, by applying ∂
∂x3

through the above identity at x ∈ Γ2ρ and using the standard
trace formula for single layer potentials, we have

∂

∂x3
[τ1(u(x) − u0(x)] =

1

2
[g(x) − g0(x)] +

∂

∂x3

∫
D

[τ2 − τ1]∇yΦ(x,y) · ∇u(y)dy

+ E1(x) + E2(x), x ∈ Γ2ρ.

Moreover, for x ∈ Γ2ρ,

∂

∂x3
[τ1(u(x) − u0(x)] =

∂τ1
∂x3

(u(x) − u0(x)) + [g(x) − g0(x)] = [g(x) − g0(x)].

The E1 can be estimated by

|E1(x)| ≤
∫

Ω2ρ

|u(y) − u0(y)|
|x − y|3 |∇τ1(y)|dy, x ∈ Γ2ρ.

Since u(y)
y3

and u0(y)
y3

are bounded in Ω2ρ due to u = 0 = u0 on Γ,

|E1(x)| ≤ C‖∇τ1‖Lp(Ω2ρ),

where p > 3 and C depends only on p and ‖u−u0

y3
‖L∞(Ω2ρ). This completes the

proof.
In our reconstruction algorithm, we will neglect the terms E1(x) and E2(x) in the

identity (3.2). Since the background complex conductivity τ1 is a small perturbation
of a constant inside the region Ω2ρ, ‖∇τ1‖L2(Ω2ρ) is small and so is E1(x) for x ∈ Γρ.

The term E2(x) = ∂
∂x3

SΛ2ρ [
∂(u−u0)

∂ν ](x) − ∂
∂x3

DΛ2ρ [τ1(u− u0)](x) is a sum of integral
over Λ2ρ that sustains a distance larger than ρ from the observation point x ∈ Γρ.
Furthermore, the difference (u− u0)|Λ2ρ is small, and so E2(x),x ∈ Γρ can be viewed
as a negligibly small term. Hence, the identity (3.2) can be approximated as

1

2
[g(x) − g0(x)] ≈ ∂

∂x3

∫
D

(τ2 − τ1)∇yΦ(x,y) · ∇u(y)dy, x ∈ Γρ,(3.3)

which is essentially the same as (2.15).
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Under the assumption that τ1 and τ2 are small perturbations of two constants,
we have the following approximation that corresponds to the approximation (2.18):

1

2
[g(x) − g0(x)] ≈ 3α(τ1 − τ2)

2τ1 + τ2
|D|2ξ

2
3 − (x1 − ξ1)

2 − (x2 − ξ2)
2

4π|x − ξ|5 , x ∈ Γρ,

where α = 1
|Γρ|

∫
Γρ

g denotes the average of g over Γρ.

This rough estimate leads us to derive the following anomaly detection algorithm
via simple elementary algebra:

• Transversal position. The anomaly D lies below the point ξ∗ at which the
absolute value |g(x∗) − g0(x

∗)| has the greatest quantity:

|g(ξ∗) − g0(ξ
∗)| = max

x∈Γρ

|g(x) − g0(x)|.(3.4)

• Depth. Let x0 be any chosen point in Γρ near ξ∗ and let l be the distance
between ξ∗ and x0, that is, l = |ξ∗ − x0|. The depth d is determined by the
identity ∣∣∣∣ g(ξ∗) − g0(ξ

∗)

g(x0) − g0(x0)

∣∣∣∣ =
|2 − l2

d2 |
2( l2

d2 + 1)5/2
.(3.5)

Remark 3.2 (multifrequency). We often do not have a priori knowledge of the
background complex conductivity τ1, and so we cannot compute the data g0. In
this case, we may use more than two different frequencies for the detection algorithm
provided that the frequency dependencies of conductivity and permittivity values for
background and anomaly are significantly different. Suppose ω̃ is a frequency such
that the corresponding τ̃2 is quite different from τ2, while τ̃1 is close to τ1. Let ũ be
the solution of (3.1) for the frequency ω̃ and let g̃ = ∂u

∂ν |Γ. Suppose now that the
difference τ2 − τ̃2 in cancerous region D is much larger than the difference τ1 − τ̃1 in
the normal region. Then the expression corresponding to (2.18) is

1

2
[g̃(x) − g(x)] ≈ 9ατ1(τ2 − τ̃2)

(2τ1 + τ2)(2τ1 + τ̃2)
|D|2ξ

2
3 − (x1 − ξ1)

2 − (x2 − ξ2)
2

4π|x − ξ|5 , x ∈ Γρ.

This rough estimate leads to the similar anomaly detection formula as (3.4) and (3.5).

4. Numerical experiments. In this section, we present results of numerical
simulations using the anomaly estimation algorithm derived in the previous section.
We set the scanning probe region as Γ = [−25, 25] × [−25, 25] × {0} mm2 including
16×16 electrodes. The total amount of current through all 256 electrodes is assumed
to be 0.2 mA. The inhomogeneous background complex conductivity τ1 is set as

τ1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.005 + 100wε0i if x ∈ E [(−12.5,−12.5,−35); (7.5, 5, 5)] in mm,
0.01 + 500wε0i if x ∈ E [(12.5, 12.5,−30); (5, 7.5, 5)] in mm,
0.3 + 40000wε0i if x ∈ E [(−12.5, 12.5,−40); (7.5, 7.5, 7.5)] in mm,
0.05 + 30000wε0i if x ∈ E [(0,−2.5,−32.5); (7.5, 2.5, 2.5)] in mm,
0.003 + 800wε0i otherwise,

where ω = 2π × 103 rad/s, ε0 = 8.854 × 10−12 F/m is the permittivity of the free

space, and E [z; (λ1, λ2, λ3)] :=
{
x = (x1, x2, x3) |

∑3
i=1

(xj−zj
λj

)2 ≤ 1
}
. We set the

anomaly D to be reconstructed as

D = E [z0; (2.5, 2.5, 2.5)] in mm

with its center at z0 and complex conductivity τ2 = 0.2 + 2000ωε0i.
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Fig. 4.1. Plots (a-1,2), (b-1,2), and (c-1,2) are real and imaginary parts of (g − g0) in mA
corresponding to D having three different centers z = (0, 0,−5), (6.25, 3.75,−7.5), (−10,−10,−10)
in mm, respectively.

Table 4.1

Performance of the proposed detection algorithm.

True center of D(:= z) (0,0,-5) (6.25,3.75,-7.5) (-10,-10,-10)
Detected center of D(:= z∗) (0,0,-4.73) (6.65,3.36,-7.05) (-10,-10,-9.50)

Error(:= ‖ z − z∗ ‖) 0.27 0.72 0.5

Since we do not know the exact background complex conductivity τ1 in practice,
we compute g0 by solving (3.1) in the absence of D with the homogeneous background
τ̂1 = 0.003 + 800wε0i instead of the inhomogeneous τ1. We compute g from (3.1) in
the presence of D with the inhomogeneous τ1. Notice that (g − g0) contains some
unavoidable noise due to the unknown inhomogeneity (τ1−τ̂1). Now we try to detect D
from the difference (g − g0).

Figure 4.1 shows the real and imaginary parts of (g − g0) with D having three
different centers z = (0, 0,−5), (6.25, 3.75,−7.5), and (−10,−10,−10) in mm. First
we determine the transversal position (ξ∗) using (3.4). For the depth estimate of the
anomaly, we can choose any point x0 near ξ∗. However, if we choose a point far away
from ξ∗, the difference |g(ξ∗)−g0(ξ

∗)| may not be distinguished from noise. Therefore,
we select four different nearest electrodes around ξ∗ for the choice of the point x0 in
(3.5) and take the average value to determine the depth using (3.5). Table 4.1 shows
the results of the proposed detection algorithm.

We now test the noise tolerance of the algorithm by adding a random noise on g.
We generate noised data gn by

gn = g + ‖ g ‖2 ∗NL ∗RN,

where ‖ g ‖2 is the L2 norm of g on Γρ, NL is a noise level, and RN is a ran-
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Fig. 4.2. Noised data (g−gn): (a) noise 0%, (b) noise 0.5%, and (c) noise 1% for the anomaly
D1 = E [(0, 0,−3.75); (2.5, 2.5, 2.5)] in mm.

Table 4.2

Detection of centers of anomalies with noised data.

Noise level 0% 0.5% 1%
Detected center of D1 (0,0, -3.62) (0, 0, -4.40) (0, 0, -5.18)
Detected center of D2 (0,0, -4.73) (0, 0, -6.34) (0, 0, -7.07)
Detected center of D3 (0,0, -5.88) (0, 0, -7.74) (0, 0, -9.85)

dom number uniformly distributed on the interval (−1, 1). For the anomaly D1 =
E [(0, 0,−3.75); (2.5, 2.5, 2.5)] in mm, noised data (g − gn) with 0.5% and 1% noise
are shown in Figure 4.2(b) and (c), respectively. We also apply the algorithm for
anomalies D2 = E [(0, 0,−5); (2.5, 2.5, 2.5)] and D3 = E [(0, 0,−6.25); (2.5, 2.5, 2.5)]
in mm with different depths from D1. The detected centers of D1, D2, and D3 are
summarized in Table 4.2. From the results in Tables 4.1 and 4.2, we can see that the
performance of the algorithm is quite good in terms of both transversal position and
depth estimates. Experimental verification of these results will be a part of our future
studies.
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Abstract. This paper concerns a codimension-two analysis of the interaction between various
resonances that occur in an upright flexible rod subject to sinusoidal parametric excitation. Partic-
ular attention is paid to rods that are just longer than their critical length for self-weight buckling,
and their possible stabilization by the excitation. Previous work has identified three small dimen-
sionless parameters in this problem: the closeness of the length (divided by the cube root of bending
stiffness) to the critical one, the amplitude of excitation, and the reciprocal of the frequency of ex-
citation. Multiple timescale analysis is used to show how the asymptotics of resonance tongues in
the amplitude-versus-bending-stiffness plane becomes of lower order at certain special values of the
frequency ratio where two resonances interact. In particular, an O(1) change in the shape of the
parameter region of the stabilized supercritical rod occurs through interaction with the pure har-
monic resonance of some other mode of vibration of the rod. It is also shown how to include material
damping within the analysis. The results help explain why earlier theories failed to qualitatively
explain experimental observation, and are also likely to be of relevance in other three-parameter
parametric resonance problems for continuous structures.
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1. Introduction. It is well known that if a column exceeds a certain critical
length it will, when placed upright, buckle under its own weight. A recent experiment
by Mullin, reported in [14] (see also [1, 2]), has demonstrated that a piece of “curtain
wire” that is longer than its critical length can be stabilized by subjecting its bottom
support point to a vertical vibration of appropriate amplitude and frequency. In two
previous papers, [5, 8], henceforth referred to as Part I and Part II, respectively, we
made a numerical and asymptotic study of the linear and nonlinear equations that
govern the behavior of such a column.

In Part I we noted that there are three key dimensionless parameters in this
problem: B, the ratio of the column’s bending stiffness to the cube of its length;
η (called 1/δ in that paper), the square of the ratio of the frequency of excitation to
that of the pendulum of the same length (

√
g/�); and ε, the amplitude of excitation.

By looking in the (B, ε) plane for fixed η, one can then analyze the stability of
the upright position using Floquet analysis and double scale asymptotics, in much
the same way as one does for the single-degree-of-freedom Mathieu equation (e.g.,
[11, 16]). The result for the fundamental instability curve is to show that for “most”
η-values it is possible to stabilize, for small ε, a column that is just longer (B < Bc)
than its critical length for self-weight buckling. In fact, this criterion gives a lower
bound on the frequency of excitation that is required in order to stabilize a column
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of a given length. However, this lower bound is too conservative when compared with
experiments [14], nor does this criterion give the observed upper bound.

Part II concerns an attempt to answer these deficiencies by considering, in addi-
tion, harmonic and subharmonic instabilities. In that paper the analysis was also ex-
tended to include a fully geometrically nonlinear formulation, but the ensuing weakly
nonlinear asymptotic analysis in essence held no surprises. However, it was observed
that the quadratic-in-ε coefficient of the B-value bounding the fundamental stability
region can undergo singularities as η varies. These occur precisely when a first har-
monic resonance has the same B-value as the self-weight buckling B = Bc. In fact,
in the analyses of both the fundamental and harmonic instabilities, the asymptotic
expansions became invalid at these special values of the excitation frequency. This
breakdown appears to be an artifact of the particular expansions used there. In this
paper we offer an alternative expansion procedure that avoids this difficulty.

The key is to think of this as a genuinely three-parameter problem, and expand
both B and η in powers of ε in a neighborhood of these codimension-two resonance
tongue interaction points. In what follows we shall consider only the linear equations
of motion of the column, since the tongue interaction we wish to describe involves
the (loss of) linear stability of an upright column. As in Part II, the results can be
extended to include geometrically nonlinear terms to give the amplitude and stability
of the bifurcating motion. But since our prime objective is to describe the shape
of stability regions in a neighborhood of codimension-two points, we shall omit such
complications here.

The rest of the paper is outlined as follows. Section 2 contains a brief review of
the mathematical formulation and some new insight into the behavior of eigenmodes
and resonances as parameters are varied. Section 3 then considers the possibility
of two instabilities occurring at once and introduces a general asymptotic expansion
procedure for unfolding such a situation. The details of all the asymptotics are rel-
egated to various appendices. It is argued how only a few of these interactions lead
to a qualitatively significant change in the stability regions, including the case where
there is a singularity in the coefficient of the subharmonic resonance boundary (with
dimensionless frequency 1/2), due to its interaction with the tongue corresponding
to frequency 3/2. Section 4 then studies the important special case where the fun-
damental buckling instability interacts with a first harmonic resonance of any one of
the higher-order eigenmodes. Section 5 shows how the results are modified in the
presence of damping. Section 6 compares the analysis of this paper to the results of
the curtain wire experiments, and, finally, section 7 draws conclusions and discusses
the results in a wider context.

2. Mathematical formulation. Consider an initially straight column of length
�, with a uniform circular cross-section of radius a � � and mass linear density m per
unit length (see Figure 2.1). The column is assumed to be inextensible, unshearable,
and linearly elastic with bending stiffness B̄. It is further assumed that the lower end is
clamped upright and is displaced by a vertical harmonic oscillation equal to ∆ cosω0t̄.
The upper end is assumed to be free. The derivation of the geometrically nonlinear
equations that govern the motion of the centerline R̄(s̄, t̄) and tension T̄ (s̄) of such a
column was detailed in Parts I and II. There it was shown that the effects of rotary
inertia and torsional waves in the angular momentum equation can be neglected. Also,
in [9] it is shown, via homogenization of a system of links with stiff, damped joints,
how to include a dimensionless coefficient of material damping Γ into the linearized
equations. This leads to material damping that is proportional to the time derivative
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Fig. 2.1. Definition sketch in which R(s, t) = �r(s, t)+�sk+∆cos(t)k, where �s is the arclength
parameter for the inextensible centerline of the circular column.

of the fourth-derivative bending stiffness term. Note that this form of damping also
occurs in models used in structural geology [13].

2.1. Linearized equations. The dimensionless form of the linearized equations
and boundary conditions governing small amplitude motion r(s, t) of the column about
the oscillating upright position are (cf. Part II, (2.5), (2.6), and (2.7))

η{γDrIV + D2r − ε cos t[(1 − s)r′]′} = −Mr + T ′k,(2.1)

where ()′ = ∂/∂s, D = ∂/∂t, and

Mr := BrIV + [(1 − s)r′]′, subject to(2.2)

r = r′ = 0 at s = 0, r′′ = r′′′ = 0, T = 0 at s = 1.(2.3)

Furthermore, upon linearization, inextensibility implies

r′ · k = 0.(2.4)

The dimensionless variables are defined in terms of the dimensional variables by the
following relations:

s =
s̄

�
, r =

R̄

�
− (ε cos t + s)k, t = ω0t̄, γ =

Γ�ω

mg

T =
T̄

mg�
− (1 − ηε cos t)(1 − s), B =

B̄

mg�3
, η =

ω2
0�

g
, ε =

∆

�
.

⎫⎪⎪⎬
⎪⎪⎭(2.5)

In fact, we can eliminate T immediately by considering the k component of (2.1)
subject to condition (2.4), which gives the result T ≡ 0. Moreover, without loss of
generality at this linearized level, we can assume that the motion is restricted to the
(i,k)-plane and write R(s, t) = u(s, t)i, where u satisfies the scalar inhomogeneous,
parametrically forced linear PDE

Mu + η{γDuIV + D2u− ε cos t[(1 − s)u′]′} = 0,(2.6)

where

Mu := BuIV + [(1 − s)u′]′ subject to(2.7)

u = u′ = 0 at s = 0, u′′ = u′′′ = 0 at s = 1.(2.8)
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This completes the formulation of the linear stability problem for the vertically
oscillated column. For the majority of this paper we shall consider the perfect rod
without the presence of material damping.

2.2. Eigenmodes of the unforced, undamped problem. Consider ε = γ =
0. This is the unforced problem. The general linear solution for a given B-value is a
superposition of eigenmodes∑

n

{An cos
√
λn/ηn t + Bngn sin

√
λn/ηn t}φn(s;B),

where φn is the eigenmode of M corresponding to λn. That is, (φn, λn) satisfy

Mφn − λnφn = 0(2.9)

together with boundary conditions (2.8). Note that for each B-value the operator M is
self-adjoint and so the eigenfunctions form a complete orthonormal basis for L2 subject
to the boundary conditions (2.8), where we choose to normalize each eigenfunction
such that its L2-norm is unity. Then, upon defining

〈a, b〉 =

∫ 1

0

a(s)b(s)ds,

we have

〈φi, φj〉 = δi,j , 〈φi,Mφj〉 = λjδi,j(2.10)

and

〈φIV
i , v〉 = 〈φ′′

i , v
′′〉, 〈φi,Lv〉 = 〈v,Lφi〉 = −B〈φ′′

i , v
′′〉 + λi〈φi, v〉(2.11)

for any function v(s) satisfying the boundary conditions (2.8). Here

Lv(s) := [(1 − s)v′′ − v′].(2.12)

These identities will prove useful in what follows.
The eigenmodes φn(s;B) are in general not expressible in closed form except at

the special values of B at which λn(B) = 0, in which case (see Part II, section 3) there
is a solution in terms of the Bessel function J−1/3. The same analysis shows that there
are infinitely many such B-values, B0,n, n = 1, 2, 3, 4, . . . , accumulating at B = 0,
the first few values of which are B0,1 = 0.127594, B0,2 = 0.017864, B0,3 = 0.0067336,
and B0,4 = 0.0003503. These correspond, respectively, to where each eigenvalue locus
λn(B), for n = 1, 2, 3, 4, crosses the B-axis, with the corresponding eigenmode there
having n−1 internal zeros. The lowering of B through each B0,n-value implies that the
nth mode becomes linearly unstable. Hence for B > Bc := B0,1 the unforced rod is
stable to self-weight buckling (a result known to Greenhill [10]). Numerically, in Part I
it was found that each eigenmode φn(s) retains a qualitatively similar mode shape for
B > B0,n and that the corresponding loci λn(B) are approximately straight lines (see
Part I, Figure 2 and the schematic diagram in the upper part of Figure 2.2 below).
In fact, we can now identify the slopes of those lines via the following asymptotic
analysis.

Consider a rod for a specific length B = B0 with eigenvalue and eigenmode
(λn, φn) for some n. Let us expand in a small parameter δ via

B = B0 + δB1, φ = φn + δf1 + δ2f2 + · · · ,
λ = λn + δσ1 + δ2σ2 + · · · .
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Fig. 2.2. Summarizing schematically the results from Part I and the formula (2.17). The upper
part shows eigenvalue loci λn(B) and the definition of the points Bα,n, α = 0, 1/2, 1, 3/2, . . . . In the
lower part instability tongues in the (B, ε)-plane are shown to occur with root points Bα,n and to
have width ε2α. The shaded regions correspond to where the vertical solution is stable. Solid lines
represent neutral stability curves with Floquet multiplier +1 (where α is an integer) and dashed lines
correspond to multiplier −1 (where α is half an odd integer).

Taking these expansions and substituting them into the eigenvalue equation (2.9),
and collecting powers of δ, we obtain

(M0 − λn)f1 = −B1φ
IV
n + σ1φn,(2.13)

(M0 − λn)f2 = −B1f
IV
1 + σ1f1 + σ2φn,(2.14)

where M0 is the operator M evaluated at B = B0. The solvability condition for
the O(δ) equation is that the right-hand side of (2.13) should be orthogonal to the
eigenfunction φn of the left-hand side. Using the first identity in (2.11), this yields

σ1 = B1〈φ′′
n, φ

′′
n, 〉 and 〈f1, φn〉 = 0.

At the next order, the same solvability condition applied to (2.14) yields

σ2 = B1〈φ′′
n, f

′′
1 〉,

where f1 is the solution of

M0f1 − λnf1 = σ1

(
φn − 1

〈φ′′
n, φ

′′
n〉

φIV
n

)
(2.15)

subject to the boundary conditions (2.8). Combining these results we obtain the
following asymptotic expression for dependence of any eigenvalue on B:

λ = λn + δB1〈φ′′
n, φ

′′
n〉 + δ2B1〈φ′′

n, f
′′
1 〉 + O(δ3),(2.16)

where we have used explicitly 〈φn, φn〉 = 1. Note that the linear term is a positive
definite quantity for all B. Hence the slopes of the loci λ(B) are strictly positive for
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all n and B. This proves a property that was observed only numerically in Part I.
In fact, we found there numerically that for λn(B) > 0 each locus is in fact well
approximated by a straight line.

2.3. Dynamic resonances. Consider now the parametrically excited problem
ε �= 0. It is not difficult to see that in the limit ε → 0, the dimensionless drive angular
frequency η will be in resonance with a natural vibration frequency λn whenever
λn(B) = p2η for some n > 0, p ≥ 0. Such B-values we label as B = Bp,n. Similarly,
subharmonic resonances occur in the limit ε → 0 at points B = Bp/2,n defined for
odd integers p such that λn(B) = p2η/2.

Using Floquet theory (see Part I) one can deduce that for ε > 0, each of these
resonance points Bα,n for nonnegative half-integers α is the root point of an instability
tongue in the (B, ε)-plane (see Figure 2.2). One branch of the tongue corresponds to
neutral modes whose leading-order term is φn(s) cosαt (in phase with the excitation)
and the other to modes with leading-order term φn(s) sinαt (out of phase with the
excitation). The case α = 0 is special. This corresponds to the instability resulting
from one of the pure buckling modes. From such a root point B = B0,n there is thus
a single curve in the (B, ε)-plane corresponding to an instability whose mode shape
is time independent to leading order. Figure 2.3 shows actual tongue boundaries in
the (B, ε)-plane computed using the numerical Floquet theory method presented in
Part I.

In fact, following the general asymptotics laid out in section 3, we can add to this
result. Specifically, any instability with root point Bα,n which is a resonance whose
neutral modes are like cosαt or sinαt, leads to a tongue the boundaries of which are
(under certain nondegeneracy assumptions) given by

B = Bα,m +

2α−1∑
j=2

Bjε
j + B±

2αε
2α(2.17)

for some coefficients Bj and B±
2α. Here the superscript “+” represents a neutral

stability curve corresponding to motion whose time variation is cosαt, i.e., in phase
with the drive, and the superscript “−” corresponds to the neutral stability of out-
of-phase motion whose time variation is sinαt. See Appendix D for the details.

Thus the simplest family of subharmonic resonances, corresponding to α = 1/2,
leads to linear instability tongues, whereas the simplest harmonic instability, corre-
sponding to α = 1, gives quadratic tongues. Higher-order tongues have width ε2α,
albeit with a generically nonzero quadratic lean in the (B, ε)-plane. Thus α = 3/2
leads to tongues with width O(ε3) in the (B, ε)-plane; α = 2 leads to tongues with
widths varying to the fourth power of ε, etc. Therefore, for small amplitude of ex-
citation ε, only instabilities corresponding to lower values of α are likely to lead to
any significant regions of instability provided the amplitude of excitation ε is small
(an observation that is further vindicated by the presence of damping; see section 5).
The case α = 0 is once again special, and it was shown in Part I that this leads to
a single boundary between instability and stability that is to leading order quadratic
in B.

The general result (2.17) confirms and extends what we found by detailed multiple
timescale asymptotics in Parts I and II. Before proceeding to a codimension-two
analysis of when the nondegeneracy conditions leading to (2.17) fail, let us extract
from Part II the leading-order expressions for the coefficients in the simplest few cases.
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Fig. 2.3. Resonance tongue boundaries computed using numerical Floquet analysis with N = 4
for (a) η = 120 and (b) η = 360. Depicted are all resonance tongues (labelled by (α, n)) with
root points corresponding to Bα,n with α ≤ 5/2 and n ≤ 4 and 0.02 < B < 0.25. Note that the
order of the resonance tongues changes between the figures (but the instability curve (0, 2) is omitted
from panel (b) for clarity). This is because at intermediate η-values there have been codimension-
two resonance tongue interactions which form the subject of this paper. Note that each tongue other
than the instability boundary coming out of B0,n has nonzero width which is sometimes not apparent
on the scale depicted.

Taking α = 0, the single neutral curve is defined by

B = B0,n + B2ε
2 + O(ε3)

where (Part II, equation (4.11), interpreted in the notation of this paper)

B2 =
η〈φn,LH1〉
2〈φ′′

n, φ
′′
n〉

,(2.18)

with H1 being the solution to

M0,nH1 − ηH1 = ηLφn(2.19)

subject to the usual boundary conditions (2.8).
Taking α = 1/2, the neutral stability curves are defined by

B = B1/2,n + B±
1 ε + O(ε2),

where (Part II, equation (4.19))

B±
1 = ±η〈φn,Lφn〉

2〈φ′′
n, φ

′′
n〉

.(2.20)
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In the case α = 1, neutral stability occurs along the curves

B = B1,n + B±
2 ε2 + O(ε3),

where (upon solving for α1 = ±α2 in Part II, equation (4.26))

B+
2 = η

2〈φn,LH4〉 + 〈φn,LH3〉
2〈φ′′

n, φ
′′
n〉

,(2.21)

B−
2 =

η〈φn,LH3〉
2〈φ′′

n, φ
′′
n〉

,(2.22)

with H3 and H4 being the solutions to

M1,nH3 − 4ηH3 =
η

2
Lφn,(2.23)

M1,nH4 =
η

2
Lφn,(2.24)

subject to the usual boundary conditions (2.8).

We now notice several anomalies from Figure 2.3. First the instability curve
(0, 1) representing the fundamental falling-over instability, bends back to the left for
η = 120 (as indeed it does for “most” η-values, as was argued in Part I to explain
the stabilization effect observed in the experiment). However, for η = 360, this curve
bends to the right, thus showing that increasing ε does not lead to a region of stability
of the forced rod that failed to exist for the unforced problem. This anomaly forms
the subject of section 4 below. Second, the instability tongue (1/2, 2) undergoes, for
η ≈ 360, a strange interaction process with the (3/2, 3)-tongue in the bottom right
of Figure 2.3(b). An explanation of this and similar interactions forms the subject of
section 3 below.

3. Resonance tongue interaction. The general expression (2.17) giving the
leading-order expression for resonance tongues is subject to nondegeneracy conditions.
These nondegeneracy conditions fail at special values of η for which

Bα,n = Bβ,m for n �= m,(3.1)

and values of α and β that are related by certain conditions as we shall now explain.

It was noted in Part II that the coefficient B2 given by (2.18) becomes singular
precisely when λm = η is another eigenvalue of M , corresponding to eigenmode φm.
That is, there is the coexistence of resonances (3.1) corresponding to α = 1 and β = 0.
We can see why this is so since (2.19) becomes such that the left-hand side is solved by
eigenfunction φm and hence the solution becomes unbounded unless the right-hand
side function is orthogonal to φm. This will occur at a special pair of values (η0, B0)
of η and B for which M0φn = M0φm − η0φm = 0. At such points we can see that
the coefficient of the quadratic coefficient B+

2 of the resonance tongue corresponding
to φm cos t also becomes unbounded, since H4 given by (2.24) becomes unbounded.
Similarly both coefficients B+

2 and B−
2 of the φm cos t and φm sin t boundaries become

singular when B(1,n) = B(2,m), because the function H3 given by (2.23) becomes
unbounded. This leads to two questions: Precisely which pairs of values of frequencies
α and β can lead to such singularities? and, How can one unfold these codimension-two
resonance tongue interactions, allowing both η and B to vary?
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3.1. Multiple timescale asymptotic expansion. In order to answer these
questions, we shall develop a general multiple timescale asymptotic expansion about
a given pair of values (B0, η0). Suppose that B0 = Bα,n is the root point in the (B, ε)-
plane of a resonance tongue corresponding to motion with angular frequency α. We
shall consider the possibility that at precisely (B0, η0) there is the root point of a
second resonance tongue so that B0 = Bα,n = Bβ,m for m �= n. For the time being
we do not assume any relation between the half-integers α and β, except of course
the relation between the eigenvalues

η0 =
λn

α2
=

λm

β2
.(3.2)

Since we do not know a priori which time scales will lead to a distinguished limit for
this problem we will now consider all functions to be functions of a hierarchy of time
scales (t, τ1 = δt, τ2 = δ2t, . . . ) and introduce the following expansions:

u(s) = δu1(s, t, τ1, τ2) + δ2u2(s, t, τ1, τ2) + δ3u3(s, t, τ1, τ2) + · · · ,

η =
λn

α2
+ δη1 + δ2η2 + · · · ,

B = B0 + δB1 + δ2B2 + · · · ,

ε = δε1, γ = δγ1.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.3)

Here, for future use in section 5, we have retained the material damping γ at the same
order O(δ) as the amplitude of excitation ε. By keeping the small parameter δ separate
from ε we allow for the possibility of having nonzero damping at zero excitation; that
is, ε1 = 0, γ1 �= 0.

When these series are substituted into (2.6)–(2.8) and the coefficients of the terms
up to δ3 are set to zero, the result is

λn

α2

∂2u1

∂t2
+ M0u1 = 0,(3.4)

λn

α2

∂2u2

∂t2
+ M0u2 = ε1

λn

α2
cos tLu1 − η1

∂2u1

∂t2
(3.5)

−2λn

α2

∂2u1

∂t∂τ1
−B1u

IV
1 − γ1

λn

α2

∂uIV
1

∂t
,

λn

α2

∂2u3

∂t2
+ M0u3 = ε1

λn

α2
cos tLu2 − η1

∂2u2

∂t2
− 2λn

α2

∂2u2

∂t∂τ1
−B1u

IV
2

−γ1
λn

α2

∂uIV
2

∂t
+ ε1η1 cos tLu1 − η2

∂2u1

∂t2
− 2η1

∂2u1

∂t∂τ1
(3.6)

−2λn

α2

∂2u1

∂t∂τ2
− λn

α2

∂2u1

∂τ2
1

−B2u
IV
1

−γ1
λn

α2

∂uIV
1

∂τ1
− γ1η1

∂uIV
1

∂t
.

Here the linear operator M0 is M (defined in (2.7)) evaluated at B = B0:

M0u = B0u
IV + Lu with Lu = [(1 − s)u′]′,

and u1(s), u2(s), u3(s) are each subject to the boundary conditions (2.8).
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Following assumptions (3.2) on coexistent resonances, we shall take the O(δ)
solution to be

u1 = [f(τ1, τ2, . . . ) cosαt + g(τ1, τ2, . . . ) sinαt]φn(s)
(3.7)

+[d(τ1, τ2, . . . ) cosβt + e(τ1, τ2, . . . ) sinβt]φm(s).

The functions f, g, e, d will be determined at higher-order by nonresonance conditions.

Appendix A contains the general solution to the problem at O(δ2) together with
solvability conditions that can be expressed as fourth-order boundary-value problems
involving the operator M0.

In this section and the next we are interested in the zero-damping case, and so
we now set

γ1 = 0, ε1 = 1; hence δ ≡ ε,

and we shall use ε rather than δ as our expansion parameter.

Let us assume for now that we are not in the special case where α or β = 1/2.
Appendix B then shows that the solvability condition at O(ε2) gives that the zero
solution is stable except at the two isolated values

B1 =
η1α

2

〈φ′′
n, φ

′′
n〉

or
η1β

2

〈φ′′
n, φ

′′
m〉 .(3.8)

However, note that these two conditions (3.8) can be written more simply as

σ1 = B1〈φ′′
p , φ

′′
p〉, where λ = λp + εσ1,

for p = n or m. We recognize immediately that this is the first-order-in-ε correction
to the curve (2.16) for the eigenvalues as a function of B if we demand that either the
condition λ = ηα2 or λ = ηβ2 remains true at nearby (B, η)-values. In other words,
this moves the underlying B and η values to new ones that satisfy the appropriate
eigenvalue condition (either of the two equalities in (3.2)). Since we are interested in
expanding about η0 and B0, we must therefore choose

η1 = B1 = 0.(3.9)

Equations (A.9) and (A.10) have a unique bounded solution unless (β±1)2 = α2.
That is, unless

β = α± 1.(3.10)

If (3.10) is satisfied, then the above asymptotic expansion becomes invalid and we
note that the function F3 or F4 must be combined with H1 or H2, respectively. Then
the nonresonance conditions (B.2) and (B.3) lead to nontrivial expressions for B1 as a
function of η1. We shall treat these on a case-by-case basis in sections 3.2, 3.3, and 4.

For the time being let us continue by assuming that (3.10) is not satisfied. Then,
Appendix C gives the form of the general equation at O(ε3), and we now proceed to
analyze its various special cases. First note that the asymptotics is now in place to
derive the general description 2.17 of each codimension-one resonance tongue (where
β is unrelated to α); see Appendix D.



RESONANCE TONGUE INTERACTION 277

3.2. Resonance interaction at O(ε2). Consider what happens at O(ε2) when
(3.10) is satisfied, which without loss of generality we assume occurs with

β = α + 1(3.11)

(avoiding for the time being the special cases α = 0 or α = 1/2). As we already
remarked, the asymptotic expansion we have introduced above becomes invalid when
(3.11) is satisfied. In particular we can no longer assume B1 = η1 = 0. Instead we
find stability at this order except on a single neutral curve in the (B1, η1)-plane

(η1α
2 −B1〈φ′′

n, φ
′′
n〉)(η1(α + 1)2 −B1〈φ′′

m, φ′′
m〉) =

λ2
n

4α4
〈φm,Lφn〉2;(3.12)

see appendix E.
Note that the right-hand side of (3.12) is strictly positive, whereas the left-hand

side is the product of two linear functions of η1 and B1. This is the equation for a hy-
perbola in the (η1, B1)-plane; see Figure 3.1(a). In the limit that |η1| is large, the locus
of solutions becomes two straight lines with slopes 1

α2 〈φ′′
n, φ

′′
n〉 and 1

(α+1)2 〈φ′′
m, φ′′

m〉,
which according to (2.16) are precisely the linear approximations to the loci Bα,n(η)
and Bα+1,m(η). Hence a long way from the resonance tongue interaction there is no
correction at O(ε) to the root points of the resonance tongues (as expected). Note,
however, as shown in Figure 3.1, the solution at finite values of the excitation ε that
was attached to the (α, n) tongue for η1 � 0 switches over to become associated with
the (α + 1,m) tongue for η1 	 0.
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Fig. 3.1. (a) Schematic diagram of the interaction at O(ε) of the resonance tongues corre-
sponding to α and β = α + 1 according to (3.12). The dashed lines represent the eigenvalue loci
Bα,n(η) and Bβ,m(η), and the solid line gives the O(ε) correction. Note that at this order both
tongues have zero width, provided α ≥ 1. (b), (c) Numerical illustration in the case (α, n) = (1, 3),
(β,m) = (2, 4), and ε = 0.02. Panel (b) shows the evaluation of the formula (3.12) (outer two
curves) together with the eigenvalue loci B = B1,3(η) and B = B2,4(η) which cross at η = 278.808
(marked by a diamond). Panel (c) shows the numerically computed stability boundaries using Flo-
quet theory with N = 4. The eigenvalue loci are dashed. Shaded regions correspond to instability
inside the resonance tongue.
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Figure 3.1 numerically illustrates a particular resonance tongue interaction be-
tween the tongues (1, 3) and (2, 4). Note from Figure 2.3 that these two resonance
tongues switch their order (the relative B-values for which they occur) between
η = 120 and η = 360. In fact we find numerically that these two resonances in-
teract at

η0 = 278.809, B0 = 0.0798242,

from which we have calculated that

〈φ′′
3 , φ

′′
3〉 = 3807.75, 〈φ′′

4 , φ
′′
4〉 = 14618.8, 〈φ′′

4 ,Lφ
′′
3〉 = 8.55440.

Using these quantities, the loci of the O(ε) behavior of the tongues, (3.12) is calculated
and plotted in Figure 3.1(b). Note that the slopes of the loci η = B1,3 and η = B2,4

are much closer than in the schematic panel (a). Finally, panel (c) of the figure shows
how these results compare with a full numerical evaluation of the resonance tongues
using Floquet theory for fixed amplitude ε = 0.02. Note that the tongues, which are
O(ε2) and O(ε4) in theory away from the interaction (marked at the left-hand edge
of the figure) undergo an abrupt change as they pass through a neighborhood of the
resonance tongue interaction point. There are several features to this change. First,
as predicted and in broad quantitative agreement with the results in panel (b), the
resonance tongues do not cross, but each tongue becomes attached to the opposite
instability. Second, there is a point close to the codimension-two point at which
each tongue (at this value of ε) “pinches off.” The result is that the cosine and sine
boundaries switch sides. This pinching off of the resonance tongue is not part of the
above O(ε) theory, but can be seen here as a necessary consequence of the resonance
tongue interaction process. Note that such pinching of resonance tongues has been
described before for one-degree-of-freedom parametrically excited systems [4]. (It is
also in evidence in Figure 2.3, where for η = 360, both the (1,3) and (2,4) resonance
tongues become narrower for ε-values toward the top of the graph, suggesting that
they pinch off for higher ε still (indeed they do); also the tongue (2,5) can be seen to
undergo just such a pinching at ε ≈ 0.035.) Finally, note that beyond the codimension-
two point the (1, 3) tongue suddenly becomes much fatter. This is because of its
interaction with the buckling mode instability at B = B0,1 = 0.127594 which was
discussed in Part II, section 4(e), and will be treated further in section 4 below.

3.3. The case α = 1/2, β = 3/2; singularity in the subharmonic reso-
nance. This case is special because the O(ε) correction due to the resonance tongue
interaction is at the same order as the O(ε) width of the resonance tongue itself. From
Appendix E we obtain the stability boundary (B1, η1)-plane(

η1

4
−B1〈φ′′

n, φ
′′
n〉 ± 2λn〈φn,Lφn〉

)(
9η1

4
−B1〈φ′′

m, φ′′
m〉

)
=

4

9
λ2
n〈φm,Lφn〉2.(3.13)

This describes two hyperbolae which bound the shaded region of stability shown
schematically in Figure 3.2(a). For large η1 and B1 they asymptote to the straight
lines

B1 = Bn,1/2 ±B±
1 =

η1

4〈φ′′
n, φ

′′
n〉

± 〈φn,Lφn〉
〈φ′′

n, φ
′′
n〉

and

(3.14)

B1 = Bm,3/2 =
9η1

4〈φ′′
n, φ

′′
n〉

,
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Fig. 3.2. The interaction at O(ε) of the resonance tongues corresponding to α = 1/2 and
β = 3/2. (a) Schematic picture; the shaded region corresponds to that of instability. (b) Evaluation
of the formula (3.13) for n = 2, m = 3, using numerically calculated eigenfunctions φn and φm

and ε = 0.001. (c) Numerically computed stability boundaries using Floquet theory with N = 4.
The dashed line, as in part (a), corresponds to the locus B = B1/2,2(η). The locus B = B3/2,3 is
indistinguishable in this plot from the corresponding tongue boundary with finite ε.

which are the O(ε) expressions for the two stability boundaries in the absence of their
interaction. The region of instabilities for a finite ε are shaded in Figure 3.2(a), and are
obtained by noting the inequalities that must be true in order for (E.11)–(E.14) to have
bounded solutions. The resonance conditions B1 = Bn,1/2 and Bm,3/2, valid when
ε = 0, are depicted as dashed lines in the figure. Observe that the interaction between
the two instabilities causes a small region of stability for finite ε in a neighborhood
of the critical point η1 = B1 = 0, where the two resonance curves Bn,1/2 and Bm,3/2

cross.
By numerical computation we have found numerous examples of resonance tongue

interaction of this kind. For example, taking n = 2 and m = 3 we find that λn = η/4
and λm = 9η/4 at (B, η) = (0.0941064, 148.084). Note that this B-value is a little less
than Bc = 0.127594, which implies that this interaction of instabilities is occurring
for rods which are already marginally unstable to self-weight buckling. At those
parameter values, computation of the eigenfunctions reveals

〈φ′′
n, φ

′′
n〉 = 485.765, 〈φ′′

m, φ′′
m〉 = 3807.41,

(3.15)
〈φn,Lφn〉 = −8.69181, 〈φm,Lφn〉 = −1.946423.

Using these precise values, Figure 3.2(b) shows the evaluation of the loci (3.13) with
ε = 0.001, which are compared in Figure 3.2(c) to the computation of the same
stability boundaries using the numerical Floquet theory introduced in Part I. Note
from the values (3.15) that the straight lines B1/2,2 and B3/2,3 given by (3.14) with
n = 2 and m = 3 have slopes that differ by less than 10%. Hence the stability region
caused by the interaction between these two resonances is very small compared to the
width of the instability tongues around B = B1/2,2 (see insets).
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3.4. Resonance interaction at higher order. The above analysis can be con-
tinued to O(ε3) to obtain the O(ε2) corrections to the four solid lines in Figure 3.2(a).
Carrying out the expansion to O(ε4) would show how to couple the shapes of the
shaded instability boundaries to the O(ε3)-thick resonance tongue around the locus
B = Bm,3/2 which itself would be a curve with nonzero coefficients of ε2 and ε3. There
is little extra qualitative information to be obtained by carrying out these expansions
explicitly. Instead, let us focus on other resonance-tongue interactions which can be
captured only by going to O(ε3) or higher.

Suppose first that (3.10) is not satisfied, but instead

β = α± 2; without loss of generality β = α + 2.

The analysis at O(ε2) now proceeds as in Appendix A and we have B1 = η1 = 0.
Consider the O(ε3) equation (C.1). Then the coefficients of cos(β−2)t and sin(β−2)t
are also resonant and must be added to the coefficients of cosαt and sinαt to form
solvability conditions. Also the coefficients of cos(α + 2)t and sin(α + 2)t should be
added to those for cosβt and sinβt. Again there will be two pairs of relations, from
orthogonality to φn and φm separately. This will lead to a nontrivial equation linking
B2 and η2, like (3.12) for η1 and B1 in the case of a lower-order resonance tongue
interaction.

So we find in general that the coefficient of ε3 in the asymptotics of the reso-
nance tongues undergoes a singularity which is patched up by this correction to the
O(ε2) coefficient B2 as η passes through η0. Similarly, by extrapolation of the above
argument to higher powers of ε in our asymptotic expansion, we find that if

β = α + n,

then there is a singularity in the O(εn+1) coefficient of the resonance tongues which
is resolved by showing that there is a nontrivial contribution to the O(εn) coefficient
as η passes through the critical value at which the interaction occurs.

4. The case α = 1, β = 0; first-harmonic buckling interaction. The case
α = 1, β = 0 leads to quite different results since instead of a resonance tongue,
we have a single neutral stability curve corresponding to the rod “falling over” into
one of its buckling modes. The bookkeeping in section 3.2 above shows that this
interaction causes a singularity in the O(ε2) coefficient B2 of this instability curve in
the (B, ε)-plane. Clearly this can have a profound effect on the stability analysis of
the slightly longer than critical column because it was precisely the negativity of this
coefficient B2 that gave the stabilization effect referred to colloquially as the “Indian
rope trick” in Parts I and II.

Consider a neighborhood of a special η-value η = λn at which B1,n = B0,m.
Particular physical interest is in the case m = 1, in which case we consider the
column that is only slightly longer (or shorter) than the length of column that will
just stand under its own weight. That is B ≈ Bc = B0,1, the critical value of
the dimensionless parameter B for self-weight buckling. We shall denote the critical
eigenmode corresponding to Bc as φc and the eigenmode corresponding to the pure
dynamic instability φn. In fact, the analysis below works equally well for Bc = B0,m

for any m ≥ 2, except that “stability” implies then “stable to vibration mode m”
rather than absolute stability since such a rod is statically unstable to modes φp,
p = 1, . . . , n− 1.
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Thus the solution of the O(ε) equation (3.4) we take is

u1 = {h(τ1, τ2)φc(s) + [f(τ1, τ2) cos t + g(τ1, τ2) sin t]φn(s)},(4.1)

with φm(s) and φc(s) subject to the boundary conditions (2.8).

4.1. The O(ε2) interaction equation. In Appendix F the following condition
for stability at O(ε2) is derived:(

η1

2λn
− B1〈φ′′

n, φ
′′
n〉

2λn

)(
η1

2λn
− B1〈φ′′

n, φ
′′
n〉

2λn
+

λnB
2
c 〈φ′′

n, φ
′′
c 〉2

4B1〈φ′′
c , φ

′′
c 〉

)
> 0,(4.2)

with the stability boundaries in (η,B, ε)-space determined by the zeros of this expres-
sion.

One boundary is determined by(
η1

2λn
− B1〈φ′′

n, φ
′′
n〉

2λn

)
:= σ1 = 0; hence η1 = B1〈φ′′

n, φ
′′
n〉.(4.3)

In this case f is independent of τ1 by (F.9) and, unless f ≡ 0, g will be a linear
function of τ1 by (F.8) and hence unbounded as τ1 → ∞. Thus g is constant as a
function of τ1, which implies the motion is sin t, out of phase with the drive.

The other boundary is determined by(
η1

2λn
− B1〈φ′′

n, φ
′′
n〉

2λn
+

λnB
2
c 〈φ′′

n, φ
′′
c 〉2

4B1〈φ′′
c , φ

′′
c 〉

)
:= σ2 = 0;(4.4)

hence

η1 = B1〈φ′′
n, φ

′′
n〉 −

λ2
nB

2
c 〈φ′′

n, φ
′′
c 〉2

2B1〈φ′′
c , φ

′′
c 〉

.

In this case g is independent of τ1 by (F.8) and therefore unless g ≡ 0, f will be a
linear function of τ1, and unbounded on this boundary. With this choice f and h are
at most functions of τ2, which implies a motion that is in phase with the drive, but
with a nonzero lean (proportional to a constant plus cos t).

To determine on which side of these boundaries solutions are stable we simply
observe that for stability we must have σ1σ2 > 0 so that σ1 and σ2 must be either
both negative or both positive. The regions of stability are shown as shaded in
Figure 4.1(a).
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Fig. 4.1. Schematic figure of the resonance tongue interaction process between the falling-over
and first-harmonic instabilities. (a) at O(ε); (b) including O(ε2).
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4.2. Correction at O(ε3). We now construct the correction B2ε
2 and η2ε

2

to these stability boundaries. This is necessary in order to see how the above O(ε)
correction matches the limit when the two resonances are a long way from interaction.
In that case, both the falling-over and harmonic instabilities are quadratic to leading
order (formulae (2.18), (2.22) and (2.21)). We shall consider a neighborhood of the
boundaries σ1 = 0 and σ2 = 0 separately.

The case σ1 = 0 is dealt with in Appendix G. The result is that one can combine
the results for B1 and B2 into the single expression

B = Bc +
(η − λn)

〈φ′′
n, φ

′′
n〉

− ε(η − λn)
〈φ′′

n, H
′′
2 〉

〈φ′′
n, φ

′′
n〉2

+ ε2 1

2
λn

〈φn,LH3〉
〈φ′′

n, φ
′′
n〉

+ O(ε3).(4.5)

Note that the first three terms of (4.5) are precisely the expansion of the locus B =
B1,m(η) up to O(ε2) that defines the condition that there is an eigenvalue λ = η. To
see this, take δ = ε, n = m, λ = η, B1 = B−Bc in (2.16) and invert the expansion up
to O(ε2), noting that (2.14) satisfied by f1 is a scalar multiple of that satisfied by H2,
which is (F.5) with η1 ≡ σ1 and f = 0. The fourth term of (4.5) is just the O(ε2)
coefficient B−

2 given by (2.22) of the sin t boundary of the resonance tongue when it
does not interact with the falling-over mode. We conclude that this boundary of the
resonance tongue does not become singular as it passes through the resonance tongue
interaction point.

Consider now the boundary σ2 = 0, which contains a discontinuity. The results
in Appendix H show that the correction B2 and η2 can be expressed in terms of
B1 and η1:

B2 =
1

2Gn〈φ′′
c , φ

′′
c 〉

(2B1Kn〈φ′′
c , H

′′
0 〉 −Knλn〈φc,LH1〉 −B1η1〈φc,Lφn〉),(4.6)

η2 =
1

B1

[
η1Gn〈φ′′

c , φ
′′
n〉 −Knλn

(
〈LH0, φn〉 +

1

2
〈LH3, φn〉

)]
(4.7)

+Kn〈H ′′
1 , φ

′′
n〉 + B2〈φ′′

n, φ
′′
n〉.

Now we have to decide how to interpret these results. At O(ε) we have a neutral
stability curve (4.4) in the (B, η)-plane that asymptotes to η = ∞ as B → 0. However,
the above formulae (4.6) and (4.7) provide corrections to both η and B2 at each point
on this curve. The most meaningful way of applying this asymptotic correction is to
take only those components that are normal to the curve. To that end we can define
a new coordinate

η̂ = η −B〈φ′′
n, φ

′′
n〉

so that the straight line η1 = B1〈φ′′
n, φ

′′
n〉 to which the curve (4.4) asymptotes as

η1 → ∞ becomes the B1-axis. Also, the second O(ε2)-correction equation (4.7),
which involves both B2 and η2, becomes just a condition for η̂2. Then taking B1 as a
single independent coordinate and, according to (4.4)

η̂1 = −λ2
nB

2
c 〈φ′′

n, φ
′′
c 〉2

2B1〈φ′′
c , φ

′′
c 〉

,(4.8)

we can write that the second-order corrections B̃2, ˜̂η2 should satisfy

(B̃2, ˜̂η2) =
(B2, η̂2) · (−η̂1, B1)

B2
1 + η̂2

1

(−η̂1, B1).(4.9)
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Fig. 4.2. Numerical evaluation in the (B, η) parameter-plane of resonance tongue interaction.
Solid lines depict the curves B(0,1) and B(1,n), and dashed lines represent the stability boundaries
for finite ε. Shaded regions depict the areas of instability. Insets show blowups of various regions.
(a) n = 2 for ε = 0.02; (b) n = 3 for ε = 0.005.

The results are presented schematically in Figure 4.1(b). In order to sketch Fig-
ure 4.1(b), we have used the fact that (4.9) can be matched into the limits B1 → 0
and B1 	 1. With the correct interpretation, the former limit yields the falling-over
instability boundary, whereas the latter yields the first-harmonic resonance tongue,
as shown in Appendix I.

4.3. Numerical evaluation. Figure 4.2 shows resonance tongues calculated
using numerical Floquet theory with N = 4. Two cases of the resonance tongue in-
teraction studied in this section are shown corresponding, respectively, to the cases
n = 2 (for which η0 = 53.285) and n = 3 (η0 = 460.68) interacting with the funda-
mental falling-over instability at Bc = 0.127594. In both cases, the general shape of
the qualitative picture in Figure 4.1 predicted by the above theory is indeed found to
occur. Specifically, we find

〈φ′′
c , φ

′′
c 〉 = 12.4182,(4.10)

η = 53.285 : 〈φ′′
2 , φ

′′
2〉 = 3807.01, 〈φ′′

c , φ
′′
2〉 = 8.9822,(4.11)

η = 460.68 : 〈φ′′
3 , φ

′′
3〉 = 14617.8, 〈φ′′

c , φ
′′
3〉 = 6.9483.(4.12)

Moreover we also found that the mode shape corresponding to each stability boundary
is also as predicted by the analysis. The mode shape of the cosine boundary of
the (1, n) tongue is found to pick up a large component of the (0, 1) mode as it
approaches Bc, whereupon the φn cos t term starts to diminish in size until as η → |∞|
the mode becomes pure φc to leading order in ε.

Note from Figure 4.2(a) that there is an interaction with the (4, 3)-boundary for an
η-value just greater than the critical one, such that at � O(ε2) these two boundaries
exchange positions (see the inset to that figure). Similarly, in Figure 4.2(b), there
is an interaction between the (1, 3)-mode and the (5, 3) at higher-order in ε (again
blown up in an inset). However, the existence of these remarkably thin (4, 3) and
(5, 4) resonance tongues makes virtually no difference to the size of the (in)stability
region.

5. The effect of damping. Let us now consider the effect on the above analysis
of including damping. Recall the assumption made in section 3.3 that both damping
and amplitude of excitation are small parameters at O(δ), but with independent
coefficients ε1 and γ1 to allow for the possibility of allowing one of these effects to be
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zero independent of the other. So we now consider the general asymptotic expansion
(3.5)–(3.6) with γ1 and ε1 both being O(1) and δ as the perturbation parameter.

5.1. Codimension-one resonances. It is well known that positive linear damp-
ing increases the size of stability regions and lifts the root points of resonance tongues
off the ε = 0 axis (e.g., [16]). In fact, damping enters at O(δ) and so makes its first
nontrivial contribution in the O(δ2) equation derived in section A. Consider taking
just a single codimension-one resonance η ≡ λn/α

2. Then if α > 1/2, we have that
the O(δ) stability equation (B.6) gets replaced with the pair of equations

∂g

∂τ1
+

1

2
γ1〈φ′′

n, φ
′′
n〉g −Kαγ1f = 0,

∂f

∂τ1
+

1

2
γ1〈φ′′

n, φ
′′
n〉f + Kαγ1g = 0,

where now,

Kα = −B1
α〈φ′′

n, φ
′′
n〉

2λn
.

Note that the eigenvalues of such a system are −(γ1/2)〈φ′′
nφ

′′
n〉±iKα, so that the origin

is stable for all B1 at this order. This shows that the resonance tongue is “lifted off”
from the ε = 0 axis by more than an O(δ) amount (see Figure 5.1(a)).

To get a nontrivial resonance tongue at O(δ) we must consider the case α = 1/2.
Then (E.11) and (E.12) become (in the absence of a codimension-two interaction so
that d = e = 0)

∂g

∂τ1
+

(
B1〈φ′′

n, φ
′′
n〉

4λn
− ε1

2
〈φn,Lφn〉

)
f +

γ1

2
〈φ′′

n, φ
′′
n〉g = 0,(5.1)

∂f

∂τ1
−
(
B1〈φ′′

n, φ
′′
n〉

4λn
+

ε1

2
〈φn,Lφn〉

)
g +

γ1

2
〈φ′′

n, φ
′′
n〉f = 0.(5.2)

When ε1 = 0 the origin is stable. It becomes unstable along the neutral curve

ε1
2〈φn,Lφn〉2 =

(
γ2
1 +

B2
1

4λ2
n

)
〈φ′′

n, φ
′′
n〉2,(5.3)

which is depicted in Figure 5.1(b).

2αΟ(δ    )

α>1/2 (b)(a) 

Ο(δ)

>>Ο(δ)

α=1/2

B

ε

B

ε

Fig. 5.1. Sketch of resonance tongues in the presence of nonzero forcing ε = ε1δ and damp-
ing γ1δ (solid line) compared with that of γ1 = 0 (dashed). Shaded regions correspond to instability.
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5.2. Codimension-two resonance tongue interaction. We can also include
damping in all of the above codimension-two analyses and find its effect on resonance
tongue interaction. We shall, however, present only the effect on the calculation in
section 4, as this was the most involved and appears the most physically significant
to explain the experimental results in [14]. To that end, we consider u1 given by (4.1)
and see the adjustment that the extra linear terms in (3.5)–(3.6) for nonzero γ1 make
on the stability boundaries.

Proceeding as in section 4, at O(δ2), when damping is included, (F.8) and (F.9)
become

∂g

∂τ1
+

γ1

2
〈φ′′

n, φ
′′
n〉g −

(
η1

2λn
− B1〈φ′′

n, φ
′′
n〉

2λn
+ ε1

λnB
2
c 〈φ′′

n, φ
′′
c 〉2

4B1〈φ′′
c , φ

′′
c 〉

)
f = 0,

∂f

∂τ1
+

γ1

2
〈φ′′

n, φ
′′
n〉f +

(
η1

2λn
− B1〈φ′′

n, φ
′′
n〉

2λn

)
g = 0,

and (F.7) is unchanged.
Writing such a system as

∂g

∂τ1
+ Γg − ((A/B1) + C)f = 0,

∂g

∂τ1
+ Γf − Cg = 0,(5.4)

where

Γ =
γ1

2
〈φ′′

n, φ
′′
n〉, A =

ε1

4

λnBc〈φ′′
n, φ

′′
0〉2

〈φ′′
0 , φ

′′
0〉

, C =
η1 −B1〈φ′′

n, φ
′′
n〉

2λn
,(5.5)

we note that Γ > 0 is a rescaled damping parameter and A > 0 is a rescaled amplitude
parameter. On the other hand, C can be thought of as a shifted version of η1 so that
the B1 and C axes, respectively, represent the O(ε) loci of the bifurcation loci B0,n

and B1,m.
From (5.4) and (5.5), straightforward calculation shows that the region of stability

is given by

C(C + A/B1) + Γ2 > 0,(5.6)

which gives the shaded region in Figure 5.2. Note that in the limit Γ → 0, we recover
the undamped O(ε) stability curve (4.2) sketched in Figure 4.1(a). Also if A = 0

C=0

B = O(A /   )Γ1

η =Ο(Γ)1

2

B

η

Fig. 5.2. Schematic figure of the resonance tongue interaction process between the falling-over
and first-harmonic instabilities according to (5.6), in the presence of damping γ1 > 0. Here the
O(δ) curve is plotted as a solid line bounding a shaded region of instability in the (B1, η1)-plane.
The dotted curve represents the O(δ2) correction.
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(corresponding to ε1 = 0), then we are solving the unforced problem in the presence
of nonzero damping; then the only instability is that given by B1, which is the buckling
instability B0,n. In between these two extremes we see the curve sketched. Note that
the B1,m tongue does not lead to an instability with finite damping at O(δ) (because
of the construction in Figure 5.1), but it does have a very strong influence on the shape
of the falling-over instability boundary. Figure 5.2 also shows schematically the result
of adding an O(δ2) correction to this curve, which can be seen as a secondary effect.
See Figure 6.1(b) for actual calculations of the O(δ) curves, based on the numerical
evaluation of Γ, A, and C in (5.5).

6. Experimental comparison. In [14] the quantitative details of the exper-
imental results using a piece of domestic curtain wire are given. A wire of critical
buckling length �c = 55.3 cm is held in a clamp and subjected to vertical sinusoidal os-
cillation with peak-to-peak amplitude of 2.2 mm and frequency between 0 and 35 Hz.
In terms of the dimensionless parameters of this paper this equates to ε = 0.02 and
0 < η < 1000. The parameter B may be varied by allowing different lengths of wire
through the holding clamp. The wire is clearly damped although it is hard to estimate
the true value of the dimensionless parameter γ. It is observed that for lengths of
wire a little longer than �c (B < Bc), the upright position of the wire is unstable for
lower frequencies (η-values), becomes stable at higher η, and becomes unstable again
beyond a second η threshold. The nature of the instability at the lower-η stability
boundary is a pure falling-over mode ((0, 1) in the notation of our theory). The upper
boundary is a dynamic instability, at the same frequency of the drive, with a large
component of the third spatial mode (1, 3). The shape of the stability region is shown
in Figure 6.1. There is no evidence of any appreciable subharmonic instability.

Figure 6.1 also compares these results with two separate theories from this paper.
First in panel (a) we compare with the results in section 4. This is essentially the
same comparison that was shown in [14, Figure 2(b)], although in this paper we have
developed a rational explanation for the resonance tongue interaction process that
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Fig. 6.1. Comparison between theory (solid line and shading) and the experimental results
of [14] (dashed line), for the stability region as a function of the dimensionless parameters B and η
with δ = 0.02, ε1 = 1. The theory is based on two different calculations close to the resonance tongue
interaction between (0, 1) and (1, 3), for which B0,1 = B1,3 when η = η0 = 460.7. (a) Using the

theoretical results from Part II, which computes the O(δ2) coefficients B2 and B+
2 given by (2.18)

and (2.21) which undergo singularities in accord with the theory of section 4 above. In this case
there is no damping. (b) Plotting the zeros of (5.6), the O(δ) coefficient of the resonance tongue
interaction in the presence of damping, evaluated using the values (4.10), (4.12), with γ1 = 0.01
being used as a representative damping value.
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underlies the shape of the stability region. Note that these results in part explain
the experiments, in that the interaction between modes (0, 1) and (1, 3) leads to a
wedge-shaped region in the (B, η)-plane.

Panel (b) compares the experimental data with the results of section 5, where
damping is included. Here we have used δ = 0.02 with ε1 = 1 and have set damping
to the plausible value of γ1 = 0.01. No other fitting is employed. Also, these results
do not include any O(ε2) correction to the curves. The agreement is now very good.
Note that at this level of δ, the tongue corresponding to the (1, 3)-instability has zero
width. However, its presence is strongly felt in the shape of the instability curve
of the (0, 1) instability. In particular, the large wedge-shaped region of stability for
B > Bc (corresponding to the unshaded wedge within the shaded instability regions in
Figure 5.2) is due precisely to the resonance tongue interaction between the buckling
instability and the first-harmonic resonance of the third spatial mode.

7. Discussion. The idea that parametric resonance in continuous structures
can cause energy to be transferred between modes is a well-established concept, due
to the pioneering work of Nayfeh (see [15]) and others (e.g., [6]). This paper has
expounded a somewhat different idea, namely, that the combination of resonances
corresponding to different spatial modes of a structure can have surprising effects. We
have illustrated our results for the canonical model of a straight, vertically mounted
elastic column subject to simple sinusoidal parametric excitation. Nevertheless many
of the results are likely to have profound implications for other continuous or multi-
degree-of-freedom problems subject to parametric excitation.

Let us summarize the main findings. First we studied the undamped problem.
The key idea has been to study the genuinely three-parameter problem and to think of
each degree of freedom as providing a generalized Hill or Mathieu stability diagram in
two parameters (B and ε). Each diagram has a buckling (zero-harmonic) instability
and a resonance tongue corresponding to every possible multiple of a half-frequency
of the drive. The third parameter (η) we think of as sliding each of these diagrams
over one another, the result being that instabilities or resonance tongues correspond-
ing to different modes pass through each other; i.e., they interact. See Figures 2.2
and 2.3.

Via multiple-scale asymptotic methods, backed up by numerical Floquet theory,
we have studied each possible codimension-two interaction in detail. The cases of
most interest are when the harmonic corresponding to each of the two tongues differs
by unity, that is, in the notation of this paper, when Bα,i = Bα+1,j for different
spatial modes i and j. If α > 1, then we have shown that the interaction occurs at
first order in the asymptotic parameter ε, such that there is an O(ε) gap between the
two instability tongues, while the width of the tongues themselves remains � O(ε)
(see Figure 3.1). In fact, as can be seen from the numerically calculated Figure 2.3(a)
in the case of tongues (5/2, 4) and (1/2, 2), it appears that no two tongues that
both correspond to integer (or half-integer) α and β can cross each other, other
than at ε = 0. There is always an interaction process where the boundary of one
tongue evolves into the boundary of another with the consequent gap being � O(ε)
if β �= α±1. In this problem, because the mode coupling is through a cos t term only,
tongues where α and β are respectively half-integer and integer (corresponding to the
existence of 4π-periodic and 2π-periodic motion, respectively) are unrelated and can
pass through each other without interaction (see Figure 2.3).

We then dealt with two special cases. The first was when α = 1/2. In this case,
the leading-order resonance tongue interaction with modes for which β = 3/2 occurs
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at the same order as the width of the tongue. This leads to the special shape of the
two-parameter bifurcation diagram calculated and computed in Figure 3.2.

The second, and most important, special case we studied, in section 4, is when
α = 0, corresponding to a static buckling instability of the column. Here surprising
things happen near η-values for which a pure harmonic instability β = 1 occurs for
the same B-value when ε = 0. In particular we showed that the cosine boundary
of the harmonic tongue and the buckling instability curve, which are both ordinar-
ily quadratic in ε, undergo a singularity of their O(ε2) coefficients which we have
resolved in a new form of asymptotic expansion. The result is the shapes of the
instability regions shown in Figures 4.1 and 4.2, which have a large “blob” of sta-
bility above the line B = B1,j for B < Bc and a corresponding area of instability
below B = B1,j for B > Bc. It is this blob of stability which we claim explains the
qualitative shape of the stability region in the curtain wire experiment reproduced in
Figure 6.1(a).

To get qualitative agreement with the experiments, though, we found it neces-
sary to include material damping. It is well known that linear damping lifts resonance
tongues off from zero amplitude in Mathieu-type stability diagrams, and this problem
is no exception (Figure 5.1). The key to understanding the experimental parame-
ter regime, though, is to include damping in the interaction between the buckling
instability and the harmonic resonance. This leads to the asymptotic results in sec-
tion 6, which according to Figure 6.1(b) gives good quantitative agreement with the
experiments.

Now, as remarked in the conclusions to our earlier papers, we are really only
scratching at the surface of the complete nonlinear dynamics of a parametrically ex-
cited vertical column. In Part II we showed how to introduce a nonlinear formulation
of the problem, which leads to a differential algebraic equation formulation, with the
tension in the column acting as a Lagrange multiplier. Also, as remarked in [14], the
curtain wire used in the experiment is anything but linearly elastic. Even for the one-
degree-of-freedom simple pendulum under parametric excitation, the dynamics of the
fully nonlinear system are remarkably rich [17]. For small amplitude nonlinear motion
in a neighborhood of the codimension-two instabilities we study, one could presum-
ably infer information on the presence of (both rotating and oscillating) periodic and
quasi-periodic solutions from a center manifold and normal form approach, e.g., as
in [7]. Yet, even for the linear problem we have studied we have not explored the
implications of many finite-amplitude effects such as the “pinching off” of resonance
tongues which seemed to occur as a consequence of the interaction between (α, i) and
(α+ 1, j) resonance tongues for α > 1, as was remarked upon in section 3. There are
also questions of rigor that we have not addressed. Even for one-degree-of-freedom
parametrically excited systems, whether linear stability implies nonlinear stability is
a nontrivial question [3]. There are also clearly small-divisor problems, and KAM
theory may be able to shed some light; see, for example, the book [12] for infinite
dimensional systems.

Nevertheless we hope that this paper has provided a rational and mathematically
consistent explanation for the “upside down” stability of a wire under vertical exci-
tation, previously reported in the popular media (e.g., [2]). More seriously, we have
explained what we believe to be a new universal mechanism for creation of finite re-
gions of stability (and instability) in parametrically excited systems. Importantly this
does not involve subharmonic resonance, but rather the interaction of first-harmonic
resonance with a steady-state instability.



RESONANCE TONGUE INTERACTION 289

Appendix A. The general solution at O(δ2). Substituting the form (3.7)
into the left-hand side of the O(δ2) equation (3.5), we obtain

(A.1)

λn

α2

∂2u2

∂t2
+ M0u2

= ε1
λn

2α2
Lφn {f [cos(α + 1)t + cos(α− 1)t] + g[sin(α + 1)t + sin(α− 1)t]}

+

{
η1α

2φnf − 2λn

α

∂g

∂τ1
φn −B1φ

IV
n f − γ1

λn

α
φIV
n g

}
cosαt

+

{
η1α

2φng +
2λn

α

∂f

∂τ1
φn −B1φ

IV
n g + γ1

λn

α
φIV
n f

}
sinαt

+ similar expressions with α �→ β, (f, g) �→ (d, e), n �→ m.

The particular integral for u2 can in general be expressed as

(A.2)

u2 = H1 cosαt + H2 sinαt + F1 cosβt + F2 sinβt

+H3[f cos(α + 1)t + g sin(α + 1)t] + H4[f cos(α− 1)t + g sin(α− 1)t]

+F3[d cos(β + 1)t + e sin(β + 1)t] + F4[d cos(β − 1)t + e sin(β − 1)t],

where

M0H1 − λnH1 = (η1α
2φn −B1φ

IV
n )f − 2λn

α
φn

∂g

∂τ1
− γ1

λn

α
φng,(A.3)

M0H2 − λnH2 = (η1α
2φn −B1φ

IV
n )g +

2λn

α
φn

∂f

∂τ1
+ γ1

λn

α
φnf,(A.4)

M0H3 −
λn(α + 1)2

α2
H3 = ε1

λn

2α2
Lφn,(A.5)

M0H4 −
λn(α− 1)2

α2
H4 = ε1

λn

2α2
Lφn,(A.6)

M0F1 − λmF1 = (η1β
2φm −B1φ

IV
m )d− 2λm

β
φm

∂e

∂τ1
− γ1

λm

β
φme,(A.7)

M0F2 − λmF2 = (η1α
2φm −B1φ

IV
m )e +

2λm

β
φm

∂d

∂τ1
+ γ1

λm

β
φmd,(A.8)

M0F3 −
λn(β + 1)2

α2
F3 = ε1

λn

2α2
Lφm,(A.9)

M0F4 −
λn(β − 1)2

α2
F4 = ε1

λn

2α2
Lφm.(A.10)

Appendix B. Trivial solution at O(ε2). We assume α, β �= 1/2. (The case
α = 1/2 leads to the fact that the sin(α−1)t and cos(α−1)t terms are included in the
equations for the sinαt and cosαt coefficients so that the function H4 is combined
with functions H1 and H2). The solvability condition then gives the linear terms
in B±

1 given by (2.20). So, assuming

α, β ≥ 1,(B.1)
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we find that (A.5) and (A.6) have unique bounded solutions. The solvability con-
dition comes from demanding that the right-hand sides of (A.3) and (A.4) should
be orthogonal to φn, and the right-hand sides of (A.7) and (A.8) orthogonal to φm,
which are eigenfunctions of the respective left-hand side operators. Hence, using the
orthonormality of φn and φm, we obtain

∂g

∂τ1
− (η1α

2 −B1〈φ′′
n, φ

′′
n〉)

α

2λn
f = 0,(B.2)

∂f

∂τ1
+ (η1α

2 −B1〈φ′′
n, φ

′′
n〉)

α

2λn
g = 0,(B.3)

∂e

∂τ1
− (η1β

2 −B1〈φ′′
m, φ′′

m〉) β

2λm
d = 0,(B.4)

∂d

∂τ1
+ (η1β

2 −B1〈φ′′
m, φ′′

m〉) β

2λm
e = 0.(B.5)

These four equations can be simplified to read that f and g must both satisfy the
equation

∂2f

∂τ2
1

= −K2
αf,(B.6)

and both d and e satisfy

∂2e

∂τ2
1

= −K2
βe,(B.7)

where

Kα = (η1α
2 −B1〈φ′′

n, φ
′′
n〉)

α

2λn
, Kβ = (η1β

2 −B1〈φ′′
m, φ′′

m〉) β

2λm
.(B.8)

We are looking for stability boundaries, that is, where the functions f , g, d, and e
have neutrally stable solutions. Thinking of η as fixed, we find from (B.6)–(B.7) that
this happens for an isolated B1-value for each of (B.6) and (B.7), given by Kα = 0
and Kβ = 0, respectively.

Appendix C. The O(ε3) equation. Assuming that (B.1) holds and (3.10) is
not satisfied, so that (3.9) holds, the O(ε2) solution to (3.6) is given by (A.2), where
f , g, d, and e are all independent of τ1. Substitution of this form for u2 into (3.6)
yields

λn

α2

∂2u3

∂t2
+ M0u3

= cos(α− 2)t
λn

2α2
LH4f + sin(α− 2)t

λn

2α2
LH4g

+ cos(α− 1)t

{
λn

2α2
LH1f + η1(α1 − 1)2H4f −B1H

IV
4 f +

1

2
η2Lφnf

}

+ sin(α− 1)t

{
λn

2α2
LH2g + η1(α− 1)2H4g −B1H

IV
4 g +

1

2
η2Lφng

}

+ cosαt

{
λn

2α2
(LH3 + LH4)f + η1α

2H1f −B1H
IV
1

+ η2α
2φnf − 2

λn

α
φn

∂g

∂τ2
−B2φ

IV
n f

}
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+ sinαt

{
λn

2α2
(LH3g + LH4g) + η1α

2H2g −B1H
IV
2 g + η2α

2φng

+
2λn

α
φn

∂f

∂τ2
−B2φ

IV
n g

}

+ cos(α + 1)t

{
λn

2α2
LH1f + η1(α + 1)2H3f −B1H

IV
3 f +

1

2
η2Lφnf

}

+ sin(α + 1)t

{
λn

2α2
LH2g + η1(α + 1)2H3g −B1H

IV
3 g +

1

2
η2Lφng

}

+ cos(α + 2)t
λn

2α2
LH3f + sin(α + 2)t

λn

2α2
LH3g(C.1)

+ similar expressions with α �→ β, (f, g) �→ (d, e), n �→m, Hi �→ Fi.

Appendix D. Codimension-one resonance; derivation of (2.17). In order
to obtain the “linearized” results from Parts I and II, valid for undistinguished values
of η, we drop all of the β terms in the above and set λn/α = η. This describes
the asymptotics of resonance tongues away from their codimension-two interactions.
Furthermore we set η = λn/α

2; i.e., η1 = η2 = · · · 0. Failure to do this will result in
the corrections (2.16) for the η-values that define the resonance condition as B0 varies.
From (3.9) we have, provided α �= 1/2, that B1 = 0. Consider now the α-dependent
terms of (C.1). The solvability condition at this level is that the coefficients of cosαt
and sinαt must be orthogonal to the eigenfunction φn. Now, provided that we do not
satisfy

α± 1 = ±α or α± 2 = ±α, i.e., α =
1

2
or 1,(D.1)

this leads to the conditions (making use of (2.10), (2.11))

∂f

∂τ2
=

[
B2α

2λn
〈φ′′

n, φ
′′
n〉 −

1

4α
(〈φn,LH3〉 + 〈φn,LH4〉)

]
g,(D.2)

∂g

∂τ2
= −

[
B2α

2λn
〈φ′′

n, φ
′′
n〉 −

1

4α
(〈φn,LH3〉 + 〈φn,LH4〉)

]
f.(D.3)

Like (B.2) and (B.3), these equations can be expressed more simply by saying that
both f and g satisfy

∂f2

∂τ2
= −K2f, where K =

B2α

2λn
〈φ′′

n, φ
′′
n〉 −

1

4α
(〈φn,LH3〉 + 〈φn,LH4〉).

Hence solutions are bounded, apart from at the single neutral stability point K = 0
given by

B2 =
λn

2α2

〈φn,LH3〉 + 〈φn,LH4〉
〈φ′′

n, φ
′′
n〉

.(D.4)

This shows that the width of the resonance tongue is not resolved at this level, but
both boundaries of the tongue have the same quadratic coefficient B2ε

2 given by
(D.4).
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Now suppose that one of (D.1) is satisfied. Consider first α = 1/2, which case
we have already shown leads to a nontrivial width of resonance tongue at O(ε): B =
B0 + εB±

1 + O(ε2). From the O(ε3) equation (C.1), we see that the coefficient of
cos(α−1)t must be added to that of cosαt when seeking the orthogonality condition,
and similarly the coefficient of sin(α−1)t must be subtracted from that of sinαt. This
will lead to different equations for B2 and separate nontrivial corrections to the two
boundaries of the resonance tongue B = B0 + εB±

1 + ε2B±
2 + O(ε3).

Consider now α = 1. Here the coefficient of cos(α−2)t in (C.1) must be added to
that of cosαt when seeking the orthogonality condition, and similarly the coefficient of
sin(α−2)t must be subtracted from that of sinαt. This will lead to different equations
for B2 and separate nontrivial corrections to the two boundaries corresponding to
cosαt and sinαt. In fact, it is easy to see that we get B = B0 + ε2B±

2 , where B±
2 are

given by (2.21), (2.22) with η = λn.
Returning to the general case α �= 1/2 or 1, suppose we carry out the expansion

to O(ε4). We would then get contributions to the particular integral u4 from terms
which come from the expansion of{ cos

sin

}
(α± 1)t · cos t and

{ cos
sin

}
(α± 2)t · cos t,

which we lead to terms proportional to{ cos
sin

}
(α± 3)t.

Therefore, provided we do not satisfy

α± 3 = ±α, i.e., α = 3/2 (since α > 0),

then the orthogonality condition applied to the sinαt and cosαt equations leads to
a unique condition for B3, which is third-order correction to both resonance tongues
B = B0 + ε2B2 + ε3B3. If, however, α = 3/2, then we get a different contribution
from the sin(α−3)t and cos(α−3)t terms, leading to nonequal corrections B±

3 . Hence
the first nontrivial width of the resonance tongue is O(ε3).

Extrapolating this argument we see that the first nontrivial width of any reso-
nance tongue is always at O(ε2α), and we recover the general expression (2.17). The
asymptotic procedure we have developed can in principle calculate all the coefficients
Bj , j = 2, . . . , 2α − 1, and B±

2α for any arbitrary half-integer α, but the expressions
become rather cumbersome beyond O(ε3).

Appendix E. Neutral curves for O(ε2) interaction. The assumption β =
α + 1 leads to the contradiction that the O(ε2) solvability condition equation (A.10)
has a solution that is an eigenfunction, but the right-hand side is not orthogonal
to φm. Instead we must combine F4 (which is the coefficient of d cos(β − 1)t and
e sin(β − 1)t) into the functions H1 and H2 via

H̃1 = H1 + F4, H̃2 = H2 + F4.

Then H̃1 and H̃2 satisfy

M0H̃1 − λnH̃1 = η1α
2φnf −B1φ

IV
n f +

λn

2α2
Lφmd− ∂g

∂τ1

(
2λn

α
φn

)
,(E.1)

M0H̃2 − λnH̃2 = η1α
2φng −B1φ

IV
n g +

λn

2α2
Lφme +

∂f

∂τ1

(
2λn

α
φn

)
.(E.2)
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Similarly, the term H3 proportional to f cos(α+ 1)t and g sin(α+ 1)t must be added
to the functions F1 and F2 via

F̃1 = F1 + H3, F̃2 = F2 + H3,

where F̃1 and F̃2 satisfy

M0F̃1 − λmF̃1 = η1β
2φmd−B1φ

IV
m d +

λm

2β2
Lφnf − ∂e

∂τ1

(
2λm

β
φm

)
,(E.3)

M0F̃2 − λmF̃2 = η1α
2φme−B1φ

IV
m e +

λm

2β2
Lφng +

∂d

∂τ1

(
2λm

β
φm

)
.(E.4)

The solvability condition is now that the right-hand sides of (E.1) and (E.2) should
both be orthogonal to φn and that the right-hand sides of (E.3) and (E.4) should be
orthogonal to φm. This gives

∂g

∂τ1
− α

2λn
(η1α

2 −B1〈φ′′
n, φ

′′
n〉)f − 1

4α
〈φn,Lφm〉d = 0,(E.5)

∂f

∂τ1
+

α

2λn
(η1α

2 −B1〈φ′′
n, φ

′′
n〉)g +

1

4α
〈φn,Lφm〉e = 0,(E.6)

∂e

∂τ1
− (α + 1)

2λm
(η1(α + 1)2 −B1〈φ′′

m, φ′′
m〉)d− 1

4(α + 1)
〈φn,Lφm〉f = 0,(E.7)

∂d

∂τ1
+

(α + 1)

2λm
(η1(α + 1)2 −B1〈φ′′

m, φ′′
m〉)e +

1

4(α + 1)
〈φn,Lφm〉g = 0.(E.8)

From the form of these equations we note that they are expressible as a system

∂x

∂τ1
= A(x), where x =

⎡
⎢⎢⎣
f
d
g
e

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎣

0 0 −a1 −a2

0 0 −a3 −a4

a1 a2 0 0
a3 a4 0 0

⎤
⎥⎥⎦ ,

with

a1 =
α

2λn
(η1α

2 −B1〈φ′′
n, φ

′′
n〉), a2 =

1

4α
〈Lφm, φn〉,

(E.9)

a3 =
1

4(α + 1)
〈Lφm, φn〉, a4 =

(α + 1)

2λm
(η1(α + 1)2 −B1〈φ′′

m, φ′′
m〉).

From the form of A we conclude that its eigenvalues are all double and purely imagi-
nary unless

a1a4 − a2a3 = 0.(E.10)

Hence the zero solution to the system (E.5)–(E.8) is stable unless we sit precisely on
this neutral stability curve defined by (E.10). The fact that all eigenvalues of A are
then zero implies that (E.10) is the neutral stability condition for both the cosine
mode (corresponding to coefficients f and d) and the sine mode (with coefficients g
and e). Hence at this O(ε) level the resonance tongue has zero width.

It remains to express the neutral stability condition as a curve in the (B1, η1)-
plane. Substitution of (E.9) into (E.10) results in (3.12), where we have used λm =
λn(α + 1)2/α2.
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Finally, we treat the special case where α = 1/2, β = 3/2. Here, we find that
the term H3f cos(α + 1) in (A.2) must be added to H̃1, and the term H3g sin(α + 1)

subtracted from F̃1. Hence the solvability condition becomes

∂g

∂τ1
−
(

η1

16λn
− B1〈φ′′

n, φ
′′
n〉

4λn
+

〈φn,Lφn〉
2

)
f − 〈φm,Lφn〉

2
d = 0,(E.11)

∂f

∂τ1
+

(
η1

16λn
− B1〈φ′′

n, φ
′′
n〉

4λn
− 〈φn,Lφn〉

2

)
g +

〈φm,Lφn〉
2

e = 0,(E.12)

∂e

∂τ1
−
(

9η1

48λn
− B1〈φ′′

m, φ′′
m〉

12λn

)
d− 〈φm,Lφn〉

6
f = 0,(E.13)

∂d

∂τ1
+

(
9η1

48λn
− B1〈φ′′

n, φ
′′
n〉

12λn

)
e +

〈φm,Lφn〉
6

g = 0.(E.14)

The neutral mode solution of this equation can be written similarly to (E.10) in the
form

9(a1 ± a5)a4 − a2a3 = 0, where a5 =
〈φn,Lφn〉

2
,(E.15)

a1, . . . , a4 are given by (E.9), and the sign “+” corresponds to the cosine mode and
“−” to the sine mode. Expanding (E.15), we obtain the pair of loci in the (B1, η1)-
plane given by (3.13).

Appendix F. Neutral curves for the first-harmonic buckling interaction.
When the solution (4.1) is substituted into the right-hand side of the O(ε2) equation
(3.5), the result is

λn
∂2u2

∂t2
+ M0u2 =

1

2
λn[f(1 + cos 2t) + g sin 2t]Lφn −B1hφ

IV
c

+

[(
η1f − 2λn

∂g

∂τ1

)
φn + λnhLφc −B1fφ

IV
n

]
cos t(F.1)

+

[(
η1g + 2λn

∂f

∂τ1

)
φn −B1gφ

IV
n

]
sin t.

The particular integral of (F.1) is

u2 = {H0(s, τ1, τ2) + H1(s, τ1, τ2) cos t + H2(s, τ1, τ2) sin t
(F.2)

+H3(s)(f cos 2t + g sin 2t)},

where

M0H0 =
1

2
λnfLφn −B1hφ

IV
c ,(F.3)

M0H1 − λnH1 = −
(

2λn
∂g

∂τ1
− η1f

)
φn + λnhLφc −B1fφ

IV
n ,(F.4)

M0H2 − λnH2 =

(
2λn

∂f

∂τ1
+ η1g

)
φn −B1gφ

IV
n ,(F.5)

M0H3 − 4λnH3 =
1

2
λnLφn,(F.6)
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and H0, H1, H2, and H3 must satisfy boundary conditions (2.8). Applying orthogo-
nality with respect to φc to the right-hand side of (F.3), we obtain

1

2
λn〈φc,Lφn〉f −B1〈φ′′

c , φ
′′
c 〉h = 0,

which, using (2.11), we can rewrite as

h = −
(
λnBc〈φ′′

n, φ
′′
c 〉

2B1〈φ′′
c , φ

′′
c 〉

)
f := −Gn

B1
f.(F.7)

Applying orthogonality with respect to φm to the right-hand sides of (F.4) and (F.5)
yields

∂g

∂τ1
−
(

η1

2λn
− B1〈φ′′

n, φ
′′
n〉

2λn
+

λnB
2
c 〈φ′′

n, φ
′′
c 〉2

4B1〈φ′′
c , φ

′′
c 〉

)
f = 0,(F.8)

∂f

∂τ1
+

(
η1

2λn
− B1〈φ′′

n, φ
′′
n〉

2λn

)
g = 0.(F.9)

Thus f and g both satisfy the differential equation

∂2f

∂τ2
1

+

(
η1

2λn
− B1〈φ′′

n, φ
′′
n〉

2λn

)(
η1

2λn
− B1〈φ′′

n, φ
′′
n〉

2λn
+

λnB
2
c 〈φ′′

n, φ
′′
c 〉2

4B1〈φ′′
c , φ

′′
c 〉

)
f = 0.(F.10)

The condition for this equation to have bounded sinusoidal solutions on time scale τ1
is given by (4.2).

Appendix G. The O(ε3) correction to the boundary σ1 = 0. On this
boundary f ≡ 0 so that h ≡ 0 by (F.7), and g = g(τ2). The right-hand sides of (F.3)
and (F.4) are zero in this case so that H0 and H1 are proportional to φc and φn,
respectively. Thus, this part of the O(ε2) solution can be absorbed into the O(ε)
solution, and without loss of generality we can set H0 = H1 ≡ 0. The solution (F.2)
can now be written as

u1 = φn(s) sin t g(τ2),

u2 = {H2(s) sin t + H3(s) sin 2t}g(τ2),

}
(G.1)

where H3(s) is the solution of (F.6) and H2 satisfies (F.5) with f = 0 and the re-
lationship (4.3) holding between B1 and η1 in order to ensure orthogonality of the
right-hand side to the eigenfunction φn of the operator on the left.

When the form (G.1) is substituted into the right-hand side of (3.6) one obtains

λn
∂2u3

∂t2
+ M0u3

=

{
1

2
λnLH3 + η1

(
H2 −

1

〈φ′′
n, φ

′′
n〉

HIV
2

)
+ η2φn −B2φ

IV
n

}
g(τ2) sin t(G.2)

−2λnφn
∂g

∂τ2
cos t + terms involving sin 2t and sin 3t,

where (4.3) has been used to eliminate B1 in favor of η1 from the above equations.
Finally, when we require that the right-hand side of this equation be orthogonal to
the φm, we see that g must be independent of τ2 and that

B2 =
1

2
λn

〈φn,LH3〉
〈φ′′

n, φ
′′
n〉

− η1
〈φn,LH2〉
〈φ′′

n, φ
′′
n〉2

+
η2

〈φ′′
n, φ

′′
n〉

.(G.3)
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Note that 〈φn, H2〉 = 0 has been used to obtain this result.
From these results the shape of this stability boundary in the space of the original

variables B, η, ε in the neighborhood of the singular point (Bc, λn, ε = 0) can be
constructed as follows.

First, note that from the second power series in (3.3) we may write

εη1 = (η − λn) − ε2η2 + O(ε3),

ε2η1 = ε(η − λn) + O(ε3).

Now, when these expressions for εη1 and ε2η1 are substituted into the above expres-
sions for B1 and B2 and the results are substituted into the third series in (3.3), we
obtain (4.5).

Appendix H. The O(ε3) correction to the boundary σ2 = 0. On this
boundary g ≡ 0, f = f(τ2), and

h(τ2) = −λnBc〈φ′′
n, φ

′′
c 〉

2B1〈φ′′
c , φ

′′
c 〉

f(τ2) := −Gn

B1
f(τ2).(H.1)

We require the solution to O(1) even as B1 → 0 or ∞. Hence we set

k(τ2) :=
√
f2 + g2, so that f =

B1

Kn
k, h =

−Gn

Kn
k, where Kn =

√
B2

1 + G2
n.

Also by reasoning similar to that above we may set H2 ≡ 0 so that on this boundary
we have

u1 = (−Gnφc(s) + B1φn(s) cos t)
k(τ2)

Kn
,

u2 = {H0(s) + H1(s) cos t + H3(s) cos 2t}k(τ2),

⎫⎬
⎭(H.2)

where in this case

M0H0 =
B1

Kn

(
1

2
λnLφn + Gnφ

IV
c

)
,(H.3)

M0H1 − λnH1 =
1

Kn
(η1B1φn − λnGnLφc −B2

1φ
IV
n ),(H.4)

M0H3 − 4λnH3 =
B1λn

2Kn
Lφn.(H.5)

When the results (H.2) are substituted into the right-hand side of (3.6) we obtain

λn
∂2u3

∂t2
+ M0u3 =

{
1

2
λnLH1 +

B1

2Kn
η1Lφn −B1H

IV
0 + B2

Gn

Kn
φIV
c

}
k(τ2)

+

{
λn

(
LH0 +

1

2
LH3

)
+ η1

(
H1 −

Gn

Kn
Lφc

)
(H.6)

− B1H
IV
1 +

B1

Kn
η2φn − B1

Kn
B2φ

IV
n

}
k(τ2) cos t

+ 2λnφn
B1

Kn

∂k

∂τ2
sin t + terms involving cos 2t and cos 3t.

Applying orthogonality conditions to the various groups of terms on the right-hand
side of this equation, we see that f is independent of τ2 and hence obtain the expres-
sions (4.6) and (4.7).
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Appendix I. Matching to the codimension-one results. We consider the
expression (4.9) in the two limits (i) B1 → 0 (and hence |η̂1| 	 1, but � 1/ε) and
(ii) B1 	 1 (and hence η̂1 → 0, but B1 � 1/ε).

(i) Consider first B1 → 0. Taking B1 as a small parameter, then (4.8) shows
η̂1 = O(1/B1). The leading-order term of (4.9) we then find to be in the B2-direction
and to be given by

B̃2 = B2 − η̂2
B1

η̂1
= −λn

2
〈φc,LH1〉 − (1 + Bc)Gn〈φ′′

c , φ
′′
n〉 + O(B1),(I.1)

where H1 satisfies

M0H1 − λnH1 = −2λnBc〈φ′′
n, φ

′′
c 〉φn − λnLφc + O(B2

1).(I.2)

Now we are interested in matching to the asymptotics of the pure falling-over instabil-
ity, away from the codimension-two interaction, for which φm is not a resonant mode.
Setting φm to zero in (I.1) and (I.2) we obtain precisely (dropping the tilde)

B2 =
λn

2

〈LH1, φc〉
〈φ′′

c , φ
′′
c 〉

,

which is precisely the boundary B+
2 defined by (2.21) (with η replaced by its O(1)

value λm, for the same function H1, where now φm is called φc). Hence we recover
the correct asymptotic expression well away from the resonance tongue interaction.

(ii) Now consider B1 	 1. Then (4.8) shows η̂1 = O(1/B1). Then we find the
leading-order term of (4.9) to be in the η̂-direction and to be given by

˜̂η2 = η̂2 + O(1/B1),

where η̂2 is given by the right-hand side of (4.7) without the B2-term. Now, to match
to the limit of just the (1, n) resonance, away from its interaction with the falling-
over instability, we must set φc = 0, since this is no longer resonant, and also set
H1 = 0, since it is now resonant (it defines the coefficient of cos t) and therefore can
be subsumed into the O(1) solution. We then obtain to leading order that (dropping
tildes)

η̂2 = η2 −B2〈φ′′
n, φ

′′
n〉 = −λn

(
〈LH0, φn〉 +

1

2
〈LH3, φn〉

)
.

Hence, allowing η2 to be zero, to model the codimension-one case, we get

B2 =
2λn

〈φ′′
n, φ

′′
n〉

(2〈LH0, φn〉 + 〈LH3, φn〉),

where now

M0H3 − 4λnH3 =
λn

2
Lφn,

M0H0 =
λn

2
Lφn.

Hence we see that this is identical to that defined by (2.21) (with H4 now called H0),
and we obtain perfect matching in this case also.
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BOUNDS AND EXTREMAL CONFIGURATIONS FOR THE
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Abstract. In this paper we derive bounds on the torsional rigidity for coated fiber reinforced
shafts. The bounds are used to assess the optimality or suboptimality of fiber reinforcement config-
urations. This investigation focuses on coated fiber reinforcements with circular cross section. It is
shown how the effective antiplane shear modulus and torsional rigidity of each coated fiber are used
to determine whether the configuration provides reinforcement above or below that of a homogeneous
shaft containing no coated fibers. Simply connected shaft cross sections of arbitrary shape reinforced
with any configuration of coated fibers are considered. Precise conditions on the effective antiplane
shear modulus and torsional rigidity of each coated fiber are given under which the circular shaft
reinforced with a single centered circular coated fiber is either optimal or suboptimal.

Key words. torsion, coated fibers
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1. Introduction. The problem of extremizing the torsional rigidity of prismatic
shafts has been the focus of many investigations. For homogeneous shafts made from
elastically isotropic material, de Saint-Venant [10] proposed that among all prismatic
shafts with a given cross-sectional area that the greatest torsional rigidity is obtained
by a shaft with a circular cross section. This proposition was proven by Polya [7].
For multiply connected cross sections of a given cross-sectional area, Polya and We-
instein [8] showed that the optimal cross section is given by the annulus. Alvino and
Trombetti [1] considered composite shaft cross sections made up of perfectly bonded
elastic materials. Here each phase is a cylindrical fiber of arbitrary cross section with
generators parallel to the shaft. In this context they showed that circular cross sec-
tions with a radially nonincreasing arrangement of compliance delivers the maximum
torsional rigidity among all cross sections with given cross-sectional area and fixed
area fraction of the constituent phases.

When the materials are imperfectly bonded the elastic displacement may suffer
jumps across the interface betweendifferent elastic phases. To first order one models
the imperfect bonding in terms of a linear constitutive law relating tangential stress
to the jump in the warping displacement. This model for imperfect bonding is well
known and is referred to as the spring layer model; see Jones and Whittier [4]. In
this context one considers shafts reinforced with fibers of greater shear stiffness than
the matrix. One is interested in extremizing the torsional rigidity over fiber config-
urations and understanding how the imperfect interface compromises the benefits of
the stiffer reinforcement. It is found that the degree of imperfect bonding relative to
the contrast in compliance between matrix and fiber explicitly determines the type of
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fiber configuration that maximizes the torsional rigidity; see Lipton [5, Theorems 1.1
through 1.7]. The relative degree of imperfect bonding is given by the parameter

Rcr =
α−1

G−1
m − G−1

f

,(1.1)

where Gf is the shear modulus of the fiber reinforcement, Gm is the shear modulus of
the matrix, and α is the interfacial shear stiffness having dimensions of shear stiffness
per unit length. For a shaft with a circular cross section of radius R containing
N reinforcement fibers of circular cross section with common radii given by Rcr,
the imperfect interface balances the reinforcing effect of the fibers and the warping
function outside the fibers is precisely zero. For this case the torsional rigidity is
independent of the location of the fibers and is given by

πGm

2
(R4 −NR4

cr) +
πGf

2
NR4

cr(1.2)

and is precisely the torsional rigidity of a circular shaft of radius R reinforced with a
single centered fiber of radius N1/4Rcr; see Lipton [5].

In many composites a third phase or inter-phase separating fiber and matrix
is present. The inter-phase or coating phase often has elastic properties that are
distinct from the fiber or matrix. In this context the recent work of Chen, Benveniste,
and Chuang [2] treats a system of N fibers with circular cross section and radii ai,
i = 1, . . . , N . The fibers are coated by a shell of uniform thickness and the outer
radius of the coated fiber is bi, i = 1, . . . , N . The shear modulus of the ith fiber is
denoted by Gi

f and the shear modulus of the associated coating is denoted by Gi
c.

The area fraction of the fiber phase in the ith coated fiber system is denoted by νi
and νi = a2

i /b
2
i . One recalls the formula for the effective antiplane shear modulus for

the concentric coated cylinders assemblage of Hashin and Rosen [3] given by

Gi
CCA = Gi

c

(
Gi

c(1 − νi) + Gi
f (1 + νi)

Gi
c(1 + νi) + Gi

f (1 − νi)

)
.(1.3)

Here Gi
CCA gives the effective shear stiffness of each coated fiber. Chen, Benveniste,

and Chuang [2] show that when the effective shear stiffness of each coated fiber equals
the matrix shear stiffness Gm, i.e.,

Gi
CCA = Gm, i = 1, . . . , N,(1.4)

then the warping function outside the coated fibers is zero and the torsional rigidity
is given by

AN =
π

2
GmR4 +

N∑
i=1

(π
2

(Gi
c(b

4
i − a4

i ) + Gi
fa

4
i ) −

π

2
Gm b4i

)
.(1.5)

When all fibers have the same radius and coating thickness � one passes to the dis-
tinguished limit given by

lim
�→0

lim
Gi

c→0

�

Gi
c

= α−1(1.6)

in (1.4) and (1.5) to see that AN is given by (1.2).
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The relations given by (1.4) express the balance between the shear moduli of
the matrix, fiber, coating, and coating thickness that renders the warping function
zero outside the inclusions. Furthermore, under the hypotheses leading to (1.5) it is
evident that if the torsional rigidity of each coated fiber given by

T i
f =

π

2
(Gi

c(b
4
i − a4

i ) + Gi
fa

4
i )(1.7)

equals the torsional rigidity π
2 Gm b4i , obtained by replacing coating and fiber shear

moduli with the matrix shear moduli, then there is complete neutrality; i.e., the tor-
sional rigidity equals the torsional rigidity of the unreinforced shaft given by π

2 GmR4

(see Chen, Benveniste, and Chuang [2]). A recent summary of results involving neu-
tral inclusions in the context of the theory of effective properties is given in Milton
[6].

In this article we examine the effect of the coating phase on the torsional rigidity
of coated fiber reinforced shafts. We build on the previous results and develop a
variational methodology to assess the optimality or suboptimality of coated fiber
configurations. Here the cross section of each coated fiber is taken to be circular,
the radius of the ith fiber cross section is denoted by ai, and the outer radius of the
coating is given by bi. The union of the coated fibers is denoted by A. The remaining
part of the cross section containing matrix material is denoted by Am. The shaft cross
section is denoted by Ω and Ω = A∪Am. The results given in this paper follow easily
from a set of bounds on the torsional rigidity derived using the variational principles
given by (2.1) and (2.2).

We provide a brief outline of the bounds derived in this paper. Upper and lower
bounds on the torsional rigidity for shafts with circular cross section reinforced with
coated fibers are given in Proposition 2.1. These bounds are given in terms of the
effective shear moduli and torsional rigidity of each coated fiber. Next we consider
shafts with arbitrary simply connected cross section. Here upper bounds are given in
terms of the polar moment of inertia of the shaft cross section I0(Ω) and the effective
shear moduli and torsional rigidity of each coated fiber; see Proposition 3.1. If, in
addition, one knows that Gi

c ≤ Gi
f for i = 1, . . . , N , then it is shown that one can

derive a tighter upper bound given in terms of the torsional rigidity T0(Ω) of the shaft
cross section and the effective shear moduli and torsional rigidity of each coated fiber;
see Proposition 5.2. When Gi

c ≥ Gi
f for i = 1, . . . , N , a lower bound is derived and is

given in terms of T0(Ω) and the effective shear moduli and torsional rigidity of each
coated fiber; see Proposition 6.2.

The bounds are used to establish the three reinforcement inequalities and three
geometric inequalities presented in section 2. The reinforcement inequalities pro-
vide explicit criteria that determine when the torsional rigidity of a single coated
fiber centered inside a shaft with circular cross section is either optimal or subop-
timal among all coated fiber configurations for shafts with cross sections satisfying
prescribed isoperimetric constraints; see Propositions 2.2, 2.3, and 2.4. The geomet-
ric inequalities provide explicit criteria that determine when the torsional rigidity
of the coated fiber reinforced shaft is either greater than or less than the torsional
rigidity of the same shaft in the absence of the coated fiber reinforcement; see Propo-
sitions 2.5, 2.6, and 2.7. In all cases the optimality conditions are expressed in terms
of the effective shear modulus and torsional rigidity of each coated fiber.

2. Inequalities on the torsional rigidity. We begin by introducing the vari-
ational formulations for the torsional rigidity used in the subsequent analysis. The
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torsional rigidity for a system of N coated fibers inside a shaft with cross section Ω is
denoted by T N (Ω). Points inside Ω are denoted by x = (x1, x2), and the coordinate
system is chosen such that the origin lies inside Ω. The first variational principle is
given in terms of virtual stress potentials ϕ that vanish on the boundary of the shaft
cross section that are square integrable and have square integrable gradients. It is
given by

T N (Ω) = −2 min
ϕ

{
1

2

∫
Ω

G−1(x)|∇ϕ|2 dx − 2

∫
Ω

ϕdx

}
,(2.1)

where the piecewise constant shear modulus G(x) is Gm in the matrix and takes the
values Gi

f and Gi
c in the ith fiber and coating, respectively. Next we define the vector

x⊥ to be given by (−x2, x1). The second variational principle is given in terms of
virtual warping functions w̃ that are square integrable and have square integrable
gradients. It is given by

T N (Ω) = min
w̃

{∫
Ω

G(x)|∇w̃ + x⊥|2 dx
}
.(2.2)

Motivated by (1.4) and (1.5), we start by considering shafts with a circular cross
section of radius R. For this case we denote the shaft cross section by DR. The
torsional rigidity of DR reinforced with N coated fibers is written as T N (DR). Here
the coordinates are chosen such that the center of the shaft is the origin. The method
presented here is simple. The trial fields are designed so that they become the actual
stress potential or warping field in the composite when Gi

CCA = Gm for i = 1, . . . , N .
Otherwise, these fields are admissible trials and when substituted into the variational
principles give upper and lower bounds on the torsional rigidity. In this way the
upper and lower bounds match when Gi

CCA = Gm for i = 1, . . . , N . For a system of
N coated fibers with centers located at the points xi, i = 1, . . . , N , the bounds are
given by the following proposition.

Proposition 2.1.

AN + π

N∑
i=1

|xi|2b2i
Gm

Gi
CCA

(Gi
CCA − Gm) ≤ T N (DR)

≤ AN + π

N∑
i=1

|xi|2b2i (Gi
CCA − Gm),(2.3)

where AN is given by (1.5). The upper and lower bounds agree when Gi
CCA = Gm for

i = 1, . . . , N .
These upper and lower bounds are derived in sections 3 and 4, respectively.
In what follows we apply Proposition 2.1 to obtain the basic reinforcement in-

equality for shafts of circular cross section reinforced with a finite number N of coated
fibers. Here we suppose that the shear moduli of each fiber and coating are the same,
i.e., Gi

f = Gf and Gi
c = Gc. In addition, it is supposed that the ratio of outer and

inner coating radius is the same for each coated fiber, i.e., νi = ν, i = 1, . . . , N . For
this case Gi

CCA = GCCA, where

GCCA = Gc

(
Gc(1 − ν) + Gf (1 + ν)

Gc(1 + ν) + Gf (1 − ν)

)
(2.4)
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and for GCCA = Gm the torsional rigidity given by (1.5) becomes

AN = A =
π

2

(
GmR4 − Gmb

4
+ Gcb

4
(1 − ν2) + Gfν

2b
4
)
,(2.5)

where b
4

=
∑N

i=1 b4i . Here A is precisely the torsional rigidity of a single coated fiber
with outer coating radius b and fiber radius a = ν1/2b when the centers of the coated
fiber cross section and shaft cross section are the same. The torsional rigidity of the
concentric coated fiber shaft configuration is given by the right-hand side of (2.5) for
all values of Gm, Gf , Gc, and a ≤ b ≤ R. We note here that the area of the fiber

cross section is given by πa2 = π
√∑N

i=1 a
4
i .

The following reinforcement inequalities follow from Proposition 2.1 and give
conditions for which the concentric coated fiber and circular shaft cross section is
either optimal or suboptimal.

Proposition 2.2 (reinforcement inequalities I). If GCCA ≤ Gm, then the tor-
sional rigidity associated with N coated fibers is less than or equal to the rigidity
associated with a single centered circular coated fiber with fiber radius a = ν1/2b, i.e.,

T N (DR) ≤ A.(2.6)

Otherwise, if GCCA ≥ Gm, then the torsional rigidity associated with N coated fibers
is greater than or equal to that of a single centered circular coated fiber with fiber
radius a = ν1/2b, i.e.,

T N (DR) ≥ A.(2.7)

These inequalities are independent of the number and location of the coated fibers.
When all fibers have the same radius a and coating thickness �, one easily passes

to the distinguished limit given by (1.6) in Proposition 2.2 to recover Theorem 1.3 of
Lipton [5] for imperfectly bonded fiber reinforced shafts.

Next we consider the more general case where the shaft can have an arbitrary
simply connected cross section Ω. Here we consider all configurations of N coated
fibers with prescribed fiber radii ai, i = 1, . . . , N , and consider all cross sections Ω
with prescribed polar moment of inertia. We apply the upper bound on the torsional
rigidity given by Proposition 3.1 to obtain the following.

Proposition 2.3 (reinforcement inequality II). Consider any shaft with polar
moment of inertia with respect to the origin equal to πR4/2 reinforced with N circular
coated fibers. If GCCA ≤ Gm, then the torsional rigidity T N (Ω) is less than or equal
to the torsional rigidity associated with a shaft with circular cross section of radius R
reinforced with a single centered circular coated fiber with fiber radius a given by

πa2 = π

√√√√ N∑
i=1

a4
i(2.8)

and b = ν−1/2a.
When Gc ≤ Gf we can appeal to the tighter upper bound on the torsional rigidity

given by Proposition 5.2 to obtain a reinforcement inequality that holds for all shaft
cross sections Ω with prescribed cross-sectional area.

Proposition 2.4 (reinforcement inequality III). Consider any shaft with cross-
sectional area equal to πR2 reinforced with N circular coated fibers. If GCCA ≤ Gm
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and Gc ≤ Gf , then the torsional rigidity T N (Ω) is less than or equal to the torsional
rigidity associated with a shaft with a circular cross section of radius R reinforced with
a single centered circular coated fiber with fiber radius a given by

πa2 = π

√√√√ N∑
i=1

a4
i(2.9)

and b = ν−1/2a.

It is evident from the inequality
√∑N

i=1 a
4
i ≤

∑N
i=1 a

2
i that the cross-sectional

area of the single centered circular fiber appearing in Propositions 2.2, 2.3, and 2.4 is
less than or equal to the joint cross-sectional area of the N fibers.

Now we consider the more general case where the shear moduli of the fiber and
coating and the ratio of the inner radius and outer radius of the coating are allowed
to differ between coated fibers. In this context we present explicit conditions on the
effective shear modulus and torsional rigidity of each coated fiber that show when the
torsional rigidity of the coated fiber reinforced shaft is either greater or less than the
torsional rigidity of the shaft without reinforcement.

For shafts with circular cross sections of radius R, i.e., Ω = DR, we have the
following.

Proposition 2.5 (geometric inequalities I). If
∑N

i=1 T
i
f ≤

∑N
i=1

π
2 Gm b4i and

Gi
CCA ≤ Gm, then

T N (DR) ≤ π

2
GmR4.(2.10)

If
∑N

i=1 T
i
f ≥

∑N
i=1

π
2 Gm b4i and Gi

CCA ≥ Gm, then

T N (DR) ≥ π

2
GmR4.(2.11)

The inequalities (2.10) and (2.11) are independent of the number and location of the
coated fibers.

These inequalities follow immediately from Proposition 2.1.
Now we extend these results to simply connected cross sections Ω and denote the

torsional rigidity for simply connected shaft cross sections with shear modulus unity
by T0(Ω). The following geometric inequality shows when a system of coated fibers
always decreases the torsional rigidity below that of the unreinforced shaft.

Proposition 2.6 (geometric inequality II). Suppose that Gi
c≤Gi

f , i=1, . . . , N .

If
∑N

i=1 T
i
f ≤

∑N
i=1

π
2 Gm b4i and Gi

CCA ≤ Gm, then

T N (Ω) ≤ GmT0(Ω).(2.12)

The equality holds in (2.12) when the shaft cross section is circular,
∑N

i=1 T
i
f =∑N

i=1
π
2 Gm b4i and Gi

CCA = Gm for i = 1, . . . , N .
This result follows from the upper bound on the torsional rigidity given by Propo-

sition 5.2.
The following geometric inequality shows when a system of coated fibers always

increases the torsional rigidity above that of the unreinforced shaft.
Proposition 2.7 (geometric inequality III). Suppose that Gi

c≥Gi
f , i=1, . . . , N .

If
∑N

i=1 T
i
f ≥

∑N
i=1

π
2 Gm b4i and Gi

CCA ≥ Gm, then

T N (Ω) ≥ GmT0(Ω).(2.13)
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The equality holds in (2.13) when the shaft cross section is circular,
∑N

i=1 T
i
f =∑N

i=1
π
2 Gm b4i and Gi

CCA = Gm for i = 1, . . . , N .
This result follows from the lower bound on the torsional rigidity given by Propo-

sition 6.2.

3. Upper bounds on the torsional rigidity for shafts reinforced with
circular coated fibers. In this section we develop trial warping functions for config-
urations of circular coated fibers. These are substituted into the variational principle
(2.2) and deliver the upper bound presented in Proposition 2.1. The trial warping
functions constructed here will be admissible for shaft cross sections of any shape.
For circular shaft cross sections it is shown that the trial warping functions become
the actual warping displacement in the shaft when Gi

CCA = Gm for i = 1, . . . , N .
Consider a shaft of arbitrary cross section Ω reinforced with N circular coated

fibers with centers at the points xi, i = 1, . . . , N . The radius of the ith fiber is ai,
and the outer radius of the coated fiber is bi. The coating occupies the annular shell
with inner and outer radii ai and bi. The trial warping function w̃ is chosen such that
w̃ = 0 outside the coated fibers. In each coated fiber the function w̃ is required to be
harmonic inside the fiber and harmonic inside the coating. It is required that w̃ be
continuous across the interface separating the fiber and coating and

Gi
f (∇w̃|f + x⊥) · n = Gi

c(∇w̃|c + x⊥) · n(3.1)

across the fiber–coating interface. Here the subscripts indicate the side of the interface
over which the quantities are evaluated and n is the outward directed unit normal in
the fiber–coating interface. The final requirement is that w̃ vanish on the boundary of
the coated fiber. It is clear that the continuity conditions for w̃ at material interfaces
ensure that it is an admissible trial field for (2.2).

We solve the transmission boundary value problem inside each coated fiber to
obtain the explicit formula for w̃. The polar coordinates (θ, r) are chosen such that
the axis θ = 0 coincides with the direction given by x⊥

i and origin with xi. In
these coordinates, the transmission condition (3.1) on the ith fiber–coating interface
becomes

Gi
c∂rw̃|c − Gi

f∂rw̃|f = (Gi
f − Gi

c)|xi| cos θ on r = ai.(3.2)

Since w̃ is required to be harmonic inside each fiber and coating it follows that

w̃ = C1r cos θ for r ≤ ai(3.3)

and

w̃ = (C2r + C3r
−1) cos θ for ai ≤ r ≤ bi.(3.4)

The transmission conditions at r = ai and boundary condition at r = bi require that

C2b
2
i + C3 = 0,

C1a
2
i − C2a

2
i − C3 = 0,

Gi
ca

2
iC2 − Gi

cC3 − Gi
fa

2
iC1 = (Gi

f − Gi
c)a

2
i |xi|.(3.5)

The solution of (3.5) shows that inside each coated fiber the trial warping function is
given by

w̃ = Ci
1r cos θ for r = |x − xi| ≤ ai(3.6)
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and

w̃ = (Ci
2r + Ci

3r
−1) cos θ for ai ≤ r = |x − xi| ≤ bi,(3.7)

where ∆i = Gi
c(a

2
i + b2i ) + Gi

f (b2i − a2
i ) and

Ci
1 = (Gi

c − Gi
f )|xi|(b2i − a2

i )/∆i,

Ci
2 = (Gi

f − Gi
c)|xi|a2

i /∆i,

Ci
3 = (Gi

c − Gi
f )|xi|b2i a2

i /∆i.(3.8)

Outside the coated fibers w̃ = 0.
The polar moment of inertia of the shaft cross section Ω with respect to the origin

is written I0(Ω). Here I0(Ω) =
∫
Ω
|x|2dx. Substitution of w̃ into (2.2) delivers the

upper bound given in the following.
Proposition 3.1 (upper bound on rigidity for arbitrary shaft cross section).

T N (Ω) ≤ GmI0(Ω) +

N∑
i=1

(π
2
T i
f − π

2
Gm b4i

)

+ π

N∑
i=1

|xi|2b2i (Gi
CCA − Gm).(3.9)

Next we consider shafts with a circular cross section of radius R. In order for the
trial warping field w̃ to be the actual warping displacement in the shaft it must also
satisfy the transmission condition on the coating–matrix interface |x− xi| = bi given
by

Gmx⊥ · n = Gi
c(∇w̃|c + x⊥) · n.(3.10)

This gives the extra condition

Gi
cC

i
2b

2
i − Gi

cC
i
3 = (Gm − Gi

c)|xi|b2i .(3.11)

This condition together with the conditions given by (3.5) provide an overdetermined
system of equations for the coefficients Ci

1, C
i
2, C

i
3 in each coated fiber. It is easily seen

that the overdetermined system has a solution when Gi
CCA = Gm. For this case the

function w̃ becomes the warping displacement in the shaft and we recover the formula

T N (DR) = AN ,(3.12)

where AN is given by (1.5).

4. Lower bounds on the torsional rigidity for circular shafts reinforced
with circular coated fibers. In this section we develop trial stress potentials for
configurations of circular coated fibers. These are substituted into the variational
principle (2.1) to obtain the lower bound given in Proposition 2.1.

We consider a circular shaft cross section of radius R reinforced with N coated
fibers. Outside the coated fibers the trial stress potential ϕ is taken to be ϕ =
1
2Gm(R2 − |x|2). The trial potential is taken to be continuous across the matrix–
coating interface specified by |x − xi| = bi. It is easily seen that

ϕ = h(x) = −Gm(x − xi) · xi +
1

2
Gm(R2 − b2i − |xi|2)(4.1)
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on this interface in view of the condition |x − xi| = bi. The trial is taken to be
continuous inside the coated fiber and is given by ϕ = ψi + ri in the ith fiber. Here
ψi is chosen to be the stress potential generated inside the coated fiber when it is
subject to torsion loading. It is the solution of the transmission problem inside the
coated fiber given by

Gi
f

−1
(x)∆ψi = −2 in the fiber, |x − xi| < ai,(4.2)

Gi
c

−1
(x)∆ψi = −2 in the coating, ai < |x − xi| < bi.(4.3)

ψi is continuous across the fiber–coating interface,

Gi
f

−1∇ψi
|f · n = Gi

c

−1∇ψi
|c · n on |x − xi| = ai,(4.4)

and ψi = 0 on |x − xi| = bi. It is easily seen that ψi is given by

ψi = −1

2

(
Gi

f |x − xi|2 − Gi
c(b

2
i − a2

i ) − Gi
fa

2
i

)
for |x − xi| < ai,

ψi = −1

2

(
Gi

c|x − xi|2 − Gi
cb

2
i

)
for ai < |x − xi| < bi.(4.5)

The function ri = h on the coating–matrix interface and is continuous inside the
coated fiber. It is the solution to the transmission problem given by

Gi
f

−1
(x)∆ri = 0 in the fiber, |x − xi| < ai,(4.6)

Gi
c

−1
(x)∆ri = 0 in the coating, ai < |x − xi| < bi,(4.7)

and

Gi
f

−1∇ri|f · n = Gi
c

−1∇ri|c · n on |x − xi| = ai.(4.8)

In the polar coordinates (θ, r) chosen such that the axis θ = 0 coincides with the
vector xi and r = |xi − x|, the solution of the transmission problem for ri is given by

ri = Ci
1r cos θ + ki for |x − xi| < ai,

ri =
(
Ci

2r + Ci
3r

−1
)
cos θ + ki for ai < |x − xi| < bi,(4.9)

where

ki =
Gm

2

(
R2 − b2i − |xi|2

)
,

Ci
1 = −Gm|xi|b2i 2Gi

f/Di,

Ci
2 = −Gm|xi|b2i (Gi

f + Gi
c)/Di,

Ci
3 = −Gm|xi|a2

i b
2
i (G

i
f − Gi

c)/Di,(4.10)

and Di = (b2i +a2
i )G

i
f +(b2i −a2

i )G
i
c. The lower bound in (2.3) follows from substitution

of this trial potential into the variational principle (2.1).
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In order for the trial potential field ϕ to be the actual stress potential in the shaft
it must also satisfy the transmission condition on the coating–matrix interface given
by

G−1
m ∇ϕ|m · n = Gi

c

−1
(∇ψi

|c + ∇ri|c) · n.(4.11)

Substitution and working in polar coordinates show that (4.11) gives the extra con-
dition

Gi
c

−1 (
Ci

2 − Ci
3b

−2
i

)
= −|xi|.(4.12)

This condition together with the system of equations (4.10) overdetermines the co-
efficients Ci

1, C
i
2, C

i
3 in each coated sphere. It is easily seen that the overdetermined

system has a solution when Gi
CCA = Gm. For this case the function ϕ becomes the

stress potential in the shaft and we recover the formula

T N (DR) = AN ,(4.13)

where AN is given by (1.5).

5. Upper bounds on the torsional rigidity for Gi
c ≤ Gi

f . In this section

we focus on the case where Gi
c ≤ Gi

f , i = 1, . . . , N . Here we are able to get tighter
upper bounds on the torsional rigidity for shaft cross sections of arbitrary shape.
Our approach follows the methodology developed in Lipton [5]. We fix the cross
section of the shaft Ω and investigate the effects of adding a circular coated fiber to
an already existing configuration of N − 1 coated fibers. At present no assumptions
on the geometry or shear moduli of the N − 1 coated fibers are made. We denote
the part of the shaft cross section already occupied by the coated fibers by A and the
cross section of the circular coated fiber to be added by Σ. Here Σ is composed of a
circular fiber of radius aN with shear modulus GN

f surrounded by a coating of outer

radius bN with shear modulus GN
c . The torsional rigidity of the original configuration

is denoted by T (A,Ω). The rigidity associated with the added fiber is written as
T (A ∪ Σ,Ω). We recall that the torsional rigidity obtained by replacing coating and
fiber shear moduli with the matrix shear moduli in Σ is given by π

2 Gm b4N . Here
bN is the outer radius of the coating. The torsional rigidity of the coated fiber is
TN
f = π

2 (GN
c (b4N − a4

N ) + GN
f a4

N ).

Proposition 5.1 (upper rigidity inequality). If GN
c ≤ GN

f and if

GN
CCA ≤ Gm,(5.1)

then

T (A ∪ Σ,Ω) ≤ T (A,Ω) + TN
f − π

2
Gm b4N .(5.2)

Proposition 5.1 is established with the aid of the variational principle given by
(2.1). We remark that the methods used to establish this inequality apply to the case
when the fiber cross section is multiply connected. One writes (2.1) as T (A,Ω) =
−2E(A,Ω), where

E(A,Ω) = min
ϕ

{
1

2

∫
Ω

G−1(x)|∇ϕ|2 dx − 2

∫
Ω

ϕdx

}
.(5.3)
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Here the piecewise constant shear modulus G(x) takes the value Gm in the matrix
and takes the values Gi

f and Gi
c in the ith fiber and coating, respectively. The idea

of the proof is to estimate the quantity E(A,Ω) in terms of E(A ∪ Σ,Ω) associated
with the additional fiber. We let G(x) denote the piecewise constant shear modulus
for the configuration A ∪ Σ. Here G(x) = G(x) outside of Σ and inside Σ the shear
modulus G(x) = GN

f in the fiber and G(x) = GN
c in the coating. We regroup terms

in the variational principle (5.3) and write

E(A,Ω) = min
ϕ

{
1

2

∫
Ω

G−1(x)|∇ϕ|2dx − 2

∫
Ω

ϕdx

+
1

2

(∫
Σ

(G−1
m − G−1(x))

)
|∇ϕ|2dx

}
.(5.4)

We obtain an estimate by substitution of a suitable trial field in (5.4). Our choice
is made as follows: We introduce the stress potential Φ̃ for the configuration A ∪ Σ.
Here Φ̃ is continuous in Ω,

−G−1(x)∆Φ̃ = 2,(5.5)

and satisfies the transmission conditions

Gi
f

−1∇Φ̃|f · n = Gi
c

−1∇Φ̃|c · n on the fiber–coating interface |x − xi| = ai

(5.6)

and

Gi
f

−1∇Φ̃|c · n = Gm
−1∇Φ̃|m · n on the matrix–coating interface |x − xi| = bi.

(5.7)

The trial field ϕ is chosen to match Φ̃ outside the coated fiber cross section Σ but
inside we suppose that ϕ = Φ̃ + δ, where δ is continuous, vanishes on the boundary
of Σ, is square integrable inside Σ, and has a square integrable gradient over Σ. One
easily checks that ∫

Σ

G−1(x)∇Φ̃ · ∇δ dx = 2

∫
Σ

δ dx.(5.8)

Substitution of ϕ into (5.4) gives

E(A,Ω) ≤ 1

2

(∫
Ω/Σ

G−1(x)|∇Φ̃|2dx +

∫
Σ

G−1(x)|∇Φ̃ + ∇δ|2dx
)

− 2

∫
Ω

Φ̃dx − 2

∫
Σ

δdx

+
1

2

(∫
Σ

(G−1
m − G−1(x))

)
|∇ϕ|2dx.(5.9)

We apply (5.8) and expand the second term on the right-hand side of (5.9) to find∫
Σ

G−1(x)|∇Φ̃ + ∇δ|2dx =

∫
Σ

G−1(x)|∇Φ̃|2dx +

∫
Σ

G−1(x)|∇δ|2dx + 4

∫
Σ

δdx.

(5.10)
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Substitution of (5.10) into (5.9) yields

E(A,Ω) ≤ E(A ∪ Σ,Ω) +
1

2

∫
Σ

G−1(x)|∇δ|2dx

+
1

2

(∫
Σ

(G−1
m − G−1(x))

)
|∇ϕ|2dx.(5.11)

Multiplying by −2 and arranging terms, we find that

T (A ∪ Σ,Ω) ≤ T (A,Ω) +

∫
Σ

G−1(x)|∇δ|2dx

+

∫
Σ

(G−1
m − G−1(x))|∇ϕ|2dx.(5.12)

Next we minimize the right-hand side of (5.12) with respect to δ to obtain

T (A ∪ Σ,Ω) ≤ T (A,Ω) + U ,(5.13)

where

U =

∫
Σ

(G−1
m − G−1(x))∇ϕ̂ · ∇Φ̃ dx.(5.14)

Here ϕ̂ = δ̂ + Φ̃ in Σ and δ̂ solves∫
Σ

G−1
m ∇δ̂ · ∇u dx =

∫
Σ

(G−1(x) − G−1
m )∇Φ̃ · ∇u dx(5.15)

for every trial u vanishing on the boundary of Σ. From (5.15) and (5.5)–(5.7) we see
that ϕ̂ solves ∫

Σ

G−1
m ∇ϕ̂ · ∇u dx = 2

∫
Σ

u dx(5.16)

for every trial u vanishing on the boundary of Σ. This is equivalent to the differential
equation −G−1

m ∆ϕ̂ = 2 over Σ.
We decompose the trial ϕ̂ into two parts: ϕ̂ = r + ψh, where the function r

satisfies

∆r = 0 in Σ and r = Φ̃ on the boundary of Σ,(5.17)

and ψh satisfies

∆ψh = −2Gm in Σ and ψh = 0 on the boundary of Σ.(5.18)

Next we decompose Φ̃ into two components over Σ. We write Φ̃ = ψ − h. Here ψ is
continuous, vanishes on the boundary of Σ, and solves the torsion problem

−G−1(x)∆ψ = 2(5.19)

with the transmission condition

(GN
f )−1∇ψ|f · n = (GN

c )−1∇ψ|c · n on the fiber–coating interface |x − xN | = aN .

(5.20)
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The function h is continuous on Σ and h = −Φ̃ on the boundary of Σ. It is the
solution of

−G−1(x)∆h = 0(5.21)

and h satisfies the transmission condition

(GN
f )−1∇h|f · n = (GN

c )−1∇h|c · n on the fiber–coating interface |x − xN | = aN .

(5.22)

Substitution of the functions ψh, ψ, r, and h into U and (5.13) gives

T (A ∪ Σ,Ω) ≤ T (A,Ω) + TN
f − π

2
Gm b4N

+

∫
Σ

G−1
m |∇r|2 dx −

∫
Σ

G−1(x)|∇h|2 dx − 4

∫
Σ

r + h dx.(5.23)

For circular fiber cross sections calculation shows that
∫
Σ
r+ h dx = 0 and we obtain

T (A ∪ Σ,Ω) ≤ T (A,Ω) + TN
f − π

2
Gm b4N

+

∫
Σ

G−1
m |∇r|2 dx −

∫
Σ

G−1(x)|∇h|2 dx.(5.24)

It is clear that Proposition 5.1 holds when the indefinite term

D =

∫
Σ

G−1
m |∇r|2 dx −

∫
Σ

G−1(x)|∇h|2 dx

= G−1
m

(∫
Σ

|∇r|2 dx −
∫

Σ

Gm

G(x)
|∇h|2 dx

)
≤ 0.(5.25)

If Φ̃ = const on the boundary of Σ, then r = const and h = − const and D = 0. We
now examine conditions for which D ≤ 0 and r �= const and h �= − const. To do this
we search for the largest number β for which

β

∫
Σ

|∇r|2 dx −
∫

Σ

Gm

G(x)
|∇h|2 dx ≤ 0(5.26)

for every choice of r and h such that h = −r on the boundary of Σ, r is harmonic inside
Σ, and h is harmonic in the fiber and in the coating, and satisfies the transmission
conditions

Gm

GN
f

∇h|f · n =
Gm

GN
c

∇h|c · n(5.27)

on the fiber–coating interface. The set of all such r and h for which r �= const and
h �= const is denoted by C. The largest β is given by

β̂ = Gm inf
C

∫
Σ
G(x)−1|∇h|2 dx∫

Σ
|∇r|2 dx .(5.28)

The stationary values for the quotient given in (5.28) are denoted by βn, and the
stationary conditions for the stationary functions (rn, hn) in C are given by

(GN
c )−1∇hn · n = −βn∇rn · n(5.29)
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on the coating matrix boundary |x − xN | = bN . Choosing polar coordinates (θ, r)
such that the θ = 0 axis is along xN and r = |x − xN |, one finds that the stationary
functions are given by

rn = Kn
1 r

n exp(jnθ) for 0 ≤ r ≤ bN ,

hn = (Kn
2 r

n) exp(jnθ) for 0 ≤ r ≤ aN ,

hn =
(
Kn

3 r
n + Kn

4 r
−n

)
exp(jnθ) for aN ≤ r ≤ bN .(5.30)

Here j =
√
−1 and both real and imaginary parts of rn and hn are stationary func-

tions. The constants Kn
1 are arbitrary and the remaining constants are given by

Kn
2 = −Kn

1

(
2GN

f

GN
f − GN

c

)
b2nN

b2nN
GN

c +GN
f

GN
f
−GN

c
+ a2n

N

,

Kn
3 = −Kn

1

(
GN

c + GN
f

GN
f − GN

c

)
b2nN

b2nN
GN

c +GN
f

GN
f
−GN

c
+ a2n

N

,

Kn
4 = −Kn

1

a2n
N b2nN

b2nN
GN

c +GN
f

GN
f
−GN

c
+ a2n

N

.(5.31)

The stationary values are given by

βn = (GN
c )−1

(
GN

f (b2nN − a2n
N ) + GN

c (b2nN + a2n
N )

GN
f (b2nN + a2n

N ) + GN
c (b2nN − a2n

N )

)
.(5.32)

One readily checks for GN
f ≥ GN

c that βn is increasing with n and that β1 = 1/GN
CCA.

It can also be easily checked that (5.32) gives all of the stationary values. Indeed one
supposes there exists a stationary value β̃ not given by (5.32) to find that the only
associated stationary functions are of the form r = const, h = − const . Thus we find
that β̂ = Gmβ1 = Gm/GN

CCA to conclude that

if
Gm

GN
CCA

≥ 1, then D ≤ 0,(5.33)

and Proposition 5.1 follows.
The torsional rigidity for an arbitrary simply connected cross section reinforced

with N circular coated fibers is denoted by T N (Ω) and repeated application of Propo-
sition 5.1 gives the following.

Proposition 5.2 (upper bound). If Gi
c ≤ Gi

f , i = 1, . . . , N , and

Gi
CCA ≤ Gm for i = 1 . . . , N,(5.34)

then

T N (Ω) ≤ GmT0(Ω) +

N∑
i=1

(
T i
f − π

2
Gm b4i

)
,(5.35)

where T0(Ω) is the torsional rigidity of the homogeneous cross section containing ma-
terial with unit shear modulus.
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Proposition 2.6 follows directly from Proposition 5.2. To establish Proposition
2.4 one recalls the isoperimetric inequality

T0(Ω) ≤ π

2
R4,(5.36)

which holds for all cross sections Ω with area πR2; see Polya [7]. Proposition 2.4 then
follows from (5.36) and (5.35) when Gi

f = Gf and Gi
c = Gc, and ai/bi = ν1/2 for

i = 1, . . . , N .

6. Lower bounds on the torsional rigidity for Gi
f ≤ Gi

c. We focus on the

case where Gi
f ≤ Gi

c, i = 1, . . . , N . We proceed as in the last section and investigate
the effects of adding a circular coated fiber to an already existing configuration of
N − 1 coated fibers. At present no assumptions on the geometry or shear moduli of
the N−1 coated fibers are made. The part of the shaft cross section already occupied
by the coated fibers is denoted by A and the cross section of the circular coated
fiber to be added by Σ. Here Σ is composed of a circular fiber of radius aN with
shear modulus GN

f surrounded by a coating of outer radius bN with shear modulus

GN
c . The torsional rigidity of the original configuration is denoted by T (A,Ω). The

rigidity associated with the added fiber is written as T (A ∪ Σ,Ω).
Proposition 6.1 (lower rigidity inequality). If GN

f ≤ GN
c and if

Gm ≤ GN
CCA,(6.1)

then

T (A,Ω) + TN
f − π

2
Gm b4N ≤ T (A ∪ Σ,Ω).(6.2)

Proposition 6.1 is established with the aid of the variational principle given by
(2.1). One writes (2.1) as T (A ∪ Σ,Ω) = −2E(A ∪ Σ,Ω), where

E(A ∪ Σ,Ω) = min
ϕ

{
1

2

∫
Ω

G−1(x)|∇ϕ|2 dx − 2

∫
Ω

ϕdx

}
,(6.3)

where the piecewise constant shear modulus G(x) is Gm in the matrix and takes the
values Gi

f and Gi
c in the ith fiber and coating, respectively, for i = 1, . . . , N . The idea

of the proof is to estimate the quantity E(A∪Σ,Ω) in terms of E(A,Ω) associated with
the original configuration of N − 1 fibers. We let G(x) denote the piecewise constant
shear modulus for the original configuration A of N − 1 fibers. Here G(x) = G(x)
outside of Σ and inside Σ the shear modulus G(x) = Gm. We regroup terms in the
variational principle (6.3) and write

E(A ∪ Σ,Ω) = min
ϕ

{
1

2

∫
Ω

G−1(x)|∇ϕ|2dx − 2

∫
Ω

ϕdx

+
1

2

(∫
Σ

(G−1(x) − G−1
m )

)
|∇ϕ|2dx

}
.(6.4)

We obtain an estimate by substitution of a suitable trial field in (6.4). Our choice is
made as follows: We introduce the stress potential ΦA for the configuration A. Here
ΦA is continuous in Ω,

−G−1(x)∆ΦA = 2,(6.5)
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and satisfies the transmission conditions

Gi
f

−1∇Φ̃|f · n=Gi
c

−1∇Φ̃|c · n on the fiber–coating interface |x− xi|=ai, i=1, . . . , N − 1,

(6.6)

and

Gi
f

−1∇Φ̃|c · n= Gm
−1∇Φ̃|m · n on the matrix–coating interface, |x − xi|= bi, . . . , N − 1.

(6.7)

The trial field ϕ is chosen to match ΦA outside the coated fiber cross section Σ but
inside we suppose that ϕ = ΦA + δ, where δ is continuous, vanishes on the boundary
of Σ, is square integrable inside Σ, and has square integrable gradient over Σ. One
easily checks that ∫

Σ

Gm
−1∇ΦA · ∇δ dx = 2

∫
Σ

δ dx.(6.8)

Application of (6.8) and rearranging terms as in the previous section yield

T (A ∪ Σ,Ω) ≥ T (A,Ω) −
∫

Σ

Gm
−1|∇δ|2dx

+

∫
Σ

(G−1
m − G−1(x))|∇ϕ|2dx.(6.9)

On maximizing the right-hand side of (6.9) with respect to δ, we obtain

T (A ∪ Σ,Ω) ≥ T (A,Ω) + U ,(6.10)

where

U =

∫
Σ

(G−1
m − G−1(x))∇ϕ̂ · ∇ΦA dx.(6.11)

Here ϕ̂ = δ̂ + ΦA in Σ and δ̂ solves∫
Σ

G−1(x)∇δ̂ · ∇u dx =

∫
Σ

(G−1
m − G−1(x))∇ΦA · ∇u dx(6.12)

for every trial u vanishing on the boundary of Σ. From (6.8) and (6.12) we see that
ϕ̂ solves ∫

Σ

G−1(x)∇ϕ̂ · ∇u dx = 2

∫
Σ

u dx(6.13)

for every trial u vanishing on the boundary of Σ. Proceeding as in the last section
we introduce the continuous functions ψ, r, ψh, and h such that ϕ̂ = ψ − h and
ΦA = r + ψh. Here ψh and ψ are the same functions introduced in section 5. The
function ψh is the solution of (5.18) and ψ solves the transmission problem given by
(5.19) and (5.20). The function r is harmonic in Σ and r = ΦA on the boundary of
Σ. The function h is continuous on Σ and h = −ΦA on the boundary of Σ. It is the
solution of the transmission problem given by (5.21) and (5.22).

Substitution of the functions ψh, ψ, r, and h into U gives

T (A ∪ Σ,Ω) ≥ T (A,Ω) + TN
f − π

2
Gm b4N + D,(6.14)
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where the indefinite quantity D is given by (5.25). Its clear that (6.2) holds when
D ≥ 0. We find conditions for which D ≥ 0 when r �= const and h �= const. To do
this we search for the largest number ρ for which∫

Σ

|∇r|2 dx − ρ

∫
Σ

Gm

G(x)
|∇h|2 dx ≥ 0(6.15)

for every choice of r and h in C and r �= const and h �= − const. The largest ρ is given
by

ρ̂ = inf
C

∫
Σ
|∇r|2 dx∫

Σ
Gm

G(x) |∇h|2 dx
.(6.16)

Proceeding as in the previous section, we find that ρ̂ = GN
CCA/Gm. Thus D ≥ 0 when

GN
CCA/Gm ≥ 1 and the proposition follows.

The torsional rigidity for an arbitrary simply connected cross section reinforced
with N circular coated fibers is denoted by T N (Ω) and repeated application of Propo-
sition 6.1 gives the following.

Proposition 6.2 (lower bound). If Gi
f ≤ Gi

c, i = 1, . . . , N , and

Gm ≤ Gi
CCA for i = 1 . . . , N,(6.17)

then

GmT0(Ω) +

N∑
i=1

(
T i
f − π

2
Gm b4i

)
≤ T N (Ω).(6.18)

Proposition 2.7 follows directly from Proposition 6.2.
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DELAYED COUPLING BETWEEN
TWO NEURAL NETWORK LOOPS∗
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Abstract. Coupled loops with time delays are common in physiological systems such as neural
networks. We study a Hopfield-type network that consists of a pair of one-way loops each with three
neurons and two-way coupling (of either excitatory or inhibitory type) between a single neuron of
each loop. Time delays are introduced in the connections between loops, and the effects of coupling
strengths and delays on the network dynamics are investigated. These effects depend strongly on
whether the coupling is symmetric (of the same type in both directions) or asymmetric (inhibitory in
one direction and excitatory in the other). The network of six delay differential equations is studied by
linear stability analysis and bifurcation theory. Loops having inherently stable zero solutions cannot
be destabilized by weak coupling, regardless of the delay. Asymmetric coupling is weakly stabilizing
but easily upset by delays. Symmetric coupling (if not too weak) can destabilize an inherently stable
zero solution, leading to nontrivial fixed points if the gain of the neuron response function is not too
negative or to oscillation otherwise. In the oscillation case, intermediate delays can restabilize the
zero solution. At the borderline of the weak coupling region (symmetric or asymmetric), stability can
change with delay ranges. When the coupling strengths are of the same magnitude, the oscillations
of corresponding neurons in the two loops can be in phase, antiphase (symmetric coupling), or one
quarter period out of phase (asymmetric coupling) depending on the delay.

Key words. neural network, coupled loops, time delay, bifurcation, oscillation

AMS subject classifications. 92B20, 34K20, 34K18, 92C20

DOI. 10.1137/S0036139903434833

1. Introduction. Interacting loops that are capable of sustaining oscillation
are common in physiological systems. One approach to modeling such systems is via
coupled oscillators [13]. However, this approach does not lend itself to studying the
patterns of connections between oscillators when each oscillator is itself a network.
Furthermore, such networks may not be inherently oscillatory, but oscillations may
arise as a result of the coupling between them. If the coupling between networks is
slower than each network’s internal dynamics, then additional effects can arise from
the delay in the coupling. The coupling may also be faster than the internal dynamics,
in which case each network could be modeled with internal delays, or both the internal
connections and coupling between networks could have delays.

These questions arise in models of the brain’s motor circuitry, where there are
many interacting loops and feedback systems. For example, functionally separate
parallel loops operate through the basal ganglia (e.g., through matrisomes in the
striatum [10]) but may interact through crosstalk [2]. These loop interactions have
been implicated in the generation of tremor oscillations in Parkinson’s disease. The
effect of the particular patterns of connections between parallel copies of a network
was studied by Edwards and Gill [5], where synchrony of the network copies occurred

∗Received by the editors September 16, 2003; accepted for publication (in revised form) April 22,
2004; published electronically October 28, 2004. This work was supported by the Natural Sciences
and Engineering Research Council (Canada).

http://www.siam.org/journals/siap/65-1/43483.html
†Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
‡Centre for Nonlinear Dynamics in Physiology and Medicine, McGill University, Montréal, QC
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with appropriate crosstalk, but only when each network was in a periodic regime.

Previous work on these problems has not explicitly allowed for delays in connec-
tions. While analysis becomes more difficult with delays, their effects may be im-
portant for the applications. Research on Hopfield-type neural networks with delays,
first introduced by Marcus and Westervelt [15], has shown that delays can modify
dynamics in interesting ways. Delays have been inserted into various simple loop
structures. Some work [14, 17, 18] has considered systems of two neurons with de-
layed connections. Shayer and Campbell [18] gave a detailed analysis of dynamics
of two coupled units with delayed coupling and also delayed self-input, showing in
particular how oscillation occurs when the interactions are strong enough, but also
depending on the delays. A number of authors have studied loops of three or more
neurons with delays, showing various types of behavior including oscillations, waves,
steady states, and even chaos [1, 3, 7, 16, 21]. Other work has dealt with conditions
for stability of steady states in Hopfield-type networks of arbitrary structure (see, for
example, [4, 9, 18, 19, 20] and references therein).

The current study is an initial attempt to determine the effects of coupling (or
crosstalk) between parallel copies of a network structure in the presence of delays.
We focus on the simplest example that uses Hopfield network equations and in which
each network copy is capable of oscillation, namely, a pair of simple loops of three
neurons with one-way connections, with coupling between only one neuron of each
loop. We consider the case in which the coupling between the loops, rather than
the connections within the loops, is delayed. Of the previous studies mentioned
above, this is perhaps most similar to that of Shayer and Campbell [18], in which
the concern was also with delayed coupling between two potential oscillators, though
the oscillators were single neurons with self-input rather than small loops. A sin-
gle (one-way) loop of three Hopfield neurons can oscillate if their connections are
inhibitory and sufficiently strong. The coupling between the loops can change this
behavior, but we seek to determine how the behavior depends on the strength of cou-
pling, the delay in coupling, and the internal gain or connection strengths within each
loop.

We begin in section 2 with the dynamics of a single 3-loop (loop of three neu-
rons with one-way connections). In section 3 we look at a pair of coupled 3-loops,
giving results on stability of the trivial equilibrium and the presence of oscillation
over the parameter space defined by the internal gain parameter (positive or neg-
ative) and a coupling strength parameter, allowing either inhibitory or excitatory
coupling in either direction. Section 4 deals with delayed coupling between the loops.
Most of the analysis is local, but where we do not have global results, numerical
experiments support the conclusions. We summarize our results with a discussion
(section 5).

2. Isolated 3-loop without delay. Consider a Hopfield-type network of three
neurons connected in a (one-way) loop as in the following figure:
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This can be described by the system of ordinary differential equations (with sub-
scripts interpreted mod 3)

dxj

dt
= −xj + tanh (bxj−1) , j = 1, 2, 3,(2.1)

together with initial condition x(0) = (x1(0), x2(0), x3(0))t. Here xj represents the
normalized voltage of neuron j and b ∈ R is the gain of the response function, as-
sumed equal for each neuron. Interactions are inhibitory if b < 0 and excitatory if
b > 0. System (2.1) always has the trivial equilibrium (0, 0, 0)

t
, i.e., at the origin.

The existence of nontrivial equilibria depends on the value of b, as in the following
result.

Theorem 2.1. If b > 1, then system (2.1) has one positive symmetric and one
negative symmetric equilibrium. If b ≤ 1, then there is no nontrivial equilibrium.

Proof. At an equilibrium of (2.1), x1 = tanh (bx3)≡ f (x3) ; thus x2 = tanh (bx1) =
f (f (x3)) and x3 = tanh (bx2) = F (x3), where F (x) ≡ f (f (f (x))). Consider

h (x3) ≡ x3 − F (x3) = 0.(2.2)

Since f ′ (0) = b, h′(0) = 1 − b3. Also limx3→±∞ h (x3) = ±∞. From (2.2)

h′ (x3) = 1 − b3
2

sech (b tanh (b tanh (bx3)))
2

sech (b tanh (bx3))
2

sech (bx3) .(2.3)

Thus h′ (x3) ≥ 1 − b3 for b ≥ 0, which is nonnegative (for all x3) if b ≤ 1. Since
h (0) = 0, there is no nontrivial equilibrium for 0 ≤ b ≤ 1. For b < 0, (2.3) gives
h′ (x3) ≥ 1, which again shows that there is no nontrivial equilibrium.

If b > 1, then (2.3) gives h′′ (x3) > 0 for all x3 > 0, showing that h (x3) is concave
up. This, together with h (0) = 0, h′ (0) < 0, and h (x3) > 0 for sufficiently large
x3 > 0, shows that there is a unique positive solution x3 = x3 > 0 to (2.2). The
corresponding equilibrium values x1 > 0, x2 > 0 are determined from x3 and (2.1).
Since (2.2) holds also for x1 and x2, it must be that x1 = x2 = x3 = x, giving the
unique symmetric positive equilibrium as (x1, x2, x3) t = (x, x, x)

t
, with 0 < x < 1

from the equilibrium equation x = tanh (bx) . By symmetry, there is also a unique
negative equilibrium (x1, x2, x3) t = (−x,−x,−x)

t
if b > 1.

The linear stability of an equilibrium (x, x, x) t is governed by dx
dt = Ax, with

A =

⎡
⎣ −1 0 b sech2 (bx)

b sech2 (bx) −1 0

0 b sech2 (bx) −1

⎤
⎦ .(2.4)

The following result shows that a Hopf bifurcation can occur at the trivial equilibrium.
Theorem 2.2. The trivial solution of (2.1) is locally asymptotically stable iff

−2 < b < 1. At b = −2, the system undergoes a Hopf bifurcation and has stable limit
cycle solutions for b � −2.

Proof. The characteristic equation of A at x = 0 in (2.4) is − (1 + λ)
3
+b3 = 0. For

−2 < b < 1, all eigenvalues have negative real parts; thus the system is linearly stable.
When b = 1, there is a zero eigenvalue, and for b > 1 there is a real positive eigenvalue.
When b = −2, the eigenvalues are −3, ±

√
3i, and for b < −2 there is a complex pair

of eigenvalues with positive real part. At b = −2, matrix A is diagonalized by a
matrix P of eigenvectors. Approximating tanh (bxj) by bxj − b3x3

j/3 (ignoring terms
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of order ≥ 5) system (2.1) with x = (x1, x2, x3)
t

is transformed by y = P−1x with
y = (y1, y2, y3)

t
at b = −2 to

dy

dt
=

⎡
⎣ 0 −

√
3 0√

3 0 0
0 0 −3

⎤
⎦ y + P−1

(
8

3

)⎡
⎢⎣

(y1 + y3)
3(

−y1/2 −
√

3y2/2 + y3

)3(
−y1/2 +

√
3y2/2 + y3

)3
⎤
⎥⎦ .(2.5)

The center manifold is given by y3 = H (y1, y2), with H third order because the third
equation of (2.5) has no quadratic term. On the center manifold, (2.5) becomes[

dy1

dt
dy2

dt

]
=

[
0 −

√
3√

3 0

] [
y1

y2

]
+

[
p (y1, y2)
q (y1, y2)

]
,(2.6)

where p and q are determined by substituting y3 = H(y1, y2) in the first two equations
of (2.5). The standard formula for the criticality coefficient ((3.4.11) of Guckenheimer
and Holmes [11]) gives a = −1 < 0. Since Re (∂λ/∂b) = −1/2 when evaluated at
λ = ±

√
3i, b = −2, the supercritical Hopf bifurcation gives rise to stable periodic

solutions occurring for b � −2.
For a Hopfield 2-loop, the corresponding characteristic equation, − (1 + λ)

2
+b2 =

0, cannot have pure imaginary solutions. Thus a Hopfield 3-loop without delay is the
smallest that can undergo a Hopf bifurcation at the origin.

Global results for the trivial equilibrium when −2 < b ≤ 1 are now stated.
Theorem 2.1 of van den Driessche and Zou [20] can be used to show easily that if
|b| < 1, then the origin is globally asymptotically stable. For system (2.1), a Lyapunov

function V =
∑3

j=1 x
2
j can be used to extend the range of global stability of the origin

to −
√

2 ≤ b ≤ 1. Note that b = 1 is included here, whereas it was not in Theorem 2.2.
Numerical results indicate that the full range of global stability is −2 < b ≤ 1.

Global results for the existence and stability of periodic solutions for b < −2
are more difficult to obtain. However, in the limit b → −∞, when the hyperbolic
tangents become step functions, the problem is easier. Glass and Pasternack [8]
showed that n-dimensional networks similar to (2.1) but with step functions have
globally asymptotically stable periodic solutions for n ≥ 3. Numerical simulations
of (2.1) with b < −2 indicate that there is a unique globally asymptotically stable
periodic solution for each b ∈ (−∞,−2) .

Consider now the stability of the nontrivial equilibria (when they exist).
Theorem 2.3. For b > 1, the positive and negative symmetric equilibria of (2.1)

are locally asymptotically stable.
Proof. From (2.4), the characteristic equation of A is − (1 + λ)

3
+ b3 sech6 (bx) =

0, where (x, x, x)
t
with x > 0 is the positive symmetric equilibrium of (2.1) that exists

for b > 1 (by Theorem 2.1). Thus the eigenvalues are

λ1 (x) = −1 + b
2

sech (bx) , λ2,3 (x) = −1 −
(

1

2
± i

√
3

2

)
b

2

sech (bx) .

Since b sech2 (bx) > 0, local stability follows if λ1 (x) < 0. By (2.1), bx = tanh−1 (x)
and sech2 (bx) = 1 − x2, giving λ1 (x) = −1 + tanh−1 (x)

(
1 − x2

)
/x for 0 < x < 1,

which is equivalent to 1 < b < ∞. Also, λ1(0) = 0 at b = 1. Differentiating gives

dλ1

dx
(x) =

(
x−

(
1 + x2

)
tanh−1 (x)

)
/x2,
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which is negative, since tanh−1 (x) > x. Thus λ1 (x) < 0, showing that the positive
symmetric equilibrium is locally stable. Stability for x < 0 follows by symmetry.

Note that x → 0+ as b → 1+, showing that the linearly stable positive and
negative equilibria bifurcate from the trivial equilibrium as it loses stability. Thus the
system has a supercritical pitchfork bifurcation at b = 1.

3. Coupled loops without delay. Consider a pair of coupled 3-loops:
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The individual loops each follow the form of (2.1). Coupling strengths are given by
c1 and c2, where bcj > 0 implies excitatory and bcj < 0 implies inhibitory coupling.
The system of equations for the entire system is then

dx1

dt
= −x1 + tanh (bx3) ,

dx2

dt
= −x2 + tanh (bx1) ,

dx3

dt
= −x3 + tanh (bx2) + c1 tanh (bx6) ,(3.1)

dx4

dt
= −x4 + tanh (bx6) ,

dx5

dt
= −x5 + tanh (bx4) ,

dx6

dt
= −x6 + tanh (bx5) + c2 tanh (bx3) ,

together with initial condition x(0) = (x1(0), x2(0), x3(0), x4(0), x5(0), x6(0))t.
Equilibria of (3.1) satisfy x2 = f (x1) = f (f (x3)) and x5 = f (x4) = f (f (x6)),

where f (xj) ≡ tanh (bxj). Using the other two equations gives

x3 = F (x3) + c1f (x6) , x6 = F (x6) + c2f (x3) ,(3.2)

where F (x) = f (f (f (x))) as before. This can be reduced (for c1 �= 0) to

g (x3) ≡ [x3 − F (x3)] − c1f

(
f

(
f

(
1

c1
[x3 − F (x3)]

))
+ c2f (x3)

)
= 0 .(3.3)

Any x3 satisfying (3.3) determines x6 and hence all the variables at an equilibrium.
Clearly the origin xj = 0, j = 1, . . . , 6, is an equilibrium, and our interest mostly
focuses on its stability properties. However, we first show the existence of nontrivial
equilibria for some b values. Define d ≡ b2c1c2 and β ≡ b3. When d > 0, the coupling
is either excitatory or inhibitory in both directions (symmetric coupling); when d < 0,
the coupling is excitatory in one direction and inhibitory in the other (asymmetric
coupling).

Theorem 3.1. If d > (1 − β)
2
, then system (3.1) has nontrivial equilibria. If

either (i) 0 < β < 1 and d < (1 − β)
2
, or (ii) β < 0 and d < 1, then system (3.1) has

no nontrivial equilibrium.
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Proof. Assuming c1 �= 0, differentiating (3.3) gives

g′ (x3) = (1 − F ′ (x3))
(
1 − βs2

1s
2
2s

2
3

)
− ds2

1s
2
4,

where s2
k, k = 1, . . . , 4, represents sech2 (·) evaluated at some point; thus 0 < s2

k ≤ 1.

Since F ′(0) = β, it follows from the derivative above that g′(0) = (1 − β)
2 − d;

thus g (x3) is strictly decreasing at the origin if d > (1 − β)
2
. Clearly g(0) = 0 and

limx→∞ g (x3) = ∞ because f (and therefore F ) is bounded. Thus by continuity
there is at least one positive value of x3, namely, x3 > 0, such that g (x3) = 0. By
symmetry, g (−x3) = 0 and these values determine the other variables at a nontrivial
equilibrium.

For x3 > 0 if β > 0, then 0 < F ′ (x3) < β. Thus 0 < β < 1 implies that

(1 − β)
2 − d < g′ (x3) if d ≥ 0, and (1 − β)

2
< g′ (x3) < 1 − d if d ≤ 0. Thus

in case (i), g (x3) is strictly increasing for all x3 > 0. Similarly β < 0 implies that

β < F ′ (x3) < 0 and 1−d < g′ (x3) < (1 − β)
2

if d ≥ 0, and 1 < g′ (x3) < (1 − β)
2−d

if d ≤ 0. Thus in case (ii), g (x3) is strictly increasing for all x3 > 0. In both cases
there is no nontrivial positive equilibrium and, by symmetry, no nontrivial negative
equilibrium. If c1 = 0 but c2 �= 0, then reversing the roles of x3 and x6 leads to the
same conclusions. If c1 = c2 = 0, then the results follow from Theorem 2.1.

Note that Theorem 3.1 does not specify all regions of parameter space in which
nontrivial equilibria occur. It does not provide information about the regions where
β is large and positive or where β is large and negative with d > 1. Moreover, the
number and signs of equilibria may depend on the values of c1 and c2 for a given d.
For example, if b = 2 (so that β = 8) and c1 = c2 = 0, then there is one positive
and one negative nontrivial equilibrium for each uncoupled loop (see Theorem 2.1) so
that for the full system (3.1) there are nine equilibria, three of which have x3 positive.
However, if the coupling goes only one way, e.g., c1 > 0 but c2 = 0, then there can be
two or four different positive equilibrium values for x3 when b > 1.

The special case of symmetric coupling c1 = c2 is now considered.

Theorem 3.2. Let b > 1. If c1 = c2 > 0, then system (3.1) has a positive
equilibrium x∗ = (x1, x2, x3, x1, x2, x3)

t
and an equilibrium −x∗; if c1 = c2 < 0, then

it has equilibria x̃∗ = (x1, x2, x3,−x1,−x2,−x3)
t
with xj > 0, j = 1, 2, 3, and −x̃∗.

Proof. Consider c1 = c2 > 0 and suppose that x3 = x6; then (3.2) reduces to

G (x3) ≡ x3 − F (x3) − c1f (x3) = 0

at an equilibrium. Note that G (0) = 0, limx3→∞ G (x3) = ∞ and G′ (0) = 1 − b3 −
c1b < 0. Thus there is at least one positive zero x3 of G (x3). Since x3 = x6 > 0, it
follows that x1 = x4 > 0 and x2 = x5 > 0. By symmetry, the negative equilibrium
follows.

Consider c1 = c2 < 0 and suppose that x3 = −x6; then (3.2) reduces to

G̃ (x3) ≡ x3 − F (x3) + c1f (x3) = 0

at an equilibrium. By the above there is at least one positive zero x3 of G̃ (x3). Then
x1, x2 > 0 and x4, x5, x6 < 0. Symmetry gives the second equilibrium.

Numerical solutions demonstrate that additional equilibria can occur: for c1 =
c2 > 0 (respectively, < 0) there may be one or three equilibria with x3 > 0, x6 < 0
(respectively, x3 < 0, x6 > 0) and an equal number of symmetric equilibria.
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The linear stability of the trivial equilibrium xj = 0, j = 1, . . . , 6, can be deter-

mined from dx
dt = Ax with x = (x1, . . . , x6)

t
and

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 b 0 0 0
b −1 0 0 0 0
0 b −1 0 0 bc1
0 0 0 −1 0 b
0 0 0 b −1 0
0 0 bc2 0 b −1

⎤
⎥⎥⎥⎥⎥⎥⎦
.(3.4)

The characteristic equation for this system at xj = 0 with d ≡ b2c1c2 and β ≡ b3 is[
(1 + λ)

3 − β
]2

− d (1 + λ)
4

= 0.(3.5)

First consider the case d ≥ 0. The characteristic equation then factors as follows:

∆+
+(λ)∆+

−(λ) ≡
[
(1 + λ)

3 − β +
√
d (1 + λ)

2
] [

(1 + λ)
3 − β −

√
d (1 + λ)

2
]

= 0.

(3.6)

From the single-loop results (see Theorem 2.2), if d = 0, then the origin is locally
asymptotically stable for −8 < β < 1 and unstable for β < −8 and β > 1. To find
the stability region for

√
d > 0, look for curves in the βd-plane on which there is a

zero or pure imaginary eigenvalue.
From (3.6), zero eigenvalues occur when 1−β = ±

√
d. Pure imaginary eigenvalues

λ = iω with ω > 0 make ∆+
+(λ) = 0 when their real and imaginary parts are zero,

namely,

1 − 3ω2 − β +
√
d
(
1 − ω2

)
= 0 and ω

(
3 − ω2 + 2

√
d
)

= 0.

The second condition above gives ω2 = 3 + 2
√
d, which can be substituted into the

first condition to yield β = −2(2 +
√
d)2. To make ∆+

−(λ) = 0, there is an analogous

condition where
√
d is replaced by (−

√
d), as long as ω2 = 3− 2

√
d > 0, i.e.,

√
d < 3

2 ,

namely, β = −2(2 −
√
d)2. Note that this curve intersects the parabola of zero

eigenvalues at β = − 1
2 , d = 9

4 . These curves are shown in Figure 3.1. It is clear by
continuity from the single-loop results (d = 0) that the region labeled “STABLE” in
the figure corresponds to linear stability of the origin. By picking points in the other
regions, it can easily be checked that the origin is unstable there.

In the case where d ≤ 0 in (3.5), factor the characteristic equation as

∆−
+(λ)∆−

−(λ) ≡
[
(1 + λ)

3 − β + i
√
−d (1 + λ)

2
] [

(1 + λ)
3 − β − i

√
−d (1 + λ)

2
]

= 0.

(3.7)

Now, λ = 0 when 1−β± i
√
−d = 0, i.e., only at the point β = 1 and d = 0. Working

with ∆−
+(λ) = 0, λ = iω implies that

β = 1 − 2
√
−dω − 3ω2 and

√
−d =

ω
(
ω2 − 3

)
(1 − ω2)

(if ω2 �= 1),(3.8)

giving β = 1 − 3ω2 − 2ω2
(
ω2 − 3

)
/
(
1 − ω2

)
. Working with ∆−

−(λ) = 0 gives this
same equation in β and ω.
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beta
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-12 -8 -4 -1 0 1 4

STABLE

STABLE

Fig. 3.1. Regions in the parameter plane indicating stability of the origin in the coupled loop
system (see (3.1)). The solid parabolic curve indicates parameter values where there is a zero eigen-
value. Dashed curves indicate parameter values where there are pure imaginary eigenvalues. The
linearly stable regions defined by these boundaries are marked. The shaded area indicates where
global stability of the origin has been proved.

The fact that
√
−d ≥ 0 implies that ω is in one of the intervals

(
−∞,−

√
3
]
,

(−1, 0], or
(
1,
√

3
]
. In these intervals, (3.8) can be considered parametric equations

for curves in the βd-plane. The curves are shown in Figure 3.1. Linear stability
can again be checked by examining eigenvalues at points within each region. In the
regions where d > 0 and β > 1 −

√
d, there are real positive eigenvalues, so the

origin is an unstable node. Everywhere else outside the stability region it can be
verified that there are complex conjugate pairs of eigenvalues with positive real parts,
suggesting the existence of stable oscillations. Note that the pair of positive real
eigenvalues becomes a complex pair with positive real part as d becomes negative
(β > 1) .

For equal coupling strengths, as in the case of the single loop, global stability of
the origin can be shown on a subset of the linear stability region.

Theorem 3.3. The origin is globally asymptotically stable for system (3.1) with
|c1| = |c2| ≡ c > 0 when |b| < 2

γ , where γ = 1 + 2c (B1 + 1) and B1 is the positive

root of the cubic 8c3B1 (1 + B1)
2

= 1.

The proof uses the Lyapunov function V =
∑6

j=1 aj x
2
j , where aj > 0 are given as

a1 = a4 = B1+B2

2 , a2 = a5 = 1
4c + B2

2 , a3 = a6 = 1
4c + B1+1

2 , and B2 =
√
B1/2c. De-

tails of the proof are omitted. The condition |b| < 2
γ can be interpreted in terms

of β and d by taking d = ±b2c21 (the sign depending on the sign of c1c2, with
|c1| = |c2|), and the resulting global stability region is the diamond-shaped region
in Figure 3.1. Note that it covers most of the local stability region in the positive
quadrant.
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4. Coupled loops with delay. The case with delayed coupling connections
between the 3-loops leads to the following system of delay differential equations:

dx1

dt
= −x1(t) + tanh (bx3(t)) ,

dx2

dt
= −x2(t) + tanh (bx1(t)) ,

dx3

dt
= −x3(t) + tanh (bx2(t)) + c1 tanh (bx6(t− τ)) ,(4.1)

dx4

dt
= −x4(t) + tanh (bx6(t)) ,

dx5

dt
= −x5(t) + tanh (bx4(t)) ,

dx6

dt
= −x6(t) + tanh (bx5(t)) + c2 tanh (bx3(t− τ)) ,

where τ ≥ 0 is the time delay, and when τ = 0 this reduces to (3.1). To pose an initial
value problem at t = 0, we must specify data for each variable on the interval [−τ, 0],
i.e., xj(t) = φj(t), −τ ≤ t ≤ 0, j = 1, . . . , 6.

The equilibria for (4.1) are the same as for (3.1); in particular, Theorem 3.1 is
also valid for (4.1). Using Theorem 2.1 of van den Driessche and Zou [20], we give
one global stability result for system (4.1): If |b|maxi{1 + |ci|} < 1, then the origin
is globally asymptotically stable for all values of delay τ ≥ 0. However, for other
parameter ranges the stability of the equilibria may change due to the delay. In the
next subsection we focus on the linear stability analysis of the trivial equilibrium.
This then leads us to a discussion of the bifurcations of the trivial equilibrium.

4.1. Stability regions. Linearization of (4.1) about the origin gives

x′(t) = A1x(t) + A2x(t− τ),(4.2)

where

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 b 0 0 0
b −1 0 0 0 0
0 b −1 0 0 0
0 0 0 −1 0 b
0 0 0 b −1 0
0 0 0 0 b −1

⎤
⎥⎥⎥⎥⎥⎥⎦
, A2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 bc1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 bc2 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(4.3)

The characteristic equation for this system with d ≡ b2c1c2 and β ≡ b3 is[
(1 + λ)3 − β

]2 − d(1 + λ)4e−2τλ = 0.(4.4)

Section 3 describes the stability region of the trivial equilibrium when τ = 0 (see
Figure 3.1). To determine the stability region for τ > 0, we determine curves in the
dτ -plane along which (4.4) has a zero root or a pair of pure imaginary roots. Given
values of β and d for which the trivial equilibrium is stable at τ = 0, it remains so for
0 ≤ τ ≤ τcrit, where τcrit is the lowest value of τ on one of these curves.

First consider the case d ≥ 0. The characteristic equation then factors as

∆+
+(λ)∆+

−(λ)
(4.5)

≡
[
(1 + λ)3 − β + (1 + λ)2

√
de−τλ

] [
(1 + λ)3 − β − (1 + λ)2

√
de−τλ

]
= 0.

As for the nondelayed case, zero roots occur when d = (1 − β)2 ≡ d0.
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Lemma 4.1. Let β and τ be fixed.
(i) If β < 1 and τ �= 2 + 3

β−1 , then ∆+
−(λ) has a simple zero root when d = d0;

the number of roots of (4.4) with positive real part increases (decreases) by
one as d increases through d0 with τ > 2 + 3

β−1 (τ < 2 + 3
β−1).

(ii) If β > 1 and τ �= 2 + 3
β−1 , then ∆+

+(λ) has a simple zero root when d = d0;

the number of roots of (4.4) with positive real part increases (decreases) by
one as d increases through d0 with τ > 2 + 3

β−1 (τ < 2 + 3
β−1).

(iii) If β = 1, both factors of (4.5) have a simple zero root when d = d0 = 0.
(iv) If β < 1 (β > 1) and τ = 2 + 3

β−1 , then ∆+
−(λ) (∆+

+(λ)) has a double zero
root when d = d0.

Proof. The presence of zero roots follows from the facts that ∆+
+(0) = 0 when√

d = β − 1 and ∆+
−(0) = 0 when

√
d = 1 − β. For case (iv), note that

d

dλ
∆+

±(λ) = 3(1 + λ)2 ± 2(1 + λ)
√
de−τλ ∓ τ(1 + λ)2

√
de−τλ.

Thus, if
√
d = ±(β − 1) and τ = 2 + 3

β−1 , then d
dλ∆+

±(0) = 0. The fact that zero is a

simple root in cases (i)–(iii) also follows from this derivative.
To study the rate of change of the real part of a root, λ, of (4.5), consider either

factor of this equation. For d > 0, differentiating with respect to d, keeping in mind
that λ is a function of d, and rearranging give

dλ

d d
=

±(1 + λ)2
√
de−τλ

−6d(1 + λ)2 ∓ 4d(1 + λ)
√
de−τλ ± 2dτ(1 + λ)2

√
de−τλ

,

where the upper sign in ±, ∓ refers to ∆+
+ and the lower sign to ∆+

−. Using (4.5) to

eliminate ±
√
de−τλ and setting λ = 0 and d = d0 yield

dλ

d d

∣∣∣∣
λ=0

=
1

2(β − 1)[(τ − 2)(β − 1) − 3]
.

Consideration of the sign of the right-hand side completes the proofs of (i) and
(ii).

For d > 0, to find the curves where pure imaginary roots exist, set λ = iω in each
factor of (4.5) and separate into real and imaginary parts. Without loss of generality,
take ω > 0. For ∆+

+(λ), isolating sin (ωτ) and cos (ωτ) yields

(1 + ω2)2
√
d cos(ωτ) = −

(
(1 + ω2)2 − β(1 − ω2)

)
≡ −C(ω),

(1 + ω2)2
√
d sin(ωτ) = ω

(
(1 + ω2)2 + 2β

)
≡ S(ω).

(4.6)

To find d and τ in terms of β and ω, square the equations in (4.6) and add to give

d = dim(ω) ≡ (1 + ω2)3 + 2β(3ω2 − 1) + β2

(1 + ω2)2
.(4.7)

Dividing the second equation of (4.6) by the first gives tan(ωτ) = −S (ω) /C (ω).
However, this loses information about the signs of cos(ωτ) and sin(ωτ) that is in
(4.6). Thus we introduce y = Arctan(u) as the branch of the arctangent function
with range (−π

2 ,
π
2 ). Note that this corresponds to cos(y) > 0 and that the function
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Arctan(u) + π corresponds to cos(y) < 0. The other branches of the arctangent
function are obtained from these two by adding multiples of 2π. As can be seen from
(4.6), the sign of cos(ωτ) is determined by C(ω), and thus we define

τ = τ+
k+(ω) ≡ 1

ω

⎧⎪⎨
⎪⎩

Arctan
(
−S(ω)

C(ω)

)
+ 2kπ, C(ω) < 0,

Arctan
(
−S(ω)

C(ω)

)
+ (2k + 1)π, C(ω) > 0,

(4.8)

where k = 0, 1, . . . . (We do not take k < 0 as these branches always yield τ < 0.)

In a similar manner it can be shown that the curves along which the second
factor, ∆+

−(λ), of (4.5) has a pair of pure imaginary roots are given by (d, τ) =
(dim(ω), τ+

k−(ω)), where dim is as above and

τ+
k−(ω) ≡ 1

ω

⎧⎪⎨
⎪⎩

Arctan
(
−S(ω)

C(ω)

)
+ 2kπ, C(ω) > 0,

Arctan
(
−S(ω)

C(ω)

)
+ (2k + 1)π, C(ω) < 0.

(4.9)

The zeros of C(ω) define the points where the branches join. To see how the sign
of C(ω) varies with β and ω, rewrite the first equation of (4.6) as a quartic in ω,
namely, C(ω) = ω4 + (2 + β)ω2 + 1 − β. The roots of this quartic are ±ω+

C ,±ω−
C ,

where

ω±
C =

√
−1 − β

2
± 1

2

√
β(β + 8).(4.10)

All four roots exist if β ≤ −8 (with ω+
C = ω−

C when β = −8), no roots exist if

−8 < β < 1, and only ±ω+
C exists if β ≥ 1 (ω+

C = 0 when β = 1). This yields the
following ranges:

β < −8 : C(ω) > 0 for 0 < ω < ω−
C , ω+

C < ω,

C(ω) < 0 for ω−
C < ω < ω+

C ,

−8 ≤ β ≤ 1 : C(ω) > 0 for 0 < ω, ω �= ω±
C ,

1 < β : C(ω) < 0 for 0 < ω < ω+
C ,

C(ω) > 0 for ω+
C < ω.

Now consider the case d < 0. The characteristic equation factors as

(4.11)

∆−
+(λ)∆−

−(λ)

≡
[
(1 + λ)3 − β + i(1 + λ)2

√
−de−τλ

] [
(1 + λ)3 − β − i(1 + λ)2

√
−de−τλ

]
= 0.

Clearly, neither factor has a zero root. Note that λ is a root of ∆−
+(λ) iff λ̄ is a

root of ∆−
−(λ). This is a consequence of the fact that the roots of the unfactored

characteristic equation (4.4) come in complex conjugate pairs. Following a similar
procedure to that for d > 0, pure imaginary roots iω,−iω with ω > 0, of the first
and second factors, respectively, exist along the curves (d, τ) = (−dim(ω), τ−k+(ω)).
Similarly, pure imaginary roots −iω, iω with ω > 0, of the first and second factors,
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respectively, exist along the curves (d, τ) = (−dim(ω), τ−k−(ω)). Here

τ−k+(ω) ≡ 1

ω

⎧⎪⎨
⎪⎩

Arctan
(

C(ω)
S(ω)

)
+ 2kπ, S(ω) < 0,

Arctan
(

C(ω)
S(ω)

)
+ (2k + 1)π, S(ω) > 0,

(4.12)

τ−k−(ω) ≡ 1

ω

⎧⎪⎨
⎪⎩

Arctan
(

C(ω)
S(ω)

)
+ 2kπ, S(ω) > 0,

Arctan
(

C(ω)
S(ω)

)
+ (2k + 1)π, S(ω) < 0.

(4.13)

The zeros of S(ω) define the points where the branches join. To make the definitions

of τ−k± more precise, the sign of S(ω) with ωS =
√√

−2β − 1 is given as follows:

β < − 1
2 : S(ω) < 0 for 0 < ω < ωS ,

S(ω) > 0 for ωS < ω,
β ≥ −1

2 : S(ω) > 0 for 0 < ω.

To determine what these curves look like, we use the following results that are
derived by using L’Hôpital’s rule. Note that we consider only τ ≥ 0.

Lemma 4.2. For the functions in (4.7)–(4.9), (4.12), (4.13),

dim(0) = d0, lim
ω→∞

dim(ω) = ∞; lim
ω→∞

τ±k± = 0;

lim
ω→0+

τ+
k± = ∞, k > 0; lim

ω→0+
τ+
0 + =

{
2 + 3

β−1 , β > 1,

∞, β ≤ 1;

lim
ω→0+

τ+
0− =

⎧⎨
⎩

∞, β > 1,
−∞, β = 1,

2 + 3
β−1 , β < 1;

lim
ω→0+

τ−k± = ∞, k > 0; lim
ω→0+

τ−0 + =

{ −∞, β < − 1
2 ,

∞, β ≥ − 1
2 ;

lim
ω→0+

τ−0− =

⎧⎨
⎩

∞, β < 1,
1, β = 1,

−∞, β > 1.

Lemma 4.3. For 1
2 (5 − 3

√
3) ≤ β ≤ 12 − 4

√
5, i.e., β approximately ∈ [−0.0981,

3.0557], dim(ω) is a nondecreasing function of ω. Outside this interval it is nonmono-
tone and has the following behavior. For β < 1

2 (5−3
√

3) or β ≥ 1
2 (5+3

√
3) ≈ 5.0981,

there exists ωc > 0 such that dim(ω) is decreasing for 0 < ω < ωc and increasing for
ω > ωc. For 12− 4

√
5 < β < 1

2 (5 + 3
√

3), there exist 0 < ωc1 < ωc2 such that dim(ω)
is increasing for 0 < ω < ωc1 and ω > ωc2 and decreasing for ωc1 < ω < ωc2.

Proof. From (4.7) it is clear that

d dim
dω

= 2ω
ω6 + 3ω4 + 3(1 − 2β)ω2 + 2β(5 − β) + 1

(1 + ω2)3
;(4.14)

thus the sign of d dim

dω is determined by Ω3 + 3Ω2 + 3(1− 2β)Ω + 2β(5− β) + 1, where
Ω = ω2. Consideration of the sign of the constant term shows that the cubic has an
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even number of positive roots if β ∈ [ 12 (5 − 3
√

3), 1
2 (5 + 3

√
3)) and an odd number

otherwise. The discriminant of this cubic is a positive multiple of −β2(β2−24β+64),
which is nonnegative for β ∈ [12 − 4

√
5, 12 + 4

√
5] and negative otherwise. Thus

outside this interval the cubic has one real root, and inside it has three. For β ∈
[ 12 (5 − 3

√
3), 12 − 4

√
5), the cubic has no positive roots and at β = 12 − 4

√
5 it

has a double positive root. Consideration of the graph of the cubic in Ω shows that
d dim

dω ≥ 0 for β ∈ [ 12 (5−3
√

3), 12−4
√

5], and hence dim(ω) is a nondecreasing function

of ω. For β < 1
2 (5 − 3

√
3) or β ≥ 1

2 (5 + 3
√

3) the cubic has one positive root, Ωc.

Let ωc =
√

Ωc. For 12 − 4
√

5 < β < 1
2 (5 + 3

√
3), the cubic has two positive roots

Ωc1 < Ωc2. Let ωcj =
√

Ωcj . The results follow from the graph of the cubic.
Lemma 4.4. For fixed β, τ , the number of roots of (4.4) with positive real part in-

creases (decreases) by two as τ increases through one of the curves (d, τ) = (dim, τ+
k±),

where dim is an increasing (decreasing) function of ω. The number of roots of (4.4)
with positive real part increases (decreases) by two as τ increases through one of the
curves (d, τ) = (−dim, τ−k±), where −dim is a decreasing (increasing) function of ω.

Proof. Consider the first factor of (4.5). Differentiating with respect to τ gives

dλ

dτ
=

λ(1 + λ)
√
de−τλ

3(1 + λ) +
√
de−τλ(2 − τ(1 + λ))

.

Using (4.5) to eliminate e−τλ and setting λ = iω yield

dλ

dτ

∣∣∣∣
λ=iω

=
iω

[
β + 4ω2 − (1 − ω2)2 + iω(β − 4(1 − ω2))

]
1 − 3ω2 + 2β − τ(β + 4ω2 − (1 − ω2)2) + iω[3 − ω2 − τ(β − 4(1 − ω2))]

.

Taking the real part gives

d [Re(λ)]

dτ

∣∣∣∣
λ=iω

=
ω2

K2
1 + K2

2

(
ω6 + 3ω4 + 3(1 − 2β)ω2 + 2β(5 − β) + 1

)
,

where

K1 = 1 − 3ω2 + 2β − τ(β + 4ω2 − (1 − ω2)2), K2 = ω[3 − ω2 − τ(β − 4(1 − ω2))].

The second factor of (4.5) or either factor of (4.11) yields the same expression. Using
(4.14) gives

d [Re(λ)]

dτ

∣∣∣∣
λ=iω

=
ω(1 + ω2)3

2(K2
1 + K2

2 )

d dim
dω

,

along the curves associated with pure imaginary roots of (4.5). Along the curves asso-
ciated with pure imaginary roots of (4.11), dim is replaced by −dim so the derivative
is of opposite sign. The result follows.

From section 3, when τ = 0 and β < − 1
2 the characteristic equation has a

pair of pure imaginary roots λ = ±i
√
−1 +

√
−2β = ±iωS at the positive value

d = d+ ≡ (2 −
√
−β/2)2. Similarly, when τ = 0 and β ≤ −8 the characteristic

equation has pairs of pure imaginary roots λ = ±iω+
C ,±iω−

C , as defined in (4.10), at
the following negative values of d:

d−± ≡ −ω± 2
C (ω± 2

C − 3)2

(1 − ω± 2
C )2

.
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The roots at d−+ also occur when β > 1. Note that d+ must correspond to the
value of dim when τ = 0 and d−± to values of −dim when τ = 0. More specif-
ically, the definitions (4.8)–(4.9) and (4.12)–(4.13) of τ±k± give the following. For

β ≤ −8, d+ is the d intercept of the curve (dim(ω), τ+
0 +(ω)) and d−∓ are the d in-

tercepts of the curves (−dim(ω), τ−0±(ω)). For −8 < β < − 1
2 , d+ is the d inter-

cept of the curve (dim(ω), τ+
0−(ω)). For β > 1, d−+ is the d intercept of the curve

(−dim(ω), τ−0−(ω)).

We now describe the region of stability of the trivial equilibrium in the dτ -plane
for intervals of values of β by finding bifurcation curves on which an eigenvalue has
zero real part. This is the content of the rest of this section. Theorem 4.5 is illustrated
(using Maple) in Figure 4.1(a) with β = 1.5, Theorem 4.6 is illustrated in Figure 4.1(b)
with β = 0.1, and Theorem 4.7 is illustrated in Figure 4.4 with β = −10.

Theorem 4.5. Let 1 ≤ β ≤ 12 − 4
√

5 be fixed. Then the trivial solution of (4.1)
is linearly asymptotically stable for d < d−+, 0 ≤ τ < τ−0−.

Proof. From section 3, for τ = 0 and β ≥ 1, all roots of the characteristic
equation have negative real parts if d < d−+ (see Figure 3.1). For fixed β and d, as τ is
increased the number of roots with positive real parts remains the same until τ reaches
the smallest value for which the characteristic equation has a pair of pure imaginary
roots. This value is τ−0−. To see this, note from Lemma 4.4 that dim is a continuous

nondecreasing function of ω with 0 ≤ d0 ≤ dim < ∞ and that d−+ < −d0. Thus for
any fixed d < d−+ there is one positive value of ω such that −dim(ω) = d. Further, it
is straightforward to show that, for any value of ω, τ−0−(ω) < τ−0 +(ω) < τ−k±(ω) for
k = 1, 2, . . . . Thus all the roots of the characteristic equation have negative real parts
in the given range of d and τ . Applying the results of Lemma 4.4 shows there is at
least one root of the characteristic equation with positive real part everywhere else in
the dτ -plane.

(a) (b)

STABLE

STABLE

0

2

4

6

8

10

τ

–4 –2 2 4
d

β=1.5

0

2

4

6

8

10

τ

–4 –2 2 4
d

β=0.1

Fig. 4.1. Bifurcation curves for the trivial solution of (4.1) for (a) β = 1.5, (b) β = 0.1. The
stability region is qualitatively the same for (a) 1 ≤ β ≤ 12 − 4

√
5, (b) 1

2
(5 − 3

√
3) ≤ β < 1. Along

the solid (dashed) curves with d > 0, ∆+
−(λ) (∆+

+(λ)) has a pair of pure imaginary roots. Along

the solid (dashed) vertical line d = d0, ∆+
−(λ) (∆+

+(λ)) has a zero root. Along the solid (dashed)

curves with d < 0, ∆−
−(λ) (∆−

+(λ)) has a root iω with ω > 0 and ∆−
+(λ) (∆−

−(λ)) has the complex
conjugate root −iω.
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τ
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d

β=3.5

Fig. 4.2. (a) Bifurcation curves for the trivial solution of (4.1) for β = 3.5. (b) Close-up
showing stability region. The meaning of the solid and dashed curves are as described for Figure 4.1.

Theorem 4.6. Let 1
2 (5−3

√
3) ≤ β < 1 be fixed. Then the trivial solution of (4.1)

is linearly asymptotically stable for −d0 ≤ d < d0, 0 ≤ τ or d < −d0, 0 ≤ τ < τ−0−.

Proof. From section 3, for τ = 0 and 1
2 (5 − 3

√
3) ≤ β < 1, all roots of the

characteristic equation have negative real parts if d < d0 (see Figure 3.1). Using the
same argument as in the proof of Theorem 4.5, it can be shown that all roots of the
characteristic equation have negative real parts for d < −d0 and 0 ≤ τ < τ−0−. From
Lemma 4.3, dim is a monotone function of ω for the assumed β range. Thus, using
Lemma 4.2 for ω > 0, dim(ω) ≥ dim(0) = d0 and −dim(ω) ≤ −dim(0) = −d0. Hence
for −d0 ≤ d < d0 and τ ≥ 0 all roots of the characteristic equation have negative real
parts. The rest of the proof is the same as for Theorem 4.5.

When β no longer lies in the first range given in Lemma 4.3, the curves along
which the characteristic equation has pure imaginary roots become nonmonotone.
This has two consequences. First, there will be values of ω such that dim(ω) < d0,
and second, there may exist intersection points of the curves (dim(ω), τ+

j ±(ω)) and

(−dim(ω), τ−j ±(ω)) with each other and with the line d = d0. In this situation, the

boundary of the stability region is made up of pieces of the curves (dim(ω), τ+
j ±(ω))

and (−dim(ω), τ−j ±(ω)) and of the line d = d0.

Consider first the case β > 12 − 4
√

5. For this range of β, we observe that
(d, τ) = (−dim, τ−0−) intersects itself. The stability region is still bounded by the d

axis for d < d−+ and the curve (−dim(ω), τ−0−(ω)). However, part of the curve now
forms a loop, inside which the trivial solution is unstable (this may be verified by
applying Lemma 4.4). This is illustrated in Figure 4.2 with β = 3.5. We believe that
the stability region is qualitatively the same for any β > 12 − 4

√
5.

Now consider the range β < 1
2 (5 − 3

√
3). For β ≤ − 1

2 part of the curve of pure

imaginary eigenvalues (dim(ω), τ+
0−(ω)) enters the nonnegative τ region (this can be

seen from the limits in Lemma 4.2). Using this fact, the discussion above, and the
results of Lemmas 4.2 and 4.3, it can be shown that for − 1

2 ≤ β < 1
2 (5 − 3

√
3) the

stability region looks qualitatively as depicted in Figure 4.3(a) and for −8 < β < − 1
2

it looks qualitatively as depicted in Figure 4.3(b).
As β is decreased, the curves of pure imaginary eigenvalues approach the τ axis

(and the stability region shrinks) until at β = −8 their points of minimal d value
actually touch the τ axis. Recall that for β < −8, the curves (−dim(ω), τ−0−(ω))
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Fig. 4.3. Bifurcation curves for the trivial solution of (4.1) for (a) β = −0.4, (b) β = −1. The
stability region is qualitatively the same for (a) − 1

2
≤ β < 1

2
(5 − 3

√
3), (b) −8 < β < − 1

2
. The

meaning of the solid and dashed curves is as described for Figure 4.1.

and (−dim(ω), τ−0 +(ω)) intersect the d axis at d−+ and d−−, respectively. From their

definitions, (4.12)–(4.13), and the fact that d−− < d−+, these curves must have an
intersection point. We denote this point by (dint, τint) and have the following result,
illustrated in Figure 4.4, for β = −10.

Theorem 4.7. Let β ≤ −8 be fixed. Then the trivial solution of (4.1) is linearly
asymptotically stable for d < d−−, 0 ≤ τ < τ−0− or d−− ≤ d < dint, τ

−
0 + < τ < τ−0−.

Proof. From section 3, for τ = 0 and β ≤ −8, all the roots of the characteristic
equation have negative real parts if d < d−− (see Figure 3.1). Using the same argument
as in the proof of Theorem 4.5, it can be shown that all roots of the characteristic
equation have negative real parts for d < d−− and 0 ≤ τ < τ−0−. For τ = 0 and

d−− < d < d−+, the characteristic equation has two roots with positive real parts.
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d
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Fig. 4.4. (a) Bifurcation curves for the trivial solution of (4.1) for β = −10. (b) Close-up
showing stability region. The stability region is qualitatively the same for any β ≤ −8. The meaning
of the solid and dashed curves is as described for Figure 4.1.
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Applying Lemma 4.4 shows that the number of roots with positive real parts decreases
by two along the part of (−dim(ω), τ−0 +(ω)), where −dim is increasing, and increases

by two along the part of
(
−dim(ω), τ−0−(ω)

)
, where −dim is decreasing. The rest of

the proof is the same as for Theorem 4.5.

4.2. Bifurcations. In the previous subsection, we determined all points in pa-
rameter space where the trivial solution of (4.2) has eigenvalues with zero real parts.
The bifurcations that may occur at such points as a system parameter is varied are
important, particularly when they lie on the boundary of the stability region, as they
determine the observable behavior of the system.

Consider first the case when a zero root of (4.4) exists. This occurs for parameter
values along the line d = d0. For β �= 1, it can be shown that the conditions for
a pitchfork bifurcation to occur are satisfied at almost all points on this line. In
particular, taking d as the bifurcation parameter, Lemma 4.1 shows that the root is
simple for β �= 1 and τ �= 2 + 3

β−1 . To ensure that the characteristic equation has
no other roots with zero real part, the points of intersection of the line d = d0 with
the curves (dim(ω), τ+

± (ω)) and (−dim(ω), τ−± (ω)) must also be excluded. In terms of
the original model parameters, taking d as the bifurcation parameter is equivalent to
fixing b, τ , and one of the cj and using the other cj as the bifurcation parameter.

Consider now the case when a pair of pure imaginary roots of (4.4) exists. This
occurs for parameter values on the curves (dim(ω), τ+

± (ω)) and (−dim(ω), τ−± (ω)). A
statement of the Hopf bifurcation theorem for delay equations can be found in [12,
Chapter 11]. It can be shown that this theorem is satisfied at almost all points on these
curves. In particular, taking τ as the bifurcation parameter, Lemma 4.4 shows that
the roots are simple at all points where ddim

dω �= 0. To ensure that the characteristic
equation has no other roots with zero real part, the points of intersection of each
curve with d = d0 and the other curves where pure imaginary roots exist must be
excluded.

If there is slightly more symmetry in the model, then some interesting patterns
in the bifurcating solutions emerge. Suppose that c1 = c2 = c, as in parts of section 3
(e.g., Theorem 3.2), implying that d = b2c2 > 0. In this case, only the pitchfork bifur-
cation and the Hopf bifurcations along (dim(ω), τ+

± (ω)) can occur. Consider the bifur-
cations that occur at a point in parameter space where ∆+

−(λ) has a root with zero real
part. (This corresponds to the solid curves in the figures of the previous subsection.)
When bc > 0 it is straightforward to show that the solution of (4.2) corresponding
to a root λ of ∆+

−(λ) has the form eλt(y1, y2, y3, y1, y2, y3)
t. Thus we expect that the

bifurcating solutions have a similar property—namely, the corresponding elements of
the two loops are in phase, or synchronized. Similarly, when bc < 0 the solution of
(4.2) corresponding to a root λ of ∆+

−(λ) has the form eλt(y1, y2, y3,−y1,−y2,−y3)
t,

and we expect the bifurcating solutions have corresponding elements of the two loops
antiphase (or half a period out of phase). The solutions corresponding to roots of
∆+

+(λ) have just the opposite property. When bc > 0 they are antiphase and when
bc < 0 they are in-phase. When c1 �= c2 but c1 ≈ c2, we expect that bifurcating
solutions are almost in-phase or almost antiphase. Such behavior was observed in
[18].

Now suppose that c1 = −c2 = c, implying that d = −b2c2 < 0. In this case, only
Hopf bifurcations along the curves (−dim(ω), τ−± (ω)) occur. When the characteristic
equation has a pair of roots λ = ±iω, corresponding solutions of (4.2) have the
form eλt(y1, y2, y3,±iy1,±iy2,±iy3)

t. Thus corresponding elements of the bifurcating
periodic orbits are one quarter period out of phase. When c1 �= −c2 but c1 ≈ −c2,
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Fig. 4.5. Numerical simulations of (4.1) with b = −1, c1 = c2 = 1.75. The plots in each
case show x1 (solid line) and x4 (dot-dash line) vs. t. (a) τ = 0.3; periodic orbit with x4(t) =
−x1(t). (b) τ = 1.5; periodic orbit with x4(t) = x1(t). Initial conditions for both cases x(t) =
(1,−0.7,−0.9, 1.1, 0.8, 1.2)t, −τ ≤ t ≤ 0.
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Fig. 4.6. Numerical simulations of (4.1) with b = −1, τ = 0.5, and c1 = −c2. The plots
in each case show x1 (solid line) and x4 (dot-dash line) vs. t. (a) c1 = 1.75; periodic orbit with
x4(t) = x1(t − T

4
), where T is the period. (b) c1 = −1.75; periodic orbit with x4(t) = x1(t + T

4
).

Initial conditions as for Figure 4.5.

we expect that bifurcating solutions are close to one quarter period out of phase.

These results are illustrated in Figures 4.5–4.6, showing numerical simulations of
(4.1), with b = −1 and other parameters as indicated, which correspond to points in
the stability diagram of Figure 4.3(b). Only x1 and x4 are shown in Figures 4.5–4.6;
solutions for other pairs are similar. Simulations were performed in XPPAUT [6]
using a fourth order Runge–Kutta integrator adapted for delay differential equations.

5. Discussion. Combining local and global results with numerical evidence, we
arrive at the following summary of the dynamics of these loops. Results are given
in terms of β = b3 and d = b2c1c2, where b is the gain of the response function
for each neuron and ci are the coupling strengths between the 3-loops. The loops
are inherently (i.e., in isolation) oscillatory for β < −8. The origin is proved to be
globally stable for β ∈ (−2

√
2, 1), and numerical evidence extends this to (−8, 1). For
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β > 1 the solutions approach a nontrivial stable fixed point (the origin is unstable).

The effect of coupling depends on whether it is symmetric (excitatory in both
directions or inhibitory in both directions) or asymmetric (excitatory in one direc-
tion and inhibitory in the other). It is interesting that the linear stability analysis
is identical for excitatory and inhibitory coupling, as long as it is the same in both
directions, as it depends essentially on the product of the two coupling coefficients.
This was also noted in the somewhat similar situation studied by Shayer and Camp-
bell [18]. Symmetric coupling of sufficient strength (not necessarily very strong) can
destabilize the origin in the middle (inherently stable) β range. When β ∈ (− 1

2 , 1),
the system goes to nontrivial fixed points, but when β ∈ (−8,− 1

2 ), it first goes to
oscillation as coupling is increased. Asymmetric coupling of sufficient strength (and
here it needs to be quite strong) can stabilize the origin in either of the two inherently
unstable ranges. The further β is from the inherently stable range, the stronger the
coupling needs to be to accomplish this stabilization. In the case of symmetric cou-
pling, nontrivial equilibria exist when β is large enough, but there are no nontrivial
equilibria for smaller β when the coupling is weak. In the case of asymmetric cou-
pling, there are no nontrivial equilibria for β < 1. It is not clear whether nontrivial
equilibria occur for other regions of parameter space. For most regions, oscillation of
the system is suggested when the linear results show that the origin is unstable.

We have observed five main delay-related phenomena in this system.

1. When coupling is asymmetric (d < 0) and large, the stability of the origin
is weak in the sense that only a small delay is needed to destabilize it and
produce oscillation. This is delay-induced oscillation or delay-induced insta-
bility, which has commonly been observed in delayed networks since the early
work of Marcus and Westervelt [15].

2. In the inherently stable range β ∈ (−8, 1), delay independent stability exists
for weak enough coupling (|d| small) whether symmetric or asymmetric.

3. For intermediate values of |d| and β ∈ (−8,−0.098), whether the system
oscillates or settles at the origin depends on the delay in a complex way. For
some delay ranges, the origin is stable, and for others it is unstable, and there
can be stability/instability switches as the delay increases.

4. For β ∈ (−8,− 1
2 ), if coupling is symmetric and fairly strong (d > 0 and large

but still < (1− β)2), in the region where coupling has destabilized the origin
to create oscillation, there is an intermediate range of delays (not including
zero but not too large) that stabilizes the origin again and suppresses the
oscillations. This is delay-induced stability or oscillator death.

5. For equal and symmetric coupling strengths, oscillatory solutions in the two
loops bifurcating from the origin may be in phase or antiphase depending
on the value of the delay. For asymmetric coupling with equal strengths,
corresponding neurons in the two loops oscillate one quarter period out of
phase.

Some of these results are similar to those found by Shayer and Campbell [18] for
a simpler coupled system. However, their work focused on the symmetric coupling
case.

Some properties of coupled systems that can each potentially oscillate begin to
emerge from these studies—in particular, the ways in which oscillation or instability
depends on the interaction between coupling strength and coupling delay. Although
the system studied here is too simple to draw definite conclusions about physiological
systems, results do show that complicated effects can occur even in the simplest



DELAYED COUPLING BETWEEN TWO NEURAL NETWORK LOOPS 335

coupled loops with delay. This study could be extended by investigating other patterns
of coupling between two loops, such as “lateral” coupling between each corresponding
pair of units in the two loops (if the loops have the same structure), or “forward”
coupling as studied without delays by Edwards and Gill [5]. For applications in which
the units are far apart, it would be worthwhile to include delays in connections within
each loop.

Acknowledgment. We wish to acknowledge the assistance of Daisuke Shinki in
carefully checking the results and proofreading the paper.
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SINGULARITY FORMATION IN CHEMOTAXIS—
A CONJECTURE OF NAGAI∗

HOWARD A. LEVINE† AND JOANNA RENC�LAWOWICZ†‡

Abstract. Consider the initial-boundary value problem for the system (S) ut = uxx − (uvx)x,
vt = u − av on an interval [0, 1] for t > 0, where a > 0 with ux(0, t) = ux(1, t) = 0. Suppose
µ, v0 are positive constants. The corresponding spatially homogeneous global solution U(t) = µ,
V (t) = µ/a + (v0 − µ/a) exp(−at) is stable in the sense that if (µ′, v′0) are positive constants, the
corresponding spatially homogeneous solution will be uniformly close to (U(·), V (·)).

We consider, in sequence space, an approximate system (S′) which is related to (S) in the
following sense: The chemotactic term (uvx)x is replaced by the inverse Fourier transform of the
finite part of the convolution integral for the Fourier transform of (uvx)x. (Here the finite part of

the convolution on the line at a point x of two functions, f, g, is defined as
∫ x

0
(f(y)g(y− x) dy.) We

prove the following:
(1) If µ > a, then in every neighborhood of (µ, v0) there are (spatially nonconstant) initial

data for which the solution of problem (S′) blows up in finite time in the sense that the
solution must leave L2(0, 1)×H1(0, 1) in finite time T . Moreover, the solution components
u(·, t), v(·, t) each leave L2(0, 1).

(2) If µ > a, then in every neighborhood of (µ, v0) there are (spatially nonconstant) initial
data for which the solution of problem (S) on (0, 1)× (0, Tmax) must blow up in finite time
in the sense that the coefficients of the cosine series for (u, v) become unbounded in the
sequence product space �1 × �11.

A consequence of (2) states that in every neighborhood of (µ, v0), there are solutions of (S)
which, if they are sufficiently regular, will blow up in finite time. (Nagai and Nakaki [Nonlinear
Anal., 58 (2004), pp. 657–681] showed that for the original system such solutions are unstable in the
sense that if µ > a, then in every neighborhood of (µ, µ/a), there are spatially nonconstant solutions
which blow up in finite or infinite time. They conjectured that the blow-up time must be finite.)
Using a recent regularity result of Nagai and Nakaki, we prove this conjecture.

Key words. chemotaxis, finite time singularity formation, Keller–Segel model
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1. Introduction. The classical equations of chemotaxis were introduced in [15,
16, 22]. A variant of them, which was later discussed in [14], takes the form

ut = D1(∆u−∇ · (uχ(v)∇v)),

vt = D2∆v + λu− av
(1.1)

when the diffusivities Dj are constant. The constants in (1.1) are presumed to be
positive. Generally speaking, u(·, t) represents the cell concentration (or local popu-
lation) of some species, while v(·, t) corresponds to the concentration of a chemotactic
agent such as cyclic adenosine monophosphate (cAMP). The function χ(v) is called
the chemotactic sensitivity.
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This system is not of standard reaction-diffusion type since the first equation
will involve the Laplacian of the second dependent variable. Typically, the boundary
conditions are of Neumann type for the first equation and of either mixed or Dirichlet
type for the second equation. Precise conditions will be given later.

In the growing literature on singularity formation in chemotaxis, the problems
studied tend to fall into one of two types.1

In the first type, the time scale of the second equation is assumed to be much
smaller than that of the first, i.e., D2 � D1, or the cell species has infinite propagation
speed, while the chemical species has diffused so rapidly that it has come to a steady
state. In this case, the system simplifies into one of elliptic-parabolic type, namely,

ut = D1(∆u−∇ · (uχ(v)∇v)),

0 = D2∆v + λu− av.
(1.2)

A number of papers have been concerned with the phenomenon of blowup for such
systems. See [2, 1, 5, 9, 10, 8, 19], for example. The first such result in this direction
seems to be contained in [13]. The rough idea of the approach to this system is to solve,
at least in principle, the second (elliptic) equation in (1.2) for v as a nonlocal, but
linear, function of u and then eliminate v from the first equation leaving a nonlinear,
nonlocal dynamical equation for u.

In the second, and probably less well studied form, the time scale of the second
equation is assumed to be much larger than that of the first, so fast in fact that
the diffusion of the chemical species can be neglected. (That is, D2 �D1.) In this
case the spatial movement of the chemical is being controlled by the movement of
the particles which the chemical influences through its gradient. This was used as an
example to illustrate the modelling approach to Dictyostelium discoideum movement
taken in [21].

The reaction term λu−av is the cAMP saturated limit approximation of a reaction
term that more accurately reflects Michealis–Menten reaction kinetics. A model of
D. discoideum movement which views the cell receptors as the catalyzing agent for
cAMP production can be found in [6, pp. 498ff.]. However, if cAMP is not in excess,
then one must replace the reaction term by a term of the form k1uv

k2+v − av, where
λ = k1/k2, in order to more accurately describe the cell receptor kinetics involved
(see [6, pp. 273ff.]). The system then takes the form

ut = D1∇ ·
{
u∇

[
ln

u

ψ(v)

]}
,

vt = R(u, v) =
k1uv

k2 + v
− av.

(1.3)

The advantage of writing the system in this form is that one can see that if the system
is tending toward a steady state, u should follow ψ(v).

Indeed, by using the principles of reinforced random walk [4], the authors of [21]
derived the first of equations (1.3) ab initio. However, by writing the flux vector
−→
J as

−→
J = −D1(

−→∇u− χ(v)u
−→∇v),

1If one sets τ = D1t, then D1 drops out of the first equation, while the second equation becomes
D1∂τv = D2∆v + λu − av. One then lets D1 → 0 in this equation in the first case. In the second
case, one lets D1, a, λ → ∞ in such a way that a/D1, λ/D1 remain constant.
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defining ψ(v) by the equation ψ′(v)/ψ(v) = χ(v), and using the continuity equa-

tion ut = −−→∇ · −→J , we obtain the first equation in (1.3) by continuum mechanical
considerations.

Here the solution approach, taken, for example in [17], is to solve the second
equation for u as a nonlinear function of v, vt and then eliminate it from the first
equation, leaving a rather messy third order equation in v. Reference [17] is devoted
to a detailed discussion and interpretation of the numerical results obtained there and
earlier in [21] for the resulting equation.

In [17], the discussion begins with consideration of the following special case of
(1.3) on an interval [0, 1] for t > 0 with ψ(v) = v:

ut = ∇ ·
{
u∇

[
ln

u

v

]}
,

vt = R(u, v) = uv

(1.4)

with ux(0, t) = ux(1, t) = 0 and vx(0, t) = vx(1, t) = 0 (which then imply the zero flux
conditions ux = uvx at x = 0, 1). The vector [µ(x, t), v0(x, t)]

t ≡ [1, et]t is a spatially
homogeneous solution of (1.4) with [1, 1] as initial datum. The following statement is
a consequence of the results of [17]: Let c be the positive root of c2+Nc−1 = 0 and let
0 < ε < 1. Given any mode number N , there is a direction [uN , vN ]t ≡ [Nc, 1]t cos(Nx)
in the closed subspace of L2(0, 1)×H1(0, 1) consisting of the closure of functions which

satisfy u[log(u/v)]x = 0 at x = 0, 1, and a curve given by
−→
R (ε) ≡ [u(·, 0, ε), v(·, 0, ε)]t

in L2(0, 1)×H1(0, 1) of initial data passing through [1, 1] with the property that any
solution initially emanating from this curve will blow up in a finite time.

This solution is given by u = ψt(x, t), v = exp(ψ), where

ψ(x, t) = t− ln[1 − 2ε exp(Nct) cos(Nπx) + ε2 exp(2Nct)].

Moreover, this solution has the important biological property that it leaves the above
space by aggregation, in particular, by virtue of the fact that ‖u(·, t)‖L2(0,1) blows
up in finite time. It is conceivable that for such systems, ‖u(·, t)‖L2(0,1) can remain
bounded, while ‖ux(·, t)‖L2(0,1) blows up in finite time. In [21], this possibility was
demonstrated numerically, while in [17], a plausibility argument was given to show
that these numerical results were not just artifacts of the simulations and were to be
expected from the underlying dynamical system.

The result tells us that in every neighborhood of the initial data for the spatially
homogeneous solution [1, et]t, there are solutions of arbitrarily high initial total vari-
ation which begin in this neighborhood and blow up in finite time. The numerical
evidence suggests that every arbitrarily small nonconstant perturbation of the initial
data for [1, et]t (which must have a nontrivial projection onto at least one of the direc-
tions [Nc, 1]t cos(Nx) for some N) must blow up in finite time. (This interpretation
was not spelled out in [17].)

Clearly if we replace v by exp(v) in the system (1.4), there results

ut = uxx − (uvx)x,

vt = u,
(1.5)

which, when ε ≥ 0, is a special case of

ut = uxx − (uvx)x,

vt = εvxx + u− av.
(1.6)
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Equation (1.6) is the classical system studied in [3]. In its turn, this system con-
tains as a special case the system of Nagai and Nakaki taken up in section 2. However,
it is important to note that in [20], the authors establish the well posedness of the
initial-boundary value problem for this system (with homogeneous Neumann bound-
ary conditions) as well as the existence of a global attractor. Their proof demands
that ε > 0 in order to establish the existence of a global Lyapunov functional. An
alternate proof of this result has been given in [12]. There the authors also provide
an asymptotic profile of the solution.

Thus we are left with the question of what happens to solutions when the dissi-
pation in v is weak, i.e., when ε = 0 and a > 0. This is the problem raised by Nagai
and partially addressed by him and Nakaki in [18].

The plan of the paper is as follows. In section 2 we discuss their system and
the results they established recently [18]. There we also discuss a related initial
value problem for their system and introduce a closely related approximate initial
value problem. In section 3 we reformulate the Nagai–Nakaki system as an infinite
system of nonlinear ordinary differential equations. In section 4, we introduce a second
infinite system of ordinary differential equations which is closely related to the system
of ordinary differential equations in section 3. This second system is related to the
first in much the same way as the approximate initial value problem is related to the
full initial value problem for their system.

In section 5 we establish the local existence and uniqueness of solutions of their
system when µ > a in the sequence space �1×�11, i.e., in the space of pairs of sequences
({ai}, {bi}) such that

∑
i≥1(|ai|+ i|bi|) is finite. (This sequence space is continuously

and injectively imbedded in L1(0, 1)×W 1,1(0, 1). However, the inverse of the injection
(restricted to the image) is not continuous. We discuss this point in more detail in
section 7.)

In section 6, we demonstrate that the spatially homogeneous solutions of the
system of ordinary differential equations for the approximate problem are unstable in
the sense that in every neighborhood of the spatially homogeneous solution there are
solutions in L2(0, 1) ×H1(0, 1) with spatially inhomogeneous data which blow up in
finite time in this space.

In section 7, we establish this conjecture. That is, if µ > a, then in every neigh-
borhood of (µ, v0) there are (spatially nonconstant) initial data for which the corre-
sponding solution of the Nagai–Nakaki problem in the cylinder must blow up in finite
time (in a sense to be made precise below). This result will yield the Nagai–Nakaki
conjecture for solutions that are sufficiently regular.

2. The system of Nagai and Nakaki [18]. Nagai, in a talk given at the
International Conference on Partial Differential Equations and Mathematical Biology,
Wuhan, China, 2001, considered the following initial-boundary value problem:

ut = uxx − (uvx)x,

vt = u− av
(2.1)

with a ≥ 0. As boundary conditions he took

ux(0, t) = vx(0, t)u(0, t),

ux(1, t) = vx(1, t)u(1, t).
(2.2)

These boundary conditions follow from the conditions ux(0, t) = ux(1, t) = 0 and
vx(0, 0) = vx(1, 0) = 0 because the second equation of (2.1) implies that vx(0, t), vx(1, t)
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satisfy y′(t) = −ay(t). (In what follows we will refer to (2.1) and (2.2) as Nagai’s prob-
lem or the Nagai–Nakaki problem.)

To set the notational stage for what follows, we introduce a potential function
ψ(x, t) as follows: We let v(x, t) ≡ V (t)+ψ(x, t), u(x, t) ≡ U(t)+ũ(x, t). The spatially
homogeneous solution of Nagai’s problem is

(V (t), U(t)) = (µ/a + (v0 − µ/a) exp(−at), µ).

This and the second equation force the choice for ũ = ψt + aψ so that

(ψ,ψt + aψ)t = (v − V (t), u− µ) = (v, u)t − (V (t), U(t))t.(2.3)

In particular, in what follows, the reader is cautioned that (ψ,ψt + aψ)t corresponds
to the pair (v, u+ aψ)t. (That is, with reference to [18], the pairing is (u, v), while in
the theorems and proofs here, the pairing is (v, u).)

We are interested in those potential functions for which∫ 1

0

ψ dx =

∫ 1

0

ψt dx = 0(2.4)

in order to ensure that the mass,
∫ 1

0
u dx, is conserved.

Recently Nagai and Nakaki [18] have established the following statements for a
restricted class of initial data perturbations for which the corresponding solutions are
more regular than L2(0, 1) ×H1(0, 1).

To save the reader a bit of time, we give a rough summary of their results. (By
initial values, we mean initial values for which the mean value of u is µ and which are
not identical with the stationary solution (µ, µ/a).)

1. If the initial values are sufficiently regular (in particular if they are ana-
lytic functions) and if they satisfy the boundary conditions, then the solution
components u, v will be in H2(0, 1) and will be continuous or continuously
differentiable in time into the appropriate range on the interval of existence.

2. If µ < a and the initial values are sufficiently regular, then (u, v) approaches
(µ, µ/a) exponentially rapidly in the norm of H1(0, 1) ×H2(0, 1).

3. Suppose µ > a and suppose that the initial values are sufficiently regular.
a. If the initial data satisfy

W (u(, ·, 0), v(·, 0)) < µ lnµ− µ2

2a
,

where f > 0, g ≥ 0 and where

W (f, g) ≡
∫ 1

0

(f ln f − fg + ag2/2) dx,

and if the solution exists for all time, then each component of (u, v)
blows up in the H1 norm as t → +∞.

b. If the blow-up time is finite, then each component blows up in L∞, i.e.,
pointwise.

3. There are also solutions in each such neighborhood which converge to the
steady state solutions in infinite time in the norm of H1(0, 1) ×H2(0, 1).

Stability results for related problems have been established in [7, 23]. All of the
exact solutions found in [23] were found earlier in [17] in rescaled form, contrary to
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the implication in [23, p. 776]. (The solutions in [23] follow from those of [17] after a
shift in the time axis.)

In his talk, Nagai mentioned that he and Nakaki were unable to resolve whether
or not the blowup occurred in finite time. Therefore, we shall refer to the following
statement as Nagai’s conjecture. There are choices of initial data (u(·, 0), v(·, 0)) for
which the blow-up time must be finite.

In view of the results of [17], when a = 0, the blowup must occur in finite time.
Motivated by this simple observation, we set about trying to establish this for Nagai’s
problem. However, we were unable to establish this claim in L2(0, 1) ×H1(0, 1).

In the course of our investigations, we happened upon a problem, which is, in a
sense, close to that of the problem of Nagai, for which Nagai’s conjecture holds for
(u, v) ∈ L2(0, 1)×H1(0, 1). Moreover, this result allows us to prove the conjecture of
Nagai in a Banach space different from that proposed by Nagai. More precisely, if we
denote by {(an(t), bn(t))}∞n=1 the sequence of cosine coefficients for the pair (ψ,ψt),
we show that

∑
n(n|an(t)| + |bn(t)|) must blow up in finite time.

As remarked above, blowup in sequence space in this sense does not imply blowup
of the L1 norm of ψ, ψx, or ψt.

We see that ψ satisfies

ψtt + (µ− a)ψxx = (ψtx − ψtψx)x − a(ψt + (ψψx)x).(2.5)

In order to motivate the approximate problem, we digress for a moment and
consider the pure initial value problem for (2.5). If we compute the Fourier transform

ϕ(ξ, t) = ψ̂(x, t) =
∫∞
−∞ e−iξxψ(x, t)dx and assume that ψ,ψx vanish at x = ±∞

on any interval [0, T ) where the solution of the initial value problem exists, we find
(suppressing the second argument on the right)

ϕtt + (a + ξ2)ϕt + ξ2(a− µ)ϕ =
aξ2

2
ϕ ∗ ϕ(ξ) + ξϕt ∗ (ηϕ)

=
1

2

∫ ξ

0

[aξ2ϕ(ξ − η)ϕ(η) + 2ξ(ξ − η)ϕ(ξ − η)ϕt(η)] dη

+
1

2

∫ ∞

ξ

{aξ2ϕ(ξ − η)ϕ(η) + ξ[(ξ − η)ϕ(ξ − η)ϕt(η)

+ ηϕ(η)ϕt(ξ − η)]} dη.

(2.6)

If ψ,ψx are sufficiently regular, then

lim
|ξ|→+∞

∫ ∞

ξ

aξ2ϕ(ξ − η)ϕ(η) + ξ[(ξ − η)ϕ(ξ − η)ϕt(η) + ηϕ(η)ϕt(ξ − η)] dη = 0.

(2.7)

We can estimate the terms in (2.7) as follows:∣∣∣∣
∫ ∞

ξ

ξ2ϕ(ξ − η)ϕ(η) dη

∣∣∣∣ ≤ ξ2‖ϕ‖L∞

∫ ∞

ξ

|ϕ(η)| dη,

while

1

2

∣∣∣∣
∫ ∞

ξ

ξ[(ξ − η)ϕ(ξ − η)ϕt(η) + ηϕ(η)ϕt(ξ − η)] dη

∣∣∣∣ ≤ |ξ|‖ηϕ(η)‖L∞

∫ ∞

ξ

|ϕt(η)| dη.
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These inequalities give us an idea of how rapidly the transform of the solution should
decay.

The Fourier transform of the partial differential equation which approximates
Nagai’s problem is the equation

ϕtt + (a + ξ2)ϕt + ξ2(a− µ)ϕ(2.8)

=
1

2

∫ ξ

0

[aξ2ϕ(ξ − η)ϕ(η) + 2ξ(ξ − η)ϕ(ξ − η)ϕt(η)] dη ≡ Φ(φ, φt)(ξ, t).

The nonlinear partial differential equation itself can be recovered from (2.8) in
the form

ψtt + [aψ + ψxx]t + (µ− a)ψxx =
︷︸︸︷
Φ (φ, φt)(x, t),(2.9)

where
︷︸︸︷
Φ denotes the inverse Fourier transform of Φ. We call Φ the finite part of

the Fourier transform of (uvx)x. (Notice that, except for the factor ξ2, Φ is the sum
of the finite parts of two convolutions, one of φ with itself and the other of φt(ξ) with
ξφ(ξ).)

In section 4, we derive a system of ordinary differential equations for the cosine
coefficients of the initial-boundary value problem for (2.9). This initial-boundary
value problem corresponds to the natural initial-boundary value problem for (2.5)
which arises from Nagai’s problem, i.e., ψx = ψxt = 0 at x = 0, 1 and t > 0 with
ψ,ψt prescribed at t = 0. The resulting system of ordinary differential equations for
the cosine coefficients of the solution of (2.9) is related to the corresponding system
of ordinary differential equations for the cosine coefficients of the solution of Nagai’s
problem in much the same way that (2.8) is related to (2.6).

In order to see how the former system comes about, we next derive the corre-
sponding system of ordinary differential equations for Nagai’s problem.

3. Reformulation of the Nagai–Nakaki system as a system of ordinary
differential equations. We introduce some notation. Let β ≥ 0 and i ∈ {1, 2}.
We work in the spaces �iβ([0, T )) of sequences of real valued functions {gn(t)}∞n=1 on

[0, T ) for which
∑∞

n=1 n
β |gn(t)|i < ∞. When β = 0 we omit the subscript. That is,

�iβ = �i0 = �i.

We say that a sequence of differentiable functions {gn(t)}∞n=1 is in �iβ([0, T )) ×
�jβ′([0, T )) if the sequence {gn(t)}∞n=1 is in �iβ([0, T )) and the sequence {g′n(t)}∞n=1 is

in �jβ′([0, T )).
Assuming that µ > a, we seek a solution of this equation in the form

ψ(x, t) =

∞∑
n=1

gn(t) cos(Cnx),(3.1)

where C = 2πM for some integer M . With this choice of M the conservation condi-
tions (2.4) hold.
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Consequently,

(ψtψx)x = −C

∞∑
n=2

∑
k+l=n

kgkg
′
l(cos(Clx) sin(Ckx))x

= −1

2
C2

∞∑
n=2

∑
k+l=n

kgkg
′
l[(k + l) cos(C(k + l)x) + (k − l) cos(C(k − l)x)]

= −1

2
C2

∞∑
n=2

n−1∑
k=1

kgkg
′
n−k[n cos(Cnx) + (2k − n) cos(C(2k − n)x)],

(3.2)

and

(ψψx)x = −C

∞∑
n=2

∑
k+l=n

kgkgl(cos(Clx) sin(Ckx))x

= −1

2
C2

∞∑
n=2

∑
k+l=n

kgkgl[(k + l) cos(C(k + l)x) + (k − l) cos(C(k − l)x)]

= −1

4
C2

∞∑
n=2

n−1∑
k=1

gkgn−k[n
2 cos(Cnx) + (2k − n)2 cos(C(2k − n)x)].

(3.3)

Then (2.5) can be rewritten in the form

∞∑
n=1

(g′′n + (C2n2 + a)g′n − (µ− a)C2n2gn) cos(Cnx)

=
1

2
C2

∞∑
n=2

n−1∑
k=1

{kgkg′n−k [n cos(Cnx) + (2k − n) cos(C(2k − n)x)]

+
a

2
gkgn−k

[
n2 cos(Cnx) + (2k − n)2 cos(C(2k − n)x)

]
}.

The terms involving cos(C(2k − n)x) on the right-hand side can be rewritten by
switching the order of summation and setting l = 2k − n to obtain

∞∑
n=2

n−1∑
k=1

(2k − n)kgkg
′
n−k cos(C(2k − n)x) =

∞∑
k=1

∞∑
n=k+1

(2k − n)kgkg
′
n−k cos(C(2k − n)x)

=
∞∑
k=1

k−1∑
l=−∞

lkgkg
′
k−l cos(Clx)

=

∞∑
k=1

∞∑
l=1

(−l)kgkg
′
k+l cos(Clx)

+

∞∑
k=1

k−1∑
l=1

lkgkg
′
k−l cos(Clx)

= −
∞∑
l=1

∞∑
k=1

lkgkg
′
k+l cos(Clx)

+

∞∑
l=1

∞∑
k=l+1

lkgkg
′
k−l cos(Clx).
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Likewise,

∞∑
n=2

n−1∑
k=1

gkgn−k(2k − n)2 cos(C(2k − n)x) =

∞∑
k=1

∞∑
n=k+1

gkgn−k(2k − n)2 cos(C(2k − n)x)

=

∞∑
k=1

∞∑
l=−(k−1)

gkgl+kl
2 cos(Clx)

= 2

∞∑
l=1

(
l2

∞∑
k=1

gkgl+k

)
cos(Clx),

the third line following from the second by breaking up the inner sum on the right
of the second line into an infinite sum over positive integers and a finite sum over
negative integers l = −1, . . . ,−(k − 1). The latter inner sum is then rewritten as a
finite sum over positive indices and the order changed in the resultant double sum.

Therefore, we have

∞∑
n=1

(g′′n+(C2n2 + a)g′n − (µ− a)C2n2gn) cos(Cnx)

=
1

2
C2

∞∑
n=2

n−1∑
k=1

(
nkgkg

′
n−k +

a

2
n2gkgn−k

)
cos(Cnx)

+
1

2
C2

∞∑
n=1

n

[ ∞∑
k=n+1

kgkg
′
k−n −

∞∑
k=1

kgkg
′
k+n + an

∞∑
k=1

gkgn+k

]
cos(Cnx).

(3.4)

We obtain the following (infinite) system of ordinary differential equations:

Lngn ≡ g′′n + (C2n2 + a)g′n − (µ− a)C2n2gn

=
1

2
C2n

{
n−1∑
k=1

(
kgkg

′
n−k +

a

2
ngkgn−k

)

+

∞∑
k=1

[
(n + k)gn+kg

′
k − kgkg

′
k+n + angkgn+k

]}
for n = 1, 2, . . . .

(3.5)

In order to rewrite (3.5) in a more compact form, we introduce the notation

|g| = {|gk|}∞k=1,

Tng = {gn+k}∞k=1 (shift operator),

g′ = {g′k}∞k=1 (differentiation),

Mg = {kgk}∞k=1 (multiplication by the transform variable),

g ∗ h =

{
n−1∑
k=1

gkhn−k

}∞

n=1

(convolution),

(g, h) =

∞∑
k=1

gkhk (scalar product in �2).

Then one can solve the Nagai–Nakaki system in the aforementioned function space
if and only if one can solve the initial value problem for the following system in the
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corresponding sequence space:

Lngn ≡ g′′n + (C2n2 + a)g′n − (µ− a)C2n2gn

=
1

2
C2n

{
(Mg ∗ g′)n +n

a

2
(g ∗ g)n + [(TnMg, g′) − (Mg, Tng

′)] + an(g, Tng)

}
.

(3.6)

4. A system of ordinary differential equations related to the Nagai–
Nakaki system. If we consider (3.6) without the last three terms on the right-hand
side, we obtain the following system of ordinary differential equations:

Lngn ≡ g′′n + (C2n2 + a)g′n − (µ− a)C2n2gn

=
1

2
C2n

{
n−1∑
k=1

(
kgkg

′
n−k +

a

2
ngkgn−k

)}
(4.1)

≡ 1

2
C2n

{
(Mg ∗ g′)n + n

a

2
(g ∗ g)n

}
.

That is, (4.1) is the discrete version of (2.8). It is the system satisfied by the cosine
coefficients of solutions of (2.9).

Comparing (4.1) and (2.8), we infer that the three terms in (3.6) that do not
appear in (4.1) can be viewed as “tail ends” of integrals. That is, they are analogous
to the three integrals that have been dropped in passing from (2.6) to (2.8) under the
assumption that ψ,ψx are sufficiently regular.

This suggests that (TnMg, g′), (Mg, Tng
′), na(g, Tng) can be neglected in com-

parison with the remaining terms on the right-hand side of (3.6).
Such a statement needs rigorous proof.

5. Local existence and uniqueness of solutions of the initial value prob-
lem for the Nagai–Nakaki system. We prove the following result in �11× �1 which
was proved in [18] in a product of smoother spaces.

Lemma 1. The solution {gn(·)}∞n=1 of the system (3.5) exists locally in time and is
unique in �11×�1 on the interval of local existence. Moreover, the solution is uniformly
bounded in the �11 × �1 norm on compact subsets of the existence interval.

Proof. First consider the question of uniqueness. Set wn = gn−hn, where gn and
hn are two solutions of the above system for n ≥ 2 for which g(0) = h(0), g′(0) = h′(0).
The difference wn satisfies the equation

Lnwn ≡ w′′
n + (C2n2 + a)w′

n − (µ− a)C2n2wn

=
1

2
C2n

{
n−1∑
k=1

[
k(wkg

′
n−k + hkw

′
n−k) + ak(wkgn−k + hkwn−k)

]

+

∞∑
k=1

[
(n + k)(wn+kg

′
k + hn+kw

′
k) − k(wkg

′
n+k + hkw

′
n+k)

]

+ 2a

∞∑
k=1

k(wkgn+k + hkwn+k)

}
,

(5.1)

which, in the above notation, becomes

Lnwn =
1

2
C2n{(Mw ∗ g′)n + (Mh ∗ w′)n + a[(Mw ∗ g)n + (Mh ∗ w)n]

+ (TnMw, g′) + (TnMh,w′) − (Mw, Tng
′)

− (Mh, Tnw
′) + 2a[(Mw, Tng) + (Mh, Tnw)]}.
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We abbreviate this as

Lnwn = Fn(w,w′),(5.2)

where we suppress the dependence of the right-hand side on g, h, g′, h′ for the moment.
The characteristic equation for each of the linear second order operators Ln is

r2 + (C2n2 + a)r − (µ− a)C2n2 = 0.

The roots r+
n , r

−
n are real with r+

n > 0 > r−n , with r+
n → 2(µ − a) ≡ r+ as n → ∞,

and with r+
n ≤ r+ for all n while r−n → −∞. Since the initial values for w vanish, the

solution of (5.1) can be written as

wn = An(Fn, t)e
r+
n t + Bn(Fn, t)e

r−n t,(5.3)

where

An(Fn, t) =

∫ t

0

−er
−
n sFn(s)

W
ds =

1√
(C2n2 + a)2 + 4(µ− a)C2n2

∫ t

0

e−r+
n sFn(s)ds,

Bn(Fn, t) =

∫ t

0

er
+
n sFn(s)

W
ds =

−1√
(C2n2 + a)2 + 4(µ− a)C2n2

∫ t

0

e−r−n sFn(s)ds.

(5.4)

Because

max{|Bn(Fn, t)e
r−n t|, |An(Fn, t)e

r+
n t|} ≤ c

n2
er

+
n t

∫ t

0

e−r+
n s|Fn(s)|ds

for some computable constant c, we have

‖Mw(t)‖�1 =

∞∑
n=1

n|wn(t)| ≤
∞∑

n=1

c

n
er

+
n t

∫ t

0

e−r+
n s|Fn(s)|ds(5.5)

≤ er
+t

∫ t

0

∞∑
n=1

c

n
|Fn(s)|ds.

We need to estimate the terms in the last integral. For each index n, there are 10
sums arising from the 10 terms in the definition of Fn/n. After use of the convolution
inequality, we have that

∞∑
n=1

|(Mw ∗ g′)n| ≤
∞∑

n=1

n−1∑
k=1

k|wk||g′n−k| = ‖|Mw| ∗ |g′|‖�1 ≤ ‖Mw(t)‖�1‖g′(t)‖�1 .

The next three sums are bounded above by a constant multiple of ‖w′(t)‖�1‖Mh(t)‖�1 ,
‖Mw(t)‖�1‖Mg(t)‖�1 , and ‖Mw(t)‖�1‖Mh(t)‖�1 , respectively.

The terms involving Tn are a bit trickier to estimate. We have, for the first of
them,

∞∑
n=1

|(TnMw, g′)| ≤
∞∑
k=1

∞∑
n=1

(n+k)|wn+k||g′k| =

∞∑
k=1

|g′k|
∞∑

l=k+1

l|wl| ≤
∞∑
k=1

|g′k|‖TkMw‖�1 .
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Since ‖TkMw‖�1 is decreasing in k, we obtain

∞∑
k=1

|g′k||TkMw|�1 ≤ ‖Mw(t)‖�1‖g′(t)‖�1 .

In a similar fashion, the remaining five sums are found to be bounded above by a
constant multiple of ‖w′(t)‖�1‖Mh(t)‖�1 , ‖Mw(t)‖�1‖g′(t)‖�1 , ‖w′(t)‖�1‖Mh(t)‖�1 ,
‖Mw(t)‖�1‖Mg(t)‖�1 , and ‖Mw(t)‖�1‖Mh(t)‖�1 , respectively.

Thus, for some constant B

‖Mw(t)‖�1 ≤ Ber
+t

∫ t

0

(‖Mw(s)‖�1 + ‖w′(s)‖�1)(‖Mg(s)‖�1 + ‖g′(s)‖�1 + ‖Mh(s)‖�1

+‖h′(s)‖�1)ds.

Assume that g(·), h(·) are in �11([0, T ]) and g′, h′ are in �1([0, T ]); i.e., on every compact
subset K of [0, T ) there is a finite constant M(K) such that

max

{ ∞∑
k=1

(k|gk| + |g′k|),
∞∑
k=1

(k|hk| + |h′
k|)

}
< M(K).(5.6)

There results

‖Mw(t)‖�1 ≤ Ber
+t

∫ t

0

(‖Mw(s)‖�1 + ‖w′(s)‖�1)ds(5.7)

for some new computable constant B = B(M(K)).
Next we estimate ‖w′(t)‖�1 . Using the representation formula (5.3) we obtain

w′
n(t) =

1√
(C2n2 + a)2 + 4(µ− a)C2n2

{
r+
n

∫ t

0

er
+
n (t−s)Fn(s)ds(5.8)

− r−n

∫ t

0

er
−
n (t−s)Fn(s)ds

}
.

Consequently, for some positive computable constants c, d we have, noting that
r−n ≈ −dn2,

|w′
n(t)| ≤ c

{
r+

n2

∫ t

0

er
+(t−s)|Fn(s)|ds +

∫ t

0

[
ne−dn2(t−s)

] |Fn(s)|
n

ds

}
.(5.9)

The first term on the right-hand side is treated exactly as above. We note that
for c1 = 1/

√
2ed, all positive integers n, and all s ≤ t,

ne−dn2(t−s) ≤ c1√
t− s

.

Using this in (5.9) and summing over n we obtain

‖w′(t)‖�1 ≤ c

{∫ t

0

r+er
+(t−s)

∞∑
n=1

|Fn(s)|
n2

ds +

∫ t

0

c1√
t− s

∞∑
n=1

|Fn(s)|
n

ds

}
.(5.10)

Since we have already estimated the integrand sums
∑∞

n=1
|Fn(s)|

n above, we ob-
tain

‖w′(t)‖�1 ≤ c1

{
er

+t

∫ t

0

c√
t− s

(‖Mw(s)‖�1 + ‖w′(s)‖�1) ds
}
.(5.11)
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Setting ϕ(t) = ‖Mw(t)‖�1 + ‖w′(t)‖�1 , we have, with c = c(T ) = (cc1 + B)er
+T ,

ϕ(t) ≤ c

∫ t

0

ϕ(s)√
t− s

ds,(5.12)

a Volterra integral inequality of Gronwall type with a weakly singular kernel. Thus, af-
ter an application of the Hölder inequality, it is easily shown that ϕq, with
1/p + 1/q = 1 and 1 < p < 2, satisfies a standard Gronwall inequality. That is,

ϕq(t) ≤ cq
(

2

2 − p

) q
p

t
q
p−

q
2

∫ t

0

ϕq(s) ds.

Thus, for φ(t) =
∫ t

0
ϕq(s) ds and c̃(s) = cq( 2

2−p )
q
p s

q
p−

q
2 , we obtain

d

dt

(
φ(t)e

−
∫ t

0
c̃(s) ds

)
≤ 0.

Then

0 ≤ φ(t) ≤ φ(0)e

∫ t

0
c̃(s) ds

.

Since φ(0) = 0, it follows that φ(t) ≡ 0.
Consequently, ϕ(t) ≡ 0, and hence g ≡ h on the existence interval.
Next, consider local existence. Since most of the estimates needed here have been

worked through above, we will be brief.
Abbreviate (3.6) as Lg = F (g, g′), g(0) = g0, g

′(0) = g′0. Then the homogeneous
solution G(t) with inhomogeneous initial values solves

LG = 0,

G(0) = g0, G′(0) = g′0,

while the function H = g−G satisfies the nonlinear problem with homogeneous initial
data:

LH = F (G + H,G′ + H ′),

H(0) = 0, H ′(0) = 0.

Thus it suffices to show that the integral equation H = L−1F (G + H,G′ + H ′) has
a fixed point on some interval [0, Texist). We see from the variation of parameters
formula (5.3) that the components satisfy

Hn = An(Fn, t)e
r+
n t + Bn(Fn, t)e

r−n t.

Define the sequence of iterates {Hk}∞k=1 as follows with H1(t) = {H1
n(t) = 0}∞n=1 and,

for k ≥ 1,

Hk+1 = L
−1F (G + Hk, G′ + Hk′).

To construct a fixed point, we need to show that sequence ({Hk}, {Hk′}) is con-
vergent in �11 × �1. We do this by showing that we can apply the contraction mapping
principle to the sequence. The argument usually goes in two steps.
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1. There is a small time interval [0, T ] such that the sequence (of sequences)

({Hk}, {Hk′})∞k=1 is uniformly bounded in the norm on �11 × �1.
2. This sequence is contracting on this (or possibly smaller) time interval; i.e.,

there exists a constant 0 ≤ θ < 1 such that

sup
0≤s≤T

‖M(Hk+1(s) −Hk(s))‖�1 + ‖(Hk+1 −Hk)′(s)‖�1

≤ θ sup
0≤s≤T

‖M(Hk −Hk−1)(s))‖�1 + ‖(Hk −Hk−1)′(s)‖�1 .

To establish step 1, we find, as in the uniqueness proof, an inequality of the form

‖MHk+1(t)‖�1 + ‖(Hk+1)′(t)‖�1

≤ c

∫ t

0

1√
t− s

(‖M((G + Hk)(s))‖�1 + ‖(G + Hk)′(s)‖�1)2 ds.

Because the roots r±n are bounded above, we can assume that

sup [0, T ](‖MG(s)‖�1 + ‖(G′(s)‖�1) ≤ G0(T )

for some constant G0 depending only on T . Consequently, we have the estimate

‖MHk+1(t)‖�1 + ‖(Hk+1)′(t)‖�1 ≤ c
√
t
{
G2

0 + [‖MHk(t)‖�1 + ‖(Hk)′(t)‖�1 ]2
}
.

If we set Zn = sup[0,T ][‖MHn(t)‖�1 +‖(Hn)′(t)‖�1 ], then Zn+1 ≤ c
√
T (G2

0 +Z2
n). Let

G1 > 0 be any constant such that Z1 ≤ G1. Then Zn+1 ≤ G1 for all n = 1, 2, 3, . . . ,
provided that T is so small that

√
T ≤ G1

c(G2
0 + G2

1)
.

Since both G0, G1 depend on the initial values for the free solution, we have the
desired a priori bound on the iterates. For step 2, we examine the difference:

L(Hk+1 −Hk) = F (G + Hk, G′ + Hk′) − F (G + Hk−1, G′ + Hk−1′) ≡ F(W k,W k′),

where W k = Hk −Hk−1 and F depends in fact on Hk, Hk′, Hk−1, G,G′. That is,

LnW
k+1
n =

1

2
C2n{(MW k ∗ (G + Hk)′)n + (M(G + Hk−1) ∗W k′)n

+ a[(MW k ∗ (G + Hk))n + (M(G + Hk−1) ∗W k)n]

+ (TnMW k, (G + Hk)′) + (TnM(G + Hk−1),W k′)

− (MW k, Tn(G + Hk)′) − (M(G + Hk−1), TnW
k′)

+ 2a[(MW k, Tn(G + Hk)) + (M(G + Hk−1), TnW
k)]}.

Consequently, as in the previous proof, after obtaining a similar expression for W k′

we can then use the estimates in the previous part of the proof to derive the estimate
of the form

‖MW k+1(t)‖�1 + ‖(W k+1)′(t)‖�1 ≤ c

∫ t

0

1√
t− s

(‖MW k(s)‖�1 + ‖(W k)′(s)‖�1) ds,
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where

c = c(‖M(G + Hk−1)‖�1 , ‖G + Hk‖�1 , ‖(G + Hk)′‖�1).

By step 1, we may assume that c is uniformly bounded above by a constant c̃(T,G(0),
G′(0)) for a sufficiently small time interval [0, T ]. We proceed as in the previous proof,
using the Hölder inequality to obtain the Gronwall inequality. From this, we easily
show that on a sufficiently small time interval one can apply the contraction mapping
principle to the sequence ({Hk}, {Hk′}) in �11 × �1. We omit the details.

6. Local existence and blowup of solutions of the approximate system.
We turn next to the local existence theorem and blow-up theorem for the initial value
problem for the approximate system (4.1). We choose the special initial sequence
gn(0) = an, g′n(0) = nλan, where an and λ are to be chosen in such a manner that
{gn(t) = ane

nλt}∞n=1 is a solution of the approximate system which must blow up in
finite time.

In what follows, we adopt the following notation. Let M be a positive integer
such that a

4π2M2 ≡ a∗ ≤ 1. Suppose that ε, δ are such that

0 < 2ε ≤ a1 ≤ λ

λ + a
δ,

where λ is given by (6.3) below.
We establish the following theorems.
Theorem 1 (local existence). Suppose µ > a and the sequence {an}∞n=2 solves

the recurrence relation given by (6.1) below. Then the sequence {gn(t) = ane
nλt}∞n=1

solves (4.1) on an interval [0, Te], where Te ≥ T∗ = − ln δ
λ . Moreover, (ψ(·, t), ψt(·, t))

is in H1(0, 1) × L2(0, 1) on [0, T∗), where (ψ(·, t)) is given by (3.1). The function ψ
is analytic on (0, 1) × [0, T∗).

Theorem 2 (finite time blowup). The function (ψ(·, t), ψt(·, t)) of the previous
theorem must leave H1(0, 1) × L2(0, 1) in finite time T∞ ≤ − ln ε

λ .
Before proving these theorems, we show that for n ≥ 2

λ(4π2M2n− a)(n− 1)an = 2π2M2
n−1∑
k=1

[λ(n− k) + a]kakan−k.(6.1)

This recurrence formula defines the sequence an. However, unlike the situation in
[11, 17], we cannot find a simple expression for the coefficients an in terms of a1 and
n. Nonetheless, we can find upper and lower bounds for the series which sum to the
related solutions found in [17] for the case a = 0. These estimates provide the necessary
comparison functions for the existence and blowup of ψ in H1(0, 1) × L2(0, 1).

For convenience of notation, we use ξ = x−1/2 in (3.1) instead of x. Then ∂x = ∂ξ
and single point blowup at ξ = 0 corresponds to blowup at x = 1/2. Therefore, if
gn = ane

nλt and C = 2πM , equation (4.1) reads

∞∑
n=1

an{4π2M2λn3 + λ2n2 − (µ− a)4π2M2n2 + aλn}enλt cos(2πMnξ)

= 2π2M2
∞∑

n=2

n

{
n−1∑
k=1

(λ(n− k) + a)kakan−k

}
enλt cos(2πMnξ).

(6.2)
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Comparing coefficients for n ≥ 2,

[4π2M2λn2 + n
(
λ2 − (µ− a)4π2M2

)
+ aλ]an = 2π2M2

n−1∑
k=1

[λ(n− k) + a]kakan−k.

For n = 1,

a1{λ2 + λ(4π2M2 + a) − (µ− a)4π2M2} = 0.

Since µ > a, the roots are real. Let

λ =
1

2
(
√

(4π2M2 + a)2 + 16π2M2(µ− a) − 4π2M2 − a)(6.3)

denote the positive root.2 Then the relation for an, n ≥ 2, simplifies to (6.1) as
claimed. With the values of λ, a∗ above, we have that

2λ(n− a∗)(n− 1)an =

n−1∑
k=1

(λ(n− k) + a)kakan−k.(6.4)

We are now in a position to prove the theorems. We begin with Theorem 1.
Proof. From (6.1), since n ≥ k + 1,

2λ(n− a∗)(n− 1)an ≤
n−1∑
k=1

(λ(n− k) + a)kakan−k

≤ (λ + a)

n−1∑
k=1

k(n− k) akan−k.

If a1 ≤ b1, by induction it follows that an ≤ bn, where

2(n− a∗)(n− 1)bn =
λ + a

λ

n−1∑
k=1

k(n− k)bkbn−k.

Because n ≥ 2, we have a∗ ≤ n/2 and

n(n− 1)bn ≤ λ + a

λ

n−1∑
k=1

k(n− k)bkbn−k.

Comparing this sequence with b′n, it again follows that if b1 = b′1, then bn ≤ b′n, where

n(n− 1)b′n =
λ + a

λ

n−1∑
k=1

k(n− k)b′kb
′
n−k.

2As in [17], the choice of the negative root yields a global solution which converges to the spatially
homogeneous solution as t → +∞. Notice also that if µ < a, both roots have negative real part and
the constructed solution must not only be global, it must converge to the spatially homogeneous
solution, an observation consistent with the results of Nagai and Nakaki [18]. When µ = a, λ = 0
and the constructed solution will be global but will not converge to the spatially homogenous solution.
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This recurrence relation can be solved explicitly with b′n = 1
n

(
λ+a
λ

)n−1
(b′1)

n. For

b′1 = λ
λ+aδ, we have b′n = λ

λ+a
δn

n . The sequence {b′n} defines a convergent series of
the form

ψ(x, t) =

∞∑
n=1

b′ne
nλt cos(2πMnξ) =

λ

λ + a

∞∑
n=1

1

n
δnenλt cos(2πMnξ)

= − λ

λ + a
ln[1 − 2δeλt cos(2πMξ) + δ2e2λt]

for t < − ln δ
λ . Consequently, the upper bound for ψ in L2 holds by the comparison

of the coefficients an and b′n of series for ψ and ψ. A similar norm estimate holds for
ψt, ψ̄t. Thus ψ exists for all t < T∗. That is, the existence interval [0, Te] ⊃ [0, T∗) or
Te ≥ T∗.

We now turn to the proof of Theorem 2.
Proof. To obtain the lower bound, note that if a1 ≥ c1, then an ≥ cn, where the

cn satisfy

2(n− a∗)(n− 1)cn =

n−1∑
k=1

k(n− k)ckcn−k.

Thus

2n(n− 1)cn ≥
n−1∑
k=1

k(n− k)ckcn−k + 2a∗(n− 1)cn ≥
n−1∑
k=1

k(n− k)ckcn−k.

Hence if c1 ≥ c′1 > 0, then cn ≥ c′n, where

2n(n− 1)c′n =

n−1∑
k=1

k(n− k)c′kc
′
n−k.

However, c′n = 1
n2n−1 (c′1)

n. Setting c′1 = 2ε, it follows that an ≥ c′n = 2 εn

n .
The function

ψ(x, t) = 2

∞∑
n=1

1

n
εnenλt cos(2πMnξ)

= − ln[1 − 2εeλt cos(2πMξ) + ε2e2λt]

exists as long as t < − ln ε
λ because the series converges absolutely and uniformly. The

function ψ blows up pointwise at those points for which cos(2πMξ) = 1. Although we

cannot compare these functions pointwise, we can compare them in H1. To see this,
note that from Parseval’s identity, it follows that |ψx|L2(t) blows up in finite time.

Again, from Parseval and the inequalities an ≥ 2 εn

n , we have

|ψx|L2(0,1)(t) ≤ |ψx|L2(0,1)(t)

and

|ψt|L2(0,1)(t) ≤ |ψt|L2(0,1)(t).
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Thus, ψ “blows up” at T∞ ≤ − ln ε
λ in the sense that the functions t → |ψx|L2(t) and

t → |ψt|L2(t) cannot be locally bounded on [0,∞) and hence (u, v) cannot remain in
H1(0, 1) × L2(0, 1) for all time.

We next require that

2ε ≤ a1 ≤ λ

λ + a
δ

so that

ε ≤ λ

2(λ + a)
δ.(6.5)

Then the blow-up time must satisfy − ln δ
λ ≤ T∞ ≤ − ln ε

λ .
To prove the last claim of the theorem, note that since u = µ+ψt +aψ, it follows

yet again from Parseval that

|u(·, t) − µ|L2(0,1) =

∞∑
1

|an|2(1 + n2)e2nλt ≥ 4

∞∑
1

ε2n(1 + n−2)e2nλt.

Consequently u must leave L2 in finite time. Notice that this blow-up time is at least
as large as the time of escape from H1.

Finally, note that ψ(x, 0) and ψt(x, 0) are uniformly bounded above by [2λ/(λ +
a)] ln(1 − δ) and [2λ/(λ + a)](λδ(2 + λδ)/(1 − δ)), respectively. Hence for sufficiently
small δ the initial values for the perturbed solution are positive and uniformly close
to those for the spatially homogeneous solution.

Corollary 1. If an ≥ 2 εn

n , the function (ψ(·, t), ψt(·, t)) in the theorem also
blows up in finite time in the sense that the sequence {(gn(t), g′n(t))}∞n=1 with gn(0) =
an and g′n(0) = nanλ must leave �11 × �1 in finite time.

Since |ngn(t)| + |g′n(t)| ≥ 4εnenλt, the result follows.
Remark 1. We give an argument in the next section that shows that in every

neighborhood of the spatially homogeneous solution, there are solutions of Nagai’s
problem, which, if they agree initially with solutions of the approximate problem and
are sufficiently regular, cannot be global. The key to this argument is the demonstra-
tion that one may neglect the terms which we have identified as “tail ends.”

To explain why this might be reasonable, if we evaluate (TnMg, g′), (Mg, Tng
′),

na(g, Tng) for gn(t) = βnenλt for β ∈ (0, 1) and λ > 0, one has g′n = nλgn so
that the sum of the three neglected terms is bounded above by a constant multiple
of βn+2eλ(n+2)t/(1 − β2e2λt), while the sum of the convolution terms behaves like
nβnenλt. Therefore on any compact subinterval of [0,− lnβ/λ) the terms involving
Tn are small in comparison to the convolution terms for all sufficiently large n. El-
ementary calculations with series for which gn(t), g′n(t) ≈ A/n(2+δ) show that the
terms involving the Tn are not necessarily small when compared with the convolution
terms.

A loose interpretation of this is the following: The partial differential equation
ψtt + (µ− a)ψxx = (ψtx − ψtψx)x − a(ψt + (ψψx)x) can be written in the form

ψtt + [aψ − ψxx]t + a(ψψx)x + (ψtψx)x + (µ− a)ψxx = 0,

which can be viewed as a quasi-linear second order partial differential equation with
a strong damping term (aψ − ψxx)t. Suppose that µ > a. Linearizing this equation
about ψ = 0 yields ψtt + (aψ − ψxx)t + (µ − a)ψxx = 0, an equation which is of
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elliptic type in the second derivative terms. Without the damping term, the solutions
are very regular, but the initial-boundary value problem is highly unstable. Even
with the damping term, solutions of the linear equation can blow up in infinite time.
The introduction of the nonlinear terms a(ψψx)x + (ψtψx)x can lend a hyperbolic
character to the problem and force blowup in finite time by a focusing effect. See [17]
for a discussion of this when a = 0.

7. Nagai’s conjecture. From the local existence and uniqueness theorem we
know that the cosine series for ψ,ψt satisfies the condition that

(‖Mh(s)‖�1 + ‖h′(s)‖�1)(7.1)

is uniformly bounded on [0, τ ] for all τ in the existence interval of the solution.
We also know that in every neighborhood of the homogeneous initial data, there

is a solution of the approximate problem (4.1) with spatially nonconstant initial data
for which the solution blows up in �11 × �1 in finite time.

We establish the following theorem.
Theorem 3 (Nagai’s conjecture in �11 × �1). Suppose µ > a. Then the cor-

responding solution of the Nagai–Nakaki problem, for which the cosine coefficients
agree initially with the cosine coefficients of the aforementioned approximate problem,
cannot be global. That is, Nagai’s conjecture (in our sense) holds; i.e., such spatially
inhomogeneous solutions become unstable by blowing up in finite time in �11 × �1.

Proof. Suppose that h(t) ≡ {hn(t)}∞n=1 satisfies h(0) = an, h
′(0) = nλan and

the system of ordinary differential equations (3.6) on some interval, say, [0, Tmax). Let
g(t) ≡ {gn(t)}∞n=1 satisfy g(0) = an, g

′(0) = nλan and satisfy (4.1) on [0, T ∗). Then
Tmax ≤ T ∗, and the solution of Nagai’s problem must blow up in finite time Tmax in
�11 × �1.

Suppose we could show that, on any time interval [0, τ) where {hn(t)}∞n=1 exists
in the sense of the local existence theorem,

sup
[0,τ ]

‖M(h(t) − g(t))‖�1 + sup
[0,τ ]

‖h′(t) − g′(t)‖�1 < C(h, τ),(7.2)

where C(h, τ) does not depend on g. Then this inequality, together with Theorem
2 and the triangle inequality, would lead to a lower bound for the �11 × �1 norm of
{hn(t)}∞n=1 in terms of the corresponding norm for {gn(t)}∞n=1 and thus would permit
the establishment of Nagai’s conjecture in the space �11 × �1.

To this end, suppose that τ < T ∗ < Tmax. We need to estimate wn(t) = hn(t) −
gn(t) in the same fashion that we did in the proof of local existence and uniqueness
where once again, wn(0) = w′

n(0) = 0. Define, for any sequence {zn(t)},

Gn(z, z′) =
1

2
C2n{(Mz ∗ z′)n + n

a

2
(z ∗ z)n},

Hn(z, z′) =
1

2
C2n{[(TnMz, z′) − (Mz, Tnz

′)] + an(z, Tnz)}.
(7.3)
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Then

Lnwn = Gn(h, h′) − Gn(g, g′) + Hn(h, h′)

= Gn(h, h′) − Gn(w + h, (w + h)′) + Hn(h, h′)

=
1

2
C2n{−(Mw ∗ h′)n − (Mh ∗ w′)n − a[(Mw ∗ h)n + (Mh ∗ w)n]}

+ Hn(h, h′)

≡ Kn(w,w′;h, h′) + Hn(h, h′)

≡ Fn(w,w′;h, h′).

(7.4)

This is the value of Ln that replaces the right-hand side of (5.2), (5.4)–(5.8). Notice
that the terms in the definition of Kn can be estimated as in the local existence and
uniqueness theorem. That is,

|Kn(w,w′;h, h′)(s)| ≤ (‖Mw(s)‖�1 + ‖w′(s)‖�1)(‖Mh(s)‖�1 + ‖h′(s)‖�1).

Likewise, we have

∞∑
n=1

|Hn(h, h′)|(s)
n

≤ max{a, 1}
∞∑
k=1

∞∑
j=1

[|h′
k(s)|j|hj(s)|+|hk(s)|j|h′

j(s)|+|hk(s)|j|hj(s)|].

For such functions, the conservation conditions (2.4) hold. Consequently,

∞∑
n=1

|Hn(h, h′)|(s)
n

≤ max{a, 1}(‖h(s)‖�1 + ‖h′(s)‖�1)‖Mh(s)‖�1

by using estimates similar to those used for the estimates on the tail-end terms in the
proof of uniqueness.

Thus we obtain an inequality of the form

‖Mw(t)‖�1 + ‖w′(t)‖�1

≤
∫ t

0

A(‖Mw(s)‖�1 + ‖w′(s)‖�1) +
∑∞

n=1 |Hn(h, h′)|(s)/n√
t− s

ds(7.5)

≤
∫ t

0

A(‖Mw(s)‖�1 + ‖w′(s)‖�1) + B(‖Mh(s)‖�1 + ‖h′(s)‖�1)‖Mh(s)‖�1√
t− s

ds

for some constant A depending on τ, ‖Mh‖�1 , ‖h′‖�1 and for some constant B depend-
ing perhaps on τ but not on w,w′, h, h′.

This inequality, (7.1), and an application of the Gronwall inequality will give us
the estimate (7.2). Combining this observation with its consequence (7.2) and the
triangle inequality gives the result.

Remark 2. The injection I : �1 → L1(0, 1) given by

I({an}∞n=1)(x) =

∞∑
n=1

an cos (n− 1)πx

is certainly continuous. However, the inverse is not. To see this, let

P (x, ε) =
1

2

1 − ε2

1 + ε2 − 2ε cos(πx)
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denote the Poisson kernel for 0 ≤ ε < 1. The Poisson kernel is nonnegative, satisfies∫ 1

0

P (x, ε) dx = 1 = ‖P (·, ε)‖L1 ,

and has Fourier cosine series
∞∑

n=1

an cos (n− 1)πx =
1

2
+

∞∑
n=1

εn cosnπx

whose coefficient sequence satisfies

‖{an}∞n=1‖�1 =
1 + ε

1 − ε
.

Therefore, as ε increases to unity, the �1 norm of the coefficient sequence increases
without bound, while the L1 norms of P (·, ε) remain bounded. (Indeed, they converge
in measure to Dirac measure).

If µ ≥ 0, then we know from the first equation of the system that
∫ 1

0
u(x, t) dx =∫ 1

0
µ(x) dx and hence must remain in L1(0, 1) on the existence interval. The second

equation tells us that the second component must likewise remain bounded in L1(0, 1).
The remark tells us that it is possible for the solution to blow up in sequence space

in finite time but remain bounded in the H1×L1 norm. If one knew that the solution
components blow up in finite time in �2β × �2β′ , for large enough β, β′, then Parseval’s

identity would tell us that the solution would blow up in Hβ′
(0, 1) ×Hβ′

(0, 1). Thus
we have the following corollary.

Corollary 2. Let δ, δ′ > 0. Suppose a solution of Nagai’s problem blows up
in finite time T in �11 × �1. If the solution components belong to H3/2+δ(0, 1) ×
H1/2+δ′(0, 1) and are bounded on compact subsets of the existence interval in the
norm of this product space, then the solution blows up in H3/2+δ(0, 1)×H1/2+δ′(0, 1)
in finite time no larger than T .

Proof. This result follows from Schwarz’s inequality and Parseval’s identity.
Remark 3. The corollary states that certain very smooth solutions of Nagai’s

problem cannot be global. That is, they must lose regularity in finite time.
We can use the results of [18] to establish Nagai’s conjecture.
Corollary 3. Suppose µ > a. Then in every neighborhood of the stationary

solution, there are solutions which blow up in finite time in the sense that the H2×H1

norm blows up in finite time.
Proof. In [18, Proposition 4.1] the authors prove that if the initial data for u, v

are sufficiently smooth (in particular, if they are analytic) and satisfy the boundary
conditions, then both components are continuous from [0, Texist) into H2(0, 1), while
the first (corresponding to v in the notation of [18]) is continuously differentiable from
[0, Texist) into H2(0, 1).

The initial data for the approximate problem which give a solution of the approx-
imate problem that blows up in finite time are in fact analytic (the Fourier coefficients
are bounded above by Cnεn for small ε) and consequently must satisfy the smooth-
ness criteria of the initial data needed for [18, Proposition 4.1]. If we take the same
initial values for solution of Nagai’s problem, its components must belong to the same
spaces.

Thus, by the preceding corollary, the solution cannot be global. This, together
with the preceding corollary and δ = δ′ = 1/2, establishes Nagai’s conjecture for
certain sufficiently smooth data in every neighborhood of the stationary data.
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Remark 4. These results say nothing about the pointwise finite time blowup for
the solution components.

Corollary 4. Suppose µ > a and 0 < ε ≤ a1 ≤ λ
λ+aδ, where λ is given in (6.3).

Then both components of the solution constructed in the preceding corollary blow up
in L∞.

Proof. In [18, Theorem 7.1], the authors show that if the global existence time is
finite, then both components blow up in L∞.

An illustrative computation is given in Figures 3 and 4.
Remark 5. If we replace λ by the negative root of the quadratic it satisfies, then

we can use the arguments of section 6 to obtain solutions of the approximate problem
which decay uniformly and exponentially rapidly to zero. It is then possible, by
appropriately modifying the arguments in Theorem 3, to show that the corresponding
solution of the Nagai–Nakaki problem, for which the cosine coefficients agree initially
with the cosine coefficients of the aforementioned approximate problem, must be global.
That is, Nagai’s conjecture (in our sense) holds; i.e., such spatially inhomogeneous
solutions (ψ,ψt) exist for all time and must converge to the steady state (µ/a, µ) in
�11 × �1 as t → ∞. We omit the details.

8. Illustrative computations. One might well ask whether or not solutions of
(6.1) are asymptotically of the form Aεn for some |ε| ∈ (0, 1) in the sense that there
is ε ∈ [0, 1) such that lim an/ε

n = A for some constant A. We have shown that the
solutions of (6.1) are bounded above and below by terms of this form but we have not
yet established the asymptotics. However, the computations below provide a powerful
argument for these asymptotics.

The dependence of the blow-up time on M,µ− a for the function ψ in Theorem
1 can be investigated numerically as follows. It is worth noting that λ → 0+ as
M → +∞ for fixed µ− a or µ− a → 0+ for fixed M ≥ 1.

We begin by examining the growth of the terms of the sequence defined by (6.1).
If we set an(a) = bn(a)σn/n with b1 = 1 and σ > 0, it is not too hard to see that when
a = 0, bn = 1 for all n ≥ 1. However, when 0 < a < µ, the terms bn grow remarkably
rapidly. As an illustrative example, with M = µ = 1 and a = 0.6, b1 = 1, ln b1000 ≈
656.9587. In fact, numerical evidence suggests that ln bn ≈ 0.657616(n−1)(1+o(1/n)).
Let τ be this coefficient of n−1 (assuming it exists). If we take σ = exp(−τ(1+δ)) for
any small, positive δ, then the solution should blow up in finite time t = τδ/λ. This
will be the case if one can prove that the asymptotics for the bn are as indicated by the
numerical evidence. The numerical evidence indicates that as a increases to µ from
below, τ increases without bound, and hence the blow-up time will increase without
bound also. This is to be expected. (See Figure 1.) Likewise, the numerical evidence
indicates that as the integer M is increased for fixed a, τ approaches a limiting value
(which is to be expected since as M increases, λ → 0). This corresponds to a∗ = 0 so
that the sequence behaves like the exact solution when a = 0. The solution for a = 0
has the smallest blow-up time possible for fixed ε, δ, µ and all a ≥ 0. (See Figure 2.)

In Figures 3 and 4 we present a numerical simulation for the Nagai–Nakaki prob-
lem with ut = D(uxx − (uvx)x), vt = u − av for 0 < x < 1, t > 0 and zero flux
boundary conditions. We took D = 0.02, µ = 4.0, and a = 1.0. For initial values we
used u(x, 0) = µ − ε cos(2πx) where ε = 0.4 and v(x, 0) = v0 = µ/a. These figures
provide some evidence that the solution does blow up pointwise in finite time as well
as in the �11 × �1 norm.
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(The lines corresponding to a = 0.8, 0.9 do not continue due to exponential overflow.)

Fig. 1. Growth of coefficients given by (6.1) for variable a.

(The lines corresponding to M = 0.09, 0.1, 0.15, 0.2 do not continue due to expo-
nential overflow.)

Fig. 2. Growth of coefficients given by (6.1) for variable M.
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Fig. 3. Partial density, a = 1.0, D = 0.02, ε = 0.25, µ = 4.0.

Fig. 4. Chemical density, a = 1.0, D = 0.02, ε = 0.25, µ = 4.0.
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Gakkōtosho, Tokyo, 1996, pp. 49–66.

[2] P. Biler, Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci.
Appl., 9 (1999), pp. 347–359.

[3] S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981),
pp. 217–237.

[4] B. Davis, Reinforced random walk, Probab. Theory Related Fields, 84 (1990), pp. 203–229.
[5] J. I. Diaz, T. Nagai, and J.-M. Rakotoson, Symmetrization techniques on unbounded do-

mains: Application to a chemotaxis system on RN , J. Differential Equations, 145 (1998),
pp. 156–183.

[6] L. Edelstein-Keshet, Mathematical Models in Biology, The Random House/Birkhäuser Math-
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FROM INDIVIDUAL TO COLLECTIVE BEHAVIOR IN
BACTERIAL CHEMOTAXIS∗

RADEK ERBAN† AND HANS G. OTHMER†

Abstract. Bacterial chemotaxis is widely studied from both the microscopic (cell) and macro-
scopic (population) points of view, and here we connect these very different levels of description
by deriving the classical macroscopic description for chemotaxis from a microscopic model of the
behavior of individual cells. The analysis is based on the velocity jump process for describing the
motion of individuals such as bacteria, wherein each individual carries an internal state that evolves
according to a system of ordinary differential equations forced by a time- and/or space-dependent
external signal. In the problem treated here the turning rate of individuals is a functional of the
internal state, which in turn depends on the external signal. Using moment closure techniques in one
space dimension, we derive and analyze a macroscopic system of hyperbolic differential equations
describing this velocity jump process. Using a hyperbolic scaling of space and time, we obtain a
single second-order hyperbolic equation for the population density, and using a parabolic scaling,
we obtain the classical chemotaxis equation, wherein the chemotactic sensitivity is now a known
function of parameters of the internal dynamics. Numerical simulations show that the solutions of
the macroscopic equations agree very well with the results of Monte Carlo simulations of individual
movement.

Key words. chemotaxis equations, velocity-jump process, internal dynamics, transport equa-
tions, aggregation, bacterial chemotaxis
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1. Introduction. The ability to detect and respond to changes in the environ-
ment is a basic necessity for survival of all organisms, and as a result, a variety of
mechanisms have evolved by which organisms sense their environment and respond
to signals they detect. Often the response involves movement toward a more favor-
able environment or away from a noxious substance. The movement response can
entail changing the speed of movement and the frequency of turning, which is called
kinesis; it may involve directed movement, which is called taxis; or it may involve a
combination of these. Taxes and kineses may be characterized as positive or nega-
tive, depending on whether they lead to accumulation at high or low points of the
external stimulus that triggers the motion. A variety of both modes are known, and
include responses to gradients of oxygen and other chemicals, gradients of adhesion to
the substrate, and other effects. Both tactic and kinetic responses involve two major
steps: (i) detection of the signal and (ii) transduction of the external signal into an
internal signal that triggers the response. From the modeling and analysis standpoint,
an important characteristic of both modes of response is whether or not the individual
merely detects the signal or alters it as well, for example by amplifying it so as to relay
the signal. When there is no significant alteration, the individual simply responds to
the spatio-temporal distribution of the signal. However, when the individual produces

∗Received by the editors August 12, 2003; accepted for publication (in revised form) June 9, 2004;
published electronically December 16, 2004. The research of the first author was supported in part
by NSF grant DMS 0317372. The research of the second author was supported in part by NIH grant
GM 29123, NSF grant DMS 9805494, and NSF grant DMS 0317372. Both authors were supported
in part by the Minnesota Supercomputing Institute.

http://www.siam.org/journals/siap/65-2/43323.html
†School of Mathematics, 270B Vincent Hall, University of Minnesota, Minneapolis, MN 55455

(erban@math.umn.edu, othmer@math.umn.edu).

361



362 RADEK ERBAN AND HANS G. OTHMER

or degrades the signal, there is coupling between the local density of individuals and
the intensity of the signal. This occurs, for example, when individuals aggregate in
response to a signal from “organizers” and relay the signal as well.

In several systems, including the flagellated bacterium Escherichia coli and the
amoeboid cell Dictyostelium discoideum, a detailed understanding of how extracellular
signals are transduced into behavioral changes is emerging from experimental work,
while at the macroscopic level a great deal is known about solutions of the classical
chemotaxis equations. However, the chemotaxis equations to date have been based
on phenomenological descriptions of how cells respond to signals, and at present there
is little understanding of how microscopic properties translate into the macroscopic
parameters. The motion of E. coli has been studied for forty years, and much is known
about how they sense and process environmental signals. E. coli alternates two basic
behavioral modes, a more or less linear motion, called a run, and a highly erratic
motion, called tumbling, the purpose of which is to reorient the cell. During a run the
bacteria move at approximately constant speed in the most recently chosen direction.
Run times are typically much longer than the time spent tumbling, and when bacteria
move in a favorable direction (i.e., either in the direction of foodstuffs or away from
harmful substances) the run times are increased further. These bacteria are too small
to detect spatial differences in the concentration of an attractant on the scale of a
cell length, and during a tumble they simply choose a new direction essentially at
random, although it has some bias in the direction of the preceding run [7, 4]. The
effect of alternating these two modes of behavior, and in particular, of increasing the
run length when moving in a favorable direction, is that a bacterium executes a three-
dimensional (3D) random walk with drift in a favorable direction when observed on a
sufficiently long time scale [4, 25, 5]. Models for signal transduction and adaptation
in this system are given in [40, 2, 28].

In the absence of external cues, many organisms use a random walk strategy
to determine their pattern of movement. In this case the movement of organisms
released at a point in a uniform environment can be described as an uncorrelated,
unbiased random walk of noninteracting particles on a sufficiently long time scale.
In an appropriate continuum limit the cell density n, measured in units of cells/LN ,
where L denotes length and N = 1, 2, or 3, satisfies the diffusion equation

∂n

∂t
= D∆n.(1.1)

Here the cell flux is given by j = −D∇n, and the simplest description of cell motion in
the presence of an attractant or repellent is obtained by adding a directed component
to the diffusive flux to obtain

j = −D∇n + nuc,(1.2)

where uc is the macroscopic chemotactic velocity. The taxis is positive or negative
according to whether uc is parallel or antiparallel to the direction of increase of the
chemotactic substance. The resulting evolution equation for n is

∂n

∂t
= ∇ · (D∇n− nuc),(1.3)

and this is called a chemotaxis equation. In a phenomenological approach one postu-
lates a constitutive relation for the chemotactic velocity of the form

uc = χ(S)∇S,(1.4)
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where S is the concentration of the chemotactic substance and the function χ(S) is
called the chemotactic sensitivity. When χ > 0, the tactic component of the flux is
in the direction of ∇S and the taxis is positive. With this postulate, (1.3) takes the
form

∂n

∂t
= ∇ · (D∇n− nχ(S)∇S).(1.5)

We call equations of this type classical chemotaxis equations, though frequently that
term is used for a system of equations comprising (1.5) and a reaction-diffusion equa-
tion for the evolution of the signal substance. A recent review of the mathematical
aspects of chemotaxis equations is given in [21].

A problem in using equations such as (1.5) to describe chemotaxis is how one
justifies the constitutive assumption (1.4) and, in particular, how one incorporates
microscopic responses of individual cells into the chemotactic sensitivity. A number
of phenomenological approaches to the derivation of the chemotactic sensitivity or
chemotactic velocity have been taken, including simply postulating the form in (1.4)
[23, 33] or deriving the velocity directly in terms of forces exerted by the cell [35].
Other more fundamental approaches have also been used to relate the chemotactic
velocity or sensitivity to a microscopic description of movement. In the first, one
begins with a lattice walk or space jump process, either in discrete or continuous
time, and postulates how the transition probabilities depend on the external signal.
For a discrete time walk the chemotaxis equation is derived in the diffusion limit of
this process, by letting the space step size h and the time step δt go to zero in such a
way that the ratio h2/δt is a constant, namely D. A more general approach leads to a
renewal equation, from which a partial differential equation is obtained by particular
choices of the jump kernel and the waiting time distribution [29]. Another method,
based on a continuous time reinforced random walk in which the walker modifies the
transition probabilities of an interval for successive crossings, is developed in [31] for
a single tactic substance.

A space jump process is suitable for certain organisms, but an alternative stochas-
tic process that may be more appropriate for describing the motion of cells is called
the velocity jump process [29]. In this process the velocity, rather than the spatial po-
sition, changes by random jumps at random instants of time. The governing evolution
equation for the simplest version of this process is

∂

∂t
p(x, v, t) + v · ∇p(x, v, t) = −λp(x, v, t) + λ

∫
V

T (v, v′)p(x, v′, t)dv′,(1.6)

where p(x, v, t) denotes the density of particles at spatial position x ∈ Ω ⊂ RN , moving
with velocity v ∈ V ⊂ RN at time t ≥ 0 [29]. Here λ is the (constant) turning rate,
and 1/λ is a measure of the mean run length between velocity jumps. In general, the
turning frequency λ must depend on the extracellular signal, as transduced through
the signal transduction network and the motility control system. The turning kernel
T (v, v′) gives the probability of a velocity jump from v′ to v if a jump occurs, and
implicit in the above formulation is the assumption that the choice of a new velocity
is independent of the run length.

The forward equation (1.6) for a velocity jump process is similar to the Boltz-
mann equation, wherein the right-hand side is an integral operator that describes the
collision of two particles, and is therefore quadratic in p [11]. The kernel of the inte-
gral operator is specified by the dynamics, and it is well known that an appropriate
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scaling of space and time leads at least formally from the Boltzmann equation to a
diffusion process [26, 17]. This also holds for transport equations and more general
transport processes (see, e.g., [18, 34, 36]). The earliest derivation of the chemotactic
sensitivity from a velocity jump process was done by Patlak [36], who used kinetic
theory arguments to express uc in terms of averages of the velocities and run times
of individual cells. Alt [1] significantly extended Patlak’s approach to the analysis of
taxis and his results have been applied to E. coli using a phenomenological description
of signal transduction [12].

In [19, 30] the kinetic equation approach for deriving chemotactic equations was
further developed using a kernel T that may include an external bias. A general
Perron–Frobenius property of the turning operator T defined by the right-hand side
of (1.6) and a proper scaling of space and time lead to a Hilbert expansion of the long-
term dynamics that produces a parabolic limiting equation. In certain cases there is
no taxis, and the parabolic limit is anisotropic, in that the resulting equation for the
macroscopic density,

n(x, t) =

∫
V

p(x, v, t)dv,(1.7)

is

∂n

∂t
= ∇ ·D∇n,(1.8)

where D is an N ×N nondiagonal matrix. Necessary and sufficient conditions under
which the diffusion matrix D reduces to a scalar times the identity were also obtained.
In previous work the external bias enters the turning kernel and turning rate as
an order ε term [1, 30], and the perturbation analysis done in [30] shows that the
chemotaxis equation is obtained only in this case. In the approach used in [30] an
external bias of order one in the turning kernel can be admitted, but with suitable
restrictions this leads to (1.8) rather than the chemotaxis equation in the diffusion
limit.

The prototypical organisms whose motion can be described as a velocity jump
process are the flagellated bacteria such as E. coli. A bacterium runs at a constant
velocity for a random length of time, then tumbles for a random length of time,
chooses a new direction at random, and repeats the cycle. When motion is restricted
to one space dimension and the tumble phase is neglected, this leads to a telegraph
process described by the hyperbolic system

∂p+

∂t
+ s

∂p+

∂x
= −λp+ + λp−,

(1.9)
∂p−

∂t
− s

∂p−

∂x
= λp+ − λp−,

where p±(x, t) are the probabilities densities of particles that are at (x, t) and are
moving to the right (+) and left (−) and s is the speed. This model was first analyzed
by Goldstein [16], and subsequently by others [22, 27, 29]. It can be shown that if
λ is a constant, the system reduces to a damped wave equation called the telegraph
equation for the total density p ≡ p+ + p−, and on a finite domain with reflecting
boundary conditions, solutions are asymptotically constant in space and time. Even
if there is a fixed background signal and the turning rate depends on the signal but is
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independent of the direction of travel, still there is no aggregation at extrema of the
signal: all solutions are asymptotically constant [32].

It is not difficult to see formally that the turning rate for left-moving particles
must be different from that for right-moving particles in order to produce a nonzero
chemotactic velocity [32], and this has been analyzed in detail in [20]. However, at
present there is little understanding of the interplay between the intracellular dy-
namical system that describes signal transduction and quantities such as the turning
rate and turning kernel in a macroscopic, population-level description of motion. Our
objective here is to develop a mathematical framework in which one can systemati-
cally extract information about population-level behavior for adapting walkers from
microscopic models of individual behavior, and to apply it to a caricature of adapting
intracellular dynamics. We use E. coli as a prototype system, but the methodology
and the results apply more generally.

The paper is organized as follows. In the following section we briefly describe
the signal transduction network in E. coli to motivate the simplified description used
herein. Next we introduce the transport equations for systems with internal dynam-
ics, which are the starting point for the derivation of the macroscopic limit. We derive
the macroscopic moment equations (section 4), the modified version of the classical
chemotaxis equation (section 6), and the classical chemotaxis equation (section 7). Fi-
nally, we show some illustrative numerical results, we apply our results to experiments
with an exponential signal gradient, and we discuss generalizations of our approach.
The extension of the results herein to higher space dimensions is done in [15].

2. Internal dynamics. E. coli have 4–6 flagella distributed uniformly over the
cell surface and move by rotating them in a corkscrew-like manner [37, 41]. When
rotated counterclockwise, the flagella coalesce into a propulsive bundle, resulting in
a relatively straight “run” [8]. When rotated clockwise they fly apart, resulting in a
“tumble” which reorients the cell but causes no significant change of location. The cell
thus alternates between runs and reorienting tumbles. In the absence of stimuli, the
bias or probability per unit time of a tumble (PCW ) is essentially independent of when
the last tumble occurred [41]. The mean run interval is about 1 sec in the absence
of chemotaxis, the mean tumble interval is about 0.1 sec, and both are distributed
exponentially [6]. A chemoeffector (attractant or repellent) alters the probabilities
that the flagella will rotate in a given direction, thus changing the frequencies and du-
ration of runs and tumbles. E. coli respond chemotactically to a variety of attractants
and repellents over a wide range of concentrations [6]. A typical response, which we
define as a measurable change in bias from baseline following a transient increase in
the concentration of an attractant or a decrease in that of a repellent, is as follows.
After a brief latency period there is an increase in PCCW (probability per unit time of
a run) above the baseline probability of approximately 0.64 [8]. This early response,
which is typically rapid, constitutes the excitation, and it is followed by a period of
relatively slow adaptation to the stimulus. Adaptation eventually returns the bias to
baseline, allowing the cell to respond to further changes.

The magnitude of the change in bias in response to an exponentially increasing
attractant concentration increases approximately linearly with the ramp rate [9]. As-
suming equilibrium binding, the fraction of receptors occupied is θ = S/(KD + S),
where S is the concentration and KD is the dissociation constant. Therefore θ̇ =
KDS/(KD + S)2 · d lnS/dt, and if S ∼ KD, then 4θ̇ ∼ d lnS/dt, which is the ramp
rate. Thus the magnitude of the response is an approximately linear function of the
rate of change in occupancy, which provides a superficial explanation of the observed
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Fig. 2.1. Signaling components and pathways for E. coli chemotaxis. Chemoreceptors (MCPs)
span the cytoplasmic membrane (hatched lines), with a ligand-binding domain on the outside and a
catalytic domain on the cytoplasmic side. MCP complexes have two alternative signaling states. In
the attractant-bound form, the receptor inhibits CheA autokinase activity; in the unliganded form,
the receptor stimulates CheA (A) activity. The overall flux of phosphoryl groups P to CheB (B)
and CheY (Y) reflects the proportion of signaling complexes in the inhibited and stimulated states.
Changes in attractant concentration shift this distribution, triggering a flagellar response. Adap-
tation occurs when the ensuing changes in the CheB phosphorylation state alter its methylesterase
activity, producing a net change in the MCP methylation state that cancels the stimulus signal (cf.
[42] for a review; figure reproduced from [40], with permission).

adaptation. Because of adaptation, the response is not directly dependent on the ab-
solute concentration of chemoeffector [41], but instead the sensory system functions
as a derivative detector.

E. coli is also extremely sensitive to small changes in chemoeffector levels. The
cells can respond to slow exponential increases in attractant levels that correspond to
rates of change in the fractional occupancy of chemoreceptors as small as 0.1% per
second [9, 38]. Thus a cell can respond even when there is only a small change in the
receptor occupancy over a typical sampling period. High sensitivity is also seen when
cells are subjected to small impulses or step increases in attractant concentration,
though the evidence is mixed. Segall, Block, and Berg [38] report that a change in
receptor occupancy of 0.42% elicits a 23% change in bias—a ratio, or gain, of 55—but
Khan et al. [24] report a maximum gain of only 6.

The main features of the E. coli chemotaxis excitation and adaptation pathways
are as follows [10] (see Figure 2.1). Chemical stimuli are detected by transmembrane
receptors, which in turn generate cytoplasmic signals that control the flagellar motors.
Aspartate, the attractant chemoeffector most commonly used in experiments, binds
directly to the periplasmic domain of its transducer, Tar. This initiates a complicated
sequence of biochemical steps, the net effect of which is to temporarily reduce the
level of the motor control protein CheYP following an increase in attractant, thereby
temporarily increasing PCCW = 1 − PCW and increasing the fraction of time spent
running as opposed to tumbling. Detailed models of this network are now available
[40, 2, 28], and we refer the reader to the original literature. For our purposes we wish
to abstract the essential features of the signal transduction and response processes.

2.1. Cartoon internal dynamics. The essential aspects that a simplified de-
scription must reproduce in order to make it useful for studying macroscopic phenom-
ena are (i) it must exhibit excitation, which here means a change in bias in response
to a stimulus, (ii) the bias must return to baseline levels (i.e., the response must
adapt) on a time scale that is slow compared to excitation, and (iii) the signal trans-
duction network should amplify signals appropriately. Let y = (y1, y2, . . . , ym) ∈ Rm



FROM INDIVIDUAL TO COLLECTIVE BEHAVIOR 367

denote the internal state variables, which can include the concentrations of recep-
tors, proteins, etc., and let S(x, t) = (S1, S2, . . . , SM ) ∈ RM denote the signals in the
environment. Then all current deterministic models of bacterial signal transduction
pathways can be cast in the form of a system of ordinary differential equations that
describe the evolution of the intracellular state, forced by the extracellular signal.
Thus

dy

dt
= f(y, S),(2.1)

where f : Rm × RM → Rm describes the particular model. The question is, given
an accurate microscopic model, can we derive a macroscopic description, and can
we use it to predict the effect on macroscopic behavior of changes in the microscopic
parameters? At present this is very difficult to do with a full description of the internal
dynamics for E. coli, which may involve 20 or more variables, and as a first step we
use a simpler cartoon description of signal transduction that was developed in [32],
which incorporates the essential features described above.

We describe the internal dynamics with two internal variables, i.e., y ∈ Y ⊂ R2,
and we suppose that the internal state evolves according to the system of ordinary
differential equations

dy1

dt
=

g(S(x, t)) − (y1 + y2)

te
,(2.2)

dy2

dt
=

g(S(x, t)) − y2

ta
,(2.3)

where te and ta are constants, x is the current position of a cell, S : RN × [0,∞) →
[0,∞) is the concentration of the chemoattractant, and g : [0,∞) → [0,∞) models
the first step of signal transduction. For any constant signal S these equations have
the property that

lim
t→∞

y1 = 0 and lim
t→∞

y2 = g(S),(2.4)

and therefore y1 adapts perfectly to any constant stimulus. The time constants te
and ta are labeled in anticipation of using y1 for the internal response and y2 as the
adaptation variable, and therefore we call te and ta the excitation and adaptation
time constants, respectively. In order to obtain the desired response, one must have
te < ta. In E. coli the excitation is much faster than adaptation, and we have te 	 ta.

Since y1 adapts perfectly, any continuous function h : R → R of y1 can be used to
model the response to changes in the extracellular signal, and the response will adapt;
i.e., the steady state response will be independent of the magnitude of the stimulus
S. In Figure 2.2 we compare the response of the cartoon model with the response
predicted by a detailed model of the entire signal transduction pathway. It is clear
that the cartoon model can capture the essential changes in the bias in E. coli using
a suitable definition of the response. For the simplest velocity jump process in which
tumbling is ignored, we identify the response with the turning frequency λ(y). In a
more detailed description in which the tumble phase is accounted for, one can relate
the internal state more directly to experimental results on the switching frequency
[13]. This will be done in section 9.1; here we use λ(y) ≡ Response = h(y1). Moreover,
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Fig. 2.2. (left) The computed change in bias in response to a step change in attractant for a
complete signal transduction model [40]. (right) The graph of the response of the internal dynamics
(2.2)–(2.3), given a step change of the signal. Here the response is defined as Response = 0.5 + y1;
moreover, g = Identity, te = 0.01, and ta = 5. The signal function is 0 in the time interval [0, 10],
and the signal is equal to 0.3 in the time interval [10, 50].

for simplicity we will assume that h is a linear function of y1 (which is always true
for small responses y1); i.e., we suppose that

λ(y) ≡ Response = λ0 − by1,(2.5)

where λ0 is the basal turning frequency for a fully adapted cell and b is a positive
constant. The term by1 describes the change in the turning frequency in response
to a signal, and the negative sign accounts for the fact that an increase of y1 should
produce a decrease in the turning rate.

The function g in (2.2) and (2.3) describes the transduction of the signal, and a
reasonable choice for this is to suppose that it depends on the fraction of receptors
occupied, in which case

g(S) = G

(
S

KD + S

)

for some other function G, where KD is the dissociation constant for the attractant
[9]. We shall assume in the derivation that g = Identity, and that te = 0 in (2.2). The
results for a general function g and te 
= 0 can be derived similarly, and we state them
at the end of the corresponding sections (see (6.34), (7.12), etc.).

Whatever the choice of g, the formal solution to (2.2) and (2.3) can be obtained
explicitly. However, because x = x(t) is the cell position at time t in a given external
concentration field, the integration must be along the cell trajectory, which is a biased
random walk. Hence, S(x, t) is a stochastic input to the signal transduction system.

3. Individual behavior. We suppose that the extracellular signal is specified
as S(x, t), and for the present we neglect the time spent tumbling; the tumble phase
is incorporated in section 9.1. Let p(x, v, y, t) be the density function of bacteria in
a (2N + m)-dimensional phase space with coordinates (x, v, y), where x ∈ RN is the
position of a cell, v ∈ V ⊂ RN is its velocity, and y ∈ Y ⊂ Rm is its internal state,
which evolves according to (2.1). Thus p(x, v, y, t)dxdvdy is the number of cells with
position between x and x + dx, velocity between v and v + dv, and internal state
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between y and y + dy. The evolution of p is governed by the following transport
equation:

∂p

∂t
+ ∇x · vp + ∇v · Fp + ∇y · fp = Q,(3.1)

where F denotes the external force acting on the individuals and Q is the rate of
change of p due to reactions, random choices of velocity, collisions, etc. Here we
ignore external forces and set F ≡ 0. Moreover, we assume that there is only one
process represented in Q: that which generates the random velocity change, and we
assume that the changes are the result of a Poisson process of intensity λ(y). Then

Q = −λ(y)p(x, v, y, t) +

∫
V

λ(y)T (v, v′, y)p(x, v′, y, t)dv′,

where the kernel T (v, v′, y) gives the probability of a change in velocity from v′ to
v, given that a reorientation occurs. The kernel T is nonnegative and satisfies the
normalization condition

∫
V
T (v, v′, y)dv = 1.

Consequently, the transport equation (3.1) takes the following form:

∂p

∂t
+ ∇x · vp + ∇y · fp = −λ(y)p +

∫
V

λ(y)T (v, v′, y)p(x, v′, y, t)dv′.(3.2)

The objective of this paper is to derive a macroscopic description for chemotaxis
from the microscopic model, i.e., an evolution equation for the macroscopic density
of individuals

n(x, t) =

∫
Y

∫
V

p(x, v, y, t)dvdy.(3.3)

Since we are primarily concerned with how the internal dynamics (2.1) influence the
macroscopic behavior, we will only consider movement in one dimension. Considering
2D and 3D models does not alter the process of incorporating the internal dynamics
into the macroscopic equations, but it does raise technical issues that will be discussed
elsewhere [15]. Moreover, we assume that the speed is constant, and therefore we
analyze the following generalization of the simple telegraph process described by (1.9):
let p±(x, y, t) be the density of the particles that are at (x, t) with the internal state y
and are moving to the right (+) or left (−), and suppose that the internal state evolves
according to the system of equations (2.1). Then p±(x, y, t) satisfy the equations

∂p+

∂t
+ s

∂p+

∂x
+

m∑
i=1

∂

∂yi

[
fi(y, S)p+

]
= λ(y)

[
−p+ + p−

]
,(3.4)

∂p−

∂t
− s

∂p−

∂x
+

m∑
i=1

∂

∂yi

[
fi(y, S)p−

]
= λ(y)

[
p+ − p−

]
.(3.5)

Written as a system, this takes the form

∂

∂t

(
p+

p−

)
+ s

(
1 0
0 −1

)
∂

∂x

(
p+

p−

)
+ ∇y ·

[
f(y, S)

(
p+

p−

)]

= λ(y)

(
−1 1
1 −1

)(
p+

p−

)
.(3.6)
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This is a hyperbolic system in diagonal form that has two independent characteristics
for s > 0, and it is therefore strictly hyperbolic for s > 0.

To analyze the system (3.4)–(3.5), we must specify the internal dynamics (2.1)
and the turning rate λ(y). Here we shall use the internal dynamics (2.2)–(2.3) and
the turning rate given by (2.5). Moreover, for simplicity we suppose that the signal
S(x) is a time-independent scalar function, that te = 0, and that g = Identity. (The
results for a general function g and te 
= 0 can be derived similarly, and we state them
at the end of the corresponding sections; see (6.34), (7.12), etc.) Then the internal
dynamics and the response are given as follows:

dy2

dt
=

S(x) − y2

ta
,(3.7)

λ(y) ≡ Response = λ0 − b(S(x) − y2).(3.8)

It is convenient to define the new internal state variable z2 as

z2 = y2 − S(x),(3.9)

and then

dz2

dt
=

S(x) − y2

ta
− S′(x)

dx

dt
= −z2

ta
∓ S′(x)s,(3.10)

where the sign of the last term is determined by the sign of the velocity of the particle.
Moreover,

λ(z2) ≡ λ(y) = λ0 − b(S(x) − y2) = λ0 + bz2.(3.11)

Later we will make use of an estimate on the internal state derived in the following
lemma, and to avoid repetition, we introduce the following definition. Suppose that
the cell moves in one dimension according to a velocity jump process with internal
dynamics, and that the internal state z2 of the cell evolves according to (3.10). We
call this the standard process.

Lemma 3.1. Suppose that the cells execute the standard process, and suppose that

|S′(x)| ≤ K for x ∈ R and |z2(0)| ≤ staK.

Then we have

|z2(t)| ≤ staK for t ≥ 0.

Proof. If z2(t) = −staK, then the estimate |S′(x)| ≤ K implies dz2
dt ≥ 0. Similarly,

if z2(t) = staK, then the estimate |S′(x)| ≤ K implies dz2
dt ≤ 0. As |z2(0)| ≤ staK, we

have |z2(t)| ≤ staK for all t ≥ 0.
For a physically reasonable model we must ensure that the turning rate λ(z2) is

always nonnegative, and for this we introduce the following standing hypothesis:

Assume that |S′(x)| ≤ C, where C is given by C =
λ0

bsta
.(3.12)

Given (3.12), we have the following lemma.
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Lemma 3.2. Suppose that the cells execute the standard process and that (3.12)
is satisfied. Suppose that initially λ(z2(0)) ≥ 0. Then we have

λ(z2(t)) ≥ 0 for all t ≥ 0.

Proof. The linear turning rate (3.11) is nonnegative if and only if z2 ≥ −λ0

b . As

λ(z2(0)) ≥ 0, we have z2(0) ≥ −λ0

b . Then Lemma 3.1 implies that z2(t) ≥ −λ0

b for
t ≥ 0. Consequently, the turning rate λ(y) is nonnegative for all t ≥ 0.

In view of the preceding assumptions and simplifications, the evolution equations
(3.4)–(3.5) for the densities p±(x, z2, t) can be written as

∂p+

∂t
+ s

∂p+

∂x
+

∂

∂z2

[(
−z2

ta
− sS′(x)

)
p+

]
= (λ0 + bz2)

[
−p+ + p−

]
,(3.13)

∂p−

∂t
− s

∂p−

∂x
+

∂

∂z2

[(
−z2

ta
+ sS′(x)

)
p−

]
= (λ0 + bz2)

[
p+ − p−

]
.(3.14)

In the following sections we use (3.13)–(3.14) to derive macroscopic equations. First,
however, we address the question of existence and nonnegativity of the densities
p±(x, z2, t). In the following lemma we establish these properties for the general
system (3.4)–(3.5), and this implies the result for (3.13)–(3.14).

Lemma 3.3. Suppose that f ∈ C1(Rm × RM ), and let S : R × [0,∞) → RM

be continuous. Moreover, suppose that λ(y) in (3.4)–(3.5) is always nonnegative, and
that p+

0 : Rm+1 → [0,∞) and p−0 : Rm+1 → [0,∞) are given nonnegative compactly
supported C1-functions. Then there exists a domain Q ⊂ Rm+1×[0,∞) containing the
entire plane t = 0 such that the system of equations (3.4)–(3.5) with initial conditions
p±(x, y, 0) = p±0 (x, y) has a unique C1-solution in Q. Moreover, the functions p± are
nonnegative wherever they are defined.

Proof. As remarked earlier, the general system (3.6) has two independent char-
acteristics, and this applies to (3.4)–(3.5) as well. Consequently, we can apply the
modified implicit function theorem to show local existence of a unique classical solu-
tion (see [3, section 2.4.4]). To prove nonnegativity, let us consider that the solution
is NOT nonnegative and define

t0 = inf{ τ : there exists (x, y) such that p+(x, y, τ) < 0 or p−(x, y, τ) < 0 };

i.e., t0 is the last time for which the nonnegativity of solutions is satisfied. In partic-
ular, we have p±(·, ·, t0) ≥ 0.

Let χ+
x,y,t0(τ) be a characteristic through the point (x, y, t0) for (3.4), and let

χ−
x,y,t0(τ) be a characteristic through the point (x, y, t0) for (3.5). Thus χ±

x,y,t0(τ) are

curves in the (m + 2)-dimensional (x, y, t)-space along which (3.4)–(3.5) read as

d

dτ
p+(χ+

x,y,t0(τ)) = −c(χ+
x,y,t0(τ))p+(χ+

x,y,t0(τ)) + λ(χ+
x,y,t0(τ))p−(χ+

x,y,t0(τ)),

(3.15)

d

dτ
p−(χ−

x,y,t0(τ)) = λ(χ−
x,y,t0(τ))p+(χ−

x,y,t0(τ)) − c(χ−
x,y,t0(τ))p−(χ−

x,y,t0(τ)),(3.16)
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wherein

c(x, y, t) = λ(y) +

m∑
i=1

∂fi(y, S(x, t))

∂yi
.

Let us suppose that p+(x, y, t0) = 0. Then (3.15) implies (using τ = t0, λ(y) ≥ 0 and
p−(x, y, t0) ≥ 0)

d

dτ
p+(x, y, t0) ≥ 0.(3.17)

Similarly, if p−(x, y, t0) = 0, then (3.16) gives d
dτ p

−(x, y, t0) ≥ 0. Consequently, there
exists a constant c > 0 such that the solutions p± are nonnegative in the time interval
[t0, t0 + c). This is a contradiction with the choice of t0.

4. Moment equations. The next step is to derive evolution equations for
macroscopic variables from the simplified system (3.13)–(3.14). Since there are only
two velocities and one internal state variable, the density n(x, t) is given by (cf. (3.3))

n(x, t) =

∫
R

p+(x, z2, t) + p−(x, z2, t)dz2.(4.1)

The objective is to derive an evolution equation involving only n, if possible. For this
purpose define N = p+(x, z2, t)+p−(x, z2, t) and J = s(p+(x, z2, t)−p−(x, z2, t)); the
former is the microscopic particle density, obtained by integrating p over v, while the
latter is a microscopic flux obtained similarly. In this notation, (4.1) can be written

n(x, t) =

∫
R

N (x, z2, t)dz2,(4.2)

and we define the additional moments

j(x, t) =

∫
R

J (x, z2, t)dz2,(4.3)

n1(x, t) =

∫
R

z2N (x, z2, t)dz2,(4.4)

j1(x, t) =

∫
R

z2J (x, z2, t)dz2,(4.5)

and

j2(x, t) =

∫
R

(z2)
2J (x, z2, t)dz2.(4.6)

The quantity j is the macroscopic particle flux, n1 and j1 are first moments with
respect to the slow component of the internal state of the microscopic density and
flux, respectively, and j2 is the second moment of the microscopic flux with respect
to the slow component of the internal state. All moments with respect to z2 are well
defined by virtue of Lemma 3.1 and the standing assumption (3.12), which implies
that p vanishes identically outside some sufficiently large interval in |z2|.
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Next, by multiplying (3.13) and (3.14) by 1 or z2, integrating with respect to
z2, and adding or subtracting the resulting equations, we obtain the following four
moment equations:

∂n

∂t
+

∂j

∂x
= 0,(4.7)

∂j

∂t
+ s2 ∂n

∂x
= −2λ0j − 2bj1,(4.8)

∂n1

∂t
+

∂j1
∂x

= −S′(x)j − 1

ta
n1,(4.9)

∂j1
∂t

+ s2 ∂n1

∂x
= −s2S′(x)n−

(
2λ0 +

1

ta

)
j1 − 2bj2.(4.10)

We see that the moment equations for a density-flux pair introduce a higher-order
flux via the change in turning rate, as measured by b. If S(x) is constant, the effect
of the signal disappears and the second pair is uncoupled from the first. In section 6
we rescale the variables and then close the system of four moment equations with the
assumption that

j2 = 0;(4.11)

i.e., we simply neglect the second-order flux. The moment closure (4.11) will be
rigorously justified in the case of shallow gradients of the signal. The moment closures
for arbitrary signal functions will be discussed in section 9.2.

Of course one can ask what a lower-order closure (i.e., the closure assumption
on j1) leads to, and it is easy to see that if we assume that j1 = 0, we obtain the
telegraph equation

1

2λ0

∂2n

∂t2
+

∂n

∂t
=

s2

2λ0

∂2n

∂x2
.(4.12)

Since the external signal S is completely absent from this equation, this approximation
is not suitable for studying the dependence of n on the signal. Clearly (4.12) applies
if there is no effect of the signal on the turning rate, and in this case there can be no
taxis.

From (4.7)–(4.10) we can derive evolution equations for various statistics of the
motion that give insight into the asymptotics of solutions of the system of moment
equations. These are derived in the following section.

5. Evolution of certain statistics of the motion. We denote by n0 the total
number of particles in the domain. This is a conserved quantity and is given by

n0 =

∫
R

n(x, t)dx.

The mean position of the particles 〈x〉(t) and the mean square displacement 〈x2〉(t)
are given by

〈x〉(t) =
1

n0

∫
R

xn(x, t)dx, 〈x2〉(t) =
1

n0

∫
R

(x− 〈x〉)2 n(x, t)dx.(5.1)
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We define the spatial moments of j, j1, and j2 as follows:

j0 =

∫
R

j(x, t)dx, jx =

∫
R

xj(x, t)dx, j0
1 =

∫
R

j1(x, t)dx, j0
2 =

∫
R

j2(x, t)dx.

Then, multiplying (4.7) by x and by (x− 〈x〉(t))2, and integrating the resulting equa-
tions with respect to x, we find that

d

dt
〈x〉 =

j0

n0
and

d

dt
〈x2〉 =

2jx − 2〈x〉j0

n0
.(5.2)

Integrating (4.8) and (4.10) with respect to x, we obtain the evolution equations for
j0 and j0

1 :

d

dt
j0 = −2λ0j

0 − 2bj0
1 ,(5.3)

d

dt
j0
1 = −s2

∫
R

S′(x)n(x, t)dx−
(

2λ0 +
1

ta

)
j0
1 − 2bj0

2 .(5.4)

We can solve (5.3)–(5.4) explicitly for j0 as a function of the quantities
∫

R
S′(x)n(x, t)dx

and j0
2 . Then the evolution equation (5.2) for 〈x〉 reads

d

dt
〈x〉 =

e−2λ0t

n0

[
j0(0)+

∫ t

0

et
′/ta2b

(
− j0

1(0)

+

∫ t′

0

e2λ0t
′′+t′′/ta

{
s2

∫
R

S′(x)n(x, t)dx + 2bj0
2

}
dt′′

)
dt′

]
.

Thus the mean displacement is driven by the flux j0, which is in turn forced by the
projection of the local density onto the gradient, as given by the integral term in S′,
as well as by the higher-order flux j0

2 . From the foregoing one can conclude that if 〈x〉
tends to a constant as t → ∞, then the total flux j0 must vanish as t → ∞, and this
in turn requires that the term s2

∫
R
S′(x)n(x, t)dx + 2bj0

2 must tend to zero. Thus
this is a necessary, but not sufficient, condition for steady patterns. Similarly, one
can derive the system of evolution equations for the mean square displacement.

In order to gain further insight into the evolution of the statistics of motion, let
us suppose that

S′(x) = C = constant and j2 = 0.

To derive equations for the mean position 〈x〉 and the mean square displacement 〈x2〉
under this restriction we introduce some additional moments

n0
1 =

∫
R

n1(x, t)dx, nx
1 =

∫
R

xn1(x, t)dx, and jx1 =

∫
R

xj1(x, t)dx.

Then, integrating (4.8), (4.9), and (4.10) with respect to x, we obtain the system

d

dt

⎛
⎝ j0

n0
1

j0
1

⎞
⎠ =

⎛
⎜⎝

−2λ0 0 −2b
−C − 1

ta
0

0 0 −
(
2λ0 + 1

ta

)
⎞
⎟⎠

⎛
⎝ j0

n0
1

j0
1

⎞
⎠ +

⎛
⎝ 0

0
−s2Cn0

⎞
⎠.(5.5)



FROM INDIVIDUAL TO COLLECTIVE BEHAVIOR 375

Similarly, multiplying (4.8), (4.9), and (4.10) by x and integrating with respect to x,
we obtain

d

dt

⎛
⎝ jx

nx
1

jx1

⎞
⎠ =

⎛
⎜⎝

−2λ0 0 −2b
−C − 1

ta
0

0 0 −
(
2λ0 + 1

ta

)
⎞
⎟⎠

⎛
⎝ jx

nx
1

jx1

⎞
⎠ +

⎛
⎝ s2n0

j0
1

s2n0
1 − s2C〈x〉n0

⎞
⎠ .

(5.6)

Together (5.5) and (5.6) form a system of six linear nonhomogeneous equations. The
eigenvalues of the matrix of this 6×6 system, which has the 3×3 blocks of the separate
system along the diagonal, are in fact just the diagonal entries, and are therefore real
and negative. Since n0 is constant, it follows that the system has a unique stable
steady state given by

j0 =
bs2Cta

λ0 + 2λ2
0ta

n0 and 2jx − 2〈x〉j0 =

(
s2

λ0
+

2b2s4C2t3a
(λ0 + 2λ2

0ta)
2

)
n0.

Thus, (5.2) implies that, asymptotically for t → ∞, we have

〈x〉(t) =
bs2Cta

λ0 + 2λ2
0ta

t and 〈x2〉(t) =

(
s2

λ0
+

2b2s4C2t3a
(λ0 + 2λ2

0ta)
2

)
t.(5.7)

The second of these shows that when the gradient S′(x) = C, the standard process is
asymptotically a diffusion process with diffusion constant

D =
s2

2λ0
+

b2s4C2t3a
(λ0 + 2λ2

0ta)
2
.(5.8)

Later, using the scaling in (6.8), we will see that the second term in (5.8) is smaller
than the first, and thus in (5.8) D ∼ s2/2λ0.

6. The hyperbolic scaling and derivation of a hyperbolic chemotaxis
equation. The macroscopic equations for n and j that can be obtained from the
moment equations depend on the time and space scales of interest. In this section we
use a hyperbolic scaling of space and time, which can capture the initial time evolution
of the system. Using this scaling, we give a heuristic derivation of a hyperbolic
version of the classical chemotaxis equation. Moreover, we also give an alternate
random walk interpretation to the derived hyperbolic chemotaxis equation in section
6.1. In section 7, we use a parabolic scaling valid for large times, which leads to the
classical chemotaxis equation. This equation is also a parabolic limit of the hyperbolic
chemotaxis equation derived here in cases where the signal is fixed. When the signal
itself evolves in time, this need not be true.

Let L, T, and s0 be scale factors for the length, time, and velocity, respectively;
let N0 be a scale factor for the particle density; and define the dimensionless variables

x̂ =
x

L
, t̂ =

t

T
, n̂ =

n

N0
, ĵ =

j

N0s0
,

n̂1 =
n1

N0
, ĵ1 =

j1
N0s0

, and ĵ2 =
j2

N0s0
.(6.1)
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Then the moment equations (4.7)–(4.10) can be written in the dimensionless form

∂n̂

∂t̂
+ ε

∂ĵ

∂x̂
= 0,(6.2)

∂ĵ

∂t̂
+ εŝ2 ∂n̂

∂x̂
= −2λ̂0 ĵ − 2 b̂ ĵ1,(6.3)

∂n̂1

∂t̂
+ ε

∂ĵ1
∂x̂

= −ε Ŝ′(x̂) ĵ − 1

t̂a
n̂1,(6.4)

∂ĵ1

∂t̂
+ εŝ2 ∂n̂1

∂x̂
= −εŝ2 Ŝ′(x̂) n̂−

(
2λ̂0 +

1

t̂a

)
ĵ1 − 2 b̂ ĵ2,(6.5)

where

ε ≡
(
s0T

L

)
, ŝ ≡ s

s0
, λ̂0 ≡ λ0T, b̂ ≡ bT, t̂a ≡ ta

T
, and Ŝ′(x̂) ≡ LS′(x).

(6.6)

In order to derive the macroscopic equations, we have to specify L, T , and s0 and
estimate the dimensionless parameters. The typical space scale of macroscopic exper-
iments is several millimeters or centimeters, a typical speed of bacterium is s = 10 –
20 µm/sec, and a characteristic time scale depends on our interests. Here, we choose

T = 1 sec, L = 1 mm, and s0 = 10µm/sec;(6.7)

i.e., we use a time scale that is of the same order as the mean time between directional
changes, since this characterizes the initial evolution. Assuming that the adaptation
time and the bias are also of the same order as the mean run time, we get

ε ≈ 10−2 and ŝ ∼ λ̂0 ∼ b̂ ∼ t̂a ∼ O(1).(6.8)

Using an approximation given later, this scaling will lead to a hyperbolic chemotaxis
equation. For simplicity, we drop the hats on x, t, s, λ0, b, ta, S and the hats on
moments, and use the same symbols for the dimensionless variables. Then the moment
equations (6.2)–(6.5) read as follows:

∂n

∂t
+ ε

∂j

∂x
= 0,(6.9)

∂j

∂t
+ ε s2 ∂n

∂x
= −2λ0 j − 2 b j1,(6.10)

∂n1

∂t
+ ε

∂j1
∂x

= −ε S′(x) j − 1

ta
n1,(6.11)

∂j1
∂t

+ ε s2 ∂n1

∂x
= −ε s2 S′(x)n−

(
2λ0 +

1

ta

)
j1 − 2 b j2.(6.12)

In order to close this system we have to specify

j2 = F(n, j, n1, j1),(6.13)
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where the functional F is to be determined. To do that, we first rewrite our standing
assumption (3.12) using hyperbolic scaling (6.7)–(6.8). We denote the dimensionless
constant C again as C for simplicity, and then (3.12) for the dimensionless signal
gradient reads as follows:

|S′(x)| ≤ C, where C ∼ O
(

1

ε

)
.(6.14)

Thus the maximal possible gradient that satisfies (3.12) is O (1/ε) on the hyperbolic
scale. In other words, the restriction on the gradients that guarantees positivity of
the turning rate is very weak, and we strengthen it as follows.

Definition 6.1. We call the signal gradient shallow on the hyperbolic scale if

|S′(x)| ≤ K, where K ∼ O(1).(6.15)

In the following, we investigate the case of shallow gradients, and to do that, we
have to estimate the moments in (6.9)–(6.12).

Lemma 6.2. Suppose that the signal gradient is shallow. Then the moments in
(6.9)–(6.12) can be estimated as follows:

j

n
≤ K1,

n1

n
≤ εK2,

j1
n

≤ εK3,
j2
n

≤ ε2K4,(6.16)

where the constants K1, K2, K3, and K4 are O(1).

Proof. We use (4.6) rescaled by (6.1), (6.6), the nonnegativity of p±, Lemma 3.1,
(4.1), and (6.8) to estimate

j2 =
s

N0

∫
R

(z2)
2
[
p+(x, z2, t) − p−(x, z2, t)

]
dz2

≤ s

N0

∫
R

(z2)
2
[
p+(x, z2, t) + p−(x, z2, t)

]
dz2

≤ ε2(Ks ta)
2 s

N0

∫
R

[
p+(x, z2, t) + p−(x, z2, t)

]
dz2 = ε2(Kta)

2s3 n = ε2K4 n,

where K4 ∼ O(1). This proves the last inequality in (6.16), and the proof of the other
inequalities is similar.

Therefore the term 2bj2 in equation (6.12) is O(ε2) when the gradient is shal-
low, and we can close the moment equations (6.9)–(6.12) with the moment closure
assumption

j2 = 0.(6.17)

This will introduce the error of order O(ε2) into (6.12). The corresponding orders of
the remaining moments are given in Lemma 6.2.

Next we show that one can obtain a hyperbolic chemotaxis equation for n, pro-
vided a certain assumption on the decay of modes holds. To do that, we write the
system (6.9)–(6.12) in the matrix form

∂v

∂t
+ ε

∂

∂x
(Av) = B(x, ε)v + r,(6.18)
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where

v =

⎛
⎜⎜⎝

n
j
n1

j1

⎞
⎟⎟⎠, A =

⎛
⎜⎜⎝

0 1 0 0
s2 0 0 0
0 0 0 1
0 0 s2 0

⎞
⎟⎟⎠, r =

⎛
⎜⎜⎝

0
0
0

−2bj2

⎞
⎟⎟⎠,(6.19)

and

B(x, ε) =

⎛
⎜⎜⎜⎝

0 0 0 0
0 −2λ0 0 −2b
0 −εS′(x) − 1

ta
0

−εs2S′(x) 0 0 −
(
2λ0 + 1

ta

)
⎞
⎟⎟⎟⎠ .(6.20)

Equation (6.18) holds for any signal function satisfying the standing assumption
(3.12), since it is just a different formulation of the system (6.9)–(6.12). Assuming
(6.17), the system (6.18) can be written in the form

∂v

∂t
+ ε

∂

∂x
(Av) = B(x, ε)v.(6.21)

This is a hyperbolic system of four linear PDEs with nonconstant coefficients for four
unknowns: n, j, n1, and j1. The matrix B(x, ε) has the interesting property that its
eigenvalues do not depend on the signal S(x), and consequently the eigenvalues of
B(x, ε) are independent of ε and x. An easy calculation gives the following four (not
necessarily distinct) eigenvalues of B(x, ε):

λ1 = 0, λ2 = −2λ0, λ3 = − 1

ta
, λ4 = −1 + 2λ0ta

ta
.(6.22)

Let us note that three of the eigenvalues, λ2, λ3, and λ4, are negative. Moreover,
λ4 < λ2 and λ4 < λ3.

System (6.21) cannot be solved explicitly, so we simplify it heuristically as follows.
First consider the system (6.21) with ε = 0, in which case (6.21) reduces to the system
of ordinary differential equations

∂w

∂t
= B(x, 0)w,

where the matrix B(x, 0) has four eigenvalues given by (6.22). Consequently, the long
time behavior is given by the eigenvectors corresponding to the largest eigenvalues.
Next, let us consider the system (6.21) with ε 
= 0. As ε is a small parameter, we use
the following heuristic argument to derive a hyperbolic chemotaxis equation.

The eigenvectors of B(x, ε) are

λ1 = 0 : ϑ1 =

⎛
⎜⎜⎝

λ0 + 2λ2
0ta

bεs2S′(x)ta
−b(εsS′(x)ta)

2

−εs2S′(x)taλ0

⎞
⎟⎟⎠ , λ2 = −2λ0 : ϑ2 =

⎛
⎜⎜⎝

0
−1 + 2λ0ta
εS′(x)ta

0

⎞
⎟⎟⎠ ,

(6.23)

λ3 = − 1

ta
: ϑ3 =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ , λ4 = −1 + 2λ0ta

ta
: ϑ4 =

⎛
⎜⎜⎝

0
2bλ0ta

εS′(x)bta
λ0

⎞
⎟⎟⎠ .(6.24)
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Let us suppose that 2λ0 
= 1
ta
. Then we can write the unknown vector function v(x, t)

as a linear combination of the eigenvectors ϑi, i = 1, . . . , 4, i.e.,

v(x, t) = c1(x, t)ϑ1 + c2(x, t)ϑ2 + c3(x, t)ϑ3 + c4(x, t)ϑ4.(6.25)

We are interested in the evolution of the first component of v, which is n. The first
component is nonzero only for the vector ϑ1, and consequently we have

n(x, t) = (λ0 + 2λ2
0ta)c1(x, t).

Then (6.25) reads as follows:

v(x, t) =
n(x, t)

(λ0 + 2λ2
0ta)

ϑ1 + c2(x, t)ϑ2 + c3(x, t)ϑ3 + c4(x, t)ϑ4.(6.26)

The parameter ε is small compared with 2λ0 + 1
ta

(see (6.8)). Consequently, the
major dynamical features will be given by the eigenvectors corresponding to the zero
eigenvalue and the eigenvalues with lower absolute value. We have the inequalities

λ4 < λ2 < λ1 = 0 and λ4 < λ3 < λ1 = 0,(6.27)

and therefore we consider the projection

v(x, t) =
n(x, t)

(λ0 + 2λ2
0ta)

ϑ1 + c2(x, t)ϑ2 + c3(x, t)ϑ3,

to obtain (from the fourth component of the vector v)

j1(x, t) = −εs2S′(x)ta
1 + 2λ0ta

n(x, t).(6.28)

This can be used to reduce the system (6.21) to the following system of two equations:

∂n

∂t
+ ε

∂j

∂x
= 0,(6.29)

∂j

∂t
+ εs2 ∂n

∂x
= −2λ0j + 2b

εs2S′(x)ta
1 + 2λ0ta

n.(6.30)

The last step is to reduce these two equations to one equation for n. To this end, we
differentiate (6.29) with respect to t and (6.30) with respect to x to obtain

∂2n

∂t2
+ ε

∂2j

∂t∂x
= 0,

∂2j

∂x∂t
+ εs2 ∂

2n

∂x2
= −2λ0

∂j

∂x
+ 2b

∂

∂x

εs2S′(x)ta
1 + 2λ0ta

n.(6.31)

Then, solving (6.31) for n, we obtain the hyperbolic version of the classical chemotaxis
equation (compare with (1.5)):

∂2n

∂t2
+ 2λ0

∂n

∂t
=

∂

∂x

(
ε2s2 ∂n

∂x
− 2 b ε2s2 ta

1 + 2λ0ta
S′(x)n

)
.(6.32)

Finally, let us note that s (or ŝ) given by (6.6) is the value of the speed of bacteria
in units of s0. On the other hand, if we give the values for characteristic time T and
length L by (6.7), then the characteristic speed can be also considered as L/T = 1
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mm/sec. In these units, the value of bacterial speed is simply given by s = εs. Using
s instead of s, we can rewrite (6.32) in the following form:

∂2n

∂t2
+ 2λ0

∂n

∂t
=

∂

∂x

(
s2 ∂n

∂x
− 2 b s2 ta

1 + 2λ0ta
S′(x)n

)
.(6.33)

Here, the chemotactic sensitivity is given as a function of bacterial speed s, adaptation
time ta, and turning parameters λ0 and b, namely,

χ =
b s2 ta

λ0 + 2λ2
0ta

,

which we have already derived for the case in which the signal gradient is constant
(see (5.7)). Equation (6.33) was derived for the simplified cartoon model (3.7), but a
similar analysis can be done for the full model (2.2)–(2.3) with te 
= 0 and a general
function g. This leads to the following hyperbolic chemotaxis equation (cf. (6.33)),

∂2n

∂t2
+ 2λ0

∂n

∂t
=

∂

∂x

(
s2 ∂n

∂x
− g′(S(x))

2 b s2 ta
(1 + 2λ0ta)(1 + 2λ0te)

S′(x)n

)
,(6.34)

and the chemotactic sensitivity is now given by

χ = g′(S(x))
b s2 ta

λ0(1 + 2λ0ta)(1 + 2λ0te)
.(6.35)

Note that we can derive (6.33) as the limit te → 0 of (6.34) for g = Identity. It should
also be noted that in either case (and those that follow) the chemotactic sensitivity
vanishes as ta → 0, which is to be expected since the system adapts instantaneously
in this case. In this limit one sees, via (3.12) and Lemma 6.2, the interplay between
the adaptation time and the allowable magnitude of the gradient: as ta → 0 we can
allow the bound K̄ on |S′(x)| in Definition 6.1 to grow as long as |K̄ta| ∼ O(1), and
we obtain the same conclusions as in Lemma 6.2.

In contrast, one cannot extract from (6.35) the effect of letting ta → ∞, because
the derivation of (6.34) or its simplified version (6.33) make use of the inequalities
(6.27) to conclude that the projection of the solution onto the eigenvector ϑ4 dies out
faster than other modes. The spectral gap in (6.27) between λ4 and other eigenvalues
does not persist in the limit ta → ∞, and in addition the constant C tends to zero in
the standing assumption (3.12). Consequently, we need a model for large ta in which
the turning rate is given by some nonlinear nonnegative function of the signal. Let
us also note for later reference that the hyperbolic chemotaxis equation (6.34) gives
the same parabolic limit as we will derive in section 7 from the full system (6.21).

6.1. A different random walk interpretation of the hyperbolic chemo-
taxis equation. As we observed in the discussion in the introduction and in [15],
biasing the turning rates depending on the direction of travel will lead to a nonzero
chemotactic velocity, and in this section we show that one can explicitly extract that
bias from the chemotactic sensitivity derived from the cartoon internal dynamics.
This leads back to a system of equations for left- and right-moving particles, but
now without internal dynamics. One could obtain this by inverting the procedure
that leads from the hyperbolic system without internal dynamics to the second-order
scalar equation for the total density, but we proceed directly. The advantage of this
system is that it provides a direct step to a microscopic model that bypasses the in-
ternal dynamics, and hence may be better suited for stochastic simulations. It also
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suggests a model for chemotaxis in eukaryotic cells, which can measure gradients over
their length.

Consider a random walk in which a particle moves along the x-axis at a con-
stant speed s but at random instants of time reverses its direction according to a
Poisson process with the turning frequency

λ = λ0 ±
b s tag

′(S(x))

(1 + 2λ0ta)(1 + 2λ0te)
S′(x).(6.36)

Here the sign depends on the direction of the particles: plus for particles moving to
the left and minus for particles moving to the right. Let u±(x, t) be the density of
particles at (x, t) that are moving to the right (plus) or left (minus) (note that here,
and only in this section, there are no internal variables). Then u±(x, t) satisfy the
equations

∂u+

∂t
+ s

∂u+

∂x
= −

(
λ0 −

b s tag
′(S(x))

(1 + 2λ0ta)(1 + 2λ0te)
S′(x)

)
u+

+

(
λ0 +

b s tag
′(S(x))

(1 + 2λ0ta)(1 + 2λ0te)
S′(x)

)
u−,(6.37)

∂u−

∂t
− s

∂u−

∂x
=

(
λ0 −

b s tag
′(S(x))

(1 + 2λ0ta)(1 + 2λ0te)
S′(x)

)
u+

−
(
λ0 +

b s tag
′(S(x))

(1 + 2λ0ta)(1 + 2λ0te)
S′(x)

)
u−.(6.38)

The density of particles at (x, t) is given by the sum n(x, t) = u+(x, t) + u−(x, t).
Then, adding and subtracting (6.37) and (6.38), one can rewrite them as a system of
two equations of the form (6.29)–(6.30) for the variables n = u++u− and j = u+−u−.
Then one can follow the same procedure as before to show that the density n of these
direction-sensing random walkers is described by (6.34). In this case, (6.34) is valid
for all times for all biologically reasonable parameter regimes.

7. The parabolic scaling and derivation of the classical chemotaxis
equation. The previous analysis used the scaling (6.7)–(6.8) and led to the hyper-
bolic chemotaxis equation (6.33), but the arguments are formal in several places. This
equation formally reduces for large times to the classical chemotaxis equation (1.5),
but to derive the latter rigorously we introduce a parabolic scaling that leads directly
from the moment equations (4.7)–(4.10) to the classical chemotaxis equation. For this
purpose we define a long time scale, as was done in [19], by setting

t̂ =
t

Tp
, where Tp =

1

ε2
T,(7.1)

where T = 1 sec is the time scale used in the hyperbolic scaling. All other parameters
remain the same as in (6.1), (6.6), (6.7), and (6.8), and therefore the dimensionless
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equations (6.2)–(6.5) take the form

ε2 ∂n̂

∂t̂
+ ε

∂ĵ

∂x̂
= 0,(7.2)

ε2 ∂ĵ

∂t̂
+ εŝ2 ∂n̂

∂x̂
= −2λ̂0 ĵ − 2 b̂ ĵ1,(7.3)

ε2 ∂n̂1

∂t̂
+ ε

∂ĵ1
∂x̂

= −ε Ŝ′(x̂) ĵ − 1

t̂a
n̂1,(7.4)

ε2 ∂ĵ1

∂t̂
+ εŝ2 ∂n̂1

∂x̂
= −εŝ2 Ŝ′(x̂) n̂−

(
2λ̂0 +

1

t̂a

)
ĵ1 − 2 b̂ ĵ2.(7.5)

For simplicity, we drop the hats in (7.2)–(7.5), and we consider the case of shallow
gradients S′(x) ∼ O(1) as before (see Definition 6.1). Therefore we can use the
moment closure j2 = 0 as before, and (7.2)–(7.5) can be written in the following
matrix form

ε2 ∂v

∂t
+ ε

∂

∂x
(Av) = εQ(x)v + Rv,(7.6)

where v and A are given by (6.19) and

Q(x) =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 −S′(x) 0 0

−s2S′(x) 0 0 0

⎞
⎟⎟⎠

and R =

⎛
⎜⎜⎜⎝

0 0 0 0
0 −2λ0 0 −2b
0 0 − 1

ta
0

0 0 0 −
(
2λ0 + 1

ta

)
⎞
⎟⎟⎟⎠ .

Here all the entries of the matrices A, Q(x), and R are O(1). Assuming the regular
perturbation expansion

v = v0 + εv1 + ε2v2 + · · · , where v0 =

⎛
⎜⎜⎝

n0

j0

n0
1

j0
1

⎞
⎟⎟⎠ and v1 =

⎛
⎜⎜⎝

n1

j1

n1
1

j1

⎞
⎟⎟⎠ ;

substituting this into (7.6); and comparing terms of equal order in ε, we obtain

ε0 : Rv0 = 0,(7.7)

ε1 :
∂

∂x

(
Av0

)
−Q(x)v0 = Rv1,(7.8)

ε2 :
∂v0

∂t
+

∂

∂x

(
Av1

)
−Q(x)v1 = Rv2.(7.9)

The first equation, (7.7), implies that

v0 = (n0, 0 , 0 , 0 )T ;
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consequently, the second equation, (7.8), implies

j1 = − s2

2λ0

∂n0

∂x
+

bs2ta
λ0 + 2λ2

0ta
S′(x)n0.(7.10)

Finally, (7.9) implies that the left-hand side

∂v0

∂t
+

∂

∂x

(
Av1

)
−Q(x)v1

is in the range of the operator R : w → Rw. Consequently, using a Fredholm alterna-
tive, the left-hand side must be orthogonal to the vector (1, 0, 0, 0)T . Hence,

∂n0

∂t
+

∂j1

∂x
= 0.

Finally, using (7.10), we derive the classical chemotaxis equation in the following form:

∂n0

∂t
=

∂

∂x

(
s2

2λ0

∂n0

∂x
− bs2ta

λ0 + 2λ2
0ta

S′(x)n0

)
.(7.11)

Equation (7.11) was derived for the simplified cartoon model (3.7), but a similar
analysis can be done for the full cartoon model (2.2)–(2.3). This leads to the classical
chemotaxis equation

∂n

∂t
=

∂

∂x

(
s2

2λ0

∂n

∂x
− g′(S(x))

bs2ta
λ0(1 + 2λ0ta)(1 + 2λ0te)

S′(x)n

)
.(7.12)

This is the parabolic counterpart of the hyperbolic equation (6.34) and leads once
again to the formula (6.35) for the chemotactic sensitivity. Rigorous estimates on
how well the solution of the parabolic equation approximates the solution of the
moment equations can be obtained using arguments analogous to those in [19].

8. Numerical examples. The macroscopic descriptions of chemotaxis embod-
ied in either the modified classical chemotaxis equation (6.33) or the classical chemo-
taxis equation (7.11) are approximations of the original transport equation and the
stochastic process describing movement that underlies it. In this section we present
two numerical examples that illustrate how well the macroscopic descriptions approx-
imate the solution of the microscopic process. We start by describing our numerical
methods.

8.1. Numerical methods. The parameters in our computations are assumed
to be dimensionless, and we choose b = 1, ta = 1, λ0 = 1, and s = 0.1; i.e., s is small
compared to other parameters (compare with scaling (6.7)–(6.8)).

To solve the system (6.9)–(6.12), closed by (6.17), numerically, we first transform
this system to the diagonal form

∂v

∂t
+ D1

∂

∂x
v = C1(x)v.

Here D1 is a diagonal 4 × 4 matrix. Then we use an explicit finite difference method
with upwinding. To solve the hyperbolic modified chemotaxis equation (6.33) numer-
ically, we first transform it to the system of two first-order equations in the diagonal
form

∂w

∂t
+ D2

∂

∂x
w = C(x)w,
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where D2 is a diagonal 2×2 matrix. Again, we use an explicit finite difference method
with upwinding.

To solve the classical chemotaxis equation (7.11) numerically, we use an implicit
finite difference method (backward difference approximation in time and centered
difference approximation for spatial derivatives).

Finally, to simulate the random walk of individuals, we consider an ensemble
of 2000 or 8000 particles. Each particle is described by three variables—position
x, velocity ±s, and the internal state y. We use a small time step dt = 0.01 (i.e.,
the unbiased turning frequency divided by 100). During each time step the particle
moves with speed s in the chosen direction, and we integrate the internal dynamics
to find the change of y. At the end of each time step, a random number from [0, 1] is
generated and compared with the probability of the turn λ(y)dt. If the turn occurs,
the bacterium will move during the next time step in the opposite direction.1

8.2. Traveling bands. In this example we analyze the motion of the individuals
in the interval [0, 20] with the signal S(x) given by

S(x) = 28 − 2|x− 14|.(8.1)

The signal has a global maximum at the point 14, and its derivative is S′(x) =
−2 sign (x−14) for x 
= 14. We assume the same initial condition for all computations,
namely,

n(x, 0) =

{
1 for x ∈ [5, 6],
0 for x 
∈ [5, 6];

(8.2)

we assume that all individuals are perfectly adapted at t = 0; and we use no-flux
boundary conditions.

In Figure 8.1 we compare the results of the stochastic simulation of the random
walk with the solutions of the macroscopic system (6.9)–(6.12) closed by (6.17). It
happens that the solution of the modified chemotaxis equation (6.33) and the solution
of the classical chemotaxis equation (7.11) are indistinguishable on the plots from the
solution of (6.9)–(6.12). Thus the macroscopic results presented can be viewed as
plots of the solution of any of these macroscopic equations.

In Figure 8.1 we see that the band travels to the right (i.e., toward the maximum
of the signal), as expected, and then the individuals who arrive at the maximum first
aggregate there. Eventually all individuals aggregate around the maximum of the
signal. From the plots we also see that numerically the macroscopic equations give
very good results in comparison with the Monte Carlo simulations. Finally, if we
use the results for the time interval [0, 600], i.e., under the influence of the constant
gradient, we can compute the average speed of the bacteria in this interval and find
that

V
.
=

1

150
=

|b|s2S′(x)ta
λ0 + 2λ2

0ta
,

which agrees with the result in (5.7).

1A Monte Carlo simulation that incorporates the internal dynamics used here, as well as a more
detailed description of the motor behavior, is given in [39].
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Fig. 8.1. The graphs show the solutions of the macroscopic system (6.9)–(6.12) closed by (6.17)
(thick smooth line) and the results of stochastic simulations of the velocity jump process with internal
state variables (thin line). Moreover, the thick line can also be viewed as a solution of the modified
chemotaxis equations (6.33) and the solution of the classical chemotaxis equation (7.11), since the
solutions of (6.33), (7.11), and (6.9)–(6.12) closed by (6.17) are indistinguishable on this scale. We
used 2000 particles for the Monte Carlo simulations, and the parameters b = 1, ta = 1, λ0 = 1, and
s = 0.1.



386 RADEK ERBAN AND HANS G. OTHMER

6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

3.5

4

position

de
ns

ity
 o

f i
nd

iv
id

ua
ls

T=300

6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

3.5

4

position

de
ns

ity
 o

f i
nd

iv
id

ua
ls

T=600

Fig. 8.2. The graphs of the density of bacteria under the influence of the exponential signal
function (8.3) with x0 = 14 and C = 1. Initially the bacteria were uniformly distributed at a density
equal to 1. The figure shows the density of bacteria at time T = 300 (left) and T = 600 (right). The
bacteria aggregate around the point x = 14, as expected. In this figure we use the internal dynamics
(2.2)–(2.5) with g(S) = 2 ln(S), ta = b = λ0 = 1, te = 0, and s = 0.1. The solution of the classical
chemotaxis equation (7.11) (thick line) and the Monte Carlo simulation (thin line) are shown.

8.3. Exponential signal ramp. Various chemotaxis experiments have been
done with exponential signal functions [14, 43]. The standard setup is that initially
there is a uniform concentration of bacteria in the medium with an exponential signal
ramp of the form

S(x) =

{
Cex x ≤ x0,
Cex0 x ≥ x0.

(8.3)

After several minutes, bacteria aggregate at the top of the exponential ramp, i.e.,
around the point x0.

As a second numerical example and test of the macroscopic equations, we re-
produce these experiments with the exponential signal ramp. We again use here the
internal dynamics (2.2)–(2.5) with a suitable choice of g. The exponential signal ramp
was used experimentally because a cell swimming in one direction sees a constant rate
of increase of the signal, and therefore the bias should remain approximately constant.
To take this into account, we could choose

g(S) = C
S(x)

KD + S(x)
.(8.4)

However, as we only want to reproduce the experimental results qualitatively, we can
approximate (8.4) by the logarithmic function. The numerical results for this are
shown in Figure 8.2. We plot the solution of the classical chemotaxis equation (7.11),
but the solutions of (6.9)–(6.12) and (6.33) again give the same results. Moreover, we
also qualitatively reproduce the behavior observed in experiments (cf. [14, 43]).

9. Extensions of the analysis. In this section, we discuss two extensions of
our analysis—the inclusion of a finite-duration tumbling state and the moment closure
for arbitrary signal gradients.

9.1. Inclusion of a finite-duration tumbling state. As we mentioned earlier,
the movement of E.coli consists of “running” smoothly with a speed s and “tumbling”
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randomly. Tumbles cause the bacterium to reorient and swim in a new random direc-
tion. The duration of both runs and tumbles are exponentially distributed with means
of 1 sec and 10−1 sec, respectively, in the absence of an extracellular signal. Thus cells
spend 10 percent of the total time in the tumbling state. Earlier we neglected this
time by assuming an instantaneous reversal of direction, but we now include it. We
again restrict the analysis to one space dimension, since the generalization to higher
dimensions only introduces some technical issues. We denote by

• p0(x, y, t) the number density of tumbling bacteria at time t and at point x
with internal state y;
• p±(x, y, t) the number density of bacteria running to the right (resp., left) at
time t and at point x with internal state y.

Suppose that a cell with internal state y moves along the x-axis at a constant speed
s and at random instants of time stops with stopping time governed by a Poisson
process of intensity α(y), and that a cell with internal state y tumbling at the point
x to move at random instants of time starts according to a Poisson process with the
intensity β(y). Further, suppose that the direction of movement is unbiased, i.e., that
the tumbling particle will go with probability 0.5 to the right and with probability
0.5 to the left, given that movement starts.

For simplicity we consider the simplified cartoon internal dynamics (3.7)–(3.8).
Using the change of internal variables y2 = S(x) + z2, the movement of bacteria can
be described by the following equations:

∂p+

∂t
+ s

∂p+

∂x
+

∂

∂z2

[(
−z2

ta
− sS′(x)

)
p+

]
= −α(y)p+ +

1

2
β(y)p0,(9.1)

∂p0

∂t
+

∂

∂z2

[(
−z2

ta

)
p0

]
= α(y)(p+ + p−) − β(y)p0,(9.2)

∂p−

∂t
− s

∂p−

∂x
+

∂

∂z2

[(
−z2

ta
+ sS′(x)

)
p−

]
= −α(y)p− +

1

2
β(y)p0.(9.3)

In order to compare this model with the previous one, we will specify α(y) and β(y)
as follows:

α(y) = 2λ0 + 2bz2, β(y) = β0 − β1z2,(9.4)

where

λ0 > 0, b > 0, β0 > 0, β1 ≥ 0.

Then this model is equivalent to the model in section 4 in the limit β0 → ∞. One can
show, using techniques similar to those used before, that the average position of the
particles under the influence of a constant gradient S′(x) = C is given by (cf. (5.7))

〈x〉(t) =
bs2Cta

λ0 + 2λ2
0ta

(
β0

2λ0 + β0

)
t.(9.5)

Thus the tumbling state slows down the movement by the factor β0/(2λ0 + β0), and
we recover (5.7) as β0 → ∞. Moreover, one can derive the following modified classical
chemotaxis equation (cf. (6.33)):

∂2n

∂t2
+ 2λ0

∂n

∂t
=

∂

∂x

(
s2 ∂n

∂x
− 2s2bta

1 + 2λ0ta

(
β0

2λ0 + β0

)
S′(x)n

)
.
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9.2. Moment closure for arbitrary signal gradients. Heretofore we have
used the approximation (6.17), which is appropriate for shallow signal gradients. The
question arises as to what can be done for large signal gradients, i.e., for signals that
satisfy the standing assumption (3.12). Can we also find a moment closure of the
form (6.13)?

To do that, we have to approximate the neglected term

2bj2 = 2bs

∫
R

(z2)
2
[
p+(x, z2, t) − p−(x, z2, t)

]
dz2 = 2b

∫
R

(z2)
2J (x, z2, t)dz2.(9.6)

Recall that the internal variable z2 ∈ R evolves according to (3.10), i.e., according to
the differential equation

dz2

dt
= −z2

ta
∓ S′(x)s,(9.7)

where the sign of the last term is determined by the sign of the velocity of the par-
ticle. Equation (9.7) suggests that we can assume z2 ≈ ∓S′(x)sta. This is simply an
assumption, but it leads to the following two naive moment closures:

2bj2 = 2bs

∫
R

(z2)
2
[
p+(x, z2, t) − p−(x, z2, t)

]
dz2

= 2bs

∫
R

(z2)(z2)p
+(x, z2, t)dz2 − 2bs

∫
R

(z2)(z2)p
−(x, z2, t)dz2

.
= 2bs

∫
R

(−S′(x)sta)(z2)p
+(x, z2, t)dz2 − 2bs

∫
R

(S′(x)sta)(z2)p
−(x, z2, t)dz2

= −2bS′(x)tas
2

∫
R

z2

[
p+(x, z2, t) + p−(x, z2, t)

]
dz2 = −2bS′(x)tas

2n1,(9.8)

2bj2 = 2b

∫
R

(z2)
2J (x, z2, t)dz2

.
= 2b

∫
R

(∓S′(x)sta)
2J (x, z2, t)dz2 = 2b(S′(x))2t2as

2j.

(9.9)

These are both consistent with the moment closure (6.17) for shallow gradients of
the signal, and consequently they lead to the same equations (6.33) and (7.11) in
that case. On the other hand, they are much better than (6.17) for arbitrary signal
gradients, which we illustrate here numerically.

To this end, suppose that the derivative of the signal function S(x) is constant,
i.e., S′(x) = C and, as in section 5, we derive the corresponding average velocity of
the individuals V (i.e., the average velocity which is approached asymptotically; cf.
(5.7)). Surprisingly, the result is the same for both moment closures (9.8) and (9.9),
namely,

V =
btas

2S′(x)

λ0 + 2λ2
0ta − 2b2t3as

2(S′(x))2
.

As in section 8, we set b = λ0 = ta = 1 and s = 0.1, and then have C = 10 and

V =
S′(x)

300 − 2(S′(x))2
(9.10)
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Fig. 9.1. The dashed line shows the average velocity V given by the formula (9.10) as a function
of the gradient of the signal. The solid line presents the average velocities of the bacteria obtained
by the stochastic simulation.

for S′(x) ∈ [−10, 10]. To verify this formula numerically, we make several stochastic
simulations of the velocity jump process with internal variables, with the same pa-
rameters b = λ0 = ta = 1 and s = 0.1 for the constant gradients of the signal from
the interval [0,10].

Figure 9.1 shows the graph of V (dashed line) as a function of gradient S′(x).
The solid line presents the velocities obtained by the stochastic simulation of the
velocity jump process with internal variables. We see that, for the maximum possible
signal function S′(x) = 10, all individuals move to the right with the speed s = 0.1,
as expected. Moreover, we also see that the macroscopic equations obtained by the
moment closure (9.8) or by moment closure (9.9) can give good macroscopic moment
equations when used in (6.9)–(6.12).

10. Discussion and conclusions. We have shown how information about mi-
croscopic intracellular processes such as signal transduction and response can be trans-
lated into the macroscopic chemotactic sensitivity that appears in the macroscopic
description of chemotaxis. This was done for a highly simplified description of in-
tracellular dynamics, one which is based on linear dynamics for the response to an
extracellular signal, but which nonetheless incorporates the two most important char-
acteristics of any detailed signal transduction network, namely, excitation and adap-
tation. Linear dynamics and linear response may well be adequate for describing the
type of signal changes a swimming bacterium normally sees, but that remains to be
established. In addition, a great deal of further work is needed to identify the essential
response modes in a general signal transduction network, even if a near-equilibrium
assumption is used. A difficult part of that will be to determine how the extracellular
signal feeds into the linearized response of the cell.

The moment approach used here leads firstly to a system of hyperbolic equations,
and then via a hyperbolic (resp., parabolic) scaling of space and time to a single
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hyperbolic (6.34) (resp., parabolic (7.12)) equation for the density of individuals.
One can also use other scalings of space and time. For example, the parabolic scaling
uses T ∼ O(1/ε2), but if one uses T ∼ O(1/ε3), the result is the elliptic equation for
the steady states of (6.34).

The first systematic derivation of a chemotaxis equation from a velocity jump
process is due to Patlak [36], who considers both internal and external biases in
detail, but these biases are imposed. A basic assumption in [36] is that the run length
is chosen and fixed whenever the particle turns, which is quite different from the
stochastic process treated here. As was observed elsewhere [30], the particle motion
between turns is deterministic, and thus, were the speed and run length constant, the
process would be formally equivalent to a space jump process [29]. In general one
can show that this process leads to a renewal equation that generalizes the renewal
equation (15) derived in [29], from which a diffusion equation is obtained by suitable
choice of the waiting time and jump distributions. Others have treated a process
similar to the one treated here without the internal dynamics since Patlak’s work,
and the reader is referred to [30] for a review of the literature.
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SYNCHRONY IN A POPULATION OF HYSTERESIS-BASED
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Abstract. Oscillatory behavior has been found in different specialized genetic networks. Pre-
vious work has demonstrated nonsynchronous, erratic single-cell oscillations in a genetic network
composed of nonspecialized regulatory components and based entirely on negative feedback. Here,
we present the construction of a more robust, hysteresis-based genetic relaxation oscillator and pro-
vide a theoretical analysis of the conditions necessary for single-cell and population synchronized
oscillations. The oscillator is constructed by coupling two subsystems that have previously been im-
plemented experimentally. The first subsystem is the toggle switch, which consists of two mutually
repressive genes and can display robust switching between bistable expression states and hysteresis.
The second subsystem is an intercell communication system involved in quorum-sensing. This sub-
system drives the toggle switch through a hysteresis loop in single cells and acts as a coupling between
individual cellular oscillators in a cell population. We demonstrate the possibility of both population
synchronization and suppression of oscillations (cluster formation), depending on diffusion strength
and other parameters of the system. We also propose the optimal choice of the parameters and small
variations in the architecture of the gene regulatory network that substantially expand the oscillatory
region and improve the likelihood of observing oscillations experimentally.

Key words. coupled oscillators, relaxation oscillations, stability, intercell communication, gene
networks
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1. Introduction. The variation in gene expression in response to internal or
external signals is one of the most important means of cellular regulation. The rate
at which a gene is transcribed into messenger RNA and subsequently translated into
protein is influenced by many factors but is primarily controlled by how well the
RNA polymerase complex can bind to and initiate transcription from a regulatory
region of the DNA called the promoter. Signals that modulate transcription are
often mediated through transcription factor proteins that bind to target sites within
or near the promoter where they increase (activation) or decrease (repression) the
probability of RNA polymerase complex binding and/or initiation of transcription.
The manipulation of DNA sequence to create novel promoters containing customized
transcription factor target sites and to mix and match such promoters with genes that
encode the corresponding transcription factor proteins has allowed the construction of
artificial gene regulatory networks with customizable functionality [1, 2, 3, 4, 5]. Such
networks can be used to achieve complex and multifaceted control of cellular function
and have promising scientific, medicinal, and biotechnological applications [6, 7, 8].
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Mathematical modeling and analysis is becoming increasingly important as a tool
to organize and to interpret vast amounts of experimental data and as a predictive tool
in the construction of artificial gene networks [1, 2, 9]. The first step in the construc-
tion of an artificial gene network is to investigate if the proposed network architecture
supports the desired functionality. In this paper, we use mathematical techniques
to model and analyze an artificial gene network that is currently being implemented
experimentally in the bacterium Escherichia coli [10]. The network is intended to
regulate a population synchronous periodic oscillation in the levels of cellular protein
in a constant density, well-stirred bio-reactor. The goals of the mathematical analysis
are (1) to investigate if the network architecture supports single-cell and population
synchronous oscillations, (2) to identify the parameter values and the experimental
conditions where this behavior is supported, and (3) to suggest modifications to the
network that optimize the robustness of single-cell and population oscillations.

The oscillator is to be constructed by combining two engineered gene networks
that have previously been implemented experimentally in E. coli: the toggle switch
[1] and an intercell communication system [11, 12, 13]. The engineered gene networks
are carried on multicopy, self-replicating plasmids that interfere minimally with the
host cell. As a result, the dynamics of the engineered networks may be considered
independently of the dynamics of the cell’s natural regulatory circuitry. The toggle
switch is composed of two transcription factor proteins: the lac repressor, encoded by
the gene lacI, and a temperature-sensitive variant of the λ cI repressor, encoded by the
gene cI857. The synthesis of the two repressor proteins is regulated in such a way that
expression of the cI857 and lacI genes are mutually exclusive: The promoter Ptrc that
controls the expression of cI857 is attenuated by the lac repressor while the promoter
PL∗ that controls the expression of lacI is attenuated by the λ repressor. Thus, a cell
can be either in a state where λ repressor is abundant and lac repressor scarce (the
cI on state) or in a state where lac repressor is abundant and λ repressor scarce (the
lacI on state).

It has been demonstrated experimentally [1] that the state of cells harboring
the toggle switch network can be changed permanently by transient inactivation of
the dominant repressor protein. The λ repressor is inactivated at elevated temperature
and the state can be changed from the cI on to the lacI on state by a transient increase
in temperature. Conversely, the transition from the lacI on to cI on state ensues when
the lac repressor protein is inactivated by the addition of sufficient amounts of the
chemical isopropyl-β-D-thiogalactopyranoside (IPTG). At subcritical levels of IPTG,
both states exist and are stable. Variation in IPTG has demonstrated hysteresis of
these two steady states [1]. We exploit the presence of hysteresis in the toggle switch
to construct an oscillator network by linking the toggle switch to a second network
that autonomously drives cells through the hysteresis loop (Figure 1.1(A)).

The gene network intended to drive the oscillation involves components of the
quorum-sensing system from Vibrio fischeri [14]. Quorum-sensing enables cells to
sense population density through a transcription factor protein LuxR, which acts as
a transcriptional activator of genes expressed from the Plux promoter when a small
organic molecular, the autoinducer (AI), binds to it. The AI is synthesized by the
protein encoded by the gene luxI, and the AI can diffuse across the cell membrane
causing the extracellular concentration of AI, as well as the AI concentration in in-
dividual cells, to depend on the density of AI-producing cells. These properties of
the quorum-sensing system has been exploited experimentally to construct biosensors
(see, e.g., [15, 16, 17]) to transfer information from one cell to another [11] and can,
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Fig. 1.1. Schematic diagrams of the genetic oscillator network in isolated cells. (A) Full
network composed of the toggle switch genes cI857 and lacI and their respective promoters Ptrc (lac
repressed) and PL∗ (λ repressed) and the quorum-sensing genes luxI and luxR. Autoinducer (AI)
is synthesized by the LuxI protein and activates expression of lacI from the Plux promoter through
binding to the LuxR transcription factor. (B) Minimal model. It is assumed that the activation of
expression of the repressor gene u (lacI) occurs in a single step binding of W (AI) to the promoter
P3 (Plux).

in theory, be used to achieve synchronization across a cell population [18]. It was
recently shown experimentally [10] that a variant of the network in Figure 1.1 lacking
the luxI gene can respond to AI and be driven through a saddle-node bifurcation by
increasing AI concentration.

This paper is organized as follows. In section 2, we discuss the structure of the
genetic network and derive the equations that govern the dynamics of a minimal de-
scription of the network. In section 3, we investigate the dynamics of isolated cells
and establish the condition for the organization of single-cell oscillations. In section
5, we consider the dynamics of an ensemble of cells and demonstrate the possibility
of both population synchronization and suppression of oscillations, depending on dif-
fusion strength and other parameters of the system. In section 4, we investigate the
effect on the ability of isolated cells to oscillate when molecular details left out of the
minimal model are taken into consideration. In particular, production of the autoin-
ducer in two steps, rather than just one as assumed in the minimal model, improves
the likelihood of observing oscillations experimentally. We also show that oscillatory
behavior can be made much more robust by adding an additional connectivity to the
network.
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2. Minimal model. The molecular details of the genetic oscillator network that
we wish to construct is illustrated schematically in Figure 1.1(A). It is a slight variant
of a network constructed by Kobayashi et al. [10], where luxI is inserted downstream
of cI857 rather than downstream of luxR. The expression of the cI857 is controlled
by the promoter Ptrc, and the expression of the lacI gene is controlled by the PL∗
promoter. As a result, the AI is synthesized when the cell is in the cI on/lacI off

state. The AI binds to the LuxR protein, whose gene is expressed at a constant rate
from the Pcon promoter, and the LuxR-AI complex increases the rate of expression
of the lacI gene by activation of the Plux promoter. Hence, when cells are in the
lacI off state, the AI will gradually accumulate and activate the production of λ
repressor protein. The λ repressor eventually shuts down expression of cI and luxI
from the Ptrc promoter, causing a transition from the cI on to the lacI on state and
a down-regulation of AI production. To complete the cycle, it is required that a cell
returns to the cI on state once AI production ceases in the lacI on state. Therefore,
oscillations require that the toggle switch component of the network is bistable at
intermediate levels of AI and monostable when the level of AI is either high (lacI on)
or low (cI on).

To ease the mathematical analysis, we initially employ a simplified model of the
full system, illustrated in Figure 1.1(B). In this model, the promoters are renamed
P1 (PL∗), P2 (Ptrc), and P3 (Plux) and the transcription factors renamed U (lac
repressor), V (λ repressor), and W (the LuxR-AI activator). The difference between
the full (Figure 1.1(A)) and the simplified system (Figure 1.1(B)) lies in the regulation
of the P3 promoter. We assume for simplicity that the activator of P3 is encoded
by a single gene w rather than being the complex between LuxR and the AI. This
assumption ignores a potential time delay introduced by the two-step synthesis of the
LuxR-AI complex (i.e., LuxI → AI → LuxR-AI) and the titration and saturation of
free LuxR by the AI. The effects of these assumptions on oscillations in single cells
are investigated further in section 4.

2.1. Regulation of gene expression. The simplest model of gene expression
involves only two steps: the transcription of a gene into mRNA and the translation
of the mRNA into protein [19]. Consider the expression of a gene x that encodes the
protein X and is regulated by the promoter P . When each cell harbors nA active
promoters from which the mRNA of gene x is transcribed at an average rate k, the
approximation of the rate of mRNA change gives us the following differential equation:

dnm

dt
= nAk − dmnm,(2.1)

where dm is the effective first-order rate constant associated with degradation of
the mRNA within cells. This equation is, of course, only an approximation since
it assumes that the number of mRNA molecules is continuous rather than discrete
and since many additional steps are involved in both transcription and degradation
of mRNA [21]. Messenger RNA molecules are usually degraded rapidly compared
to other cellular processes, and it is often assumed that the concentration of mRNA
rapidly reaches a pseudo-steady state where nm = nAk/dm such that dnm/dt is zero.
In some cases, the delay introduced by mRNA synthesis is important for oscillatory
dynamics [2]. However, mRNA half-lives are difficult to manipulate experimentally,
which makes it difficult to exploit these control parameters in vivo.

The mRNA is translated into a protein by ribosomes, and it is assumed that
each x mRNA molecule gives rise to bx = ktl,x/dm copies of the protein X, where
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ktl,x is the averaged translation rate. The parameter bx is referred to as the burst
parameter of the protein and depends on the efficiency of translation and the mRNA
half-life [19]. The value of the translational efficiency depends, among several factors,
on the nucleotide sequence of the ribosome binding sites (RBS) located within the
upstream, noncoding part of the mRNA. The RBS is encoded by the DNA sequence
immediately upstream of the start codon of the gene and is an independent regulatory
element that can be manipulated experimentally. The sequence of the DNA encoding
the RBS is one of the principal tools by which the parameters of an engineered gene
network can be adjusted (see, e.g., [1]).

The equation that governs the evolution of the number of proteins, nX , produced
from nm mRNA molecules is in the continuous approximation given by

dnX

dt
= ktl,xnm − kXnX ,(2.2)

where ktl,x is the averaged translation rate, introduced above and kX is the effective
first-order rate constant associated with the degradation of the protein within cells.
When a pseudo-steady state approximation is invoked for mRNA (nm = nAk/dm),
it is obtained that ktl,xnm = ktl,xnAk/dm = bxnAk. The equation for the number of
proteins takes the form

dnX

dt
= bxnAk − kXnX .(2.3)

The rate of protein decay, kX , is a second experimental control parameter that can be
altered by augmenting, or tagging, the protein with additional amino acids, which
makes the protein a target of proteases that break down the protein into amino
acids [2].

It is convenient to convert the equation for the evolution of the total number of
proteins per cell into an equation for the evolution of cellular protein concentration,
[X](t) = nX(t)/v(t), where v(t) is the cell volume. Cells divide at regular time
intervals T , and the cell volume is assumed to increase exponentially in accordance
with the growth law v(t) = v0 exp(kgt), where v0 is the cell volume immediately after
division and kg = ln(2)/T . Cell division occurs when v(t = T ) = 2v0. The evolution
equation for protein concentration is then obtained as

d[X]

dt
=

1

v(t)

(
dnX

dt
− [X]

dv(t)

dt

)
= bxk[A](t) − (kX + kg)[X],(2.4)

where [A](t) is the concentration of active promoters, [A](t) = nA(t)/v(t). It is noted
that an exponential increase in cell volume is only an approximation of the quite
complicated process of cell growth and division.

The concentration of active promoters, [A](t), depends on the concentration of
transcription factors that are bound to the promoter region at a given time. Consider
the formation of a complex PE between the promoter, P , and a transcriptional effector
E of that promoter through the cooperative binding of β effector molecules to the
unoccupied promoter. This scheme can be represented by the reversible chemical
reaction of the Hill type with the equilibrium constant K:

βE + P � PE, K =
[PE]

[E]β [P ]
,(2.5)



SYNCHRONY IN A POPULATION OF GENETIC OSCILLATORS 397

where [P ], [PE], and [E] are the concentrations of unoccupied promoters, occupied
promoters, and effector molecules, respectively. The parameter β is the Hill coefficient
associated with the binding of the effector to the promoter.

The total concentration of promoters is proportional to the concentration [Ptot]
of the plasmid that carries the promoter. Plasmids are self-replicating, and the total
number of plasmids (and, hence, of promoters) change as a cell progresses through
the division cycle. The control of the plasmid copy number is quite elaborate [20]
and must be balanced with the cell’s growth and division. As a first approximation,
it is assumed that the number of plasmids per cell scales proportionally with the cell
volume such that the plasmid concentration remains fairly constant throughout the
cell division cycle, i.e., that [Ptot] = [P ](t) + [PE](t) is constant. Combined with the
equilibrium relation in (2.5), the conservation of plasmid concentration can be used
to derive the concentration of active promoters [A] used in (2.4). The effector can
be either a transcriptional repressor or a transcriptional activator. In the case when
the effector is the repressor, the unoccupied promoters are supposed to be active,
and [A]R ≡ [P ], where the superscript R stands for the repression case. Deriving
concentration of the repressed promoters, [PE], from (2.5) as a function of [P ], we
have [Ptot] = [P ] + K[E]β [P ], or, taking into account the equivalence of [P ] and
[A]R, [Ptot] = [A]R + K[E]β [A]R. Then, in the case of transcriptional repression, the
concentration of active promoters is given by

[A]R =
[Ptot]

1 + K[E]β
.(2.6)

In the case when the effector is the activator, the unoccupied promoters are assumed
to be passive, and [A]A ≡ [PE], where the superscript A stands for the activation case.
We derive concentration of unoccupied promoters from (2.5) as [P ] = [A]A/K[E]β ,
then [Ptot] = [A]A/K[E]β + [A]A. From this equation, the concentrations of active
promoters is given by

[A]A =
[Ptot]K[E]β

1 + K[E]β
.(2.7)

Introducing the exponent a, we can write down the common formula for these two
cases:

[A] =
[Ptot]

{
K[E]β

}a

1 + K[E]β
,(2.8)

where the case of repression (R) corresponds to a = 0 and the case of activation (A)
corresponds to a = 1.

Equation (2.4) can be generalized for the case of multiple promoters, controlling
the production of the same protein. Suppose we have several protein effectors Ej , each
of which influences production of the protein X, binding the corresponding promoter
Pj (j = 1, . . . ,M). By summation of the contribution from each promoter Pj in the
network, the evolution of the protein concentration [X] can be written as

d[X]

dt
=

M∑
j=1

bjxkj [Ptot,j ][Kj [Ej ](t)
βj ]aj

1 + Kj [Ej ](t)βj
− (kX + kg)[X].(2.9)

We also need to take into account that X may be able to penetrate the cell mem-
brane by passive or active transport. An additional term for (2.9), which corresponds
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to the passive transport, is DX([X] − [Xext]). Here, [Xext] is the extracellular con-
centration of X and DX is an effective diffusion coefficient. The parameter DX , in
its simplest form, is defined by DX = S(t)pX/v(t), where S(t) is the cell surface area
and pX is the membrane permeability of X [22]. While DX depends slightly on the
stage of the cell division cycle, we will assume for simplicity that DX is a constant.
The resulting equation for a protein, which is synthesized from multiple promoters
and can penetrate the cell membrane, is given by

d[X]

dt
=

M∑
j=1

bjxkj [Ptot,j ][Kj [Ej ](t)
βj ]aj

1 + Kj [Ej ](t)βj
− (kX + kg)[X] −DX([X] − [Xext]).(2.10)

Most proteins within the cell are unable to penetrate the cell membrane, and the
diffusive term is in the present case only relevant for the AI.

2.2. The genetic oscillator model. The network diagram in Figure 1.1(B)
can be converted into a system of evolution equations by using (2.10) for each of the
three proteins U , V , and W synthesized from the three promoters. We use [U ]i, [V ]i,
and [W ]i to denote the concentrations of U , V , and W in cell i and [Wext] to denote
the extracellular concentration of the AI:

d[U ]i
dt

=
b1uk1[Ptot,1]

1 + K1[V ]βi
+

b3uk3[Ptot,3]K3[W ]ηi
1 + K3[W ]ηi

− (kU + kg)[U ]i,

d[V ]i
dt

=
b2vk2[Ptot,2]

1 + K2[U ]γi
− (kV + kg)[V ]i,

d[W ]i
dt

=
b2wk2[Ptot,2]

1 + K2[U ]γi
− (kW + kg)[W ]i −DW ([W ]i − [Wext]),

(2.11)

where β, γ, and η denote the Hill coefficients of the P1, P2, and P3 promoter, respec-
tively.

Since the AI is able to penetrate the cell membrane, it is necessary to consider
how the production of AI in an ensemble of N cells changes the extracellular AI
concentration. The flux φi (in number/time unit) of W across the membrane of an
individual cell is φi = S(t)pW ([W ]i−[Wext]) [22], and the evolution of the extracellular
autoinducer concentration is given by

d[Wext]

dt
=

vcDW

vext

1

N

N∑
i=1

([W ]i − [Wext]) − k0[Wext],(2.12)

where vext is the volume of the extracellular space, vc is the total volume of N cells,
and k0 is the effective first-order constant of removal of AI from the extracellular
medium. We assume that the experiments are carried out in a continuously stirred,
constant volume flow reactor where the extracellular medium is homogeneous and the
number of cells is kept constant by continuous dilution of the cell culture by a steady
inflow of fresh growth medium and outflow of extracellular medium and cells. It is
the rate of this dilution that determines the value of the parameter k0.

To reduce the number of parameters in the system, we assume that U and V
have identical half-lives, kd = kU = kV . This assumption is based on the fact that
the protein decay rate can be controlled in experiments. The identical half-lives
are determined by identical protease tags added to these proteins. However, this
assumption is not a constraint for design of the network but just a simplification for
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our analysis. To normalize the equations, we introduce the following dimensionless
variables:

ui = γ
√
K2[U ]i, vi = β

√
K1[V ]i, wi = η

√
K3[W ]i,

we = η
√
K3[Wext], τ = (kd + kg)t.(2.13)

With these assumptions, the system is governed by the dimensionless system:

dui

dτ
= α1f(vi) + α3h(wi) − ui,

dvi
dτ

= α2g(ui) − vi,

dwi

dτ
= ᾱ2g(ui) − δwi −D(wi − we),

dwe

dτ
=

De

N

N∑
i=1

(wi − we) − δewe,

(2.14)

where the functions are defined by

f(v) =
1

1 + vβ
, g(u) =

1

1 + uγ
, h(w) =

wη

1 + wη
,(2.15)

and the dimensionless parameters are defined by

α1 =
γ
√
K2b1uk1[Ptot,1]

kd + kg
, α2 =

β
√
K1b2vk2[Ptot,2]

kd + kg
,

ᾱ2 =
η
√
K3b2wk2[Ptot,2]

kd + kg
, α3 =

γ
√
K2b3uk3[Ptot,3]

kd + kg
,(2.16)

δ =
kW + kg
kd + kg

, δe =
k0

kd + kg
, D =

DW

(kd + kg)
, De =

vcDW

vext(kd + kg)
.

3. Isolated element. We first establish the conditions for oscillations in isolated
cells. Cells can be considered as isolated elements in the limit De � δe, corresponding
to a vanishing cell density, where the contribution from cellular autoinducer produc-
tion to the extracellular autoinducer concentration is vanishing and we → 0. The
evolution of protein content in an isolated cell is thus determined by

du

dτ
= α1f(v) + α3h(w) − u,

dv

dτ
= α2g(u) − v,

dw

dτ
= ᾱ2g(u) − (D + δ)w = ε (α4g(u) − w) ,(3.1)

where ε = D + δ = (DW + kg)/(kd + DW ) and α4 = ᾱ2(kd + DW )/(DW + kg). We
suppose also that ᾱ2 is of the same order as (D+δ), i.e., α4 = O(1) because otherwise
dynamics becomes trivial (the only stationary state).

When the parameter ε is small (ε � 1), the evolution of the system splits into
two well-separated time-scales. In the fast time-scale, changes of the coordinates
per unit of time τ are of order 1. Here, we can assume w to be stationary, since
dw/dτ ∼ ε � 1. The fast motion ceases in the vicinity of the curve, where du/dτ = 0
and dv/dτ = 0, which is called the manifold of slow motion. On the manifold, changes
of the coordinates per unit of time τ are of order ε, and we can introduce the slow
time τ1 = ετ , where the changes are of order 1.
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Fig. 3.1. Geometrical investigation of equilibrium states in the fast subsystem with αw = 0.
Equilibrium states are located where F (u) = 0. (A) Increasing the value of α1 causes a transition
from one to three equilibrium states, with a new equilibrium with high u being created through a
saddle-node bifurcation. Parameter values are α2 = 4, β = γ = 3. (B) Creation of an equilibrium
state with low u through a saddle-node bifurcation by an increase in α2. Parameter values are
α1 = 2, β = γ = 3.

3.1. The fast subsystem. The first step in our analysis is to establish the
conditions where the fast subsystem can be driven through a bistability region by
varying the autoinducer concentration. Two conditions must be satisfied by the fast
subsystem. (1) Two saddle-node bifurcations that define a region of bistability must
exist and (2) the bifurcations must occur as the autoinducer concentration is varied.
To establish the analytical conditions, we look for equilibria on the fast time-scale for
ε → 0, where the full system reduces to the toggle switch equations [1] augmented with
a constant production term αw arising from a constant concentration of autoinducer:

du

dτ
= α1f(v) + αw − u = P (u, v),(3.2)

dv

dτ
= α2g(u) − v = Q(u, v),

where αw = α3h(w). These equations correspond to those used by Kobayashi et al. to
guide the construction of a toggle-based AI biosensor [10]. By Bendixson’s criterion
[23], the system in (3.2) has no closed orbit since the divergence of the vector field
P

′

u + Q
′

v = −2 does not change sign.

3.1.1. Absence of autoinducer. In the absence of the autoinducer (αw = 0),
the equilibrium states (u0, v0) of the system in (3.2) can be found by setting v =
α2g(u) as the zeros of the function F (u) given by

F (u) = u− α1f (α2g(u)) = u− α1(1 + uγ)β

αβ
2 + (1 + uγ)β

.(3.3)

Since F (u) → −α1/(α
β
2 + 1) < 0 for u → 0 and F (u) → u − α1 > 0 for u → ∞, the

existence of at least one steady state is guaranteed.
A necessary, but not sufficient, condition for the existence of multiple equilibrium

states is that F (u) be an N-shaped function such that there exist local extrema (where
F ′(u) = 0). Figure 3.1 illustrates the transition from monostability when α1 is varied
for α2 = 4, β = γ = 3. At very low values of α1, the function F (u) is monotonically
increasing and there exists a single equilibrium state where u0 is low and v0 is high.
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When α1 increases, a local maximum and a local minimum emerge, but there is still
only a single equilibrium state. As α1 increases further, the local minimum of F (u)
is shifted downward, and it coincides with F (u) = 0 when α1 reaches a critical value
αc

1 (at approximately α1 = 2.14925 in Figure 3.1). This critical point corresponds
to a saddle-node bifurcation where the two conditions F (u) = 0 and F ′(u) = 0
are simultaneously fulfilled and a new equilibrium state is created. For α1 higher
than the critical value, the function F (u) has three zeros corresponding to three
equilibrium states. Two of these states are destroyed when α1 is very high (greater
than approximately 22.9767 for α2 = 4, β = γ = 3) where the local maximum is
shifted to negative values of F (u) (not shown). The system is again monostable, this
time with an equilibrium state where u0 is high and v0 is low. As illustrated in Figure
3.1(B), a similar bifurcation scenario is observed when α2 is varied.

The characteristic polynomial that determines stability of the equilibrium states
of the fast subsystem is given by

λ2 + 2λ + F ′(r) = 0,

F ′(r) = 1 − α1α2f
′

v(v0(r))g
′

u(r),(3.4)

where we have introduced the parameter r to represent the equilibrium state (u0, v0).
This parameter is obtained from (3.1) by setting du/dτ = 0 and dv/dτ = 0:

r = u0, v0 = α2g(r).(3.5)

It can be shown that when a single equilibrium state exists, it is always stable (monos-
tability), and when three equilibrium states exist, one of them is unstable and the
remaining two are stable (bistability).

As described above, the transition from monostability to bistability occurs through
saddle-node bifurcations. Their location can be predicted from (3.4) by finding solu-
tions where λ = 0, i.e., from F ′(r) = 0. This equation can be written in a parametric
form (Appendix A) to obtain sets of critical parameter values (αc

1(r), α
c
2(r)) that

determine the location of the saddle-node bifurcations in the α1, α2 phase plane:

αc
1(r) = βγrγ+1

1+rγ

/(
βγrγ

1+rγ − 1
)
,

αc
2(r) = (1 + rγ)

(
βγrγ

1+rγ

/(
βγrγ

1+rγ − 1
)
− 1

)1/β

.
(3.6)

In these equations, r is in the range (rl : ∞) with rl defined by rγl = (βγ − 1)−1

(implying that βγ > 1 since rl must be positive). Note that αc
1(r) < 0 when r < rl,

which violates the condition that all the parameters must be positive reals.

3.1.2. Presence of autoinducer. In the presence of autoinducer (αw > 0), the
equilibrium states are obtained as the solution of F (u) = αw rather than F (u) = 0. In
order to use variation in αw to drive the fast subsystem through a bistability region,
it is essential that an increase (or decrease) in αw causes the fast subsystem to pass
through the two saddle-node bifurcations. Therefore, the system must be monostable
when αw is lower than a critical value α+

w > 0, having the only equilibrium with
low u (denoted r−), monostable when αw is greater than the second critical value
α−
w > α+

w , having the only equilibrium with high u (denoted r+), and bistable when
α−
w > αw > α+

w . This scenario is depicted in Figure 3.2(A), where one, two, or three
equilibrium states arises as αw is varied. The critical values in αw, where the fast
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Fig. 3.2. (A) Changes in the number of equilibrium states by variation in αw. At αw = 0.05
there is a single equilibrium state at low u. There are three equilibrium states at αw = 0.5 and a
single equilibrium state for αw = 0.9. The points labeled (r−c , α−

w) and (r+c , α+
w) correspond to the

values of αw at the saddle-node bifurcations. Parameter values are α1 = 2, α2 = 4, β = γ = 3. (B)
Different regions of the α1, α2 phase plane showing different behavior for β = γ = 3. The solid
curve encloses a region where the system is bistable in the absence of autoinducer. The solid and
the dashed curve enclose a region where bistability can occur in the presence of autoinducer, i.e., a
hysteresis loop for αw > 0.

subsystem has two equilibrium states (a stable node and a saddle-node), satisfy the
conditions

α−
w = F (r−c ), α+

w = F (r+
c ), F ′(r±c ) = 0,(3.7)

where r±c are the values of u corresponding to the extrema of F (u).
To achieve hysteresis when αw is varied, F (u) must have two extrema and they

must be located in the positive quadrant, i.e., F (r±c ) > 0. The section of parameter
plane where the fast subsystem satisfies the required conditions are thus bounded
by two curves: one where bistability ceases to exist, corresponding to the merger of
extrema of F (u), and one where the minimum of F (u) crosses into negative values.
As derived in Appendix B, the merging extrema of the function F (u) defines a curve
(αm

1 (r), αm
2 (r)) in the α1, α2 phase plane given by

αm
1 (r) =

(1 + rγ)[1 + R1(r)]
2

γβR1(r)rγ−1
, αm

2 (r) = (1 + rγ)R1(r)
1/β ,(3.8)

where

R1(r) = − (γ − 1) − rγ(1 + βγ)

(γ − 1) − rγ(1 − βγ)
.(3.9)

The curve (αm
1 (r), αm

2 (r)) is in addition subject to the condition that the system
is monostable in the absence of autoinducer. In other words, F (u) = αw must have
a single solution for αw = 0 and the saddle-node bifurcations must therefore occur
at values of αw = F (u) > 0. The boundary of this condition coincides with that
of emergence of bistability in the unperturbed toggle switch, which is determined by
the curves of saddle-node bifurcations in (3.6). Figure 3.2(B) illustrates the regions
of different dynamics in the α1, α2 parameter space. The solid curve is obtained
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from (3.6), and the dashed curve shows the merging of extrema (3.8). The area
enclosed by the solid curves corresponds to the region in parameter space where the
fast subsystem shows bistability in the absence of autoinducer, and the shaded area
corresponds to the region of parameter space where there exists a bistable region for
0 < α+

w < αw < α−
w , where α+

w and α−
w , as previously defined in this section, are the

critical values of autoinducer at the saddle-node bifurcations (see Figure 3.2(A)).

3.2. The slow subsystem. Given sufficient time-scale separation, the fast sub-
system reaches a point on the manifold of slow motion, where the dynamics is governed
by

dw

dτ
= ε(α4g(u) − w).(3.10)

Here u satisfies the condition F (u) = α3h(w) obtained from (3.2). When the param-
eters of the fast subsystem are such that there exist two extrema of F (u) at u = r−c
(the local maximum) and u = r+

c (the local minimum), the slow subsystem can drive
the fast subsystem through a bistability region if αw = α3h(w) can assume values on
either side of the interval [α−

w , α
+
w ] where α±

w = F (r±c ), as was illustrated in Figure
3.2(A).

The equilibrium states of the whole system are given by the intersection in u, αw

space between F (u) and the curve

αw(w(u)) ≡ α3h(w), w(u) = α4g(u).(3.11)

The curve αw(w(u)) is a monotonically decreasing function of u since w(u) is a mono-
tonically decreasing function of u and h is monotonic. In order for the slow subsystem
to meet the above conditions, it is required that

αw(w(r−c )) > F (r−c ), αw(w(r+
c )) < F (r+

c ).(3.12)

This condition implies that αw(w(u)) and F (u) must intersect for values of u where
F ′(u) < 0. Figure 3.3(A) illustrates the different scenarios that are possible for
different values of the parameters of the slow subsystem. When the parameters are
appropriately adjusted, the curves αw(w(u)) and F (u) intersect once in the region
where F ′(u) < 0 and the conditions in (3.12) are satisfied. For other parameter
values, there may be one, two, or three intersections of the curves, which violates one
of the conditions in (3.12).

The limits of the inequalities in (3.12) can be used to obtain the regions in the
parameter space, where the slow subsystem satisfies the required conditions. In par-
ticular, equation αw(w(r−c )) = F (r−c ) requires that αw(w(u)) and F (u) intersect in
the point where F ′(u) = 0, i.e., in the maximum of the function F (u). Hence, the
critical values of the parameters where αw(w(u)) intersects an extremum of F (u)
satisfies the following condition:

αw(w(r±c )) = F (r±c ), F ′(r±c ) = 0.(3.13)

We apply this condition to obtain the region in the (α3, α4) parameter plane for
different values of η where the slow subsystem satisfies the requirements for relaxation
oscillations. These curves are plotted in Figure 3.3(B) and show an increase of the
oscillatory region (filled) with increasing η.
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Fig. 3.3. Geometrical analysis of equilibrium states as the parameters of the slow subsystem
are varied. (A) Oscillations are possible (3.12) when the curves F (u) and αw(w(u)) intersect only
in the region where F ′(u) < 0 (curve α1

w, η = 4, α3 = 1, α4 = 3.8). The curves α2
w, α3

w, and α4
w

are obtained for η = 1, α4 = 1, and α3 = 0.5, 2, 4, respectively. They illustrate monostability (α2
w

and α4
w) and multistability (α3

w) in the system. Other parameters are α1 = 2, α2 = 4, β = γ = 3.
(B) Regions in the α3, α4 parameter space where the conditions (3.12) are satisfied for different
values of η: (1) η = 2; (2) η = 6.

The condition in (3.13) is solved with respect to α1 and α2 (Appendix C) to give
a set of bifurcation points (αH

1 , αH
2 ) in the limit ε = 0:

αH
1 (r) =

1 + R2(r)

r −R3(r)
, αH

2 (r) = (1 + rγ) (R2(r))
1/β

,(3.14)

where

R2(r) =
βγrγ−1 (r −R3(r))

(βγrγ − rγ − βγrγ−1R3(r) − 1)
− 1,

R3(r) = α3

(
α4

1 + rγ

)η/(
1 +

(
α4

1 + rγ

)η)
.(3.15)

As illustrated in Figure 3.4(A), the bifurcation curve has a loop structure and defines
two distinct regions of parameter space. The region R is the set of α1, α2 values
where system (3.1) can display oscillations for sufficiently low values of ε . The region
labeled M defines a set of α1, α2 values where system (3.1) displays multistability.

3.3. Bifurcation analysis. The positions of equilibrium states S = (u0, v0, w0)
in the full system in (3.1) are determined by the equations

α1f(v0) − u0 + α3h(w0) = 0, α2g(u0) − v0 = 0, α4g(u0) − w0 = 0.(3.16)

The stability of the equilibrium states are obtained from the Jacobian matrix,

J =

⎛
⎝ −1 α1f

′
v(v0) α3h

′
w(w0)

α2g
′
u(u0) −1 0

εα4g
′
u(u0) 0 −ε

⎞
⎠ ,(3.17)
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everywhere else. (B) An example of bifurcation diagram obtained by variation in α1 for a fixed value
of α2 (α2 = 3).

by evaluation of the characteristic equation given by

λ3 + λ2(2 + ε) + λ
(
1 − α1α2f

′

v(v0)g
′

u(u0) + 2ε− εα3α4h
′

w(w0)g
′

u(u0)
)

+ε− εα1α2f
′

v(v0)g
′

u(u0) − εα3α4h
′

w(w0)g
′

u(u0) = 0.
(3.18)

The Andronov–Hopf bifurcation, which gives birth to a limit cycle, occurs when a
pair of complex conjugate eigenvalues crosses the imaginary axis. If we write down
the characteristic equation in the form λ3 + aλ2 + bλ + c = 0, then the condition for
the Andronov–Hopf bifurcation takes the form ab − c = 0. From (3.18), this implies
that the bifurcation occurs when the following condition is fulfilled:

1 − α1α2f
′

v(v0)g
′

u(u0) + ε
(
2 − α3α4

2
g

′

u(u0)h
′

w(w0)
)

+ε2
(
1 − α3α4

2
g

′

u(u0)h
′

w(w0)
)

= 0.
(3.19)

In the limit ε → 0, we recover condition (3.13) for αw(w(u)) intersecting an ex-
tremum of F (u). This is because a solution of the system (3.16), u0, fits the equation
αw(w(u0)) = F (u0), and (3.19) for ε = 0 takes the form 1 − α1α2f

′

v(v0)g
′

u(u0) = 0,
which is equivalent to F ′(u0) = 0. In other words, oscillations are constrained to be
in the region where the conditions imposed by the slow subsystem (3.13) are satisfied,
which, in turn, lies inside the region of hysteresis of the fast subsystem (Figure 3.2(B)).

Figure 3.4(B) illustrates in more detail the bifurcation structure of the full sys-
tem when α1 is varied at constant values of α2. Here, Andronov–Hopf bifurcations,
which correspond to entering and exiting from the oscillatory region, are labeled as
HB1 and HB2. These bifurcations are subcritical and accompanied by saddle-node
bifurcations of limit cycles LP1 and LP2. The points of Andronov–Hopf bifurcations
agree well with the points of intersection of curve 3 of Figure 3.4(A) with the line
that corresponds to the given value of α2. This agreement shows that the region R in
Figure 3.4(A) gives a good approximation for the oscillatory region of the full system
if ε is small.



406 ALEXEY KUZNETSOV, MADS KÆRN, AND NANCY KOPELL

A
0

1
2

3
4

5
6

7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

α  =83

α  =13

α  =33

B

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

α  =34
α  =64

α  =124

C

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

β=5 β=3 β=2

D

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

γ=5

γ=3

γ=2

E

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

0
1

2
3

4
5

6
7

0 3 6 9 12 15

α
1

α2

η=10

η=1 η=3

F

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

α 1

α2

ε=0
ε=0.01
ε=0.05

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

α 1

α2

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

α 1

α2

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

α 1

α2

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

α 1

α2

Fig. 3.5. Increasing the oscillatory region in the α1, α2 parameter plane. All plots show the
bifurcation curve (αH

1 (r), αH
2 (r)) for the reference parameters α3 = 1, α4 = 3, β = γ = 2, η = 3,

ε = 0 in full. The six plots show the effect of variation in (A) α3, (B) α4, (C) β, (D) γ, (E) η, and
(F) ε relative to the reference parameters.

3.4. Parameter dependence. In this section we are optimizing conditions for
oscillations by variation of all of the model parameters. In Figure 3.5(A)–(E), we
plot the bifurcation curve (αH

1 (r), αH
2 (r)) defined in (3.14), i.e., for ε = 0. Increasing

ε decreases the region in the α1, α2 parameter plane where oscillations are observed
(Figure 3.5(F)). Comparing different curves in Figure 3.5(A), the range of both α1 and
α2 values where oscillation can occur is seen to expand as α3 is increased, indicating
that larger values of α3 increase the likelihood of oscillations. In Figure 3.5(B), it
is seen that the region of oscillations is maximized at intermediate values of α4.
Therefore, the rate of AI synthesis must be carefully chosen to observe oscillations.
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This can be done experimentally by manipulating the luxI RBS. Interestingly, Figure
3.5(C) shows a counterintuitive result, namely that the region of oscillations expands
as β is decreased, i.e., when the degree of nonlinearity is decreased. Figure 3.5(D)
and (E) shows the opposite effect for different nonlinearity exponents, namely that
the oscillatory region shrinks when γ and η are decreased.

The exponents β and η have opposite influence because these two parameters
change slopes of the function F (u) and aw(u) independently. In the case where aw(u)
coincides with the middle (decreasing) branch of F (u), the system is very sensitive to
changing other parameters. This is because very small variations of a parameter may
cause an intersection outside the middle branch of F (u), which corresponds to a stable
equilibrium state. When the slope of aw(u) is less than of the middle branch of F (u),
relaxation oscillations cannot occur (see Figure 3.3, curve a3

w). Thus, the larger the
η, the larger the slope of aw(u), and the larger the tolerance of other parameters for
oscillatory dynamics. By contrast, the larger the β, the larger the slope of F (u), and
the smaller the region of relaxation oscillations for given η. Parameter γ changes both
F (u) and aw(u), which results in an increase of the oscillatory region with increase of
this parameter.

4. Oscillations in more detailed models. In this section, we consider how
details left out during the derivation of the minimal model affect the ability of the
single cells to display oscillatory behavior. We consider three important assumptions:
(1) titration and saturation of the LuxR transcription factor by the AI, (2) two-step
synthesis of the AI, and (3) the effect of “leaky” promoters. We also consider how
oscillatory behavior can be made more robust by adding an additional connectivity
to the network.

4.1. Taking LuxI synthesis into account increases the oscillatory region.
As mentioned in the Introduction, the AI is not a gene product, but a small molecule
synthesized by the protein encoded by the luxI gene (see Figure 1.1A). A more realistic
description of the network would therefore involve production of AI in two steps,
synthesis of the LuxI protein by the transcription and the translation of luxI and
subsequent synthesis of the AI by the LuxI protein. This can be accounted for by
introducing a new dimensionless variable, x, for the concentration of the LuxI protein
and a rate of AI production that is proportional to x. The minimal model (3.1)
is recovered when x is assumed to be in a quasi-steady state, dx/dτ = 0. This
assumption, however, is not justified since LuxI is a stable protein whose evolution
occurs on the same time-scale as the slow variable w. Assuming the time-scales are
the same, we take degradation rates of LuxI and AI to be equal and denote both of
them as δ. When δ is small, the location of the oscillatory region is slightly shifted in
the parameter space (data not shown), indicating that the model where LuxI synthesis
is ignored, i.e., (3.1), is a reasonable approximation for this case. On the other hand,
when δ is not small, the effect of time lag introduced by the two-step synthesis of the
AI is significant. In the minimal model (3.1), oscillations are suppressed when the
value of δ exceeds roughly 0.08 for all value of α4. In the model that incorporates LuxI,
oscillations cease when δ exceeds 0.3. This a major improvement for the likelihood
of observing oscillations experimentally since smallness of the parameter δ is a major
experimental challenge. It requires that the protein half-life, which typically is roughly
30 min or longer, is roughly 20 times shorter than the cell division time. Fortunately,
the production of AI in two steps allows for a significant increase in the value of δ
where oscillations can be observed. If other parameters are adjusted appropriately, it
is possible to get oscillations for δ as high as 0.3.
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Fig. 4.1. Increasing robustness of oscillations. The boundary of the oscillatory region in
the α1, α2 parameter plane for different values of α5. Parameter values: α3 = 1, α4 = 0.03,
β = γ = η = ζ = 3, δ = 0.01, D = 0.

4.2. Adding connectivity to the network increases the oscillatory re-
gion. The previous sections have demonstrated that the organization of oscillations
in isolated cells requires that most of the parameters are precisely adjusted to a fairly
narrow region of parameter space. We investigated if small changes to the system
may enhance the region of parameter space where oscillations can be observed. One
change that has a dramatic effect on the system is to express the gene coding for the
V repressor from a promoter, denoted PW2, that is repressed by AI.

du

dτ
= α1f(v) + α3h(w) − u,

dv

dτ
= α2g(u) + α5j(w) − v,(4.1)

dw

dτ
= ᾱ2g(u) − (δ + D)w,

where α5j(w) = α5/(1 +wζ) represents expression of the protein V via the promoter
PW2. The model in (3.1) is recovered in the limit α5 = 0.

The addition of an AI-repressed promoter synthesizing the V repressor has a
significant impact on the ability of isolated cells to oscillate since it favors the V high
state in the absence of autoinducer without making the U high state harder to achieve
in the presence of autoinducer. As a result, as α5 increases, there is an increase in
the region of parameter space where the fast subsystem has no stable equilibrium
states and, thus, is able to oscillate. In Figure 4.1, we compare the region in the
α1, α2 parameter plane where oscillations are observed for different values of α5. It
is evident that increased α5 causes the region of oscillations to expand considerably,
thus making oscillatory behavior in isolated cells more robust.

4.3. LuxR synthesis. As mentioned in the Introduction, the transcription fac-
tor that activates expression from the Plux promoter is not the AI, as was assumed in
the minimal model, but a complex comprised of LuxR and AI (Figure 1.1(A)). This
complex is formed in a bimolecular reaction:

LuxR + AI � LuxR − AI, K4 =
k4f

k4b
,(4.2)
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where K4 is the equilibrium constant and k4b and k4f are the rate constants for the
dissociation and association reaction, respectively. The luxR gene is assumed to be
expressed at a constant rate from a plasmid-borne, constitutive promoter Pcon, such
that the LuxR protein is synthesized at a constant rate vR. To obtain the minimal
model (3.1), we need to assume here that the concentration of free autoinducer [AI] is
negligible. That is, we assume that LuxR synthesis rate is large (vR � 1) to provide
LuxR for binding with AI, and the association reaction (4.2) is fast (k4f � k4b and
k4f � 1). Our simulations reveal (data not shown) that, for smaller vR, the oscillatory
region shrinks and shifts to smaller α1 and α2. Violation of the other inequalities (e.g.,
k4f � k4b) makes the changes more significant. Hence, the details of formation of
this effector complex may make oscillations more difficult to obtain.

4.4. Promoter leakage. In all of the models investigated, we have assumed
that the promoters are fully repressible or fully silenced meaning that there is no
expression from the promoter when repressor concentration is high or when activator
is absent. In reality, many bacterial promoters are “leaky,” and expression occurs at
a basal level even under conditions where repressor is present in excess or activator is
completely absent from the system.

To evaluate the effect of promoter leakage on the ability of isolated cells to
oscillate, we introduced a constant synthesis term in each of the variables u and
v that is proportional to maximal synthesis rate αj . For simplicity, we use the same
proportionality factor µ, corresponding to identical relative basal synthesis rates for
all promoters. For large Hill coefficients η = ζ = 3, the oscillations were observed
at a fairly high value of leakage µ = 0.1, i.e., 10% of the maximal synthesis rate
for all promoters (data not shown). Decreasing the values of η and ζ causes the
oscillatory region to be confined to lower values of µ. This indicates that organiza-
tion of oscillations in isolated elements does not require the very tightly regulated
promoters.

5. Ensemble of cells. We now study collective dynamics of the cell population.
Introduction of coupling between elements of an ensemble can lead to qualitative
changes of their dynamics. We are interested in providing synchronous oscillations,
which would correspond to macroscopic oscillations of a protein concentration over the
whole population. We demonstrate the possibility of both population synchronization
and suppression of oscillations, depending on coupling strength and other parameters
of the system.

First we make a transformation of the coordinates and parameters to combine
intra- and extracellular degradation of the autoinducer into single term, thereby de-
creasing the number of parameters in the system. Then the system (2.14), describing
the population of i = 1, . . . , N cells, takes the form

dui

dt
= α1f(vi) − ui + α3h(wi),

dvi
dt

= α2g(ui) − vi,(5.1)

dwi

dt
= ε̄ (ᾱ4g(ui) − wi) + 2d(w̄e − wi),

dw̄e

dt
=

de
N

N∑
i=1

(wi − w̄e).
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Here, w̄e = we (1 + δe/De), ε̄ = D + δ − D
(1+δe/De)

, d = D
2(1+δe/De)

, de = De + δe, and

ᾱ4 = ᾱ2/ε̄.
Let us consider the simplest synchronous solution, i.e., identical synchronization of

all elements of the ensemble: ui = u(t), vi = v(t), wi = w(t), i = 1, N . These equalities
give the manifold of identity of corresponding coordinates: M{ui, vi, wi : ui = uj , vi =
vjwi = wj∀i = 1, N, j = 1, N}. Now we study two matters: (1) dynamics on this
manifold and (2) its stability. We show that if the isolated element displays relaxation
oscillations, then the ensemble has the solution of identical synchronization for both
small and large coupling strength. However, for the latter, the synchronous state may
not be stable.

5.1. Identical synchronization. Dynamics on the manifold of identity of cor-
responding coordinates, M , is given by the following system:

du

dt
= α1f(v) − u + α3h(w),

dv

dt
= α2g(u) − v,(5.2)

dw

dt
= ε̄ (ᾱ4g(u) − w) + 2d(w̄e − w),

dw̄e

dt
= de(w − w̄e).

Suppose that we have relaxation oscillations in each isolated element (for which De �
δe), i.e., we have the oscillations in this system with d → 0 and ε̄ → ε = D + δ. We
also assumed ε � 1 to obtain the oscillations.

We show first that the oscillations persist for small nonzero coupling strength
0 < d � 1. We suppose also that the extracellular coupling coefficient is not small:
de ∼ 1. Then the system can be divided into fast and slow parts. The fast subsystem

du

dt
= α1f(v) − u + α3h(w),(5.3)

dv

dt
= α2g(u) − v,(5.4)

dw̄e

dt
= de(w − w̄e)(5.5)

gives dynamics of three variables in the fast time-scale, where w is a constant. The u,
v equations and the w̄e equation do not depend on one another, so the fast subsystem
splits into two independent parts. The u, v part is identical to the fast subsystem
of the isolated element, in which all trajectories on the (u, v) plane converge to one
of the equilibria. Trajectories of the w̄e equation converge to the equilibrium state
w̄e = w.

The slow subsystem is determined on the manifold of slow motion, i.e., in the
intersection of all nullclines of the fast subsystem. This implies that we need to
consider the equation for w on the manifold {w̄e = w,F (u) = α3h(w)}. Substitution
of the first constraint in the third equation of the system (5.2) gives

dw

dt
= ε̄(ᾱ4g(u) − w),(5.6)

where u is a function of w, taken from the second constraint (u = F−1(α3h(w))). This
equation has the same form as the slow equation obtained for the isolated element
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(3.10), with parameters ε̄ and ᾱ4 representing other combinations of the initial param-
eters. Thus, for a given set of initial parameters D, δ,De, and δe, the slow dynamics
of the system (5.2) with weak coupling strength d differs from the slow dynamics of
the isolated element, but the parametric portrait of the isolated element with respect
to parameters ε, α4 coincides with the portrait for the system (5.2) with respect to
parameters ε̄ and ᾱ4. If we have a solution for an isolated element with some values
of ε and α4, we can obtain the same solution in the system (5.2) with weak coupling
strength d by tuning the parameters D, δ,De, and δe so that ε̄ and ᾱ4 take values ε
and α4. Thus, if a solution exists for the isolated element, then the same solution
exists for the ensemble on the manifold of identical synchronization. Thus, we have
shown, in particular, that there exists a regime of relaxation oscillations for a nonzero
but weak coupling strength (0 < d � 1).

Next we consider the existence of a relaxation oscillation solution for large cou-
pling strength d � 1. A shift in the frequency of the oscillation is obtained below for
this case. The analysis can be performed analogously to that in [24]. There, the au-
thors have proved that, for large coupling strength, the coupling term remains O(1).
Analogously, in our case, the coupling term d(w̄e − w) is O(ε̄) for large d, because
the remaining part of the equation for wi in system (5.2) is of that order (this follows
from our analysis below). As d → ∞, w → w̄e, so d(w̄e−w) is essentially a function of
either one of the coordinates which enter the term. (This was proved rigorously in [24]
for a related set of equations.) Using this, as in [24], we introduce c(w) = d(w̄e −w).

We derive w̄e from the definition of c(w):

w̄e = w +
1

d
c(w).(5.7)

Taking the derivative of this equation, we get

dw̄e

dt
=

dw

dt

(
1 +

1

d

dc(w)

dw

)
.(5.8)

Substituting this derivative and c(w) into the third and fourth equation of system
(5.2), we can rewrite them in the form

dw

dt
= ε̄(ᾱ4g(u) − w) + 2c(w),(5.9)

dw

dt

(
1 +

1

d

dc(w)

dw

)
= −de

d
c(w).(5.10)

Excluding dw/dt from these equations, we get

[ε̄(ᾱ4g(u) − w) + 2c(w)]

(
1 +

1

d

dc(w)

dw

)
= −de

d
c(w).(5.11)

The left-hand side of this equation is O(ε̄). For a nonzero result in the leading order,
O(ε̄), we suppose that de

d ∼ 1 and obtain

c0(w) = − ε̄(ᾱ4g(u) − w)

2 + de/d
.(5.12)

Note that we have not assumed ε̄ small. The above result is valid for ε̄ ∼ 1 whenever
d � ε̄.
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Substituting c0(w) for d(w̄e−w) in (5.2), we have the following three-dimensional
system for synchronous oscillations in the limit of large coupling:

du

dt
= α1f(v) − u + α3h(w),

dv

dt
= α2g(u) − v,(5.13)

dw

dt
= ε̄

de
2d + de

(ᾱ4g(u) − w) .

Hence, increasing the coupling strength d perturbs the parameter in front of the
slow equation, changing the rate of change of the autoinducer, i.e., the slow time-
scale of the system. It follows from (5.11) that this perturbation is negligible if
de � d (to leading order c(w) = 0). But in the intermediate case de ∼ d, the
perturbation slows down the oscillations. In the limiting case de � d, (5.11) gives
c0(w) = −ε̄(ᾱ4g(u) − w)/2, and, substituting d(w̄e − w) in (5.2) by this formula, we
obtain dw/dt = o(ε̄). Thus, in the case de � d, the rate of change of the slow variable,
w, is decreased by an order of magnitude, and so is the frequency of oscillations.

5.2. Stability of the synchronous solution. Now we examine stability of
the solution obtained above with respect to small perturbations of the equalities of
corresponding coordinates of the elements. We show that the synchrony may become
unstable for large coupling strength. Let us define the perturbations in the following
way: ui = u+ ξ, uj = u− ξ, vi = v+ν, vj = v−ν, wi = w+ ζ, wj = w− ζ, where i and
j are any two numbers from 1 to N . Thus, we are perturbing any two elements of the
ensemble in such a way that the perturbation does not affect the remaining elements.
These perturbations are called transversal (or evaporational [25]) and test stability
of the manifold of identical coordinates of the elements. The linearized equations for
these perturbations are

dξ

dt
= α1f

′
(v)ν − ξ + α3h

′
(w)ζ,

dν

dt
= α2g

′
(u)ξ − ν,(5.14)

dζ

dt
= ε̄

(
ᾱ4g

′
(u)ξ − ζ

)
− 2dζ,

where u, v, and w are taken in identity manifold with dynamics, governed by system
(5.2). We solve this system numerically, calculating its Lyapunov exponents. They
reveal stability of the synchronous solution with respect to the transversal perturba-
tions and are therefore called transversal Lyapunov exponents. Figure 5.1 presents
curves of the maximal transversal Lyapunov exponent vs. the coupling strength d
for several sets of the other parameters. A negative value of the exponent implies
transversal stability. The first curve corresponds to a set of parameters for which syn-
chrony remains stable for any coupling strength. The second curve shows the maximal
transversal Lyapunov exponent when only the parameter ε̄ is changed. For this case,
a fivefold increase in ε̄ causes loss of stability with increasing coupling strength. The
third curve illustrates the influence of another parameter on stability: changing α1

shifts the manifold of slow motion so that the intersection with the nullcline of slow
motion is shifted far apart from the extrema of the manifold. This shift makes the
limit cycle more symmetric (see Figure 5.2) and leads to stability of this solution for
any coupling strength even with a higher value of ε̄, for which the oscillations are not
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3, so the nullclines are the same (see Figure 5.2(A)), and shows instability for large coupling strength.
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cycle is more symmetric (α1 = 3.2 as in Figure 5.2(B)).
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Fig. 5.2. Position of the nullclines and form of limit cycles for (A) unstable and (B) stable
synchrony. The only different parameter for these two cases is α1, which is equal to 3 in the case
(A) and 3.2 in the case (B). The other parameters are α2 = 5, α3 = 1, ᾱ4 = 4, β = γ = η = 2.

of relaxation type (ε̄ = 0.05). The illustrations of time series for the ensemble of 20
elements in the cases of stable and unstable identical synchronization solutions are
presented in Figure 5.3. Thus, depending on the parameters of the element, we can
keep the synchronous solution stable for any positive coupling strength or destabilize
it for a large coupling strength.

The dependence of stability of a synchronous solution on parameters of the ele-
ment can be explained qualitatively. The manifold of identical synchronization, M ,
has stable and unstable regions. Stability of a trajectory on this manifold is deter-
mined by the Lyapunov exponents, which measure whether perturbations decay or
grow. As can be seen from computer simulations of this system, the perturbations
grow during the fast motion, i.e., in the region, where u corresponds to the negative
slope of the manifold of slow motion, F ′(u) < 0 (see, e.g., Figure 5.2). By contrast, the
perturbations decrease during the slow motion. If the time-scales are well separated,
then the interval of time on the slow motion is much longer and contraction wins.
Increasing ε̄ leads to faster dynamics of the autoinducer (see (5.2)) and decreases in-
tervals of time with slow motion. Thus, a synchronous solution may lose stability with
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Fig. 5.3. Examples of time series for the ensemble of 20 elements in the cases of (A) stable
and (B) unstable synchronous solution. α1 = 3, α2 = 5, α3 = 1, ᾱ4 = 4, β = γ = η = 2; (A)
ε̄ = 0.01, d = 0.005; (B) ε̄ = 0.05, d = 0.3.

respect to the transversal perturbations when dynamics of the autoinducer becomes
faster.

The same argument can be applied to explain dependence of stability on the form
of the limit cycle. Given the same time separation (ε̄) for both trajectories in Figure
5.2, in the case (A), the major part of the trajectory lies in the middle region of u,
where F ′(u) < 0. Here, the transversal perturbations grow, giving divergence of the
close trajectories from the limit cycle. In the case (B), the limit cycle has much larger
parts outside the middle region, which contributes to the decrease of the perturbations
and causes convergence in average along the limit cycle.

5.3. Stable equilibria for large coupling strength. In this section we show
that large diffusion may cause emerging steady states of the protein concentrations
and ceasing of the oscillations in the population. We are going to show existence and
stability of new equilibria in the phase space of the ensemble (5.1) for large coupling
strength. Taking into account our result on synchronization of this population, the
new equilibria may coexist with the stable synchronous periodic solution, dividing the
phase space into basins of attraction.

We conduct the analysis analogous to [26] and [27]. Consider for simplicity a pair
of the elements

du1

dt
= α1f(v1) − u1 + α3h(w1),

dv1

dt
= α2g(u1) − v1,

dw1

dt
= ε̄ (ᾱ4g(u1) − w1) + 2d(w̄e − w1),

du2

dt
= α1f(v2) − u2 + α3h(w2),

dv2

dt
= α2g(u2) − v2,(5.15)

dw2

dt
= ε̄ (ᾱ4g(u2) − w2) + 2d(w̄e − w2),

dw̄e

dt
=

de
2

(w1 + w2 − 2w̄e).
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Equilibrium states of the system are given by

α1f(v1) − u1 + α3h(w1) = 0,

α2g(u1) − v1 = 0,

ε̄(ᾱ4g(u1) − w1) + 2d(w̄e − w1) = 0,

α1f(v2) − u2 + α3h(w2) = 0,

α2g(u2) − v2 = 0,(5.16)

ε̄(ᾱ4g(u2) − w2) + 2d(w̄e − w2) = 0,

w1 + w2 − 2w̄e = 0.

Again, we derive vi from these equations as vi = α2g(ui), and substituting them into
the remaining equations, we can write ui as a function of wi: ui = F−1(α3h(wi)),
where, as before, F (u) = u − α1f(α2g(u)). The extracellular autoinducer concen-
tration can also be presented as a function of wi: w̄e = (w1 + w2)/2. Since ui,
vi, and w̄e are determined by wi, the equilibria of the system can be found from a
two-dimensional system presented in the following form:

w2 = w1 −
ε̄

d
R(w1),

w1 = w2 −
ε̄

d
R(w2),(5.17)

where

R(w) = ᾱ4g
(
F−1(α3h(w))

)
− w.(5.18)

This system gives two curves in the (w1, w2) plane, intersections of which correspond
to equilibria of the pair of elements.

Consider the case where each isolated element displays relaxation oscillations. In
particular, let us take the same parameters of the element as in Figure 5.2(A). The
curves given by system (5.17) are shown in Figure 5.4 for two different values of the
coupling parameter d. Here, with increasing coupling strength, two new intersections
of these curves emerge. The intersections correspond to equilibria, the stability of
which is shown below.

To explain the emergence of the new equilibria, we divide the dynamics of the
system into fast and slow motion, taking ε̄ ∼ d � 1. Consider first the fast subsystem
of system (5.15):

du1

dt
= α1f(v1) − u1 + α3h(w1),

dv1

dt
= α2g(u1) − v1,

du2

dt
= α1f(v2) − u2 + α3h(w2),

dv2

dt
= α2g(u2) − v2,(5.19)

dw̄e

dt
=

de
2

(w1 + w2 − 2w̄e),

where w1 and w2 can be taken to be constant (ẇ1 = ẇ2 = 0) and equal to their initial
values. This system has three independent parts: for (u1, v1), (u2, v2), and for w̄e



416 ALEXEY KUZNETSOV, MADS KÆRN, AND NANCY KOPELL

A

0.6

0.8

1

1.2

1.4

0.6 0.8 1 1.2 1.4

w
2

w1

1
2

B

0.6

0.8

1

1.2

1.4

0.6 0.8 1 1.2 1.4

w
2

w1

1
2

Fig. 5.4. Equilibrium states of the pair of elements are in the points of intersection of the two
curves given by system (5.17), which are plotted for (A) ε̄/d = 2; (B) ε̄/d = 0.5. Curves 1 and 2
correspond to the first and the second equations in (5.17). The dashed diagonal line is the manifold
of identity of the w coordinates. In case (B) we have two intersections of the nullclines outside the
diagonal, which are stable equilibria.

(each part does not include variables from other parts). The equation for w̄e has the
equilibrium w̄e = (w1 +w2)/2, which is stable. The remaining two systems for (ui, vi)
coincide with the fast subsystems for the isolated element (3.2), i.e., the elements
are effectively uncoupled with respect to fast motion. Hence, these systems cannot
have closed orbits. The only trajectories which attract or repel all others nearby are
equilibrium states, defined, as before, by

−F (ui) + α3h(wi) = 0, vi = α2g(ui), i = 1, 2.(5.20)

The position of the equilibria, depending on wi, constitutes the manifold of slow
motion for the whole system (5.15), where the fast equations do not contribute to the
motion, and the motion is governed entirely by the slow subsystem. The manifold for
each of the elements of the coupled system (5.15) is given by the same curve (Figure
5.5), which is identical to the one obtained for the isolated element (3.2). Figure 5.5
shows trajectories for the two elements from their initial conditions (u1, αw,1) and
(u2, αw,2), where αw,i = α3h(wi). Once the elements come to their manifolds of slow
motion, fast motion ceases and the trajectory moves along the manifold, governed by
the slow subsystem

dw1

dt
= ε̄ (ᾱ4g(u1) − w1) + d(w2 − w1),

dw2

dt
= ε̄ (ᾱ4g(u2) − w2) + d(w1 − w2),(5.21)

where ui = F−1(ᾱ4h(wi)), i = 1, 2. For d = 0, wi increases along the left-hand branch
of F (u) and decreases on the right-hand branch. In the case plotted in Figure 5.5,
by providing attraction of the wi coordinates to each other, the coupling term speeds
up motion along the manifold until w1 = w2. After that, the coupling slows down
the motion. If the coupling strength is high enough, it can stop the motion along the
manifold, compensating for the slow dynamics of the individual elements, as plotted
in Figure 5.5.
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Fig. 5.6. Phase diagram of slow system (5.22) near equilibria P1 and P2.

5.4. Stability of the new equilibria. We are going to show that the equi-
librium states are stable with respect to both fast and slow motion. Consider first
the slow subsystem (5.21), which, using the function R(w) defined in (5.18), can be
presented as

dw1

dt
= ε̄R(w1) + d(w2 − w1),

dw2

dt
= ε̄R(w2) + d(w1 − w2).(5.22)

The curves (5.17), plotted in Figure 5.4, are nullclines of this system. Determining
the sign of ẇ1 and ẇ2 from (5.22) in different regions of the (w1, w2) plane, we can
qualitatively plot directions of trajectories for the slow subsystem. This gives us
the picture in Figure 5.6, which shows stability with respect to slow motion of the
equilibrium states P1 and P2.
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Next consider stability with respect to the fast motion. We know that, in the
singular limit ε̄ → 0, the middle branch of the manifold of slow motion for the isolated
element is unstable (Figure 5.5). Even in the case when there is an equilibrium in
the middle branch and the slow motion converges to it, the fast motion provides
divergence (see Figure 3.2(A) curve αw3). Thus, we can determine stability of an
equilibrium state with respect to the fast motion based only upon its position on
the manifold of slow motion. In particular, if the equilibrium state is situated in the
middle branch of the manifold, then it is unstable.

This rule helps us to determine stability of the equilibria in the intersections
of the curves in the (w1, w2) plane (Figure 5.4). The curves have three monotonic
branches, which correspond to the branches of the manifold of slow motion, given
by F (u). The middle branch of the manifold, which is unstable with respect to fast
motion, corresponds to the middle branch of the curves w1(w2) and w2(w1). Hence,
the equilibrium state in the diagonal in Figure 5.4(A) and (B) is unstable, but the
pair of new equilibria in Figure 5.4(B) is stable with respect to fast motion. This
suggests the new equilibrium states are stable for large coupling strength.

Stability of the equilibria can be shown rigorously by the standard characteristic
equation method. The characteristic equation for the pair of interacting elements
(5.15) can be written in the following form:

Ω1Ω2(−de − λ) − Ω1∆2ded− Ω2∆1ded = 0.(5.23)

Here, ∆i = (1+λ)2−α2g
′
(ui)α1f

′
(vi), Ωi = ∆i(−ε̄−2d−λ)+(1+λ)α3h

′
(wi)ε̄α4g

′
(ui).

This is a seventh order equation with respect to λ.
To carry out stability analysis for the case considered above in a more rigorous

way, we suppose d ∼ ε̄ � 1. We are looking first for eigenvalues of the order one,
λ ∼ 1. To leading order of magnitude, (5.23) gives

∆1∆2λ
2(−de − λ) = 0.

The first root of this equation is λ1 = −de; the other four roots, λ2,3 and λ4,5, come
from the quadratic equations ∆1 = 0 and ∆2 = 0, respectively. All of them are
negative if 1 − α2g

′
(ui)α1f

′
(vi) > 0, which is equivalent to F ′(ui) > 0 (see section

3.3). The remaining two eigenvalues, λ6,7, obtained from this equation are zero. We
need to consider a lower order of magnitude of equation (5.23) to determine their
signs. Thus next we suppose λ ∼ ε̄. Then the leading order of (5.23) is O(ε̄2):[

F ′(u1)(−ε̄− 2d− λ) + ε̄α3h
′
(w1)α4g

′
(u1)

]
×
[
F ′(u2)(−ε̄− 2d− λ) + ε̄α3h

′
(w2)α4g

′
(u2)

]
(−de)

−
[
F ′(u1)(−ε̄− 2d− λ) + ε̄α3h

′
(w1)α4g

′
(u1)

]
F ′(u2)ded

−
[
F ′(u2)(−ε̄− 2d− λ) + ε̄α3h

′
(w2)α4g

′
(u2)

]
F ′(u1)ded = 0,(5.24)

where we take only O(1) terms in ∆i and O(ε̄) terms in Ωi. This is a quadratic
equation, which can be written in the form aλ2 + bλ + c = 0 with the coefficients
a = −F ′(u1)F

′(u2), b = −2(ε̄+d)F ′(u1)F
′(u2)+ε̄α3α4[F

′(u1)h
′
(w2)g

′
(u2)+F ′(u2)×

h
′
(w1)g

′
(u1)], c = −(ε̄ + 2d)ε̄F ′(u1)F

′(u2) + (ε̄ + d)ε̄α3α4[F
′(u1)h

′
(w2)g

′
(u2)+

F ′(u2)h
′
(w1)g

′
(u1)]− ε̄2α2

3α
2
4h

′
(w1)h

′
(w2)g

′
(u1)g

′
(u2). We need to show that λ6,7 =

(−b ±
√
b2 − 4ac)/2a are negative or, equivalently, that −b ±

√
b2 − 4ac > 0. Con-

sider the region where all the eigenvalues of the leading order, O(1), are negative, i.e.,
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F ′(ui) > 0. Then it is obvious that the first coefficient, a, is negative. All three terms
of c coefficient are negative because h

′
(wi) ≥ 0 and g

′
(ui) ≤ 0 everywhere. Thus,

ac > 0, b2 − 4ac < b2, or
√
b2 − 4ac < |b|. The coefficient b is also negative; hence the

latter inequality gives
√
b2 − 4ac < −b, or −b−

√
b2 − 4ac > 0. Thus, all eigenvalues

are negative under conditions F ′(ui) > 0, showing stability of the equilibria in the
outer branches of the function F (u).

Analogously, one can show stability of the equilibria for the case of large or
moderate coupling strength d.

5.5. Impact of the collective dynamics. We now discuss how requirements
for obtaining oscillations are changed in the case of a population of interacting cells.
One of the key experimental problems is to achieve a sufficiently slow dynamics of
the autoinducer. The time-scale of autoinducer dynamics is determined by the coeffi-
cient in front of the right part of the equation for autoinducer concentration—a rate
constant. For the isolated element (3.1), this coefficient is ε; for the system on the
manifold of identical synchronization (5.2), it is ε̄. We have shown that the lower the
rate constant (the slower dynamics of autoinducer) the larger the oscillatory region
(see Figure 3.5(F)). For population dynamics, the rate constant depends on the cou-
pling strength (see, e.g., (5.13)). It follows from (5.11) that the autoinducer dynamics
is much slower than in isolated element if de � d and d � ε̄. Hence, we can slow
down dynamics of the autoinducer using properties of the collective dynamics. The
assumption that de � d (d = D

2(1+δe/De)
, de = De + δe) is quite plausible for the

experiment because De is presented usually as De = Dρ
1−ρ , where ρ is cell density, and

ρ � 1. Then De � D, and if we suppose that δe ∼ De, we come to the inequality
de � d. The other assumption (d � ε̄) is also plausible because the permeability
of the cell membrane to the autoinducer molecules is expected to be relatively high
(D � 1).

Stability of the synchronous solution also depends on the time-scale of the au-
toinducer dynamics. We have shown that synchrony may be stable for a small rate
constant ε̄ and unstable for larger ε̄ (see Figure 5.1). Those computations were made
for de � d so that the period of oscillations was not changed significantly with in-
creasing coupling strength. Now, if de � d, increasing coupling strength also slows
down the oscillations (5.13), causing stabilization of the synchronous solution (data
not shown).

On the other hand, increasing coupling strength also causes emergence of the new
equilibria. The higher the coupling strength, the larger the domains of attraction of
the new equilibria and the larger the probability of obtaining a steady state instead
of synchronous oscillations in the experiment. The effect is very strong because the
coupling strength sufficient for the formation of the equilibria is of the same order of
magnitude as ε̄. To avoid formation of the equilibria, we need to keep ε̄ larger than d,
which contradicts the conditions used above. Thus, our theoretical study of the sim-
plified model (5.1) predicts a potential problem for the experimental implementation
of the synchronous oscillatory dynamics.

6. Solving experimental problems (discussion). In this section we sum-
marize the results of our investigations and discuss the conditions required for pop-
ulation synchronous oscillations in the light of constraints imposed by experimental
considerations. Our study of a simplified model shows that population synchronous
oscillations are theoretically possible. However, there may be some difficulties in
achieving population synchronous oscillations experimentally. First of all, a strong
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interaction between cells (e.g., high permeability of the membrane to the autoinducer)
may result in the suppression of synchronous oscillations and a transition to a stable
heterogeneous population state where individual cells are locked in different stable
equilibrium states. On the other hand, if the cell-to-cell interactions are too weak,
individual cells may oscillate but will be unable to achieve synchrony. Therefore,
the parameters that determine the coupling strength between cells must be finely
adjusted. Cell-to-cell variations in parameter values and initial conditions increase
the likelihood that the population synchronous oscillation will be suppressed. As our
study has shown, mere difference in initial conditions for different cells may be suf-
ficient to obtain a stationary population state and suppression of individual cellular
oscillators, even though the synchronous solution is asymptotically stable.

Fortunately, the system provides a possibility for attracting a very broad distri-
bution of initial conditions to the synchronous solution. This requires the dynamics
of the extracellular autoinducer to be much slower than the intracellular ones, which
corresponds to the condition de � d discussed in the end of the previous section. In
this case (and for large coupling strength d), the motion from the initial conditions
starts with relaxation of the concentrations of the intracellular autoinducer in dif-
ferent cells toward the state where the concentrations are equal to the extracellular
concentration. If the extracellular autoinducer is washed out at the onset of the ex-
periment, then the initial state will have the extracellular concentration that is close
to zero. Thus, the concentrations inside the cells approach a low value. Once the low
concentration has been achieved, the concentrations of the repressor proteins inside
all cells approach the same state: low u and high v. This state is in the domain
of attraction of the synchronous solution, and synchrony can be achieved even when
other attractors exist.

Moreover, if the parameters of individual cells are different, the identical synchro-
nization solution does not exist at all. Our computational study of the model of the
population shows that the introduction of inhomogeneity in parameters increases the
probability of obtaining a stationary state starting from random initial conditions.
Generally speaking, a larger variation in the parameter values of individual elements
(e.g., a larger difference in the individual cellular oscillators and high cell-to-cell vari-
ability) will decrease the likelihood of observing a population synchronized oscillatory
state. This is particularly important since many engineered gene regulatory networks,
including the toggle switch and the Lux-based cell-to-cell communication system, are
carried on self-replicating plasmids. The number of plasmids per cell (and hence the
number of genes and promoters they carry) is know to vary quite dramatically [20],
and it will probably be necessary to minimize this source of cell-cell variability in
order to achieve population synchronous oscillations. This could be achieved by using
plasmids with more elaborate mechanisms of copy-number and partitioning control
or by integrating the engineered network into the bacterial chromosome.

In addition to parameter differences caused by fluctuations in the number of genes
per cell, there are other sources of cell-to-cell variability that cannot easily be min-
imized. These include variation in growth rates, differences in the concentration of
polymerases and of ribosomes, and others. Moreover, genetic manipulations usually
introduce rather coarse changes, and it is generally difficult to fine-tune the parameter
values that govern the dynamics of individual cells. Therefore, to increase the like-
lihood of population synchronous oscillations, it is important to have a rather large
parameter region where oscillatory dynamics for the isolated element is observed.

We have shown that this can be achieved by increasing the maximal rate (α3)
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of synthesis of one of the repressors (u) from the promoter that is regulated by the
autoinducer. The expansion of the oscillatory region also requires an increase of the
maximal rate (α2) of synthesis of the second repressor (v). Our investigation indicates
that an increased nonlinearity, i.e., the parameters for promoter cooperativity β, γ,
and η, does not significantly expand the region of parameter space where oscillations
in isolated elements can be observed. Increasing the value of β (cooperativity for
promoter that synthesizes u repressor) actually causes a contraction of the oscillatory
region. In addition, to achieve the largest oscillatory region possible, the rate of decay
of the autoinducer ε must be as small as possible (of a smaller order of magnitude,
ε � 1). This may pose an experimental challenge because it implies that the rates of
autoinducer synthesis (ε×α4) and decay (ε) are at least an order of magnitude lower
than the rates of the repressors synthesis (α1 and α2) and decay (which is equal to
1). While the maximal rate of autoinducer synthesis could be made low by genetic
manipulations, the rate of decay is primarily determined by dilution due to the cell
growth. This dilution of course affects all cellular components identically. Moreover,
the autoinducer is able to penetrate the cell membrane, and the value of the rate
parameter ε depends linearly on the diffusion coefficient D of the autoinducer, which
may be large.

For mathematical tractability, our simplified model ignores the fact that the syn-
thesis of the autoinducer is a two-step process that requires the synthesis of the
protein LuxI. Taking this step into consideration partially solves the problem with
the smallness of ε. First, the additional step introduces a delay in production of the
autoinducer. Second, the degradation rate of LuxI is the same as that of the repres-
sors since the LuxI protein is unable to penetrate the cell membrane. As shown by
numerical simulations, it is possible to achieve oscillations when the decay rate of the
autoinducer is only three times smaller than the decay rates of the repressor proteins.
This is in contrast to the simplified model, where an order of magnitude difference was
required. In other words, the simplified model may actually underestimate the like-
lihood of achieving oscillatory dynamics. Further improvement of the gene network
toward the ability to oscillate was achieved by the introduction of a promoter that
is repressible by the autoinducer and synthesizes protein v, i.e., a negative feedback
from the autoinducer to one of the repressors (see section 4.2). Such a promoter has
previously been described in the literature [28]. Our simulations demonstrate that
the oscillatory region can be substantially increased when this negative feedback is
added. It is our belief that this slight variation in the architecture of gene regula-
tory network would be very useful experimentally as it increases the robustness of
single-cell oscillations quite dramatically.

The problem of new equilibria also can be overcome in the experiment if we take
into account the LuxI synthesis step and/or introduce the additional network con-
nectivity. In the simplified model, the degradation rate constant of the autoinducer
ε̄ must be larger than the coupling coefficient d to avoid the presence of equilibria.
On the other hand, ε̄ must be small to provide relaxation type of oscillations, and
d must be large enough to synchronize the ensemble. This contradiction is resolved
if the second slow process, LuxI synthesis, is taken into account. This introduces an
additional delay in production of the autoinducer and allows the rate constants of
the autoinducer to take higher values without losing the oscillations. Moreover, these
rate constants are expected to take much higher values than the rate constants of the
LuxI synthesis because the effective rate of degradation for the autoinducer includes
the diffusion coefficient D (ε̄w = D + δ − D

(1+δe/De)
), but the rate of degradation
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for LuxI does not (ε̄x = δ). Hence, the LuxI dynamics has the function of slowing
down the oscillations; its rate constant must be several times smaller than those of
the other proteins. The rate constants of the autoinducer can be chosen large enough
so that the degradation rate constant is larger than the coupling coefficient: ε̄w > d.
Thus, it is theoretically possible to simultaneously achieve absence of the equilibria
and strongly enough attracting synchronous oscillations.

Appendix. Derivation of parametric formula for approximations of
bifurcation boundaries.

Appendix A. The saddle-node bifurcation for the toggle switch. We are
solving the system which gives the curve of the saddle-node bifurcation for the fast
subsystem in the absence of the autoinducer:

F (u) = 0, F
′
(u) = 0.

Substituting the function F (u), defined as (3.3), we can rewrite it in the form

α1

1 +
(

α2

1+uγ

)β
= u,

(
1 +

(
α2

1 + uγ

)β
)2

=

(
α2

1 + uγ

)β
α1βγu

γ−1

1 + uγ
.(A.1)

We define R = ( α2

1+uγ )β . From the first equation of the latter system, we have R =
α1

u − 1. Using this combination in the second equation of system (A.1), we obtain

(α1

u

)2

=
(α1

u
− 1

) α1βγu
γ−1

1 + uγ
,(A.2)

or

α1 =
βγuγ+1

βγuγ − (1 + uγ)
.(A.3)

R has appeared to be a function of u and depends on γ and β, but it does not depend
on α1 and α2:

R(u) =
βγuγ

βγuγ − (1 + uγ)
− 1.(A.4)

Then, from the definition of R, we have

α2 = (R(u))1/β(1 + uγ).(A.5)

We introduce a parameter r > 0, replacing u in the obtained formulas, to show that
we have obtained a bifurcation boundary in the space (α1, α2) parametrized by an
independent parameter. The resulting formulas of the saddle-node bifurcation curve
for the fast subsystem in absence of the autoinducer are

αc
1 =

βγrγ+1

1 + rγ

/(
βγrγ

1 + rγ
− 1

)
,

αc
2 = (1 + rγ)

(
βγrγ

1 + rγ

/(
βγrγ

1 + rγ
− 1

)
− 1

)1/β

.(A.6)
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Appendix B. Merging extrema of the function F (u). We have the follow-
ing condition for merging extrema of a function:

F
′
(u) = 0, F

′′
(u) = 0,

which, in our case, takes the form(
1 +

(
α2

1 + uγ

)β
)

=

(
α2

1 + uγ

)β
α1βγu

γ−1

1 + uγ
,

(
α2

1 + uγ

)β

= − (γ − 1) − uγ(1 + βγ)

(γ − 1) + uγ(βγ − 1)
.(B.1)

We define R = ( α2

1+uγ )β . From the second equation of the latter system, we have

R = − (γ − 1) − uγ(1 + βγ)

(γ − 1) + uγ(βγ − 1)
.(B.2)

This formula shows again that R has appeared to be a function of u, which depends
on γ and β, but does not depend on α1 and α2. Performing analogous calculations
as in the previous case and introducing an independent parameter r instead of u, we
obtain the following parametric representation of the boundary:

αm
1 = (1 + R1(r))

2
(1 + rγ)

/(
R1(r)γβr

γ−1
)
,

αm
2 = (R1(r))

1/β
(1 + rγ) ,(B.3)

where r is the parameter and

R1(r) = − (γ − 1) − rγ(1 + βγ)

(γ − 1) − rγ(1 − βγ)
.(B.4)

Appendix C. The approximation for the Andronov–Hopf bifurcation.
The Andronov–Hopf bifurcation curve for vanishing ε is approximated by the curve
in the parameter space that corresponds to the intersection of the nullcline of slow
motion with the manifold of slow motion in an extremum of the latter:

−F (u) + α3h(α4g(u)) = 0, F ′(u) = 0.

Let us solve this condition with respect to the parameters α1 and α2. This case
is very similar to the condition of the boundary for the saddle-node bifurcation for
the fast subsystem in the absence of the autoinducer (see Appendix A) because the
only difference is the additive term α3h(α4g(u)). This term depends only on u and
parameters α3 and α4, which gives us a possibility to apply the same steps as in the
previous case, defining R3(u) = α3h(α4g(u)). These calculations give the following
curve in (α1, α2) parameter plane:

αH
1 = (1 + R2(r))/ (r −R3(r)) , αH

2 = (R2(r))
1/β

(1 + rγ) ,(C.1)

where r is an independent parameter and

R2(r) =
βγrγ−1 (r −R3(r))

(βγrγ − rγ − βγrγ−1R3(r) − 1)
− 1,

R3(r) = α3

(
α4

1 + rγ

)η/(
1 +

(
α4

1 + rγ

)η)
.(C.2)
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Abstract. A hyperbolic model for dynamic phase transitions is studied. The model involves
three phases: liquid, vapor, and a mixture of them. Metastable regions are present both in the liquid
and in the vapor phase.

Results on the behavior of traveling wave profiles of the model, involving viscosity, species diffu-
sion and relaxation, are obtained. These behaviors are consistent with physical intuitions. Admissi-
bility criteria (kinetic relations) that mimic the behavior of traveling wave profiles are then proposed.
Admissible basic waves of the model are liquefaction, evaporation, and isobaric waves, in addition
to Lax shock and rarefaction waves. Based on these waves, solutions of the Riemann problem for
the model are constructed for general Riemann initial data. Most of the physical phenomena are
embodied in the solver. For some Riemann initial data solutions are expected to be nonunique.
Which solutions actually appear depends on whether nucleation already occurred or not. The model
admits both solutions, as it should.

The model also has two other types of waves, collapsing and explosion waves. More complicated
solutions involving these two waves are also proposed and discussed.

Key words. Riemann problem, phase transitions, hyperbolic conservation laws
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1. Introduction. In the study of liquid-vapor phase transitions in fluids, one
often encounters an intermediate regime where the pure phases are mixed together.
The pure phase regions contain metastable subregions. The aim of this paper is to
study a simple hyperbolic model of phase transitions that involves all three configura-
tions above as well as metastability. The model in one space dimension for isothermal
flow in Lagrangian coordinates is⎧⎪⎨

⎪⎩
vt − ux = 0,
ut + p(v, λ)x = εuxx,

λt =
a

ε
(p− pe)λ(λ− 1) + bελxx.

(1.1)

Here v denotes the specific volume, u the velocity, p = p(v, λ) the pressure, and pe a
fixed equilibrium pressure. The number ε denotes a positive viscosity coefficient, and
a and b denote two real positive parameters; the ratio ε/a is the typical reaction time.
The quantity λ ∈ [0, 1] is the mass density fraction of vapor in the fluid; therefore
λ = 0 identifies a liquid regime, λ = 1 a vapor regime, and λ ∈ (0, 1) a mixture of two
pure phases. The system (1.1) is shown, in [9, 10], to exhibit all major wave patterns
observed in shock tube experiments on retrograde fluids [5, 15].

We assume that the pressure p is defined in (0,+∞) × [0, 1] and satisfies the
following essential assumptions:

pv < 0, pvv > 0,(1.2)
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Fig. 1. Pressure curves.

pλ > 0.(1.3)

However, in order to simplify the analysis below, we also require

p > 0, lim
v→0+

p(v, λ) = +∞,(1.4) ∫ +∞ √
−pv(v, λ)dv = +∞.(1.5)

Both assumptions (1.4) and (1.5) could be dropped by modifying slightly the follow-
ing. In particular (1.5) prevents the formation of vacuum. An example of pressure
satisfying (1.2)–(1.5) is

p(v, λ) =
1 + λ

v
.(1.6)

We define on the v axis the points vm, respectively, vM , as the abscissas of the
intersections of the curves p = p(v, 0), p = pe and p = p(v, 1), p = pe; see Figure 1.
The part of the graph of the function p = p(v, 0) lying below the line p = pe is called
the metastable liquid region, while that of function p = p(v, 1) lying above the line
p = pe is called the metastable vapor region. For example, the liquid in metastable
liquid region tends to vaporize. But the evaporation will not start until seeds for
evaporation, typically tiny vapor bubbles or particles of impurities, are present. The
remaining parts of the curves are the stable liquid and stable vapor region.

Consider then the following initial value problem for system (1.1):⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vt − ux = 0,
ut + p(v, λ)x = εuxx,

λt =
a

ε
(p− pe)λ(λ− 1) + bελxx,

(u, v, λ)(x, 0) = (u0, v0, λ0)(x) =

{
(u−, v−, λ−) if x < 0,
(u+, v+, λ+) if x > 0.

(1.7)

Assume that the problem (1.7) has a solution (uε, vε, λε)(x, t); assume moreover that
there is a sequence εn, n = 1, 2, . . . , with εn → 0+ as n → ∞, such that the limit

(u, v, λ)(x, t) := lim
n→∞

(uεn , vεn , λεn)(x, t)
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exists in some strong sense, such as pointwise. Then the limit satisfies the Riemann
problem ⎧⎪⎪⎨

⎪⎪⎩
vt − ux = 0,
ut + p(v, λ)x = 0,
(p(v, λ) − pe)λ(λ− 1) = 0,
(u, v, λ)(x, 0) = (u0, v0, λ0)(x).

(1.8)

Remark that under assumption (1.2), the first two equations of (1.8) form a strictly
hyperbolic system of conservation laws with eigenvalues −

√
−pv(v, λ),

√
−pv(v, λ).

The third equation imposes some constraints on the states under consideration. The
Riemann problem (1.8) is the object of our investigations. Remark that analogously
to [2, 3] the first three equations in (1.8) can be understood by eliminating λ as⎧⎨

⎩
vt − ux = 0,
ut + p(v, 0)x = 0,
(v, u) ∈ Ω0,

⎧⎨
⎩

vt − ux = 0,
ut = 0,
(v, u) ∈ Ω∗,

⎧⎨
⎩

vt − ux = 0,
ut + p(v, 1)x = 0,
(v, u) ∈ Ω1,

(1.9)

where Ω0 = Ω1 = (0,+∞) × (−∞,+∞), Ω∗ = [vm, vM ] × (−∞,+∞).
The structure of solutions of (1.8) is easier to obtain than that of (1.7). Neverthe-

less, we want to keep track as much as possible of the derivation of the latter from the
former system, and we shall focus on solutions of (1.8) that are some type of strong
limits of solutions of (1.7) as εn → 0 for some sequence {εn}.

From the third equation in (1.8) it is clear that piecewise smooth solutions of
(1.8) consist of smooth pieces satisfying either

λ = 0 or λ = 1(1.10)

or

p = pe.(1.11)

In order to have solutions to the Riemann problem (1.8) which mimic as far as possible
solutions of (1.7), we choose waves of (1.8) which have traveling wave profiles of (1.7).
This choice is a way to impose kinetic relations [1, 12], which imposes admissibility
restrictions on waves of conservation laws. However, the results about traveling waves
at our disposal (see [7, 9]) are not sufficient to guarantee the existence of a solution
for every set of initial data. Nevertheless, the behavior of traveling waves, carrying
physical meanings, can serve as a guide for kinetic relations for (1.8). To guarantee
the existence of solutions for general Riemann initial data, we shall supplement (1.8)
with kinetic relations whose behaviors are consistent with the relevant behavior of
traveling waves of (1.7).

One should not expect one kinetic relation that is independent of time to be
valid for all time t > 0. Consider Shearer’s type of nonunique solutions [13]: The
Riemann initial data represents a tube of metastable vapor, i.e., λ = 1, p > pe,
flowing at a given speed towards the center. For this type of data, the system (1.8)
has two Riemann solutions, one without phase boundary and the other with two phase
boundaries moving apart from the center. The center is occupied by liquid. There
are studies utilizing different kinetic relations that favor one of them over the other.
We want to say that both solutions are good, but good at different time periods:
As time t starts to increase from 0, there is no seed, such as a liquid drop, to start
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the condensation; the vapor will stay as vapor for a sizable period of time. Thus,
at the early stage, the solution without phase boundary is appropriate. As t → ∞,
liquid drops will form through nucleation and the condensation will eventually happen,
resulting in phase boundaries, and the fluid will eventually settle down in the stable
phase. This clearly shows that the solution without phase boundary is valid only
up to a certain finite time, so is the kinetic relation that picks this solution. The
process as t increases from 0 is as follows: After some time, a liquid drop is formed
though a random fluctuation (or nucleation) process. This liquid drop serves as a seed
for condensation. Since the surrounding vapor is in the metastable region, further
condensation will occur around this liquid drop, resulting in the growth of the liquid
or liquid/vapor mixture region. For this time period, the solution with two phase
boundaries moving out, with the liquid drop in the center and metastable vapor on
outer sides, is appropriate. This example illustrates that for a different time period,
different Riemann solvers should be employed. Thus, any admissibility criterion that
favors one of the solutions over the other is applicable only for one of time intervals:

[0, Tinitiation of the 1st drop),

[Tinitiation of the 1st drop, Tinitiation of the 2nd drop), . . .

The nucleation is a random process, and hence Tinitiation of the 1st drop is a random
variable. Since the model does not include the nucleation mechanism directly in
the equations, the model should allow both solutions, with additional admissibility
criterion stating when and which one of them is admissible.

In this paper, we proposed the admissibility criterion applicable in the first time
interval. Under this kinetic condition, we can finally prove the existence of a global
Riemann solver which singles out solutions uniquely.

Riemann solutions involve many kinds of elementary waves. First of all, liquefac-
tion and evaporation waves may arise in the connection of two different pure phases;
they can be either subsonic or sonic. In the latter case, our solver admits rarefac-
tion waves attached to them. This pattern appears also in solution of systems where
genuinely nonlinearity fails [12] as well as in combustion theory [11, 2]. A selection
criterion is imposed to both liquefaction and evaporation waves in order to find a
unique solution to the Riemann problem; if profiles exist, the criterion amounts to
choosing the wave traveling with the slowest speed (in absolute value). Moreover it is
required that, if we fix a state in back of the phase transition, then the speed of the
phase boundary increases if |p(v−, λ−)−pe| increases; here (v−, λ−) is the state in the
back. This requirement has a physical ground and is satisfied by the traveling wave
profile having the slowest speed. We refer to [3] for a Riemann solver that applies to
deflagration waves having both rarefaction waves attached to a sonic phase boundary
and a superimposed kinetic condition. Liquefaction and evaporation waves may arise
also in the connection of a pure phase with a mixture phase; also in this case they
can be either subsonic or sonic. No selection condition is needed for this case.

Another kind of waves are the isobaric waves, along which the pressure equals
the equilibrium pressure pe; they are stationary and require no kinetic condition. Lax
shocks and rarefaction waves in the pure phases complete the set of elementary waves.

This paper is organized as follows. In section 2 we list all possible elementary
waves of (1.8). They are reacting or nonreacting shock waves, nonreacting rarefaction
waves, and isobaric waves. The existence of traveling wave profiles to some react-
ing shocks, namely liquefaction and evaporation waves, was established in [7, 9]; in
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section 3 we continue the analysis started with those papers. We show first that liq-
uefaction (and evaporation) profiles are monotone; moreover, if the state v− in the
back is fixed, then among these profiles there is a slowest one. Our main result in
this section is that the speed of the slowest profile is a decreasing (respectively, in-
creasing) function of v−. Kinetic conditions are given in section 4. In section 5, using
the elementary waves and the related kinetic conditions, we construct solutions to the
Riemann problem (1.8) for arbitrary Riemann data; comments about our Riemann
solver are gathered at the end of this section. Numerical works in [10] indicated the
existence of another two kinds of reacting shocks. They are explosion waves and col-
lapsing waves. In section 6 we show through some examples how these waves may be
used to obtain a different Riemann solver.

2. Basic admissible waves. In this section we introduce the elementary waves
to be used in the following. We state as well some results proved elsewhere about the
existence of traveling wave profiles. If a wave has such a profile, we call it admissible.

We review now some simple facts about solutions to (1.8), (1.7). Recall that we
consider only states (v, u, λ) satisfying either (1.10) or (1.11).

Let us fix two states (v−, u−, λ−) and (v+, u+, λ+). If they are connected by a
wave having a jump discontinuity with speed c, then the Rankine–Hugoniot conditions
must hold: {

−c[v] − [u] = 0,
−c[u] + [p] = 0.

(2.1)

From these equations it follows that

c2 = − p(v+, λ+) − p(v−, λ−)

v+ − v−
.(2.2)

Remark then that a necessary condition for a jump to take place is that in the plane
(v, p) the line joining (v−, p(v−)) and (v+, p(v+)) has negative slope.

Traveling waves of (1.7) are solutions of⎧⎪⎪⎨
⎪⎪⎩

−cv′ − u′ = 0,
−cu′ + p(v, λ)′ = u′′,
−cλ′ = aw(v, λ) + bλ′′,
(v, u, λ)(±∞) = (v±, u±, λ±), (v′, u′, λ′)(±∞) = (0, 0, 0),

(2.3)

where w(v, λ) = (p − pe)λ(λ − 1) and prime ( ′ ) denotes d/dξ with ξ = (x − ct)/ε.
Here the data (v±, u±, λ±) satisfy the Rankine–Hugoniot conditions (2.1). Remark
that (2.3) implies {

−cv′ = c2(v − v−) + p− p−,
−cλ′ = a(p− pe)λ(λ− 1) + bλ′′.

(2.4)

For simplicity in the rest of this section we refer only to the case of phase bound-
aries with nonnegative wave speeds. Then the speed of a phase boundary joining
(v−, u−, λ−) and (v+, u+, λ+) is

c =

√
−p(v+, λ+) − p(v−, λ−)

v+ − v−
.(2.5)

Phase boundaries with negative speeds can be obtained by interchanging the left and
right side of phase boundaries with positive speeds.
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(i) Liquefaction waves. After a liquefaction wave passes, the state of fluid changes
from vapor or vapor/liquid mixture (v+, λ+ �= 0) to liquid (v−, λ− = 0); see
Figure 2(a)–(b). Further requirements on the data are
(a) either

λ− = 0, λ+ = 1, v− < v+, p(v−, λ−) > p(v+, λ+) ≥ pe(2.6)

(b) or

λ− = 0, 0 < λ+ < 1, v− < v+, p(v−, λ−) > p(v+, λ+) = pe.(2.7)

Under either (2.6) or (2.7), it is shown in [7] and [9] that admissible waves
exist if

c ≥ 2
√
ab|p(v−, λ−) − pe|,(2.8)

c2 + pv (v±, λ±) < 0,(2.9)

and there is no other equilibrium point of (2.3), with v value between v− and
v+. On the other hand, if the speeds satisfy

c < 2
√
ab|p(v+, λ+) − pe|,(2.10)

then there are no admissible liquefaction waves.
Condition (2.9) means that a liquefaction wave is subsonic or sonic with
respect to both side states. The absolute value in (2.8) and (2.10) is not
necessary in this case, but it has been put in order to have a unique condition
valid also for the next case. Note that in case (i)(b), the condition (2.10) does
not impose any restriction.
We further observe through numerical computation that for case (i)(b), there
is always a traveling wave as long as λ+ ∈ (0, 1), even if (2.8) is not satisfied.

(ii) Evaporation waves. The state in front of an evaporation wave is metastable
liquid: (v+, λ+ = 0) with p+ < pe. In the back of the evaporation shock is
vapor: (v−, λ− = 1) with v− > v+ and p− < p+ < pe; see Figure 2(c)–(d).
We require moreover that
(a) either

λ− = 1, λ+ = 0, v− > v+, p(v−, λ−) < p(v+, λ+) ≤ pe(2.11)

(b) or

λ− = 1, 0 < λ+ < 1, v− > v+, p(v−, λ−) < p(v+, λ+) = pe .

Results about the admissibility of evaporation waves are given in [7], [9]: if
conditions (2.8), (2.9) hold and there is no other equilibrium point of (2.3)
with v value between v− and v+, then the evaporation wave is admissible.
Similarly, under the condition (2.10), there is no admissible evaporation wave.
Our numerical tests show that there is a traveling wave for case (ii)(b) as long
as λ+ ∈ (0, 1), even if (2.8) is not satisfied.

(iii) Isobaric waves. Smooth isobaric waves are solutions of (1.8) with

p (v(x, t), λ(x, t)) = pe(2.12)
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Fig. 2. Admissible waves. (a) and (b), liquefaction shocks; (c) and (d), evaporation shocks.

for (x, t) in some region D called isobaric region. For convenience, suppose
D contains a rectangle [a, b] × [t0, t1]. Then in this rectangle we have

⎧⎪⎨
⎪⎩

u = u(x, t0),

v = ux(x, t0)(t− t0) + v(x, t0),

λ = λe(v(x, t)),

(2.13)

where the last equation is the explicit form of (2.12), which exists due to
pλ > 0. Two constant states (v−, u−, λ−), (v+, u+, λ+) are connected by an
isobaric wave only if p(v−, λ−) = p(v+, λ+) = pe; as a consequence the wave
is stationary and u+ = u−.

(iv) Nonreacting compressive shock waves. Under the assumption (1.2) the
nonreacting shocks must satisfy λ− = λ+ = 0 or 1 and the Lax admissi-
bility conditions
(a) either (1-shocks)

−
√

−pv(v−, λ−) > c > −
√

−pv(v+, λ+)
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(b) or (2 shocks) √
−pv(v−, λ−) > c >

√
−pv(v+, λ+),

where c is the speed of the wave determined by the Rankine–Hugoniot con-
ditions. Due to the assumption pvv > 0, we have sign∂v±c = −signc for both
Lax shocks. We shall use these inequalities when solving Riemann problems.

(v) Nonreacting rarefaction waves. These are continuous solutions of (1.8) of the
form (u, v, λ)(x, t) = (u, v, λ)(x/t) with λ = constant. By the third equation
in (1.8), we have λ(x, t) ≡ λ± = 0 or 1, and the system (1.8) is reduced to the
nonreacting p-system for gas dynamics. Thus, the nonreacting rarefaction
waves are the same as the classical rarefaction waves in gas dynamics:
(a) first family of rarefaction waves,

u+ − u− =

∫ v+

v−

√
−pv(v, λ−)dv, v− < v+;(2.14)

(b) second family of rarefaction waves,

u+ − u− = −
∫ v+

v−

√
−pv(v, λ−)dv, v− > v+.(2.15)

Remark 2.1. We consider again the case of a right-moving liquefaction wave;
see (i) above. For a fixed v− we denote the speed of the liquefaction wave connecting
v− with v+ by c(v+). It is easy to check that the function c(v+) is increasing when
(2.9) holds. We define v∗ by the relation c(v∗) = 2

√
ab(p(v−, 0) − pe). Moreover,

consider the line joining (v−, p(v−, 0)) with (v+, p(v+, 1)) and let (vT , p(vT , 1)) be
the point in which this line is tangent to the curve p(v, 1). As a consequence of the
conditions (2.8) and (2.9), we see that the existence of liquefaction waves connecting
v− with v+ is ensured if v+ ∈ [v∗,min{vT , vM}]. In the case that the pressure has the
form (1.6) then a simple calculation shows that the interval [v∗,min{vT , vM}] is never
empty for any v− ≤ vm if ab is sufficiently small. In other words, for these values of
ab for every v− we have, in the state space, a whole curve of admissible liquefaction
waves.

For the evaporation shocks, the situation is somewhat different: For any fixed
ab > 0 and as v− → ∞, the c(v∗) = 2

√
ab(p(v−, 1) − pe) will become bigger than the

slope of the tangent of p(v, 1), destroying the possibility of a direct traveling wave
link from (v−, λ−) to (v+, λ+). Thus, for any fixed ab > 0, there is an upper bound
for v− so that there is no evaporation wave with v− above this bound.

The class of admissible waves could be enlarged by admitting the collapsing and
explosion waves introduced below. One side of these waves is an equilibrium mixture
of liquid and vapor, while the other side is metastable liquid or vapor. Such waves
are numerically verified to exist by computing some initial value problems of (1.7) for
t not small. The numerical results revealed the following: For these kinds of waves to
appear, the pressure of the metastable side must differ from equilibrium by a certain
amount. Such waves cannot appear in a Riemann solver when the Riemann initial
data consist of a piece of liquid and a piece of vapor unless the initial data is set such
that the pressure of the metastable side differs sufficiently from equilibrium. The
reason for this phenomenon is left for future investigation. It is clear that if these
waves appear in Riemann solvers for such Riemann data, a severe loss of uniqueness
will occur. For these reasons we consider the following waves separately.



434 ANDREA CORLI AND HAITAO FAN

�
v

�
p

λ = 0 λ = 1

pe �
���

.

.

.

.

.

.

.

.

v−
.
.
.
.
.
.
.
.
.
.
.

v+

(a)

�
v

�
p

λ = 0 λ = 1

pe
�
���

.

.

.

.

.

.

.

.

.

v−
.
.
.
.
.

v+

(b)

Fig. 3. Other waves. (a) collapsing shock; (b) explosion shock.

(vi) Collapsing waves. As a collapsing wave passes through the metastable vapor,
λ+ = 1, p+ > pe, the fluid changes to a liquid/vapor mixture at equilibrium
pressure, p− = pe, λ− ∈ (0, 1); see Figure 3(a). Although this is also a kind of
liquefaction shock, we single it out to emphasize that it is supersonic relative
to its front and that the pressure drops after the shock passes.

(vii) Explosion waves. In the front of an explosion wave there is metastable liquid,
λ+ = 0, p+ < pe. Behind the wave is a liquid/vapor mixture at equilib-
rium pressure, p− = pe, λ− ∈ (0, 1). The Rankine–Hugoniot condition then
requires v+ > v−. See Figure 3(b). Also these waves are supersonic with
respect to the state in front.

3. Properties of admissible waves. In this section we study some properties
of the admissible waves listed in section 2; these properties provide motivations for
the kinetic conditions that are given in section 4.

Throughout this section we denote (v−, λ−) the state behind a shock, (v+, λ+)
the state in front, while c = c(v−, v+) is given by (2.5). For simplicity we deal only
with the case c > 0.

Lemma 3.1. If c2 + pv(v±, λ±) < 0, with λ− = 0, λ+ = 1, then the equation

R(v, λ; c) := c2(v − v−) + p(v, λ) − p(v−, 0) = 0(3.1)

has a unique solution v := v(λ). This solution satisfies

Rv (v(λ), λ; c) < 0.(3.2)

Proof. Existence of a solution v(λ) of R(v, λ; c) = 0 follows from Rλ = pλ > 0
and then, for λ ∈ (0, 1),

R(v−, λ; c) > R(v−, 0; c) = 0 = R(v+, 1; c) > R(v+, λ; c).

To prove the uniqueness of the solution v(λ), assume its contrary, i.e., that there are
two solutions of the equation R(v, λ0; c) = 0 for some λ0 ∈ (0, 1), v1(λ0), and v2(λ0).
Without loss of generality, let v1(λ0) < v2(λ0) denote the smallest two such solutions.
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Thus, there are no other zeros between v1(λ0) and v2(λ0). Note that Rvv = pvv > 0
and Rv(v−, 0; c) = c2 + pv(v−, 0) < 0. Then

Rv(v1, λ0; c) < 0 < Rv(v2, λ0; c)(3.3)

and hence

Rv(v, λ0; c) > 0 for v ∈ (v2, v+)(3.4)

holds. It leads to a contradiction:

0 = R(v+, 1; c) > R(v+, λ0; c) > R(v2, λ0; c) = 0,(3.5)

which establishes the uniqueness of v(λ).
If there was a point λ0 ∈ (0, 1) such that Rv(v(λ0), λ0; c) ≥ 0 holds, then the

argument from (3.3) to (3.5) would apply to yield a contradiction. This shows that
Rv(v(λ), λ; c) < 0 for λ ∈ [0, 1], as desired.

Lemma 3.2. Under the assumptions of the previous lemma, every liquefaction
(evaporation) traveling wave connecting (v−, λ−) with (v+, λ+) is monotone.

Proof. We deal with the case of a liquefaction wave. In the (λ, v)-plane, consider
the strip S = {(λ, v) : 0 ≤ λ ≤ 1, v > 0}. Denote R0 = {(λ, v); R(v, λ) = 0} and

R− = {(λ, v) ∈ S; R(v, λ) < 0},
R+ = {(λ, v) ∈ S; R(v, λ) > 0}.

For contradiction, assume that there exists a profile (v(ξ), λ(ξ)) with v′(ξ0) = 0 for
some ξ0. When (v(ξ), λ(ξ)) starts from (v−, 0) it must enter the region R−; otherwise
v′(ξ) < 0 for every ξ and then it could not reach the point (v+, 1). From (2.4), when
ξ = ξ0 the trajectory (v(ξ), λ(ξ)) meets the curve R0. The curve R0, parameterized
as v(λ), is increasing as λ increases, as shown by

dv

dλ
= −Rλ

Rv
= − pλ

Rv
> 0

in view of Lemma 3.1. Thus, v′(ξ) < 0 for every ξ > ξ0 and so the point (v+, 1)
cannot be reached, a contradiction.

If λ is not monotone, then there exists the smallest critical point ξ0, which must
be a local maximum, and then a critical point ξ1, adjacent to ξ0, which must be a local
minimum point. From the second equation of (2.4) we have p(v(ξ0), λ(ξ0)) ≤ pe. If
ξ ∈ (ξ0, ξ1), then λ(ξ) is decreasing while v(ξ) is increasing; then p(v(ξ1), λ(ξ1)) < pe
from the first equation of (2.4). But then at ξ1 we should have 0 = a(p − pe)λ(λ −
1) + bλ′′ > 0, a contradiction.

Remark that in the plane (λ, v) the curve {(λ, v); p(v, λ) = pe} lies all above
the curve R0; see Figure 4. In fact, if v(λ) is as in Lemma 3.1, then v′(λ) > 0. By
differentiating (3.1) with respect to λ we obtain c2v′(λ) + d/dλ[p (v(λ), λ)] = 0, and
thus p is decreasing along the curve R0. Since v− < vm and v+ < vM , the claim is
proved.

Lemma 3.3. Fix a state (v−, λ−), λ− = 0 (or 1). If there are liquefaction
(evaporation) waves having (v−, λ−) as the back state, then there is one with the least
speed.

Proof. We now consider the case for liquefaction waves. The proof for evaporation
waves is the same.
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Fix a state (v−, 0) and consider the set P(v−) of all states (v+, 1) that can be
connected to (v−, 0) with a liquefaction wave. These traveling waves satisfy (2.4), and
from Lemma 3.2 they are monotone. Let

ω = inf
v+∈P(v−)

c(v−, v+) .

Take a sequence vn ∈ P(v−) such that c(v−, vn) → ω as n → +∞, and let

(v(ξ; v−, vn), λ(ξ; v−, vn))

be the related traveling waves. Note that a shift of a traveling wave solution of (2.3) is
still a traveling wave with the same speed. By shifting we can assume that for every n

λ(0; v−, vn) = 1/2 .

Due to (1.3), vn ≤ v1 for large n to make possible c(v−, vn) → ω, as n → ∞. We
have that for large n, TV(v(·; v−, vn)) ≤ |v+ − v1|, TV(λ(·; v−, vn)) = 1 since they
are monotone. Then there exists a subsequence converging a.e. to some functions
(v∗(ξ), λ∗(ξ)).

The functions v∗(ξ), λ∗(ξ) still satisfy (2.4) and are monotone. They are not
constant because λ∗(0) = 1/2 is not an equilibrium point of (2.4). Then they satisfy
the conditions v∗(±∞) = v±, λ∗(−∞) = 0, λ∗(+∞) = 1. Thus, (v∗(ξ), λ∗(ξ)) is a
traveling wave with the minimum speed.

We denote the lowest speed of a liquefaction (evaporation) wave by ω(v−, λ−).
Theorem 3.1. The function v− → ω(v−, λ−) introduced above is decreasing in

the case of a liquefaction wave, increasing in the case of an evaporation wave.
Proof. For definiteness, we prove the statement for a liquefaction wave. For an

evaporation wave the proof is analogous.
In the case of a liquefaction wave, the state λ behind the wave is λ− = 0. Consider

v− in the domain of definition of the function ω(v−, 0). By the definition of ω(v−, 0),
there is a solution of (2.4) starting at v(−∞) = v−, and the slowest nonnegative speed
of such traveling waves is ω(v−, 0), which connects (v±, λ±) as depicted in Figure 2(a).
We denote this slowest traveling wave by (v1, λ1)(ξ; v−).
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We want to prove that

ω := ω(v−, 0) ≥ ω(v∗−, 0)(3.6)

if v− < v∗− < vm with v∗− sufficiently close to v−. It suffices to prove that for such v∗−,
there is a solution of (2.4) with speed c = ω starting from v(−∞) = v∗−. The other
side of the traveling wave v(∞) = v∗+ must satisfy the Rankine–Hugoniot condition

ω2(v∗+ − v∗−) + p(v∗+, 1) − p(v∗−, 0) = 0.(3.7)

Due to the subsonicity at (v±, p(v±, λ±)), the smallness of |v−−v∗−|, and the shape of
p(v, λ) given by (1.2) and (1.3), there must be the smallest solution of (3.7) satisfying
v∗+ > v+. We rewrite and modify the system (2.4) of traveling waves connecting v∗±
as ⎧⎨

⎩
−ωv′ = ω2(v − v∗−) + p− p∗− + ηv′′,
−ωλ′ = aw(v, λ) + bλ′′,
(v, λ)(±∞) = (v∗±, λ±), (v′, λ′)(±∞) = (0, 0).

(3.8)

We shall take the limit η → 0+ later. By Theorems 3.1 and 3.1′ in [9] and the analysis
therein, a necessary and sufficient condition for (3.8) with data given in (i) and (ii)
of section 2 to have a solution is

ω ≥ inf
U∈K

sup
x,j

ajU
′′
j + Fj(U, ω)

−U ′
j

,(3.9)

where

U = (v, λ),

F (U, ω) =
(
ω2(v − v∗−) + p− p∗− a(p− pe)λ(λ− 1)

)
,

with a1 = η, a2 = b, and

K := {U ∈ C2 : U is monotone and U(±∞) = (v∗±, λ±)}.(3.10)

We now apply Lemma 3.1; then denote by v2 := v(λ) the unique solution of the
equation

R(v, λ;ω) := ω2(v − v∗−) + p(v, λ) − p(v∗−, 0) = 0.(3.11)

We consider the function

v∗2(ξ) := v2(λ1(ξ)).

It is clear that v∗2(±∞) = v∗±. Let δ > 0 be a sufficiently small constant. The intervals
(−∞, ξ−) over which v∗2(ξ) > v1(ξ) + δ are nonempty since v∗2(−∞) = v∗− > v− =
v1(−∞). Let (−∞, ξ−) denote the largest such interval, and hence either ξ− = ∞ or
v1(ξ−)+δ = v∗2(ξ−) holds. If it is the later case, then there is an interval (ξ+,∞) over
which v1(ξ)+δ < v∗2(ξ) and v1(ξ+)+δ = v∗2(ξ+) hold. Due to (3.2), the function v∗2(ξ)
is strictly increasing since λ′

1 > 0. We can construct a function v∗3 ∈ C2 satisfying

v∗3(ξ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v∗2(ξ) if ξ < ξ− − 1,
joining the left and right branches in C2 if ξ− − 1 < ξ < ξ−,
v1(ξ) + δ if ξ− < ξ < ξ+,
joining the left and right branches in C2 if ξ+ < ξ < ξ+ + 1,
v∗2(ξ) if ξ > ξ+ + 1.

(3.12)
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The joining pieces in (3.12) can be made to satisfy v∗
′

3 > 0 and v1 + δ < v∗3 < v∗2 for
ξ ∈ (ξ− − 1, ξ−) ∪ (ξ+, ξ+ + 1).

It is clear that (v∗3 , λ1) ∈ K as defined in (3.10). Also, the function v∗3 is inde-
pendent of η. Since (v1, λ1)(ξ, v−) is a traveling wave of speed ω joining (v±, λ±), it
follows that

ω =
−bλ′′

1 − a(p(v1, λ1) − pe)λ1(λ1 − 1)

λ′
1

>
−bλ′′

1 − a(p(v1 + δ, λ1) − pe)λ1(λ1 − 1)

λ′
1

≥ −bλ′′
1 − a(p(v∗3 , λ1) − pe)λ1(λ1 − 1)

λ′
1

(3.13)

since v∗3 ≥ v1 + δ. To estimate the other component of (3.9), we consider

ηv∗
′′

3 + ω2(v∗3 − v∗−) + p(v∗3 , λ1) − p∗−
−v∗

′
3

.(3.14)

Over the range (−∞, ξ−) ∪ (ξ+,∞), we use v∗3 ≤ v∗2 and (3.11) to derive

ω2(v∗3 − v∗−) + p(v∗3 , λ1) − p∗− = ω2(v∗3 − v∗2) + p(v∗3 , λ1) − p(v∗2 , λ1)

= Rv(θ, λ1;ω)(v∗3 − v∗2) ≥ 0.

Here, we used the smallness of |v∗2 − v∗3 | and Lemma 3.1. Then the inequality v∗3
′ > 0

yields

ηv∗
′′

3 + ω2(v∗3 − v∗−) + p(v∗3 , λ1) − p∗−
−v∗

′
3

≤ −η
v∗

′′

3

v∗
′

3

.(3.15)

On intervals (−∞, ξ− − 1) and (ξ+ + 1,∞), the definition of v∗3 implies that

v∗
′′

3

v∗
′

3

= O(1) + O(1)
λ1

′′

λ1
′ .

For the traveling wave (v1, λ1)(ξ), we can prove that

λ1
′′

λ1
′ = O(1)

by investigating the decay rate of λ1(ξ) at ξ = ±∞ and by v′1 > 0 proved in the
proof of Lemma 3.2. Over the intervals [ξ− − 1, ξ−) and (ξ+, ξ+ + 1], v∗

′′

3 /v∗
′

3 changes
smoothly by O(1) from v∗

′′

2 (ξ± ± 1)/v∗
′

2 (ξ± ± 1) = O(1) to v∗
′′

1 (ξ±)/v∗
′

1 (ξ±) = O(1).
Hence v∗

′′

3 /v∗
′

3 is also bounded on the intervals [ξ−−1, ξ−) and (ξ+, ξ+ +1]. Therefore
we have

ηv∗
′′

3 + ω2(v∗3 − v∗−) + p(v∗3 , λ1) − p∗−
−v∗

′
3

= O(1)η(3.16)

for ξ ∈ (−∞, ξ−) ∪ (ξ+,∞).
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On the interval [ξ−, ξ+], we have v∗3 = v1 + δ and

ηv∗
′′

3 + ω2(v∗3 − v∗−) + p(v∗3 , λ1) − p∗−
−v∗

′
3

=
ηv′′1 + ω2(v1 + δ − v∗−) + p(v1 + δ, λ1) − p∗−

−v′1

=
ω2(v1 − v−) + p(v1, λ1) − p−

−v′1

+
ηv′′1 + ω2δ + p(v1 + δ, λ1) − p(v1, λ1) + ω2(v− − v∗−) + p− − p∗−

−v′1

= ω +
ηv′′1 + ω2δ + p(v1 + δ, λ1) − p(v1, λ1) + ω2(v− − v∗−) + p− − p∗−

−v′1
.

(3.17)

The part

F (v1, λ1, δ) := ηv′′1 + ω2δ + p(v1 + δ, λ1) − p(v1, λ1) + ω2(v− − v∗−) + p− − p∗−

in (3.17) satisfies

F (v1, λ1, 0) = ηv′′1 + ω2(v− − v∗−) + p− − p∗− > 0

when η > 0 is sufficiently small, due to ω2 + pv(v−, λ−) < 0 and the smallness of
v∗− − v− > 0. Then, by the continuity of F , F (v1, λ1, δ) > 0 for any (v1, λ1) in the
bounded closed set [v−, v+] × [0, 1] if δ > 0 is sufficiently small. This, together with
(3.17) and v′1 > 0, implies that, for ξ ∈ [ξ−, ξ+],

ηv∗
′′

3 + ω2(v∗3 − v∗−) + p(v∗3 , λ1) − p∗−
−v∗

′
3

< ω.(3.18)

Combining estimates (3.13)–(3.18), we see that the condition (3.9) is satisfied when
η > 0 is sufficiently small. Thus, the system (3.8) has a solution with speed ω when
η > 0 is sufficiently small.

Let (v, λ)(ξ, v∗±; η) be solutions of (3.8) with the speed ω. They are monotone in
ξ. Since (3.8) is invariant under shifting, ξ 	→ ξ + ξ0, we can assume v(0, v∗±; η) =
(v∗+ + v∗−)/2. By the monotoneness of these solutions, there is a sequence {ηn}∞1 such
that

(v, λ)(ξ, v∗±; 0) := lim
n→∞

(v, λ)(ξ, v∗±; ηn)

exist for a.e. ξ ∈ (−∞,∞). The limit (v, λ)(ξ, v∗±; 0) satisfies the differential equations
in (2.4) with speed ω in the sense of distribution, and hence in the strong sense. It
also satisfies the boundary conditions in (2.4) since there is no other equilibrium point
between (v, λ) = (v∗−, 0) and (v∗+, 1). In other words, the system (2.4) has a traveling
wave with speed ω = ω(v−, 0), starting at v(−∞) = v∗−. Therefore, the minimum
speed ω(v∗−, 0) of all traveling waves starting at v∗− is no greater than ω(v−, 0). The
proof is complete.

Remark 3.1. The above proof can be further improved to yield strict monotonicity
of ω(v−, λ−).



440 ANDREA CORLI AND HAITAO FAN

4. Kinetic relations. At this stage, the existence results on traveling wave
profiles listed in section 2 are not strong enough to guarantee the solvability of the
Riemann problem for (1.8). On the other hand, for each given v−, there are too many
liquefaction and vaporization traveling waves listed in section 2, cases (i) and (ii). If
we admit all these waves, then many solutions can exist for the same initial data.
Admitting collapsing and explosion waves introduce more solution configurations for
Riemann solvers; see section 6. When to use which waves remains to be investigated
more thoroughly in future studies. For this reason, instead of strictly using travel-
ing wave admissibility criterion, we shall impose the following selection criteria for
admissible waves that mimics the properties of traveling wave profiles. The selection
criteria are also called kinetic relations in most mathematical literature.

In the solution of the Riemann problem for (1.8) we admit every liquefaction or
evaporation wave connecting a pure phase with a mixture phase, isobaric waves, and
Lax-shock and rarefaction waves, as defined in section 2, disregarding the existence
results of their traveling waves profiles. Of course each of these waves must satisfy
the Rankine–Hugoniot conditions (2.1) when a discontinuity occurs.

Moreover we admit both liquefaction and evaporation waves connecting two pure
phases. The selection criterion for these liquefaction and evaporation waves are as
follows: Let (v−, u−, λ−) be the state in the back of a shock, (v+, u+, λ+) the state
in the front. For simplicity we consider only the case of waves with positive speeds.

(i) For each liquid state (v−, u−, 0) with p(v−, 0) > pe there is only one vapor
state (v+, u+, 1), satisfying (2.6), that can be connected to (v−, u−, 0) with a
liquefaction wave. The speed s = s(v−) of the liquefaction wave is a decreas-
ing C1 function satisfying s2(v−) + pv(v±, λ±) ≤ 0.

(ii) For each vapor state (v−, u−, 1) with p(v−, 1) < pe there is only one liquid
state (v+, u+0), satisfying (2.11), that can be connected to (v−, u−, 1) with
an evaporation wave. The speed s = s(v−) of the evaporation wave is an
increasing C1 function; it satisfies s2(v−) + pv(v±, λ±) ≤ 0.

There are physical reasons for imposing conditions (i) and (ii): for example, let us
consider the case of liquefaction waves. The speeds of liquefaction waves depend
on the density of liquid drops in front of the waves, which is determined by the
nucleation effects [8]. The larger the density of liquid drops in front of the waves is,
the faster the liquefaction wave moves. The nucleation term is typically very small
and takes a long time to have some effect in a metastable vapor. Thus, when t is
not large, the liquefaction shock travels at the lowest possible speed. The first part
of condition (i) then can be justified furthermore because the nucleation effect is not
included in (1.8). The approximation of the hyperbolic regime to the parabolic one is
then to be understood for O(1)-order time intervals, in which the nucleation changes
little the value of λ in the front of the liquefaction and evaporation traveling waves.
Furthermore, if every liquefaction shock is allowed, then the Riemann solvers are not
unique.

The second part of condition (i) is quite intuitive, since if v− decreases then the
difference p(v−, 0) − pe > 0 increases, speeding up the phase changes. Hence it is
natural to assume that the liquefaction waves proceed faster. Moreover, in terms of
traveling waves, we showed in Theorem 3.1 that the liquefaction shock moving with the
slowest speed satisfies this assumption. At last, the condition s2(v−)+pv(v±, λ±) ≤ 0
means simply that the wave can be either subsonic or sonic.

Condition (ii) is motivated on the same basis. But, there is a difference from the
case of a liquefaction wave: The assumption s2(v−) + pv(v−, 1) ≤ 0 implies that the



REVERSIBLE REACTIVE FLOWS 441

connection exists only if v− ≤ vT−, where vT− is the abscissa of the point where the line
joining (v−, p(v−, 1)) with (v+, p(v+, 0)) is tangent to the curve p(v, 1). Such a point
vT− exists and is unique because of the assumption s′(v−) > 0.

5. Solutions of the Riemann problem. In this section we show how to solve
the Riemann problem (1.8) for any data (v−, u−, λ−), (v+, u+, λ+) with v± > 0,
u± ∈ (−∞,+∞), λ± ∈ [0, 1]. This is done by considering several different sets of
initial data; cases are classified according to the difference in speeds u− − u+. The
waves considered in the Riemann problems below are always listed from the left to
the right.

We define vT+ > vM , vT− > vM as the points that satisfy, respectively, the equations

pv(v
T
+, 1) =

p(v+, λ+) − p(vT+, 1)

v+ − vT+
,(5.1)

pv(v
T
−, 1) =

p(vT−, 1) − p(v−, λ−)

vT− − v−
.(5.2)

The point vT+ (respectively, vT−) is the abscissa of the tangency point of the line passing
through (v+, p(v+, λ+)) (respectively, (v−, p(v−, λ−))) with the curve p(v, 1).

5.1. Data in two mixture phases. We assume about data λ− ∈ (0, 1), λ+ ∈
(0, 1), p(v−, λ−) = p(v+, λ+) = pe.

5.1.1. u+ − u− < 0. In this case the solution has a transition

mixture → liquid → mixture.

See Figure 5(a) in the case v− < v+. We claim that there exists a unique v1 < vm such
that the Riemann problem has a solution made of a left-moving liquefaction shock
(from v− to v1) followed by a right-moving liquefaction shock (from v1 to v+).

In fact the jump conditions require{
−s1(v1 − v−) = u1 − u−,
−s2(v+ − v1) = u+ − u1.

(5.3)

As both s1 and s2 are functions of v1, summing up the previous equations we find
F (v1) := −s1(v1 − v−) − s2(v+ − v1) = u+ − u−. We remark first that

inf
v≤vm

F (v1) = −∞, max
v≤vm

F (v1) = F (vm) = 0.

Moreover,

dF

dv1
(v1) = −s1 + s2 −

ds1

dv1
(v1 − v−) − ds2

dv1
(v+ − v1).(5.4)

From (2.2) we see that ds1/dv1 > 0, ds2/dv1 < 0; then dF/dv1 > 0. Therefore
for every u+ − u− < 0 there exists a unique v1 such that F (v1) = u+ − u−.

5.1.2. u+ − u− = 0. In this case the solution is simply given by an isobaric
wave from v− to v+. Velocity and pressure are constant through the wave.

Following the pattern of case 5.1.1, for v1 → vm one could argue that the solution
consists of two jumps: v− to vm, vm to v+. However, both waves are stationary, so
they coincide, and the jump is directly from v− to v+.



442 ANDREA CORLI AND HAITAO FAN

�
v

�
p

λ = 0 λ = 1

pe �
�

��

.

.

.

.

.

.

.

.

v−

	
	

	
		


.

.

.

.

.

.

.

.

.

.

.

.

v1

.

.

.

.

.

.

.

.

v+

(a)

�
v

�
p

λ = 0 λ = 1

pe
�

.

.

.

.

.

.

.

.

v+

������

.

.

.

.

.

.

v1

.

.

.

.

.

.

.

.

v−

(b)

�
v

�
p

λ = 0 λ = 1

pe
�

��

.

.

.

.

.

.

vT+

��������

.

.

.

.

.

.

.

.

v−
.
.
.
.
.

v1

���

.

.

.

.

.

.

.

.

v+

(c)

�
v

�
p

λ = 0 λ = 1

pe
�

��

.

.

.

.

.

.

vT+

�

.

.

.

.

.

.

.

.

v−
.
.
.

vT−

.

.

v1

����

.

.

.

.

.

.

.

.

v+

(d)

Fig. 5. Two mixture phases data. (a) u+−u− < 0; (b) 0 < u+−u− < u∗; (c) u∗ < u+−u− <
u∗; (d) u+−u− > u∗. In case (c) the small wave is a 2-rarefaction wave attached to the evaporation
shock; in case (d) the small waves are first a 1-rarefaction then a 2-rarefaction wave.

5.1.3. u+ − u− > 0. In this case the solution has a transition (see Figures
5(b)–(d))

mixture → vapor → mixture.

Define

u∗ =

√
−
p(vT+, 1) − p(v−, λ−)

vT+ − v−
(vT+ − v−) −

√
−pv(vT+, 1)(v+ − vT+),

u∗ =
√
−pv(vT−, 1)(vT− − v−) −

∫ vT
+

vT
−

√
−pv(v, 1) dv −

√
−pv(vT+, 1)(v+ − vT+).

It is easy to check that 0 < u∗ < u∗.

Consider first the case v− < v+. Three patterns arise.
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(i) 0 < u+ − u− ≤ u∗: The solution consists of a left-moving evaporation shock
(from v− to v1) followed by a right-moving evaporation shock (from v1 to
v+); see Figure 5(b). As in case 5.1.1 the equations (5.3) must be satis-
fied. Now, however, ds1/dv1 < 0, ds2/dv1 > 0 and from (5.4) we again have
dF/dv1 > 0. As F (vM ) = 0, this means that we can solve uniquely the equa-
tion F (v1) = u+ − u− until the line joining (v1, p(v1, 1)) and (v+, p(v+, λ+))
becomes tangent to the graph of p(v, 1), i.e., for v1 ∈ (vM , vT+]. This concludes
this case, because F (vT+) = u∗.

(ii) u∗ ≤ u+ −u− ≤ u∗: The solution consists of a left-moving evaporation shock
(from v− to v1), followed by a 2-rarefaction wave (from v1 to vT+) ending on
a right-moving evaporation shock (from vT+ to v+). We call sT2 the speed of
this last shock; see Figure 5(c). Then⎧⎪⎪⎨

⎪⎪⎩
−s1(v1 − v−) = u1 − u−,

−
∫ vT

+

v1

√
−pv(v, 1) dv = uT

+ − u−,

−sT2 (v+ − vT+) = u+ − uT
+.

Summing up we define the function

G(v1) = −s1(v1 − v−) −
∫ vT

+

v1

√
−pv(v, 1) dv − sT2 (v+ − vT+).

We already proved that ds1/dv1 < 0, moreover dsT2 /dv1 = 0; then dG/dv1 >
0. Therefore we can solve uniquely the equation G(v1) = u+ − u− until the
line joining (v−, p(v−, λ−)) and (v1, p(v1, 1)) becomes tangent to the graph of
p(v, 1), that is, for v1 ∈ [vT+, v

T
−]. This concludes this case, since G(vT−) = u∗

and G(vT+) = F (vT+).
(iii) u∗ ≤ u+ − u− < +∞: The solution consists of a left-moving evaporation

shock (from v− to vT−, whose speed we call sT1 ) followed by a 1-rarefaction
wave (from vT− to v1), coinciding at the left with the evaporation shock; then
it follows a 2-rarefaction wave (from v1 to vT+) ending on a right-moving
evaporation shock (from vT+ to v+). See Figure 5(d). Then⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−sT1 (vT− − v−) = uT
− − u−,∫ v1

vT
−

√
−pv(v, 1) dv = uT

− − u1,

−
∫ vT

+

v1

√
−pv(v, 1) dv = uT

+ − u−,

−sT2 (v+ − vT+) = u+ − uT
+.

Summing up we define the function

H(v1) = −sT1 (vT− − v−) +

∫ v1

vT
−

√
−pv(v, 1) dv

−
∫ vT

+

v1

√
−pv(v, 1) dv − sT2 (v+ − vT+).

We see that dH(v1)/dv1 = 2
√
−pv(v1, 1) > 0; moreover H(vT−) = G(vT−)

and supv≥vT
−
H(v) = +∞ because of (1.5). Then we can solve uniquely the

equation H(v1) = u+ − u− for u+ − u− ∈ [u∗,+∞).
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This concludes the discussion of case 5.1.3 if v− < v+. The case v− > v+ is analogous
and goes as follows. If u+ − u− is positive and sufficiently small, we find a solution
consisting of a left-moving evaporation shock followed by a right-moving evaporation
shock, as in case (i); for larger values of u+ − u− the solution consists of an evap-
oration shock moving toward the left with fixed speed, and it is sonic on the right.
Then it follows a 1-rarefaction wave coinciding on the left with the shock and then a
right-moving evaporation shock. For still larger values of u+ − u− the pattern is as
in case (iii). Details are left to the reader.

5.2. Data in one mixture, one pure phase. In this section we solve the
Riemann problem in the case that one data is in a pure phase and the other in
a mixture phase. More precisely we treat in detail the case of data (v−, u−, λ−),
(v+, u+, λ+) with λ− = 0, 1 and λ+ ∈ (0, 1). The mirror case λ− ∈ (0, 1), λ+ = 0, 1 is
easily deduced by the transformation x 	→ −x.

5.2.1. λ− = 0, λ+ ∈ (0, 1), −∞ < u+ − u− ≤ u∗. The threshold u∗ is
defined by

u∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ vm

v−

√
−pv(v, 0) dv if v− ≤ vm,√

−p(vm, 0) − p(v−, 0)

vm − v−
(vm − v−) if v− > vm.

The solution has a transition

liquid → mixture.

The solution consists of a 1-wave from v− to v1, then a right-moving liquefaction
shock from v1 to v+ (an isobaric wave if u+ − u− = u∗); see Figure 6(a). This
construction can be made if v1 ≤ vm, and for v1 = vm we have an isobaric wave; if
v1 > vm, the liquefaction shock is no more admissible. Then⎧⎨

⎩−χ(−∞,v−)(v1) · s1(v1 − v−) + χ[v−,+∞)(v1) ·
∫ v1

v−

√
−pv(v, 0)dv = u1 − u−,

−s(v+ − v1) = u+ − u1.

The function

F (v1) = −χ(−∞,v−)(v1) · s1(v1 − v−) + χ[v−,+∞)(v1) ·
∫ v1

v−

√
−pv(v, 0)dv

−s(v+ − v1)

satisfies dF/dv1 > 0 because ds1/dv1 > 0, ds/dv1 < 0. Since v1 ≤ vm we have a
solution if u+ − u− ∈ (−∞, F (vm)]. It is then sufficient to remark that F (vm) = u∗
to complete the proof.

5.2.2. λ− = 0, λ+ ∈ (0, 1), u∗ < u+ − u− ≤ u∗. The value u∗ is defined in
(5.11). In this case the solution has a transition

liquid → vapor → mixture.
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Fig. 6. One pure phase, one mixture phase data. Liquid-mixture cases: (a) −∞ < u+ −
u− < u∗; (b) u∗ < u+ − u− < u∗. In case (a) both a 1-rarefaction and a 1-shock are drawn; if
u+ − u− > u∗ the pattern is analogous to that in Figure 5(d) (two rarefactions in the vapor phase)
and is not shown. Vapor-mixture cases: (c) −∞ < u+ − u− < u�; (d) u� < u+ − u− < u�. In
case (c) a 1-Lax wave followed by a left-moving liquefaction shock, then a right-moving liquefaction
shock; in case (d) a 1-Lax wave followed by an evaporation shock. Also in this case if u+ −u− > u�

the pattern is analogous to that in Figure 5(d) (two rarefactions in the vapor phase) and is not
shown.

It consists of a 1-Lax wave from v− to v1, then a left-moving evaporation shock from
v1 to v2, at last a right-moving evaporation shock from v2 to v+; see Figure 6(b).
Here v1 > vm, different from the previous case. We have

⎧⎪⎪⎨
⎪⎪⎩

−χ(−∞,v−)(v1) · s1(v1 − v−) + χ[v−,+∞)(v1) ·
∫ v1

v−

√
−pv(v, 0)dv = u1 − u−,

−s(v2 − v1) = u2 − u1,
−s2(v+ − v2) = u+ − u2.

(5.5)

Remark 5.1. If every evaporation and liquefaction wave connecting two pure
phases were admissible then it is clear that uniqueness of solutions to the Riemann
problem would fail: we should have two free parameters in system (5.5). This is why
we imposed the kinetic condition (ii), section 4; then s = s(v2) and v1 = v1(v2). More
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precisely, let us call (vT2−, p(v
T
2−, 1)) the point where the line joining (v1, p(v1, 0)) and

(v2, p(v2, 1)) becomes tangent to the curve p(v, 1). Then for any v2 ∈ [vM , vT2−] there
exist unique v1 > vm and s such that v1 and v2 are connected by an evaporation
shock of speed s.

Consider, however, for the moment v2, s as independent variables in (5.5) and
define the function

F (v2, s) = −χ(−∞,v−)(v1) · s1(v1 − v−) + χ[v−,+∞)(v1) ·
∫ v1

v−

√
−pv(v, 0)dv

−s(v2 − v1) − s2(v+ − v2);(5.6)

see [6] for a similar procedure. Then v1 = v1(v2, s), s1 = s1(v1(v2, s)), s2 = s2(v2);
for simplicity we omit the dependence on v2, s in the following calculations.

Lemma 5.1. For the function F (v2, s) defined in (5.6), with v1 = v1(v2, s),
s1 = s1(v1(v2, s)), s2 = s2(v2), we have

∂F

∂v2
(v2, s) > 0,

∂F

∂s
(v2, s) < 0.(5.7)

Proof. We begin with some preliminary calculations. By differentiating with
respect to v2 and to s the formula

s2 = −p(v2, 1) − p(v1, 0)

v2 − v1
,

we find

∂v1

∂v2
=

pv(v2, 1) + s2

pv(v1, 0) + s2
,

∂v1

∂s
=

2s(v2 − v1)

pv(v1, 0) + s2
.(5.8)

Then ∂v1/∂v2 > 0, ∂v1/∂s > 0 because of the subsonic condition (ii) in section 4. On
the other hand, by differentiating with respect to v2 the formula

s2
2 = −p(v+, λ+) − p(v2, 1)

v+ − v2
,

we obtain

∂s2

∂v2
=

pv(v2, 1) + s2
2

2s2(v+ − v2)
(5.9)

that is positive again because of (ii). At last

ds1

dv1
= − 1

2s1(v1 − v−)

(
pv(v1, 0) + s2

1

)
.(5.10)

Next we compute

∂F

∂v2
(v2, s)

=

⎧⎪⎨
⎪⎩

−
(
∂s1

∂v1

∂v1

∂v2
· (v1 − v−) + s1

∂v1

∂v2

)
+ (s2 − s) − ∂s2

∂v2
(v+ − v2) if v1 < v−,(√

−pv(v1, 0) + s
) ∂v1

∂v2
+ (s2 − s) − ∂s2

∂v2
(v+ − v2) if v1 ≥ v−.
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We note that ds1/dv1 > 0, ds2/dv2 > 0, s−s1 > 0, s2−s > 0, and
√
−pv(v1, 0)+s > 0.

The first inequality in (5.7) then follows from (5.8), (5.9).
We now compute

∂F

∂s
(v2, s) = −χ(−∞,v−)(v1) ·

(
∂s1

∂s
(v1 − v−) + s1

∂v1

∂s

)

+χ[v−,+∞)(v1) ·
√
−pv(v1, 0)

∂v1

∂s
− (v2 − v1) + s

∂v1

∂s
.

Since ∂s1/∂s = (ds1/dv1)(∂v1/∂s), from (5.8), (5.10) we have

∂F

∂s
(v2, s) =

⎧⎪⎨
⎪⎩

v2 − v1

s1(pv(v1, 0) + s2)
(s− s1) (pv(v1, 0) + ss1) if v1 < v− ,

v2 − v1

pv(v1, 0) + s2

(√
−pv(v1, 0) + s

)2

if v1 ≥ v−.

Both expressions are negative. This proves the second inequality in (5.7).
Recall now that we have only one free parameter in the resolution (5.5), i.e., v2.

Therefore

d

dv2
[F (v2, s(v2))] =

∂F

∂v2
(v2, s(v2)) +

∂F

∂s
(v2, s(v2)) ·

ds

dv2
(v2) .

Because of assumption (ii) in section 4, we have ∂s/∂v2 < 0, and from Lemma 5.1 we
deduce

d

dv2
[F (v2, s(v2))] > 0 .

Then define G(v2) = F (v2, s(v2)). The function G is increasing and

min
v≥vM

G(v2) = G(vM ) = u∗.

This case then matches with the previous one. This wave structure is valid until v2

reaches the point vT2+, when the line joining (v2, p(v2, 1)) with (v+, p(v+, λ+)) becomes
tangent to the curve p(v, 1) at (v2, p(v2, 1)). The situation is entirely analogous to
case 5.1.3. Therefore the upper limit of u+ − u− for this case is

u∗ = G(vT+) .(5.11)

5.2.3. λ− = 0, λ+ ∈ (0, 1), u∗ ≤ u+ − u− < +∞. This case is the
continuation of the previous one; the solution has again a transition

liquid → vapor → mixture.

The patterns of the solutions are analogous to case 5.1.3. Let vT2− be the abscissa of
the tangency point of the line joining (v1, p(v1, 0)) and (v2, p(v2, 1)) with the curve
p(v, 1). When v2 ∈ [vT+, v

T
2−] we need to introduce in the solution a 2-rarefaction wave

ending with the right-moving evaporation shock; this happens for u∗ ≤ u+−u− ≤ u∗∗,
for some u∗∗. When finally v2 ∈ [vT2−,+∞) (that is, u+ − u− ≥ u∗∗), we add also a
1-rarefaction wave beginning with the left-moving evaporation shock. Details are left
to the reader.
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5.2.4. λ− = 1, λ+ ∈ (0, 1), −∞ < u+ − u− ≤ u�. The threshold u� is
defined by

u� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ vM

v−

√
−pv(v, 1) dv if v− ≤ vM ,√

−p(vM , 1) − p(v−, 1)

vM − v−
(vM − v−) if v− ≥ vM .

(5.12)

In this case we have a transition

vapor → liquid → mixture.

The solution consists of a left-moving Lax wave from v− to v1, a left-moving
liquefaction wave (uniquely determined by the kinetic condition (i)) from v1 to v2,
and a right-moving liquefaction wave from v2 to v+; see Figure 6(c). This requires
v1 ≤ vM ; otherwise the left-moving liquefaction wave is not admissible. If v1 = vM
(i.e., u+ −u− = u�), the two liquefaction waves are replaced by a single isobaric wave
from vM to v+. Therefore⎧⎪⎪⎨

⎪⎪⎩
χ(−∞,v−)(v1) · s1(v1 − v−) + χ[v−,+∞)(v1) ·

∫ v1

v−

√
−pv(v, 1) dv = u1 − u−,

−s(v2 − v1) = u2 − u1,
−s2(v+ − v2) = u+ − u2.

We proceed as in case 5.2.2, the only differences being that 0 and 1 are interchanged
for the Lax curves and we have liquefaction instead of evaporation waves. In order
to prove estimates analogous to (5.7) we use v2 and s as independent variables, set
v1 = v1(v2, s), s1 = s(v1(v2, s)), s2 = s2(v2) and define

F (v2, s) = χ(−∞,v−)(v1)s1(v1 − v−) + χ[v−,+∞)(v1)

∫ v1

v−

√
−pv(v, 1) dv

−s(v2 − v1) − s2(v+ − v2).

Now, however, v2 − v1 < 0 and

∂v1

∂v2
(v2, s) =

pv(v2, 0) + s2

pv(v1, 1) + s2
> 0,

∂v1

∂s
(v2, s) =

2s(v2 − v1)

pv(v1, 1) + s2
< 0.

Then

∂F

∂v2
(v2, s) > 0,

∂F

∂s
(v2, s) < 0

hold and since s = s(v2) we have d/dv2[F (v2, s(v2))] > 0. Notice that if v2 = vm,
then v1 = vM . The function F satisfies infv2≤vm

F (v2, s(v2)) = −∞ and reaches
its maximum at point vm. If v− ≤ vM , the maximum is reached when the 1-wave
is a shock; if v− ≥ vM , it is reached when it is a 1-rarefaction wave. Therefore
maxv2≤vM

F (v2) = u�, where u� is defined in (5.12).

5.2.5. λ− = 1, λ+ ∈ (0, 1), u� < u+ − u− ≤ u�. Here u� is defined by

u� =

∫ vT
+

v−

√
−pv(v, 1) dv −

√
−pv(vT+, 1)(v+ − vT+)
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for vT+ defined in (5.1). In this case the solution has a transition

vapor → mixture.

The solution consists of a 1-Lax wave from v− to v1 followed by a right-moving
evaporation shock from v1 to v+; see Figure 6(d). This construction holds under the
following two conditions on v1. First, the line joining (v1, p(v1, 1)) and (v+, p(v+, λ+))
cannot go beyond the tangent to the curve p(v, 1) at point (v1, p(v1, 1)), i.e., v1 < vT+;
this position can be reached only if the 1-wave is a rarefaction wave. Second, v1 > vM ;
this may happen either if the 1-wave is a shock or a 1-rarefaction wave.

The proof is analogous to case 5.2.1, using the function

F (v1) = −χ(−∞,v−)(v1) · s1(v1 − v−) + χ[v−,+∞)(v1) ·
∫ v1

v−

√
−pv(v, 1)dv

−s(v+ − v1).

The function F is increasing and F (vM ) = u�, F (vT+) = u�. This case is therefore
proved.

5.2.6. λ− = 1, λ+ ∈ (0, 1), u� ≤ u+ − u− < +∞. Again the solution has
a transition

vapor → mixture.

With respect to the previous case, the solution refers to v1 > vT+. It consists of
a 1-rarefaction wave from v− to v1; a 2-rarefaction wave from v1 to vT+; and a
right-moving evaporation shock from vT+ to v+. The proof of this case is similar
to the proof of case 5.1.3(iii), the only difference being that the 1-rarefaction starts
from a generic point v− and not just from vT−. The proof is omitted.

5.3. Data in two pure different phases. In this section we consider the case
of initial data (v−, u−, λ−), (v+, u+, λ+) in two different pure phases, that is, either
λ− = 0 and λ+ = 1 or λ− = 1 and λ+ = 0. For simplicity we treat only the first case;
the second case is dealt analogously.

5.3.1. λ− = 0, λ+ = 1, −∞ < u+ − u− ≤ u�. Here u� is defined in (5.13).
The solution consists of a 1-Lax wave from v− to v1, a right-moving liquefaction wave
from v1 to v2, and a 2-Lax wave from v2 to v+; see Figure 7(a). The liquefaction wave
is replaced by an isobaric wave in the case u+ − u− = u�. This means that⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−χ(−∞,v−)(v1) · s1(v1 − v−) + χ[v−,+∞)(v1) ·
∫ v1

v−

√
−pv(v, 0) dv = u1 − u−,

−s(v2 − v1) = u2 − u1,

−χ(−∞,v+)(v2) · s2(v+ − v2) − χ[v+,+∞)(v2) ·
∫ v+

v2

√
−pv(v, 1) dv = u+ − u2.

Arguing as we did in case 5.2.2 we take for the moment, however, v1 and s as inde-
pendent variables, so that v2 = v2(v1, s), s1 = s1(v1), s2 = s2(v2(v1, s)). Denote

F (v1, s) = −χ(−∞,v−)(v1) · s1(v1 − v−) + χ[v−,+∞)(v1) ·
∫ v1

v−

√
−pv(v, 0) dv,

−s(v2 − v1) − χ(−∞,v+)(v2) · s2(v+ − v2) − χ[v+,+∞)(v2) ·
∫ v+

v2

√
−pv(v, 1) dv.
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Fig. 7. Two pure different phases data. (a) −∞ < u+ − u− < u�; (b) u� < u+ − u− ≤
u�. In case (a) the phase boundary is a right-moving evaporation wave, in case (b) a left-moving
liquefaction wave.

Then

∂F

∂v1
(v1, s) = χ(−∞,v−)(v1)

(
−∂s1

∂v1
(v1 − v−) − s1

)
+ χ[v−,+∞)(v1)

√
−pv(v1, 0)

−s ·
(
∂v2

∂v1
− 1

)

+χ(−∞,v+)(v2)

(
−∂s2

∂v1
(v+ − v2) + s2

∂v2

∂v1

)
+ χ[v+,+∞)(v2)

√
−pv(v2, 1)

∂v2

∂v1
.

We remark now that because of the kinetic condition (i)

∂v2

∂v1
=

pv(v1, 0) + s2

pv(v2, 0) + s2
> 0,

∂s1

∂v1
> 0,

∂s2

∂v1
=

∂s2

∂v2

∂v2

∂v1
< 0.

We need only to control the term −s · ∂v2/∂v1. But if v2 < v+, then s < s2, while if
v2 ≥ v+, then s <

√
−pv(v2, 1). All that proves that

∂F

∂v1
(v1, s) > 0 .

Next compute

∂F

∂s
(v1, s) = −(v2 − v1) − s · ∂v2

∂s
− χ(−∞,v+)(v2) ·

(
∂s2

∂v2

∂v2

∂s
(v+ − v2) − s2 ·

∂v2

∂s

)

+χ[v+,+∞)(v2) ·
√
−pv(v2, 1)

∂v2

∂s
.

Moreover

∂v2

∂s
= − 2s(v2 − v1)

pv(v2, 1) + s2
> 0.
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If v2 < v+, then

∂F

∂s
(v1, s) =

(v2 − v1)

s2 (pv(v2, 1) + s2)
(s2 − s) (s2s− pv(v2, 1)) < 0,

while if v2 ≥ v+, then

∂F

∂s
(v1, s) = (v2 − v1)

s−
√
−pv(v2, 1)

s +
√
−pv(v2, 1)

< 0.

Recalling the kinetic condition (i) for s = s(v1), we have d/dv1 [F (v1, s(v1))] > 0. So
F (v1, s(v1)) is an increasing function and in the current case has

u� = F (vm, 0)(5.13)

as maximum. This value can be explicitly computed from above, as in the previous
cases, and depends on the four possible configurations of (v−, v+): v− < vm, v− > vm
or v+ < vM , v+ > vM . This concludes the case.

5.3.2. λ− = 0, λ+ = 1, u� < u+ − u− ≤ u�. This case is analogous to the
previous one, but now a left-moving evaporation wave replaces the liquefaction wave.
More precisely the solution consists of a 1-Lax wave, the evaporation shock, and a
2-Lax wave. Now v1 > vm (and then v2 > vM ); see Figure 7(b). This pattern is,
however, possible for v2 ∈ [vM , vT+]; the state vT+ was defined in (5.1).

We define the function

F (v2, s) = −χ(−∞,v−)(v1) · s1(v1 − v−) + χ[v−,+∞)(v1) ·
∫ v1

v−

√
−pv(v, 0) dv

−s(v2 − v1) − χ(−∞,v+)(v2) · s2(v+ − v2) − χ[v+,+∞)(v2) ·
∫ v+

v2

√
−pv(v, 1) dv,

where the independent variables are now v2 and s. Then v1 = v1(v2, s), s1 =
s1(v1(v2, s)), s2 = s2(v2). The function F (v2, s(v2)) is easily proved to be increasing.
The critical speed u� is then defined as

u� = F
(
vT+, s(v

T
+)

)
.

Call (v∗, p(v∗, 0)) the intersection of the tangent line to the curve p(v, 1) at point
(vT+, p(v

T
+, 1)) with the curve p(v, 0).

5.3.3. λ− = 0, λ+ = 1, u� ≤ u+ − u− < +∞. Now v2 ∈ [vT+,+∞) and the
solution consists of a 1-Lax wave from v− to v∗, an evaporation wave from v∗ to vT+, a
1-rarefaction wave from vT+ to v2 (attached to the evaporation wave on the left), and
a 2-rarefaction wave from v2 to v+.

The proof of this case is lengthy and is a combination of the cases 5.3.2 and
5.1.3(iii). The details are left to the reader.

5.4. Data in two same pure phases. In this case data (v−, u−, λ−) and
(v+, u+, λ+) satisfy either λ− = λ+ = 0 or λ− = λ+ = 1. We solve the Riemann
problem simply using two Lax waves, without phase changes; see [14].
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5.5. Comments on the Riemann solver. The Riemann solver defined in the
previous sections has many interesting features that we emphasize now.

First, many nonclassical waves arise [2, 3, 12]—for instance, rarefaction waves
attached to phase boundaries as in case 5.1.3 (Figures 5(c)–(d)). Also, the case of
two phase boundaries with two attached rarefaction waves is present.

Second, the structure of the solution may change abruptly under small changes
of the Riemann data. Consider, for instance, case 5.1.2 (Figure 5(b)) and the two
near cases 5.1.1 and 5.1.3 (Figures 5(a), (c)). If u+ − u− = 0, then the solution is
an isobaric wave from v− to v+. However, if u+ − u− is small but nonvanishing,
then the solution suffers two phase transitions. In this case the solution has a total
variation of order |v−− vm|+ |v+ − vm| (or |v−− vM |+ |v+ − vM |) that may be much
larger than |v+ − v−|. The reason for this abrupt change of structure is that when
u+ − u− go across 0, the phase transition in the solution changes from condensation
to evaporization.

A Riemann solver is said to be consistent [4] if the following holds. Take any
three state U−, U0, U+, and solve the Riemann problems of initial data (U−, U0) and
(U0, U+); if it is possible to paste horizontally the two solutions (there are no interac-
tions of waves), then the result of the pasting is the solution for the Riemann problem
of data (U−, U+). Our solutions are easily proved to be consistent if, under the pre-
vious notations, λ− = λ0 = λ+. In general, however, they are not consistent: For
instance, take λ− = 1, λ0 = 0, λ+ = 1. Fix U−, connect it to U0 with a left-moving
liquefaction wave, and then connect U0 to some U+ with a right-moving liquefaction
wave. The pasting gives a solution to the Riemann problem of data (U−, U+) with two
phase boundaries, while our Riemann solver prescribes the Lax solution. This gives
two solutions for the same Riemann problem. Intuitively, both solutions are good, but
they are good at different times. At first, there are no liquid drops in the initial data,
and it takes time for such liquid drops to form through nucleation process. Without
seeds for condensation, i.e., liquid drops, the vapor will stay as vapor, and hence the
good solution at the early stage is the one without phase changes. After some time,
a liquid drop appears in the vapor due to nucleation. Then condensation will occur
around the drop, and we will see the second solution with two phase boundaries. Since
we are interested in Riemann solvers in the early stages, we picked the one without
phase changes as our Riemann solver.

6. Collapsing and explosion waves in the Riemann problem. In section 5
we uniquely solved the Riemann problem by using the waves introduced in section 4.
We emphasized, however, in section 2 that other kinds of waves can be considered,
namely collapsing and explosion waves. Here we introduce first a selection criterion
in order to consider collapsing and explosion waves for system (1.8). Second, we show
how collapsing and explosion waves can be used to construct a Riemann solver different
from the one defined above. How to deal with the loss of uniqueness introduced by
these new waves is left for future investigations. Here we limit ourselves to consider
some examples.

The following selection criteria for collapsing and explosion waves are analogous
to (i), (ii) in section 4. For simplicity we state the criteria only for waves with positive
speed.

(iii) There exists a critical threshold pco such that for each metastable state
(v+, λ+) with λ+ = 0 and |p(v+, λ+) − pe| ≥ pco there is only one mix-
ture state (v−, λ−), 0 < λ < 1, that can be connected to (v+, λ+) with a
collapsing wave.
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Fig. 8. Collapsing and explosion waves in the solution of the Riemann problem.

(iv) There is a critical threshold pex such that for each metastable state (v+, λ+)
with λ+ = 1 and |p(v+, λ+) − pe| ≥ pex there is only one mixture state
(v−, λ−), 0 < λ < 1, that can be connected to (v+, λ+) with an explosion
wave.1

We consider now some cases that can be solved collapsing or explosion waves.
Example 6.1. This example concerns the case of data (v−, u−, λ−), (v+, u+, λ+)

one in a pure phase and one in a mixture. More precisely we assume

λ− = 0, λ+ ∈ (0, 1), pe − p(v−, 0) ≥ pex, u◦ ≤ u+ − u− ≤ u◦

for u◦, u
◦ defined below. This case overlaps with case 5.2.1. The solution has a

transition

liquid → mixture → liquid → mixture.(6.1)

It consists of a left-moving explosion wave from v− to v0, then a left-moving liquefac-
tion wave from v0 to v1, and finally a right-moving liquefaction wave from v1 to v+;
see Figure 8(a). When u+ − u− = u◦ the liquefaction waves are replaced by a single

1Our numerical tests on (1.7) indicate that at |p(v−, 1) − pe| = pco, the speed of the collapsing
wave is sonic.
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isobaric wave. Because of condition (iv) we have v0 = v0(v−); let λ0 = λ0(v−) be the
related mass density fraction and s0 = s0(v−) be the speed of the collapsing wave.
Therefore ⎧⎨

⎩
−s0(v0 − v−) = u0 − u−,
−s1(v1 − v0) = u1 − u0,
−s2(v+ − v1) = u+ − u1.

If we define F (v1) = −s0(v0−v−)−s1(v1−v0)−s2(v+−v1), then dF/dv1 > 0 (the
first summand is constant; for the sum of the other two see case 5.1.1). Now notice that
this construction holds until the lines joining (v−, p(v−, 0)) with (v0, p(v0, λ0)) and
(v0, p(v0, λ0)) with (v1, p(v1, 0)) are parallel, that is, until the liquefaction overtakes
the explosion wave, so s0 = s1. Let us define vT0 as the intersection point of the curve
p = p(v, 0) and the line joining (v−, p(v−, 0)) with (v0, p(v0, λ0)):√

−p(v0, λ0) − p(v−, 0)

v0 − v−
=

√
−
p(vT−, 0) − p(v0, λ0)

vT0 − v0
.

From that point on the order of the liquefaction and explosion waves is no more
respected. It suffices then to define

u◦ = F (vT0 ), u◦ = F (vm).

Remark that when u+ −u− = u
 the solution with the explosion and the liquefaction
shock traveling with equal speed matches with the solution having a single 1-Lax
shock, traveling with the same speed. We stress, however, the different behavior of
this solution and the one provided by the previous Riemann solver when v1 is close
to vT0 .

The solution given in Example 6.1 has three phase boundaries. On the other
hand, for the same initial data, Figure 6(a) gives a solution of the form

liquid → liquid with higher pressure → mixture(6.2)

with only one phase boundary. One point of Example 6.1 is that a physically relevant
solution need not be the one with least number of phase boundaries. For example,
when the liquid side of the initial data of Example 6.1 is at or beyond the spinodal
limit, the liquid will very quickly evaporate into vapor or liquid/vapor mixture when
in contact with the vapor drops of the other side of the initial data. This process is
much faster than the sound speed as indicated by the explosion wave. In contrast, the
liquid-to-liquid Lax shock in (6.2) is about the sound speed. When solution (6.1) and
(6.2) compete, the process that proceeds faster will occur, eliminating the base for the
slower process to occur, leading to (6.1). Thus, we choose solution (6.1), which has
three phase boundaries, rather than the solution (6.2) with only one phase boundary.

Example 6.2. This example concerns again the case of data one in a pure phase
and one in a mixture. We assume, however,

λ− = 1, λ+ ∈ (0, 1), p(v+, 1) − pe ≥ pco, ũ ≤ u+ − u− < +∞

for ũ defined below. This case overlaps with cases 5.2.4 and 5.2.5.
By using a collapsing wave we define now a solution which has transitions

vapor → mixture → vapor → mixture.
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The solution consists of a left-moving collapsing wave from v− to v0, a left-moving
evaporation shock from v0 to v1, and a right-moving evaporation shock from v1 to
v+; see Figure 8(b). If u+ − u− = ũ, then the two evaporation waves are replaced by
a single isobaric wave from v1 to v+. Then⎧⎨

⎩
−s0(v0 − v−) = u0 − u−,
−s1(v1 − v0) = u1 − u0,
−s2(v+ − v1) = u+ − u1.

The function F (v1) = −s0(v0 − v−)− s1(v1 − v0)− s2(v+ − v1) is easily proved to be
increasing and reaches its minimum for v1 = vM ; in that case s1 = s2 = 0 and

F (vM ) = ũ = −s0(v−) · (v0(v−) − v−) .

This pattern changes when the line joining (v0, p(v0, λ0)) and (v1, p(v1, 1)) becomes
tangent to the curve p(v, 1) at point (v1, p(v1, 1)), that is, for v1 = vT0 . From that
point on the pattern is as follows: a left-moving collapsing wave from v− to v0, a
left-moving evaporation shock from v0 to vT0 , a 1-rarefaction wave from vT0 to v1, and
a right-moving evaporation shock from v1 to v+. The pattern changes once more
when v1 = vT+ (defined in (5.1)). From that point on the pattern is as follows: a
left-moving collapsing wave from v− to v0, a left-moving evaporation shock from v0

to vT0 , a 1-rarefaction wave from vT0 to v1, a 2-rarefaction wave from v1 to vT+, and a
right-moving evaporation shock from vT+ to v+.

The proof of these three last cases is analogous to that of case 5.1.3. The details
are left to the reader.

Example 6.3. The following example refers to the case of two states both in a
same pure phase; see subsection 5.4. We assume

λ− = λ+ = 0, pe − p(v−, 0) ≥ pex, u
 ≤ u+ − u− ≤ u


for u
 and u
 defined below. The solution involves a transition

liquid → mixture → liquid.

It consists of a left-moving explosion wave connecting v− to v0, a left-moving lique-
faction wave from v0 to v1, and a 2-Lax wave from v1 to v+; see Figure 8(c). The
liquefaction wave becomes an isobaric wave if u+ − u− = u
. Therefore⎧⎪⎪⎨

⎪⎪⎩
−s0(v0 − v−) = u0 − u−,
−s(v1 − v0) = u1 − u0,

−χ(−∞,v+)(v1) · s2(v+ − v1) − χ[v+,+∞)(v1)

∫ v+

v1

√
−pv(v, 0)dv = u+ − u1.

Define then

F (v1) = −s0(v0 − v−) − s(v1 − v0)

−χ(−∞,v+)(v1) · s2(v+ − v1) − χ[v+,+∞)(v1)

∫ v+

v1

√
−pv(v, 0)dv.

We have that ds/dv1 > 0, ds2/dv1 < 0 and so dF/dv1 > 0. As in Example 6.1,
this construction fails when the liquefaction overtakes the explosion shock, i.e., when
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the lines joining, respectively, (v−, p(v−, 0)) with (v0, p(v0, 0)) and (v0, p(v0, 0)) with
(v1, p(v1, 0)) become parallel, that is, s0 = s. Define vT0 < vm by

√
−p(v0(v−), λ0(v−)) − p(v−, 0)

v0(v−) − v−
=

√
−p(vT0 , 0) − p(v0(v−), λ0(v−))

vT0 − v0(v−)
.

We then define

u
 = F (vT0 ), u
 = F (vm).

For u+ − u− ≤ u
 the construction of solutions to the Riemann problem can be
continued proceeding as in subsection 5.4.

Example 6.4. Consider again the case of two pure states, same phase. Assume
λ− = λ+ = 1, p(v−, 1) − pe ≥ pco; for simplicity we omit the bounds for u+ − u−.
The solution has a transition

vapor → mixture → vapor.

It connects v− to v0 with a left-moving collapsing wave, v0 to v1 with a left-moving
evaporation wave, and, finally, v1 to v+ with a 2-Lax wave. This construction, how-
ever, can be done until the line joining (v0, p(v0, 1)) and (v1, p(v1, 1)) becomes tangent
to the graph of the function p(v, 1). From that point on a construction similar to the
one of Example 6.2 can be done. We omit the details.
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SPATIAL DECAY BOUNDS IN TIME DEPENDENT PIPE FLOW OF
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Abstract. In this paper, the authors investigate the flow of an incompressible viscous fluid in
a semi-infinite cylindrical pipe. If the net entrance flow is nonzero, then the fluid velocity will not
tend to zero as the distance from the entrance end tends to infinity when the fluid adheres at the
cylinder wall and the fluid is initially at rest. Assuming that the entrance velocity data are small
enough and that the fluid flow converges to a laminar flow as the distance down the pipe tends to
infinity, it is shown that the convergence in energy measure is at least exponential.

Key words. viscous pipe flow, decay bounds, Saint-Venant’s principle, Navier–Stokes equation
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1. Introduction. A number of papers in the literature have dealt with the tran-
sient flow of an incompressible viscous fluid in a semi-infinite pipe or channel. If the
net flow into the finite end of the pipe or channel at any time is not zero, then the flow
velocity cannot go to zero as the distance from the finite end tends to infinity. If the
flow is governed by the linear Stokes equations, then the case in which the net entry
flow is zero has been considered in R2 by Lin [14] and in R3 by Ames, Payne, and
Schaefer [2]. The case of nonzero channel entry flow has been investigated by Song
[22]. When the flow is governed by the Navier–Stokes equation, the general entry flow
problem in R2 has been treated by Lin and Payne [15]. In this paper, we study the
analogous problem in R3.

It is well known that unless there is some restriction on data, coefficients, and
geometry, a global solution may not exist. Also if the net entry flow in the pipe is
nonzero, we expect the velocity profile to converge to that of transient laminar flow
as the distance from the finite end of the cylinder tends to infinity. The object of
this paper is to derive explicit conditions on the data, coefficients, and geometry that
will imply exponential decay of the transient flow to transient laminar flow in some
appropriate weighted measure. We should point out, however, that there are various
ways of handling boundary terms that appear in the computations as well as various
ways of combining the inequalities. We have not attempted to derive optimal results,
since that would excessively lengthen the already involved computations.

For related work on steady solutions of the Navier–Stokes equations for flows in
channels and pipes, see, for instance, [1, 2, 3, 4, 7, 12]. These pipe and channel flow
results may be regarded as Saint-Venant type decay results. In fact, the first paper
to point out this connection was that of Horgan and Wheeler [12]. For other results
of Saint-Venant type, see [8, 9, 10]. Of interest also are the papers [16, 17].
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In section 2 we give a formulation of the problem. In section 3 we present some
auxiliary inequalities used throughout the paper. In section 4 we derive the energy de-
cay bounds in terms of total weighted energies and properties of the limiting solution.
The laminar flow bounds are obtained in section 5 and the required total energies are
obtained in section 6.

2. Formulation of the problem. In this section we introduce the boundary
value problem that provides the basis for our investigation of the pipe flow of an
incompressible viscous fluid.

Let R denote the interior of a semi-infinite three-dimensional cylindrical pipe and
let ∂R denote its boundary. The uniform cross section is denoted by D. We assume
the generators of the cylinder are parallel to the x3 axis and that the entry section of
the cylinder lies in the plane x3 = 0. The symbol Rz designates the subdomain of R
for which x3 > z ≥ 0, i.e.,

Rz = {(x1, x2, x3) | (x1, x2) ∈ D,x3 ≥ z ≥ 0}.

Clearly R ≡ R0. Furthermore, we denote the cross section D with x3 = z by the
symbol Dz, i.e.,

Dz = {(x1, x2, x2) | (x1, x2) ∈ D,x3 = z}.

The velocity field ui(x1, x2, x3, t), (i = 1, 2, 3) and the pressure p(x1, x2, x3, t) for
the transient Navier–Stokes flow of an incompressible viscous fluid in the pipe are
assumed to be classical solutions of the following initial-boundary value problem:

ui,t − ν∆ui + ujui,j = p,i in R× {t > 0},(2.1)

ui,i = 0 in R× {t > 0}(2.2)

with

ui = 0 on ∂D × {t ≥ 0},(2.3)

ui = fi(x1, x2, t) on D0 × {t > 0},(2.4)

ui = 0 in R× {t = 0},(2.5)

where ∆ denotes the Laplace operator and ν is the constant kinematic viscosity.
We have used the comma to denote partial differentiation and have adopted the
summation convention of summing over a repeated Latin subscript from 1 to 3 and
over a repeated Greek index (unless otherwise specified) from 1 to 2. By rescaling
the space and time variables, we may take the constant ν to be 1. In general we shall
assume that time lies in some finite interval [0, T ].

It is well known that a global bounded solution for t ∈ [0, T ] may not exist.
However, if the data fi are sufficiently small in L2, a bounded solution will exist. In
fact, if the mean value of f3 over D is zero, we expect the solution in some appropriate
measure to vanish exponentially. However, if f3 does not have mean value zero,
we expect that for sufficiently small data, the velocity field (u1, u2, u3) will tend
exponentially to (0, 0, V ) as x3 → ∞, where V (x1, x2, t) satisfies

V,t −V,αα = P (t) in D × {t > 0},(2.6)

V = 0 on ∂D × {t > 0},(2.7)

V = 0 in D × {t = 0}.(2.8)
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The function P (t) is not prescribed but is determined by the condition

∫
D

V (x1, x2, t)dA =

∫
D

f3(x1, x2, t)dA = Q(t).(2.9)

The problem (2.6)–(2.8) may be viewed as an inverse problem for determining P (t)
and V .

We now set

wi = ui − vi, q,i = p,i − P (t)δi3,(2.10)

where

(v1, v2, v3) = (0, 0, V ).

Then (wi, q) will satisfy the following initial-boundary value problem:

wi,t − ∆wi + (wj + vj)(wi,j + vi,j) = q,i in R× {t > 0},(2.11)

wi,i = 0 in R× {t > 0},(2.12)

wi = 0 on ∂D × {t ≥ 0},(2.13)

wi = fi − V δi3 in D0 × {t ≥ 0},(2.14)

wi = 0 in R× {t = 0}.(2.15)

We suppose further that for any finite positive constant K, the energy expression

E(0, t) =

∫ t

0

∫
R0

x2
3wi,jwi,jdxdη + K

∫ t

0

∫
R0

x2
3wi,ηwi,ηdxdη(2.16)

is bounded. Here η is a running time variable, and there is no summation over η.

We note that ∫
Dz

w3dA =

∫
D0

w3dA +

∫ z

0

∫
Dξ

wi,idAdξ = 0.(2.17)

3. Auxiliary results. We list in this section a number of standard inequalities
used throughout this paper.

Let w be a Dirichlet integrable function defined on a bounded plane domain D
and vanishing on the boundary ∂D; then

∫
D

w,αw,αdA ≥ λ1

∫
D

w2dA,(3.1)

where λ1 is the smallest eigenvalue of the problem

∆ϕ + λϕ = 0 in D,

ϕ = 0 on ∂D.

Lower bounds for λ1 are well known; see, e.g., [6, 18, 19].
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We also make use of the following representation theorem attributed to Babuška
and Aziz [5].

Theorem A. Let D be a plane Lipschitz domain and let w be a differentiable
function in D which satisfies

∫
D
wdA = 0. Then there exists a vector function ϕα

such that

ϕα,α = w in D,

ϕα = 0 on ∂D,

and a positive constant C depending only on the geometry of D such that∫
D

ϕα,βϕα,βdA ≤ C

∫
D

ϕ2
α,αdA.(3.2)

This theorem was first applied to viscous flow problems by Horgan and Wheeler
[12]. In fact, an explicit upper bound for the optimal value of C was found by Horgan
and Payne [11] if D is star-shaped. The analogue of Theorem A also holds in R3 (see
[23]). This inequality will allow us to eliminate the pressure function difference term
q, since w3 satisfies the hypothesis of this theorem.

In addition to inequalities (3.1), (3.2), we also make use of the following Sobolev
inequalities which hold for w ∈ C1

0 (D) and w ∈ C1
0 (R), respectively:∫

D

w4dA ≤ 1

2

[∫
D

w2dA

] [∫
D

w,αw,αdA

]
,(3.3)

∫
Rz

w6dx ≤ Ω

[∫
Rz

w,iw,idx

]3

.(3.4)

For (3.4), we assume that w vanishes appropriately as x3 → ∞. A derivation of (3.3)
is given by Serrin [20] and Payne [17], while (3.4) follows as a special case of results
of [13, 21], where the optimal value of Ω was determined to be

Ω =
1

27

(
3

4

)4

.

In what follows, we also make frequent use of the fact that if w ∈ C1(Rz) and wi

vanishes on ∂D for x3 ≥ z, then, if wi vanishes as x3 → ∞,∫
Dz

(wiwi)
2dA = −4

∫
Rz

wiwi,3wjwjdx

≤ 4

[∫
Rz

wi,3wi,3dx

]1/2 [∫
Rz

(wjwj)
3dx

]1/2

≤ 4
√

Ω

[∫
Rz

wi,jwi,jdx

]2

.(3.5)

4. Energy decay bounds. In this section we derive the main exponential decay
result for problems (2.1)–(2.15).

First, for arbitrary z > 0 and t > 0, we define a weighted energy integral

E(z, t) =

∫ t

0

∫
Rz

(ξ − z)2wi,jwi,jdxdη + K

∫ t

0

∫
Rz

(ξ − z)2wi,ηwi,ηdxdη

= E1(z, t) + KE2(z, t).(4.1)
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We also define

E3(z, t) =

∫ t

0

∫
Rz

(ξ − z)2wi,jηwi,jηdxdη,(4.2)

where there is no summation on the η subscript and K is a positive parameter. Note
that (2.16) has been assumed, but now we further require that E3(0, t) be bounded.
Clearly then

∂E

∂z
= −2

∫ t

0

∫
Rz

(ξ − z)wi,jwi,jdxdη − 2K

∫ t

0

∫
Rz

(ξ − z)wi,ηwi,ηdxdη,

∂2E

∂z2
= 2

∫ t

0

∫
Rz

wi,jwi,jdxdη + 2K

∫ t

0

∫
Rz

wi,ηwi,ηdxdη.

Upon integrating by parts in (4.1) and using equations (2.11) and (2.12), we obtain

E(z, t) +
1

2

∫
Rz

(ξ − z)2wiwidx
∣∣
η=t

+
K

2

∫
Rz

(ξ − z)2wi,jwi,jdx
∣∣
η=t

= −2

∫ t

0

∫
Rz

(ξ − z)wiwi,3dxdη −
∫ t

0

∫
Rz

(ξ − z)2wi[wjwi,j + vjwi,j + wjvi,j ]dxdη

− 2

∫ t

0

∫
Rz

(ξ − z)w3qdxdη − 2K

∫ t

0

∫
Rz

(ξ − z)wi,ηwi,3dxdη

− 2K

∫ t

0

∫
Rz

(ξ − z)w3,ηqdxdη

−K

∫ t

0

∫
Rz

(ξ − z)2wi,η[wjwi,j + vjwi,j + wjvi,j ]dxdη

=
6∑

i=1

Ii.

(4.3)

We now proceed to bound each integral Ii. Using Schwarz’s inequality and (3.1), we
obtain

I1 ≤ 2

(∫ t

0

∫
Rz

(ξ − z)wiwidxdη

)1/2 (∫ t

0

∫
Rz

(ξ − z)wi,3wi,3dxdη

)1/2

≤ λ
−1/2
1

(
−∂E

∂z

)
.(4.4)

We next look at

I2 =

∫ t

0

∫
Rz

(ξ − z)wiwiw3dxdη −
∫ t

0

∫
Rz

(ξ − z)2wiwi,3V dxdη

−
∫ t

0

∫
Rz

(ξ − z)2w3wαV,αdxdη

= I21 + I22 + I23.(4.5)
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By using Schwarz’s inequality and (3.3), (3.5), we obtain

I21 ≤
∫ t

0

∫ ∞

z

(ξ − z)

(∫
Dξ

(wiwi)
2dA

)1/2 (∫
Dξ

w2
3dA

)1/2

dξdη

≤ 21/4Ω1/8

λ
3/4
1

∫ t

0

(∫
Rz

wi,jwi,jdx

)1/2 (∫
Rz

(ξ − z)2wi,jwi,jdx

)1/2

·
(∫

Rz

wi,jwi,jdx

)1/2

dη

≤ 21/4Ω1/8

λ
3/4
1

max
t

(∫
Rz

(ξ − z)2wi,jwi,jdx

)1/2 [
∂2E1

∂z2
(0, t)

]1/2 [
∂2E

∂z2

]1/2

≤ ε1

2
max

t

(∫
Rz

(ξ − z)2wi,jwi,jdx

)1/2

+
Ω1/4

21/2λ
3/2
1 ε1

[
∂2E1

∂z2
(0, t)

] [
∂2E

∂z2

]
(4.6)

for arbitrary positive constant ε1.
For I22, we have

I22 = −
∫ t

0

∫
Rz

(ξ − z)2wiwi,3V dxdη

=

∫ t

0

∫
Rz

(ξ − z)wiwiV dxdη

≤ 1

λ1
|V |max

[
−∂E

∂z

]
.(4.7)

Similarly, we have

I23 = −
∫ t

0

∫
Rz

(ξ − z)2w3wαV,αdxdη

=

∫ t

0

∫
Rz

(ξ − z)2w3,αwαV dxdη −
∫ t

0

∫
Rz

(ξ − z)2w3w3,3V dxdη

≤ 1

2
λ
−1/2
1 |V |maxE(z, t) +

1

λ1
|V |max

[
−∂E

∂z

]
.(4.8)

To seek a bound for I3, we note that, for any z > 0,∫
Dz

w3dA = 0.(4.9)

Accordingly by Theorem A, there exists a vector function (ϕ1, ϕ2) such that{
ϕα,α = w3 in Dz,

ϕα = 0 on ∂Dz,

and for ϕα inequality (3.2) holds. Introducing ϕα into I3, we obtain

I3 = −2

∫ t

0

∫
Rz

(ξ − z)ϕα,αqdxdη

= 2

∫ t

0

∫
Rz

(ξ − z)ϕα[wα,η + wjwα,j + vjwα,j − ∆wα]dxdη

= I31 + I32 + I33 + I34.(4.10)
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Obviously, by using Schwarz’s inequality and (3.2), we have

I31 ≤ 2√
K

(∫ t

0

∫
Rz

(ξ − z)ϕαϕαdxdη

)1/2 (
K

∫ t

0

∫
Rz

(ξ − z)wα,ηwα,ηdxdη

)1/2

≤ 1

λ1
(C/K)1/2

[
−∂E

∂z

]
.(4.11)

For I32, with a derivation similar to (4.6), we obtain

I32 ≤ 2

∫ t

0

∫ ∞

z

(ξ − z)

(∫
Dξ

(ϕαϕα)2dA

)1/4 (∫
Dξ

(wiwi)
2dA

)1/4

·
(∫

Dξ

wα,jwα,jdA

)1/2

dξdη

≤ 2(2C)1/2Ω1/8

21/4λ
1/2
1

∫ t

0

(∫
Rz

wi,jwi,jdx

)1/2 (∫
Rz

(ξ − z)2wi,jwi,jdx

)1/2

·
(∫

Rz

wi,jwi,jdx

)1/2

dη

≤ 2(2C)1/2Ω1/8

21/4
√
λ1

max
t

(∫
Rz

(ξ − z)2wi,jwi,jdx

)1/2 [
∂2E1

∂z2
(0, t)

]1/2 [
∂2E

∂z2

]1/2

≤ ε2

2
max

t

(∫
Rz

(ξ − z)2wi,jwi,jdx

)
+

23/2Ω1/4

λ1ε2

[
∂2E

∂z2
(0, t)

] [
∂2E

∂z2

]
.

(4.12)

Using (3.2), we find

I33 ≤ 2

∫ t

0

∫
Rz

(ξ − z)ϕαwα,3V dxdη

≤ 2|V |max

(∫ t

0

∫
Rz

(ξ − z)ϕαϕαdxdη

)1/2 (∫ t

0

∫
Rz

(ξ − z)wα,3wα,3dxdη

)

≤ C1/2

λ1
|V |max

[
−∂E

∂z

]
,(4.13)

and

I34 = −2

∫ t

0

∫
Rz

(ξ − z)ϕαwα,jjdxdη

= 2

∫ t

0

∫
Rz

ϕαwα,3dxdη + 2

∫ t

0

∫
Rz

(ξ − z)ϕα,jwα,jdxdη

≤ C1/2

λ1

[
∂2E

∂z2

]
+ (C/λ1)

1/2

[
−∂E

∂z

]
.(4.14)
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By using Schwarz’s inequality, we obtain

I4 = −2K

∫ t

0

∫
Rz

(ξ − z)wi,ηwi,3dxdη ≤ K1/2

[
−∂E

∂z

]
.(4.15)

For I5, since ∫
Dz

w3,tdA = 0,

by Theorem A, there exists a vector function (ψ1, ψ2) that satisfies the boundary
value problem

{
ψα,α = w3,t in Dz,

ψα = 0 on ∂Dz.

Introducing ψα, we can write

I5 = −2K

∫ t

0

∫
Rz

(ξ − z)ψα,αqdxdη

= 2K

∫ t

0

∫
Rz

(ξ − z)ψα[wα,η + wjwα,j + vjwα,j − ∆wα]dxdη

= I51 + I52 + I53 + I54.(4.16)

It is easy to see that

I51 ≤ 2K

(∫ t

0

∫
Rz

(ξ − z)ψαψαdxdη

)1/2 (∫ t

0

∫
Rz

(ξ − z)wα,ηwα,ηdxdη

)1/2

≤ (C/λ1)
1/2

[
−∂E

∂z

]
.(4.17)

In a manner similar to (4.6), (4.11), we find

I52 = 2K

∫ t

0

∫
Rz

(ξ − z)ψαwαwα,jdxdη

≤ 2K

∫ t

0

∫ +∞

z

(ξ − z)

(∫
Dξ

(ψαψα)2dA

)1/4 (∫
Dξ

(wαwα)2dA

)1/4

·
(∫

Dξ

wα,jwα,jdA

)1/2

dξdη

≤ 2(2CK)1/2Ω1/8

(2λ1)1/4
max

t

(∫
Rz

(ξ − z)2wi,jwi,jdx

)1/2 [
∂2E1

∂z2
(0, t)

]1/2 [
∂2E

∂z2

]1/2

≤ ε3

2
max

t

(∫
Rz

(ξ − z)2wi,jwi,jdx

)1/2

+
23/2CKΩ1/4

λ
1/2
1 ε3

[
∂2E1

∂z2
(0, t)

] [
∂2E

∂z2

]
.

(4.18)
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Similarly, we have

I53 = 2K

∫ t

0

∫
Rz

(ξ − z)ψαwα,3V dxdη

= (KC/λ1)
1/2|V |max

[
−∂E

∂z

]
,(4.19)

I54 = 2K

∫ t

0

∫
Rz

ψαwα,3dxdη + 2K

∫ t

0

∫
Rz

(ξ − z)ψα,jwα,jdxdη

≤ (KC/λ1)
1/2

[
∂2E

∂z2

]
+ (CK)1/2

[
−∂E

∂z

]
.(4.20)

Finally, we derive a bound for I6:

I6 = −K

∫ t

0

∫
Rz

(ξ − z)2wi,η[wjwi,j + vjwi,j + wjvi,j ]dxdη

= −K

∫ t

0

∫
Rz

(ξ − z)2wi,ηwjwi,jdxdη −K

∫ t

0

∫
Rz

(ξ − z)2wi,ηwi,3V dxdη

−K

∫ t

0

∫
Rz

(ξ − z)2w3,ηwαV,αdxdη

= I61 + I62 + I63.(4.21)

With a derivation similar to (4.11), we have

I61 ≤ K

∫ t

0

∫ ∞

z

(ξ − z)2

(∫
Dξ

(wiwi)
2dA

)1/4 (∫
Dξ

(w,iηwi,η)
2dA

)1/4

·
(∫

Dξ

wi,jwi,jdA

)1/2

dξdη

≤ (2/λ1)
1/4Ω1/8K

∫ t

0

(∫
Rz

w,ijηw,ijηdx

)1/2 (∫
Rz

(ξ − z)2wi,jwi,jdx

)
dη

≤ (2/λ1)
1/4Ω1/8K max

t

[∫
Rz

(ξ − z)2wi,jwi,jdx

]1/2 [
∂2E3(0, t)

∂z2

]1/2

[E(z, t)]1/2

≤ ε4

2
max

t

∫
Rz

(ξ − z)2wi,jwi,jdx +
Ω1/4

(2λ1)1/2
K

ε4

[
∂2E3(0, t)

∂z2

]
· E(z, t).

(4.22)

It is easy to bound I62, i.e.,

I62 ≤ K1/2

2
|V |maxE(z, t).(4.23)
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For I63, we observe that

I63 = K

∫ t

0

∫
Rz

(ξ − z)2w3,αηwαV dxdη −K

∫ t

0

∫
Rz

(ξ − z)2w3,ηw3,3V dxdη

= K

∫
Rz

(ξ − z)2w3,αwαV dx−K

∫ t

0

∫
Rz

(ξ − z)2w3,αwα,ηV dxdη

−K

∫ t

0

∫
Rz

(ξ − z)2w3,αwαV,ηdxdη −K

∫ t

0

∫
Rz

(ξ − z)2w3,ηw3,3V dxdη

≤ K|V |max

2λ
1/2
1

(∫
Rz

(ξ − z)2wi,jwi,jdx

)
+

1

2
(K/λ1)

1/2|V,t|maxE(z, t)

+ K1/2|V |maxE(z, t).(4.24)

We now sum up the results established in this section to obtain

E(z,t) +
1

2

∫
Rz

(ξ − z)2wiwidx +
K

2

(
1 − |V |max

λ
1/2
1

)∫
Rz

(ξ − z)2wi,jwi,jdx

≤ M1E(z, t) + M2

(
−∂E

∂z

)
+ M3

∂2E

∂z2

+
1

2
(ε1 + ε2 + ε3 + ε4) max

t

∫
Rz

(ξ − z)2wi,jwi,jdx,(4.25)

where

M1 =

(
1

λ1
+ K1/2

)
|V |max +

1

2
(K/λ1)

1/2|V,t|max

+

(
Ω1/2

2λ1

)1/2
K

ε4

[
∂2E3(0, t)

∂z2

]
,(4.26)

M2 =

[(
1

λ1

)1/2

+
2

λ1
|V |max +

C1/2

λ1
|V |max +

1

λ1
(C/K)1/2 + 2(C/λ1)

1/2

+ K1/2 + (KC)1/2

]
,(4.27)

and

M3 = Ω1/4

[
1

(2λ3
1)

1/2ε1
+

23/2C

λ1ε2
+

23/2CK

λ
1/2
1 ε3

] [
∂2E1

∂z2
(0, t)

]

+

(
CK

λ1

)1/2

+
C1/2

λ1
.(4.28)

Explicit bounds for |V |max and |V,t|max as well as bounds for the total energies

E(0, t), ∂2E1

∂z2 (0, z), and ∂2E3

∂z2 (0, z) in terms of data are derived in sections 5 and 6,
respectively.
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Suppose now that the quantity
∫

(ξ − z)2wi,jwi,jdx takes its maximum value at
t∗ ∈ [0, T ]. Then, evaluating (4.25) at t = t∗, we have

γ

∫
Rz

(ξ − z)2wi,jwi,jdx
∣∣
t=t∗

≤ (M1 − 1)E(z, t∗) + M2

(
− ∂

∂z
E(z, t∗)

)
+ M3

(
∂2

∂z2
E(z, t∗)

)
,(4.29)

where

γ =
1

2

[
K

(
1 − |V |max

λ
1/2
1

)
− (ε1 + ε2 + ε3 + ε4)

]
.(4.30)

At this point, we require that the data be small enough to satisfy

|V |max < λ
1/2
1 ,(4.31)

in which case the εi can be chosen small enough that γ > 0. We further restrict the
data by requiring that

M1 < 1,(4.32)

and since E(z, t) and its first and second derivatives are monotone functions of t, we
have

γ

∫
Rz

(ξ − z)2wi,jwi,jdx
∣∣
t=t∗

≤ M2

(
− ∂

∂z
E(z, t)

)
+ M3

(
∂2

∂z2
E(z, t)

)
.(4.33)

Inserting (4.33) back into (4.25), we conclude that

K

2δ

(
1 − |V |max

λ
1/2
1

)[
M3

∂2E

∂z2
+ M2

(
−∂E

∂z

)]
− (1 −M1)E ≥ 0.(4.34)

We rewrite this expression as

∂2E

∂z2
− a

∂E

∂z
− bE ≥ 0,(4.35)

where

a = M2/M3, b =
(1 −M1)

M3

[
K

2δ

(
1 − |V |max

λ
1/2
1

)]−1

.(4.36)

We further rewrite (4.35) as(
∂

∂z
− k1

)(
∂E

∂z
+ k2E

)
≥ 0,(4.37)

where

k1 =
a

2
+

1

2

√
a2 + 4b, k2 = −a

2
+

1

2

√
a2 + 4b.(4.38)

It is well known that (4.37) leads to the conclusion that

E(z, t) ≤ E(0, t)e−k2z.(4.39)

Inequalities (4.31) and (4.32) may be regarded as Reynold’s number type restrictions
for our problem.
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5. Bounds for laminar flow V . In this section we derive explicit bounds for
the laminar flow V and its time derivative in terms of the geometry of domain and
prescribed data.

We recall that the fully developed laminar flow V satisfies the initial-boundary
value problem (2.6)–(2.8), i.e.,

V,t − ∆V = P (t) in Dz × {t > 0},
V (x, 0) = 0 in Dz × {t = 0},
V (x, t) = 0 on ∂Dz × {t > 0},

where P (t) is an unknown function but is determined from the condition∫
D

V (x, t)dA =

∫
D

f3(x, t)dA = Q(t),(5.1)

and f3(x, t) is the f3 of (2.4).

From (5.1), we readily obtain

1

2

∂

∂t

∫
D

V 2dA +

∫
D

V,αV,αdA = P (t)Q(t),(5.2)

1

2

∫
D

V,αV,αdA +

∫ t

0

∫
D

(V,η)
2dAdη =

∫ t

0

P (η)Q,η(η)dη.(5.3)

Now let ψ be a solution of the problem{
∆ψ = −1 in D,

ψ = 0 on ∂D.
(5.4)

Then we have

Q(t) =

∫
D

V dA = −
∫
D

V ∆ψdA = −
∫
D

V,tψdA + SP (t),(5.5)

where

S =

∫
D

ψdA =

∫
D

ψ,αψ,αdA > 0.(5.6)

From (5.5) we obtain

P (t) =
1

S

[
Q(t) +

∫
D

ψV,tdA

]
.(5.7)

Inserting (5.7) into (5.3) leads to

1

2

∫
D

V,αV,αdA +

∫ t

0

∫
D

(V,η)
2dAdη =

1

S

∫ t

0

Q,η(η)

[
Q(η) +

∫
D

ψV,ηdA

]
dη

=
1

2S
[Q2(t) −Q2(0)] +

1

S

∫ t

0

Q,η

(∫
D

ψV,ηdA

)
dη.(5.8)
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But Q(0) = 0, since V (x, 0) = 0, so (5.8) further reduces to

1

2

∫
D

V,αV,αdA +

∫ t

0

∫
D

(V,η)
2dAdη

≤ 1

2S
Q2(t) +

1

S

[∫ t

0

∫
D

(V,η)
2dAdη

∫ t

0

(Q,η)
2dη

∫
D

ψ2dA

]1/2

.(5.9)

Using the arithmetic-geometric mean inequality in (5.9) yields, finally,

∫
D

V,αV,αdA +

∫ t

0

∫
D

(V,η)
2dAdη

≤ 1

S
Q2(t) +

1

S2

∫ t

0

(Q,η)
2dη

∫
D

ψ2dA =: M1.(5.10)

We remark that S is a monotone function of domain as is ψ, so that bounds for S
and for

∫
D
ψ2dA are easily obtained (see, e.g., [6]).

By a similar derivation, using (5.7) and (5.10) in (5.2) we obtain

1

2

∫
D

V 2dA +

∫ t

0

∫
D

V,αV,αdAdη =
1

S

∫ t

0

Q(η)

[
Q(η) +

∫
D

ψV,ηdA

]
dη

≤ 1

S

∫ t

0

Q2(η)dη +
1

S

[∫ t

0

∫
D

(V,η)
2dAdη

∫
D

ψ2dA

∫ t

0

Q2(η)dη

]1/2

≤ 1

S

∫ t

0

Q2(η)dη +
1

S

{[
1

S
Q2(t) +

1

S2

∫ t

0

Q2
,ηdη

∫
D

ψ2dA

]

·
∫
D

ψ2ds

∫ t

0

Q2(η)dη

}1/2

=: M2.(5.11)

From (5.11) it follows that ∫
D

V 2(x, t)dA ≤ 2M2.(5.12)

To derive a bound for |V |max, we observe that

V (x) = −
∫
D

G(V,t − P (t))dA

= −
∫
D

GV,tdA + P (t)

∫
D

GdA

= −
∫
D

GV,tdA + ψ(x)P (t),(5.13)

where G is the harmonic Green’s function for D. Using Schwarz’s inequality in (5.13),
we obtain

|V | ≤
(∫

D

G2dA

)1/2 (∫
D

V 2
,tdA

)1/2

+ |ψ|max|P (t)|.(5.14)
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As a limiting expression of results of Weinberger [24], we have∫
D

G2dA ≤ |D|
8π2

,(5.15)

where |D| is the area of domain D. Using (5.9), (5.7), and the monotonicity of ψ, we
obtain a bound for |V |max. The bound for |V,t|max may be found in an analogous way
by substituting V,t for V and P ′(t) for P (t) in the preceding arguments.

6. Bounds for the total weighted energies. In this section we sketch how
one can derive the total weighted energy bounds needed to complete our decay results.
Since we need it in subsequent arguments, we first show how to bound ∂2E(0, t)/∂z2.

Let ûi be the solution of the associated Stokes flow problem

ûi,t = ∆ûi + p̂,i in R× {t > 0},(6.1)

ûi,i = 0 in R× {t > 0},(6.2)

ûi = 0 on ∂D × {t ≥ 0},(6.3)

ûi = fi(x1, x2, t) in D0 × {t > 0},(6.4)

ûi = 0 in R× {t = 0}.(6.5)

Suppose now that we set

wi = (ui − ûi) + (ûi − vi) = χi + θi,

qi = (p,i − p̂i) + (p̂,i − P (t)δi3) = σ,i + γ,i.

Clearly (χi, σ) is the solution of the initial-boundary value problem

χi,t − ∆χi + ujui,j = σ,i in R× {t > 0},(6.6)

χi,i = 0 in R× {t > 0},(6.7)

χi = 0 on ∂D × {t ≥ 0},(6.8)

χi = 0 in D0 × {t > 0},(6.9)

χi = 0 in R× {t = 0}.(6.10)

Furthermore, by the triangle inequality we have

[E(0, t)]1/2 ≤ [Ê(0, t)]1/2 + [Ẽ(0, t)]1/2,(6.11)

where

Ê(0, t) =

∫ t

0

∫
R

ξ2[χi,jχi,j + Kχi,ηχi,η]dxdη,

Ẽ(0, t) =

∫ t

0

∫
R

ξ2[θi,jθi,j + Kθi,ηθi,η]dxdη.

The same triangle inequality holds for E1 and E2 separately as well as for their

z derivatives. Bounds for −∂Ẽ(0,t)
∂z and ∂2Ẽ(0,t)

∂z2 were derived in [2, section 6]. Note,

however, that the E(0, t) of [2] is our −∂Ẽ(0,t)
∂z .

We start by deriving a bound for ∂2Ê1(0,t)
∂z2 . Upon integration by parts, we obtain

∂2Ê1(0, t)

∂z2
= −2

∫ t

0

∫
R

χi[χi,η + (χj + û,j)(χi + ûi),j − σ,i]dxdη.(6.12)
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In a manner analogous to that of section 4, it is readily seen that

∂2Ê1(0, t)

∂z2
+

∫
R

χiχidx
∣∣
η=t

= −2

∫ t

0

∫
R

χi(χj + ûj)ûi,jdxdη

= 2

∫ t

0

∫
R

χi,j [χj(θi + vi) + (θj + vj)(θi + vi)]dxdη

= 2

∫ t

0

∫
R

χi,jχjθidxdη + 2

∫ t

0

∫
R

χ3,jχjV dxdη

+ 2

∫ t

0

∫
R

χi,jθiθjdxdη + 2

∫ t

0

∫
R

χi,3θiV dxdη + 2

∫ t

0

∫
R

χ3,jθjV dxdη

+ 2

∫ t

0

∫
R

χ3,3V
2dxdη

≤ C1 max
t

[∫
r

θi,jθi,jdx

]1/2
∂2Ê1(0, t)

∂z2
+ C2|V |max

∂2Ê1(0, t)

∂z2

+ C3 max
t

[∫
R

θi,jθi,jdx

]1/2
[
∂2Ê1(0, t)

∂z2
· ∂

2Ẽ1(0, t)

∂z2

]1/2

+ C4|V |max

[
∂2Ê1(0, t)

∂z2
· ∂

2Ẽ(0, t)

∂z2

]1/2

+ C5|V |2max

[
∂2Ê1(0, t)

∂z2

]1/2

(6.13)

for computable Ci (i = 1, 2, . . . , 5). Applying the arithmetic-geometric mean inequal-
ity, (6.13) yields the bound{

1 − C1 max
t

[∫
R

θi,jθi,jdx

]1/2

− C2|V |max − ε

}
∂2Ê1(0, t)

∂z2
≤ data,(6.14)

provided the term in brackets is positive for some positive ε.
A bound for

∫
R
θi,jθi,jdx in terms of data was derived in [2] for general t. Again,

if the maximum value of
∫
R
θi,jθi,jdx occurs at t∗ ∈ (0, t), we may employ the bounds

of [2] for t = t∗. By use of Schwarz’s inequality, if necessary, these data bounds may be
made monotone in t and thus yield a bound for maxt

∫
R
θi,jθi,jdx that is independent

of the unknown t∗. If the data terms are small enough, we can then satisfy

C1 max
t

[∫
R

θi,jθi,jdx

]1/2

+ C2|V |max ≤ 1 − ε.(6.15)

It can be shown that if u3,t is continuous on ∂D at t = 0, the same arguments yield

a bound for ∂2Ê3(0,t)
∂z2 , since we already have a bound for |V,t|max. The key is to show

that
∫
R
χi,tχi,tdx

∣∣
t=0

is zero. This follows since∫
R

χi,tχi,tdx
∣∣
t=0

=

∫
R

χi,tσ,idx
∣∣
t=0

= −
∫
D0

χ3,tσdA = 0,(6.16)

recalling that χi = 0 in D0.
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We next indicate how to find a bound for ∂2Ê2(0,t)
∂z2 and then complete our bound

for ∂2Ê(0,t)
∂z2 . Clearly, we have

∂2Ê2(0, t)

∂z2
+

∫
R

χi,jχi,jdx
∣∣
η=t

= −2

∫ t

0

∫
R

χi,η(χj + θj + vj)(χi + θi + vi),jdxdη.(6.17)

The arguments of section 4 allow us to bound ∂2Ê2(0,t)
∂z2 in terms of data and ∂2Ê3(0,t)

∂z2

provided data terms are small enough. This then provides a bound for ∂2Ê(0,t)
∂z2 . But

the bound for ∂2Ẽ(0,t)
∂z2 is known from [2]. It follows then that we have a bound for

∂2E(0,t)
∂z2 . This yields a bound for E(0, t) as follows. Evaluating (4.34) at z = 0, we

find

E(0, t) =
1

b

∂2E(0, t)

∂z2
− a

b

∂E(0, t)

∂z
.(6.18)

By Schwarz’s inequality, we have

−∂E(0, t)

∂z
≤

√
2

[
E(0, t) · ∂

2E(0, t)

∂z2

]1/2

.(6.19)

Combining (6.18) and (6.19) and using the arithmetic-geometric mean inequality
yields

E(0, t) ≤ 2

[
1

b
+

a2

b2

]
∂2E(0, t)

∂z2
.(6.20)

Finally, with the bounds for E(0, t) and ∂2E3(0,t)
∂z2 we can make (4.39) explicit

provided the data terms are sufficiently small. These data terms depend on fi and
its derivatives, the time interval, and the size of D. So our results will hold not only
if the fi and its derivatives are small enough but also for general data if the time
interval or the size of the domain is sufficiently small.
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Abstract. Suitable macroscopic quantities are identified and used to assess the field distribution
within a composite specimen of finite size with random microstructure. Composites made of N
anisotropic dielectric materials are considered. The characteristic length scale of the microstructure
relative to the length scale of the specimen is denoted by ε, and realizations of the random composite
microstructure are labeled by ω. Consider any cube C0 located inside the composite. The function
P ε(t, C0, ω) gives the proportion of C0 where the square of the electric field intensity exceeds t. The
analysis focuses on the case when 0 < ε � 1. Rigorous upper bounds on limε→0P ε(t, C0, ω) are
found. They are given in terms of the macrofield modulation functions. The macrofield modulation
functions capture the excursions of the local electric field fluctuations about the homogenized or
macroscopic electric field. Information on the regularity of the macrofield modulations translates into
bounds on limε→0P ε(t, C0, ω). Sufficient conditions are given in terms of the macrofield modulation
functions that guarantee polynomial and exponential decay of limε→0P ε(t, C0, ω) with respect to
“t.” For random microstructure with oscillation on a sufficiently small scale we demonstrate that a
pointwise bound on the macrofield modulation function provides a pointwise bound on the actual
electric field intensity. These results are applied to assess the distribution of extreme electric field
intensity for an L-shaped domain filled with a random laminar microstructure.

Key words. random composite materials, field fluctuations, material breakdown
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1. Introduction. Failure of composite materials can often be attributed to the
presence of large local fields. This includes extreme temperature gradients and large
electric and current fields as well as mechanical stresses [9]. These fields are strongly
influenced by the local microgeometry inside the composite. It is often the case that
the microgeometry of heterogeneous specimens is known only in a statistical sense.
Motivated by these considerations, we examine the distribution of extreme field values
in random heterogeneous media. The focus here is to assess the likelihood that the
magnitude of the electric field inside the composite exceeds a prescribed nominal value
for almost every realization of the random microstructure.

Here we consider a random composite made up of N anisotropic dielectric materi-
als with dielectric tensors A1, A2, . . . , AN . To describe the dielectric tensor for a finite
size sample of random composite, we begin with the description of a random medium
of infinite extent. The dielectric tensor field A(y, ω) associated with the composite
is a function of both position y and geometric realization ω taken from the sample
space Ω. For each realization ω, the tensor field A(y, ω) is piecewise constant taking
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only the values A1, A2, . . . , AN for different points y in R3. The random medium is
assumed to be stationary, i.e., for any finite choice of points y1,y2, . . . ,yk and any
vector h, the distribution of the random tensor

A(y1 + h, ω), A(y2 + h, ω), . . . , A(yk + h, ω)(1.1)

does not depend on h. The finite size composite specimen occupies the bounded
domain D, and points inside it are denoted by x. The dielectric tensor for a composite
with a random microstructure of characteristic length scale ε relative to the size of D
is given by

Aε(x, ω) = A
(x

ε
, ω

)
.(1.2)

The potential inside the composite is denoted by φε(x, ω). For a prescribed charge
distribution f = f(x) and prescribed values of the electric potential on the boundary
of the domain D given by φε(x, ω) = φ0(x), the potential is the solution of

−div(Aε(x, ω)∇φε(x, ω)) = f(1.3)

in D. Here (1.3) holds in the sense of distributions. The associated electric field
Eε(x, ω) = −∇φε(x, ω) is not necessarily a stationary random field; this is due to the
finite size of the domain D and the prescribed charge distribution.

Failure initiation criteria are often given in terms of a critical field strength such
that if a significant portion of the sample has field strength above this value, then
the failure process is initiated [7]. Motivated by this observation, we focus on the
subset of the composite where |Eε|2 exceeds the value t > 0, and we denote it by
Sε
t (ω). Consider any cube C0 inside the composite. It is assumed here that the

boundary of the cube does not intersect the boundary of the specimen. The field
distribution function λε(t, C0, ω) gives the volume of the intersection of Sε

t (ω) with
C0, i.e., λε(t, C0, ω) = |Sε

t (ω) ∩ C0|. Here |S| denotes the volume of the set S.
Division of λε(t, C0, ω) by the volume of the cube gives the function P ε(t, C0, ω).
Here P ε(t, C0, ω) gives the proportion of the cube experiencing field strength greater
than t. One also defines the electric field distribution inside the part of the ith phase
contained in the cube C0. The volume of the set in the ith phase contained in C0

where |Eε|2 exceeds the value t > 0 is denoted by λε
i (t, C0, ω). The set occupied by the

ith phase is denoted by Sε
i (ω). Analogously P ε

i (t, C0, ω) ≡ λε
i (t, C0, ω)/|Sε

i (ω) ∩ C0|
gives the proportion if the ith phase contained in C0 with field strength greater than t.

In this paper we obtain bounds on P ε(t, C0, ω) and P ε
i (t, C0, ω) in the limit of

vanishing ε. These bounds are expressed in terms of suitable macroscopic quantities
dubbed macrofield modulation functions. To illustrate the ideas, one applies the
Chebyshev inequality to obtain the bound on P ε(t, C0, ω) given by

P ε(t, C0, ω) ≤ t−p 1

|C0|

∫
C0

|Eε(x, ω)|2p dx.(1.4)

In section 2 we state the homogenized version of (1.4) given by

lim
ε→0

P ε(t, C0, ω) ≤ t−pAp(C0).(1.5)

Here Ap(C0) is independent of ω and is described in terms of the macrofield modu-
lation functions. The macrofield modulation of order p is the Lp norm of the square
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of the electric field intensity for the associated corrector problem (2.2) posed on
the infinite random medium when the random medium is subjected to an imposed
macroscopic electric field; see (2.9). Proposition 2.1 explicitly shows how integra-
bility of order p at the level of the corrector problem contributes to the t−p order
decay of limε→0 P

ε(t, C0, ω). Similarly, Proposition 2.3 shows how L∞ regularity of
the square of the electric field intensity for the associated corrector problem allows
limε→0 P

ε(t, C0, ω) to vanish above a critical value of t. For this case we can pass to a
subsequence, if necessary, to derive a pointwise bound on the local electric field inten-
sity for almost every realization of the random microstructure when the scale of the
microstructure is sufficiently small; see Proposition 2.4. When the macrofield mod-
ulation function has bounded mean oscillation, an explicit upper bound is obtained
that is exponential in −t and is given in terms of the BMO norm of the macrofield
modulation function; see Proposition 2.5. The corrector problem that is used to de-
fine the macrofield modulation functions is well known and naturally arises in the
definition of the effective dielectric tensor [1, 10, 17, 18].

It is pointed out that the main results given by Propositions 2.1 through 2.6
are strong limit theorems in that they hold for almost all realizations of the random
medium. Propositions 2.1 through 2.6 are a direct consequence of the homogenization
constraints given in Proposition 3.1. These constraints relate the macrofield modula-
tion functions to the distribution of states for the square of the electric field intensity.
This type of constraint is introduced in [11, 14] for the case of graded locally periodic
microstructures and in the context of G convergence for multiphase linearly elastic
composites. The results reported here apply to the mathematically identical situations
appearing in the contexts of thermal conductivity and DC electric conductivity.

The paper is organized as follows: In section 2 the macrofield modulation func-
tions are introduced and the main results are presented. The homogenization con-
straint is introduced and derived in section 3. The homogenized version of Chebyshev’s
inequality is established in section 4. The bounds on the support of limε→0P

ε
i (t, C0, ω)

and limε→0P
ε(t, C0, ω) are obtained in section 5. These are given in terms of the L∞

norm of the macrofield modulation functions. The pointwise upper bounds are de-
rived in section 6. The exponentially decaying bound on limε→0P

ε(t, C0, ω) is derived
in section 7. In section 8 we consider a highly oscillatory, randomly layered dielectric
occupying an L-shaped domain. The dielectric is subjected to a prescribed charge
density and the electric potential satisfies homogeneous Dirichlet boundary condi-
tions. The macrofield modulation functions together with the results of section 2 are
applied to assess the distribution of the electric field intensity inside the domain.

2. The macrofield modulation functions and main results. To introduce
the macrofield modulation functions, we consider a random composite of infinite ex-
tent. For stationary random media it is shown in [17] that one can regard the dielectric
tensor A(y, ω) as the realization of a random function Ã with respect to a three-
dimensional dynamical system T acting on a suitable sample space; see also [2] for a
more recent discussion. In view of this let (Ω,F ,P) be a probability space. For a given
partition of Ω into N measurable subsets Ω1,Ω2, . . . ,ΩN we introduce the indicator
functions χ̃i taking the values 1 in Ωi and zero outside and set Ã(ω) =

∑N
i=1 Aiχ̃i(ω).

Following [5, 10, 17] we regard the dielectric A(y, ω) as a realization of Ã with respect
to a three-dimensional dynamical system T on Ω, i.e., A(y, ω) = Ã(T (y)ω) for (y, ω)
in R3×Ω. Here the family of mappings T = T (y), y in R3 from Ω into Ω, is one to one
and preserves the measure P on Ω; i.e., for any A in F one has P(T (−y)A) = P(A).
The family of transforms is a group with T (0)ω = ω, T (y + h) = T (y)T (h), and
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for any P measurable function f̃ on Ω, the function f̃(T (y)ω) defined on R3 × Ω is
also measurable with respect to L×F , where L stands for the σ-algebra of Lebesgue-
measurable subsets of R3. Lastly, it is assumed that the dynamical system is ergodic.

Let e1, e2, e3 represent unit vectors along the coordinate directions in R3. A
constant electric field ek is imposed on the infinite random medium. The dielectric
response in the composite is given by an electric field that can be decomposed into
the imposed electric field ek and a stationary random fluctuation −∇ϕk(y, ω) =
Gk(T (y)ω), where Gk is in L2(Ω,P) with zero mean, i.e., 〈Gk〉 =

∫
Ω

GkdP = 0; see
[5, 10, 17, 8]. From the Birkhoff ergodic theorem it follows that for any sequence of
cubes Q(r) of side length 2r and volume |Q(r)|,

lim
r→∞

1

|Q(r)|

∫
Q(r)

(−∇ϕk(y, ω)) dy = 〈Gk〉 = 0.(2.1)

The fluctuation solves

−div(A(y, ω)(∇ϕk(y, ω) + ek)) = 0(2.2)

for y in R3. For an imposed constant electric field of the general form E = (E1e
1 +

E2e
2 + E3e

3), the stationary random fluctuation is obtained by superposition and

is given by −∇ϕ(y, ω) =
∑3

k=1 EkG
k(T (y)ω). For future reference we introduce

the matrix with column vectors Gk given by G̃(ω) = (G1(ω),G2(ω),G3(ω)). Then
−∇ϕ(y, ω) = G̃(T (y)ω)E and E(y, ω) = (I + G̃(T (y)ω))E. The dielectric displace-
ment is a stationary random field, and its mean is given by

〈D〉 =

∫
Ω

Ã(ω)(I + G̃(ω))E dP(ω) = lim
r→∞

1

|Q(r)|

∫
Q(r)

A(y, ω)E(y, ω) dy.(2.3)

The effective dielectric tensor AE provides the linear relation between the imposed
electric field E and the mean dielectric displacement 〈D〉, i.e., 〈D〉 = AEE; see
[5, 10, 17, 8].

When considering failure initiation it is important to assess the magnitude of the
local electric field inside the random medium arising from the imposed electric field E.
Here one is interested in the probability that the square of the electric field intensity
|E|2 in the ith phase exceeds a nominal value t. For the stationary random case this
probability is the same for every point and is given by θt,i = P(χ̃i(ω)|(I+G̃(ω))E|2 >
t). Other quantities that are useful for local field assessment are given by the Lp norms,
1 ≤ p ≤ ∞. The Lp(Ω) norm of a P measurable function g̃ is denoted by ‖g̃‖Lp(Ω).
Since T (y) preserves the measure P on Ω, it follows that

‖χi(y, ω)|E(y, ω)|2‖Lp(Ω) = ‖χ̃i(ω)|(I + G̃(ω))E|2‖Lp(Ω) for every y in R3.(2.4)

Motivated by these considerations, we introduce moments of the local electric field of
order p.

Definition: Moments of the local electric field.

f i
p(E) = ‖χ̃i(ω)|(I + G̃(ω))E|2‖Lp(Ω) =

(∫
Ω

χ̃i(ω)|(I + G̃(ω))E|2p dP(ω)

)1/p

(2.5)

for 1 ≤ p ≤ ∞.
Moments of the electric field have been calculated for two-dimensional random

dispersions of disk-, needle-, and square-shaped inclusions in [4].
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It is pointed out that the electric field generated by a constant imposed electric
field is self-similar under a rescaling of the infinite random medium. Indeed, set εk =
1/k and rescale the material properties by Aεk(y, ω) = A(y/εk, ω). It is easily checked
that the electric field also rescales as Eεk(y, ω) = E(y/εk, ω). Thus the analysis of
electric field distribution for the εk scale microstructure reduces to an analysis for the
unrescaled random media. However, this symmetry is broken for generic situations
when the specimen is finite in extent and the loading is not uniform throughout the
sample. Because of this the electric field in the composite is not obtained directly
through an analysis of the electric field in an infinite random medium. Instead, it is
shown here that a suitable multiscale analysis using macrofield modulation functions
provides rigorous bounds on the field distributions P ε(t, C0, ω) and P ε

i (t, C0, ω) for
almost every realization in the limit of vanishing ε.

Consider a finite size specimen D filled with random composite with characteristic
length scale εk = 1/k. Here the composite is described by Aεk(x, ω) = Ã(T (x/εk)ω),
and the electric potential φεk(x, ω) solves the boundary value problem described
in the introduction with equilibrium condition given by (1.3). The electric field
is given by Eεk = −∇(φεk). The multiscale analysis proceeds in two steps. The
first step is the up scaling or homogenization step where the macroscopic electric
field is determined. From the theory of random homogenization, the fields Eεk(x, ω)
and Dεk(x, ω) = Aεk(x, ω)Eεk(x, ω) converge to the deterministic macroscopic fields

E(x)
M

and DM (x) as εk goes to zero for almost every ω; see [10, 17]. Here the
convergence of the sequences of electric and displacement fields is given by weak
convergence in L2(D)3. The deterministic macroscopic potential φM (x) satisfies the
boundary condition φM (x) = φ0(x). The macroscopic dielectric displacement satisfies
the equilibrium equation

divDM = f(2.6)

and EM = −∇φM . The displacement and electric field are related through the
homogenized constitutive law

DM (x) = AEEM (x).(2.7)

The second step is a down scaling step and gives the interaction between the macro-
scopic electric field EM (x) and the microstructure. For each x, the microscopic di-
electric response is given by

E(x,y, ω) = (I + G̃(T (y)ω))EM (x).(2.8)

The relevant interaction is described by the macrofield modulation function f i
p(E

M(x))
given by the following definition.

Definition: Macrofield modulation function.

f i
p(E

M (x)) = ‖χ̃i(ω)|(I + G̃(ω))EM (x)|2‖Lp(Ω)(2.9)

for 1 ≤ p ≤ ∞. The macrofield modulation function f i
p(E

M (x)) provides a measure of

the amplification or diminution of EM (x) by the random medium. Explicit formulas
for the macrofield modulation functions for randomly layered two-phase dielectrics
are given in section 8.

Consider any cube C0 inside the composite. The L1 norm of a function g(x)
over the cube C0 is denoted by ‖g‖L1(C0). In what follows, it is always assumed that



480 ROBERT LIPTON

θi =
∫
Ω
χ̃i(ω) dP > 0, and from ergodicity the volume occupied by the ith phase in the

cube C0 tends to the nonzero limit limεk→0

∫
C0

χ̃i(T (x/εk)ω) dx = θi|C0| as εk tends

to zero. Passing to a subsequence, if necessary, we consider limεk→0P
εk
i (t, C0, ω).

If it is known that ‖|f i
p(E

M (x))|p‖L1(C0) < ∞ for some p, then the following
proposition shows that limεk→0P

εk
i (t, C0, ω) decays on the order of t−p.

Proposition 2.1 (homogenization of Chebyshev’s inequality). Given that

‖|f i
p(E

M (x))|p‖L1(C0) < ∞

for some p with 1 ≤ p < ∞, then for almost every realization ω one has

limεk→0P
εk
i (t, C0, ω) ≤ t−p 1

θi|C0|
‖|f i

p(E
M (x))|p‖L1(C0)

(2.10)

= t−p 1

θi|C0|

∫
C0

∫
Ω

χ̃i(ω)|(I + G̃(ω))EM (x)|2p dP(ω) dx.

If ‖|f i
p(E

M (x))|p‖L1(C0) < ∞ for all i = 1, 2, . . . , N, then

limεk→0P
εk(t, C0, ω) ≤ t−p 1

|C0|

∫
C0

∫
Ω

|(I + G̃(ω))EM (x)|2p dP(ω) dx(2.11)

for almost every realization ω.
It is clear that the coefficients of t−p in (2.10) and (2.11) depend upon the Dirichlet

data φ0, charge density f, and the domain D through the solution of the homogenized
problem (2.6). The proof of Proposition 2.1 is given in section 4.

The L∞ norm of a function g(x) over the cube C0 is denoted by ‖g‖L∞(C0). A
characterization of the set of parameters t where limεk→0P

εk
i (t, C0, ω) vanishes for

almost every realization is given in the following proposition.
Proposition 2.2. If t > ‖f i

∞(EM (x))‖L∞(C0), then limεk→0P
εk
i (t, C0, ω) = 0

for almost every ω in Ω
From the proposition it is evident that if t > ‖f i

∞(EM (x))‖L∞(C0), then the
volume of the subsets in the ith phase for which |Eεk(x, ω)|2 > t vanishes as εk tends
to zero with probability one. The proof of Proposition 2.2 is given in section 5.

We introduce the macrostress modulation M(EM (x)) given by

M(EM (x)) = max
i=1,...,N

f i
∞(EM (x))(2.12)

and characterize limεk→0P
εk(t, C0, ω) in a way analogous to Proposition 2.2. This is

stated in the following proposition.
Proposition 2.3. If t > ‖M(EM (x))‖L∞(C0), then limεk→0P

εk(t, C0, ω) = 0 for
almost every realization.

For random microstructure with oscillation on a sufficiently small scale, it is
found that a pointwise bound on the macrofield modulation function delivers a point-
wise bound on the actual electric field intensity for almost every realization of the
microstructure.

Proposition 2.4 (pointwise bounds on the electric field intensity). Suppose that

t > M(EM (x))(2.13)

on C0. Then one can pass to a subsequence {εk′}∞k′=1 if necessary to find that there
is a critical ε0 such that for every εk′ < ε0,

|Eεk′ (x, ω)|2 ≤ t(2.14)
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for almost every x in C0 and for almost every realization ω. Here ε0 can depend upon
x and ω.

The proof of Proposition 2.4 is given in section 6.
Last, we give conditions for which limεk→0P

εk(t, C0, ω) decreases exponentially
with t. To do this we introduce the BMO norm of M(EM (x)) over the cube C0 given
by

‖M‖BMO = sup
C⊂C0

(
1

|C|

∫
C

|M(EM (x)) −MC | dx
)
,(2.15)

where MC is the average of M(EM (x)) over C and the supremum is taken over all
subcubes C of C0. The BMO norm and the space of functions of bounded mean
oscillation were introduced by John and Nirenberg [6]. The space of functions with
bounded L∞ norm are a subspace of the functions with bounded BMO norm since
‖M(EM )‖BMO ≤ c‖M(EM )‖L∞(C0), where c is a constant depending on C0.

For any positive number α between zero and one, we define the constant C(α) by

C(α) =
α| lnα|

8‖M‖BMO

.(2.16)

With the average of M(EM (x)) over the cube C0 denoted by MC0
, the bound on

limεk→0 P
εk(t, C0, ω) is given in the following proposition.

Proposition 2.5. If t > 8‖M‖BMOα
−1 + MC0 , then

limεk→0P
εk(t, C0, ω) ≤ α−1e−C(α)×(t−MC0

)(2.17)

for almost every realization.
For t fixed the proposition shows that P εk(t, C0, ω) approaches or drops below

α−1e−C(α)×(t−MC0
)

for εk sufficiently small for almost every realization. It also shows that the upper
bound is exponentially decreasing for large t. Optimization over α (see section 7)
provides the tighter upper bound given by the following proposition.

Proposition 2.6. If t > 8‖M‖BMO + MC0 , then for almost every realization of
the random medium

limεk→0P
εk(t, C0, ω) ≤ (α(t))−1e× e[−α(t)(t−MC0

)/(8‖M‖BMO)],(2.18)

where the factor α(t) lies in the interval e−1 < α(t) < 1 and is the root of the equation

κ−1 − α(1 + lnα) = 0,(2.19)

with κ = (t−MC0)/(8‖M‖BMO).
It is pointed out that if the macroscopic electric field EM is constant inside C0,

then ‖M‖BMO = 0, MC0 = M(EM ) = ‖M(EM )‖L∞(C0), and Propositions 2.3, 2.5,
and 2.6 reduce to the observation that if t > M(EM ), then limεk→0P

εk(t, C0, ω) = 0
for almost all ω.

Propositions 2.1 through 2.6 provide the opportunity to recover information on the
behavior of the electric field intensity |Eε(x, ω)| inside the random microstructure from
knowledge of the behavior of the macrofield modulation functions. An application is
given in section 8 where the electric field distribution inside an L-shaped domain
containing a highly oscillatory random laminate is analyzed.



482 ROBERT LIPTON

3. Homogenization constraints. The homogenization constraints are moti-
vated by considering the case of a random composite of infinite extent. For the
p = ∞ case the homogenization constraint follows immediately from the definition of
f i
∞(E). Indeed, it is clear from the definition of the L∞ norm that t ≥ f i

∞(E) implies
that θt,i = 0, and equivalently, if θt,i > 0, it follows that f i

∞(E) > t. This delivers the
homogenization constraints given by

θt,i(f
i
∞(E) − t) ≥ 0.(3.1)

For 1 ≤ p < ∞, Chebyshev’s inequality implies

t−p(f i
p(E))p ≥ θt,i.(3.2)

Inequalities (3.1) and (3.2) are the specialization of the homogenization constraints
to stationary random composites of infinite extent. In the general context the macro-
scopic electric field is not uniform and the composite specimen has finite size. For
general specimen shapes and nonuniform loading, the constraints analogous to (3.1)
and (3.2) are given in terms of f i

∞(EM (x)) and f i
p(E

M (x)). In order to complete
the description of the homogenization constraint, a suitable generalization of θt,i is
needed. For this case, one considers a realization of the random composite Aεk(x, ω)
and the set in the ith phase where the square of the electric field intensity |Eεk(x, ω)|2
exceeds t is denoted by Sεk

t,i(ω). Consider any subdomain Q of the specimen such that
the boundary of Q does not intersect the boundary of the specimen. The distribution
function λεk

i (t, Q, ω) is defined by λεk
i (t, Q, ω) = |Sεk

t,i(ω)∩Q|. The indicator function
for the set Sεk

t,i(ω) is written χεk
t,i(x, ω) taking the value 1 in Sεk

t,i(ω) and 0 outside and

we write λεk
i (t, Q, ω) =

∫
Q
χεk
t,idx. From the theory of weak convergence there exists a

(Lebesgue measurable) density θt,i(x, ω) taking values in the interval [0, 1] such that
(on passage to a subsequence if necessary) limk→∞ λεk

i (t, Q, ω) =
∫
Q
θt,i(x, ω)dx. The

density θt,i(x, ω) is the local distribution of states of the square of the electric field
intensity |Eεk(x, ω)|2 in the ith phase as εk goes to zero. Here, the random fields
Eεk(x, ω) and θt,i(x, ω) can no longer be regarded as stationary; this is due to the
finite size of the domain and nonuniform charge distribution within the dielectric.
However, for almost every realization one has the homogenization constraints given
in the following proposition.

Proposition 3.1 (homogenization constraints). For almost every point x in Q
and almost every realization ω in Ω, one has

θt,i(x, ω)(f i
∞(EM (x)) − t) ≥ 0, i = 1, . . . , N,(3.3)

and for 1/q + 1/p = 1,

θ
1/q
t,i (x, ω)f i

p(E
M (x)) ≥ tθt,i(x, ω), i = 1, . . . , N.(3.4)

It is clear that (3.3) and (3.4) are the extensions of (3.1) and (3.2) to situations
where the macroscopic electric field is no longer uniform.

Proof. For a given realization ω, it follows from the definition of the set Sεk
t,i(ω)

that

χεk
t,i(x, ω)|Eεk(x, ω)|2 − tχεk

t,i(x, ω) > 0.(3.5)

Multiplying (3.5) by any nonnegative test function p(x) and integrating over D gives∫
D
p(x)(χεk

t,i(x, ω)|Eεk(x, ω)|2 − tχεk
t,i(x, ω)) dx > 0.(3.6)
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Taking limits and passing to subsequences if necessary gives

lim
εk→0

∫
D
p(x)χεk

t,i(x, ω)|Eεk(x, ω)|2 dx ≥ t

∫
D
p(x)θt,i(x, ω) dx.(3.7)

We will use the following lemma.
Lemma 3.2.∫

D
p(x)f i

∞(EM (x))θt,i(x, ω) dx ≥ lim
εk→0

∫
D
p(x)χεk

t,i(x, ω)|Eεk(x, ω)|2 dx,(3.8)

and for 1/q + 1/p = 1,∫
D
p(x)f i

p(E
M (x))θ

1/q
t,i (x, ω) dx ≥ lim

εk→0

∫
D
p(x)χεk

t,i(x, ω)|Eεk(x, ω)|2 dx(3.9)

for all nonnegative p(x) in C∞
0 (D) and for almost every ω.

Applying the inequality (3.7) together with Lemma 3.2 delivers∫
D
p(x)f i

∞(EM (x))θt,i(x, ω) dx ≥ t

∫
D
p(x)θt,i(x, ω) dx(3.10)

and ∫
D
p(x)f i

p(E
M (x))θ

1/q
t,i (x, ω) dx ≥ t

∫
D
p(x)θt,i(x, ω) dx(3.11)

for almost every ω. The proposition now follows since (3.10) and (3.11) hold for every
nonnegative test function.

Proof of Lemma 3.2. We write

Aεk(x, ω) = Aεk(A1, A2, . . . , AN ,x, ω) =

N∑
�=1

χ̃�(T (x/εk)ω)A�.(3.12)

We introduce the N + 1 phase composite identical to the previous except that in
Sεk
t,i(ω) it has dielectric constant PN+1. The piecewise constant dielectric tensor for

this composite is given by

Âεk(x, ω) = Âεk(A1, A2, . . . , AN , PN+1,x, ω)

=
N∑
�=1
� �=i

χ̃�(T (x/εk)ω)A�(3.13)

+ χ̃i(T (x/εk)ω)(1 − χεk
t,i(x, ω))Ai + χ̃i(T (x/εk)ω)χεk

t,i(x, ω)PN+1.

For PN+1 in a neighborhood of Ai, we invoke the compactness property of G-conver-
gence with respect to the sequence {Âεk(A1, A2, . . . , AN , PN+1,x, ω)}∞k=1 [19, 16] to
assert the existence of a G-converging subsequence also denoted by

{Âεk(A1, A2, . . . , AN , PN+1,x, ω)}∞k=1

and a G-limit denoted by ÂE(A1, A2, . . . , AN , PN+1,x, ω). The partial derivatives of
ÂE(A1, A2, . . . , AN , PN+1,x, ω) with respect to each element of PN+1 evaluated at
PN+1 = Ai are given by [11, 12, 13]:

∇N+1
mn ÂE

op(A1, A2, . . . , AN , Ai,x, ω)
(3.14)

= lim
r→0

lim
εk→0

(
1

|Q(x, r)|

∫
Q(x,r)

χεk
t,i(y, ω)(∂mwk,r

o + eom)(∂nw
k,r
p + epn) dy

)
.
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Here Q(x, r) is a cube of side length 2r inside D centered at x with volume given
by |Q(x, r)|, and the functions wk,r

p vanish on the boundary of the cube and are the
solutions of

−div(Aεk(y, ω)(∇wk,r
p (y) + ep)) = 0, p = 1, 2, 3,(3.15)

for y in Q(x, r). From [11, 12, 13] one has for every test function p vanishing on the
boundary of D that

lim
εk→0

∫
D
p(x)χεk

t,i(x, ω)|Eεk(x, ω)|2 dx
(3.16)

=

∫
D
p(x)

(
3∑

m=1

∇N+1
mm ÂE(A1, A2, . . . , AN , Ai,x, ω)

)
EM (x) · EM (x) dx.

Here (
3∑

m=1

∇N+1
mm ÂE(A1, A2, . . . , AN , Ai,x, ω)

)
EM (x) · EM (x)

=
∑
op

(
lim
r→0

lim
εk→0

(
1

|Q(x, r)|

∫
Q(x,r)

χεk
t,i(y, ω)(∇wk,r

o + eo)(3.17)

· (∇wk,r
p + ep) dy

)
EM

o (x)EM
p (x)

)
.

From the appendix of [5] it follows, on passing to a subsequence, if necessary, that for
every r > 0

lim
εk→0

∫
Q(x,r)

|(−∇wk,r
p (y)) − Gp(T (y/εk)ω)|2 dy = 0(3.18)

for almost every ω. From this we deduce that for a denumerable sequence {rj}∞j=1,
rj → 0

(
3∑

m=1

∇N+1
mm ÂE(A1, A2, . . . , AN , Ai,x, ω)

)
EM (x) · EM (x)

(3.19)

= lim
rj→0

lim
εk→0

(
1

|Q(x, rj)|

∫
Q(x,rj)

χεk
t,i(y, ω)|(I + G̃(T (y/εk)ω))EM (x)|2 dy

)

for almost every ω. Applying the Hölder inequality gives∫
Q(x,rj)

χεk
t,i(y, ω)|(I + G̃(T (y/εk)ω))EM (x)|2 dy

≤
∫
Q(x,rj)

χεk
t,i(y, ω) dy‖χ̃i(T (y)ω)|(I + G̃(T (y)ω))EM (x)|2‖L∞(R3)(3.20)

≤
∫
Q(x,rj)

χεk
t,i(y, ω) dy‖χ̃i(ω)|(I + G̃(ω))EM (x)|2‖L∞(Ω).
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The last inequality in (3.20) follows from a straightforward argument given in the
appendix. Noting that

lim
rj→0

lim
εk→0

1

|Q(x, rj)|

∫
Q(x,rj)

χεk
t,i(y, ω) dy = θt,i(x, ω)(3.21)

for almost all x and applying (3.20) to (3.19), we arrive at the estimate(
3∑

m=1

∇N+1
mm ÂE(A1, A2, . . . , AN , Ai,x, ω)

)
EM (x) · EM (x)

(3.22)
≤ θt,i(x, ω)f i

∞(EM (x))

for almost every ω in Ω, and the proof of (3.8) of Lemma 3.2 is complete. To prove
(3.9) we return to (3.19) and apply the Hölder inequality with 1/p+1/q = 1 to obtain

(3.23)

lim
εk→0

1

|Q(x, rj)|

∫
Q(x,rj)

χεk
t,i(y, ω)|(I + G̃(T (y/εk)ω))EM (x)|2 dy

≤ lim
εk→0

(
1

|Q(x, rj)|

∫
Q(x,rj)

χεk
t,i(y, ω) dy

)1/q

× lim
εk→0

(
1

|Q(x, rj)|

∫
Q(x,rj)

χ̃i(T (y/εk)ω)|(I + G̃(T (y/εk)ω))EM (x)|2pdx
)1/p

.

From the Birkhoff ergodic theorem it follows that

(3.24)

f i
p(E

M (x))

= lim
εk→0

(
1

|Q(x, rj)|

∫
Q(x,rj)

χ̃i(T (y/εk)ω)|(I + G̃(T (y/εk)ω))EM (x)|2pdx
)1/p

,

and the proof of (3.9) is complete.

4. Homogenization of Chebyshev’s inequality. In this section we estab-
lish Proposition 2.1. We start by providing the relationship between the limits
limεk→0P

εk
i (t, C0, ω), limεk→0P

εk(t, C0, ω) and the distribution of states for the square
of the electric field intensity in the ith phase. The volume of the subset of the ith
phase contained in C0 where the equivalent stress exceeds t is given by λεk

i (t, C0, ω) =∫
C0

χεk
t,i(x, ω)dx. Passing to a subsequence if necessary, the theory of weak conver-

gence delivers the distribution of states θt,i(x, ω) for which limεk→0 λ
εk
i (t, C0, ω) =∫

C0
θt,i(x, ω)dx. For fixed εk the volume of the ith phase in the cube C0 is denoted

by V εk
i and P εk

i (t, C0, ω) = λεk
i (t, C0, ω)/V εk

i . From ergodicity, limεk→0 V
εk
i = θi|C0|.

It is clear that

limεk→0P
εk
i (t, C0, ω) =

(
1

θi|C0|

)∫
C0

θt,i(x, ω) dx.(4.1)

Set θt(x, ω) =
∑N

i=1 θt,i(x, ω); then one has

limεk→0P
εk(t, C0, ω) = (1/|C0|)

∫
C0

θt(x, ω) dx.(4.2)
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It follows easily from the homogenization constraint (3.4) that

θt,i(x, ω) ≤ t−p|f i
p(E

M (x))|p, i = 1, . . . , N.(4.3)

Taking averages of both sides gives

limεk→0P
εk
i (t, C0, ω) ≤ t−p

(
1

θi|C0|

)∫
C0

|f i
p(E

M (x))|p dx,(4.4)

and (2.10) of Proposition 2.1 is proved. The inequality (2.11) of Proposition 2.1 follows
immediately upon summation of the left and right sides of (4.3) over i = 1, . . . , N and
averaging both sides.

5. Bounds on the support set of the electric field intensity distribu-
tion function. This section contains the proofs of Propositions 2.2 and 2.3. The
homogenization constraint (3.3) is used to prove Proposition 2.2. Integration of (3.3)
gives ∫

C0

θt,i(x, ω)f i(EM (x)) dx − t

∫
C0

θt,i(x, ω) dx ≥ 0, i = 1, . . . , N.(5.1)

Application of Hölder’s inequality to the first term and division by θi|C0| gives

lim
εk→0

P εk
i (t, C0, ω)(‖f i(EM )‖L∞(C0) − t) ≥ 0, i = 1, . . . , N,(5.2)

and Proposition 2.2 follows.
To prove Proposition 2.3 we add the constraints (5.1) to get

N∑
i=1

(∫
C0

θt,i(x, ω)f i(EM (x)) dx

)
− t

∫
C0

θt(x, ω) dx ≥ 0.(5.3)

Noting that M(EM (x)) ≥ f i(EM (x)) gives∫
C0

θt(x, ω)M(EM (x)) dx − t

∫
C0

θt(x, ω) dx ≥ 0.(5.4)

Application of Hölder’s inequality to the first term and division by |C0| gives

lim
εk→0

P εk(t, C0, ω)(‖M(EM (x))‖L∞(C0) − t) ≥ 0,(5.5)

and Proposition 2.3 follows.

6. Pointwise bounds on the electric field intensity. In this section we give
the proof of Proposition 2.4. From the hypothesis of Propositions 2.4 and 2.3 it
follows that limk→∞ |Sεk

t (ω)∩C0| = 0. We choose a subsequence {εk′}∞k′=1 such that

|Sεk′
t (ω) ∩ C0| < 2−k′

. Then if x doesn’t belong to ∪∞
k′≥K̃

S
εk′
t (ω) ∩ C0, one has that

|Eεk′ |2 ≤ t for every k′ > K̃. Hence for any x not in A = ∩∞
K=1 ∪∞

k′≥K S
εk′
t (ω) ∩ C0

there is an index K for which |Eεk′ |2 ≤ t for every k′ > K. But

|A| ≤
∣∣∣∪∞

k′≥K̃
S
εk′
t (ω) ∩ C0

∣∣∣ ≤ ∞∑
k′=K̃

|Sεk′
t (ω) ∩ C0| ≤ 2−K̃+1.

Hence |A| = 0. Thus for almost every x in C0 there is a finite index K (that may
depend upon x and ω) for which |Eεk′ |2 ≤ t for every k′ > K, and the proposition
follows.
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7. Upper bounds on the stress distribution function. In this section
Propositions 2.5 and 2.6 are derived. For a cube C0 contained inside the compos-
ite, the set of points where M(EM (x)) ≥ t is denoted by {x in C0; M(EM (x)) ≥ t}.
We start by establishing the inequality

lim
εk→0

P εk(t, C0, ω) ≤ |{x in C0; M(EM (x)) ≥ t}|
|C0|

.(7.1)

Adding the homogenization constraints gives

θt(x, ω)(M(EM (x)) − t) ≥ 0.(7.2)

Thus from (7.2) it is evident that at almost every point for which θt(x, ω) > 0, one
has that M(EM (x)) ≥ t. The set of points in C0 for which θt(x, ω) > 0 is denoted by
{x in C0; θt(x, ω) > 0}, and it is clear that

|{x in C0; θt(x, ω) > 0}| ≤ |{x in C0; M(EM (x)) ≥ t}|.(7.3)

Since 0 ≤ θt(x, ω) ≤ 1, one has the estimate∫
C0

θt(x, ω) dx ≤ |{x in C0; θt(x, ω) > 0}|,(7.4)

and (7.1) follows from (7.3).
We will apply the John–Nirenberg theorem [6] to estimate the right-hand side of

(7.1). To do this we show first that

|{x in C0; M(EM (x)) ≥ t}| ≤ |{x in C0; |M(EM (x)) −MC0 | ≥ t−MC0}|.(7.5)

To see this, note that M(EM (x)) ≤ |M(EM (x)) −MC0 | + MC0 , so

{x in C0; M(EM (x)) ≥ t} ⊂ {x in C0; |M(EM (x)) −MC0 | ≥ t−MC0},(7.6)

and (7.5) follows. Application of the John–Nirenberg theorem gives

|{x in C0; |M(EM (x))−MC0
|≥ s}|

|C0|
≤
{

1 for 0<s≤ 8‖M‖BMOα
−1,

α−1e[−(C(α)×(s))] for 8‖M‖BMOα
−1 < s.

(7.7)

Proposition 2.5 follows immediately from the change of variables s = t−MC0
and the

inequalities (7.1), (7.5), and (7.7). The function obtained by the change of variables
s = t−MC0

in (7.7) is denoted by Pα(t, C0), and

Pα(t, C0) =

{
1 for 0 < t−MC0 ≤ 8‖M‖BMOα

−1,

α−1e[−(C(α)×(t−MC0
))] for 8‖M‖BMOα

−1 < t−MC0 .
(7.8)

It is evident from the estimates that limεk→0P
εk(t, C0, ω) ≤ Pα(t, C0) for MC0

< t.
Tighter upper bounds are given by optimizing over α, i.e.,

limεk→0P
εk(t, C0, ω) ≤ U(t, C0) = inf

0<α<1
Pα(t, C0).(7.9)
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Here U(t, C0) is continuous and decreasing and is given by

U(t, C0) =

{
1 for 0 < t−MC0 ≤ 8‖M‖BMO,

(α(t))−1e× e[−α(t)(t−MC0
)/(8‖M‖BMO)] for 8‖M‖BMO + MC0

< t.

(7.10)

The factor α(t) lies in the interval e−1 < α(t) < 1 and is the root of the equation

κ−1 − α(1 + lnα) = 0,(7.11)

where κ = (t − MC0)/(8‖M‖BMO). Proposition 2.6 now follows immediately from
(7.10).

8. Macrofield modulation functions for random two-phase layered com-
posites. In this section we treat randomly layered media and give an example of how
the macrofield modulation functions are used to assess the field distribution inside a
finite size sample. We start by considering a two-dimensional electrostatic problem
on the plane R2 and derive explicit formulas for the moments of the electric field.
The plane is partitioned into layers of unit thickness parallel to the y2 axis. Each
layer contains an isotropic dielectric material having either dielectric constant α or β
with α < β. The particular value of the dielectric constant in each layer is given by
a Bernoulli process; i.e., a biased coin that takes heads with probability θ and tails
with probability 1 − θ is used to assign the dielectric constant in each layer. Over
each layer the coin is flipped, and if the coin lands heads up, the layer is assigned
the β dielectric; otherwise it assigned the α dielectric. In section 8.1 we calculate
the moments of the electric field directly using the strong law of large numbers. In
section 8.2 we apply these results and use Proposition 2.2 to assess the distribution of
the electric field intensity inside an L-shaped domain filled with a highly oscillatory
random laminate in the presence of a prescribed electric charge density.

8.1. Moments of the electric field for random two-phase layered com-
posites. For a given infinite sequence of biased coin flips, we arrive at a realization
of the random medium. The indicator function ω of the β phase is a function of the
y1 coordinate and takes the value one in the β phase and zero outside it. For con-
venience we choose the origin of the y1 − y2 coordinate system to lie on a two-phase
interface, with the β phase on the left and the α phase on the right. The coordinates
of the interfaces between α and β phases on the positive y1 axis are given by the
sequence {Nn}∞n=1 and N0 = 0. The coordinates of the interfaces between phases on
the negative y1 axis are given by {Nn}−∞

n=−1. Let e1 and e2 be unit vectors pointing
in the directions of the y1 axis and y2 axis, respectively. For imposed electric field
gradients ek, k = 1, 2, the fluctuating part of the electric potential ϕk is continuous
and solves the two-dimensional version of the field problem (2.2) given by

∆ϕk = 0 inside each layer,
(8.1)

β(∂y1ϕ
k
|L + ek1) = α(∂y1

ϕk
|R + ek1) on interfaces.

It is clear from the above that ϕ1 = ϕ1(y1) and ϕ2 = const. In this context the
analogue of (2.1) is given by

lim
r→∞

∫ r

−r
∂y1ϕ

1dy1

2r
= lim

r→∞

ϕ1(r) − ϕ1(−r)

2r
= 0(8.2)
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and ϕk(0) = 0. Clearly ϕ2 = 0, and the potential ϕ1 is a continuous piecewise linear
function of y1, i.e., in each phase ϕ1 is of the form ϕ1(y1) = ay1+b where the constants
a and b change between phases. Application of (8.1), the continuity conditions at two-
phase interfaces, and (8.2) together with the strong law of large numbers shows that
ϕ1(y1) is given a.s. by the following formulas.

For Nn ≤ y1 < Nn+1 and n + 1 even, the potential is given by

ϕ1(y1) = (k2 − 1)y1 + k1(N1 −N2 + N3 −N4 + · · · + Nn),(8.3)

and for n + 1 odd

ϕ1(y1) = (k3 − 1)y1 + k1(N1 −N2 + N3 −N4 + · · · −Nn).(8.4)

For N−(n+1) < y1 ≤ N−n and n + 1 even, the potential is given by

ϕ1(y1) = (k3 − 1)y1 + k1(−N−1 + N−2 −N−3 + N−4 + · · · −N−n),(8.5)

and for n + 1 odd

ϕ1(y1) = (k2 − 1)y1 + k1(−N−1 + N−2 −N−3 + N−4 + · · · + N−n),(8.6)

where the constants k1, k2, and k3 are defined by

k1 =
β − α

α + (β − α)(1 − θ)
,

k2 =
α

α + (β − α)(1 − θ)
,

k3 =
β

α + (β − α)(1 − θ)
.(8.7)

The derivative ∂y1ϕ
1 is given by the following formula:

∂y1ϕ
1 = γα =

θ(β − α)

α + (β − α)(1 − θ)
in the α phase,

∂y1ϕ
1 = γβ =

−(1 − θ)(β − α)

α + (β − α)(1 − θ)
in the β phase.(8.8)

For an imposed constant applied field of the general form E = E1e
1 + E2e

2, the
local electric field E(y, ω) is given by

E(y, ω) = (1 − ω(y1))((1 + γα)E1e
1 + E2e

2) + ω(y1)((1 + γβ)E1e
1 + E2e

2).(8.9)

We average over the plane and apply the strong law of large numbers to obtain the
moments of the local electric field given by

f1
p (E) = lim

r→∞

(
1

2r

∫ r

−r

(1 − ω(y1))|E(y, ω)|2p dy1

)1/p

(8.10)
= (1 − θ)1/p((1 + γα)2E2

1 + E2
2),

f2
p (E) = lim

r→∞

(
1

2r

∫ r

−r

ω(y1)|E(y, ω)|2p dy1

)1/p

(8.11)
= θ1/p((1 + γβ)2E2

1 + E2
2).
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Fig. 8.1. A realization for θ = 1/3.

The local dielectric constant in the random laminate is given by

A(y, ω) = α(1 − ω(y1)) + βω(y1),(8.12)

and the effective tensor AE is given by

AEE = lim
r→∞

1

2r

∫ r

−r

A(y, ω)E(y, ω) dy1

(8.13)
= (α−1(1 − θ) + β−1θ)−1E1 + (α(1 − θ) + βθ)E2.

The random laminate described above is an example of a symmetric cell material
[15]. A standard construction delivers the probability space (Ω,F ,P) and dynamical
system associated with the symmetric cell material; see [8, 17]. Using this, one rewrites
the averages given in (8.10), (8.11), and (8.13) in terms of the ensemble averages used
to define the moments of the local electric field and effective dielectric constant in
section 2.

8.2. Electric field assessment for a randomly layered dielectric in an
L-shaped domain. In this subsection we apply the theory presented in section 2 to
assess the electric field distribution inside an L-shaped domain containing a highly
oscillatory random laminate with length scale εk = 1/k, k = 1, 2, . . . . Here the L-
shaped domain is taken to have side length one. The dielectric constant for the highly
oscillatory random laminate inside the L-shaped domain is given by

Aεk(x, ω) = A(x1/εk, ω),(8.14)

where A(y, ω) is given by the Bernoulli process (8.12) with θ = 1/3. A realization
of the random laminate with characteristic length scale ε40 is given in Figure 8.1.
Here the subdomain in white is the α dielectric and the subdomain in black is the β
dielectric.

The electric potential φεk(x, ω) is the solution of

−div(Aεk(x, ω)∇φεk(x, ω)) = 10(8.15)



EXTREME FIELD VALUES IN RANDOM MICROSTRUCTURE 491

4 

Fig. 8.2. Distribution of the electric field intensity in the α dielectric.

inside the L-shaped domain and φεk(x, ω) = 0 on the boundary. The associated
electric field is given by Eεk(x, ω) = −∇φεk(x, ω). The goal of this application is
to characterize the distributions limεk→0P

εk
i (t, C0, ω), i = 1, 2. Here C0 can be any

square contained inside the L-shaped domain. To do this we solve numerically for
the macroscopic potential and electric field and construct the macrofield modulation
functions. The macroscopic electric potential φM (x) satisfies the boundary condition
φM (x) = 0 and

−div(AE∇φM (x)) = 10.(8.16)

The macroscopic electric field is given by EM (x) = −∇φM (x). The macrofield mod-
ulation functions are given by

f1
p (EM (x)) = (1 − θ)1/p((1 + γα)2|∂x1φ

M (x)|2 + |∂x2φ
M (x)|2),(8.17)

f2
p (EM (x)) = θ1/p((1 + γβ)2|∂x1φ

M (x)|2 + |∂x2φ
M (x)|2).(8.18)

For the computation we choose α = 2 and β = 10 and restrict our atten-
tion to f1

∞(EM (x)) and f2
∞(EM (x)). To illustrate the ideas, the level curves given

by f1
∞(EM (x)) = 4 are plotted in Figure 8.2. The lined regions indicate where

f1
∞(EM (x)) > 4 and f1

∞(EM (x)) < 4 outside these. For any square C0 that doesn’t
intersect the lined regions, Proposition 2.2 implies that

limεk→0P
εk
1 (t, C0, ω) = 0 for t > 4(8.19)

for almost every realization ω. In this way it is seen that the lined regions provide an
asymptotically exact bound on the set where |Eεk(x, ω)|2 > 4 in the α dielectric.

The level curves given by f2
∞(EM (x)) = 1 are plotted in Figure 8.3. The lined

regions indicate where f2
∞(EM (x)) > 1 and f1

∞(EM (x)) < 1 outside these. For any
square C0 that doesn’t intersect the lined regions, Proposition 2.2 implies that

limεk→0P
εk
2 (t, C0, ω) = 0 for t > 1(8.20)

for almost every realization ω. It is seen as before that the lined regions provide an
asymptotically exact bound on the set where |Eεk(x, ω)|2 > 1 in the β dielectric.
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1 

1 

Fig. 8.3. Distribution of the electric field intensity in the β dielectric.

Appendix. Here we establish the inequality stated in (3.20) given by

‖χ̃i(T (y)ω)|(I + G̃(T (y)ω))EM (x)|2‖L∞(R3)
(A.1)

≤ ‖χ̃i(ω)|(I + G̃(ω))EM (x)|2‖L∞(Ω)

for almost every ω. To establish (A.1) put α = ‖χ̃i(ω)|(I +G̃(ω))EM (x)|2‖L∞(Ω) and

introduce the set G = {ω : χ̃i(ω)|(I + G̃(ω))EM (x)|2 ≤ α}. From Lemma 7.1 of [8]
there exists a set G1 ⊂ G for which P(G1) = 1, and for any fixed ω in G1, one has that
T (y)ω is in G for almost every y in R3, and (A.1) follows.
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Abstract. In this paper, we investigate the stability of a fluid-structure interaction problem
in which a flexible elastic membrane immersed in a fluid is excited via periodic variations in the
elastic stiffness parameter. This model can be viewed as a prototype for active biological tissues
such as the basilar membrane in the inner ear, or heart muscle fibers immersed in blood. Problems
such as this, in which the system is subjected to internal forcing through a parameter, can give
rise to “parametric resonance.” We formulate the equations of motion in two dimensions using the
immersed boundary formulation. Assuming small amplitude motions, we can apply Floquet theory
to the linearized equations and derive an eigenvalue problem whose solution defines the marginal
stability boundaries in parameter space. The eigenvalue equation is solved numerically to determine
values of fiber stiffness and fluid viscosity for which the problem is linearly unstable. We present
direct numerical simulations of the fluid-structure interaction problem (using the immersed boundary
method) that verify the existence of the parametric resonances suggested by our analysis.
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1. Introduction. Fluid-structure interaction problems abound in industrial ap-
plications as well as in many natural phenomena. Owing to the potentially complex,
time-varying geometry and the nonlinear interactions that arise between fluid and
solid, such problems represent a major challenge to both mathematical modelers and
computational scientists.

This paper deals with a model for fluid-structure interaction known as the im-
mersed boundary (IB) formulation [20], which has proven particularly effective for
dealing with complex problems in biological fluid mechanics. In this formulation, the
immersed structure is treated as an elastic surface or interwoven mesh of elastic fibers
that exert a singular force on a surrounding viscous fluid, while also moving with
the velocity of adjacent fluid particles. The associated immersed boundary method
has been used to solve a wide range of problems such as blood flow in the heart
and arteries [2, 21], swimming microorganisms [8], biofilms [7], and insect flight [16].
More recently, the IB method has also been extended to a much wider range of non-
biological problems involving flow past solid cylinders [12], flapping filaments [29],
parachutes [10], and suspensions of flexible particles [25].

∗Received by the editors March 31, 2003; accepted for publication (in revised form) February 4,
2004; published electronically December 16, 2004. This work was partially supported by NSF grants
DMS-0094179 (Cortez) and DMS-9980069 (Peskin), NSERC grant RGP-238776-01 (Stockie), and
the Center for Computational Science at Tulane and Xavier Universities grant DE-FG02-01ER63119
(Cortez).

http://www.siam.org/journals/siap/65-2/42534.html
†Department of Mathematics, Tulane University, 6823 St. Charles Ave., New Orleans, LA 70118

(cortez@math.tulane.edu).
‡Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York,

NY 10012 (peskin@cims.nyu.edu).
§Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A

1S6, Canada (stockie@math.sfu.ca).
¶Department of Engineering and Applied Science, California Institute of Technology, Pasadena,

CA 91125 (vladimir@its.caltech.edu).

494



PARAMETRIC RESONANCE IN IMMERSED ELASTIC BOUNDARIES 495

While a significant body of literature has developed around numerical simula-
tions using the IB method (as well as related methods such as the blob projection
method [4]), comparatively little work has been done on analyzing the stability be-
havior of solutions to the underlying equations of motion. Beyer and LeVeque [3]
were the first to perform an analysis of the IB formulation in one spatial dimension.
Stockie and Wetton [26] investigated the linear stability of a flat fiber in two dimen-
sions which is subjected to a small sinusoidal perturbation, and presented asymptotic
results on the frequency and rate of decay for the resulting oscillations. Cortez and
Varela [5] performed a nonlinear analysis for a perturbed circular elastic membrane
immersed in an inviscid fluid.

In all of this previous work, the immersed boundary was assumed to be passive,
moving along with the flow and generating forces only in response to elastic defor-
mation. However, there are many problems in which the immersed boundary is an
active material, generating time-dependent forces to drive its motion. Examples in-
clude beating heart muscle fibers and flagellated cells, both of which apply periodic
forces to direct their motion and that of the surrounding fluid.

It is then natural to ask whether periodic forcing at various frequencies will give
rise to resonance. In the case of immersed boundaries, the applied force is inter-
nal, in the sense that the system is forced through a periodic variation in a system
parameter (namely, the elastic properties of the solid material) rather than through
an external body force. In contrast to externally forced systems, these internally or
parametrically forced systems are known to exhibit parametric resonance, in which
the response for linear systems (i.e., assuming small amplitude motions) can become
unbounded even in the presence of viscous damping. Once nonlinearities are taken
into account, however, the response remains bounded, but the system can still exhibit
large-amplitude motion when forced at certain resonant frequencies. Analyses of para-
metric resonance have appeared for various fluid flows involving surface or interfacial
waves wherein the system is forced through gravitational modulation [11, 14, 17] or
time-dependent heating [15]. However, to our knowledge there has been no analysis
performed on fluid-structure problems that captures the two-way interaction between
a fluid and an immersed, flexible structure. In a recent study by Wang [28], an anal-
ysis is performed of flutter and buckling instabilities in a paper making headbox, in
which a long, flexible vane is driven to vibrate under the influence of periodic forcing
from turbulent fluid jets. However, the author assumes a given fluid velocity and that
the solid structure has no influence on the fluid motion.

In this paper, we perform an analysis of parametric resonance in a two-dimensional,
circular, elastic membrane immersed in Navier–Stokes flow, which is driven by a time-
periodic variation in its elastic stiffness parameter. The elastic membrane is under
tension due to the incompressible fluid it encloses, and the changes in the elastic stiff-
ness parameter are equivalent to changes in the tension of the membrane that mimic
the contraction of biological fibers. The novelty of this work is that it includes the
full, two-way interaction between the fluid and the membrane. In sections 2 and 3, we
present the linearized equations of motion for the IB formulation and reduce them to
a suitable nondimensional form. In sections 4, 5, and 6, we perform a Floquet analysis
of the problem and derive a system of equations that relate the amplitude, frequency,
and wavenumber of the internal forcing to the physical parameters in the problem.
The natural modes for the unforced system are derived in section 7 and compared
to the asymptotic expressions for the natural modes in a flat fiber that were derived
in [26]. We also compare the natural modes to those observed in computations using
the blob projection method, an alternate method for solving the IB problem that
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affords higher spatial accuracy. In section 8 we consider the periodically forced prob-
lem and determine the conditions under which parametric resonance can occur. The
results are verified using numerical simulations with the IB method.

2. Problem definition. Consider an elastic fiber immersed in a two-dimensional,
viscous, incompressible fluid of infinite extent. The fiber is a closed loop with rest-
ing length of zero, so that in the absence of fluid the fiber would shrink to a point.
However, because an incompressible fluid occupies the region inside the fiber, the
equilibrium state is a circle of constant radius R, in which the pressure drop across
the fiber is balanced by the tension force. Our aim is to investigate a parametric
excitation of the fiber, in which the elastic stiffness is varied periodically in time.

The equations of motion for the fluid and immersed boundary can be written in
terms of the vorticity ξ(x, t) and stream function ψ(x, t) as [19, p. 1]:

ρ (ξt + u · ∇ξ) = μ∇2ξ + ẑ · ∇ × f ,(2.1a)

u = −ẑ ×∇ψ,(2.1b)

−∇2ψ = ξ,(2.1c)

f(x, t) =

∫ 2π

0

(KXs)s δ(x − X) ds,(2.1d)

Xt = u(X, t),(2.1e)

where x = (x, y) and ẑ = (0, 0, 1). The fluid velocity u(x, t) and fiber force f(x, t) are
functions of position and time, whereas the fiber position X(s, t) = (Xr(s, t), Xθ(s, t))
is a function of time and the Lagrangian fiber parameter 0 ≤ s ≤ 2π (which is the
same as the angle θ when the fiber’s reference state is a circle). We assume in this
paper that the stiffness is a periodic function of time,

K = K(s, t) = Kc(1 + 2τ sinωot),(2.2)

which has no dependence on the spatial variable s.

We point out that s is a Lagrangian parameter and is not necessarily proportional
to arclength since the fiber is allowed to stretch and shrink tangentially. The force
density (KXs)s thus includes components normal and tangential to the fiber. If we
identify the tension T (s) = K‖Xs‖ and the unit tangent vector τ̂(s) = Xs/‖Xs‖,
we may write the force density term as

(KXs)s = (T (s)τ̂(s))s = Ts(s)τ̂(s) + T (s)τ̂s(s),

which shows explicitly that the force resolves itself into normal and tangential com-
ponents. We also remark that spatial dependence in K can be easily incorporated
into our analysis provided that the spatial variations are small (that is, on the order
of the parameter ε introduced in the following section).

Our motivation comes from active muscle fibers that may contract and relax to
generate fluid motion. For this reason we will focus on nonnegative values of the
stiffness and we will be concerned mostly with the range 0 ≤ τ ≤ 1

2 in (2.2). However,
our analysis does not require this restriction and the results apply to values of τ > 1/2
as well. This is important because there are instances in which a negative stiffness
plays an important role as is the case of hair bundles in the bullfrog inner ear [9].
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3. Nondimensionalization. We first simplify the problem by scaling the vari-
ables and forming dimensionless groups. For now, variables with a tilde will be di-
mensionless. Let

x = R x̃,

u = U ũ (U will be determined later),

t = R/U t̃,

K = Kc K̃,

which imply that

f(x, t) =
Kc

R
f̃(x̃, t̃) =

∫ 2π

0

(K̃X̃s)s δ(x̃ − X̃) ds,

ξ =
U

R
ξ̃,

ψ = UR ψ̃.

With these scalings the vorticity equation becomes

ξ̃t̃ + ũ · ∇̃ ξ̃ =

(
μ

ρUR

)
∇̃2ξ̃ +

(
Kc

ρU2

)
(ẑ · ∇̃ × f̃).

In view of this and (2.2), we now define

U = Rωo, ν =
μ

ρUR
=

μ

ρR2ωo
, κ =

Kc

ρU2
=

Kc

ρR2ω2
o

,(3.1)

so that the unperturbed fiber configuration is the unit circle (X = r̂(s)) and we can
write the dimensionless equations (omitting the tildes) as

ξt + u · ∇ ξ = ν∇2ξ + κ(ẑ · ∇ × f),(3.2a)

u = −ẑ ×∇ψ,(3.2b)

−∇2ψ = ξ,(3.2c)

f(x, t) =

∫ 2π

0

(KXs)s δ(x − X) ds,(3.2d)

Xt = u(X, t),(3.2e)

with

K = (1 + 2τ sin t),(3.3a)

X = r̂(s) + εX
(1)
1 (s, t) + · · · .(3.3b)

Our aim is now to solve (3.2a)–(3.2e) with the only two remaining parameters, ν and
κ, defined in (3.1). We point out that ν is the reciprocal of the Reynolds number and
κ is the square of the natural frequency divided by the driving frequency.

4. Small-amplitude approximation. For the linear analysis, assume the fiber
force can be written as

f = f (0)(x, t) + εf (1)(x, t) + · · · ,
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so that the term (ẑ · ∇ × f) in (3.2a) can be expanded as

(ẑ · ∇ × f) = (ẑ · ∇ × f (0)) + ε(ẑ · ∇ × f (1)) + · · · .

Claim 1. Given the expansions in (3.3a) and (3.3b),

(ẑ · ∇ × f (0)) = 0 and

(ẑ · ∇ × f (1)) = K(t)
(
Xθ

ss + Xr
s

) (δ(r − 1)

r

)
r

−K(t)
(
Xr

sss −Xθ
ss

) δ(r − 1)

r
.

The proof is found in Appendix B.
Since the leading-order term in the curl of the force is zero, the corresponding

flow is simply the trivial solution ξ(0) = ψ(0) = 0. Therefore, we look for a series
solution expanded in terms of powers of a small parameter ε:

ξ = ε ξ(1)(x, t) + · · · ,
ψ = ε ψ(1)(x, t) + · · · .

In the remainder of this work, we assume ε is small and consider the O(ε) equa-
tions

ξt = ν∇2ξ + κK(t)
(
Xθ

ss + Xr
s

) [δ(r − 1)

r

]
r

− κK(t)
(
Xr

sss −Xθ
ss

) δ(r − 1)

r
,(4.1a)

∇2ψ = −ξ,(4.1b)

Xr
t = ψθ

∣∣
r=1

,(4.1c)

Xθ
t = −ψr

∣∣
r=1

,(4.1d)

where we have omitted the superscript (1) on most variables because we will be working
solely with these quantities from now on.

It is worthwhile mentioning that in the above expansions, the influence of the
time-dependent stiffness coefficient is felt solely at first order in ε, and so we need
only consider the forcing terms up to O(ε). The derivation can be easily extended to
include the case where the stiffness is spatially dependent, for which the s-variation
appears as an order ε perturbation of a time-dependent stiffness,

K = K(s, t) = K(0)(t) + εK(1)(s, t) + O(ε2).

When a Floquet-type expansion is assumed for K(1)(s, t) (refer to the next section),
correction terms appear in the O(ε) equations, and these corrections complicate the
analysis somewhat by coupling together the various spatial modes. We do not consider
a spatially dependent stiffness in this paper.

It is quite striking that a spatially homogeneous K(t) can have any interesting
effects in this problem. This is because such K(t) would have no effect at all on the
equilibrium state in which the fiber is a circle. Starting with that equilibrium state
as initial data and imposing time-periodic K(t) will produce only an oscillation of
the pressure and no motion of the fiber at all. But if instead we start with an initial
condition that is arbitrarily close but not exactly equal to a circular equilibrium
state, we can nevertheless build up a large-amplitude and spatially inhomogeneous
oscillation of the fiber through the application of spatially homogeneous but time-
periodic K(t) at the right driving frequency. This is actually typical of parametric
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resonance. A pendulum that is initially at rest hanging straight down cannot be made
to swing by imposing periodic changes in its length, but a pendulum that is initially
swinging ever so slightly can indeed be made to swing violently by the application
of precisely such changes in length, as every child who swings in the playground
knows [6].

5. Floquet analysis. Since we are not simply looking for natural modes but
rather are investigating the response of the system to a periodic forcing with a given
frequency, we must look for a solution in the form of an infinite series. This is a very
general approach in Floquet theory [18], and our derivation parallels the analysis of
Kumar and Tuckerman [11] for a horizontal fluid interface consisting of two fluids
with different densities. It is worth mentioning that other approaches have also been
used to study parametric resonances. For example, Semler and Päıdoussis [23] an-
alyze the case of a tubular beam filled with fluid whose velocity contains sinusoidal
fluctuations. They use separation of variables and nonlinear dynamics techniques to
solve the perturbation equations for small amplitude fluctuations. We will see that
our approach will result in a system of equations in block form that is very similar to
the equations derived in [23].

We assume that the unknown functions can be written as series of the following
form:

ξ(r, θ, t) = eipθ
∞∑

n=−∞
ξn(r)e(γ+in)t,

ψ(r, θ, t) = eipθ
∞∑

n=−∞
ψn(r)e(γ+in)t,

Xr(θ, t) = eipθ
∞∑

n=−∞
Xr

ne
(γ+in)t,

Xθ(θ, t) = eipθ
∞∑

n=−∞
Xθ

ne
(γ+in)t,

where i =
√
−1, p is an integer with p > 1, and γ = α + iβ with α and β real. To

simplify the notation, we define En
.
= e(γ+in)t+ipθ and then write the equation for the

vorticity from (4.1a) as

∞∑
n=−∞

(
(γ + in) +

νp2

r2

)
ξnEn =

∞∑
n=−∞

{
ν

r
(rξ′n)′ + κK(−p2Xθ

n + ipXr
n)

(
δ(r − 1)

r

)′

+ κK(ip3Xr
n − p2Xθ

n)
δ(r − 1)

r

}
En.(5.1)

Except for the stiffness K(t), all of the t- and θ-dependence is now encompassed by
the factor En. Note that ξn and ψn are functions of r, while Xr

n and Xθ
n are constants.

The primes in the equations denote derivatives with respect to r. If we take advantage
of the fact that the stiffness from (3.3a) can be rewritten as

K(t) = 1 − iτeit + iτe−it(5.2)

and then rearrange terms in the series in (5.1) and divide by En, we obtain
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−1

r
(rξ′n)′ +

(
(γ + in)

ν
+

p2

r2

)
ξn(5.3)

=
κ

ν

(
δ(r − 1)

r

)′ [
−p2

(
Xθ

n − iτXθ
n−1 + iτXθ

n+1

)
+ ip

(
Xr

n − iτXr
n−1 + iτXr

n+1

)]
+

κ

ν

δ(r − 1)

r

[
−p2

(
Xθ

n − iτXθ
n−1 + iτXθ

n+1

)
+ ip3

(
Xr

n − iτXr
n−1 + iτXr

n+1

)]
for all integer values of n. The equations for the remaining unknowns in (4.1b)–(4.1d)
do not involve K(t), and so for the nth coefficient functions we have

−1

r
(rψ′

n)′ +
p2

r2
ψn = ξn,

(γ + in)Xr
n = ipψn(1),

(γ + in)Xθ
n = −ψ′

n(1).

A more useful formulation of the problem is in terms of jump conditions across
the fiber. The delta function terms in (5.3) are nonzero only on the fiber, and so the
following two equations hold on either side of the fiber:

−1

r
(rξ′n)′ +

(
(γ + in)

ν
+

p2

r2

)
ξn = 0,(5.4a)

−1

r
(rψ′

n)′ +
p2

r2
ψn = ξn.(5.4b)

The fiber evolution equations hold on the fiber (at r = 1):

(γ + in)Xr
n = ipψn(1),(5.4c)

(γ + in)Xθ
n = −ψ′

n(1).(5.4d)

At the same time, the jump conditions connect the solutions on either side of the fiber
(see Appendix C):

[[ξn]] =
κ

ν

[
p2
(
Xθ

n − iτXθ
n−1 + iτXθ

n+1

)
− ip

(
Xr

n − iτXr
n−1 + iτXr

n+1

)]
,(5.4e)

[[ξ′n]] = − iκp(p2 − 1)

ν

(
Xr

n − iτXr
n−1 + iτXr

n+1

)
,(5.4f)

[[ψn]] = 0,(5.4g)

[[ψ′
n]] = 0,(5.4h)

where we denote the jump in a quantity q by [[q]] = q|r=1+ − q|r=1− . These jump
conditions were found in the same way as in [13, 22], by integrating the equations
for vorticity across the fiber. We point out that this system of equations cannot be
reduced to a Mathieu equation (see [11]).

6. Solution of the vorticity and stream function equations. The equa-
tions (5.4) from the previous section can be solved explicitly for each integer value of
n, both inside and outside the fiber. Due to (5.4c) and (5.4d), the character of the
solution will be different depending on whether the quantity (γ + in) is zero. This
will happen for n = 0 whenever γ = 0. We therefore solve the equations considering
two cases.
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6.1. Case (γ+in) �= 0. If we make the change of variables z2 = −r2(γ+in)/ν,
then (5.4a) turns into the Bessel equation

z2ξ′′n(z) + zξ′n(z) + [z2 − p2]ξn(z) = 0.

The appropriate solution, rewritten in terms of r, is [27]

ξn(r) =

{
bnJp(iΩnr) if r < 1 (inner),
anHp(iΩnr) if r > 1 (outer),

where Ωn
.
=
√

(γ + in)/ν is chosen as the square root with positive real part, Jp(z)
is the Bessel function of the first kind, Hp(z) = Jp(z) + iYp(z) is the Hankel function
of the first kind, and an and bn are arbitrary constants (see Appendix A).

The corresponding stream function is given by (see Appendix D)

ψn(r) =
1

2ipΩn

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

bnr
[
Jp−1(iΩnr) + Jp+1(iΩnr)

]
+ rp

[
anHp−1(iΩn) − bnJp−1(iΩn)

]
if 0 ≤ r < 1,

anr
[
Hp−1(iΩnr) + Hp+1(iΩnr)

]
− r−p

[
anHp+1(iΩn) − bnJp+1(iΩn)

]
if r > 1.

One can easily check that ψn(r) and ψ′
n(r) are continuous across the boundary and

that

ψn(1) =
1

2ipΩn

[
anHp−1(iΩn) + bnJp+1(iΩn)

]
,

ψ′
n(1) =

1

2iΩn

[
anHp−1(iΩn) − bnJp+1(iΩn)

]
.

Turning now to (5.4c) and (5.4d), we find the fiber position to be

Xr
n =

1

2νΩ3
n

[
anHp−1(iΩn) + bnJp+1(iΩn)

]
,

Xθ
n =

−1

2iνΩ3
n

[
anHp−1(iΩn) − bnJp+1(iΩn)

]
.

We can solve for an and bn from these equations to find

an =
νΩ3

n

Hp−1(iΩn)

(
Xr

n − iXθ
n

)
,

bn =
νΩ3

n

Jp+1(iΩn)

(
Xr

n + iXθ
n

)
.

We now substitute these expressions into the jump conditions (5.4e)–(5.4f) to get
the following system of equations:

0 = i

{
φ Ω3

n

[
Hp(iΩn)

Hp−1(iΩn)
− Jp(iΩn)

Jp+1(iΩn)

]
+ ip

}
Xr

n(6.1)

+

{
φ Ω3

n

[
Hp(iΩn)

Hp−1(iΩn)
+

Jp(iΩn)

Jp+1(iΩn)

]
− ip2

}
Xθ

n

+ iτp
(
Xr

n−1 −Xr
n+1

)
− τp2

(
Xθ

n−1 −Xθ
n+1

)
,
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0 = i

{
φ Ω4

n

[
2 − Hp+1(iΩn)

Hp−1(iΩn)
− Jp−1(iΩn)

Jp+1(iΩn)

]
+ 2p(p2 − 1)

}
Xr

n(6.2)

− φ Ω4
n

[
Hp+1(iΩn)

Hp−1(iΩn)
− Jp−1(iΩn)

Jp+1(iΩn)

]
Xθ

n

+ 2τp(p2 − 1)
(
Xr

n−1 −Xr
n+1

)
,

where we define φ as the grouping φ = ν2/κ. It is these last two equations, (6.1) and
(6.2), that determine the coefficients Xr

n and Xθ
n in the case when (γ + in) �= 0.

6.2. Case (γ + in) = 0. For this case, the vorticity equation becomes

r2ξ′′n(r) + rξ′n(r) − p2ξn(r) = 0,

whose appropriate solution is

ξo(r) =

{
bor

p if r < 1 (inner),
aor

−p if r > 1 (outer),

while the corresponding solution for the stream function is

ψo(r) =

⎧⎪⎪⎨
⎪⎪⎩

1

4p

(
bo −

ao
1 − p

)
rp − bo

4(1 + p)
r2+p if r < 1,

1

4p

(
bo

1 + p
− ao

)
r−p − ao

4(1 − p)
r2−p if r > 1.

One can easily check that ψo(r) and ψ′
o(r) are continuous across the boundary and

that

ψo(1) =
1

4p

[
ao

p− 1
+

bo
p + 1

]
,

ψ′
o(1) =

1

4

[
ao

p− 1
− bo

p + 1

]
.

Turning now to (5.4c) and (5.4d), we find that in this case, the above equations
reduce to ψo(1) = ψ′

o(1) = 0, which implies that ao = bo = 0. This means that
when (γ + in) = 0 we obtain the trivial solution ξo(r) ≡ 0 and ψo(r) ≡ 0. The jump
conditions (5.4e) and (5.4f) then give the system of equations

0 = ip2
(
Xθ

n − iτXθ
n−1 + iτXθ

n+1

)
+ p

(
Xr

n − iτXr
n−1 + iτXr

n+1

)
,(6.3)

0 = ip(p2 − 1)
(
Xr

n − iτXr
n−1 + iτXr

n+1

)
,(6.4)

which are used instead of (6.1)–(6.2) for the case (γ + in) = 0.

7. Natural modes for the unforced fiber. When there is no forcing applied
to the fiber, then τ = 0 and there is no need to look for a solution in the form of an
infinite series. Instead, we can consider a single mode by taking n = 0, for which the
problem reduces to the following single pair of equations for Xr and Xθ:

0 = i

{
φ Ω3

o

[
Hp(iΩo)

Hp−1(iΩo)
− Jp(iΩo)

Jp+1(iΩo)

]
+ ip

}
Xr(7.1)

+

{
φ Ω3

o

[
Hp(iΩo)

Hp−1(iΩo)
+

Jp(iΩo)

Jp+1(iΩo)

]
− ip2

}
Xθ,
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Fig. 7.1. Zero-level contours of D(Ωo;φ, p) for p = 3 and two values of φ. The solid lines
correspond to the real part and the dashed lines to the imaginary parts. Intersection points represent
the natural modes of oscillation of the fiber.

0 = i

{
φ Ω4

o

[
2 − Hp+1(iΩo)

Hp−1(iΩo)
− Jp−1(iΩo)

Jp+1(iΩo)

]
+ 2p(p2 − 1)

}
Xr(7.2)

−φ Ω4
o

[
Hp+1(iΩo)

Hp−1(iΩo)
− Jp−1(iΩo)

Jp+1(iΩo)

]
Xθ,

where Ω2
o = γ/ν = (α/ν) + i(β/ν) and φ = ν2/κ. Consequently, the above equations

can be rewritten as a 2 × 2, homogeneous, linear system

M
(
Xr

Xθ

)
= 0,

which has a nontrivial solution only if det(M) = 0. For notational convenience we
define the function D(Ωo;φ, p) = det(M). The roots of D(Ωo;φ, p) = 0, which is a
dispersion relation, correspond to the natural modes of oscillation of the immersed
boundary for a given set of parameters φ and p.

From the left plot of Figure 7.1, which corresponds to p = 3 and φ = 0.25, a
possible value of the natural response is (γ/ν) = (α/ν, β/ν) ≈ (−3.29, 2.16). The
right plot of Figure 7.1 shows that for φ = 0.08 the root is (α/ν, β/ν) ≈ (−5.15, 7.1)
instead. These roots are in dimensionless form, and the dimensional frequency γ is
obtained by multiplying these roots by μ/ρR2. Note that in both cases, the natural
mode of oscillation is stable (i.e., α is negative), as would be expected from an unforced
immersed fiber (see [26]).
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7.1. Collapse of the curves. The condition D(Ωo;φ, p) = 0 defines implicitly
the root

γ

ν
= F (φ, p)(7.3)

as a function of the parameters. This suggests that the same root can be obtained
with different values of damping ν and stiffness κ, provided the ratio φ = ν2/κ is held
constant.

We corroborated this with the numerical solution of the nonlinear equations
(3.2a)–(3.2e) for different combinations of (ν, κ) that yield the same value of φ. The
blob projection method described in [4] was used in these calculations, which solves
the IB problem using high-order regularized delta functions and fourth-order finite
differences and time stepping. We have chosen to use this approach (rather than the
IB method described in section 9) since the blob projection method affords higher
accuracy, particularly when φ is small.

The initial condition of the fiber was the unit circle augmented by a single p-mode
perturbation with amplitude ε, so that the fiber configuration can be written in polar
coordinates as

r(θ, t) = 1 + εB(t) cos(pθ) + O(ε2).

After each run, the amplitude B(t) was assumed to have the form B(t) = eαt[cos(βt)+
(α/β) sin(βt)] because this function has zero slope at t = 0 and it oscillates with
decaying amplitude. The values of (α, β) can then be estimated numerically using least
squares. These values were then compared with the roots of (7.3). This procedure
was repeated for several values of φ with perturbed modes p = 2, 3, and 4, and the
results are summarized in Figure 7.2.

The analytical results (plotted as solid lines) correspond very well with the nu-
merical calculations (plotted as points). Two simulations corresponding to different
combinations of ν and κ are performed for every φ. The observed values of α and
β corresponding to a given φ are nearly identical, so that the points cannot be dis-
tinguished visually in Figure 7.2. Consequently, φ is an appropriate parameter for
characterizing the fiber oscillations.

The correspondence between the analytical and computed results is very good
for most values of the parameters, except for relatively large values of φ. This is
mostly due to the fact that the blob projection method is implemented with periodic
boundary conditions in a box about twice as large as the fiber’s diameter. For large
values of φ, the diffusion is significant over the time scale of the runs, and the dynamics
are affected by the periodicity. Nonetheless, the results clearly show that different
values of (ν, κ) that yield the same φ give the same root.

7.2. The small viscosity limit. We consider the limit of small viscosity by
assuming a fixed value of the stiffness κ and small value of ν. It will be convenient
to define a natural response frequency by ωN

.
=
√
p(p2 − 1)/2, which is displayed in

the frequency plot in Figure 7.2 as a dashed line for comparison with the analytical
and computed results discussed in the preceding section. In the small viscosity case,
(7.3), whose roots represent the dispersion relation, can be expanded as a series in
powers of ν. The results show that the first few terms in the expansion of the natural
response of the fiber are

α = − p

2
√

2
ω

1/2
N κ1/4

√
ν +

(p3 − 3p2 − p + 1)

4
ν + · · · ,(7.4)
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Fig. 7.2. Roots γ = α + iβ of the dispersion relation D(Ωo;φ, p) = 0, plotted as scaled val-
ues of α and β versus φ. The analytical results are displayed as solid lines, while the numerical
approximations are plotted as points, with multiple points corresponding to simulations done using
different values of κ and ν corresponding to the same φ. The results are presented for initial fiber
perturbations corresponding to three different modes: p = 2, 3, and 4. The zero-viscosity (φ = 0)

limit, ωN (p) =
√

p(p2 − 1)/2, is also shown for comparison.

β = ωN

√
κ− p

2
√

2
ω

3/4
N κ1/4

√
ν − p(4p3 − 39p2 − 4p + 8)

64
√

2
ω

1/4
N κ−1/4ν3/2 + · · · .(7.5)

In the limit as ν → 0, these become α = 0 and β = ωN
√
κ, which is precisely the linear

dispersion relation found by other methods in [5] for a closed membrane in Euler flow.

It is also possible to compare the above expressions to the asymptotic expansions
derived in [26] for an unforced, horizontal fiber immersed in a viscous fluid. The nor-
mal mode of oscillation for the flat fiber initialized with a p-mode obeys the following
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to leading order:

α ∼ −2−7/4 ρ−3/4 μ1/2 K1/4
c p7/4 R−3/2 = −p

(
p3

27

)1/4 (
μ

ρR2

)1/2 (
Kc

ρR2

)1/4

,

β ∼ 2−1/2 ρ−1/2 K1/2
c p3/2 R−1 =

(
p3

2

)1/2 (
Kc

ρR2

)1/2

.

Substituting the nondimensional variables from (3.1) into (7.4) and (7.5), it is possible
to show that the parameter dependence in the first term in each of α and β is identical
to that in the expressions above, provided that we take ωo ≡ 1. We note that the
natural frequency of the flat fiber is different from ωN above due to the differences
in the geometry of the problems. Furthermore, the linear theory for the circular fiber
excludes the p = 1 mode, since to leading order this perturbation results only in a
translation of the fiber.

8. Stability of the periodically forced fiber. In Floquet stability theory, the
standard approach is to determine solutions with Re(γ) = α = 0, which correspond
to the boundary of the stability region. In general, we expect the coefficients in (6.1)
and (6.2) to decrease in magnitude as n increases, and so it is reasonable to truncate
the series expansions at some finite number of terms, say, −N ≤ n ≤ N (this is
an assumption that will be checked later on). Equations (6.1) and (6.2) are written
for n = ±1,±2, . . . ,±N , and (6.3) and (6.4) are written for n = 0, which results in
a linear system of dimension (4N + 4) × (4N + 4) for the unknown coefficients Xr

n

and Xθ
n.

8.1. The reality condition. In general, the coefficients arising from the solu-
tion to the linear system are complex-valued, but the position of the fiber must be a
real quantity. We therefore need to impose additional constraints to guarantee that
the Floquet expansion

Xr(t) =
∑
n

Xr
ne

int

is real. This will also allow the series to be written for positive index only. Conse-
quently,

X
r
(t) =

∑
n

X
r

ne
−int =

∑
n

X
r

−ne
int =

∑
n

Xr
ne

int = Xr(t),

which implies that

Xr
−n = X

r

n for every n.

This is the called the reality condition (see [11]), and it allows us to consider (6.1) and
(6.2) for strictly positive values of n, thereby eliminating the coefficients for n < 0.
The condition also implies that Xr

o = X
r

o, for use in (6.3) and (6.4) with n = 0. The
same reality condition applies to Xθ

n.

8.2. Formulation as an eigenvalue problem. Equations (6.1)–(6.2) now take
the form

0 = AnX
r
n + BnX

θ
n + τ

[
CnX

r
n−1 + DnX

θ
n−1 + EnX

r
n+1 + FnX

θ
n+1

]
.
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By setting the real part and the imaginary part of the equation to zero independently,
we can write the final system as

(D + τ C)v = 0,

where D and C are real-valued matrices, each of dimension (4N + 4)× (4N + 4). The

vector is v = [v0, v1, v2, . . . , vN ]
T
, where each component has four elements, vn =

[Re(Xr
n), Im(Xr

n),Re(Xθ
n), Im(Xθ

n)], with the difference now being that the reality
condition ensures that all solution components are real values. The matrices D and
C have the following block form:

D =

⎛
⎜⎜⎜⎜⎜⎝

D0 0 . . . 0
0 D1 0 . . . 0

0
. . .

. . .
. . .

...
... 0 DN−1 0
0 . . . 0 DN

⎞
⎟⎟⎟⎟⎟⎠ ,

C =

⎛
⎜⎜⎜⎜⎜⎝

0 C01 . . . 0
C10 0 C12 . . . 0

0
. . .

. . .
. . .

...
... CN−1,N−2 0 CN−1,N

0 . . . CN,N−1 0

⎞
⎟⎟⎟⎟⎟⎠ ,

where each element shown is a 4×4 matrix. The first row of each matrix corresponds
to n = 0 and is derived from (6.3)–(6.4).

An eigenvalue problem is formed by rewriting the system as

−D−1Cv =
1

τ
v,(8.1)

where the eigenvalue 1/τ must be real. Since the matrices have real entries, all
eigenvalues are either real or occur in complex conjugate pairs.

For a given value of the wavenumber p, as well as parameters ν and κ from (3.1),
the eigenvalue equation (8.1) yields a sequence of values for the forcing amplitude τ .
In practice, we have found that choosing N = 60 terms in the series expansions is
sufficient to ensure that the neglected coefficients are small (that is, the computed
eigenvalues do not change appreciably when N is taken any larger than 60). The
choices γ = 0 or γ = 1

2 i are known as the harmonic and subharmonic cases, re-
spectively, and any complex value of τ is discarded. These are the two cases that
correspond to real Floquet multipliers, e2πγ = e2π(α+iβ). When 0 < β < 1

2 on the
other hand, the Floquet multipliers are complex and always correspond to solutions
that are damped; hence, they are of no interest in our stability analysis.

The resulting harmonic and subharmonic eigenvalues correspond to physical modes
of oscillation of the fiber which are marginally stable. We can then vary the wave num-
ber p, and produce a plot of each real value of τ , which traces out the boundary of
the stability region of the linearized problem in parameter space. Furthermore, if we
concentrate on the range τ ≤ 1

2 , we need only consider stability boundaries that drop
below the curve τ = 1

2 .
Figures 8.1–8.3 depict the stability regions for various parameter values, with both

harmonic (H) and subharmonic (S) modes shown. The stability boundaries separate
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Fig. 8.1. Stability diagrams, depicting plots of the fiber amplitude τ as a function of (left) wave
number p, holding κ = 0.04; and (right) stiffness κ, holding p = 4. The other parameter values
are ν = 0.0002 and α = 0. The curves traced out by the individual points represent the stability
boundaries, and the regions above and inside each “tongue” correspond to unstable oscillations of
the linearized IB problem. Regions of instability corresponding to harmonic modes (with γ = 0)
are denoted “H” and are drawn with blue points, while the subharmonic modes (with γ = 1

2
i) are

denoted “S” and are drawn with red points. The dashed horizontal line corresponds to τ = 1
2
, and

only portions of the tongues lying below this line correspond to oscillations with positive stiffness.

parameter space into regions where the solution is stable and regions where it is
unstable. Because of their distinctive shape, the regions of instability are usually
referred to as “tongues.” The unstable tongues alternate between harmonic and
subharmonic modes, moving from left to right, with no overlap between the successive
tongues.

Figure 8.1 shows two views of the stability regions for ν = 0.0002: the first in
the p, τ -plane with κ held constant at 0.04, and the second in the κ, τ -plane with
p = 4. In both views, the tongue-like structure of the stability regions is apparent.
The first unstable mode occurring for κ = 0.04 is a p = 4 mode, which corresponds
to the left-most tongue that falls below the line τ = 1

2 . Only tongues that correspond
to integer values of the angular wavenumber p are physical. Notice in the right plot
that increasing the stiffness has a stabilizing influence in the sense that the tongues
migrate upward as κ is increased and therefore require higher-amplitude forcing in
order to generate parametric resonance.

Figure 8.2 demonstrates more clearly the influence of changes in the stiffness
parameter, by depicting the stability boundaries in the p, τ -plane for κ = 0.02, 0.04,
and 0.08. As κ is increased (corresponding to a stiffer fiber), the regions of instability
move towards the left, causing the wavenumber of the first unstable mode to decrease,
periodically moving in and out of the “physical” regime.

The effect of changes in viscosity for constant stiffness is investigated in Figure 8.3,
where plots for ν = 0.00005, 0.0002, and 0.001 are given for κ = 0.04. As viscosity
increases, the unstable regions migrate vertically upwards, so that the minimum value
of τ corresponding to a linear instability increases, and some modes that were unsta-
ble no longer lead to parametric resonance. As a result, larger-amplitude forcing is
necessary to cause onset of parametric resonance in fibers with larger viscosity. If ν
is taken large enough that all tongues lift above the τ = 1

2 line, then the system is no
longer subject to parametric resonance. These results are evidence of the fact that
viscosity has a stabilizing influence on the system.

In the limit as ν → 0, the tongues extend down to the p-axis, where they touch the
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line τ = 0, corresponding to unforced oscillations of the immersed fiber. Therefore,
the points where the tongues touch down in the ν = 0 limit represent the natural
modes of oscillation which were discussed in detail in section 7.
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Fig. 8.2. A series of three plots showing the impact of changes in the stiffness on the stability
boundaries in the p, τ-plane, with viscosity ν = 0.0002 and three different values of stiffness: κ = 0.02
(left), 0.04 (middle), and 0.08 (right).
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Fig. 8.3. A series of three plots showing the impact of changes in viscosity in the stability
boundaries in the p, τ-plane, with stiffness κ = 0.04 and three different values of viscosity: ν =
0.00005 (left), 0.001 (middle), and 0.005 (right).

9. Comparison with IB computations. In this section, we use several im-
mersed boundary computations to demonstrate the validity of the preceding Floquet
analysis. The numerical method is based on a straightforward discretization of the IB
equations in terms of velocity and pressure variables. An alternating direction implicit
(ADI) approach is used to apply the convection, diffusion, and forcing terms to ob-
tain an intermediate velocity field. The resulting velocity is then made divergence-free
through the use of a split-step pressure projection procedure. The standard cosine
approximation to the Dirac delta function is employed [20], which is smoothed over a
square box with side length of four fluid grid points. The resulting method is second-
order accurate in space, except for the approximate delta function interpolation which
limits the spatial accuracy to first order. The method is explicit and has first-order
accuracy in time. There are many variants of the IB method that increase both spa-
tial and temporal accuracy, but we have chosen instead to demonstrate the presence
of parametric resonance using this simplest and most common implementation. For
complete details of the numerical technique, refer to [20] or [24].

All computations were performed on an immersed boundary whose rest config-
uration is a circle, immersed in a periodic box of dimension 2.5 times the size of
the circular boundary. The analysis strictly applies only to an infinite fluid domain,
but we found that this domain size was large enough in practice to avoid significant
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Table 9.1

Parameters for the two resonant cases, one with a first unstable mode with angular wavenumber
p = 2, and the other with p = 4.

Case I Case II

κ = 0.5 κ = 0.04
ν = 0.004 ν = 0.00056
φ = 3.2 × 10−5 φ = 7.84 × 10−6

ρ = 1 ρ = 1
μ = 0.4 μ = 0.5
R = 0.2 R = 1
Kc = 125000 Kc = 40000
ωo = 2500 ωo = 900
τ = 0.45 τ = 0.45
p = 2 unstable p = 4 unstable

Case I Case II
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Fig. 9.1. Stability diagrams for Case I (κ = 0.5, ν = 0.004) and Case II (κ = 0.04, ν = 0.00056).

interference from neighboring periodic copies. The fluid domain is divided into a
64 × 64 grid with 192 immersed boundary points, ensuring that there is significant
resolution of the boundary within each fluid grid cell. Finer grid computations were
also performed with a 128×128 fluid grid and 384 fiber points to validate the results.
The time step was selected to be well within the stability restriction imposed by the
explicit method.

We chose to focus on two specific sets of parameters for which the stability plots
suggested different resonant p-modes. The parameters are listed in Table 9.1, and
the corresponding stability regions are displayed in Figure 9.1. In Case I, the first
unstable tongue corresponds to a harmonic mode of oscillation at p = 2, while the
lowest-wavenumber unstable mode for the second case is p = 4 (also harmonic).

We next present numerical evidence that supports the existence of these two
instances of parametric resonance. In both cases, the immersed boundary is initially
in the shape of a circle of radius R with a radial perturbation of the form r =
R(1 + 0.05 cos(pθ)). The results of a given simulation are reported as plots of r̂p(t),
which represents the amplitude of the p-mode of oscillation in the fiber versus time,
and is calculated as follows:

1. we convert the (x, y) position of each point on the immersed fiber to radial
coordinates;
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Fig. 9.2. Amplitude of the unforced immersed boundary for Case I (p = 2) and Case II
(p = 4). The dashed curve is an approximate fit to the computed results using a function of the
form eαt cos(βt).

2. using cubic splines, we interpolate the points representing the fiber positions
onto a set of points that are equally spaced in θ;

3. we calculate r̂p(t) = FFTθ(r(θ, t)), the fast Fourier transform of the radius
in θ, which then yields the amplitude of the desired p-mode.

First, we present plots of the unforced solution (with τ = 0) in Figure 9.2 that
represent the natural mode of oscillation for the fiber in each case. The rate of decay
and frequency of the natural modes of oscillation for the unforced fiber are as follows:

Case I: α = −0.066, β = 1.071,
Case II: α = −0.020, β = 1.016.

When the immersed boundary is then forced internally at a frequency equal to the
resonant frequency suggested by the plots in Figure 9.1 (i.e., ωo = 2500 in Case I and
ωo = 900 in Case II), amplitude of oscillation grows far beyond the initial amplitude of
0.05 cm. The motion never actually becomes unstable, but the fiber instead exhibits
sustained, large-amplitude oscillations (see Figure 9.3 and compare to Figure 9.2).

In order to verify that this behavior is truly arising from a parametric resonance,
we consider changes to either κ or ν that move the resonant tongue in the eigenvalue
plot outside the range of parameters being considered. The results are summarized in
Figures 9.4 and 9.5. the As the viscosity is increased, the oscillations either decrease
in amplitude or decay in time, though not at as rapid a rate as for the unforced case.
Because an increase in viscosity acts to raise the “tongues” in the eigenvalue plot, this
is precisely the behavior we would expect.

Alternately, if we increase or decrease the value of κ in relation to the resonant
value, the resulting oscillations are pictured in Figure 9.5. The amplitude of oscillation
for the resonant mode has a maximum value close to the resonant value of κ, which
represents the movement of the resonant tongues either to the left or to the right as
κ is increased or decreased, respectively.

The effect of varying the stiffness perturbation amplitude τ is displayed in Fig-
ure 9.6 for Case II. For τ ≤ 0.40, there is no longer a sustained oscillation in the fiber,
and as τ is reduced the amplitude of the fiber motion decreases.

At this point, it is important to emphasize that in our numerical simulations,
resonance is indicated by sustained, large-amplitude motions, rather than any actual
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Case I κ = 0.5, ν = 0.004 Case II κ = 0.04, ν = 0.00056
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Fig. 9.3. Amplitude of the resonant p-mode, when the immersed boundary is forced at the

resonant frequency (p = 2 for Case I and p = 4 for Case II). Both cases display a sustained,
large-amplitude oscillation.

Case I
ν = 0.005 (resonant) ν = 0.01 ν = 0.02
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Case II
ν = 0.00056 (resonant) ν = 0.0022 ν = 0.0044
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Fig. 9.4. Amplitude of the resonant p-mode in Cases I and II, as ν is increased. The stabilizing
influence of viscosity is exhibited by the inability of the fiber to sustain large-amplitude oscillations
for even small increases in the viscosity.

instability (i.e., unbounded oscillations). This discrepancy arises from both numerical
errors and simplifications to the model, namely:

• the numerical scheme is only first order in space and time and introduces a
significant level of artificial viscosity;

• although the fiber force term in the linearized Navier–Stokes equations was
also linearized in the forgoing analysis, it is actually nonlinear, which acts to
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Case I
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Case II
κ = 0.035 κ = 0.040 (resonant)
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Fig. 9.5. Amplitude of the resonant p-mode in Cases I and II, as κ is varied. When the
stiffness is taken either smaller or larger than the resonant value, the amplitude of the oscillations
decreases to the point that they can no longer be sustained.
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Case II
τ = 0.45 τ = 0.40
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Fig. 9.6. Amplitude of the resonant p-mode in Case II, as the forcing amplitude, τ , is varied.
As the forcing is reduced, the amplitude of the fiber oscillations also diminishes.

stabilize the numerical results;
• the analysis assumed an infinite fluid domain, while our numerical simulations

use periodic boundary conditions. Discrepancies owing to interference from
periodic copies of the immersed fiber are therefore unavoidable, though we
have attempted to choose the size of our computational domain large enough
so that these errors are minimized.

A further symptom of these errors is the fact that the stability boundaries in
parameter space demonstrated in the simulations are not nearly as sharp, or located
in exactly the same locations, as indicated by the plots in section 8. Nonetheless,
the correspondence between analytical and numerical results is still quite convincing
evidence of the presence of parametric resonance in the linearized IB problem.

The final set of results indicates what transpires when a mode other than the
resonant mode is excited initially. We restrict ourselves to Case II and initialize the
fiber position with modes having wavenumber p = 2 or p = 3, while still forcing the
stiffness through a p = 4 mode. The other parameters remain the same as in the
resonant case. Figure 9.7 shows that in both cases, the given 2- and 3-modes do
not grow; however, energy transfers over time into the resonant p = 4 mode which
eventually dominates the fiber oscillation.
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Fig. 9.7. The amplitude of various fiber modes in Case II when wavenumbers p = 2 and
p = 3 are excited initially instead of the p = 4 mode. Numerical errors give rise to phase-shifted
oscillations which, when combined linearly with the initial conditions, perturb the p = 4 mode and
hence feed energy into the resonant mode over time.

10. Conclusions. Floquet analysis has proven to be an extremely useful tool
in examining parametric resonance and the stability behavior of a wide variety of
flows involving interfaces and fluid-structure interaction. In this paper, we study
parametric resonances arising from an elastic membrane immersed in a viscous fluid
in two dimensions, which is driven by periodic variations in the stiffness parameter
of the elastic material. The underlying mathematical model, known as the immersed
boundary formulation, captures not only the flow-induced deformations of the elastic
membrane but also the influence of the immersed structure on the surrounding fluid
flow. To our knowledge, this is the first study of its kind that captures this two-way
interaction between fluid and fiber in a parametrically forced system.

Our Floquet analysis leads to an eigenvalue problem that can be solved in order
to determine the stability boundaries in parameter space that separate the regions
in which the motion is stable from those in which it is unstable. Using asymptotic
expansions of the resulting solutions, we demonstrate that our results are consistent
with previous analyses of unforced immersed fibers. The decay rates and frequencies
of oscillation for the forced system are also shown to match closely those found in
full numerical simulations of the fluid-fiber system for small-wavenumber perturba-
tions. We also present numerical results that verify the existence of resonances in
parametrically forced immersed boundaries.

This study opens the door for several avenues of further investigation. First of
all, while we have demonstrated the existence of parametric resonances numerically in
periodically forced immersed fibers, we have yet to find a biological system in which
the parameters lie within the unstable regime. In the heart, for example, the muscle
fiber stiffness appears to be too small to lead to parametric resonance, according to
our analysis. However, we intend to investigate other biological systems with different
parameter ranges to determine if resonances are possible.

There are also several natural extensions to the analysis that would allow us to
investigate much more interesting fiber dynamics. For example, introducing a spatial
dependence in the stiffness, K(s, t), would better mimic biological systems in which an
active fiber is pulsed via a wave of contraction that travels around the fiber. However,
this form of the stiffness complicates the Floquet analysis significantly by coupling the
various fiber modes, and hence would require an extension of our analytical technique.
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We also intend to investigate the use of optimal control to see whether it is possible
to eliminate parametric resonances by introducing an additional periodic forcing term
in the system.

Appendix A. Some useful Bessel function formulas. The following identi-
ties are taken from [27] and [1]:

Jp(z) =
z

2p
(Jp−1(z) + Jp+1(z)),(A.1)

J ′
p(z) =

1

2
(Jp−1(z) − Jp+1(z)),(A.2) ∫

zp+1Jp(az)dz =
zp+1

a
Jp+1(az),(A.3) ∫

z1−pJp(az)dz =
−z1−p

a
Jp−1(az).(A.4)

Equations (A.1)–(A.4) are written for the Bessel function of the first kind, Jp(z), but
are also valid for the various other Bessel functions, Yp(z), Hp(z), etc.

Appendix B. Proof of Claim 1.

Claim 1. Given the expansions in (3.3a) and (3.3b),

(ẑ · ∇ × f (0)) = 0 and

(ẑ · ∇ × f (1)) = K
(
Xθ

ss + Xr
s

) (
δ(r − 1)

r

)
r

−K
(
Xr

sss −Xθ
ss

) δ(r − 1)

r
.

Proof. Since

(ẑ · ∇ × f) = −ẑ ·
∫ 2π

0

(KXs)s ×∇δ(x − X) ds

= −
∫ 2π

0

[ẑ × (KXs)s] · ∇δ(x − X) ds,

we have that (3.3a)–(3.3b) imply that

(ẑ · ∇ × f (0)) = −
∫ 2π

0

[ẑ × (K(t)r̂s)s] · ∇δ(x − X(s, t)) ds

= −K(t)

∫ 2π

0

[ẑ × r̂ss] · ∇δ(x − X(s, t)) ds

= −K(t)

∫ 2π

0

d

ds
δ(x − X(s, t)) ds = 0.

We also have that

(ẑ · ∇ × f (1)) = −
∫ 2π

0

[
ẑ × (KX(1)

s )s

]
· ∇δ(x − X(0)) ds

+

∫ 2π

0

{[
ẑ × (KX(0)

s )s

]
· ∇

}(
X(1) · ∇

)
δ(x − X(0)) ds(B.1)

= I1 + I2.
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The second term can be simplified:

I2 = K

∫ 2π

0

(
X(1) · ∇

){[
ẑ × X(0)

ss

]
· ∇

}
δ(x − X(0)) ds

= K

∫ 2π

0

(
X(1) · ∇

) d

ds
δ(x − X(0)) ds

= −K

∫ 2π

0

X(1)
s · ∇δ(x − X(0)) ds,

so that so far we have that (B.1) is

(ẑ · ∇ × f (1)) = −K

∫ 2π

0

[
ẑ × X(1)

ss + X(1)
s

]
· ∇δ(x − X(0)) ds.

Now it is convenient to write X(1) in polar coordinates

X(1) = Xr(s, t)r̂(s) + Xθ(s, t)θ̂(s),

so that

ẑ × X(1)
ss + X(1)

s = −
(
Xθ

ss + Xr
s

)
r̂ +

(
Xr

ss −Xθ
s

)
θ̂.

Now we can write

(ẑ · ∇ × f (1)) = K

∫ 2π

0

[
Xθ

ss + Xr
s

]
r̂ · ∇δ(x − X(0)) ds

− K

∫ 2π

0

[
Xr

ss −Xθ
s

]
θ̂ · ∇δ(x − X(0)) ds.

The last term can be integrated by parts and we arrive at

(ẑ · ∇ × f (1)) =

∫ 2π

0

K
(
Xθ

ss + Xr
s

)
r̂ · ∇δ(x − X(0)) ds

−
∫ 2π

0

K
(
Xr

sss −Xθ
ss

)
δ(x − X(0)) ds.

If we now write

δ(x − X(0)) =
δ(r − 1)δ(θ − s)

r
,

we get

(ẑ · ∇ × f (1)) =
[
K
(
Xθ

ss + Xr
s

)]
(θ, t)

(
δ(r − 1)

r

)
r

−
[
K
(
Xr

sss −Xθ
ss

)]
(θ, t)

δ(r − 1)

r
.

Appendix C. Jump conditions. The derivation of the jump conditions for
vorticity will make use of the following result.
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Claim 2. In the sense of distributions

r

(
δ(r −R)

r

)′
= δ′(r −R) − δ(r −R)

R
.

Proof. Let φ(r) be a smooth function. Then

∫
φ(r) r

(
δ(r −R)

r

)′
dr = −

∫
(rφ(r))r

(
δ(r −R)

r

)
dr

= −
∫ (

φ′(r) +
φ(r)

r

)
δ(r −R) dr

= −φ′(R) − φ(R)

R
.

The result follows.
The jump conditions for an equation of the form

−1

r
(rξ′)′ +

(
(γ + in)

ν
+

p2

r2

)
ξ = A

(
δ(r − 1)

r

)′
+ B

(
δ(r − 1)

r

)
,

where A and B are independent of r, can be derived as follows. We first multiply the
equation by r:

−(rξ′)′ +

(
(γ + in)

ν
r +

p2

r

)
ξ = Ar

(
δ(r − 1)

r

)′
+ Bδ(r − 1),

and use the claim to write it as

−(rξ′)′ +

(
(γ + in)

ν
r +

p2

r

)
ξ = Aδ′(r − 1) + (B −A)δ(r − 1).

We now integrate from 1 − ε to some point r to get

−
[
rξ′(r)−(1−ε)ξ′(1−ε)

]
+

∫ r

1−ε

(
(γ + in)

ν
q +

p2

q

)
ξ(q) dq = Aδ(r−1)+(B−A)H(r−1).

(C.1)

We can use (C.1) in two ways. First, set r = 1 + ε and take the limit ε → 0:

− [[ξ′]] = (B −A).(C.2)

Second, we divide (C.1) by r, integrate from 1 − ε to 1 + ε, and let ε → 0 to get

− [[ξ]] = A.(C.3)

Equations (C.2)–(C.3) are the two jump conditions.

Appendix D. Solution of the stream function equation. In this section
we describe the method for finding the solution of the stream function equation

−1

r
(rψr)r +

p2

r2
ψ = ξ(r),
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where ξ(r) is given by

ξ(r) =

{
bJp(iΩnr) if r < 1 (inner),
aHp(iΩnr) if r > 1 (outer).

The general solution may be written as

ψ(r) =

∫ ∞

0

ξ(r)G(r, z)dz.

Here, the Green’s function G(r, z) is the solution of

−1

r
(rGr)r +

p2

r2
G = δ(r − z).(D.1)

Multiplying this equation by r, integrating from z − ε to z + ε, and taking the limit
ε → 0, we find that G(r, z) satisfies the jump conditions

[[G]] = 0 and [[Gr]] = −1.

Since solutions of equation (D.1) are of the form rp and r−p, we have that

G(r, z) =
z

2p

⎧⎪⎪⎨
⎪⎪⎩

rp

zp
if r < z,

zp

rp
if r > z.

The stream function is then found by piecewise integration. For the interior
solution, r < 1, we obtain

ψ(r) =
b

2prp

∫ r

0

Jp(iΩnr
′)(z)p+1 dz +

brp

2p

∫ 1

r

Jp(iΩnr
′)(z)1−p dz

+
arp

2p

∫ ∞

1

Hp(iΩnr
′)(z)1−p dz

=
br

2ipΩn

[
Jp−1(iΩnr) + Jp+1(iΩnr)

]
+

rp

2ipΩn

[
aHp−1(iΩn) − bJp−1(iΩn)

]
,

making use of the identities (A.3) and (A.4). The solution for r > 1 is found in the
same way.
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DYNAMICS IN A ROD MODEL OF SOLID FLAME WAVES∗

J. H. PARK† , A. BAYLISS† , AND B. J. MATKOWSKY†

Abstract. We consider gasless solid fuel combustion in a cylinder of radius R̃, associated with
the SHS (self-propagating high-temperature synthesis) process, which employs combustion waves
to synthesize materials. A powder mixture of reactants is cold pressed into a sample, typically a
cylinder, and ignited at one end. A high-temperature combustion wave then propagates along the
sample, converting the unreacted powder into the desired product. It has recently become popular
to model systems governed by partial differential equations as an array of interacting oscillators.
Here, we extend this approach by considering an array of interacting rods, each of which supports
propagating waves. Thus, we employ an array of interacting one-dimensional (1D) rods connected
via heat transfer. The heat transfer terms correspond to a discretization of the transverse Laplacian.

Both the full 3D model and the rod model allow for a uniformly propagating planar combustion
wave. The dispersion relation for this solution is determined for both models and shown to be
equivalent when certain parameters in the two models are identified. The rod model is able to describe
a number of the features of the 3D model, thus allowing numerical simulations with significantly
reduced computational resources. In this paper we consider a rod model consisting of an outer ring
of three rods equally spaced along the ring, together with an axial rod. Clearly, this limits the 3D
modes of wave propagation which can be described, and the results below have to be considered
within this basic limitation. The 3/1 model admits analogues of spin and radial modes which are
known to exist experimentally and as solutions of the 3D model. We propose that the new modes of
solution behavior that we find are also related to modes of the 3D model.

We determine solution behavior as a function of R, the nondimensionalized cylindrical radius.
We consider three cases characterized by the Zeldovich number Z = N(1−σ)/2, where N is a nondi-
mensionalized activation energy and σ is the ratio of the unburned to the burned temperature. For Z
sufficiently small, the uniformly propagating planar solution is stable to planar, i.e., rod independent,
perturbations. In this case, analysis of the dispersion relation predicts that for sufficiently small and
sufficiently large R, only the uniformly propagating solution is stable. Spin modes, seen in experi-
ments as hot spots spinning periodically around the cylinder as the wave propagates, occur for small
R, and radial modes, periodically oscillating solutions independent of the cylindrical angle, occur for
larger R. We find analogues of these modes for the rod model and describe the transition from spin
to radial modes via a family of quasiperiodic (QP) modes, manifested by periodic variations in the
temperature and rotation speed of the spot.

For a larger value of Z, the uniformly propagating solution is unstable to planar perturbations.
In this case, we find that for sufficiently small values of R, the singly periodic pulsating planar (PP)
solution is the only stable solution. For larger values of R, there is bistability between PP solutions
and spin solutions. As R increases further, both solutions lose stability, and the only stable solution is
a QP mode. This mode is a combination of spin and radial behavior. Unlike the smaller Z case, stable
radial solutions are not found. As R increases, the two generator frequencies of the QP solutions
converge to the dominant frequency of the PP solution. In the time domain the solution in each rod is
approximately the PP solution on intermediate time scales, with a long time envelope corresponding
to the small difference between the two generator frequencies. There is a phase difference between
adjacent outer rods which is essentially constant over intermediate time scales, but which varies over
longer time scales. The intermediate time scale increases as R increases. Thus, we find QP spin-like
behavior which on intermediate time scales appears as a spinning manifestation of the PP solution.
We refer to this behavior as spinning PP (SPP) behavior.

We also consider a yet larger value of Z. We find a PP solution which is now period doubled.
In addition, we find spin and QP spin solutions as before. We also find an interval in R where
spinning-type solutions reverse direction in a periodic or QP fashion.

Key words. combustion wave dynamics, self-propagating high-temperature synthesis, solid
flames
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1. Introduction. We consider modes of solid flame propagation associated with
the SHS (self-propagating high-temperature synthesis) process of materials synthesis.
In this process reactants are ground into a powder, cold pressed into a solid sample,
typically a cylinder, and ignited at one end. Synthesis ensues as a high-temperature
self-sustaining combustion wave propagates through the sample, converting reactants
to products. When gas plays no significant role in the process, the resulting gasless
combustion wave is referred to as a “solid flame” [12]. The SHS process enjoys a
number of advantages over conventional technology, in which the sample is placed
in a furnace and “baked” until it is “well done.” The advantages include (i) simpler
equipment; (ii) significantly shorter synthesis times; (iii) greater economy, since the
internal energy of the chemical reactions is employed rather than the costly external
energy of the furnace; (iv) greater product purity, due to volatile impurities being
burned off by the very high temperatures of the propagating combustion wave; and (v)
no intrinsic limit on the size of the sample to be synthesized, as exists in conventional
technology.

In many instances, synthesis does not proceed in a uniform manner. Rather,
nonuniform structures appear in the synthesized samples, corresponding to nonuni-
formly propagating combustion waves. A variety of dynamical modes of propagation
have been found both from analysis and computations (see, e.g., [1, 2, 7, 8, 10, 12]),
including planar pulsating (PP) modes, in which waves independent of the radial
and angular coordinates, r̃ and ψ, exhibit time periodic oscillations; spinning modes,
where one or more hot spots rotate periodically around the cylindrical axis as the
wave propagates, so that a helical pattern is visible on the cylindrical surface; and
radial modes, where a periodically oscillating wave depends on r̃ but not ψ, i.e., there
are radial pulsations as the wave propagates axially. We note that it is difficult to
visually determine the internal structure of spin and radial waves, as only the surface
of the sample is visible. The internal structure can only be ascertained from a dissec-
tion of the synthesized product in controlled experiments. Thus, it is useful to obtain
information on these modes from computations.

We consider solid flame waves in a cylindrical geometry. A full simulation of this
problem would require three-dimensional (3D) computations. In order to reduce the
required computational resources, we introduce a simplified model consisting of an
array of 1D rods aligned along the cylindrical axis and connected to each other via
heat transfer. The model simulates the 3D sample, but with coarse angular and radial
grids. It has recently become popular to model systems governed by partial differential
equations using an array of interacting oscillators. Here, we extend this approach by
considering an array of interacting rods, each of which supports propagating waves.
Our model generalizes the model introduced in [1], where surface spin modes were
studied via a discrete number of interacting layers on the surface of the cylinder.
In particular, spin modes were identified as pulsating solutions in each layer with
a constant phase difference between adjacent layers. In this paper we consider a
3/1 model in which three equally spaced outer rods are located on the surface of
the cylinder and an axial rod is located on the axis. All rods are connected to one
another via heat transfer. This very simple rod model clearly limits the 3D modes
that can be described. For example, it does not allow for a description of multiheaded
spin solutions. However, it does allow an examination of the behavior of one-headed
(one rotating hot spot) spins for large R, the nondimensional cylindrical radius. In
addition, it allows the description of radial waves and of spin-like and radial-like
quasiperiodic (QP) waves.
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Since the activation energy of the reaction is typically large, the region between
the burned and unburned material is generally very thin. Therefore, the reaction term
is sometimes replaced by a δ-function of appropriate strength. This is referred to as the
reaction sheet approximation. The resulting temperature profile is continuous, though
its derivative is discontinuous at the reaction site (the site of the δ-function), which
separates the burned from the unburned region. Here, we employ the distributed
Arrhenius reaction term. We will use the descriptive term front to describe the thin
region separating the burned and unburned regions.

A key parameter in describing solution behavior is the Zeldovich number Z =
N(1 − σ)/2, where N is a nondimensionalized activation energy and σ = T̃u/T̃b,
where T̃u and T̃b are the unburned and adiabatic burned temperatures, respectively.
Both the full 3D model and the rod model admit a uniformly propagating solution.
In the rod model it is characterized by a uniformly propagating combustion wave in
each rod, all propagating in phase. For all values of R the uniform solution loses
stability to planar, i.e., rod independent, perturbations at a critical value Zc, leading
to a planar pulsating (PP) solution, characterized by a pulsating wave in each rod, all
propagating in phase. In the reaction sheet approximation, Zc = 2+

√
5 (see [11]). For

Arrhenius kinetics as considered here, Zc is slightly different. The dispersion relations
for the uniformly propagating solution of the full 3D model in the reaction sheet
approximation and of the rod model are shown to be equivalent when appropriate
parameter identifications are made.

We consider solution behavior for selected values of Z, as R increases. The
parameter R is technologically important, as the objective often is to synthesize large
samples. We determine detailed solution behavior as a function of R for three values
of Z, one less than Zc and two greater than Zc. The largest value of Z corresponds
to the case when the PP solution is period doubled.

Preliminary results for Z < Zc were presented in [13]. It was shown that only
uniformly propagating solutions are found for small values of R (R < Rsp). For R >
Rsp, stability is transferred to a family of spin modes, characterized by periodically
pulsating waves of period T in each rod, with a constant (T/3) phase difference
between adjacent outer rods. The spin modes lose stability above R = Rs. For large
R (R > Rr) there exist radial modes, characterized by pulsating propagating waves
in each rod, with the oscillations in the outer rods being in phase with each other but
out of phase with the axial rod. Radial modes lose stability below R = Rr > Rs. The
transitions at Rs and Rr are supercritical Hopf bifurcations. As R increases above Rs

or decreases below Rr, a new frequency enters, and as R increases in Rs < R < Rr,
a family of QP modes was found which continuously evolved from spin-like to radial-
like character. The QP solutions are combinations of radial and spin modes, with
the radial component entering with zero amplitude as the spin modes lose stability at
R = Rs. Similarly, the spin component enters with zero amplitude when the radial
mode loses stability at R = Rr. Depending on R, two different types of QP modes
were found. For R near Rs the QP modes are characterized by spin behavior for the
outer rods; i.e., the rods always fire in a fixed order, though there is a modulation
in both the firing amplitude as well as the interval between successive firings. For R
near Rr where radial behavior predominates, while there is still a modulation in the
amplitude of the firings, the outer rods no longer fire in a fixed order. The former
behavior can be described as spin-type QP behavior, while the latter are nonspin QP
modes.

It is known that as Z increases the uniformly propagating solution becomes un-
stable and stable PP modes exist. As Z increases further, the PP solution undergoes
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a bifurcation from singly periodic to doubly periodic (2T ) [5]. We have considered two
values of Z > Zc, ZT and Z2T . For Z = ZT the PP solution is singly periodic, while
for Z = Z2T the PP solution is period doubled. For Z = ZT , stable PP solutions are
found for R < Rp. Spin modes are found for Rsp < R < Rs, where the same notation
is used for the spin mode boundary Rs, for both values of Z, though the numerical
values are different. We note that Rsp < Rp, so that there is a region of bistability
between the pulsating planar and spin modes. Spin modes lose stability at R = Rs

where stability is transferred to a family of QP solutions. No further transitions are
found for the range of values of R considered. In particular, for Z > Zc we do not
find stable radial solutions. Furthermore, all QP solutions found for this value of Z
are spin-type QP solutions. However, examination of the frequency content of the QP
solutions shows that their spectra are generated by two distinct generator frequencies.
By examining the behavior associated with each of these frequencies, we show that
the QP modes are combinations of spin and radial behavior as in the Z < Zc case.
Calling these frequencies fsp and fr, we find that as R increases, the two frequencies
coalesce, i.e., fsp − fr → 0. Furthermore, the limiting frequency is the dominant
frequency of the PP solution, fp. We note that since the equations are autonomous,
the term PP solution encompasses a family of solutions differing from each other by a
constant phase shift in time. For large values of R, the QP solutions exhibit spin-like
behavior, where for each rod the solution is approximately periodic over intermediate
time scales which increase as R increases, with a period corresponding to the period
of the PP solution and with a long period modulation in amplitude and phase cor-
responding to the difference frequency fd =| fsp − fr |. The amplitude modulation
decays to 0 as R → ∞. There is a phase difference between adjacent outer rods which
is essentially constant on intermediate time scales, but which varies over longer time
scales. The phase modulation does not vanish as R → ∞. The solution remains QP,
though the quasiperiodicity is manifested only by a persistent modulation in the phase
difference between temperature maxima of adjacent rods over long time scales. These
time scales become infinite as R → ∞. Thus, for large R we find an approximate
spin mode where the behavior in each rod, over intermediate time scales, is close to
that of an appropriately phase shifted PP solution. That is, the solution behaves
as a multidimensional form, specifically a spinning form, of the 1D pulsating planar
solution. We refer to this behavior as a spinning form of the PP (SPP) solution.

We have not traced the behavior for Z = Z2T in as much detail. Analogous to
the case for Z = ZT , we find that for small values of R only PP solutions are found,
with the PP solution being 2T . As R increases, we find periodic and QP spin modes.
We note that the periodic spin modes are singly periodic. The dynamics of the spin
modes do not appear to be affected by the period doubled nature of the pulsating
planar solution, i.e., by the presence of the subharmonic in the PP mode. The QP
spin mode is a combination of a spin and radial mode as is the case for smaller values
of Z.

As R increases, we find QP spin modes where a subharmonic of one of the gener-
ator frequencies develops. These are spin modes which have the character of period
doubled solutions; i.e., the front temperature exhibits a high temperature firing fol-
lowed by a low temperature firing. There is also an interval of apparently chaotic
behavior as R is increased further. Beyond a critical value of R we find periodic
direction reversing modes which exhibit the character of both T and 2T solutions. In
these modes the outer rods fire in a clockwise sequence and then a counterclockwise
sequence. If the outer rods are numbered 2, 3, and 4, the rods fire in the sequence 324
followed by 423, with this behavior repeated periodically. Thus, the direction of spin
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reverses periodically, and two of the rods (in this case rods 3 and 4) fire successively.
The successive firings are at different amplitudes, while the intermediate rod (rod 2)
always fires at the same amplitude. Thus, rod 2 and the axial rod exhibit singly peri-
odic behavior, while the remaining two outer rods exhibit a period doubled behavior
with firings at two different amplitudes within each cycle. Increasing R further leads
to QP direction reversing modes.

Dynamical modes of solid fuel combustion were studied in [2] for the case that
burning was confined to the surface. We showed that spin modes evolved into QP
spins as R increased, as occurs in our rod model. The transition from spin modes to
QP spin-type modes was accompanied by an increasing localization of the hot spots
as R increased, thus leading to nearly planar behavior over a large fraction of the
front on the cylindrical surface.

Three-dimensional computations of spinning modes are presented in [7, 8] for
adiabatic combustion with Z > Zc. Generally, the computational requirements for
full 3D computations preclude the detailed, high resolution, studies presented here.
Results were presented for one-headed spins, exhibiting both a rigid rotation of the hot
spot, i.e., a traveling wave in the angular coordinate, and variable spot behavior where
the spot exhibits a variability in brightness, size, and speed (possible QP behavior).
Furthermore, the amplitude of the pulsations on the axis increased with R. These
results are qualitatively similar to the results for the simplified rod model presented
here. Furthermore, we identify the QP behavior as due to an interaction between spin
and radial modes and demonstrate that axial pulsations increase as the amplitude of
the radial component increases. This is a different mechanism for the transition to
quasiperiodicity than that observed for surface combustion [2], where radial modes
are not present. The mechanism identified for surface combustion was the increasing
localization of the spot, leading to nearly uniform behavior over a large portion of the
front, together with the fact that, for the parameters considered, the uniform solution
is unstable. The spot extends radially into the sample, and even if it is localized on
the surface, it will not necessarily be localized in the interior. Thus, the breakdown
of periodic spins is due not to localization, but rather to the interaction of spin with
radial modes. A preliminary analysis of the nature of the quasiperiodicity in three
dimensions is presented in [13].

Since all the results presented in this paper are for the 3/1 rod model, it is still an
open question as to which dynamical behaviors that we find are qualitatively similar
to those which would be observed in the full 3D problem. While this model does not
allow for a description of multiheaded spin modes, it does allow for a description of
modes involving one hot spot. As shown in [2] for surface combustion, such modes may
persist stably for relatively large values of R. Spin, radial, and QP spin modes which
are combinations of spin and radial modes are found for models involving a larger
number of rods, suggesting that this behavior is not an artifact of this particular
rod model. In addition, SPP behavior is observed for more extensive rod models,
thus suggesting that such behavior would also be observed in the continuous system.
However, this has yet to be verified.

2. The mathematical model. We consider a model consisting of an array of
1D rods coupled via heat transfer. We denote dimensional quantities by .̃ We also
employ this notation for the mass fraction, even though it is nondimensional, in order
to distinguish it from the normalized mass fraction employed in the nondimensional
model. We consider a configuration with three rods symmetrically located on a cylin-
drical surface of radius R̃ and one rod located on the cylindrical axis. A similar model
was employed in [1] to simulate the case when burning is confined to the surface of
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the cylinder.
Let T̃i and Ỹi be the temperature and mass fraction, respectively, of a deficient

component of the reaction in rod i. Suppose that rod 1 is located on the cylindrical
axis, while rods 2, 3, and 4 are symmetrically located on r̃ = R̃. For i = 2, 3, 4 we
have

∂T̃i

∂t̃
= λ̃

∂2T̃i

∂z̃2
+ q̃W̃ (T̃i, Ỹi) − α̃ψ(T̃i − T̃i+) − α̃ψ(T̃i − T̃i−) − α̃ri1(T̃i − T̃1),(1)

∂Ỹi

∂t̃
= −W̃ (T̃i, Ỹi),

where i+ = 3, 4, 2 and i− = 4, 2, 3. Here, λ̃ is the thermal diffusivity and q̃ = Q̃/(c̃ρ̃),
where Q̃, c̃, and ρ̃ are the heat of reaction, specific heat, and solid density, respectively
(all assumed to be constant and independent of i), is the scaled heat of reaction. The
coefficients α̃ψ and α̃ri1 represent heat transfer between the rods in the angular and

radial directions (from rod i to the axial rod), respectively. The reaction rate W̃ is
given by

W̃ (T̃i, Ỹi) = Ãg(T̃i)Ỹi exp

(
−Ẽ

R̃g T̃i

)
,(2)

where Ã, Ẽ, R̃g are the frequency factor, activation energy, and universal gas constant,
respectively, and

g(T̃i) = 0, T̃i < T̃cut, g(T̃i) = 1, T̃i > T̃cut,

where T̃cut is chosen to cut off the reaction far ahead of the combustion zone.
The equations for the axial rod T̃1 are

∂T̃1

∂t̃
= λ̃

∂2T̃1

∂z̃2
+ q̃W̃ (T̃1, Ỹ1) −

i=4∑
i=2

α̃r1i(T̃1 − T̃i),
∂Ỹ1

∂t̃
= −W (T̃1, Ỹ1),(3)

where α̃r1i represents heat transfer from the axial rod to the outer rod i.
For all rods the solutions satisfy the boundary conditions

lim
z̃→−∞

T̃i = T̃u, lim
z̃→−∞

Ỹi = Ỹu, lim
z̃→∞

∂T̃i

∂z̃
= 0,(4)

where T̃u, Ỹu are the unburned temperature and mass fraction, respectively. We note
that T̃i → T̃b as z̃ → ∞, where T̃b is the adiabatic burned temperature; however,
we employ the Neumann condition in our computations. Finally, we note that T̃b is
derivable from thermodynamical considerations as T̃b = T̃u + q̃Ỹu.

The heat transfer coefficients α̃ψ, α̃ri1, α̃r1i correspond to a coarse grained ap-

proximation to the transverse Laplacian, i.e., the terms T̃ψψ/r̃
2 and (r̃T̃r̃)r̃/r̃, with

periodicity in ψ assumed, thus establishing a relationship between the rod model
and the fully 3D model. Approximating these expressions by finite differences leads
to unique heat transfer terms. For example, interpreting rod i as a grid point and
approximating the angular diffusion term at rod i gives

T̃ψψ

r̃2
� − T̃i − T̃i+

(∆ψR̃)2
− T̃i − T̃i−

(∆ψR̃)2
, so that α̃ψ =

λ̃

(∆ψR̃)2
,
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where ∆ψ = 2π/3 since we take three outer rods. For radial heat transfer, α̃ri1

can be determined by employing a finite difference approximation for radial diffusion
together with the no flux boundary condition T̃r = 0 at r̃ = R̃, giving

(r̃T̃r̃)r̃
r̃

� −2
T̃i − T̃1

(∆r̃)2
, so that α̃ri1 =

2λ̃

(∆r̃)2
,

where ∆r̃ = R̃. For heat transfer from the axis, we approximate the Laplacian by a
suitably averaged five point difference in Cartesian coordinates with ∆x̃ = ∆ỹ = ∆r̃
to get

∇2T̃ � 4

3∆r̃2

i=4∑
i=2

(T̃i − T̃1), so that α̃r1i =
4λ̃

3(∆r̃)2
,

where ∆r̃ = R̃.
Although this model is very coarse-grained, it allows a qualitative description of

the fully 3D problem at a small fraction of the computational cost. We nondimen-
sionalize as in [11] by introducing

Yi =
Ỹi

Ỹu

, Θi =
T̃i − T̃u

T̃b − T̃u

, t =
t̃Ũ2

λ̃
, z =

z̃Ũ

λ̃
,

σ =
T̃u

T̃b

, N =
Ẽ

R̃gT̃b

,

where

Ũ2 =
λ̃Ã

2Z
exp(−N),

Z = N(1 − σ)/2 is the Zeldovich number, and Ũ is the velocity of the uniformly
propagating front in the reaction sheet approximation [9]. Note that lengths are
scaled by the size of the preheat zone. Finally, letting α̃ (α) generically denote any of
the dimensional (nondimensional) heat transfer coefficients, we have

α = α̃
λ̃

Ũ2
.

We will describe combustion waves propagating in the axial (−z) direction. We
introduce the moving coordinate system [2, 11]

x = z − φ(t),

where φ(t) is defined by Y1(φ(t), t) = 0.5. Here, the choice of the particular rod at
which the mass fraction is fixed is arbitrary. Thus, φt is the approximate velocity of
the wave, so that the transformation to the moving coordinate system enables us to
localize the front to a neighborhood of x = 0.

In terms of the nondimensionalized quantities we have, for i = 2, 3, 4,

∂Θi

∂t
=

∂2Θi

∂x2
+ W (Θi, Yi) − αψ(Θi − Θi+) − αψ(Θi − Θi−) − αri1(Θi − Θ1),(5)
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∂Yi

∂t
= −W (Θi, Yi),

where

W (Θi, Yi) = 2Zg(Θi)Yi exp

(
N(1 − σ)(Θi − 1)

σ + (1 − σ)Θi

)
.

For the axial rod we have

∂Θ1

∂t
=

∂2Θ1

∂x2
+ W (Θ1, Y1) −

i=4∑
i=2

αr1i(Θ1 − Θi),
∂Y1

∂t
= −W (Θ1, Y1).(6)

The boundary conditions are

Yi → 1, Θi → 0 as x → −∞,(7)

∂Θi

∂x
→ 1 as x → ∞.

These boundary conditions are specified at finite points far from the front which is
located in the vicinity of x = 0. The computations presented here were obtained with
the boundary conditions imposed at x = ±12. There is virtually no effect of further
increasing the size of the computational domain.

Our numerical method employs an adaptive Chebyshev pseudospectral method,
described in detail in [2, 3]. We solve the initial value problem, marching forward in
time until steady state is achieved, so that we compute only stable solutions.

3. The uniformly propagating planar solution and its stability. As shown
in [13], the system (5)–(7) admits a planar uniformly propagating solution. In the
reaction sheet approximation this solution (see [11, 10]) is

Θunif =

{
exp(x), x ≤ 0,

1, x ≥ 0,
Y =

{
1, x < 0,
0, x > 0,

φ(t) = −t + C,

where Θ1 = Θ2 = Θ3 = Θ4 = Θunif and C is an arbitrary constant. Note that for
this solution the heat transfer between the rods vanishes. A linear stability analysis
shows that three different types of instabilities can occur. The dispersion relation
requires that the product of three terms vanishes, so that instability sets in when any
of the factors vanishes. In terms of Z the three stability boundaries are given by

Z = 2 +
√

5,(8)

Z =
4 + 12(3β + 2)αR +

√
[4 + 12(3β + 2)αR]

2
+ 4 [1 + 4(3β + 2)αR]

3

2[1 + 4(3β + 2)αR]
,(9)

Z =
4 + 12(6)αR +

√
[4 + 12(6)αR]

2
+ 4 [1 + 4(6)αR]

3

2[1 + 4(6)αR]
,(10)

where β = 1/(∆ψ)2 = 9/(4π2), αR = 1/R2, and R = R̃U/λ̃ is the nondimensional
cylindrical radius. The eigenvectors indicate that (8) corresponds to a PP solution
where all rods pulsate in phase and describes the well-known PP stability boundary,
while (9) corresponds to a one-headed spin mode (the outer rods exhibit identical
pulsations with a phase difference of T/3 where T is the period), and (10) represents
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Fig. 1. Stability boundaries for the uniform solution.

a radial mode where the outer rods pulsate in phase, but are out of phase with the
axial rod, the analogue of 3D radial modes where the solution depends on r but not
on ψ. The three stability boundaries are shown in Figure 1.

The dispersion relation for the nondimensionalized continuous 3D problem is

Z3D =
4 + 12k2 +

√
[4 + 12k2]

2
+ 4 [1 + 4k2]

3

2[1 + 4k2]
, k =

ξ
(n)
m

R
.(11)

Here, ξ
(n)
m is the mth root of J ′

n(ξ) = 0, where Jn is the Bessel function of order n,
with n the angular wavenumber [10].

Since in our model we consider rods located at only three angular and two radial
locations, only wave numbers n = 0, 1 and m = 1, 2 are relevant for comparison

between the full model and our rod model. Since ξ
(0)
1 = 0 (m = 1, n = 0), the

dispersion relations for the pulsating solutions are identical for the two models. The
spin (m = 1, n = 1) and radial (m = 2, n = 0) modes are equivalent to the rod model
if we identify k2 with (3β + 2)αR and 6αR, respectively. This equivalence serves
as a partial justification for the assumption that the behavior of the rod model is
qualitatively similar to that of the full 3D model.

4. Results. We first consider results for a value of Z below the pulsating stability
boundary Zc, e.g., Z � 4.1, for which the linear stability analysis suggests the sequence
of transitions uniform → spin → transition region → radial → uniform as R increases.
However, Figure 1 is based on a δ-function reaction term, while the results presented
here are for the Arrhenius reaction term, leading to a slightly different dispersion
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relation. Our computations are for Z = 3.916, N = 17.7, σ = .5575, conditions which
exhibit behavior analogous to Z = 4.1 in Figure 1.

In order to visualize the solution, we compute the temperature as a function of
time at the flame front ΘFi(t), in each of the rods. Since we do not employ the
reaction sheet model, there is not, strictly speaking, a front separating the burned
and unburned regions. Nevertheless, we can determine the spatial location at which
the reaction term is maximal and use it as an approximate flame front location.
Computing this quantity as a function of time and then doing a least squares fit
enables us to compute the mean flame speed V . The temperature on the front, ΘFi(t)
can then be obtained by evaluating the Chebyshev polynomial approximation of Θ at
this location [1]. Typically, the time history of ΘFi(t) will be oscillatory (though not
necessarily periodic). Peaks in ΘFi(t) can be interpreted as a firing of the rod. As
an analogue of the continuous 3D problem, a peak in ΘFi(t) can also be interpreted
as a hot spot passing over the angle corresponding to the rod’s location. Since this
paper deals with the rod model, we will primarily refer to the firing of each rod in
describing the dynamics of the solutions that we find.

Preliminary results for Z = 3.916 were presented in [13]. These results are sum-
marized in Figure 2, which shows the mean front speed V as a function of R for the
different solution branches that we have found. The spin modes are connected to the
radial modes via a family of solutions exhibiting QP dynamics where the behavior
continuously varies from spin-like (for smaller R) to near-radial (for larger R). There
is no indication of bistability.
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For the rod model a spin mode is represented by pulsating waves that are identical
in each of the three outer rods except for the constant T/3 phase shift, with ΘFi(t)
periodic of period T for i = 2, 3, 4. This is exactly what would be observed by
examining the temperature of a spin mode at three angular locations separated by
2π/3. When ΘFi(t) attains a maximum in time, one can think of a rotating hot spot
passing over the spatial location corresponding to the rod, i.e., for the three outer
rods the angles k2π/3 (k = 0, 1, 2). Alternatively, in terms of the rod model, one can
think of such a temperature maximum as a “firing” of the rod. We note that while
the linear stability analysis predicts uniform temperature on the axis, there is a low
level periodic temperature pulsation due to nonlinear effects neglected in the linear
analysis. This axial pulsation will grow as R increases along the spin branch. Near
the onset of spin modes the axial rod fires at a period 1/3 that of the outer rods; i.e.,
it fires with the firing of each outer rod though with a slight phase shift, behavior
clearly dependent on the choice of three outer rods and one axial rod in the model.

For the spin modes, the firing of the outer rods is synchronized. The rods fire in a
fixed order with a constant time interval between firings. Note that the reverse firing
order can also occur (corresponding to clockwise and counterclockwise rotating spots),
with the order depending on initial conditions. The axial rod also fires periodically,
but at a significantly lower level than the surface rods. For larger values of R, radial
behavior is found. For a radial mode all outer rods fire simultaneously; i.e., there is
no angular behavior to the firing, while the axial rod fires out of phase with the outer
rods. Spin and radial modes were found in [13] and are illustrated in Figures 3 and
4, respectively, where the numbers 1–4 refer to the flame front temperatures in rods
1–4, respectively.

Near R = 3.285, the spin modes lose stability, and a transition to QP behavior is
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observed. Near the transition point the solution exhibits approximate spin behavior,
in that the firing order is preserved. However, the firings are no longer synchronized;
the phase shift between firings becomes periodic, corresponding to continuous spin
modes in which adjacent hot spots periodically approach and then withdraw from
each other, as seen in [2].

The QP modes are best described by analyzing the frequency spectrum of ΘFi(t).
The spin and radial solutions are periodic in time. Thus, their frequency spectrum is
composed of a single dominant frequency and its harmonics. The QP modes have two
dominant frequencies which generate all other frequencies in the spectrum via linear
combinations. Analysis of the frequency spectrum for the QP solutions indicates that
the two generator frequencies correspond to spin and radial behavior, respectively.
Thus, the QP modes are combinations of spin and radial modes. At the transition
from spin to QP behavior a new frequency, corresponding to radial behavior, enters
with zero amplitude. As R increases, the amplitude of the radial spectral compo-
nent increases while the amplitude of the spin component decreases, so that at the
transition from QP to radial behavior, the amplitude of the spin component vanishes.

This behavior was described in [13] and can be seen in Figure 5, where we exhibit
the dominant frequencies for spin (S), QP, and radial (R) modes as a function of
R. For the spin and radial modes there is only one dominant frequency. For the
QP modes there are two dominant frequencies. The figure clearly shows that in the
QP regime the two generator frequencies emanate continuously from the spin and
radial frequencies, respectively. For R ≤ Ra (indicated by point a in the figure)
the frequency corresponding to the largest spectral amplitude is the spin frequency,
while for R ≥ Rb (indicated by point b in the figure), the frequency corresponding to
the largest spectral amplitude is the radial frequency. The most dominant frequency
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shifts from the spin frequency to the radial frequency as R increases. Thus, at least in
terms of spectral content, for small R the QP modes take on a spin character, while
for larger values of R the QP modes take on a radial character.

The time domain behavior, described in [13], is illustrated in the time domain
in Figure 6, where we consider a QP mode near the spin-QP transition. For this
figure, ΘFi(t) was Fourier transformed, the amplitudes of all frequencies except the
secondary generator frequency and its harmonics were set to zero, and the resulting
spectral representation was transformed back to the time domain. The resulting time
domain behavior shown in the figure clearly exhibits radial behavior, including the
simultaneous firings of the outer rods and the constant phase shift (near π) between
the outer rods and the axial rod. A similar analysis near the transition from QP
to radial behavior (Figure 7) indicates that the new frequency corresponds to spin
behavior. We note that the solution shown in Figure 7 corresponds to a nonspin QP
mode, where the firing order of the outer rods is not fixed. Such modes are connected
to the transition to radial behavior. These modes are not found for larger values of Z
since we cannot find stable radial modes for values of Z above the pulsating stability
boundary.

Behavior near the spin-QP transition was discussed in [13]. Flame front temper-
atures for a QP mode near the spin-QP transition point are shown in Figure 8. The
behavior is close to that of the spin modes. The rods fire in the same firing order;
however, the time interval between successive firings is no longer constant, and the
temperature maxima exhibit a nonconstant envelope. A QP mode near the QP-radial
transition is shown in Figure 9. The outer rods fire nearly simultaneously; however,
there is an amplitude modulation, and the time delay between successive firings is
nonzero and nonconstant. Up to R � 3.7, the outer rods fire in a fixed firing order
(that of the spin modes). As R increases, the outer rods fire closer together in time,
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with the firing order no longer fixed, as the QP solutions take on more of a radial
mode (simultaneous firing) character. In addition, the amplitude of the axial rod
grows. Such a solution is shown in Figure 9. Near the transition to radial behavior,
the firing of the outer rods occurs nearly simultaneously. Firings occur in groups of
three, separated by a time interval close to the period of the radial solution.

Thus, for Z below the pulsating stability boundary there are three branches of
nonuniform solutions, a spin branch for small values of R, a radial branch for larger
values of R, and a connecting QP branch, where the behavior of the solution contin-
uously changes from spin-like to radial-like as R increases. There is no indication of
bistability.

We next consider behavior for Z above the pulsating stability boundary so that
the uniformly propagating solution is unstable for all values of R. Specifically, we
consider Z = ZT = 4.3. A summary of our results is shown in Figure 10, where we
plot V for the different solution branches as a function of R. While the PP solution,
involving no heat transfer between the rods, exists for all values of R, we find that
it is stable only for small values of R (R < Rp � 2). Stable spin modes develop at
R = Rsp < Rp, where Rsp � 1.58. Since Rsp < Rp, there is a region of bistability
between the spin and PP solutions. Examples of these modes in the bistable region
are shown in Figures 11 and 12, where we plot ΘFi(t) for a spin (Figure 11) and PP
(Figure 12) solution for R = 1.7. For R > Rp only spin and QP spin-type modes are
found.

Spin modes lose stability at R = RQP � 2.0994, and QP spin-type modes develop.
This is accompanied by an increase in the amplitude of the axial pulsation. An
example of such a QP spin mode is shown in Figure 13, where we plot ΘFi(t) for all
rods for R = 2.102. The frequency spectrum of ΘF2(t), shown in Figure 14, exhibits
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Fig. 13. ΘFi(t) (i = 1, 2, 3, 4) for QP solution for Z = 4.3 and R = 2.102.
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Fig. 14. Frequency spectrum of ΘF2(t) for QP solution for Z = 4.3 and R = 2.102.

two clear generator frequencies together with linear combinations. Reconstructing
time domain behavior corresponding to each of the two generator frequencies, denoted
by fsp and fr in the figure, as described above, shows that they correspond to spin
and radial behavior, respectively. This is shown in Figures 15 and 16.

We next consider the behavior of the QP modes as R increases. Unlike the
previous case, we do not find stable radial solutions. For all values of R > RQP that
we have considered the only stable solution that we find is the QP spin-type mode,
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though like all QP spin modes it has a radial component. Furthermore, there is no
breakdown in the firing order as occurred previously when there was a transition to
radial behavior. For all values of R that we consider, the outer rods fire in a fixed
order, characteristic of a spin mode.

As R increases, the QP modes are characterized by an asymptotic coalescence of
the dominant spin and radial frequencies to the dominant frequency of the PP solution,
fp. In addition, the front temperatures in the time domain approach that of the PP
solution, appropriately shifted in time. The solution varies over three distinct time
scales. Over short time scales, of the order of the period T of the PP solution, the QP
solution is essentially identical to the PP solution (appropriately phase shifted). Over
intermediate time scales, which increase with R, the QP solutions are characterized
as SPP solutions; i.e., the time history at each rod is approximately that of the PP
solution appropriately phase shifted. Furthermore, adjacent outer rods are phase
shifted with respect to each other, by a shift which is nearly constant in time, though
the shift is different for different pairs of rods. Thus, over intermediate time scales the
solution behaves as a spinning form of the PP solution, with a nonconstant rotation
rate. We refer to this behavior as SPP behavior.

In addition, there is a longer time scale determined by the inverse of the difference
frequency fd =| fsp − fr |. Since fd → 0 as R → ∞, this time scale grows as R
increases. On this time scale there is a phase and an amplitude modulation. The
amplitude modulation decreases as R increases and appears to vanish as R → ∞.
However, there is a phase variation between any two outer rods which appears to
persist as R increases. Thus, for large R the front temperature appears to be QP, but
without a noticeable amplitude modulation.

An indication of the SPP behavior can be seen from Figure 10, where V asymp-
totically approaches the mean speed of the PP solution as R increases. Note that
our computations indicate that the PP solution is unstable for large values of R. The
only stable solutions that we find are the SPP modes.

The frequency coalescence is shown in Figure 17 where we plot the two generator
frequencies for the QP spin mode as a function of R. As R increases, the two generator
frequencies converge to the dominant frequency of the PP solution, fp. We note that
even for large R, reconstruction of the time history employing only fsp (fr) and
harmonics shows that these frequencies still correspond to spin (radial) behavior.
Thus, for large values of R, spin and radial behavior occur with frequencies which
converge to the frequency of the PP solution.

Figure 17 shows only the frequencies corresponding to the largest amplitudes of
the spectrum. However, there is convergence in the time domain as well. The front
temperature varies over three different time scales. Over time scales comparable to
the period T of the PP solution (short time scale), ΘFi are almost identical to the PP
solution (appropriately phase shifted). This behavior is maintained over intermediate
time scales, of the order of 10T , for the values of R considered here. Furthermore,
there is a nearly constant phase difference between any two outer rods (though not
necessarily T/3 as would be expected for a purely spinning mode). Thus, over the
intermediate time scale, the QP spin mode behaves as an SPP solution, thus estab-
lishing a connection between spin modes and the PP solution which is stable only for
small R.

Finally, there is a long time scale in which there is a modulation in the phase
difference between two successive firings as well as in the amplitude of the pulsation.
This time scale is proportional to f−1

d and thus approaches ∞ as R → ∞. The am-
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plitude modulation appears to decay to 0 as R → ∞. However, the phase modulation
persists and does not decay to 0, even for large values of R.

We first illustrate behavior for intermediate values of R, where there are indica-
tions of SPP behavior, although it is not pronounced. In Figure 18 we plot ΘFi(t)
and the PP solution (appropriately phase shifted) for R = 19. The data is plotted
over approximately 100 time units. The amplitude and phase modulation can be seen
from the figures, although for each rod the QP temperature is close to that of the PP
solution (appropriately phase shifted).

In Figure 19 we plot the same quantities for R = 35. In this case there are
essentially no visible differences between the QP and the PP solution over this time
scale, and the QP solution can be considered as an SPP form of the solution. The
intermediate time scale on which this occurs increases with R. The phase modulation
is illustrated in Figures 20 and 21, where we plot ΘF2(t) and ΘF3(t) over roughly
three PP periods. Figures 20 and 21 are separated by roughly 1000 units of time,
a time interval where the phase modulation is evident. We note that in Figure 20
the time difference between the firings of rods 2 and 3 is approximately one unit,
while in Figure 21 the time difference is approximately three units. There is virtually
no change in amplitude between the pulsations in the two figures. Furthermore,
all time histories in these two figures would be indistinguishable from appropriately
phase shifted PP solutions. Thus, the quasiperiodicity of the QP mode for large
R is manifested by a long time phase modulation between adjacent rods of a time
signal that exhibits essentially no amplitude modulation and is essentially identical
to that of the PP solution. The persistence of the phase modulation is further shown
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Fig. 18. ΘFi(t) (i = 1, 2, 3, 4) (solid) and an appropriately phase shifted PP solution (dotted)
for Z = 4.3 and R = 19.

in Figure 22, where the maximum and minimum times between the firings of rods
2 and 3 is plotted against R. We note that these extrema asymptotically approach
nonzero values (approximately 2.8 and 0.8, respectively). Though we have described
the firings of rods 2 and 3, we note that the same behavior is observed for the phase
modulation between any pair of adjacent outer rods.

Thus, these results suggest that at least for one-headed spin modes, the behavior
for large sample sizes is dominated by a dynamical transformation of the PP solution,
which manifests itself as a QP spin mode, with the outer rods exhibiting approximately
PP behavior with a phase shift between neighboring rods.

We next describe results for Z = Z2T = 4.6. For this value of Z, the pulsating
planar solution is period doubled, exhibiting both large amplitude and small ampli-
tude bursts within one cycle. Analogous to the Z = ZT case, for small values of R
(R ≤ 1.3) the only stable solution that we find is the 2T pulsating planar solution;
i.e., the subharmonic is now present for the PP solution. For 1.3 < R < 1.5 we find
a region of bistability with both PP solutions and spin solutions. As R increases,
we find that the PP solution becomes unstable and there is a branch of spin solu-
tions (1.3 ≤ R ≤ 1.7). Increasing R further, we find a transition to QP spin modes
(1.75 ≤ R ≤ 4). These solutions are very similar to those found for Z = ZT (see
Figures 11 and 13) and will not be described further, except to note that the behavior
for these modes is singly periodic as opposed to the 2T PP solution. Thus, for this
range of R there is no indication in the spin modes that the PP solution is 2T . This
is similar to the behavior found for surface combustion in [2].
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Fig. 19. ΘFi(t) (i = 1, 2, 3, 4) (solid) and an appropriately phase shifted PP solution (dotted)
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As R increases, subharmonics of the generator frequencies develop, giving the
solution something of the character of a period doubled solution (R � 4.8). We also
find intervals where the solution is apparently chaotic, (5 ≤ R ≤ 5.6) and (6 ≤ R ≤
6.78).

For 6.8 ≤ R ≤ 9.1 we find direction reversing modes where two rods exhibit T
behavior while the other two exhibit 2T behavior, and we observe a reversal of the
spin direction around the cylinder. Note that the case of four coupled oscillators with
the property that two of them exhibit period 2T behavior, though out of phase with
each other by T , while the remaining two oscillators exhibit period T behavior, was
discussed in [6], though the relation of such a mode to direction reversing behavior was
not discussed. In order to describe these solutions we recall the numbering convention
whereby rod 1 is located on the axis and rods 2, 3, and 4 are on the cylindrical surface.
For the direction reversing modes the axial rod is singly periodic with period T , say.
The surface rods are also periodic, but two of them, rods 3 and 4, exhibit period
doubled behavior due to a direction reversal of the firing order. Note that rods 3 and
4 are out of phase by T .

In order to understand the dynamics of this mode, suppose for concreteness that
rod 2 has period T while rods 3 and 4 have periods 2T . Consider a sequence of firings
commencing with a firing of rod 3, and suppose that rod 2 is the next rod to fire.
An ordinary spin mode would then fire in the order 324, 324, . . . ., thus describing a
specific direction to the spin around the cylinder, i.e., clockwise or counterclockwise.
The period would be the time interval between two consecutive firings of any of the
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rods. In the direction reversing mode, the firing direction reverses after one complete
circuit around the cylinder. Thus, the firing order would be 324, 423, 324, 423, . . . .
Rods 3 and 4 fire twice in succession, signaling a reversal of direction. Furthermore,
the two successive firings are at different amplitudes, whereas rod 2 always fires at
the same amplitude. An overall period consists of two groups of three, or equivalently
two circuits around the cylinder, with a direction reversal. If we denote the period
between successive firings of rod 2 as T , then rods 3 and 4 have periods 2T . The axial
rod (rod 1), which has period T , fires between successive firings of rods 3 and 4, so
that a firing of the axial rod can be thought of as triggering the reversal. We illustrate
this mode for R = 7 in Figure 23, where we plot ΘFi(t) for rods 3, 2, 4, and 1 over
a time interval containing a complete cycle. The figure illustrates the firing sequence
324, 423. The first firing shown is for rod 3 (denoted by A in the figure). Then, rods
2 and 4 fire in order (B and C, respectively). Prior to the direction reversal, the axial
rod (rod 1) fires (D). The firing order reverses as rod 4 fires again, but at a smaller
amplitude (E). Then, rod 2 fires at the same amplitude at which it previously fired,
indicating its period T (F ). Finally, rod 3 fires at a larger amplitude than it previously
did (G). The figure includes the start of the next reversal, with the subsequent axial
firing (H) followed by another firing of rod 3 (I) at the same level as its initial firing.
The time between firings A and I is 2T .

Thus, there are two frequencies associated with this solution, the period between
successive firings and the period of the reversal. For this value of R, the two frequen-
cies are commensurate and the solution is periodic. For larger values of R, the two
frequencies no longer appear to be commensurate, and we find QP direction reversing
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Fig. 23. ΘFi(t) (i = 1, 2, 3, 4) for periodic direction reversing mode for Z = 4.6 and R = 7.

modes which exhibit similar dynamics to those described above but in a QP rather
than periodic fashion. Upon increasing R yet further, we find a window of apparently
chaotic solutions. Thus, the direction reversing mode represents an isolated window
(in R) of laminar behavior, surrounded on both sides by intervals of apparently chaotic
behavior.

Finally, for R = 19, we find a QP solution whose oscillations are periodically
modulated. The envelopes, corresponding to the modulation frequency, exhibit a
symmetry like that observed in [6] for a periodic solution. Specifically, the envelopes
of ΘF3(t) and ΘF4(t) oscillate in synchrony with period T ; thus, they have a common
waveform. The envelopes of ΘF1(t) and ΘF2(t) also oscillate with period T , but they
are not synchronous with each other nor with the envelopes of ΘF3(t) or ΘF4(t); they
have different waveforms. This solution is shown in Figure 24. As R is increased, the
amplitudes of the modulation oscillations decrease while their period increases.

5. Summary. We have numerically simulated 3D modes of solid flame waves
employing limited computational resources, by employing a rod model in which a
small number of appropriately located 1D rods interact with each other via heat
transfer. The heat transfer coefficients correspond to a coarse-grained discretization
of the transverse Laplacian. Both the rod model and the full 3D model allow uniformly
propagating planar waves. By appropriately relating the heat transfer coefficients in
the rod model to the radius R in the full 3D model, the dispersion relations for the
two models can be shown to be identical.

We consider a simple rod model involving three outer rods and one axial rod,
thus limiting the class of modes that can be described and for which analogies can be
drawn with the modes of the 3D model. Clearly, additional modes, e.g., multiheaded
spin modes, can be described by a rod model with a larger number of rods.

We have described the detailed behavior of the model as the sample size increases
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Fig. 24. ΘFi(t) (i = 1, 2, 3, 4) for QP solution with Z = 4.6 and R = 19.

for three values of Z, one below and two above the pulsating stability boundary. When
Z is below the stability boundary, there are transitions from the uniform mode to spin
behavior as R increases. For larger values of R periodic radial modes are found. There
is a branch of QP modes connecting the spin and radial branches, which involve an
interaction between spin and radial behavior. Spin behavior dominates for smaller
values of R (near the spin-QP transition), and radial behavior dominates for larger
values of R (near the QP-radial transition). There is no indication of bistability for
this value of Z.

For Z above the pulsating stability threshold, we find PP solutions for small R
and spin modes for larger values of R, with a region of bistability between them. For
larger values of R, only QP spin modes are found. Spectral analysis of the QP modes
indicates that they represent the interaction of spin and radial modes. As R increases,
the frequency spectrum of the QP modes approaches that of the PP solution, with
a phase shift between adjacent outer rods. Thus, the pulsation within each rod is
approximately that of the PP solution. We term this behavior SPP behavior. The
behavior for large R can be described as a dynamical transformation of the PP mode,
stable for small R, into a QP spin mode. This behavior persists over intermediate
time scales which increase with R. Over long time scales there is persistent phase
modulation between successive firings of the outer rods while the amplitude modula-
tion decays to 0. Thus, the solutions remain QP with phase modulations manifested
over progressively longer time scales as R → ∞.



548 J. H. PARK, A. BAYLISS, AND B. J. MATKOWSKY

For yet larger values of Z, so that the PP solution is period doubled, we find spin
and QP spin modes as before. We also find a window (in R) where direction reversing
modes exist and are stable. These modes are characterized by a firing sequence which
reverses direction, either periodically or quasi-periodically. Thus, outer rods fire in a
sequence, e.g., 324, 423, 324, 423,. . . , so that the direction of firings is reversed. The
middle rod in this sequence, in this case rod 2, is periodic with period T , say. The end
rods, rods 3 and 4, fire consecutively as the sequence reverses. These firings are at
different amplitude levels, so that these rods are periodic with period 2T . The axial
rod fires between two consecutive firings of rods 3 and 4. Thus, a firing on the axis
can be thought of as triggering the reversal.

Our rod model is designed to provide insight into the qualitative behavior of the
full 3D problem, employing vastly reduced computational resources. The computa-
tions presented here are for a primitive rod model, consisting of only four rods in
total. The model is very computationally efficient, although it is incapable of repro-
ducing multiheaded spins and standing wave–type solutions exhibiting, e.g., creation
and annihilation, as is found in, e.g., surface gasless combustion [2]. Thus, the model
can reproduce at most a limited subset of the solutions that can occur for the full
3D problem, although the results in [2] suggest that branches involving primarily one
spot may extend stably for relatively large values of R and thus describe behavior
for large diameter samples. The equivalence of the dispersion relation between the
model and the full 3D problem suggests that 1-headed spin and radial-type behavior
is reproduced at least qualitatively by the model. Whether the nonlinear behavior
that we have observed is in fact also observed in the 3D problem has not yet been
determined, though some of the computations described in [7, 8] may exhibit QP spin
behavior. We should point out that the SPP mode (observed for large R) and the
direction reversing mode (observed for large Z) occur in the regimes where numeri-
cal computations are most difficult and computationally intensive. Of course, if the
number of rods is sufficiently large, the results for the rod model will surely closely
approximate those for the full 3D model. However, our interest is in employing a
finite, indeed a relatively small, number of rods. In addition to the question regarding
the discretization, i.e., the use of a small number of rods, there is also the question
of whether certain dynamical behaviors are a reflection of the symmetries of the rod
arrangement. In view of this, it is important to ascertain whether such modes are ob-
served for rod models involving a larger number of rods, arranged to exhibit different
symmetries. We have obtained preliminary results with models involving more rods,
which indicate that many of the modes reported here persist as the number of rods
is increased, thus suggesting that they occur in the full 3D model as well.
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Abstract. This paper is a continuation of recent attempts to understand, via mathematical
modeling, the dynamics of marine bacteriophage infections. Previous authors have proposed systems
of ordinary differential delay equations with delay dependent coefficients. In this paper we continue
these studies in two respects. First, we show that the dynamics is sensitive to the phage mortality
function, and in particular to the parameter we use to measure the density dependent phage mortality
rate. Second, we incorporate spatial effects by deriving, in one spatial dimension, a delay reaction-
diffusion model in which the delay term is rigorously derived by solving a von Foerster equation.
Using this model, we formally compute the speed at which the viral infection spreads through the
domain and investigate how this speed depends on the system parameters. Numerical simulations
suggest that the minimum speed according to linear theory is the asymptotic speed of propagation.
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1. Introduction. It is known that bacteriophage infection can be a signifi-
cant mechanism of mortality in marine prokaryotes (Bergh et al. [6], Proctor and
Fuhrman [16]). These mortality mechanisms are critical in understanding the marine
production processes. The constituents released by cell lysis can be an important
pathway of nutrient recycling. This has direct bearing on issues such as global warm-
ing and topics of geochemical cycles. Viral infection also has direct implications for
genetic exchange in the sea (Lenski and Levin [14], Bohannan and Lenski [7]).

Although we do not yet have a good understanding of the temporal or spatial
scales at which host-virus encounters occur, it is clear that viral mortality must be
explicitly considered in most models of the marine system. A case in point, recent
experimental work suggests that the contamination of algal cells by viruses can serve
as a regulatory mechanism in its bloom dynamics. Beltrami and Carroll [1] formulated
a simple trophic model including virus-induced mortality. Their model succeeded in
mimicking the actual algal bloom patterns of several species.

Our main interest in this paper is to explore how viral mortality affects both
the temporal and spatial dynamics of marine bacteria and cyanobacteria. Recently,
Beretta and Kuang [4] formulated and carried out a detailed study of the temporal
viral-bacteria model

dS
dt

= αS(t)

(
1 − S(t) + I(t)

C

)
−KS(t)P (t),

dI
dt

= −µiI(t) + KS(t)P (t) − e−µiTKS(t− T )P (t− T ),

dP
dt

= β − µpP (t) −KS(t)P (t) + be−µiTKS(t− T )P (t− T ).

(1.1)
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This system of delay differential equations models a population of marine bacteria in
which the individuals are subject to infection by viruses, also known as bacteriophages.
Prior to that, these authors (Beretta and Kuang [2]) modeled and studied the same
process by a set of nonlinear ordinary differential equations, and Carletti [10] has
studied the stochastic extension of that model. In system (1.1), S is the density
(i.e., number of bacteria per liter) of susceptible bacteria, I is the density of infected
bacteria, and P is the density (number of viruses per liter) of viruses (phages). Viruses
P attack the susceptible bacteria S, and a bacterium becomes infected I when a virus
successfully injects itself through the bacterial membrane. The virus then starts
replicating inside the bacterium, and then all the bacterium’s resources are directed
to replication of the virus. The infected bacterium does not replicate itself by division;
only susceptible bacteria are capable of doing so. After a latency time T , an infected
bacterium will die by lysis; i.e., the bacterium explodes releasing b copies (b > 1) of
the virus into the solution, which are then free to attack other susceptible bacteria.
An infected bacterium may die other than by viral lysis; we allow for this by the term
−µiI(t). The differential equation for I(t) is derived from the fact that I(t) is given
by

I(t) =

∫ T

0

e−µiτKS(t− τ)P (t− τ) dτ,(1.2)

which expresses the fact that the number of recruits into the infected class between
times t − (τ + dτ) and t − τ is KS(t − τ)P (t − τ) dτ , the number of these still alive
at time t is obtained by multiplying by e−µiτ , and then the integral totals up the
contributions from all relevant previous times, i.e., up to T time units ago.

In the virus equation, the third equation of (1.1), all mortalities of viruses are
accounted for by the term −µpP (t). The β term, where β > 0, models a constant
inflow of phages from outside the system. In the absence of viruses the bacteria grow
logistically. The rate of infection is given by the law of mass action to be KS(t)P (t).

Beretta and Kuang [4] assumed that infected bacteria still compete with suscep-
tible bacteria for common resources. This is represented by the −(S + I)/C term in
the first equation of (1.1). This is clearly a disputed subject. For example, a model
by Campbell [8] consists of the following equations:

dS(t)

dt
= αS(t)

(
1 − S(t)

C

)
−KS(t)P (t),(1.3)

dP (t)

dt
= bKS(t− T )P (t− T ) − µpP (t) −KS(t)P (t),

where

I(t) =

∫ t

t−T

KS(θ)P (θ)dθ.(1.4)

Clearly, in (1.3) the competition for common resources and additional mortality rate
endured by infected bacteria is neglected. The equations (1.3), (1.4) can be obtained
from (1.1) by setting β = 0, µi = 0. Extensions of the above Campbell model can
be found in Beretta, Carletti, and Solimano [3] (taking into account environmental
fluctuations) and Carletti [9] (replacing b by be−µiT ).

In the present paper, like the model of Campbell [8], we assume that once a
bacterium becomes infected by a virus, it no longer competes with susceptibles for
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resources. We will allow the possibility of a density dependent mortality term in the
phage equation. In Beretta and Kuang [4], and also in the present paper, it is assumed
that T and b are constant and the same for the whole population. Modifications of
this assumption (e.g., replacing the constant incubation time T by a distribution of
incubation times modeled using a probability density function) are the subject of
further work presently in progress.

In the next section, we will present our delay model of bacteriophage infection
and a simple preliminary result on the positivity of its solutions. This is followed by
a short section on the global stability of the disease-free equilibrium. The analysis
of endemic equilibrium is highly nontrivial and we provide only generic conditions
for its stability switch. To complement this analytic work, we present some carefully
designed and data-based simulation results. We then proceed to formulate and study
a delay reaction-diffusion model of the spread of bacteriophage infection. The paper
ends with a discussion.

2. Preliminaries. Most of our effort will be devoted to understanding the sys-
tem

S′(t) = αS(t)
(
1 − S(t)

γ

)
−KS(t)P (t),

P ′(t) = −µpP (t) −mP 2(t) −KS(t)P (t) + bKe−µiTS(t− T )P (t− T ),
(2.1)

and with a reaction-diffusion version of (2.1). The initial conditions for (2.1) are

S(s) = S0(s) ≥ 0, s ∈ [−T, 0], with S0(0) > 0,
P (s) = P 0(s) ≥ 0, s ∈ [−T, 0], with P 0(0) > 0,

(2.2)

where S0 and P 0 are prescribed continuous functions. Our system (2.1) differs from
that studied in [4] in three respects: (i) we do not have an inflow of phages from
outside the system, (ii) we allow the possibility of a density dependent mortality term
(the term −mP 2 in (2.1)), and (iii) we assume that an infected bacterium no longer
competes with the susceptibles for resources. The latter assumption means that we
do not need the differential equation for I(t) for the analysis (though I(t) is still given
by (1.2)). An additional difference is that in the present paper we shall consider the
effects of including diffusion to model the motion of the phages and bacteria.

If we had P 0(s) ≡ 0 on [−T, 0], the method of steps would immediately yield
P (t) = 0 for all t > 0. The dynamics of S(t) would then be governed by the logistic
equation. Similarly, if S0(s) ≡ 0, then clearly S(t) remains zero for all t > 0 and
thus P (t)→0 as t→∞. These trivial cases are removed from consideration by the
assumptions in (2.2).

Proposition 1. Solutions of (2.1), (2.2) satisfy S(t) > 0, P (t) > 0 for all t > 0.
Proof. The equation for S(t) in (2.1) contains a factor of S(t) and therefore

positivity for S(t) follows by the standard argument. For P (t), note that on t ∈ [0, T ]
we have P ′(t) ≥ −µpP (t) − mP 2(t) − KS(t)P (t) so that P (t) ≥ P̃ (t), where P̃ is

the solution of P̃ ′(t) = −µpP̃ (t) −mP̃ 2(t) −KS(t)P̃ (t) satisfying P̃ (0) = P (0) > 0.

Clearly P̃ (t) > 0 for all t > 0, and so we conclude that P (t) > 0 for all t > 0. The
proof is complete.

3. Equilibria and their stability. The equilibria of (2.1) are (S, P ) = (0, 0),
the disease-free equilibrium (γ, 0), and possibly an endemic equilibrium

(S∗, P ∗) :=

(
mγα + Kγµp

mα + K2γ(be−µiT − 1)
,
αγK(be−µiT − 1) − αµp

mα + K2γ(be−µiT − 1)

)
.(3.1)
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The latter is ecologically relevant if and only if

be−µiT > 1 +
µp

γK
,(3.2)

which, of course, can only possibly hold for T up to a finite value. As long as (3.2)
holds, there is an endemic equilibrium. Note that as m→∞ the endemic equilibrium
approaches the disease-free equilibrium (γ, 0).

We shall first prove that, if condition (3.2) does not hold, then any positive
solution approaches the disease-free equilibrium (γ, 0).

Theorem 1. Assume that

be−µiT ≤ 1 +
µp

γK
.

Then any solution of (2.1), (2.2) satisfies

lim
t→∞

(S(t), P (t)) = (γ, 0).

Proof. Consider the positive definite functional

V = S − γ − γ ln
S

γ
+

γK

µp
P +

bγK2

µp
e−µiT

∫ t

t−T

S(s)P (s) ds.

Differentiating along solutions of (2.1) yields

V ′ = −α

γ
(S − γ)2 − γmK

µp
P 2 + K

(
bγK

µp
e−µiT − γK

µp
− 1

)
SP

≤ −α

γ
(S − γ)2.

Thus

V (t) +
α

γ

∫ t

0

(S(s) − γ)2 ds ≤ V (0),

and, letting t→∞, we conclude that |S(t) − γ| ∈ L2(0,∞) so that S(t)→γ as t→∞.
The differential equations (2.1) then yield P (t)→0. The proof is complete.

3.1. The endemic equilibrium: Linearized analysis. Let us investigate the
endemic equilibrium (S∗, P ∗) given by (3.1). In this subsection we shall assume, of
course, that (3.2) holds, so that the equilibrium is feasible. The linearized analysis
about the endemic equilibrium is algebraically quite complicated. The main reason
for this is that the delay T appears not only in the S(t − T )P (t − T ) term in the
second equation of (2.1), but also in the factor e−µiT in front of that term. The
paper by Wolkowicz, Xia, and Wu [20] shows how such additional factors involving
time delay can appear in distributed delay equations. Surprisingly, this represents
a significant complication and prevents us from analytically computing the precise
parameter regimes in which the endemic equilibrium can change stability as the delay
T is increased, or the actual values of T when stability switches occur. Note further
that the equilibrium itself depends on T and exists only for T up to a finite value.
This renders many of the existing stability switch methods (see Kuang [12]) powerless.
However, a method has recently been developed by Beretta and Kuang [5] to address
the problem of computing stability switches for delay equations which do not lend
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themselves to classical methods because of these complications. We shall use this
method in this section.

To linearize about (S∗, P ∗) we set S = S∗ + S̃ and P = P ∗ + P̃ . Ignoring higher
order terms in S̃, P̃ gives us the linearized system

S̃′(t) = −α
γ S

∗S̃(t) −KS∗P̃ (t),

P̃ ′(t) = −KP ∗S̃(t) − (µp + 2mP ∗ + KS∗)P̃ (t)

+ bKe−µiT (P ∗S̃(t− T ) + S∗P̃ (t− T )).

(3.3)

We shall find it convenient to introduce the parameter

ρT =
γK

µp
(be−µiT − 1).(3.4)

Then the endemic equilibrium (S∗, P ∗) exists if and only if

ρT > 1.

In terms of ρT ,

(S∗, P ∗) =

(
γ(mα + Kµp)

mα + KµpρT
,

αµp(ρT − 1)

mα + KµpρT

)
.

Nontrivial solutions of the linearized system of the form (S̃(t), P̃ (t)) = eλt(c1, c2) exist
if and only if

D(λ;T ) = 0,

where

D(λ;T ) = λ2 + a(T )λ + b(T )λe−λT + c(T ) + d(T )e−λT(3.5)

and

a(T ) =
α(mα + Kµp) + mα(Kγ + 2µpρT − µp) + Kµp(Kγ + µpρT )

mα + KµpρT
,(3.6)

b(T ) = −bγKe−µiT (mα + Kµp)

mα + KµpρT
,(3.7)

c(T ) =
α(mα + Kµp) {mα(Kγ + (2ρT − 1)µp) + Kµp(µpρT + (2 − ρT )Kγ)}

(mα + KµpρT )2
,(3.8)

d(T ) =
bKγαe−µiT (mα + Kµp) {Kµp(ρT − 2) −mα}

(mα + KµpρT )2
.(3.9)

Keeping in mind that b > 1, it is straightforward to see that when T = 0 the equilib-
rium (S∗, P ∗), if feasible, is linearly stable. This is because when T = 0, (3.5) becomes
a quadratic in λ, and it is easy to see that a(0) + b(0) > 0 and c(0) + d(0) > 0. The
question is whether the equilibrium can undergo any stability switch as T is increased,
remembering that the equilibrium is only feasible up to a finite value of T . To identify
a stability switch we seek solutions of the characteristic equation D(λ;T ) = 0 of the
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form λ = ±iω, with ω a real positive number. We find that it is necessary for ω to
satisfy

ω4 + (a2(T ) − 2c(T ) − b2(T ))ω2 + c2(T ) − d2(T ) = 0.(3.10)

However, the existence for a particular T of a real root ω(T ) of (3.10) does not in
itself imply that a stability switch occurs at that value of T , since T also has to
satisfy (3.11) and (3.12) below. Nonetheless, certain general analytical conclusions
can be drawn in spite of the algebra. Straightforward but tedious computations show
that, for any parameter values consistent with ρT > 1 (i.e., with existence of the
endemic equilibrium (S∗, P ∗)), we have

a2(T ) − 2c(T ) − b2(T ) > 0.

In light of this fact, and assuming that (S∗, P ∗) is feasible when T = 0, certain
conclusions follow.

(i) A stability switch cannot occur in an interval of T throughout which c2(T ) >
d2(T ).

(ii) If there are values of T with c2(T ) < d2(T ), then a stability switch may occur
as T is varied. Pairs of eigenvalues cross the imaginary axis as T passes through
certain critical values. The critical values of T and the corresponding purely imaginary
eigenvalues ±iω(T ), ω(T ) > 0, are given implicitly by

sin(ω(T )T ) =
b(T )ω(T )(ω2(T ) − c(T )) + ω(T )a(T )d(T )

ω2(T )b2(T ) + d2(T )
,(3.11)

cos(ω(T )T ) =
d(T )(ω2(T ) − c(T )) − ω2(T )a(T )b(T )

ω2(T )b2(T ) + d2(T )
,(3.12)

ω2(T ) =
1

2

(
− a2(T ) + 2c(T ) + b2(T )(3.13)

+
√
a4(T ) − 4a2(T )c(T ) − 2a2(T )b2(T ) + 4c(T )b2(T ) + b4(T ) + 4d2(T )

)
,

where a(T ), b(T ), c(T ), and d(T ) are given by (3.6), (3.7), (3.8), and (3.9) above. It
is impossible to solve these equations for T explicitly, so we shall use the procedure
described in Beretta and Kuang [5]. According to this procedure, we define θ(T ) ∈
[0, 2π) such that sin θ(T ) and cos θ(T ) are given by the right-hand sides of (3.11)
and (3.12), respectively, with ω(T ) given by (3.13). This defines θ(T ) in a form
suitable for numerical evaluation using standard software. Then T is given (still
implicitly) by

T =
θ(T ) + 2nπ

ω(T )
, n = 0, 1, 2, . . . ,

and the idea is to identify the roots of this equation for various n, i.e., to solve
numerically the equation Sn(T ) = 0 for n = 0, 1, 2, where

Sn(T ) = T −
(
θ(T ) + 2nπ

ω(T )

)
, n = 0, 1, 2, . . . .(3.14)
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Accurate plots of these functions Sn(T ) quickly reveal whether stability switches can
occur or not, but one must remember to keep track of the feasibility of the equilibrium
(S∗, P ∗) since it disappears completely (by coalescing with the disease-free equilibrium
(γ, 0)) at a finite value of the delay T .

By reference to (i) above, it is possible to obtain sufficient and easily verifiable
conditions for the equilibrium (S∗, P ∗) to remain locally stable. Indeed, the condition
c2(T ) > d2(T ) amounts to

(3.15)

m2
{
α2(Kγ + (2ρT − 1)µp)

2 − α2b2K2γ2e−2µiT
}

+ 2αKµpm
{
(Kγ + (2ρT − 1)µp)(µpρT + (2 − ρT )Kγ) + (ρT − 2)b2K2γ2e−2µiT

}
+ K2µ2

p(µpρT + (2 − ρT )Kγ)2 −K2µ2
p(ρT − 2)2b2K2γ2e−2µiT > 0.

Thus, if (3.15) holds, then (S∗, P ∗), if feasible, is locally stable. The coefficient of m2

in (3.15) is automatically positive if ρT > 1 (the condition for feasibility of (S∗, P ∗)),
and therefore one parameter regime in which (3.15) is satisfied is that the parameter
m be large.

For the convenience of comparison and computation, we perform the same di-
mensionless analysis as was carried out in Beretta and Kuang [4]. We choose the
dimensionless time as τ = Kγt. Note that one unit of the dimensionless time scale,
i.e., τ = 1, corresponds to tτ = (1/Kγ) in the original time unit. We also need the
dimensionless variables

s =
S

γ
, p =

P

γ
.

Below are the dimensionless parameters:

a =
α

Kγ
, mp =

µp

Kγ
, mi =

µi

Kγ
, mq =

m

K
.

Equations (2.1) have the dimensionless form⎧⎪⎪⎨
⎪⎪⎩

ds(τ)

dτ
= as(τ) − as2(τ) − s(τ)p(τ),

dp(τ)

dτ
= −mpp(τ) −mqp

2(τ) − s(τ)p(τ) + be−miTτ s(τ − Tτ )p(τ − Tτ ).
(3.16)

The values for the dimensionless parameters and the dimensionless time scale are
taken from the model of Beretta and Kuang [4] (the original parameter estimates are
due to Okubo). They are

a = 10, mp = 14.925,(3.17)

with tτ = (1/Kγ) = 7.4627 days and an average latency time T � 0.303 days. We
have no estimates for mi = (µi/Kγ), but it seems reasonable to assume it is smaller
than m (since the main cause of mortality is the lysis of infected cells). We assume
mi � 0.1mp. In addition, we do not have an estimate on mq. In the following
computational work, we assume that mq � 0.1, a value close to zero. Figure 1 is the
result of an application of the stability switch theory of Beretta and Kuang [5] for
this set of parameters (except that we vary the latency period).

Figure 2 provides simulation results for the above set of parameters with four rep-
resentative values of latency periods. Clearly Figure 2 confirms the findings embodied
in Figure 1.
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Graph of stability switch for S_0(T) and S_1(T), here T=tau
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Fig. 1. Plots of the functions S0(τ) (upper curve) and S1(τ) (lower curve). Parameter values
used are µp = 14.925, b = 75, µi = 1.5, α = 10, and m = 0.1. The equilibrium is feasible for
0 ≤ τ < ln(b/(1 + µp))/µi ≡ τe ≈ 1.033.
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Fig. 2. A solution of model (3.16) with s(θ) = 0.3, p(θ) = 1, θ ∈ [−τ, 0], where µp = 14.925,
b = 75, µi = 1.5, α = 10, m = 0.1, and τ varies from 0.01 to 1.1.
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4. Diffusive models. In this section we propose some reaction-diffusion exten-
sions of system (2.1). The main issues here are (i) what types of diffusion are appro-
priate, and (ii) derivation of the time-delay terms for the case when there is diffusion.
The latter point is important because infectives can move during the period between
infection and lysis, so that when an infective dies by lysis it will release the b copies
of the virus into the water at a different location from where it originally became
infected. We shall show how this can be accounted for in the modeling by including
time and age as independent variables and using an age-structured model approach.
The approach described here has also been used by many other investigators (see,
e.g., Smith [17], So, Wu, and Zou [18], and Gourley and So [11]).

For the simplest case of Fickian diffusion, and working on an infinite one-dimensional
domain −∞ < x < ∞, system (2.1) becomes

∂S(x, t)
∂t

= Ds
∂2S(x, t)

∂x2 + αS(x, t)

(
1 − S(x, t)

γ

)
−KS(x, t)P (x, t),

∂P (x, t)
∂t

= Dp
∂2P (x, t)

∂x2 − µpP (x, t) −mP 2(x, t) −KS(x, t)P (x, t)

+ b× {rate of death of infectives by lysis},

(4.1)

where Ds and Dp are the diffusivities of the susceptibles and the phages. The last
term in the P equation reflects the fact that each time an infective dies by lysis, it
releases b copies of the virus, and we must now compute an expression for the term
in curly brackets. As a first step in doing so, we shall indicate how to compute the
density I(x, t) of infectives at (x, t). This will be achieved by using a standard age-
structured model approach. Let i(x, t, a) be the density of infectives at (x, t) of age
a. We assume that i satisfies the von Foerster-type equation

∂i

∂t
+

∂i

∂a
= Di

∂2i

∂x2
− µii,(4.2)

where Di is the diffusivity of the infectives. The age of an infective will be measured
from its time of infection so that, by the law of mass action,

i(x, t, 0) = KS(x, t)P (x, t).(4.3)

We want to solve (4.2) subject to (4.3) to obtain i(x, t, a). The total density of
infectives at (x, t) will then be obtained by totaling all those of “age” less than T
(since older ones will have died by lysis); thus

I(x, t) =

∫ T

0

i(x, t, a) da.(4.4)

Expression (4.4) can then be used to find the rate of death of infectives by lysis which
is required for model (4.1).

Let

ir(x, a) = i(x, a + r, a).

Then

∂ir

∂a
=

[
∂i

∂t
+

∂i

∂a

]
t=a+r

=

[
Di

∂2i

∂x2
− µii

]
t=a+r
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so that

∂ir

∂a
= Di

∂2ir

∂x2
− µii

r.(4.5)

Applying the Fourier transform

îr(s, a) = F{ir(x, a); x→s} =

∫ ∞

−∞
ir(x, a)e−isx dx

to (4.5) gives

∂îr(s, a)

∂a
= −(Dis

2 + µi)îr(s, a),

the solution of which is

îr(s, a) = îr(s, 0)e−(Dis
2+µi) a

= F {KS(x, r)P (x, r); x→s}e−(Dis
2+µi) a

= F {KS(x, r)P (x, r); x→s}F
{

e−µia

2
√
πDia

e−x2/4Dia; x→s

}

since

îr(s, 0) = F {i(x, r, 0); x→s} = F {KS(x, r)P (x, r); x→s}

and

e−(Dis
2+µi) a = F

{
e−µia

2
√
πDia

e−x2/4Dia; x→s

}
.

By the convolution theorem for Fourier transforms,

i(x, a + r, a) = ir(x, a) =

∫ ∞

−∞

e−µia

2
√
πDia

e−(x−y)2/4DiaKS(y, r)P (y, r) dy.

Hence

i(x, t, a) =

∫ ∞

−∞

e−µia

2
√
πDia

e−(x−y)2/4DiaKS(y, t− a)P (y, t− a) dy,

and so

I(x, t) =

∫ T

0

∫ ∞

−∞

e−µia

2
√
πDia

e−(x−y)2/4DiaKS(y, t− a)P (y, t− a) dy da

or, after the substitution a = t− τ ,

I(x, t) =

∫ t

t−T

∫ ∞

−∞

e−µi(t−τ)

2
√
πDi(t− τ)

e−(x−y)2/4Di(t−τ)KS(y, τ)P (y, τ) dy dτ.

From this, we see that I(x, t) obeys

∂I(x, t)

∂t
= Di

∂2I(x, t)

∂x2
− µiI(x, t) + KS(x, t)P (x, t)

−Ke−µiT

∫ ∞

−∞

e−(x−y)2/4DiT

2
√
πDiT

S(y, t− T )P (y, t− T ) dy,
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and it is clear that the last term of this is the rate of death of infectives by lysis.
Thus, system (4.1) becomes

∂S(x, t)
∂t

= Ds
∂2S(x, t)

∂x2 + αS(x, t)

(
1 − S(x, t)

γ

)
−KS(x, t)P (x, t),

∂P (x, t)
∂t

= Dp
∂2P (x, t)

∂x2 − µpP (x, t) −mP 2(x, t) −KS(x, t)P (x, t)

+ bKe−µiT

∫ ∞

−∞

e−(x−y)2/4DiT

2
√
πDiT

S(y, t− T )P (y, t− T ) dy.

(4.6)

The formulation of a simple reaction-diffusion extension of (2.1) is complete. Like (2.1),
system (4.6) does not involve the infectives I(x, t) directly, but it does involve the pa-
rameter Di which measures their diffusivity.

System (4.6) is to be solved on the domain −∞ < x < ∞. Reaction-diffusion
systems with delay are quite difficult to study, and in this paper we will not attempt a
systematic study of all the dynamics of (4.6). It is of interest to investigate what (4.6)
tells us about the spatial spread of a virus infection in a population of bacteria.
Mathematically, it is therefore reasonable to look for traveling wave solutions of (4.6)
connecting the disease-free equilibrium (γ, 0) with the endemic equilibrium (S∗, P ∗)
given by (3.1), assuming (3.2) holds so that an endemic equilibrium exists. A traveling
front solution connecting these equilibria can model an invasion by the virus into the
domain.

A traveling wave solution is one that travels at a constant speed c without chang-
ing shape. Mathematically, it is a solution that depends on x and t through the single
variable z = x+ ct, with c ≥ 0 without loss of generality (this gives a leftward moving
wave). In terms of the variable z, system (4.6) becomes

c S′(z) = DsS
′′(z) + αS(z)

(
1 − S(z)

γ

)
−KS(z)P (z),

c P ′(z) = DpP
′′(z) − µpP (z) −mP 2(z) −KS(z)P (z)

+ bKe−µiT

∫ ∞

−∞

e−y2/4DiT

2
√
πDiT

S(z − cT − y)P (z − cT − y) dy,

(4.7)

where prime denotes differentiation with respect to z, and we need to solve (4.7) for
S(z) and P (z) subject to

(S, P )(−∞) = (γ, 0) and (S, P )(+∞) = (S∗, P ∗).(4.8)

System (4.7), (4.8) remains a difficult mathematical problem, and we have not been
able to establish the existence of a solution, even with the most recently developed
methods for proving existence of traveling front solutions of delay reaction-diffusion
systems such as those of Wu and Zou [21]. We shall therefore assume that such a
solution exists and concentrate on finding out as much as possible about the speed
c at which the virus infection spreads through the spatial domain. On the further
assumption that the infection spreads at the minimum speed consistent with having
an ecologically realistic solution satisfying S(z), P (z) ≥ 0 for all z ∈ (−∞,∞), we
shall formally calculate this minimum speed by examining the situation as z→−∞,
where P (z)→0, and obtaining conditions on c which are necessary for the convergence
of P (z) to 0 to be nonoscillatory. Linearizing as z→−∞, when P→0 and S→γ, the



SPATIAL SPREAD OF BACTERIOPHAGE INFECTION 561

second equation of (4.7) becomes, approximately,

c P ′(z) = DpP
′′(z)− µpP (z)− γKP (z) + bγKe−µiT

∫ ∞

−∞

e−y2/4DiT

2
√
πDiT

P (z − cT − y) dy

and has solutions of the form P (z) = exp(λz) whenever λ satisfies

cλ−Dpλ
2 + µp + γK = bγKe−µiT e−λcT eλ

2DiT .(4.9)

Since this analysis is for z→−∞, it is necessary that (4.9) have at least one real positive
root if P (z) is to approach 0 in a nonoscillatory manner. Whether (4.9) has real
positive roots or not depends on the value of c, as can be easily seen by plotting the left-
and right-hand sides of (4.9) against λ and remembering that bγKe−µiT > µp + γK,
since this is the condition for the existence of (S∗, P ∗). If c is very small, then (4.9) has
no real positive roots, but if c is gradually increased, there is a critical value of c which
we shall call cmin (depending on T ) such that when c = cmin (4.9) has one positive
root (a double root), and when c > cmin the equation has precisely two real distinct
positive roots. Only traveling fronts for which c ≥ cmin are ecologically realistic, and
we assume that the virus infection travels with speed cmin since it is usually the case in
reaction-diffusion equations that the front one actually sees is the one with minimum
speed (those with c > cmin usually have very small basins of attraction that rule out
all but special initial conditions having very specific exponential decay rates).

Our aim now is to find out more about cmin and its dependence on the parame-
ters. It is not possible to find an explicit expression for cmin, but we can find some
information about it. Indeed, cmin is the value of c for which (4.9) has a double root
λ∗. Therefore, cmin and the double root λ∗ must satisfy the simultaneous equations

cminλ∗ −Dpλ
2
∗ + µp + γK = bγK exp(−µiT − λ∗cminT + λ2

∗DiT ),
cmin − 2Dpλ∗ = bγK(2λ∗DiT − cminT ) exp(−µiT − λ∗cminT + λ2

∗DiT ).
(4.10)

From these equations, we see that λ∗ must satisfy f(λ) = 0, where

f(λ) := 2DiDpTλ
3 − (2cminDiT + cminDpT )λ2 − (2DiT (µp + γK) − c2minT + 2Dp)λ

+ cmin + cminT (µp + γK).

Now f is a cubic and is such that f(0) > 0 and

f

(
cmin +

√
c2min + 4Dp(µp + γK)

2Dp

)
= −

√
c2min + 4Dp(µp + γK) < 0.

These facts imply that the equation f(λ) = 0 has one real negative root and two
real distinct positive roots. The larger of the two positive roots cannot satisfy the
first equation of (4.10). Therefore, λ∗ is the smaller of the two real positive roots of
f(λ) = 0. Furthermore,

0 < λ∗ <
cmin +

√
c2min + 4Dp(µp + γK)

2Dp
.(4.11)

The roots of a cubic equation are difficult to write down in general terms because there
are numerous cases depending on the signs of various quantities defined in terms of
the coefficients in the equation. An appendix to the book by Murray [15] gives all the
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details. Although the coefficients of our particular cubic equation are complicated,
we know a priori that our cubic equation has only real roots, and this narrows down
the possibilities considerably. In fact, if we let

a∗ = −cmin (2Di + Dp)

6DiDp
,

α∗ =
4c2minTD

2
i − 2c2minTDiDp + c2minTDp

2 + 12D2
iDpTµp + 12D2

iDpTγK + 12DiD
2
p

36D2
iD

2
pT

(it is easily shown that α∗ > 0),

N = 8c2minTD
2
i + 36D2

iDpTµp + 36D2
iDpTγ K + 2c2minTDi Dp − 18DiD

2
p − c2minTD

2
p,

β∗ =
cmin (Dp −Di)N

108Di
3Dp

3T
,

and

φ = (1/3) sin−1

(
β∗

2α
3/2
∗

)
, φ ∈ [−π/6, π/6],

then the only root of f(λ) = 0 satisfying (4.11) can be shown to be

λ∗ = 2α
1/2
∗ sinφ− a∗.(4.12)

Substituting λ∗ into either equation of (4.10) then gives a single, but very complicated,
equation determining the speed cmin.

We define the function g(c) to be the left-hand side minus the right-hand side of
the second equation of (4.10), with λ∗ given by (4.12) and cmin replaced by c. The
resulting function is too complicated to write out explicitly but is easily handled in
MAPLE. Of course, cmin solves g(cmin) = 0 and can easily be found either by reading
off the root from an accurate plot of g(c) or by using MAPLE commands for finding
roots numerically. Figure 3 shows a plot of g(c) for typical parameter values (see
caption). We investigated how cmin depends on the values of all the parameters, and
our main observations were as follows:

• If µi, µp, or T is increased, the result is a decrease in cmin.
• If K, γ, b, Di, or Dp is increased, the result is an increase in cmin.
• If the delay T is large, then the value of cmin is much more sensitive to Di than

to Dp. Presumably this is because virus particles with a host are transported
at the diffusivity of the infectives. To illustrate this, let T = 7 and other
parameters retain their Figure 3 values. Then cmin = 1.265. Keeping T = 7,
if Di is then raised to 100, cmin rises to 5.623. But if instead Di = 5 and Dp

is raised to 100, then cmin rises only to 1.976.
Analytical estimates for cmin can be obtained from other arguments, involving con-
sideration of the graphs of the left- and right-hand sides of (4.9) as functions of λ.
When c = cmin these two graphs just touch, at the value λ∗ just discussed. Consider
first the case when Di < Dp (so the minimum of the right-hand side is to the right of
the maximum of the left-hand side). In this situation the maximum of the left-hand
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Fig. 3. Plot of the function g(c) defined in the text. The virus is predicted to spread at the speed
cmin > 0 such that g(cmin) = 0. Parameter values used for this graph were K = 0.134, µi = 0.1,
µp = 2, T = 0.2, γ = 1, Di = 5, Dp = 1, and b = 60. For these values, cmin = 5.646.

side as a function of λ is c2min/(4Dp) + µp + γK, and this must be less than the value
of the right-hand side when λ = 0, which is bγKe−µiT . This leads to the estimate

cmin < 2
√
Dp{γK(be−µiT − 1) − µp} if Di < Dp.

If Di is larger than Dp, but not too much larger, the above estimate on cmin will still
hold.

We also carried out some numerical simulations of system (4.6) with a view to
finding out whether the minimum speed cmin found from the linearized analysis is the
speed which would be observed in practice. The question is whether the minimum
speed wave is in some sense robust, attracting large classes of initial data. These
questions are difficult to resolve analytically. In a recent paper, Thieme and Zhao [19]
proved results on asymptotic speeds of spread for a class of nonlinear integral equa-
tions which include many reaction-diffusion models with delay, but their results do
not include system (4.6). Figure 4 shows the results of a numerical simulation of sys-
tem (4.6). For initial data, susceptibles S were set equal to γ throughout the domain,
and some phages were introduced at x = 0 into an otherwise phage-free domain. Fig-
ure 4 shows how the phages spread out into the domain and the effect on the density of
susceptible bacteria. Note that the traveling wave profiles are nonmonotone. Careful
examination of the profiles suggests that the traveling fronts advance at the minimum
speed cmin computed from the linearized analysis. The numerically computed front
actually appears to travel at a slightly higher speed, but we are confident that this
is purely a consequence of the discretization procedure. The speed varied slightly
with the number of spatial grid points but seemed to approach cmin from above as
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Fig. 4. Numerical simulation of system (4.6). Parameter values were Ds = 5, m = 1, α = 1.34,
and the remaining parameters were as in Figure 3. The simulation suggests that the asymptotic speed
of spread is cmin, the minimum speed according to the linearized analysis.

the number of grid points was increased. As a result, we suggest that the asymptotic
speed of spread is indeed the speed cmin found from the linearized analysis.

5. Discussion. A key observation of Beretta and Kuang [2, 4] is the sensitivity
of the dynamics on the phage reproduction rate b. This remains so for model (2.1).
The novel observation of this work is the ultrasensitivity of the dynamics on the
phage density dependent mortality rate m. This suggests that the density dependent
mortality rate must be carefully measured to gain a better understanding of the
bacteriophage infection dynamics in marine bacteria. Indeed, the recent work of
Kuang, Fagan, and Loladze [13] contends that the predator death rate almost always
positively correlates with the predator density in nature. To see this for model (2.1),
we present Figures 5 and 6. Both figures use initial data and parameter values identical
to those in Figure 2, except that in Figure 5, m = 0, while in Figure 6, m = 0.2.

The second novel aspect of our work is the rigorous derivation of a delay reaction-
diffusion system to model the spatial spread of the virus infection and the use of
this system to formally calculate the speed at which the infection spreads through
a one-dimensional environment. The speed does not depend on the density depen-
dent mortality parameter m just discussed. Unfortunately, it is not possible to find
a simple expression for the speed, but it can be found from numerical computation.
As we would expect, the speed depends on the diffusivity of both the infectives and
the phages but is much more sensitive to the value of the former than the latter.
This would be because virus replication takes place only inside a host, and therefore
during replication the diffusivity of the viruses is effectively the host diffusivity Di

rather than Dp.
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Fig. 5. A solution of model (3.16) with s(θ) = 0.3, p(θ) = 1, θ ∈ [−τ, 0], where µp = 14.925,
b = 75, µi = 1.5, α = 10, m = 0, and τ varies from 0.01 to 1.1.
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Fig. 6. A solution of model (3.16) with s(θ) = 0.3, p(θ) = 1, θ ∈ [−τ, 0], where µp = 14.925,
b = 75, µi = 1.5, α = 10, m = 0.2, and τ varies from 0.01 to 1.1.
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Abstract. Aiming at reduction of complexity, this work is concerned with two-time-scale Markov
chains and applications to quasi-birth-death queues. Asymptotic expansions of probability vectors
are constructed and justified. Lumping all states of the Markov chain in each subspace into a single
state, an aggregated process is shown to converge to a continuous-time Markov chain whose generator
is an average with respect to the stationary measures. Then a suitably scaled sequence is shown to
converge to a switching diffusion process. Extensions of the results are presented together with
examples of quasi-birth-death queues.
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1. Introduction. Much effort has gone into evaluating performance measures
of queueing systems in the past two decades; see, for example, [3, 22, 24, 26] and
the references therein. Since exact solutions are difficult to obtain in many queueing
problems, we are content with approximate solutions. To treat large-scale Markovian
queueing systems, one of the most popular methods is decomposition, which consists
of breaking the underlying network into smaller pieces (e.g., one station in each piece);
see [3, 24, 26] among others. Although one often uses time-homogeneous Markovian
models for approximating the actual systems, many queueing systems in real life are
nonstationary (time-dependent); for example, the arrival and service rates in the sys-
tems are time-varying. Recently, time-inhomogeneous Markovian queueing networks
have been widely used to model telecommunication systems; see [5]. Developing com-
putational methods and approximation techniques for these quantities involved in
time-inhomogeneous queueing problems has long been regarded as a challenging task
(see [14] and [20]); see also [12, 18] and the references therein for earlier effort in this
direction.

The motivation of our study stems from the recent advances in understanding
asymptotic properties of singularly perturbed Markov chains aimed at reducing of
complexity. We began our investigation in [13]. By combining matched asymptotic
expansions and stochastic analysis, our effort was subsequently extended to treat more
complex models and applications in control and optimization; see [29, 30]. These re-
sults are about Markov chains with finite-state spaces, and they are applicable to
queues with a finite number of waiting rooms or finite capacity; see also [20] for a
related work. Continuing our effort initiated in [28], using a model similar to that
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presented in [26] as our starting point, we consider queueing systems in which the
generator of the queue length process includes both a fast varying part and a slowly
changing part reflecting both strong and weak interactions of states belonging to dif-
ferent irreducible classes. Compared with the methods used in [3, 24, 26], we adopt a
singular perturbation approach via time-scale separation to model the different tran-
sition intensities. In [28], treating countable-state-space Markov chains, one of the
main assumptions used is that the underlying Markov chain is irreducible. In the
context of queueing theory, it basically corresponds to the consideration of a sin-
gle queue. The goal of this paper is to treat multistation queueing networks and
to develop decomposition and aggregation methods for queueing network problems.
Motivated by queueing networks involving quasi-birth-death processes, we start with
decomposition by splitting the entire state space into a number of subspaces. Usually,
the transitions within each subspace are much more intensive and frequent than those
among different subspaces. We introduce a small parameter ε > 0 to highlight the
different rates of transition intensities. Then we proceed to derive the asymptotic ex-
pansions of the probability distribution of the queue length. By lumping all the states
in each subspace into a single state, we obtain a sequence of aggregated processes.
We demonstrate that this sequence converges to a Markov chain. Furthermore, we
obtain limit results for suitably scaled sequences.

The rest of the paper is arranged as follows. Section 2 begins with the precise
formulation of the problem. Section 3 provides asymptotic expansions. A sequence
of occupation measures is defined in section 4; its probabilistic properties, includ-
ing mean square estimate, aggregation, and switching diffusion limit of a suitably
scaled sequence, are examined. Section 5 presents extensions of results and queueing
examples. Finally, an appendix is provided to include some technical complements.

2. Formulation. Working with a finite time horizon t ∈ [0, T ] for some T > 0,
our focus is on time-inhomogeneous Markov chains. Suppose that β(t) is a continuous-
time Markov chain with countable state space N = {1, 2, . . .}. An infinite dimensional
matrix-valued function Q(t) = (qij(t)) defined on [0, T ] is a generator of the Markov
chain β(t) if qij(·) is Borel measurable and bounded for each i, j ∈ N, qij(t) ≥ 0 for
all i �= j,

∑∞
j=1 q

ij(t) = 0 for all i ∈ N, and for any bounded and Borel-measurable

function g̃(·) defined on N, g̃(β(t)) −
∫ t

0
Q(s)g̃(·)(β(s))ds is a martingale, where

Q(t)g̃(·)(i) =

∞∑
j=1

qij(t)g̃(j) for each i ∈ N.(2.1)

Throughout the paper, we use K to denote a generic positive constant. The conven-
tions K +K = K and KK = K are used for simplicity. We use 11m0

and 11 to denote
an m0-dimensional and infinite dimensional column vector with all components being
1. For a vector z and a matrix H, we use z′ and H ′ to denote their transposes, and
we use zi and hij to denote the ith component of z and the ijth entry of H = (hij),
respectively. For a given matrix H = (hij)∞×∞ with infinite columns and infinite

rows, Ha is an augmented matrix given by Ha = (H
·
: 11). In addition, we use a

subscript to index a sequence.
A Markov chain β(t) or its generator Q(t) is weakly irreducible, if the system

of equations g(t)Qa(t) = (0
·
: 1) has a unique solution g(t) = (gi(t)) with gi(t) ≥ 0

for each i ∈ N, where 0 = (0, 0, . . .) is an infinite dimensional 0 vector. The unique
nonnegative solution is termed a quasi-stationary distribution. (An equivalent way to
write the system of equations in the above definition is g(t)Q(t) = 0, g(t)11 = 1.) The
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definition is an extension of the usual notion of irreducibility, and the weak irreducibil-
ity given in [13] for finite-state Markov chains. Compared with the usual definition
of irreducibility, it deals with time-varying generators and allows some components of
the quasi-stationary distribution to be 0.

Suppose that the Markovian queueing network has n0 (n0 < ∞) interconnected
stations. Consider a vector-valued queue-length process taking values in Nn0 =
N × N × · · · × Nn0

(an n0-fold product). We use α(·), a continuous-time Markov chain,
to model the queue length of the queueing network. Suppose that Nn0 can be divided
into l subsets. Within each subset, the transitions (such as arrivals and departures
of customers, etc.) take place an order of magnitude more frequent than that of
among different subsets. To highlight this contrast, we introduce a small parameter
ε > 0. Thus the continuous-time Markov chain is ε-dependent, i.e., α(·) = αε(·). For
t ∈ [0, T ], assume that the generator of the Markov chain αε(t) is given by

Qε(t) =
A(t)

ε
+ B(t), with A(t) = diag(A1(t), . . . , Al(t)),(2.2)

where A(t), B(t), and Ai(t) (for i = 1, . . . , l) are all generators of certain countable-
state space Markov chains, and diag(A1(t), . . . , Al(t)) denotes a block diagonal matrix,
each of the entries of which has appropriate dimension. Note that B(t) is a generator
and there is no need to assume it has the same diagonal matrix form as that of A(t).

There is a certain hierarchy in the underlying network. Within each subset, one
observes detailed variations of the networks such as arrivals and services of customers,
etc., whereas at an upper system management level, instead of these variations, one
observes the transitions among different subsets. Thus from an upper management
point of view, by lumping all the states in each subspace into a single one, the system
may be regarded as if it were a queue with finite waiting rooms (l rooms). Never-
theless, the aggregated process is generally non-Markovian. Fortunately, as will be
shown, the aggregated process converges weakly to a limit process that is a finite-state
Markovian queue. The significance of such a result is that in lieu of examining the
detailed variations, one can study the aggregated process.

To reflect the decomposition in the network, write the state space of the queueing
network as M = M1 ∪M2 · · · ∪Ml, where Mi = {si1, si2, . . . , } for i = 1, . . . , l. Fol-
lowing our approach for singularly perturbed Markov chains with finite-state spaces,
we construct matched asymptotic expansions of the probability vector

pε(t) = (p11
ε (t), . . . , p21

ε (t), . . . , . . . , pl1ε (t), . . .), pijε (t) = P (αε(t) = sij).(2.3)

For future use, partition an infinite dimensional vector v as v = (v1, . . . , vl) with
vi = (vi1, vi2, . . .). That is, vi is an infinite dimensional vector corresponding to the
subspace Mi. Since we are dealing with countable state space Markov chains, we
work with an infinite dimensional vector space. It is natural to consider the spaces
�1 = {(v1, . . . , vl) : 1 ≤ i ≤ l, vik ∈ R for each k ∈ N, and

∑l
i=1

∑∞
k=1 |vik| < ∞},

�∞ = {(v1, . . . , vl): 1 ≤ i ≤ l, vik ∈ R for each k ∈ N, and sup1≤i≤l sup1≤k<∞ |vik| <
∞}, equipped with ||v||1 =

∑l
i=1

∑∞
k=1 |vik| and ||v||∞ = sup1≤i≤l sup1≤k<∞ |vik|,

respectively; see [9, p. 11]. For a linear operator A defined on these spaces, we use
its induced norm ||A|| = sup||x||=1 ||Ax||, where || · || is either norm || · ||1 or || · ||∞.
It is plain that pε(t) ∈ �1 and that for each i (1 ≤ i ≤ l) and each k (1 ≤ k < ∞),

pikε (t) ≥ 0, and
∑l

i=1

∑∞
k=1 p

ik
ε (t) = 1. It is well known that pε(t) satisfies the forward

equation

ṗε(t) = pε(t)Qε(t), pε(0) = p(0),(2.4)
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such that pik(0) ≥ 0 and
∑l

i=1

∑∞
k=1 p

ik(0) = 1.

3. Asymptotic expansions. Following the approach of singular perturbation
methods, we derive uniform (in the time variable t) asymptotic expansions of the
probability vector as well as that of the transition probability matrices of the queue
length processes. To proceed, we need the following conditions.

(A1) For each t ∈ [0, T ] and each i = 1, . . . , l, Ai(t) is weakly irreducible. There
exists an integer n such that (dn+2/dtn+2)Ai(·) ∈ Lip[0, T ] and (dn+1/dtn+1)
B(·) ∈ Lip[0, T ], where Lip[0, T ] denotes the class of functions defined on
[0, T ] that are Lipschitzian.

(A2) There is a κ > 0 such that for any real number τ > 0,∣∣∣∣exp(A(0)τ) − diag(11ν1(0), . . . , 11νl(0))
∣∣∣∣
∞ ≤ K exp(−κτ),(3.1)

where νi(t) = (νi1(t), νi2(t), . . .) is the quasi-stationary distribution corre-
sponding to the generator Ai(t).

Remark 3.1. From (A1) and the definition of weak irreducibility, νi(t)Ai
a(t) =

(0
·
: 1) has a unique solution. Furthermore, νi(t) = (0

·
: 1)(Ai

a(t))
′(Ai

a(t)(A
i
a(t))

′)−1.
(A2) is a Doeblin-type condition. A condition in a slightly different form is given in
[7, p. 192]. We will obtain the asymptotic expansions in two steps. The first step is
a formal construction in which we (see [4, 10, 25] and [11, 13] among others) find the
outer expansions and the initial layer corrections. The second step involves validating
the formal expansions and deriving the desired error estimates.

3.1. Formal expansions. We seek matched asymptotic expansions of the form
Oε,n(t) + Iε,n(t) =

∑n
i=0 ε

iφi(t) +
∑n

i=0 ε
iψi(t/ε). For technical reasons, which will

become clear in what follows, to justify the validity of the expansions, we also need to
compute φn+1(t) and ψn+1(t/ε). To make sure that the matching condition is satisfied,
we use Oε,n+1(0) + Iε,n+1(0) = p(0) or, more specifically, φ0(0) + ψ0(0) = p(0),
φk(0) + ψk(0) = 0 for 1 ≤ k ≤ n + 1. Our approach is based on constructions of the
sequences {φi(t)} and {ψi(t/ε)}.

Substituting Oε,n+1(t) into (2.4) and comparing coefficients of powers of εk, we
obtain

φ0(t)A(t) = 0, φk(t)A(t) = φ̇k−1(t) − φk−1(t)B(t), 1 ≤ k ≤ n + 1.(3.2)

The outer expansions give us satisfactory approximation for t > 0 away from an initial
layer of the order O(ε), but it does not satisfy the initial condition and breaks down
for sufficiently small t. To compensate, introduce a fast time variable τ = t/ε. By
the Lipschitz continuity given in (A1), taking Taylor expansions of A(ετ) and B(ετ)

about 0 yields A(ετ) =
∑n+1

i=0
(ετ)i

i!
diA(0)
dti +O((ετ)n+2), εB(ετ) =

∑n
i=0 ε

(ετ)i

i!
diB(0)
dti +

O((ετ)n+2). Substituting Iε,n+1(t) into (2.4), using the above Taylor expansions of
A(t) and B(t), and comparing powers of εi, we obtain the equations satisfied by the
initial layer terms. We have ψ0(0) = p(0) − φ0(0), ψk(0) = −φk(0), and

dψ0(τ)

dτ
= ψ0(τ)A(0),

dψk(τ)

dτ
= ψk(τ)A(0) + rk(τ), 1 ≤ k ≤ n + 1,

rk(τ) =

k−1∑
i=0

ψk−i−1(τ)
( τ i+1

(i + 1)!

di+1A(0)

dti+1
+

τ i

i!

diB(0)

dti

)
, 1 ≤ k ≤ n + 1.

(3.3)

In [28], in which A(t) consists of only one block, the outer expansions and initial
layers can be obtained separately. Here, the constructions of {φk(t)} have to be done
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in conjunction with the initial layer corrections. The equations in (3.3) together with
the initial data are known as abstract Cauchy problems; see [17, p. 21]. It is well
known that {exp(A(0)τ)} is a uniformly continuous semigroup (see [17, 23]). With
ψk(0) to be determined, the representation of the solutions of (3.3) is given by

ψ0(τ) = (p(0) − φ0(0)) exp(A(0)τ),

ψk(τ) = ψk(0) exp(A(0)τ) +

∫ τ

0

rk(s) exp(A(0)(τ − s))ds, 1 ≤ k ≤ n + 1.
(3.4)

Step 1. Determine φ0(t) and ψ0(τ ). We begin with the first equation
in (3.2). Using the partitioned vector form introduced right after (2.3), we obtain
φi

0(t)A
i(t) = 0 for each i = 1, . . . , l. These equations are not uniquely solvable

since Ai(t) have a 0 eigenvalue. However, by attaching
∑∞

j=1 φ
ij
0 (t) = θi0(t) to the

equations, the resulting system of equations has a unique solution thanks to the weak
irreducibility of Ai(t). Thus, φi

0(t) must be proportional to νi(t), the quasi-stationary
distribution corresponding to Ai(t). That is, φi

0(t) = θi0(t)ν
i(t), where θi0(t) ∈ R is to

be determined. Define

θ0(t) = (θ1
0(t), . . . , θ

l
0(t)) ∈ R1×l, 1̃1 = diag(11, 11, . . . , 11), ν(t) = diag(ν1(t), . . . , νl(t)).

(3.5)
It is immediate that A(t) is orthogonal to 1̃1 (i.e., A(t)1̃1 = 0) and φ0(t) = θ0(t)ν(t).
For the equation with k = 1 in (3.2), multiplying from the right by 1̃1 leads to

θ̇0(t) = θ0(t)B(t), B(t) = ν(t)B(t)1̃1,(3.6)

so B(t) is an average of B(t) with respect to ν1(t), . . . , νl(t). Note that B(t) is an l× l
matrix-valued function. Note also that (3.6) is a linear system of differential equations
and that it has a unique solution for each initial condition. Choose θ0(0) = p(0)1̃1.
Then the solution of (3.6) is uniquely determined. The φi

0(t) has the interpretation
of total probability.

Concerning the initial layer correction ψ0(τ), the solution is given by the first
equation in (3.4) and is uniquely solved. We claim that ||ψ0(τ)||∞ ≤ K exp(−κτ) for

some κ > 0 and K > 0. To prove this, note that 1̃1ν(0) = diag(11ν1(0), . . . , 11νl(0))
and

ψ0(0)1̃1ν(0) = [p(0) − φ0(0)]1̃1ν(0) = (0, 0, . . .),(3.7)

where φ0(0) = θ0(0)ν(0), φ0(0)1̃1 = θ0(0), and θ0(0) = p(0)1̃1 are used. By virtue of the
orthogonality and (A2), ||ψ0(τ)||∞ = ||ψ0(0)(exp(A(0)τ)− 1̃1ν(0))||∞ ≤ K exp(−κτ).
To determine φi(t) and ψi(t) for i ≥ 1, we need the following lemma.

Lemma 3.2. Suppose that Q(t) is a generator of a countable-state-space Markov
chain such that Q(t) is weakly irreducible for each t ∈ [0, T ] and (dn+1/dtn+1)Q(·) ∈
Lip[0, T ]. Denote Q̃(t) = Qa(t)Q

′
a(t). Then for k = 1, . . . , n+1, (dk/dtk)Q̃−1(t) exists

and belongs to Cn+1−k (the class of functions that are (n+ 1− k)-times continuously
differentiable).

Proof. Since Q̃(t)Q̃−1(t) = I, differentiating both sides of the above equation
leads to

dQ̃−1(t)

dt
= −Q̃−1(t)

dQ̃(t)

dt
Q̃−1(t),(3.8)

so Q̃−1(·) is differentiable. Repeatedly differentiating equation (3.8) yields the desired
result.
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Step 2. Determine φ1(t) and ψ1(τ ). Lemma 3.2 and Remark 3.1 imply that
φ0(·) is differentiable and is a function of class Cn+1. We proceed to determine φ1(t)
and ψ1(τ). Note that the equation with k = 1 in (3.2) is a nonhomogeneous equation

whose right-hand side φ̃0(t)
def
= φ̇0(t) − φ0(t)B(t) is a known function since φ0(t) has

been found. Using (3.6), [φ̇0(t)−φ0(t)B(t)]1̃1 = θ̇0(t)−θ0(t)ν(t)B(t)1̃1 = (0, 0, . . .), and
the Fredholm alternative yields that the equation with k = 1 in (3.2) has a particular

solution φ1,p(t) being orthogonal to 1̃1. Assume the solution of φ1(t)A(t) = φ̃0(t) to be

of the form φ1(t) = θ1(t)ν(t)+φ1,p(t). Since φ1,p(t) is orthogonal to 1̃1, postmultiplying

the equation with k = 2 in (3.2) by 1̃1 leads to

θ̇1(t) = θ1(t)B(t) + φ1,p(t)B(t)1̃1.(3.9)

Once the initial condition is specified, (3.9) is uniquely solved. The initial condition
θ1(0) has to come from the initial layer correction term. With the selection of ψ1(0) =
−φ1(0), by (3.4) with k = 1, the unique solution is given by

ψ1(τ) = ψ1(0) exp(A(0)τ) +

∫ τ

0

ψ0(s) exp(A(0)s)B(0) exp(A(0)(τ − s))ds

+

∫ τ

0

sψ0(s) exp(A(0)s)
dA(0)

dt
exp(A(0)(τ − s))ds.

(3.10)

By the exponential decay of ψ0(τ),
∣∣∣∣∫ τ

0
ψ0(s) exp(A(0)s)ds

∣∣∣∣
∞ =

∫∞
0

||ψ0(s)||∞ ds <

∞. Denote ψ0
def
=

∫∞
0

ψ0(s) exp(A(0)s)dsB(0). Then from (A2),

lim
τ→∞

ψ1(0) exp(A(0)τ) = lim
τ→∞

(
ψ1(0)[exp(A(0)τ) − 1̃1ν(0)] + ψ1(0)1̃1ν(0)

)
= ψ1(0)1̃1ν(0),

lim
τ→∞

∫ τ

0

ψ0(s) exp(A(0)s)B(0) exp(A(0)(τ − s))ds = ψ01̃1ν(0).

Note that

A(t)1̃1 = 0,
dkA(t)

dtk
1̃1 =

dkA(t)1̃1

dtk
= 0, k = 1, . . . , n + 1.(3.11)

Using the orthogonality (see (3.7) and (3.11)), we obtain∣∣∣∣
∣∣∣∣
∫ τ

0

sψ0(s) exp(A(0)s)
dA(0)

dt
exp(A(0)(τ − s))ds

∣∣∣∣
∣∣∣∣
∞

≤ Kτ2 exp(−κτ).(3.12)

By demanding limτ→∞ ψ1(τ) = 0, taking the limit as τ → ∞ in (3.10), and using
the estimates above, we arrive at

ψ1(0)1̃1ν(0) + ψ01̃1ν(0) = 0.(3.13)

An important observation indicates that there are only l unknowns in (3.13). Using
the notation of partitioned vector given after (2.3), ψ1(0) = (ψ1

1(0), ψ2
1(0), . . . , ψl

1(0))

and ψ0 = (ψ
1

0, ψ
2

0, . . . , ψ
l

0), the solution is given by ψi
1(0)11 = −ψ

i

011, i = 1, . . . , l.

Since ψ1(0) must be chosen so that φ1(0) + ψ1(0) = 0, we obtain θi1(0) = ψ
i

011, i =
1, . . . , l. Thus both φ1(t) and ψ1(τ) have been determined. We claim that ψ1(τ)
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decays exponentially fast. By adding and subtracting appropriate terms,

ψ1(τ) = ψ1(0)[exp(A(0)τ) − 1̃1ν(0)] −
∫ ∞

τ

ψ0(s) exp(A(0)s)dsB(0)1̃1ν(0)

+ψ1(0)1̃1ν(0) +

∫ ∞

0

ψ0(s) exp(A(0)s)dsB(0)1̃1ν(0)

+

∫ τ

0

ψ0(s) exp(A(0)s)B(0)[exp(A(0)(τ − s)) − 1̃1ν(0)]ds

+

∫ τ

0

sψ0(s) exp(A(0)s)
dA(0)

dt
exp(A(0)(τ − s))ds.

(3.14)

By (A2), ∣∣∣∣∣∣ψ1(0)[exp(A(0)τ) − 1̃1ν(0)]
∣∣∣∣∣∣
∞

≤ K exp(−κτ), and∣∣∣∣
∣∣∣∣
∫ τ

0

ψ0(s) exp(A(0)s)B(0)[exp(A(0)(τ − s)) − 1̃1ν(0)]ds

∣∣∣∣
∣∣∣∣
∞

≤ K(1 + τ) exp(−κτ).

(3.15)

It then follows from the above estimates, ||ψ1(τ)||∞ ≤ K(1 + τ + τ2) exp(−κτ) ≤
K exp(−κ0τ), for some 0 < κ0 < κ.

Step 3. Determine φk(t) and ψk(τ ), for 1 < k ≤ n + 1. We apply
the same method for finding φ1(t) and ψ1(τ) to determine φk(t) and ψk(τ). For
each i = 1, . . . , l, assume φi

k(t) is of the form φi
k(t) = θik(t)ν

i(t) + φi
k,p(t), where

φk,p(t) = (φ1
k,p(t), . . . , φ

l
k,p(t)) is a particular solution of the equation φk(t)A(t) =

φ̇k−1(t) − φk−1(t)B(t), and φk,p(t) is orthogonal to 1̃1. We proceed to determine
θk(t) = (θik(t)) ∈ R1×l. By substitution, similar to (3.9), it is easily seen that θk(t)
satisfies the differential equation

θ̇k(t) = θk(t)B(t) + φk,p(t)B(t)1̃1.(3.16)

To determine the initial condition θk(0), the definition of rk(τ) in (3.4) gives us

ψk(τ) = ψk(0) exp(A(0)τ) +

∫ τ

0

k−1∑
j=0

ψk−j−1(s)

×
( τ j+1

(j + 1)!

dj+1A(0)

dtj+1
+

τ j

j!

djB(0)

dtj

)
exp(A(0)(τ − s))ds.

(3.17)

Using the same techniques as that for θ1(0), we obtain θk(0) and uniquely determine
both φk(t) and ψk(τ). We then verify the exponential decay property of ψk(τ). The
procedure is the same as for that of ψ1(τ); we record the result as follows.

Theorem 3.3. Assume (A1) and (A2). Then the following assertions hold:
(a) The sequence {φk(t)} can be constructed by solving the system of equations

φk(t)A(t) = φ̇k−1(t) − φk−1(t)B(t)
def
= φ̃k−1(t)(3.18)

for k = 1, 2, . . . , n. The solution is φk(t) = θk(t)ν(t) + φk,p(t), where φk,p(t)

is a particular solution of (3.18), which is orthogonal to 1̃1, and θk(t) satisfies
θ̇k(t) = θk(t)B(t) + φk,p(t)B(t)1̃1.

(b) Find ψi
k(0)11 from ψk(0)1̃1ν(0) = −(

∑k−1
j=0

∫∞
0

sj

j! ψk−j−1(s)ds
djA(0)
dtj )1̃1ν(0)

def
=

−ψk−11̃1ν(0). Choose θik(0) = −ψi
k(0)11 = ψ

i

k−111 for i = 1, . . . , l. Choose
ψk(0) = −φk(0).
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(c) For k = 0, 1, . . . , n+1, θk(·) and φk(·) are (n+1−k)-times continuously differ-
entiable on [0, T ]; there exists a κ0 > 0 such that ||ψk(τ)||∞ ≤ K exp(−κ0τ).

3.2. Asymptotic justification. In this section, we obtain the desired error
bounds and show that the asymptotic expansions hold uniformly in t ∈ [0, T ]. Define
an operator Lε as

Lεf(t) = ε
df(t)

dt
− f(t)A(t) − εf(t)B(t)(3.19)

for a suitable smooth function f(·). First let us establish a lemma.
Lemma 3.4. Consider Lεvε(t) = ∆ε,k(t), vε(0) = 0, with supt∈[0,T ] ||∆ε,k(t)||∞ =

O(εk+1) for some k with 0 ≤ k ≤ n + 1. Then supt∈[0,T ] ||vε(t)||∞ = O(εk).
Proof. Note that the initial value problem given above is a time-dependent ab-

stract Cauchy problem or an evolution equation. The solution is given by vε(t) =
1
ε

∫ t

0
∆ε,k(s)Xε(t, s)ds, where Xε(t, s) is a fundamental solution or an evolution opera-

tor. In fact (see Ladas and Lakshmikantham [17, p. 56]), Xε(t, s) is an operator-valued
function with values in L(�1); the space of bounded linear operators, defined on �1 and
strongly continuous in t, s for 0 ≤ s ≤ t ≤ T such that (∂/∂t)Xε(t, s) exists in strong
topology of �1; (∂/∂t)Xε(t, s) ∈ L(�1) for 0 ≤ s ≤ t ≤ T and (∂/∂t)Xε(t, s) is strongly
continuous in t; the range of Xε(t, s) is in the domain of Qε(t); and it satisfies the ho-

mogeneous problem ε∂Xε(t,s)
∂t −Xε(t, s)A(t) − εXε(t, s)B(t) = 0, Xε(s, s) = I, where

the initial value I is the infinite dimensional identity matrix. Since it represents
transition probabilities, ||Xε(t, s)||∞ is bounded uniformly in ε for all t, s ∈ [0, T ].

Therefore, we have supt∈[0,T ] ||vε(t)||∞ ≤ K
ε supt∈[0,T ]

∫ t

0
||∆ε,k(s)||∞ ds ≤ Kεk. The

lemma is obtained.
For each k = 1, . . . , n + 1, define a vector-valued error eε,k(t)

eε,k(t) = pε(t) −
k∑

i=0

εiφi(t) −
k∑

i=0

εiψi(t/ε),(3.20)

where pε(·) is the solution of (2.4), φi(·) and ψi(·) are the outer expansions and
initial layer corrections, respectively. We must show that eε,n(t) = O(εn+1). For this
purpose, we first derive a lemma whose proof is similar in spirit to the corresponding
results for weakly irreducible generators [28] and is thus omitted.

Lemma 3.5. Under (A1) and (A2), for k = 1, . . . , n+1, supt∈[0,T ] ||Lεeε,k(t)||∞ =

O(εk+1), and hence supt∈[0,T ] ||eε,k(t)||∞ = O(εk).
Remark 3.6. Using Lemma 3.5, with k = 1, we obtain supt∈[0,T ] ||eε,1(t)||∞ =

O(ε). However, eε,1(t) = eε,0(t) − εφ1(t) − εψ1(t/ε). In view of the boundedness
of φ1(t) and ψ1(t/ε), εφ1(t) + εψ1(t/ε) = O(ε). Thus, eε,0(t) = O(ε) uniformly in
t ∈ [0, T ]. We can proceed inductively. By virtue of Lemma 3.5, with k = n + 1,
supt∈[0,T ] ||εε,n+1||∞ = O(εn+1). Going back one step and using eε,n+1(t) = eε,n(t) +

O(εn+1), similar to the case of k = 1, we obtain supt∈[0,T ] ||eε,n(t)||∞ = O(εn+1).
We summarize the discussion thus far into the following theorem. This gives us the
desired approximation results. Not only is the convergence of P (αε(t) = i) obtained,
but also the rate of convergence is derived. Furthermore, a full asymptotic series is
obtained.

Theorem 3.7. Under (A1) and (A2), we can construct two sequences {φk(t)}nk=0

and {ψk(t/ε)}nk=0 by Theorem 3.3 such that φk(t) ∈ Cn+1−k and ψk(t/ε) decay ex-
ponentially fast. Moreover with eε,n(t) defined by (3.20), supt∈[0,T ] ||eε,n(t)||∞ =

O(εn+1).
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Using the same techniques, we can also obtain asymptotic expansions of transition
probability matrices. Since the proofs are essentially the same, we will state only
the results and omit the detailed argument. Let Pε(t0, t) be the transition matrix
(pin,jkε (t0, t)) with pin,jkε (t0, t) = P (αε(t) = sjk|αε(t0) = sin) for all sin, sjk ∈ M.

Theorem 3.8. Assume (A1) and (A2) with n = 1. Then

Pε(t0, t) = Φ0(t0, t) + Ψ0(t0, (t− t0)/ε) + O(ε + ε exp((t− t0)/ε))(3.21)

uniformly in (t0, t), where 0 ≤ t0 ≤ t ≤ T ,

Φ0(t0, t) = 1̃1Θ(t0, t)ν(t),
dΨ0(t0, τ)

dτ
= Ψ0(t0, τ)A(t0), Ψ0(t0, t0) = I −Φ0(t0, t0),

(3.22)
where Θ(t0, t) = (θij(t0, t)) ∈ Rl×l is the solution of

d

dt
Θ(t0, t) = Θ(t0, t)B(t), Θ(t0, t0) = I.(3.23)

Remark 3.9. Owing to Theorems 3.7 and 3.8, for some κ0 > 0, pε(t) = ν(t) +
O(ε + exp(−κ0t/ε)), Pε(t0, t) = Φ0(t0, t) + O(ε + exp(−κ0(t− t0)/ε)).

4. Occupation measures, aggregation, and switching diffusion. This sec-
tion presents further asymptotic results that are of probabilistic feature. The state-
ments of the results are given, and the proofs are relegated to the appendix.

4.1. Occupations measures. For any i = 1, . . . , l and j = 1, 2, . . ., define
sequences of occupation measures as

µij
ε (t) =

∫ t

0

zij(s, αε(s))ds, zij(t, αε(t)) = I{αε(t)=sij} − νij(t)I{αε(t)∈Mi},(4.1)

where νij(t) is the jth component of the quasi-stationary distribution νi(t) as defined
in (A2). As a preparation, we first derive an order of magnitude estimate for µij

ε (·)
defined in (4.1).

Theorem 4.1. Under the conditions of Theorem 3.8, supt∈[0,T ] E(µij
ε (t))2 =

O(ε).
As alluded to in the introduction, we wish to reduce the complexity of the queue-

ing network by aggregating states in each subspace as a single state. This leads to
the definition of αε(t) = i if αε(t) ∈ Mi.

Theorem 4.2. Under the conditions of Theorem 3.8, αε(·) converges weakly to
α(·), a Markov chain generated by B(t) given in (3.6).

4.2. Switching diffusion limit. Let f(·) be a real-valued function defined on
M satisfying that {f(sij) : 1 ≤ i ≤ l, 1 ≤ j < ∞} ∈ �1. For t ∈ [0, T ], define a
sequence of real-valued functions by

xε(t) =

l∑
i=1

∞∑
j=1

1√
ε

∫ t

0

f(sij)[I{αε(u)=sij} − νij(u)I{αε(u)∈Mi}]du.(4.2)

Our interest lies in the asymptotic properties of xε(·). To obtain the desired limit
property, we consider a pair of processes {Yε(·)} = {xε(·), αε(·)} and aim to show that
Yε(·) converges weakly to Y (·) with a suitable generator.
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Lemma 4.3. Under the conditions of Theorem 3.8, {Yε(·)} is tight in D2[0, T ] (the
space of R2-valued functions that are right continuous and have left limits endowed
with the Skorohod topology).

Since {Yε(·)} is tight, by Prohorov’s theorem, we can extract a weakly convergent
subsequence. Select such a subsequence and still use ε as its index for notational
simplicity. Denote the limit by Y (·) = (x(·), α(·)). We proceed to characterize this
limit process. Let C2

L be the collection of functions having bounded derivatives up
to the second order with the second derivative being Lipschitz continuous. For each
i = 1, . . . , l, g(·, i) ∈ C2

L, define an operator D(t) by

D(t)g(x, i) =
1

2
σ2(t, i)

∂2

∂x2
g(x, i) + B(t)g(x, ·)(i),(4.3)

where σ2(t, i) > 0 is a smooth function.
Theorem 4.4. Under the conditions of Theorem 3.8, Yε(·) converges weakly

to Y (·), which is a solution of the martingale problem with operator D(·) defined by
(4.3).

Using the above theorem, we can also get a weak convergence of a reflected
process. Define rε(t) = xε(t)−inf0≤u≤t{xε(u)}. The weak convergence of xε(t) and the
continuous mapping theorem (see [2, p. 30, Theorem 5.1]) yield that rε(·) converges
weakly to r(·), a reflected switching diffusion process.

5. Extensions and examples. In this section we give the extensions of the
results and present examples of queueing problems.

5.1. Infinitely many blocks. We consider the case

Qε(t) =
A(t)

ε
+ B(t) with A(t) = diag(A1(t), A2(t), . . .).(5.1)

That is, the matrix A(t) given by (2.2) is a diagonal block one with infinitely many
blocks. Instead of condition (A2), we assume (A2′).

(A2′) There is a κl > 0 such that for
∣∣∣∣exp(Al(0)τ) − 11νl(0)

∣∣∣∣
∞ ≤ K exp(−κlτ), any

real number τ > 0, where νl(t) = (νl1(t), νl2(t), . . .) is the quasi-stationary
distribution corresponding to the generator Al(t), and infl≥1 κl > 0.

Theorem 5.1. Under (A1) and (A2′), Theorem 3.7, Theorem 4.2, and Theo-
rem 4.4 hold.

The proof of this theorem follows the same line of argument as that of Theorems
3.7, 4.2, and 4.4 and is thus omitted. A special case of the theorem is that Qε(t)
has the form (5.1) with A(t) having infinitely many blocks such that each Ai(t) is a
generator of a finite-state Markov chain.

Example 5.2. Consider a two-station queueing system, where each station has a
single server and an exogenous Poisson arrival process. For the first station, having
completed service there, customers either proceed to a queue in front of the second
station with probability p1 or depart the system with probability (1 − p1). For the
second station, after completing service there, they depart the system with probability
(1 − p2) and go to a queue in front of the first station with probability p2. Service is
rendered in the order of the arrivals at each station. We assume that the first station
can hold at most a total of m0 customers (including the customer in service) and
any further arriving customers from outside will in fact be refused entry and hence
will depart immediately without service at the first station, while the second station
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has an unlimited waiting room. Furthermore, we assume that the system is a time-
dependent Markovian queueing network. Specifically, the rate of station i’s customer
arriving from outside is λi(t), and the service rate is µi(t) (i = 1, 2).

Assume that λi(t) and µi(t) are smooth, positive, real analytic functions of time
t. We let Q(t) = (Q2(t),Q1(t)) be the Markovian queue length process that Qi(t)
equals the number of customers at station i at time t. Then the state space of the
queueing system can be represented by {(k, i) : 0 ≤ k < ∞ and 0 ≤ i ≤ m0}. To
determine the generator Q(t) = (q(j,n),(k,i)(t)), let

π1(t) = (1 − p1)µ1(t), π2(t) = (1 − p2)µ2(t),
π(t) = λ1(t) + π1(t), π̃(t) = λ2(t) + p1µ1(t) + µ2(t),

A1(t) =

⎛
⎜⎜⎜⎜⎝

−λ1(t) λ1(t)
π1(t) −π(t) λ1(t)

. . .
. . .

. . .

π1(t) −π(t) λ1(t)
π1(t) −π1(t)

⎞
⎟⎟⎟⎟⎠ ,

B1(t) = diag(−λ2(t),−[λ2(t) + p1µ1(t)], . . . ,−[λ2(t) + p1µ1(t)]),
B2(t) = diag(−(λ2(t) + µ2(t)),−π̃(t), . . . ,−π̃(t)),

C(t) =

⎛
⎜⎜⎝

λ2(t)
p1µ1(t) λ2(t)

. . .
. . .

p1µ1(t) λ2(t)

⎞
⎟⎟⎠ ,

D(t) =

⎛
⎜⎜⎝

π2(t) p2µ2(t)
. . .

. . .

π2(t) p2µ2(t)
µ2(t)

⎞
⎟⎟⎠ ,

where each matrix is a (m0 + 1) × (m0 + 1) matrix. Then some tedious calculations
yield

Q(t) = diag(A1(t), A1(t), . . .) +

⎛
⎜⎝

B1(t) C(t)
D(t) B2(t) C(t)

. . .
. . .

. . .

⎞
⎟⎠ .(5.2)

For an initial time point t0 with t0 ∈ [0, T ], let P (t0, t) with t > t0 be the transition
matrix P (t0, t) = (p(j,n),(k,i)(t0, t)) with

p(j,n),(k,i)(t0, t) = P (Q(t) = (k, i)|Q(t0) = (j, n)) for all 0 ≤ j, k < ∞, 0 ≤ n, i ≤ m0.

Then we have the following system of equations for a quasi-birth-death process:

d

dt
P (t0, t) = P (t0, t)Q(t).(5.3)

Assume that

(1 − p1) 	 p1, λ1(t) 	 p1µ1(t), λ1(t) 	 λ2(t), λ1(t) 	 µ2(t).(5.4)

Introduce ε = 1
inft0≤t≤T λ1(t)

. Then νi(t) = (νi0(t), νi1(t), . . . , νim0(t)) with

ν1j(t) =

(
λ1(t)

π1(t)

)j

p0(t), p0(t) = 1

/⎡
⎣1 +

m0∑
j=1

(
λ1(t)

π1(t)

)j
⎤
⎦ .
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Let π̂(t) = [λ2(t) + p1µ1(t)] − p1µ1(t)p0(t). It follows from some tedious calculations
that

B(t) =

⎛
⎜⎝

−π̂(t) π̂(t)
µ2(t) −π̂(t) − µ2(t) π̂(t)

. . .
. . .

. . .

⎞
⎟⎠ .(5.5)

By Theorem 5.1,

Pε(t0, t) = Φ0(t0, t) + [I − Φ(t0, t0)] exp

(
A(t0)

t− t0
ε

)

+O

(
ε + exp

(
t− t0
ε

))(5.6)

uniformly in (t0, t), where for 0 ≤ t0 ≤ t ≤ T , Φ0(t0, t) is given by (3.22) with Θ(t0, t)
satisfying (3.23). Using [23, Theorem 5.2, p. 128], the solution of (3.23) can be explic-
itly written as Θ(t0, t) = U(t0, t), where U(t0, t) is a solution operator. Consequently
Φ(t0, t) given in (5.6) takes the form Φ(t0, t) = 1̃1U(t0, t)ν. In particular, when the
generators are time independent, U(t0, t) becomes a semigroup [23, Chapter 1] and
may be expressed as U(t0, t) = exp((t− t0)B).

Next we consider the queue length process at the first station, Q1(t). In gen-
eral, Q1(t) is not a Markov process. But from Theorem 5.1, Q1(t) can be approx-
imated very well by a Markov process α(t) with generator B(t) defined by (5.5).
Furthermore, we consider a refined approximation of Q(t) = (Q2(t),Q1(t)). Define

�ε(t) =
∑∞

i=0

∑m0

j=0

∫ t

0

[
I{Q(u)=(i,j)} − ν(i,j)(u)I{Q1(u)=j}

]
du. It follows from Theo-

rem 5.1 that (1/
√
ε)�ε(t) can be well approximated by the switching diffusion pro-

cess
∫ t

0
σ(u, α(u))dw(u), where w(·) is a standard one-dimensional Brownian motion,

σ2(t, i) =
∑m0

k=0

∑m0

l=0

[
ν0k(t)

∫∞
0

ψkl
0 (i, t, u)du + ν0l(t)

∫∞
0

ψlk
0 (i, t, u)du

]
for 0 ≤ i <

∞, and ψkl
0 (i, s, t) is the (k, l)th entry of Ψ0(i, t, u) given by

Ψ0(i, t, u) =

⎛
⎝I −

⎛
⎝ ν1(t)

·
:

ν1(t)

⎞
⎠
⎞
⎠ exp(A1(t)u).

Remark 5.3. References [12] and [18] establish asymptotic expansions for the
queue length distribution of the time inhomogeneous single serve queue, a time-
dependent pure birth-death process. Here we consider a quasi-birth-death process.
Furthermore, the queue length process at the first station (generally non-Markovian)
can be approximated well by a Markov process with generator B(t). In [20], uniform
acceleration expansions for time-varying generators were treated, and in [28] diffu-
sion approximation was also considered. In these references, the Markov chains have
one ergodic class, whereas in the current paper, multiergodic classes are considered.
Compared with the diffusion approximations in [19] and [27], the switching diffusion
approximation given here is related to the queue length process on the interval [0, t]
and provides the evolution of the scaled sequence. The usual diffusion approxima-
tion leads to asymptotic normality, whereas switching diffusion limit yields Gaussian
mixture distribution.

The [λ1(t) + p2λ2(t)]/[(1 − p1p2)µ1(t)] and [λ2(t) + p1µ1(t)]/[(1 − p1p2)µ2(t)]
are called the traffic intensities at station 1 and station 2, respectively. If [λ1(t) +
p2λ2(t)]/[(1−p1p2)µ1(t)] and [λ2(t)+p1µ1(t)]/[(1−p1p2)µ2(t)] are less than but close
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to one, the system is regarded as in heavy traffic, whereas if [λ1(t) + p2λ2(t)]/[(1 −
p1p2)µ1(t)] and [λ2(t) + p1µ1(t)]/[(1− p1p2)µ2(t)] are much less than one, the system
is considered to be in light traffic. Our approximations are valid for either the heavy
traffic case or the light traffic case as long as (5.4) holds. Using the Laplace transform
technique, from the balance equation of the system, one may proceed as in [15] to
carry out heavy traffic analysis for the sojourn time of time-homogeneous Markovian
tandem queues with two servers.

Comparing with (5.2), we can consider a general quasi-birth-death process with
state space {(i, j), i ≥ 0, 1 ≤ j ≤ m0} with a generator G(t) given by

⎛
⎜⎝

A1(t) − diag(C1(t)11) C1(t)
B1(t) A2(t) − diag(B1(t)11 + C2(t)11) C2(t)

. . .
. . .

⎞
⎟⎠ ,(5.7)

where i and j are called level and phase, respectively; see [22]. If the transitions
between levels are much less frequent than the transitions between the phases inside
the same level, then Q(t) given by (5.7) can be written as

diag(A1(t), A2(t), . . .)

+ ε

⎛
⎜⎝

−diag(C1(t)11) C1(t)
B1(t) −diag(B1(t)11 + C2(t)11) C2(t)

. . .
. . .

. . .

⎞
⎟⎠ .

Hence following Example 5.2, we can also get the asymptotic probability distribution
of the process.

5.2. Asymptotic properties under γ-norm. For v = (v1, . . . , vl) with vi =
(vi1, vi2, . . .), the γ-norm (which was named ν-norm in [21]; see also [1]) is defined
as ||v||γ = max1≤i≤l sup1≤k<∞ |vik|/γik. The corresponding induced γ-norm for any

operator is given by ||A||γ = max1≤k≤l sup1≤i<∞[
∑∞

j=1 |Ak
ij |γkj ]/γki. Replace (A2)

with (A2′′).

(A2′′) There is a κ > 0 such that
∣∣∣∣exp(Al(0)τ) − 11νl(0)

∣∣∣∣
γ
≤ K exp(−κlτ) for any

real number τ > 0, where νl(t) = (νl1(t), νl2(t), . . .) is the quasi-stationary
distribution corresponding to the generator Al(t), and infl≥1 κl > 0.

Similar to Theorem 3.7, using essentially the same techniques, we obtain the following
result.

Theorem 5.4. Under (A1) and (A2′′), we construct two sequences {φk(t)}nk=0

and {ψk(t/ε)}nk=0 by Theorem 3.3 such that φk(t) ∈ Cn+1−k and ψk(t/ε) decay ex-
ponentially fast. Moreover, with eε,n(t) defined by (3.20), supt∈[0,T ] ||eε,n(t)||γ =

O(εn+1).

Example 5.5. Consider the queueing system given by Example 5.2, but allow the
first station to have unlimited waiting rooms. Then the state space of (Q2(t),Q1(t))
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can be represented by {(k, i) : 0 ≤ k < ∞ and 0 ≤ i < ∞}. Let

Â1(t) =

⎛
⎜⎝

−λ1(t) λ1(t)
(1 − p1)µ1(t) −π(t) λ1(t)

. . .
. . .

. . .

⎞
⎟⎠ ,

B̂1(t) = diag(−λ2(t),−[λ2(t) + p1µ1(t)], . . .),

B̂2(t) = diag(−(λ2(t) + µ2(t)),−π̃(t), . . .),

Ĉ(t) =

⎛
⎜⎝

λ2(t)
p1µ1(t) λ2(t)

. . .
. . .

⎞
⎟⎠ , D̂(t) =

⎛
⎜⎝

π2(t) p2µ2(t)
π2(t) p2µ2(t)

. . .
. . .

⎞
⎟⎠ .

Then, some tedious calculations yield

Q̂(t) = diag(Â1(t), Â1(t), . . .) +

⎛
⎜⎝

B̂1(t) Ĉ(t)

D̂(t) B̂2(t) Ĉ(t)
. . .

. . .
. . .

⎞
⎟⎠ .(5.8)

Letting γ1i(0) = ((1−p1)µ1(0)/λ1(0))i, then we have (A2′′) holds; see [21]. Therefore,
by Theorem 5.4, we obtain the asymptotic probability distribution of (Q2(t),Q1(t))
under γ-norm.

Appendix A.
Proof of Theorem 4.1. Suppose that 0 ≤ s ≤ t. For each i = 1, . . . , l and j ∈ N,

define

ζ1,ij
ε (s, t) = P (αε(s) = sij , αε(t) = sij) − νij(t)P (αε(s) = sij , αε(t) ∈ Mi),
ζ2,ij
ε (s, t) = νij(s)νij(t)P (αε(s) ∈ Mi, αε(t) ∈ Mi)

−νij(s)P (αε(s) ∈ Mi, αε(t) = sij).
(A.1)

Theorem 3.8 and Remark 3.9 yield ζ1,ij
ε (s, t) = O(ε + exp(−κ0(t− s)/ε)). Similarly,

ζ2,ij
ε (s, t) = O(ε + exp(−κ0(t − s)/ε)). It follows from µij

ε (0) = 0 that E(µij
ε (t))2 =

2
∫ t

0

∫ s

0
(ζ1,ij

ε (r, s) + ζ2,ij
ε (r, s))drds. The desired order estimates then follows.

Proof of Theorem 4.2. The theorem will be proved in two steps. In the first step,
we establish the tightness of {αε(·)}, and in the second step, we characterize the limit
process.

(1) Tightness. Note that αε(t) =
∑l

i=1 iI{αε(t)=i} =
∑l

i=1 iI{αε(t)∈Mi}. Define

χε(t) = (χ1
ε(t), . . . , χ

l
ε(t)), χ

i
ε(t) = (I{αε(t)=sij}), χε(t) = (I{αε(t)=1}, . . . , I{αε(t)=l}).

In view of the definition of αε(t) and the Cramér–Wold theorem [2, p. 49], to prove the
tightness of {αε(·)}, it suffices to derive that of {χε(·)}. For any δ > 0, any t > 0, and
any s > 0 with δ > s > 0 and t + s ∈ [0, T ], owing to the Markov property, E(χε(t +

s)−χε(t)−
∫ t+s

t
χε(u)Qε(u)du|Ft,ε) = 0, where Ft,ε denotes the σ-algebra generated

by {αε(u) : u ≤ t}. Postmultiplying by 1̃1 and noting A(t)1̃1 = 0 lead to E(χε(t+ s)−
χε(t)−

∫ t+s

t
χε(u)B(u)1̃1du|Ft,ε) = 0. Thus by (A1), E(χε(t+s)|Ft,ε)−χε(t) = O(s).

This implies that E(|χε(t+s)−χε(t)|2
∣∣Ft,ε) = E(|

∫ t+s

t
χε(u)B(u)1̃1du|2

∣∣Ft,ε) = O(s).
Consequently, for 0 < δ ≤ s, limδ→0 lim supε→0 E|χε(t+ s)−χε(t)|2 = 0. The desired
tightness then follows from [16, p. 47].

(2) Characterization of the limit. Since {αε(·)} is tight, by Prohorov’s theorem,
we can extract a weakly convergent subsequence. Select such a sequence and still
use ε as its index for notational simplicity; denote its limit by α(·). We proceed to
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characterize the limit process. We need to show that for any bounded function g(·)
defined on {1, . . . , l},

g(α(t)) −
∫ t

0

B(u)g(·)(α(u))du is a martingale.(A.2)

To establish (A.2), it suffices that for any positive integers m, and k ≤ m, any bounded
functions hk(·) defined on {1, . . . , l}, and any 0 < tk ≤ t ≤ t + s,

E

m∏
k=1

hk(α(tk))

(
g(α(t + s)) − g(α(t)) −

∫ t+s

t

B(u)g(·)(α(u))du

)
= 0.(A.3)

To proceed, define g(αε(s)) =
∑l

i=1 g(i)I{αε(s)∈Mi}. Then, g(αε(s)) = g(αε(s)).

Thus, g(αε(t)) −
∫ t

0
Qε(u)g(·)(αε(u))du is a martingale. Consequently,

m∏
k=1

Ehk(αε(tk))[g(αε(t + s)) − g(αε(t)) −
∫ t+s

t

Qε(u)g(·)(αε(u))du)] = 0.(A.4)

By virtue of the weak convergence and the Skorohod representation, as ε → 0,

(A.5)

E
m∏

k=1

hk(αε(tk))[g(αε(t + s) − g(αε(t))] → E

m∏
k=1

hk(α(tk))[g(α(t + s)) − g(α(t))].

The definition of g(·) leads to A(u)g(·)(αε(u)) = 0 for all u ∈ [0, T ]. As a result,

(A.6)

E

m∏
k=1

hk(αε(tk))

(∫ t+s

t

Qε(u)g(·)(αε(u))du

)

=

l∑
i=1

∞∑
j=1

E

m∏
k=1

hk(αε(tk))[

∫ t+s

t

νij(u)I{αε(u)=i}B(u)g(·)(sij)du]

+

l∑
i=1

∞∑
j=1

E

m∏
k=1

hk(αε(tk))[

∫ t+s

t

[I{αε(u)=sij} − νij(u)I{αε(u)=i}]B(u)g(·)(sij)du].

Using Theorem 4.1, the last term in (A.6) goes to 0 as ε → 0. By virtue of the weak
convergence of αε(·) and the Skorohod representation, (A.6) yields that

E

m∏
k=1

hk(αε(tk))

(∫ t+s

t

Qε(u)g(·)(αε(u))du

)

→ E

m∏
k=1

hk(α(tk))

(∫ t+s

t

B(u)g(·)(α(u))du

)
.

(A.7)

Combining (A.4), (A.5), and (A.7), (A.3) is verified. This completes the proof.
Proof of Lemma 4.3. Note that Yε(·) is a sequence of vector-valued random pro-

cesses with two components. Again, using the Crámer–Wold theorem, since {αε(·)}
is tight, to prove the tightness of {Yε(·)}, it suffices to verify the tightness of {xε(·)}.
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We claim that for any δ > 0, 0 ≤ s ≤ t, and t− s ≤ δ,

sup
0≤s≤t≤T

E (|xε(t) − xε(s)|2
∣∣Fs,ε) ≤ K(t− s).

First, for u ∈ [s, t], E(zij(u, αε(u))
∣∣Fs,ε) = O(ε + exp(−κ0(t − s)/ε)) uniformly in i

and j, by (4.2), the Markov property, and Theorem 3.8. Thus

E(xε(t) − xε(s)
∣∣Fs,ε) =

l∑
i=1

∞∑
j=1

f(sij)
1√
ε

∫ t

s

E(zij(u, αε(u))
∣∣Fs,ε)du

=
1√
ε
O(ε + exp(−κ0(t− s)/ε)) = O(

√
ε).

(A.8)

Denote

∆ε(s, t) = E((xε(t) − xε(s))
2
∣∣Fs,ε)

=
1

ε
E

⎛
⎜⎝
⎛
⎝ l∑

i=1

∞∑
j=1

f(sij)

∫ t

s

zijε (αε(u))du

⎞
⎠

2 ∣∣∣Fs,ε

⎞
⎟⎠ .

It then follows d
dt∆ε(s, t) = 2

ε

∑l
i=1

∑∞
j=1 f(sij)

∫ t

s
E(ζ1,ij

ε (u, t) + ζ2,ij
ε (u, t)

∣∣Fs,ε)du,

where ζ1,ij
ε (u, t) and ζ2,ij

ε (u, t) are defined in (A.1). Thus (d/dt)∆ε(s, t) = O(1),
∆ε(s, s) = 0. An integration then leads to ∆ε(s, t) = O(t− s). Therefore,

lim
δ→0

lim sup
ε→0

sup
0≤t−s≤δ

E(E(xε(t) − xε(s))
2
∣∣Fs,ε) = 0.

Moreover, for each δ > 0, and each rational t ≥ 0, using the Chebyshev’s inequality
infε P (|xε(t)| ≤ Kt,δ) ≥ infε(1 − E|xε(t)|2/(Kt,δ)

2) ≥ 1 −Kt/(Kt,δ)
2. Select Kt,δ >√

KT/δ. Then infε P (|xε(t)| ≤ Kt,δ) ≥ 1−δ. This inequality, (A.8), and the criterion
[16] then yield the desired tightness.

Proof of Theorem 4.4. To prove the theorem, it suffices to show that

g(x(t), α(t)) −
∫ t

0

D(u)g(x(u), α(u))du is a martingale.(A.9)

To verify this martingale property, we prove that for any positive integer m, any
k ≤ m, any bounded and continuous function hk(·, α) for each α, and any 0 < tk ≤
t ≤ t + s,

m∏
k=1

Ehk(x(tk), α(tk))
(
g(x(t + s), α(t + s)) − g(x(t), α(t))

−
∫ t+s

t

D(u)g(x(u), α(u))du
)

= 0.

To accomplish this, we begin with the process indexed by ε.
(1) Using an argument similar to [29, pp. 199–200], it can be verified that the

martingale problem associated with operator D(t) has a unique (in the sense of dis-
tribution) solution.

(2) In what follows, we often need to carry out estimates involving xε(t) and αε(t)
intertwined. To untangle them, as a preparation, let η(t, x) be a real-valued function
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that is Lipschitz continuous in (t, x) ∈ R2. Using an argument similar to that of [29,
Lemma 7.4, pp. 189–192], we can show

lim
ε→0

sup
0≤t≤T

E

∣∣∣∣
∫ t

0

zij(u, αε(u))η(u, xε(u))du

∣∣∣∣
2

= 0.(A.10)

(3) Define an operator Dε(t) by

(A.11)

Dε(t)ρ(t, x, α) =
∂ρ(t, x, α)

∂t
+

1√
ε

⎛
⎝ l∑

i=1

∞∑
j=1

f(sij)z
ij(t, α)

⎞
⎠ ∂ρ(t, x, α)

∂x

+Qε(t)ρ(t, x, ·)(α) for α ∈ M, ρ(·, ·, α) ∈ C1,1.

Then ρ(t, xε(t), αε(t)) −
∫ t

0
Dε(u)ρ(u, xε(u), αε(u))du is a martingale; see [6, Chap-

ter 2].

Define g(x, α) =
∑l

i=1 g(x, i)I{α∈Mi}. It is easily seen that A(u)g(x, ·)(αε(u)) =
0. Thus,

(A.12)

Dε(u)g(xε(u), αε(u)) =
1√
ε
b̃(u, αε(u))

∂

∂x
g(xε(u), αε(u)) + B(u)g(xε(u), ·)(αε(u)),

where b̃(u, α) =
∑l

i=1

∑∞
j=1 f(sij)z

ij(u, α). To obtain the desired limit, we use the
techniques of perturbed test function methods [16], which require us to introduce a
perturbation that is small in magnitude and that results in desired cancellations. To
this end, define the perturbation by ĝ(t, x, α) such that ĝ(·, x, α) is uniform Lipschitz
in t; both ĝ(·) and (∂/∂x)ĝ(·) are bounded; (∂/∂x)ĝ(·, ·, α) is Lipschitz in (t, x) such
that it is the solution of

A(t)ĝ(t, x, ·)(α) = −b̃(t, α)
∂g(x, α)

∂x
.(A.13)

It can be shown that such a function exists similar to [29, Remark 7.16].
Next, define the perturbed test function gε(·) by

gε(t, x, α) = g(x, α) +
√
εĝ(t, x, α).(A.14)

Then using the definition of Dε(t), gε(t, xε(t), αε(t)) −
∫ t

0
Dε(u)gε(u, xε(u), αε(u))du

is a martingale. Consequently,

m∏
k=1

Ehk(xε(tk), αε(tk))

[
gε(t + s, xε(t + s), αε(t + s)) − gε(t, xε(t), αε(t))

−
∫ t+s

t

Dε(u)gε(u, xε(u), αε(u))du

]
= 0.

By the weak convergence of Yε(·) to Y (·), the Skorohod representation, and (A.14),

lim
ε→0

m∏
k=1

Ehk(xε(tk), αε(tk))[gε(t + s, xε(t + s), αε(t + s)) − gε(t, xε(t), αε(t))]

=

m∏
k=1

Ehk(x(tk), α(tk))[g(x(t + s), α(t + s)) − g(x(t), α(t))].
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Note that from (A.11),

√
εDε(u)ĝ(u, xε(u), αε(u)) =

l∑
i=1

∞∑
j=1

f(sij)z
ij(u, αε(u))

∂ĝ(u, xε(u), αε(u))

∂x

+
√
ε
∂ĝ(u, xε(u), αε(u))

∂u

+
√
εB(u)ĝ(u, xε(u), ·)(αε(u)) +

1√
ε
A(u)ĝ(u, xε(u), ·)(αε(u)).

(A.15)

It follows from (A.12), (A.13), and (A.15), upon cancellation, that

(A.16)

Dε(u)gε(u, xε(u), αε(u)) =

l∑
i=1

∞∑
j=1

f(sij)z
ij(u, αε(u))

∂ĝ(u, xε(u), αε(u))

∂x

+B(u)g(xε(u), ·)(αε(u))

+
√
ε
∂ĝ(u, xε(u), αε(u))

∂u
+
√
εB(u)ĝ(u, xε(u), ·)(αε(u)).

Thus again, by the weak convergence and the Skorohod representation,

lim
ε→0

m∏
k=1

Ehk(xε(tk), αε(tk))

(∫ t+s

t

Dε(u)gε(u, xε(u), αε(u))du

)

= lim
ε→0

m∏
k=1

Ehk(xε(tk), αε(tk))

[∫ t+s

t

l∑
i=1

∞∑
j=1

f(sij)z
ij(u, αε(u))

∂ĝ(u, xε(u), αε(u))

∂x
du

+

∫ t+s

t

B(u)g(xε(u), ·)(αε(u))du

]
.

By virtue of the weak convergence of Yε(·) to Y (·), the Skorohod representation,

and the boundedness of ĝ(·), (∂/∂x)ĝ(·), we have
∫ t

0
B(u)g(xε(u), ·)(αε(u))du →∫ t

0
B(u)g(x(u), ·)(α(u))du.
Define

b(t, x, α) = b̃(t, α)
∂ĝ(t, x, α)

∂x
.(A.17)

Then ∫ t

0

b(u, xε(u), αε(u))du =

∫ t

0

l∑
i=1

∞∑
j=1

b(u, xε(u), sij)ν
ij(u)I{αε(u)=i}du

+

∫ t

0

l∑
i=1

∞∑
j=1

[I{αε(u)=sij} − νij(u)I{αε(u)=i}]b(u, xε(u), sij)du.

(A.18)

By (A.10), the last term in (A.18) goes to 0 in mean squares, so
∫ t

0
b(u, xε(u), αε(u))du

converges to
∫ t

0
b(u, x(u), α(u))du, where b(u, x, i) =

∑∞
j=1 ν

ij(u)b(u, x, sij). Combin-
ing the estimates obtained so far, we arrive at

Ehk(xε(tk), αε(tk))
(∫ t+s

t

Dε(t)gε(u, xε(u), αε(u))du
)

→ Ehk(x(tk), α(tk))
(∫ t+s

t

b(u, x(u), α(u))du +

∫ t+s

t

B(u)g(x(u), ·)(α(u))du
)
.
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(4) In view of (A.13), for i = 1, . . . , l,

Ai(t)

⎛
⎝ ĝ(t, x, si1)

ĝ(t, x, si2)
·
:

⎞
⎠ =

⎛
⎜⎝ b̃(t, si1)

∂g(x,i)
∂x

b̃(t, si2)
∂g(x,i)

∂x
·
:

⎞
⎟⎠ ,

which has a unique solution. This implies that ĝ(t, x, sij) is a function of (∂/∂x)g(x, i).
In view of (A.17), b(t, x, sij) is a function of (∂/∂x)ĝ(t, x, sij). Thus b(t, x, sij) is a
function of (∂2/∂x2)g(x, i).

Denote b(t, x, i) = (1/2)a(t, i)(∂2/∂x2)g(x, i), where a(t, i) is an appropriate func-
tion. Using an argument similar to that [29, pp. 200–203], it can be shown that
a(t, i) ≥ 0. Thus, a(t, i) can be written as a(t, i) = σ2(t, i), where for each i =
1, 2, . . . , l,

σ2(t, i) =

∞∑
k=1

∞∑
m=1

f(sik)f(sim)

[
νik(t)

∫ ∞

0

ψkm
0 (i, u, t)du(A.19)

+ νim(t)

∫ ∞

0

ψmk
0 (i, u, t)du

]
,

and ψkm
0 (i, s, t) is the (k,m)th entry of Ψ0(i, s, t) given by

Ψ0(i, s, t) = (I − (νi(s), νi(s), . . .)′) exp(Ai(s)t).

This specifies the covariance structure of the limit process and establishes the desired
martingale property and hence the theorem follows.

Acknowledgment. We thank the editor and the reviewers for detailed com-
ments and suggestions on an early version of the manuscript, which have led to much
improvement of the paper.
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ACOUSTIC-ROTATIONAL INTERNAL FLOW CAUSED BY
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Abstract. Asymptotic and numerical methods are used to describe thermal transients in an
internal flow caused by time-dependent, spatially distributed sidewall mass addition. Solutions are
obtained for the temperature distribution and wall heat transfer, as well as the vorticity, in a high
Reynolds number (Re), low Mach number (M), compressible flow in a cylinder. A multiple-scale
analysis, valid in the limit of M → 0 and Re → ∞, is used to derive an equation for O(M)
acoustic disturbances arising from transient injection. The limit process is also used to obtain
reduced equations for the rotational axial velocity field and the nonacoustic temperature variation
arising from a balance of convection and transverse diffusion. The convection-diffusion equations
are characterized by viscous and conductive transport on an O(M) radial scale relative to the O(1)
nondimensional cylinder radius. These small-scale diffusive effects are pervasive throughout the entire
cylinder in this large Re, injected flow. The thermal analysis presented here shows that the transient
temperature disturbance consists of an O(M) acoustic component and an O(M) radially dependent
“rotational” component arising from the convection and diffusion of large radial gradients. The
latter are generated on the injection surface and then gradually fill the cylinder as time elapses. The
radial gradient of temperature is O(1), although the temperature disturbance is only O(M). Results
for the radial and axial variations of the instantaneous temperature distribution imply that the
O(M) acoustic and “rotational” temperature components make the largest contributions to the total
energy transient. Smaller kinetic energy effects appear only at O(M2). These results emphasize the
importance of modeling intense thermal transients, including the sidewall heat transfer, in addition
to the more familiar vorticity distributions.

Key words. fluids mechanics, heat transfer, finite difference methods, perturbation methods
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1. Introduction. Time-dependent mass injection from the boundaries of cylin-
ders and channels induces a transient internal flow characterized by the presence of
coexisting rotational and irrotational (acoustic) phenomena. The velocity and vortic-
ity dynamics in these high Reynolds number and low Mach number flows have been
elucidated through the use of both linear and nonlinear mathematical models.

Linear analysis was initiated by Flandro [1] and later reviewed in Flandro [2].
More recent, related research advances are noted by Majdalani and Rienstra [3]. These
studies focus on the evolution of very small, linear disturbances to the basic steady flow
field induced by uniform mass addition at the boundary. Flow transients are driven
by an assumed small quasi-steady pressure disturbance, independent of conditions
on the flow boundary. The asymptotic methodology used to derive the disturbance
equations implies that the magnitude of the assumed pressure field is smaller than the
injection Mach number, typically O(10−3). It follows that the disturbance is about 0.1
of commensurately small vorticity at the injection surface, resulting primarily from
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an inviscid interaction between the imposed pressure gradient transients and the fluid
injected from the boundary, as well as subsequent penetration of vorticity into the
flow field. These models supplement classical acoustic stability theory for solid rocket
motors, reviewed by Culick and Yang [4], valid only for irrotational flow dynamics.
Related, more general linear stability analyses, including the rotational flow effects,
are given by Casalis, Avalon, and Pineau [5] and Venugopal, Najjar, and Moser [6, 7].

Nonlinear velocity transients in channel and cylinder configurations have also
been investigated [8, 9, 10, 11, 12, 13, 14]. These asymptotic and numerical studies
use an initial-boundary value problem (IBVP) approach to investigate the effect of
imposed time-dependent disturbances, located on a boundary surface, on the internal
flow dynamics. The asymptotic methodology is based on the limit M → 0, where
M is the characteristic axial Mach number. In this case, the O(M) pressure gradient
transients, typically 1% to 10% of the baseline value and 10 to 100 times larger
than those in the linear analyses, arise directly from the time-dependent boundary
condition, often associated with variable mass addition. The evolution of O(1/M)
transient vorticity, generated by an inviscid mechanism at the boundary, is described
by a fully nonlinear convection-diffusion equation for a relatively large rotational axial
velocity disturbance.

The vorticity generation concept was used originally by Cole and Aroesty [15]
to describe high Reynolds number, external steady flow past a flat plate with mas-
sive injection (a magnitude larger than that permitted in traditional boundary layer
theory). This concept has been generalized in [8, 9, 10, 11, 12, 13, 14] to describe
high Reynolds number, low Mach number, compressible transient internal flows. In
contrast to the Cole and Aroesty theory, where viscosity is confined to a thin, sepa-
rated shear layer, viscous effects are pervasive throughout the transient internal flow,
affecting the diffusion of vorticity in a fundamental way.

An early asymptotic formulation for flow in a cylinder is described by Zhao [8]
and more fully by Zhao et al. [9]. Significant transient endwall mass addition is the
source of large disturbances in the flow field. A related computational study is given
by Kirkkopru, Kassoy, and Zhao [10], where the source of large disturbances is an
assumed pressure transient on the exit plane. Staab and Kassoy [11] extend the study
in [9] to describe multidimensional flow in a cylinder arising from time-dependent
endwall mass addition with an amplitude varying in the transverse direction.

The impact of sidewall mass addition transients are considered by Staab et al. [12].
In this case the acoustic field in a cylinder is directly attributable to the time-
dependent component of the axially distributed injection velocity. A related compu-
tational study by Kirkkopru et al. [13] predicts flow transients arising from a similar
injection distribution on the walls of a cylinder. Staab and Kassoy [14] impose a side-
wall transient injection velocity with axial and azimuthal dependence to induce a fully
three-dimensional transient internal flow disturbance. Results include an axial com-
ponent of the vorticity vector, in addition to the more familiar azimuthal component
found in cylinders with symmetric injection.

The consequences of sidewall vorticity generation in transient internal flows have
been observed in many related computational studies. Vuillot and Avalon [16] and
Vuillot [17] provide early examples of vorticity penetration into channel flow. Lu-
poglazoff and Vuillot [18] consider the presence of vorticity shed from the injection
surface of a channel. Many other examples are cited in [8, 9, 10, 11, 12, 13, 14]. More
recently, Venugopal, Najjar, and Moser [6, 7] described the appearance of vorticity
striations on a channel sidewall and their penetration into a turbulent internal flow.
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These results support the predictions of vorticity spreading discussed in [8, 9, 10, 11,
12, 13, 14] and [19].

Solutions in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] and [16, 17, 18] provide
results for the pressure and velocity transients in the flow field, with little consideration
of thermal effects. The latter have probably been relegated to secondary importance
because the injected fluid is assumed to be isothermal. However, Staab et al. [12] show
that unexpectedly large transient radial temperature gradients are generated at the
injection surface by a nonconductive interaction between the local acoustic pressure
transients and the injected fluid. These gradients are the source of unanticipated heat
transfer at the surface, just as the radial gradients of axial velocity (vorticity) are the
source of unanticipated shear stress on the surface. The radial temperature gradients
will be convected into the internal flow field and diffused by conduction, analogous to
the flow physics affecting the vorticity distribution in the internal flow field. Hegab’s
[19] computational model for channel flow with transient isothermal sidewall mass
addition provides solutions for the time-history of the spatially varying temperature
distribution in the channel and for the injection surface heat transfer.

The current work provides an asymptotic description of the temperature distri-
bution and wall heat transfer for high Reynolds number (Re), low Mach number (M),
compressible flow in a cylinder. An initial-boundary value approach is used to develop
the model. When t ≤ 0, a steady flow is generated by a steady, axially dependent,
isothermal mass injection from the sidewall. Then for t > 0, a similar magnitude,
isothermal component of mass is added with oscillatory time-dependence and spatial
variation in the axial direction.

A formal multiple-scale analysis in the limit of M → 0 and Re → ∞ is used
to derive an equation for the acoustic response to the transient injection. The axial
acoustic velocity is of the same order of magnitude as that of the initial steady flow.
The limit process is also used to obtain reduced equations for the rotational axial
velocity field and the associated “rotational” temperature variation above and beyond
the acoustic response. The latter is described by two compatible equations. The
first is a wave equation which describes a nonconductive interaction between the
O(M) local pressure transient and the injected fluid, leading to the generation of
O(1) radial gradients in the “rotational” temperature field. The second is a linear
convection-diffusion equation with coefficients dependent on both the acoustic and
rotational velocities. Velocities are obtained from a solution to an analogous nonlinear
convection-diffusion equation. Diffusion in either case occurs on a small radial scale,
O(M) compared to the O(1) nondimensional cylinder radius. Diffusive effects in this
large Re injected flow are pervasive throughout the entire cylinder.

The present temperature and velocity analysis incorporates an integral scaling
transformation for the crucial small radial variable, used by Zhao [8] and Zhao et
al. [9], in place of the linear scaling transformation used in [12]. Solutions written in
terms of the former variable are valid for much longer time-scales than those in the
latter.

The analysis presented here shows that the transient temperature disturbance
consists of an acoustic component and a radially dependent “rotational” component
arising from the convection and diffusion of large radial gradients. The latter are
generated on the injection surface and then gradually fill the cylinder as time elapses.
Results are given for the radial and axial variations of the instantaneous temperature
distribution. Spatial waves in the radial coordinate are observed between the side-
wall and an identifiable front, which moves toward the cylinder axis with increasing
time.
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Fig. 1. The geometric domain of the model is a cylinder of length L′ and radius R′, where

the aspect ratio δ = L′
R′ � 1. Along the sidewall, r′ = R′, a steady velocity, V ′

rws(z
′), and an

unsteady velocity, Ṽrw(z′)(1− cosω′t′), are imposed, and the no-slip condition, V ′
z = 0, is satisfied.

A temperature T ′
0 is imposed along the sidewall and the endwall. A pressure node is imposed at the

exit plane, z′ = L′.

Temperature solutions are developed for two different spatial distributions of the
mass addition. A comparison shows that the details of the internal flow are sensitive
to the characteristics of the mass addition.

A comparison is made of new, long-time solutions for the spatially distributed
temperature and velocity. Differences in characteristic spatial waves are observed
and attributed to basic properties of the linear (for temperature) and nonlinear (for
velocity convection-diffusion) equations.

A study of energy partitioning shows that the O(M) acoustic and “rotational”
temperature components make the largest contributions to the total energy tran-
sient. Smaller kinetic energy effects appear only at (M2). In addition, the long-
time average of the largest acoustic temperature transient vanishes, while that as-
sociated with the “rotational” component is nonzero. This result emphasizes the
importance of modeling the thermal transients, including the sidewall heat transfer
in the cylinder.

2. Mathematical formulation. The flow occurs in a right circular cylinder of
length L′ and radius R′. A pressure node is imposed at the exit plane, as shown in
Figure 1, to simplify the calculation of the acoustic field arising from unsteady wall
injection. Other, more physically viable pressure conditions at the exit plane could
be employed to find alternative acoustic responses. However, the basic modeling
concepts, in particular, the role of acoustics in generating intense transient vorticity
and heat transfer, will be unaffected.

The mathematical model is based on the nondimensional, compressible Navier–
Stokes equations in cylindrical coordinates:

∂ρ

∂t
+ M

(
1

r

∂

∂r

(
rρVr

)
+

∂

∂z

(
ρVz

))
= 0,(1)
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ρ
DVr

Dt
= − δ2

γ M

∂P

∂r
+

M δ2

Re

(
2
∂

∂r

(
µ

(
∂Vr

∂r
− 1

3
∇ · V

))

+
∂

∂z

(
µ

(
1

δ2

∂Vr

∂z
+

∂Vz

∂r

))
+ 2

µ

r

(
∂Vr

∂r
− Vr

r

))
,(2)

ρ
DVz

Dt
= − 1

γM

∂P

∂z
+ 2

M

Re

∂

∂z

(
µ

(
∂Vz

∂z
− 1

3
∇ · V

))

+
M δ2

Re

∂

∂r

(
µ

(
1

δ2

∂Vr

∂z
+

∂Vz

∂r

))
,(3)

ρCV
DT

Dt
= −M(γ − 1)P∇ · V +

M3(γ − 1)γ

Re
Φ

+
M

Pr

δ2

Re

(
1

r

∂

∂r

(
rκ

∂T

∂r

)
+

1

δ2

∂

∂z

(
κ
∂T

∂z

))
,(4)

P = ρT,(5)

where

∇ · V =
∂Vr

∂r
+

Vr

r
+

∂Vz

∂z
,

D

Dt
=

∂

∂t
+ M

(
Vr

∂

∂r
+ Vz

∂

∂z

)
,

and Φ is the dissipation function. The nondimensionalized variables in (1)–(5) are
defined by the following:

ρ =
ρ′

ρ′0
, P =

P ′

P ′
0

, T =
T ′

T ′
0

, Vr =
V ′
r

V ′
r0

, Vz =
V ′
z

V ′
z0

,

r =
r′

R′ , z =
z′

L′ , t =
t′

t′a
, κ =

κ′

κ′
0

, µ =
µ′

µ′
0

, CV =
C ′

V

C ′
V 0

,

where P ′
0 is the initial static pressure in the cylinder and ρ′0 and T ′

0 are the density
and temperature of the fluid being injected from the sidewall. The aspect ratio, given
by δ = L′

R′ , where δ � 1, is chosen to reflect the large aspect ratios found in typical
large solid rocket motors. The induced characteristic axial velocity, V ′

z0, is defined

with respect to the injection reference sidewall velocity, V ′
r0, by

V ′
z0

V ′
r0

= δ, which is a

global characteristic mass conservation statement.
Time is nondimensionalized by the axial acoustic time-scale, t′a = L′

C′
0
, where

C ′
0 = (γR′T ′

0)
1
2 is the speed of sound, R′ is the gas constant, and γ is the ratio of

specific heats. Thermal diffusivity, viscosity, and specific heat at constant volume,
κ′

0, µ
′
0, and C ′

V 0, are characteristic properties of the single-species injected fluid. Also
the axial Reynolds number, Prandtl number, and axial Mach number are defined as

Re =
ρ′0V

′
z0L

′

µ′
0

, P r =
µ′

0C
′
p0

κ′
0

, M =
V ′
z0

C ′
0

,(6)

where Re � 1,M � 1, and Pr = O(1). It is also assumed that hard blowing, defined
in Cole and Aroesty [15] by δ2/Re << 1 prevails. The nondimensional parameter
δ2/Re represents the inverse of the radial Reynolds number with characteristic speed
V ′
r0 and length R′.
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2.1. Boundary conditions. Initially, for t ≤ 0, a steady internal flow is gen-
erated by an axisymmetric time-independent sidewall radial velocity, Vr = −Vrws(z).
Subsequently, t > 0, a transient disturbance is added to the steady value such that
Vr = −Vrws(z) − Ṽrw(z)(1 − cosωt) for ω = O(1). The transient mass addition
is of the same magnitude as the steady component and is always positive, e.g.,
Ṽrw(z) > 0.

The full boundary conditions for this axisymmetric problem are

z = 0; Vz = 0, Vr = 0, T = 1,(7)

z = 1; P = 1,(8)

r = 0; Vr = 0,
∂Vz

∂r
=

∂T

∂r
=

∂ρ

∂r
=

∂P

∂r
= 0,(9)

r = 1; Vr =

{
−Vrws(z), t ≤ 0,

−Vrws(z) − Ṽrw(z)(1 − cosωt), t > 0,
(10)

r = 1; Vz = 0, T = 1.(11)

The unsteady radial boundary velocity is chosen to ensure that the axial acoustic
velocity, driven by the fluctuations in the radial injection velocity, is of the same
amplitude as the mean axial velocity flow. As a consequence, the model accommodates
nonlinear phenomena.

3. Steady flow solutions. The solution to the steady equations is a base flow
arising from the first boundary condition in (10). The steady flow is then altered by
imposing the second unsteady boundary condition in (10). The initial step in finding
solutions is to divide the velocities and thermodynamic variables,

(Vr, Vz, P, ρ, T ) = (Vrs, Vzs, Ps, ρs, Ts) + (Ṽr, Ṽz, P̃ , ρ̃, T̃ ),(12)

where the subscript “s” represents the steady part of the flow and (˜) represents the
unsteady flow.

The steady variables are then expanded as

(Vrs, Vzs) ∼ (Vr0s, Vz0s) + O(M),

(Ps, ρs, Ts) ∼ 1 + M2(P0s, ρ0s, T0s) + O(M3)
(13)

for the limit M → 0 and δ2/Re → 0 (see [9, 12]). The leading-order steady equations
for the velocity and pressure are found by substitution of (13) into (1)–(5),

1

r

∂(rVr0s)

∂r
+

∂Vz0s

∂z
= 0,(14)

P0s = P0s(z),(15)

Vr0s
∂Vz0s

∂r
+ Vz0s

∂Vz0s

∂z
= − 1

γ

∂P0s

∂z
,(16)

Vr0s
∂T0s

∂r
+ Vz0s

∂T0s

∂z
= 0,(17)
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P0s = ρ0s + T0s,(18)

and must satisfy the steady boundary conditions,

z = 0; Vz0s = 0, T0s = 0,(19)

z = 1; P0s = 0,(20)

r = 0; Vr0s = 0,
∂Vz0s

∂r
=

∂P0s

∂r
=

∂T0s

∂r
=

∂ρ0s

∂r
= 0,(21)

r = 1; Vr0s = −Vrws(z), Vz0s = 0, T0s = 0.(22)

Equation (14) shows that the steady flow is incompressible, and the lack of viscous
terms in (16) is noted. As shown by Staab et al. [12], evaluation of (16) along the
sidewall, r = 1, and use of the no-slip condition in (22) shows that a nonzero steady
vorticity, Ω0s, is generated on the sidewall,

Ω0s(r = 1, z) =

(
∂Vz0s

∂r
− ∂Vr0s

∂z

)
(r = 1, z) = − 1

γ Vr0s

∂P0s

∂z
+

∂Vrws(z)

∂z
.(23)

In contrast, the steady heat transfer along the sidewall, found from (17) and (22),
∂T0s

∂r (r = 1, z), is zero. Last, (15) shows that the steady pressure varies only with z,
a result of the large aspect ratio assumption, δ � 1.

The solutions to (14)–(22) can be written as

Vr0s = −Vrws(z)

r
sin

(π
2
r2
)
,(24)

Vz0s =

(
π

∫ z

0

Vrws(ẑ)dẑ

)
cos

(π
2
r2
)
,(25)

P0s = γπ2

∫ 1

z

Vrws(ẑ)

∫ ẑ

0

Vrws(τ)dτdẑ,(26)

T0s = 0,(27)

ρ0s = γπ2

∫ 1

z

Vrws(ẑ)

∫ ẑ

0

Vrws(τ)dτdẑ.(28)

The results in (24), (25), and (26), derived by Zhao et al. [9], reduce to those of
Culick [20] and Taylor [21] when Vrws = 1. In the absence of conduction, (17) implies
that the steady flow is isothermal.

The r-dependence of the steady radial velocity in (24) will be used in section 4
to define a useful coordinate transformation [9, 22], where

s(r) ≡ − sin(πr2/2)

r
.(29)

The steady solutions in (24)–(28) provide the initial conditions for the full tran-
sient flow. Thus, from (12),

t = 0, (Ṽr, Ṽz, P̃ , ρ̃, T̃ ) = 0.(30)

4. Integral transform. Zhao et al. [9] and Zhao and Kassoy [22] show that an
integral transform of the radial variable facilitates solution development, particularly
for the nonirrotational, transient flow components. The transformed radial variable,

σ(r) =

∫ r

1

1

s(r̂)
dr̂ = − 1

π
log

(
tan

(
πr2

4

))
,(31)
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is used to calculate partial derivatives in r,

∂

∂r
=

1

s

∂

∂σ
,

∂2

∂r2
=

1

s2

∂2

∂σ2
+

d

dr

(
1

s

)
∂

∂σ
,(32)

where s is defined in (29). The transform maps the radial domain 0 ≤ r ≤ 1 to
0 ≤ σ ≤ ∞. The sidewall of the cylinder is at σ = 0, and the centerline is at σ → ∞.
The inverse of (31),

r(σ) =
1√
π

√
tan−1

(
e−πσ

)
,(33)

is used to convert σ-dependent functions to the original variable dependence.
Zhao et al. [9] show that two disparate length scales are needed to describe the

solution dynamics since physical phenomena are occurring simultaneously on two
disparate radial length scales. A multiple-scale analysis can be carried out in terms
of the independent variables σ1 and σ2 defined by

σ1 = σ, σ2 =
σ

M
.(34)

The variable σ in (31) can be interpreted physically as the nondimensional time re-
quired for a fluid particle injected from a z-location on the wall (r = 1) to reach a
radial location r ≥ 0. As the centerline is approached (r → 0), the value of σ be-
comes unbounded because the steady radial speed in (24) is proportional to O(r). It
follows that the σ-variable is used to describe physical variations experienced by an
injected fluid particle as it traverses the entire radius of the cylinder, R′. In contrast,
the second variable, σ2, in (34) is used to describe physical variations occurring on
the much shorter acoustic time t′A = L′/Co′, during which a fluid particle will move
only a small radial distance relative to R′. These simple physical interpretations of
(31) and (34) stand in contrast to unsupported criticisms by Majdalani and Flandro
[23] suggesting that the transformations are a “...conjectured set of scales found by
intuition” and that they are “...different from the uniformly valid scales...prescribed
by the problem’s solvability condition.” The latter remark refers to analysis found in
their small disturbance theory and is not relevant to the nonlinear model considered
in the present work.

In order to derive accurate reduced forms of the basic descriptive equations in the
limit M → 0, the radial variables in (34) must be introduced into (1)–(4) through the
use of a chain rule

∂

∂σ
=

∂

∂σ1
+

1

M

∂

∂σ2
(35)

prior to taking limits. This approach differs from that of Majdalani and Van Moorhem
[23, 24], who introduce the short scale only after deriving reduced equations based
on an asymptotic limit for large Reynolds number. This nested expansion approach
makes it difficult to account for all appropriate terms in each order of reduced equa-
tions.

Figure 2 shows a comparison of the new radial variable, σ2(r), to r2. Equation
(34) defines σ2(r), while r2 is defined in Staab et al. [12] as r2 = 1−r

M . The use of the
radial variable r2 in Staab et al. [12] restricts the maximum domain to r2 ≤ 1/M .
The new variable’s semi-infinite domain has no restriction. Both r2 and σ2(r) are 0
at the sidewall and increase as they approach the centerline.
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Fig. 2. Comparison of the new radial variable, σ2(r), to r2, the radial variable used by Staab
et al. [12].

Staab et al. [12] explain that the coupling between the time and radial direction,
found from a method of characteristics solution (see section 5.5), implies a time re-
striction for a given spatial restriction. Analytic and numerical results in [12] show
that t ≤ O(1/M). This restriction is absent in the present study.

5. Unsteady flow. The mathematical analysis described here is a generalization
and extension of that in Staab et al. [12]. First, the integral transformation in (31) and
(34) facilitates the development of solutions valid for extended time values relative
to the solutions in [12]. Second, the primary objective of the present modeling is
to describe thermal effects including density variations occurring in the flow field.
In contrast, the results in [12] describe only the velocity and pressure responses to
transient sidewall mass injection for limited values of the time variable.

The modeling paradigm and asymptotic concepts used in [12] are informative
with respect to the current work. At the same time, the mathematical analyses
differ considerably because the use of the integral transform alters the equations in
a substantive way. In this respect, a reader is likely to benefit from a systematic
exposition of the asymptotic analysis.

The boundary conditions for the unsteady axisymmetric flow are found using
(12), (13), and the difference between (7)–(11) and (19)–(22):

z = 0; Ṽz = 0, Ṽr = 0,(36)

z = 1; P̃ = 0,(37)

σ = 0; Ṽr = −Ṽrw(1 − cosωt), Ṽz = 0, T̃ = 0,(38)

σ → ∞; Ṽr → 0,
∂Ṽz

∂σ
=

∂T̃

∂σ
=

∂P̃

∂σ
=

∂ρ̃

∂σ
→ 0.(39)
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Asymptotic expansions for the velocity and thermodynamic variables, in the limit
M → 0, are

Vz ∼ Vz0s(z, r) +

∞∑
n=0

MnṼzn(z, σ, t),

Vr ∼ Vr0s(z, r) +

∞∑
n=0

MnṼrn(z, σ, t),

(P, ρ, T ) ∼ 1 +

∞∑
n=0

Mn+1(P̃n, ρ̃n, T̃n),

(40)

where the tilde (˜) denotes a time-dependent variable, as in (12). Vr0s and Vz0s are
the steady solutions in (24) and (25).

The large aspect ratio and Reynolds number parameters are connected to the
master asymptotic parameter, M , through the relations

δ =
k

M
, Re =

1

CM4
,(41)

where k and C are O(1) constants. The first relationship defines the size of the
large aspect ratio chamber relative to a small Mach number. It can be rewritten
as δ2 = k/Mi, where the typical size of the characteristic injection Mach number
Mi = V ′

ro/C
′
o = O(10−3) (see [2]). This implies that the theory is valid for cylindrical

rocket motors with aspect ratios roughly in the range 10 to 30, values that are certainly
found in practice.

The second relationship in (41) arises from the limit process analysis itself and
is chosen to assure that the effects of viscosity and conductivity are pervasive in the
cylinder and maximized with respect to the asymptotic limit, M → 0.

Equation (41) is compatible with the hard blowing limit δ2/Re → 0 as M → 0.
The relations in (41) permit one to accurately assess the order of magnitude of each
and every term in (1)–(4) in the limit M → 0, so that accurate reduced equation
systems are derived at each order of M .

5.1. Leading-order equations in the limit M → 0. The derivatives related
to the transformation in (31) and (35), the multiple-scale relationships in (34), the
unsteady expansions in (40), and the relationship between the parameters δ, Re, and
M in (41) are substituted into (1)–(5) prior to applying the limit M → 0. The
resulting O(M0) to O(M2) approximations of (1) are

∂Ṽr0

∂σ2
= 0,(42)

Dρ̃0

Dt
= −∂Ṽz0

∂z
− 1

s

∂Ṽr1

∂σ2
− Ṽr0

r
− 1

s

∂Ṽr0

∂σ1
,(43)

Dρ̃1

Dt
= ρ̃0

Dρ̃0

Dt
− Ṽr1

r
− 1

s

(
∂Ṽr1

∂σ1
+

∂Ṽr2

∂σ2
+ Ṽr1

∂ρ̃0

∂σ2
+ (Vr0s + Ṽr0)

∂ρ̃0

∂σ1

)

−∂Ṽz1

∂z
− (Vz0s + Ṽz0)

∂ρ̃0

∂z
,(44)

where

D
Dt

≡ ∂

∂t
+

Vr0s + Ṽr0

s

∂

∂σ2
.(45)

The D symbol differentiates (45) from the substantial derivative below (5).
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The O(M0) to O(M2) versions of the radial momentum equation (2),

∂P̃0

∂σ2
= 0,(46)

∂P̃1

∂σ2
+

∂P̃0

∂σ1
= 0,(47)

∂P̃2

∂σ2
+

∂P̃1

∂σ1
= 0,(48)

result from the large aspect ratio assumption.
The O(M0) and O(M) terms of the axial momentum equation (3) result in

DṼz0

Dt
= − 1

γ

∂P̃0

∂z
,(49)

DṼz1

Dt
= − 1

γ

∂P̃1

∂z
− 1

γ

∂P0s

∂z
+

1

γ
ρ̃0

∂P̃0

∂z
+

Ck2

s2

∂2Ṽz0

∂σ2
2

− Ṽr1

s

∂Ṽz0

∂σ2

− Ṽr0 + Vr0s

s

(
∂Ṽz0

∂σ1
+

∂Vz0s

∂σ1

)
−
(
Ṽz0 + Vz0s

)(
∂Ṽz0

∂z
+

∂Vz0s

∂z

)
,(50)

where (49) has been used to simplify (50).
The O(M) and O(M2) approximations to the energy equation (4) are

DT̃0

Dt
=

γ − 1

γ

∂P̃0

∂t
,(51)

DT̃1

Dt
= −

(
Vr0s + Ṽr0

s

∂T̃0

∂σ1
+

Ṽr1

s

∂T̃0

∂σ2
+ (Vz0s + Ṽz0)

∂T̃0

∂z

)
(52)

+
γ − 1

γ

(
∂P̃1

∂t
+ (Vz0s + Ṽz0)

∂P̃0

∂z

)
+

Ck2

∂ Pr

1

s2

γ2T̃0

γσ2
2

− (γ − 1)2

γ2

(
P̃0

∂P̃0

∂t
− T̃0

∂P̃0

∂t

)
,

The somewhat complicated derivation of the latter appears in the appendix.
The O(M) and O(M2) equations of state, found from (5), are

P̃0 = ρ̃0 + T̃0,(53)

P̃1 = ρ̃1 + T̃1 + ρ̃0T̃0.(54)

The σ1-dependence of the leading-order pressure, P̃0, is found by integration of
(47) with respect to σ2,

P̃1 = − σ2

s(σ1)

∂P̃0

∂σ1
+ φ(σ1, z, t).

The first term on the right-hand side contains unacceptable secular growth with
respect to σ2, typical of a multiple-scale analysis. It must be suppressed by choosing

∂P̃0

∂σ1
= 0,(55)
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which, together with (46), implies that the pressure, P̃0 = P̃0(z, t), is planar through-
out the cylinder. This result is typical of large aspect ratio cylinder geometries.

A similar analysis can be performed for P̃1 to show that

∂P̃1

∂σ2
=

∂P̃1

∂σ1
= 0,(56)

and hence the pressure P̃1 is also planar.

5.2. Leading-order solutions. Complete solutions for the variables Ṽz0, Ṽr0,
P̃0, and T̃0, described by (42)–(53) and the boundary conditions in (36)–(39), can
now be obtained.

The solution development is analogous to that of Zhao et al. [9], in which the
variables are split into weak ( , implies radial dependence only on σ1) and strong
(̂, implies both σ1 and σ2 radial dependence) rotational components,

Ṽr0 = V r0(z, t, σ1),

Ṽr1 = V r1(z, t, σ1) + V̂r1(z, t, σ1, σ2),

Ṽz0 = V z0(z, t, σ1) + V̂z0(z, t, σ1, σ2),

P̃0 = P 0(z, t),

ρ̃0 = ρ0(z, t, σ1) + ρ̂0(z, t, σ1, σ2),

T̃0 = T 0(z, t, σ1) + T̂0(z, t, σ1, σ2).

(57)

The radial velocity V̂r0 has no strong component due to (42), while (46) and (55)
preclude any radial dependence for pressure.

The naming convention “strong” and “weak” rotational flow has been used in
Staab et al. [12]. Upon substitution of (57) into (42)–(53), two sets of equations can
be derived. The weak terms are dependent only on σ1, z, and t. In contrast, the
strong rotational terms depend on σ1, σ2, z, and t.

5.3. Weak rotational equations. The leading-order weak rotational unsteady
equations, derived from (43), (49), (51), and (53), are

∂ρ0

∂t
= −1

r

∂(rV r0)

∂r
− ∂V z0

∂z
,(58)

∂V z0

∂t
= − 1

γ

∂P 0

∂z
,(59)

∂T 0

∂t
=

γ − 1

γ

∂P 0

∂t
,(60)

P 0 = ρ0 + T 0,(61)

where the radial variable σ1 has been replaced with the original radial variable, r, for
convenience.

The boundary conditions for these equations are subsets of those in (36)–(39),

z = 0; V z0 = 0,(62)

z = 1; P 0 = 0,(63)

r = 0; V r0 = 0,
∂V z0

∂r
=

∂T 0

∂r
=

∂P 0

∂r
=

∂ρ0

∂r
= 0,(64)

r = 1; V r0 = −Ṽrw(z)(cosωt− 1).(65)
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Fig. 3. The temperature solution of T 0 vs. t at z = 0.5 for ω = 1 has a period roughly equal to
45 time units.

The solutions to (58)–(65) are those found in Staab et al. [12],

P 0 =

∞∑
n=0

2cnγω

ω2 − b2n

(
ω

bn
sin bnt− sinωt

)
cos bnz,(66)

V z0 =

∞∑
n=0

2ωcn
ω2 − b2n

(
ω

bn
(1 − cos bnt) −

bn
ω

(1 − cosωt)

)
sin bnz,(67)

T 0 =

∞∑
n=0

2cn(γ − 1)ω

ω2 − b2n

(
ω

bn
sin bnt− sinωt

)
cos bnz,(68)

ρ0 =

∞∑
n=0

2ωcn
ω2 − b2n

(
ω

bn
sin bnt− sinωt

)
cos bnz,(69)

V r0 = −rṼrw(z)(1 − cosωt),(70)

where

cn = 2

∫ 1

0

Ṽrw(z) cos bnz dz,(71)

and bn = (n + 1/2)π.
The T 0 solution is planar and contains both a boundary condition response

(sinωt) and eigenfunction (sin bnt) relevant to the exit plane pressure node boundary
condition. The latter can be rewritten as a sum of two counter-propagating planar
waves, while the boundary condition response represents a standing wave. A time
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series plot of T 0 is found in Figure 3 at z = 0.5 for ω = 1. The period is roughly 45
time units. The relatively small positive and negative peaks near t = 10, 33, and 55
will be seen in the results for the full temperature field, showing a connection between
the acoustic field and the overall temperature variation.

5.4. Steady parts of the weak rotational solutions. Equations (67) and
(70) reveal that V z0 and V r0 contain both mean and fluctuating parts. It will be
shown in section 6 that the means of V z0 and V r0, important in describing the
temperature dynamics, can be written [12] as

V z0s = 2

∫ z

0

Ṽrw(ẑ)dẑ,(72)

V r0s = −rṼrw(z).(73)

5.5. Strong rotational equations. The leading-order strong rotational equa-
tions are found by subtracting (58)–(61) from (43), (49), (51), (53),

Dρ̂0

Dt
= −∂V̂z0

∂z
− 1

s

∂V̂r1

∂σ2
,(74)

DV̂z0

Dt
= 0,(75)

DT̂0

Dt
= 0,(76)

ρ̂0 + T̂0 = 0,(77)

where D
Dt is defined in (45).

Equations (76) and (77) can be combined to show that

Dρ̂0

Dt
= 0,(78)

and therefore (74) can be written as

∂V̂z0

∂z
+

1

s

∂V̂r1

∂σ2
= 0.(79)

Equations (75), (76), and (78) are first-order wave equations defining invariance

along characteristics defined by the radial velocity field, Vr0s + Ṽr0. The wave-like
solutions to (75), (76), and (78) originate on the sidewall and convect toward the

centerline with the local radial velocity. The solution to (76) for the temperature, T̂0,
is obtained following the procedures in Staab et al. [12].

The relevant initial/boundary conditions for (76) are

t = 0; T̂0 = 0,

σ1 = 0 and σ2 = 0; T̂0 = −T 0,
(80)

where T 0 is the solution in (68). The second condition demonstrates that the acoustic
solution in (68) is a forcing function for T̂0. Equation (76), with the substantial
derivative represented by (45), can be solved along a set of characteristics found by
integration of

dσ2

dt
=

Vr0s(σ1, z) + V r0(σ1, z, t)

s(σ1)
= Vrws(z) +

V r0

s
,(81)
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where σ1 and z are treated as constants in the multiple-scale analysis. It follows that
(81) can be integrated from 0 to t with the integration constant found from σ2 = ξ at
t = 0, and σ1 and σ2 treated as independent variables. The equation characteristics
are described by the result

ξ − σ2 = −tVrws(z) −
r2Ṽrw(z)

sin(πr2/2)

(
t− sinωt

ω

)
,(82)

where r is taken to be r(σ1) as defined by the inverse of the function in (31).
The characteristic, ξ = 0, represents the front of the strongly rotational temper-

ature distribution described by (76), which convects away from the sidewall toward
the centerline with the speed defined by (81).

An alternative representation of the characteristic curves in (82) can be found by
integration of (81) from t� to t with the integration constant found from σ2 = 0 when
t = t�,

σ2 = Vrws(z)(t− t�) +
r2Ṽrw(z)

sin(πr2/2)

(
t− t� +

sinωt� − sinωt

ω

)
.(83)

This representation is useful because the solution to (76) along σ1 = 0 can be
found by integration and the application of the boundary/initial conditions in (80),

T̂0(t
�; z) =

{
0, t� ≤ 0,

−T 0(t
�, z), t� > 0.

(84)

The characteristic variable t� is the solution of (83) for a given σ2, z, and t when
σ1 = 0.

This analysis yields only T̂0(σ1 = 0, σ2, z, t), given in (84). As is typical of a
multiple-scale analysis, higher-order equations must be considered to resolve behavior
on the longer scale, in this case, σ1.

6. Higher-order considerations. The O(M2) energy equation in (52) is used
in the higher-order analysis to determine the σ1-dependence of the temperature,
T̂0(σ1, σ2, z, t).

Similar to the procedure used for the lower-order variables, the O(M2) unsteady
pressure and O(M) unsteady axial velocity are written in the form

P̃1 = P 1(z, t),

Ṽz1 = V z1(σ1, z, t) + V̂z1(σ1, σ2, z, t),

T̃1 = T 1(σ1, z, t) + T̂1(σ1, σ2, z, t),

(85)

where the weak and strong rotational components of the temperature are denoted by

the bar and caret superscripts, respectively. The pressure P̃1 is shown to be planar
in (56), and therefore no radially dependent pressure term exists.

Substitution of (57) and (85) into (52) yields two sets of energy equations. The
first set contains all of the terms of (52) with dependence on σ1, z, and t,

∂T 1

∂t
=
γ − 1

γ

∂P 1

∂t
− (Vz0s + V z0)

∂T 0

∂z
+

γ − 1

γ
(Vz0s + V z0)

∂P 0

∂z

− (γ − 1)2

γ2

(
P 0

∂P 0

∂t
− T 0

∂P 0

∂t

)
,(86)
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while the second equation is the difference between (52) and (86),

DT̂1

Dt
= −

(
Vr0s + V r0

s

∂T̂0

∂σ1
+

Ṽr1

s

∂T̂0

∂σ2
+ (Vz0s + V z0 + V̂z0)

∂T̂0

∂z
+ V̂z0

∂T 0

∂z

)

+
γ − 1

γ
V̂z0

∂P 0

∂z
− (γ − 1)2

γ2
T̂0

∂P 0

∂t
+

Ck2

γ Pr

1

s2

∂2T̂0

∂σ2
2

.(87)

When (87) is integrated in time, several terms on the right-hand side are sources
of unbounded solution behavior in time [12]. The unphysical secular behavior can be
suppressed if

0 =
Vr0s + V r0s

s

∂T̂0

∂σ1
+ (Vz0s + V z0s)

∂T̂0

∂z
− Ck2

γ Pr

1

s2

∂2T̂0

∂σ2
2

,(88)

which describes the complete solution T̂0(σ1, σ2, z, t). This convection-diffusion equa-
tion for the strongly rotational temperature field is analogous to that for the axial
speed V̂z0,

0 =
Vr0s + V r0s

s

∂V̂z0

∂σ1
+

∂

∂z

(
V̂z0

(
1

2
V̂z0 + Vz0s + V z0s

))
− Ck2

γ

1

s2

∂2V̂z0

∂σ2
2

.(89)

Both the first and third terms in (88) have analogues in (89) for Pr = 1. However,
the axial convection term in (89) is nonlinear, while that in (88) is linear. Also, the
solutions to the two equations will have different properties arising from the boundary
conditions imposed on each.

The boundary conditions for (88) have the form

z = 0, T̂0 = 0;(90)

σ2 = 0, T̂0 = T̂0(t
�, z);

σ1, σ2 → ∞, T̂0 → 0.

The physical solution, T̂0(r, z, t), is found by evaluating the function T̂0(σ1, σ2, z, t)
along σ1 = Mσ2 and returning to the original radial variable using (33). A numerical
solution to (88) is described in section 11.

7. Density field dynamics. The complete leading-order temperature solution
can be used to obtain the density. As with the temperature, the density is composed
of a steady field, ρs, and an unsteady field, ρ̃. The latter is defined by an asymptotic
expansion in powers of M as in (40). In short, the leading-order density field is
ρ = 1 + M(ρ̂0 + ρ0) + O(M2), where ρ0 is the solution in (69) and ρ̂0 is explained
here.

The strongly rotational density, ρ̂0, is found from (77), once T̂0 is found from (88).
The qualitative behavior of the density field is analogous to that of the temperature
field. A large radial gradient of the density arising along the sidewall of the cylinder
will be convected downstream and toward the centerline.

8. Heat transfer along the sidewall. The strongly rotational energy equation,
(76) can be used to determine the heat transfer along the sidewall. The dimensional
heat transfer per unit area,

q′ = κ′ ∂T
′

∂r′
,(91)
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can be nondimensionalized using the definition

q′0 =
κ′

0T
′
0

R′

to find the first approximation

q′ ∼ q′0
Vr0s

∂T̂0

∂σ2
,(92)

where (32), (35), and (40) have been used. The characteristic radial heat flux q′0 is
far larger than one might expect in a flow where the typical temperature variation is
O(MT ′

0). This O(1), rather than O(M), dependence arises from the presence of large
radial gradients on the scale O(MR′).

The heat transfer along the sidewall can be found using the leading-order con-
servation of energy in (51), the sidewall boundary condition in (10), and the pressure
solution in (66),

(
q′wall

q′0

)
= qwall ≡

1

s

∂T̂0

∂σ2

∣∣∣∣∣
wall

=
1(

Vr0s + Ṽr0

) ∂T 0

∂t

∣∣∣∣∣∣
wall

=
1

Vrws + Ṽrw(z) sinωt

∞∑
n=0

2cn(γ − 1)ω

ω2 − b2n
(cos bnt− cosωt) cos bnz.(93)

This surprising result shows that the basic heat transfer is determined by a noncon-
ductive interaction between the acoustic field and the injected fluid.

It should be noted that the heat flux is found from a transport equation (51) in
which conduction is absent. This property of the equations is analogous to that of
the inviscid momentum equation in (75) which is compatible with the no-slip condi-
tion. Hard blowing problems (δ2/Re � 1) are characterized by relatively diminished
influence of transport effects on near-surface gradients.

Related wall heat transfer analyses have been done by Staab et al. [12], who
present results for different frequencies of the sidewall mass addition.

9. Properties of T̂0. The effective conductivity for the T̂0-equation (88) is pro-
portional to s−1(Vr0s + V r0s)

−1. As the centerline is approached, r → 0, the conduc-
tivity becomes unbounded like 1/r2. In a linear conduction problem, such conductivity

behavior implies that in the limit r− > 0, T̂0 → 0.
Qualitatively, the linear convection-conduction equation (88) describes convection

of thermal energy toward the centerline and downstream, and conduction in the radial
direction. However, much more can be said about the properties of the equation. For
example, (88) can be written as a linear conduction equation

∂T̂0

∂σ1
=

Ck2

γPr

1

s(Vr0s + V r0s)

∂2T̂0

∂σ2
2

(94)

along characteristic curves z = z(σ1) defined by

dz

dσ1
=

s(Vz0s + V z0s)

Vr0s + V r0s

.(95)
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These curves are streamlines determined by the lowest-order total axial and radial
speeds. The slope dz/dσ1 > 0, as determined from the right-hand side of (95), which
is positive for all σ1 and z. The streamlines start on the sidewall, σ1 = 0, and leave
through the exit plane, z = 1. All solutions for T̂0 can be described along these
characteristics. Such curves will not cross due to the lack of T̂0 in (95), a result of
the linear form of (88). Equation (95) can be evaluated for r → 0 to show that the
streamlines become parallel to the axis (r = 0) as r → 0.

The heat equation in (94) can be solved using Fourier transform techniques. A
simplified version is solved in Staab et al. [12] and used to show that solutions near
the centerline decay with form

lim
r→0

T̂0 ∼
(
r
π

4

) Ck2ω2

π(1+A)2

,(96)

where the original variable r has been used, C and k are the constants found in (41),
and A is an average transverse vorticity wave speed used to simplify the boundary
condition. Equation (96) shows that the strongly rotational temperature T̂0 goes to
zero at the centerline. Only the acoustic solution, T 0 in (68), contributes to the
centerline temperature.

10. Solution development and numerical methodology. Solutions to (88)
and (89) are found using a procedure similar to that employed by Staab et al. [12].
However, in this case there is no upper limit on the transformed radial variable, σ2,
so the solution can be solved for a much larger time domain.

First the results in (80)–(84) are used to find T̂0(σ1 = 0, σ2 = 0, z, t), which is

the initial condition for (88). The numerical solution of T̂0(σ1, σ2, z, t) at each z and
t is evaluated along σ1 = Mσ2 to yield the solution in (σ, z, t)-space. Finally, (33) is
used to return to (r, z, t)-space.

It is noted that t is an implicit variable in (88), with σ1 playing the role of the
timelike variable. For a given value of t the solution to the wave equation (76) on
σ1 = 0 penetrates a distance defined by the front ξ = 0 in (82). Equation (88)

describes the convection and diffusion effects on T̂0 between the wall and the front.
Equation (88) is solved via the method of lines, a numerical technique which em-

ploys a spatial discretization to reduce a time-dependent partial differential equation
(PDE) to a system of ordinary differential equations (ODEs) in the timelike variable.
Since convection is downstream, a second-order backward finite difference formula in
the z-direction is the basis for the axial spatial discretization. In this manner the
finite differencing is stable since all information comes from the upstream direction.

A fourth-order centered finite difference formula is used for the ∂2T̂0

∂σ2
2

term. The dis-

cretization leads to a set of Nσ2
× Nz coupled ODEs, where Nz and Nσ2

are the
number of gridpoints chosen in the z- and σ2-directions, respectively. This set of
ODEs is solved using an adaptive fourth-order Runge–Kutta solver, a stable method
for solving a set of ODEs that arise from the discretization of equations with both
parabolic and hyperbolic terms.

The computational results in the following section are produced using 150 grid
points in the radial direction and 50 in the axial direction. The figures shown in
that section were produced with 300 radial gridpoints, where the new points are
found using a spline interpolation based on the original 150 points. This was done in
order to save computing time in making the plots since running the solver with high
grid density takes much longer than performing a spline interpolation. Solving (88)
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with 300 radial gridpoints took 89 minutes of computing time, whereas 150 radial
gridpoints and then splines took only 10 minutes. All computations were carried out
on a SuperSparc workstation.

Before discussing the error generated at each extra gridpoint from using splines,
it is necessary to define the following variables:

U150 = T̂0 with Nσ2 = 150,(97)

U300 = T̂0 with Nσ2
= 300,(98)

Us = spline(U150),(99)

where Us comes from taking U150 and spline interpolating it to 300 points. The
notation Nσ2

denotes the number of gridpoints used in the σ2-direction for the com-
putational solution.

The error at each extra gridpoint is calculated using the following formula:

ε =
‖U300 − Us‖∞

‖U300‖∞
.(100)

The maximum error, ε, computed using (100) on a representative test problem is
1.78×10−2. This is considered to be acceptable since the next term in the asymptotic
expansion for the temperature is O(M) smaller than T̂0 and the Mach numbers used
in this study are slightly larger than the error. Therefore, the error associated with
the asymptotic series is larger than that due to the spline interpolation process.

11. Results. The spatial distribution of the instantaneous temperature and
temperature gradient are discussed in this section in order to explain the origin and
evolution of thermal disturbances for the sidewall boundary condition in (10), with
Vrws(z) = 1 and Ṽrw(z) = 0.2 cos

(
π z
2

)
;

Vr = −1 − 0.2 cos
(πz

2

)
(1 − cosωt) at r = 1.(101)

It is noted that the additional unsteady mass increase is on the order of 20% of that
due to uniform injection.

Figure 4 shows the instantaneous rotational temperature T̂0 variation with r and
z, for M = 0.02, δ = 20, Re = 3 × 105, ω = 1, Pr = 1, and γ = 1.4 at t = 20.
The temperature disturbances, which begin on the sidewall, are driven by the third
condition in (90). Three spatial waves characterized by large radial gradients have
propagated into the cylinder interior to about r = 0.5. Beyond this first wave the
solution is T̂0 = 0. The 0.001-contour nearest the centerline will hereafter be referred
to as the “T̂0-front.”

Two mechanisms give the surface in Figure 4 its characteristic morphology. First,
along the sidewall of the cylinder (r = 1) the solution is given in (84). The time-

dependence of the solution along the edge is the negative of T̂0 shown in Figure 3.
The waves are generated along the sidewall and convected into the flow field by the
radial velocity field as shown in (76), where the substantial derivative is defined in
(45). The other mechanisms governing the shape of the solution are the convective
and conductive effects in (88). The waves are convected toward the centerline and
downstream and diffused on the length-scale associated with the σ2-variable.

Observation of each temperature wave in Figure 4 shows that the magnitude
decreases in the downstream direction. In contrast, the analogous rotational axial ve-
locity increases with z (see [12]). The difference can be attributed to the mathematical
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Fig. 4. The variation of T̂0 with r and z for M = 0.02, δ = 20, Re = 3 × 105, ω = 1, Pr = 1,
γ = 1.4, and at t = 20. Temperature disturbances originate on the sidewall and convect toward the
centerline. The temperature front has reached about r = 0.5 at this time. The fluid ahead of the
front remains at its initial temperature of T = 1.

form of the acoustic solutions in (67) and (68). The acoustic axial velocity contains a
sin

(
πz
2

)
term which increases with z, while the acoustic temperature has a cos

(
πz
2

)
term which decreases in the same region. These terms arise from the z-dependence
of the sidewall radial velocity in (10). The radial sidewall velocity drives the acoustic
temperature field that ultimately generates the strongly rotational temperature.

Figure 5 shows the (r, z) variation of the complete temperature T ∼ 1 + M(T̂0 +

T 0) + O(M2), where T̂0 is the solution to (76) and (88) and T 0 is defined in (68).
The results are given at t = 20 and 30 for the parameter values in Figure 4. Since
the boundary condition in (10) has a period of 2π when ω = 1, at t = 30, one should
expect to find about five spatial waves, as observed in Figure 5(b).

The instantaneous acoustic temperature, T 0, is described by the “ramp” in Fig-
ures 5(a) and 5(b), where T̂0 = 0. Also, since it is proportional to cos

(
πz
2

)
, it always

approaches 0 at z = 1. The variations with z and t differ according to the dependen-
cies in (68). The impact of the T̂0-solution can be observed in the region between the
front location and r = 1. Note the different vertical scales used in Figures 5(a) and
5(b). The amplitude of the solution in Figure 5(a) is almost entirely greater than 1,
while that in Figure 5(b) is mostly less than 1. Again, this difference arises from the

instantaneous acoustic temperature field. It is noted from Figure 3 that T̂0 is positive
at t = 20 and negative at t = 30. Figure 6, a contour plot of Figure 5, shows clearly
the axial shape of the waves and the radial location of the T̂0-front near r = 0.45. The
pure acoustic field is associated with horizontal contours on the left side of the figure.
To the right of the T̂0-front and extending to the sidewall, tightly packed contours
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Fig. 5. Variation of the complete temperature T ∼ 1 +M(T̂0 +T 0) with r and z for M = 0.02,
δ = 20, Re = 3× 105, ω = 1, Pr = 1, and γ = 1.4 at (a) t = 20 and (b) t = 30. The characteristics

of the field near r = 1 are dominated by T̂0, while that near the centerline is dominated by T 0. Note
that different vertical scales have been used for the two plots.

represent regions of large radial gradients. The shading depicts variations from the
background of T = 1.

A surface plot of the radial temperature gradient, ∂T
∂r , is shown in Figure 7 using

the parameters in Figure 5(a). Pronounced gradients persist up to the location of
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Fig. 6. Contour plot of the complete temperature T for the parameters in Figure 5(a).

the T̂0-front. The variation in the temperature gradient, typically about 0.1, is of the
same magnitude as that for Ṽrw. This is in contrast to the leading-order temperature
variation, T − 1 ∼ M(T̂0 + T 0) +O(M2), roughly .005, as can be seen in Figure 5(a).
The variation in the temperature gradient is roughly twenty times larger than that of
the temperature in this case, a result of the short wavelength of the spatial oscillations
in Figure 5(a). Since the conductive heat transfer is proportional to the temperature
gradient, this means that surprisingly large amounts of heat transfer exist in the
cylinder even though the temperature perturbations are small.

Figure 8(a) shows the (r, z) variation of the rotational temperature, T̂0, at t = 60
with all the other parameters the same as those in Figure 5. At any given axial
location, it can be seen that the amplitude of the radial oscillations varies considerably
as one moves between the sidewall and the axis of the cylinder. The monotonic
variations arise because the solution to (88) along r = 1 is −T 0, as shown in (84).
Since −T 0 is not monotonic in time, as shown in Figure 3, the waves that originate
on the sidewall are not strictly decreasing in time. However, if one follows a given
spatial wave originating at the sidewall and convecting into the cylinder, it will be
observed that the wave magnitude is diminished. Staab et al. [12] have shown that
this is the result of accumulated convection and diffusion. One may note the smaller
amplitude spatial waves near the cylinder axis.

Figure 8(b) describes the spatial dependence of the strong rotational axial velocity,
V z0, for t = 60 and the same parameter values as those for Figure 8(a). This long-
time solution could not be obtained in the earlier work by Staab et al. [12] because
of the limitations described earlier in section 4. The results in Figures 8(a) and

8(b) show that the V̂z0 solution is damped more quickly in the radial direction than

is the T̂0 solution. This difference can be attributed to the characteristic of the
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Fig. 7. The spatial distribution of the temperature gradient, ∂T
∂r

, for the same parameter values
as in Figure 5(a). The temperature gradient is of the same magnitude as the radial velocity at the
sidewall. Note that relatively large temperature gradients persist into the flow field, not just at the
wall.

different convective terms in (88) and (89), particularly the nonlinear properties of
the latter.

The radial spatial wave variation for T̂0 differs from that of V̂z0, as shown at
t = 20 and z = 0.5 in Figure 9. In part, this occurs because the acoustic solutions, T 0

and V z0, the drivers for the strong rotational solutions, are out of phase, as can be
seen from (67) and (68). Here again it can be seen that there is a difference between

the damping of spatial oscillations in T̂0 and those in the V̂z0-waves as the centerline
is approached.

Figures 10 and 11 describe the spatial variation of the complete temperature T
for the parameter values used in Figure 5(a) when the injection boundary condition
is given by

Vr = −1 − 0.2 cos2
(

3πz

2

)
(1 − cosωt) at r = 1.(102)

This injection distribution is employed to explore the impact of higher axial wave
number variations on the internal flow dynamics. The z-dependence of this boundary
condition is shown on the right-hand side of Figure 11, where positive velocity values
are given to the right on the horizontal axis. A new acoustic solution was derived to
satisfy (102).

The leading-order complete temperature solution is shown in Figure 10. The
parameter values correspond to those in Figure 5(a). Three waves have propagated
into the cylinder just as in Figure 5(a). Now, however, the waves contain a little more
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Fig. 8. (a) Variation of the strong rotational temperature T̂0 with r and z at time t = 60 for the
parameters used in Figure 5. The use of a radial variable integral transformation in (31) removes

restrictions on the maximum time for which the solution can be found. (b) Variation of V̂z0 with r
and z, the rotational axial velocity, for t = 60.

axial variation, resulting from the higher wave number axial variation in the sidewall
mass addition. The rate of radial wave propagation is axially dependent and directly
related to variation in the mass addition, as implied by (76) and (81).

A comparison of the contour plots in Figures 6 and 11 is useful for observing the
altered shape of the temperature waves for a given set of parameter values. The first
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Fig. 9. Comparison of the radial variation of T̂0 and V̂z0 at z = 0.5 for M = 0.02, δ = 20,
Re = 3× 105, ω = 1, Pr = 1, and γ = 1.4 at t = 20. The radial locations of the peaks differ because
the acoustic solutions, T 0 and V z0, are qualitatively different, and the linear convective term in (88)

differs from the nonlinear effect in V̂z0 ((see (89)).

waves adjacent to the sidewall have very little z-variation. However, the second and
third waves in Figure 11 have crests with radial locations that vary considerably in
the z-direction relative to those in Figure 6.

Figure 12 shows the location and shape of the .001-contour of the rotational
temperature for 12 different times up to t = 60 reading from right to left. As the front
propagates toward the centerline, regions of relatively large curvature are convected
downstream and swept out of the cylinder. Downstream convection can be followed
by noting that the local minimum in the front location, marked with an X near z = 0.3
at t = 5, moves to a larger axial location at each new time value. It moves out of the
cylinder by the time t = 30 and leaves behind a front profile that has very little axial
dependence.

The lack of axial variation near the centerline is similar to a result of Staab
and Kassoy [14], who find that azimuthal variations along the sidewall driven by
nonaxisymmetric wall injection are damped out near the centerline. Both the model
in Staab and Kassoy [14] and that used here are without azimuthal and axial diffusion
terms, respectively. These results show that axial convective terms are sufficient to
produce these phenomena.

12. Summary of results and conclusions. A multiple-scale asymptotic anal-
ysis has provided the mathematical foundation for investigating the thermal proper-
ties of the compressible flow in a large aspect ratio cylinder with unsteady, axially
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Fig. 10. The (r, z) variation of T ∼ 1 + M(T̂0 + T 0) + O(M2) for M = 0.02, δ = 20,
Re = 3 × 105, ω = 1, Pr = 1, and γ = 1.4 at t = 20 using the new radial sidewall velocity,
Ṽrw(z) = 0.2

(
cos2( 3πz

2
)
)
. The curvature changes of the wave crests in the z-direction arise from

the higher wave number axial variation of the sidewall mass addition in (102).

distributed sidewall mass addition. The latter drives significant planar acoustic dis-
turbances in the low Mach number and high Reynolds number fluid flow. Although
the temperature variations in the flow field are only O(M), one can find larger-than-
expected O(1) temperature gradients on the sidewall because the relevant radial length
scale for gradients is O(M) rather than O(1). It follows that the transient heat trans-
fer on the sidewall is rather more intense than one might expect and is controlled
entirely by the injection-induced acoustic disturbances.

The current work extends the earlier study of Staab et al. [12], who predicted
velocity and vorticity solutions for a limited range of time. This limitation is overcome
by employing an integral transformation for the short-length–scale radial variable.
When this transform is used in the asymptotic analysis, the time-scale for solution
validity is extended considerably compared to the limitations found in Staab et al. [12].
As a result, long-time velocity and temperature results have been included here that
were not possible previously.

Several interesting thermal phenomena have been observed in the cylinder.

1. The temperature gradient on the sidewall is O(1), even though the fluctu-
ations in the temperature are O(M). This results in an unexpectedly large
heat transfer on the sidewall.

2. The decay rate of the strongly rotational axial velocity waves is more pro-
nounced and systematic than that of the corresponding rotational tempera-
ture waves. Since the results are for Pr = 1, the characteristic difference
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Fig. 11. The contour plot of T for the parameter values in Figure 10, showing the curvature in
the crest locations of the waves. The crest shapes become more varied in the z-direction as one moves
away from the wall. The z-dependence of the sidewall mass addition in (102) is shown on the right-
hand side. Axial variations in the sidewall mass addition create the curvature in the temperature
contours.

in structure must be due to the impact of the differing axial convection
process.

3. Increasing the wave number of the axial variation in mass addition causes
axial variations in the front separating the irrotational and “rotational” tem-
perature distributions when the front is not too close to the center line.
However, the axial structure is lost when the front approaches the center
line. Since axial diffusion is not present in the model, the result can be ex-
plained by the axial convection that transports fluid downstream and out of
the cylinder.

The transient mass addition on the boundary of the cylinder causes work to be
done on the system as well as producing acoustic disturbances. The latter interact
with the fluid at the injection surface to create vorticity. As a result, the energy of the
fluid can be partitioned into acoustic and rotational components. A careful analysis
of the asymptotic results shows that the O(M) acoustic and “rotational” temperature
disturbances make the largest contributions to the total energy transient. Kinetic en-
ergy effects appear only at O(M2). The presence of thermal energy in the “rotational”
disturbance, and of course kinetic energy associated with the rotational velocity dis-
turbance, suggest that a purely acoustical analysis cannot accurately describe the
partitioning of the energy in the flow.

The wall injection boundary condition in (10) simulates the transverse speed of
hot gaseous products of reaction exiting the very thin combustion zone, typically on
the order of millimeters (O(mm.)) adjacent to the burning rocket motor propellant.
The speed is known to be compatible with the hard blowing approximation [15] used
in section 2. The axial gas speed at the edge of the combustion zone is likely to be
small compared to the transverse value because the zone thickness is small in absolute
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Fig. 12. Front locations for T̂0 = 0.001 at t = 5, 10, 15, 20, 23, . . . , 60. The front near r = 0.85
corresponds to t = 5, and each successive front is to the left of the one before it. The X’s mark a
local minimum in the front which gets convected downstream.

terms and the local transient, axial pressure gradient is O(M). It follows that the
no-slip condition imposed by (7) provides a reasonable first approximation to the
model.

The isothermal boundary condition in (11) represents the temperature of the hot
gaseous products, typically 2500K–3000K in dimensional value. The axial variation
of the combustion zone flame temperature is likely to be small compared to the flame
temperature because it is controlled primarily by gas phase exothermic chemical ki-
netics. Hence, the use of a spatially uniform temperature in (11) is a reasonable
modeling approximation. In this respect the isothermal injection model provides a
reasonable approximation of the physics occurring at the edge of the combustion
zone.

The boundary condition on the radial speed in (7) is not satisfied by the solution
provided. In fact a thin viscous boundary is required to provide a transition between
the solutions given here and the endwall of the cylinder. This issue, discussed in [12],
will not affect the solutions described here.

The model presented here does not include the effect of turbulent transition in the
downstream portion of the cylinder, arising from hydrodynamic instability. Vorticity
generated by turbulent flow will add to that arising from the deterministic mechanism
explored in the current work. It would be worthwhile to ascertain the relative intensity
of both components of the vorticity field. It should also be recognized that transient
surface pressure fluctuations associated with the turbulent field will initiate additional
vorticity via the deterministic process.
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Appendix: Derivation of the higher-order energy equation. Derivations
of (51) and (52) are given here to describe the algebraic manipulations. The complete

set of O(M) terms for the T̃0-equation is

∂T̃0

∂t
+

Vr0s + Ṽr0

s

∂T̃0

∂σ2
= −(γ − 1)

(
Ṽr0

r
+

1

s

∂Ṽr0

∂σ1
+

1

s

∂Ṽr1

∂σ2
+

∂Ṽr0

∂z

)
.(A1)

Equation (43) can be used to reduce (A1) to

DT̃0

Dt
= (γ − 1)

Dρ̃0

Dt
,(A2)

which can be further simplified by introducing (53),

DT̃0

Dt
=

γ − 1

γ

∂P̃0

∂t
.(A3)

The O(M2) energy equation for T̃1 is derived in much the same way. The complete
set of O(M2) terms is

∂T̃1

∂t
+

Vr0s + Ṽr0

s

∂T̃1

∂σ2
+

Vr0s + Ṽr0

s

∂T̃0

∂σ1
+

Ṽr1

s

∂T̃0

∂σ2
+ (Vz0s + Ṽz0)

∂T̃0

∂z
(A4)

=
Ck2
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1

s2

∂2T̃0

∂σ2
2

− (γ − 1)

(
Ṽr1
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+

1

s

∂Ṽr1

∂σ1
+

∂Ṽr2

s
+

∂Ṽz1
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)

−(γ − 1)P̃0

(
Ṽr0
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+

1

s

∂Ṽr0

∂σ1
+

1

s
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∂σ2
+

∂Ṽz0
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.

Then (43) and (44) can be used in (A4) to find

∂T̃1
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Vr0s + Ṽr0

s

∂T̃1

∂σ2
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Next, (53) and (54) are used to replace ρ̃0 and ρ̃1, respectively:
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Further simplification leads to

DT̃1

Dt
= −

(
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s
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s
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2
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γ2

(
P̃0

∂P̃0

∂t
− T̃0
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,

which appears as (52) in section 5.1.
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Abstract. In this article, fundamental properties concerning the Turing patterns are consid-
ered in one-dimensional dissipative systems with gradient/skew-gradient structure introduced in [M.
Kuwamura and E. Yanagida, Phys. D, 175 (2003), pp. 185–195]. It is a natural extension of free
energy, which covers reaction-diffusion systems of activator-inhibitor type. The theory based on this
concept provides a new perspective on a fundamental problem of what unique Turing pattern is to
be selected among many.
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1. Introduction. There are many self-organized spatial patterns appearing
from uniform steady state as various organs with complex structures are formed and
developed from a simple cell. The problem of clarifying the essential mechanism of
such a pattern formation process has attracted much attention. For this problem,
Rashevsky [33] and Turing [35] suggested that, under certain conditions, chemicals
can react and diffuse in such a way as to produce steady state heterogeneous spatial
patterns of chemical and morphogen concentration. This is, currently, known as the
Turing instability mechanism, which provides a fundamental and universal concept
for the study of pattern formation in dissipative systems; we refer to standard texts
Nicolis and Prigogine [27], Haken [15], Manneville [22], Mori and Kuramoto [24], Mur-
ray [25], and the references therein. This theoretical concept was also demonstrated
by real experiments and careful observations by Ouyang and Swinney [29], Kondo and
Asai [18], De Kepper, Perraud, Rudovics, and Dulos [8], Yamaguchi [36], and so on.
The progress of study of the Turing instability gives us a useful viewpoint to under-
stand pattern formation in various phenomena; however, some natural questions still
remain. A typical question is this: when one observes a pattern formation process due
to the Turing instability, why does a particular pattern often selected though various
patterns appear? This problem is known as pattern selection, one of the main sub-
jects in various fields of sciences, and there are some approaches to study the pattern
selection problem; we refer to Cross and Hohenberg [7] and Nishiura [28]. One useful
approach is to find a free energy (potential system or variational principle), which
determines direction of time evolution of systems. It is quite natural, however, and
there are few examples to apply this approach explicitly. The purpose of this paper is
to study fundamental properties of spatially periodic patterns induced by the Turing
instability under the one-dimensional gradient/skew-gradient dissipative structure in-
troduced in Kuwamura and Yanagida [20]. It is a natural extension of the notion of
free energy, which covers reaction-diffusion systems of activator-inhibitor type such
as modified FitzHugh–Nagumo systems and Gierer–Meinhardt systems. Our results
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clarify universal properties of the Turing patterns in dissipative systems, and become
a first step to study a fundamental problem of what unique Turing pattern is to be se-
lected among many. The organization of this paper is as follows. In the next section,
we introduce the concept of gradient/skew-gradient dissipative structure following
[20]. In section 3, we give a necessary condition for existence of nontrivial spatially
periodic patterns due to the Turing instability. In section 4, we give a sufficient con-
dition for instability of spatially periodic patterns in terms of convexity of (skew) free
energy per unit length of periodic patterns in its wavenumber; this is known as the
Eckhaus instability criterion. In section 5, we consider a quantity introduced in the
previous section, which plays a crucial role in determining the instability of the Turing
patterns. It is shown that this quantity is closely related to the validity of amplitude
equation which describes dynamics in a sufficiently small neighborhood of the Turing
bifurcation point. In section 6, we consider structures of the (skew) free energy per
unit length of the Turing patterns. Under a certain nondegeneracy condition, unique-
ness of the extremum of (skew) free energy is shown. Moreover, we give a simple
formula for computing the wavenumber corresponding to the unique extremum near
the Turing bifurcation point. In section 7, we apply our results to concrete examples
which are helpful to understand usefulness of the results obtained in previous sections.
In section 8, combining the analytical results with numerical experiments, we study
what Turing pattern is to be selected near a bifurcation point. The results suggest
that the wavenumber corresponding to the unique extremum of (skew) free energy
gives an upper bound for the wavenumber of the selected Turing pattern. Section 9
is devoted to a summary of this paper.

2. Gradient/skew-gradient dissipative structure. In this section, we intro-
duce the concept of gradient/skew-gradient dissipative structure following [20]. Let us
consider an n-component system on R

Tut = Duxx + f(u),(2.1)

where u(x, t) = (u1, u2, . . . , un)T ∈ Rn. We assume that T is a nonnegative diagonal
matrix and D is a regular matrix such that (2.1) is well posed in an appropriate sense.
As for a nonlinear term, we assume that

f(u) = Q�u F (u),(2.2)

where Q is a symmetric matrix with Q2 = In, and that F = F (u) : Rn → R is a
smooth function. In addition, we assume that D satisfies the condition

DTQ = QD(2.3)

which guarantees that QD is a nondegenerate symmetric matrix. We notice that the
Jacobian matrix fu of f satisfies

fu(u)TQ = Qfu(u).(2.4)

Under these assumptions, we introduce an energy-like functional

E [u] =

∫ {
1

2
〈Dux, Qux〉 − F (u)

}
dx,(2.5)

where 〈 , 〉 stands for a usual inner product on Rn. In fact, we can easily (formally)
check

d

dt
E [u(x, t)] = −

∫
〈ut, QTut〉 dx.
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Definition 2.1. The system (2.1) is said to have gradient structure when QT is
nonnegative symmetric and skew-gradient structure otherwise.

Although (2.5) is not monotone decreasing when QT is not nonnegative definite,
according to Definition 2.1, we naturally think of the functional (2.5) as an extended
kind of free energy. This framework covers not only usual gradient (potential) systems
such as the real Ginzburg–Landau equation but also systems without (in the usual
sense) potential such as reaction-diffusion systems of activator-inhibitor type.

The equation for stationary solutions of (2.1) admits structures of Hamiltonian
dynamical systems (e.g., Arnold [2], Goldstein [13]). In fact,

Duxx + f(u) = 0(2.6)

is rewritten in the canonical form

JZx =
∂H(Z)

∂Z
,(2.7)

where Z = (u, ux)T ,

J =

(
0 −QD

QD 0

)

is a skew-symmetric matrix by virtue of (2.3), and H(Z) is a first integral (Hamilto-
nian) given by

H(Z) = H(u, ux) :=
1

2
〈Dux, Qux〉 + F (u).

We give typical examples of dissipative systems with gradient/skew-gradient
structure.

Real Ginzburg–Landau equation:

ut = uxx + u(µ− u2 − v2), vt = vxx + v(µ− u2 − v2),

T = D = Q = I2, F = µ(u2 + v2)/2 − (u2 + v2)2/4.

Modified FitzHugh–Nagumo systems:

τ1ut = d1uxx + αu− u3 − v, τ2vt = d2vxx + u− γv,

T =

(
τ1 0

0 τ2

)
, D =

(
d1 0

0 d2

)
, Q =

(
1 0

0 −1

)
,

F = F (u, v) =
1

2
αu2 − 1

4
u4 − uv +

1

2
γv2.

Gierer–Meinhardt system:

ut = ε2uxx − αu +
up

vq
+ σ, τvt = dvxx − v +

ur

vs
(p + 1 = r, q + 1 = s),

T =

(
r 0
0 qτ

)
, D =

(
rε2 0
0 qd

)
, Q =

(
1 0
0 −1

)
,

F = F (u, v) = −αr

2
u2 +

q

2
v2 +

ur

vq
+ rσu.
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As is verified in these two examples, in reaction-diffusion systems, diagonal entries
of Q determine types of components—either activator or inhibitor type. An entry 1
indicates an activator and −1 an inhibitor. The following example is a fourth order
differential equation with gradient structure.

Swift–Hohenberg equation:

ut = µu− (1 + ∂xx)2u− u3.

In fact, by putting v = u + uxx, we find that the above equation is rewritten as (2.1)
with

T =

(
1 0

0 0

)
, D =

(
0 −1

1 0

)
, Q =

(
1 0

0 −1

)
,

F = F (u, v) =
µ

2
u2 − 1

4
u4 − uv +

1

2
v2.

For other examples, see [20].

3. Existence of Turing patterns. In this section, we briefly review construc-
tion of Turing patterns from a standard bifurcation theory (e.g., Iooss and Joseph [17],
Murray [25]) and consider a necessary condition for existence of the Turing patterns.

A strategy was initiated by Turing [35] to study self-organized spatial patterns
emerging from spatially homogeneous steady states and may be described as follows,
in the framework of bifurcation theory: Let ū be a spatially uniform steady state of
(2.1), which is an onset of bifurcating patterns. We consider a situation in which
ū loses its stability and gives rise to the appearance of spatially periodic stationary
solutions. Therefore, we begin with a linear stability analysis for ū. Let us consider
the linearized equation of (2.1) at u = ū

Twt = Lw,(3.1)

where

L = D∂2
x + B(3.2)

and B = fu(ū). Let us choose a bifurcation parameter µ in the linear operator L, i.e.,
D or B. As usual, we are looking for solutions of the following form:

w = Ψk exp(λt + ikx), Ψk ∈ Cn.(3.3)

That is to say, we look for solutions that have a temporal growth rate exp(Re(λ)t) for
perturbations with wavenumber k. Substituting (3.3) into (3.1), we have a system of
linear equations in Ψk

(λT + k2D −B)Ψk = 0.(3.4)

According to a standard bifurcation theory, in order for a stationary solution to bi-
furcate from ū at µ = µk, it is necessary that (3.4) possesses a nontrivial solution for
λ = 0. Hence it follows from

det(k2D −B) = 0(3.5)
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Fig. 1. The graph of µ = µ̂(k2). The bifurcating patterns appear for µ > µ̂(k2).

that µk is a function of k2, denoted by

µk = µ̂(k2).(3.6)

The bifurcation point µc is determined by

∂

∂θ
µ̂(θ)|θ=k2

c
= 0, µc = µ̂(k2

c ),(3.7)

where kc is called the critical wavenumber. In what follows, we suppose that bifur-
cating patterns appear for µ > µc without loss of generality (Figure 1). That is, in
addition to (3.7), we assume

∂

∂θ2
µ̂(θ)|θ=k2

c
> 0,

and

Reλ = Reλ(k2;µ) < 0(3.8)

for µ < µc and arbitrary k, where λ = λ(k2;µ) is the dispersion relation defined by
det(λT +k2D−B) = 0. Condition (3.8) means that the spatially homogeneous steady
state ū must be stable before bifurcation occurs.

Under suitable conditions, we can construct small bifurcating stationary solutions
of (2.1) with wavenumber k close to kc near the bifurcation point µc. From the above
arguments, we expect that they are given by

φ(x; k, µ) = aeikxΨk + c.c. + h.o.t.,(3.9)

where c.c. and h.o.t. denote the complex conjugate and higher order terms with respect
to a, respectively. Moreover, Ψk ∈ Cn is defined by

(k2D −B)Ψk = 0(3.10)

for µ = µ̂(k2) and 〈Ψk, Ψk〉 = 1, where 〈 , 〉 denotes the usual inner product in Cn,
and a = a(k, µ− µ̂(k2)) ≥ 0 is sufficiently small with a(k, 0) = 0. In what follows, 〈 , 〉
denotes the usual inner product in Rn or Cn, and we do not explicitly mention this
notation unless any confusion occurs. (3.9) is a family of spatially periodic stationary
solutions parameterized by its wavenumber k close to kc.

Definition 3.1. (3.9) is called the Turing patterns when kc �= 0.
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From a standard bifurcation theory, a is determined by solving the following
bifurcation equation in a:

[eikxΨ∗
k + c.c., Lv + N(v)] = 0,

where [ , ] denotes the usual inner product of periodic functions, v = aeikxΨk + c.c.,
N(v) = f(ū + v) − Bv, and Ψ∗

k ∈ Cn corresponds to the kernel of L∗, the adjoint
operator of L for µ = µ̂(k2), i.e.,

(k2 DT − BT )Ψ∗
k = 0 for µ = µ̂(k2).

Under the gradient/skew-gradient structure, we can verify

Ψ∗
k = QΨk.(3.11)

In fact, noting (2.3), (2.4), and B = fu(ū), it follows from (3.10) that

(k2 DT − BT )QΨk = Q(k2D −B)Ψk = 0.

Thus (under suitable approximation) we can solve

[eikxQΨk + c.c., Lv + N(v)] = 0

with the aid of (3.10) and obtain a = a(k, µ − µ̂(k2)). In this paper, we do not use
any information about a(k, µ− µ̂(k2)).

We now consider a condition concerning the critical wavenumber kc. The following
theorem shows that when QD is definite, Turing patterns (characterized by kc �= 0)
can never be observed under the gradient/skew-gradient structure.

Theorem 3.2. If QD is definite, then kc = 0.
As far as reaction-diffusion systems are concerned, it is well recognized, theo-

retically and experimentally, that the existence of two types of components such as
activator and inhibitor with different diffusion rates is a sufficient condition to pro-
duce Turing patterns with spatial structure ([1], [12], [25], [33], [35], [37]). On the
other hand, this theorem proves that the existence of two types of components such
as activator and inhibitor (cf. section 2) is a necessary condition to produce Turing
patterns. In other words, Turing patterns with spatial structure cannot be produced
by using only one type of reacting component corresponding to activator or inhibitor.

Proof of Theorem 3.2. We consider the case when QD is positive because a
negative case can be similarly treated. Since (3.4) has a nontrivial solution for λ = 0
at the bifurcation point, we consider a condition such that det(νD−B) = 0 holds for
some ν ≥ 0. From elementary linear algebra, there exists a symmetric regular matrix
A with A2 = QD for positive QD. By using Q2 = In, B = fu(ū), and (2.2), we have

det(νD −B) = detQ det(νQD −�2
uF (ū))

= ±det(νA2 −�2
uF (ū)) = ±detA det(νI −A−1 �2

u F (ū)A−1) detA.

It is easily verified that A−1 �2
u F (ū)A−1 is symmetric because A and �2

uF (ū) are
symmetric, so that all eigenvalues of A−1 �2

u F (ū)A−1 are real. On the other hand,
there exists no wavenumber k satisfying det(k2D−B) = 0 when uniform steady state
ū is stable. Hence, all eigenvalues of A−1∇2

uF (ū)A−1 must be negative for a stable
steady state ū. Thus, noting the fact that all eigenvalues of A−1 �2

u F (ū)A−1 are



624 MASATAKA KUWAMURA

continuous real functions in parameters, we see that critical wavenumber kc at the
bifurcation point must be equal to zero for any path in parameter space.

From the above theorem, QD is not definite when we observe nontrivial spatially
periodic patterns. Our next question is what periodic pattern is selected near the
Turing bifurcation point. As a first step in considering this problem, in the next
section we consider linear instability of the Turing patterns because selected patterns
are not unstable.

4. Instability of Turing patterns. First, we give a general instability criterion
for a family of spatially periodic stationary solutions of (2.1).

Let u = ϕ(x; k) be a family of spatially periodic stationary solutions of (2.1)
parameterized by its wavenumber k; that is, ϕ(x; k) satisfies

Dϕxx(x; k) + f(ϕ(x; k)) = 0,(4.1)

ϕ(x; k) = ϕ(x + l(k); k),

where l(k) = 2π/k denotes the minimal spatial period of ϕ(x; k).
Theorem 4.1. ϕ(x; k) is unstable if sgn(I(k) · d2E(k)/dk2) < 0, where

I(k) :=

∫ l(k)

0

〈Tϕx(x; k), Qϕx(x; k)〉 dx(4.2)

and

E(k) :=
1

l(k)

∫ l(k)

0

{1

2
〈Dϕx(x; k), Qϕx(x; k)〉 − F (ϕ(x; k))

}
dx.(4.3)

It should be noted that the above instability criterion does not require any other
assumptions such as smallness and symmetry for ϕ(x; k). Since I(k) > 0 from the
definition of gradient systems, we immediately find that the following is true.

Corollary 4.2. For gradient systems, ϕ(x; k) is unstable if

d2E(k)

dk2
< 0.

Recalling (2.5), we regard E(k) as (skew) free energy per unit length for ϕ(x; k).
Under the gradient/skew-gradient dissipative structure, instability of ϕ(x; k) is de-
pendent on the convex property of E(k) with respect to wavenumber k.

On the other hand, I(k) is related to the ODE dynamics of (2.1) as well as the
spatial dynamics (2.6). I(k) may be reminiscent of the (time) action functional of
systems with multisymplectic structures [4]. However, this is not correct. In fact,
(2.6) can be rewritten as (2.7) which expresses symplectic (Hamiltonian) structure,
while (2.1) cannot be rewritten as a system with multisymplectic structure. For more
details, see [4] and the references therein.

From a viewpoint of Hamiltonian dynamical systems theory, Theorem 4.1 corre-
sponds to the well-recognized (in)stability criterion for solutions with periodic struc-
ture in terms of the convexity of the averaged Lagrangian with respect to its wavenum-
ber. In fact, we can regard E(k) as the averaged Lagrangian of ϕ(x; k) because (2.6)
(i.e., (4.1)) is the Euler–Lagrange equation for the Hamiltonian system (2.7) with
Lagrangian

L(ϕ,ϕx) =
1

2
〈Dϕx, Qϕx〉 − F (ϕ).



TURING PATTERNS IN GRADIENT/SKEW-GRADIENT SYSTEMS 625

There is a wide range of literature concerning this topic; see well organized works by
Bridges [4], Grillakis, Shatah, and Strauss [14], and the references therein.

Proof of Theorem 4.1. Let us consider the linearized eigenvalue problem

λTW = DWxx + fu(ϕ(x; k))W.

We investigate the (local) dispersion relation with respect to the Fourier mode eiνx

that describes the behavior of critical eigenvalues to determine sideband instability of
ϕ(x; k). According to [20], it is given by

λ = −D//ν
2 + h.o.t.,(4.4)

where

D// = − l2

I

dH

dl
,(4.5)

l = l(k) = 2π/k is the minimal spatial period, I is given by (4.2), and H is a first
integral for (4.1) (see also (2.7)) given by

H :=
1

2
〈Dϕx, Qϕx〉 + F (ϕ).(4.6)

Moreover, by [20], we have

dH

dl
=

1

l

dK

dl
and

dE

dl
= −K

l2
,(4.7)

where E is given by (4.3), and

K :=

∫ l

0

〈Dϕx, Qϕx〉 dx.

Applying the chain rule of differentiation to (4.7), we have

dH

dk
=

1

l

dK

dk
and

dE

dk
=

K

2π
,(4.8)

which yields

d2E

dk2
=

1

2π
,

dK

dk
=

l

2π
,

dH

dk
= − l

k2

dH

dl
.(4.9)

Thus, it follows from (4.4) and (4.5) that ϕ(x; k) is unstable if sgn(I(k) ·d2E(k)/dk2)
< 0.

We now apply Theorem 4.1 to φ(x; k, µ) defined by (3.9). To do so, setting
ϕ(x; k) = φ(x; k, µ) for any fixed µ, we define

I(k, µ) :=

∫ l(k)

0

〈Tφx(x; k, µ), Qφx(x; k, µ)〉 dx(4.10)

and

E(k, µ) :=
1

l(k)

∫ l(k)

0

{1

2
〈Dφx(x; k, µ), Qφx(x; k, µ)〉 − F (φ(x; k, µ))

}
dx,(4.11)
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where φ(x; k, µ) is given by (3.9). Then it follows from Theorem 4.1 that φ(x; k, µ) is
unstable if sgn(I(k, µ) · ∂2

kE(k, µ)) < 0. This is a general result regardless of kc �= 0
which gives the definition of the Turing patterns. Thus it turns out that µ = µE(k)
derived from ∂2

kE(k, µ) = 0 plays a crucial role in determining the instability of
φ(x; k, µ). In fact, as seen in section 7, it coincides with the Eckhaus instability cri-
terion [10] with respect to perturbations having a large spatial period. Recalling the
fact that Theorem 4.1 does not require smallness of φ(x; k, µ), we see that the Eckhaus
instability criterion is valid away from a bifurcation point in gradient/skew-gradient
dissipative systems. There is a wide range of literature concerning the Eckhaus insta-
bility, and main references are given in [20].

To conclude this section, we prepare the following lemma for the subsequent
analysis.

Lemma 4.3. For (4.2) and (4.3), we have

dE(k)

dk
=

1

2π

∫ l(k)

0

〈Dϕx(x; k), Qϕx(x; k)〉dx,

d2E(k)

dk2
=

l(k)

2π
( 〈Dϕx(x; k), Qϕxk(x; k)〉 − 〈Dϕxx(x; k), Qϕk(x; k)〉 ).

Proof. The first equality directly follows from (4.8). Moreover, it follows from
(2.2), (2.3), (4.1), and (4.6) that

dH

dk
=

1

2
〈Dϕxk, Qϕx〉 +

1

2
〈Dϕx, Qϕxk〉 + 〈�F (ϕ), ϕk〉

=
1

2
〈ϕxk, D

TQϕx〉 +
1

2
〈Dϕx, Qϕxk〉 + 〈Q� F (ϕ), Qϕk〉

=
1

2
〈ϕxk, QDϕx〉 +

1

2
〈Dϕx, Qϕxk〉 + 〈f(ϕ), Qϕk〉

= 〈Dϕx, Qϕxk〉 − 〈Dϕxx, Qϕk〉,

where we used Q = QT and Q2 = In. Thus, by (4.9) we see that the second equality
is true.

5. Properties of I(k, µ). In this section, we consider properties of I(k, µ) de-
fined by (4.10). The contents in this section are regardless of whether or not kc �= 0,
which concerns the definition of the Turing patterns. First, we introduce the notion
of the sign of I(k, µ) at the bifurcation point (kc, µc).

Definition 5.1.

Ic = Re〈TΨk, QΨk〉|k=kc ,(5.1)

where Ψk is defined by (3.10).
Since it follows from (3.9) and (4.10) that limµ↓µc sgnI(k, µ)|k=kc = sgnIc, we

call the sign of Ic the sign of I(k, µ) at the bifurcation point (kc, µc).
Remark 5.2. In gradient systems, Ic > 0 from its definition.
In order to study the sign of Ic, we now derive the amplitude equation which

describes dynamics of (2.1) in a sufficiently small neighborhood of the bifurcation point
(kc, µc). It was first derived by Newell and Whitehead [26] in the study of dynamics
sufficiently close to the onset of thermal convection. The derivation presented here is
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a standard one [7]. Let ū be a spatially uniform steady state of (2.1). Since µ is a
bifurcation parameter which is included in the linearized operator (3.2), we write

L = Lµ(∂x) = D∂2
x + B.

Then Lc = Lµc(∂x) has the following property:

Lc(e
ikcxΨkc) = 0,

where

det(k2
cD −B) = 0,

and

(k2
cD −B)Ψkc = 0, Ψkc ∈ Cn.(5.2)

On the other hand, substituting u = ū + v into (2.1), we have

Lv = Kv − g(v),(5.3)

where K = T∂t and g(v) = f(ū + v) −Bv = a2v
2 + a3v

3 + · · ·. Let us set

ε =
µ− µc

µc

and suppose that

v = ε1/2v0 + εv1 + ε3/2v2 + · · · ,(5.4)

where

v0 = A(y, s)eikcxΨkc + c.c.,

and y = ε1/2x and s = εt. Here we suppose that the time dependence of dynamics of
v is expressed by only rescaled time variable s, not original t. It is well known that
the dynamics of A is given by the Ginzburg–Landau equation

τAs = αAyy + βA− γ|A|2A,(5.5)

where α, β, γ, and τ are some constants determined by the subsequent calculation.
We are interested in τ , though we can compute other constants α, β, and γ. We now
show that sgnτ = sgnIc. Noting ∂x → ∂x + ε1/2∂y and µ = µc + εµc, the linear
operator L = Lµ(∂x) in the left-hand side of (5.3) can be expanded in ε as follows:

L = L0 + ε1/2L1 + εL2,(5.6)

where L0 = Lµc(∂x) = Lc, L1 = L1(∂x, ∂y), and L2 = L2(∂x, ∂y). Here we do not
need the concrete expressions of L1 and L2. On the other hand, since the time variable
of v is only s, applying ∂t → ε∂s, the linear operator K in the right-hand side of (5.3)
can be expanded in ε as follows:

K = εT∂s.(5.7)
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Substituting (5.4), (5.6), and (5.7) into (5.3) and comparing each coefficient of powers
in ε, we have

Lcv0 = 0,

Lcv1 = −L1v0 − a2v
2
0 ,

Lcv2 = −L1v1 − L2v0 + T∂sv0 − 2a2v0v1 − a3v
3
0 .

(5.8)

As a consequence, the dynamics of A is determined by the solvability condition for
v2 in the third equation of (5.8). Since τ is determined by T∂sv0 in the right-hand
side of the third equation of (5.8), applying the solvability condition, we find that
sgnτ = sgnRe〈TΨkc

, Ψ∗
kc
〉, where Ψ∗

kc
∈ Cn corresponds to the kernel of L∗

c , the
adjoint operator of Lc, i.e.,

(k2
c D

T − BT )Ψ∗
kc

= 0.

As was seen in (3.11), under the gradient/skew-gradient structure, we have Ψ∗
kc

=
QΨkc

. Hence it follows from (5.1) that sgnτ = sgnRe〈TΨkc
, QΨkc

〉 = sgnIc.
Thus we see that Ic determines the sign of time constant coefficient of amplitude

equation (5.5), so that it affects the well posedness of (5.5). Next, we reconsider
properties of Ic from another viewpoint when n = 2.

Let us recall a system of linear equations (3.4). When n = 2, the determinant of
coefficient matrix of (3.4) becomes a quadratic equation in λ:

α0λ
2 + α1λ + α2 = 0,(5.9)

where

α0 = τ1τ2 > 0,

α1 = τ2(k
2d11 − b11) + τ1(k

2d22 − b22),

T = diag(τ1, τ2), B = (bij), and D = (dij).
We now consider a relation between sgnα1 and sgnIc at the bifurcation point

(kc, µc). Let A = k2
cD −B for µ = µc. Then, we have

α1 = τ2a11 + τ1a22,

where A = (aij). On the other hand, we calculate 〈TΨkc
, QΨkc〉 explicitly. In the

following calculation, we consider a case when Q = diag(1,−1) because other cases
can be similarly treated. Since it follows from (5.2) that

a11p + a12q = 0,
a21p + a22q = 0,

where (p, q)T = Ψkc , we have

〈TΨkc , QΨkc〉 = τ1|p|2 − τ2|q|2 = τ1|p|2 − τ2|p|2
a11

a12

a21

a22
= τ1|q|2

a12

a11

a22

a21
− τ2|q|2.

Noting that a12 = −a21 because ATQ = QA by virtue of (2.3), (2.4), and B = fu(ū),
we have

〈TΨkc , QΨkc〉 = |p|2 τ2a11 + τ1a22

a22
= −|q|2 τ2a11 + τ1a22

a11
.

Therefore, it follows from (5.1) that sgnα1 = sgn Ic · sgn a22 = −sgn Ic · sgn a11.
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Fig. 2. For µ > µ̂(k2) near the Turing bifurcation point, there exists a unique extreme point of
E(k, µ) given by km = km(µ).

On the other hand, the quadratic equation (5.9) must have roots with Reλ < 0
for µ < µc and arbitrary k as in (3.8) because the homogeneous steady state ū must
be stable for µ < µc. Therefore, α1 > 0 must be true for µ < µc near the bifurcation
point (kc, µc), so that α1 > 0 holds at the bifurcation point. This implies that the
assumption (3.8) cannot be satisfied by changing the sign of Ic. Thus we see that
the sign of Ic affects the instability of an underlying homogeneous steady state to be
equipped with spatially periodic structure.

According to the justification theory of validity of amplitude equation (Collet and
Eckmann [6], Eckhaus [11], Harten [16], Mielke and Schneider [23]), under certain con-
ditions, the dynamics of (2.1) in a sufficiently small neighborhood of the bifurcation
point (kc, µc) is well approximated by (5.5) as long as (5.5) is well posed. Thus, recall-
ing the definition of gradient systems, the above arguments lead us to the following
observation.

Observation 5.3. The sign of a time constant coefficient of amplitude equa-
tion is determined by Ic, the sign of I(k, µ) at the bifurcation point (kc, µc). It is
closely related to the well posedness of the amplitude equation and the instability of
the underlying homogeneous steady state to be equipped with spatially periodic struc-
ture. Moreover, it is necessary that Ic > 0 so that the skew-gradient system can admit
gradient structure in a sufficiently small neighborhood of the bifurcation point (kc, µc).

6. Properties of E(k, µ). In this section, we consider properties of (skew)
free energy E(k, µ) defined by (4.11) for the Turing patterns near the bifurcation
point and establish the uniqueness of the extremum of E(k, µ). First, we introduce a
nondegeneracy condition at the bifurcation point (kc, µc).

Hypothesis 6.1. Ec := Re ∂k〈DΨk, QΨk〉|k=kc �= 0, where Ψk is defined by
(3.10).

We call this hypothesis the nondegeneracy condition at the bifurcation point
(kc, µc). The following result shows uniqueness of the extremum of (skew) free energy.

Theorem 6.2. Let us assume that the above hypothesis is met and kc �= 0.
(1) For any fixed µ > µc near the Turing bifurcation point, there exists a unique

extremum of E(k) = E(k, µ) in (k, k̄), where k and k̄ are defined by µ̂(k2) = µ̂(k̄2) = µ
with µ̂ given by (3.6).

(2) The wavenumber km = km(µ) corresponding to the extremum is approximately
obtained by Re〈DΨk, QΨk〉 = 0 near the Turing bifurcation point (Figure 2).

Remark 6.3. (1) Theorem 6.2 implies (cf. section 3) that if the Turing bifurcation
parameter µ is in reaction term f (not in D), then km(µ) is approximately given by
kc (independent of µ). In this case, we denote km(µ) ≈ kc.

(2) As seen in the next section, kc≤km(µ) holds for two component gradient/skew-
gradient dissipative systems.
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(3) The reader may expect that the above theorem can be proved by the theories
in [6, 11, 16, 23] because the amplitude equation describes the dynamics in a suffi-
ciently small neighborhood of the bifurcation point (kc, µc). However, Theorem 6.2
is obtained by applying Theorem 4.1 and Lemma 4.3, which are valid away from the
bifurcation point. It is essentially different from the results obtained by using the
amplitude equation derived at the bifurcation point.

When the above assumption is satisfied, QD is not definite because of Theo-
rem 3.2. It is necessary for existence of k satisfying Re〈DΨk, QΨk〉 = 0. Moreover,
we notice that the above result does not require any other assumptions, and that the
unique extremum is the (global) minimum when Ec > 0. In order to prove the above
theorem, we prepare the following lemma.

Lemma 6.4. Under the assumption of Theorem 6.2, the following hold near the
Turing bifurcation point (kc, µc):

(i) When Ec > 0, d2E/dk2 > 0 if dE/dk = 0.
(ii) When Ec < 0, d2E/dk2 < 0 if dE/dk = 0.
Proof. We consider case (i) because (ii) can be similarly treated. We suppose that

0 < k < kc < k̄ without loss of generality. In the following calculation, we neglect
higher order terms of (3.9). By (3.9), we have

φx = ikaeikxΨk + c.c.,

which yields

∫ l

0

〈Dφx, Qφx〉 dx =

∫ l

0

〈D(ikaeikxΨk + c.c.), Q(ikaeikxΨk + c.c.) 〉 dx

= 2lk2a2Re〈DΨk, QΨk〉.
(6.1)

Hence it follows from Lemma 4.3 that Re〈DΨk, QΨk〉 = 0 if dE/dk = 0. On the
other hand, since

φxx = −k2aeikxΨk + c.c.,

φxk = iaeikxΨk + ik(∂ka)e
ikxΨk − kxaeikxΨk + ikaeikx(∂kΨk) + c.c.,

φk = (∂ka)e
ikxΨk + ixaeikxΨk + aeikx(∂kΨk) + c.c.,

we have

〈Dφx, Qφxk〉

= 〈D(ikaeikxΨk + c.c.), Q(iaeikxΨk + ik(∂ka)e
ikxΨk

− kxaeikxΨk + ikaeikx(∂kΨk) + c.c.)〉

and

〈Dφxx, Qφk〉

= 〈D(−k2aeikxΨk + c.c.), Q( (∂ka)e
ikxΨk + ixaeikxΨk + aeikx(∂kΨk) + c.c.)〉.

Therefore, when Re〈DΨk, QΨk〉 = 0, we have

〈Dφx, Qφxk〉 − 〈Dφxx, Qφk〉 = 4k2a2Re〈DΨk, Q∂kΨk〉.
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On the other hand, since Q = QT , QD is a symmetric matrix by (2.3) and
∂k(QD)|k=kc = 0 by (3.7), we have

2Re〈DΨk, Q∂kΨk〉|k=kc = Re ∂k〈QDΨk, Ψk〉|k=kc = Re ∂k〈DΨk, QΨk〉|k=kc .

Thus, by (6.1) and Lemma 4.3, we see that near the Turing bifurcation point,
d2E/dk2 > 0 holds if dE/dk = 0 when Ec > 0.

Proof of Theorem 6.2. Since φ(x; k, µ) = φ(x; k̄, µ) ≡ ū, we have E(k) = E(k̄).
Hence there exists k0 ∈ (k, k̄) such that dE(k0)/dk = 0. Moreover, by Lemmas 4.3
and 6.4, we see that such a k0 must be unique and approximately calculated by
Re〈DΨk, QΨk〉 = 0 because of (6.1).

7. Application. In this section, we apply our results to typical examples. They
are helpful to understand the usefulness and meaning of our results.

First, we consider the real Ginzburg–Landau equation,

ut = uxx + u(µ− u2 − v2), vt = vxx + v(µ− u2 − v2),(7.1)

which can be rewritten as (2.1) with T = D = Q = I2 and F = µ(u2 + v2)/2 − (u2 +
v2)2/4. By using Theorem 3.2, we see that (7.1) does not have the Turing patterns
(characterized by kc �= 0) because QD = I2 is positive. It is well known, however,
that (7.1) has a family of spatially periodic stationary solutions

φ(x; k, µ) =
√

µ− k2 (cos kx, sin kx).

They are trivial patterns because the critical wavenumber kc is equal to zero at the
bifurcation point µc = 0. On the other hand, recalling Definition 2.1, (7.1) is a
gradient system because QT = I2 is positive. Hence we apply Corollary 4.2 to the
above family φ(x; k, µ) for any fixed µ. It follows from direct calculation that

E(k) = E(k, µ) = −1

4
(µ− k2)2,

which yields

E′′(k) = ∂2
kE(k, µ) = µ− 3k2.

Thus, an instability criterion is given by µ = µE(k) = 3k2, so that φ(x; k, µ) is
unstable if µ < 3k2. This result is well known as the Eckhaus instability. For other
examples of applications of Theorem 4.1 and Corollary 4.2; see [20].

Next, we apply Theorem 6.2 to the following model system with skew-gradient
structure, which is studied in Ben-Jacob et al. [3]:

τ1ut = d1uxx + α(1 − u2)u− βv, τ2vt = d2vxx − γ(1 + v2)v + βu,(7.2)

where α, β, γ, d1, d2, τ1, and τ2 are positive constants. This equation is rewritten as
(2.1) with

T =

(
τ1 0

0 τ2

)
, D =

(
d1 0

0 d2

)
, Q =

(
1 0

0 −1

)
,

F = F (u, v) =
α

4
(1 − u2)2 − βuv +

γ

4
(1 + v2)2.
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As usual, we consider the linearized eigenvalue problem at the trivial steady state
ū = 0 and obtain a system of linear equations

(λT + k2D −B)Ψk = 0,(7.3)

where 〈Ψk, Ψk〉 = 1, and

B =

(
α −β

β −γ

)
.

It follows from det(k2D −B) = 0 that

β2 − (α− k2d1)(γ + k2d2) = 0,(7.4)

so that (7.3) has nontrivial solution Ψk = (pk, qk)
T for λ = 0, where

p2
k =

β2

β2 + (α− k2d1)2
:= g1(k

2),

q2
k =

(α− k2d1)
2

β2 + (α− k2d1)2
:= g2(k

2).

Hence, we have

〈DΨk, QΨk〉 = d1p
2
k − d2q

2
k = d1g1(k

2) − d2g2(k
2),(7.5)

∂k〈DΨk, QΨk〉 = 2d1kg
′
1(k

2) − 2d2kg
′
2(k

2),(7.6)

〈TΨk, QΨk〉 = τ1p
2
k − τ2q

2
k = τ1g1(k

2) − τ2g2(k
2).(7.7)

First, we choose d2 as a Turing bifurcation parameter. By using (7.4), we have

d2 = d̂2(k
2) =

β2

k2(α− k2d1)
− γ

k2

for 0 < k2 < α/d1. By using d̂2
′ = 0, we have

k2
c =

α
√
β2 − αγ

d1(β +
√
β2 − αγ)

> 0(7.8)

and

dc2 = d̂2(k
2
c ) =

d1(β +
√
β2 − αγ)2

α2
.(7.9)

As was explained in section 3, we can construct the Turing patterns φ(x; k, d2) for

d2 > d̂2(k
2) near the bifurcation point (k2

c , d̂2(k
2
c )) provided

0 < α < γ and β2 − αγ > 0.(7.10)

By using (7.6), we can compute the value of ∂k〈DΨk, QΨk〉 at k = kc, which deter-
mines Ec. In fact, direct calculation yields

∂k〈DΨk, QΨk〉 =
4β2d1(d1 + d2)k(α− k2d1)

(β2 + (α− k2d1)2)2
> 0,
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Fig. 3. The minimizer of (skew) free energy for the Turing patterns of model equation (7.2):
(a) The Turing bifurcation parameter µ = d2; (b) µ = β2.

which implies Ec > 0. Thus we find that the Turing bifurcation point is nondegenerate
and Ec > 0 when n = 2. Moreover, it follows from (7.5) and 〈DΨk, QΨk〉 = 0 that
the minimizer of (skew) free energy per unit length is given by

k2
m = k2

m(d2) =
α

d1
− β√

d1d2

.(7.11)

Furthermore, by using (7.9), we can easily verify that

k2
c < k2

m(d2)

holds provided d2 > dc2. Since the above calculation can be used in general two com-
ponent systems with gradient/skew-gradient structure, the above results are universal
features of two component systems with gradient/skew-gradient structure. These re-
sults are presented in Figure 3(a).

On the other hand, by using (7.7), we can compute the value of 〈TΨk, QΨk〉 at
k = kc, which determines the sign of Ic. In fact, it follows from (7.7) and (7.8) that

sgn Ic = sgn (2βτ1(β +
√

β2 − αγ) − α(γτ1 + ατ2)).

Next, we choose β2 as a Turing bifurcation parameter, which is a case treated in
[3]. As was seen in section 3, we see that the Turing patterns appear for

β2 < β̂2(k2) = (α− k2d1)(γ + k2d2)

near the bifurcation point (k2
c , β

2
c ), where

k2
c =

αd2 − γd1

2d1d2
> 0(7.12)

and

β2
c = β̂2(k2

c ) =
(αd2 + γd1)

2

4d1d2
.(7.13)

In this case, while Turing patterns appear for β2 < β̂2(k2), our results can also be
applied. In a manner similar to the previous case, we obtain

k2
m = k2

m(β2) =
αd2 − γd1

2d1d2
.
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Thus, as is shown in Figure 3(b), we verified that km ≈ kc holds when the Turing
bifurcation parameter is in the reaction term (not in D).

As we have observed in the arguments so far, the Turing bifurcation gives rise
to a family of spatially periodic patterns with wavenumber k close to the critical
wavenumber kc. The (skew) free energy on these patterns has an extreme value only
at the pattern with a uniquely determined wavenumber km. When Turing bifurcations
occur in actual systems, it is expected that the wavenumber km plays an important
role in determining which pattern, or, which wavenumber, is to be selected. In the next
section, we investigate this problem for several concrete model systems by employing
numerical experiments.

8. Pattern selection. In this section, combining numerical experiments with
the analytical results obtained in the previous section, we investigate what pattern is
to be uniquely selected among many near the Turing bifurcation point.

Let us explain our problem more specifically. We have discussed basic properties of
the Turing patterns in an infinite domain. However, in real (numerical) experiments,
they are observed in a finite domain. Thus we consider the gradient/skew-gradient
systems (2.1) with (2.2) on a finite interval under the periodic boundary conditions

Tut = Duxx + f(u), 0 < x < L,

u(x, 0) = εu0(x),
(8.1)

where ε and |D|/L are sufficiently small, |D| = max |dij |, and u0(x) is bounded. For
each fixed µ near the Turing bifurcation point µc, we numerically solve (8.1) by using
the pseudospectral method and the discrete FFT. Then we study a spatial profile and
the Fourier power spectrum of u(x, T1) for sufficiently large T1. Notice that numerical
computations sufficiently close to a (Turing) bifurcation point for sufficiently small
|D|/L are very delicate tasks.

According to [11], when µ is sufficiently close to µc, the power spectrum of u(x, T1)
for sufficiently large T1 has a (bell) shape such as Figure 5(e) centered at k = kc if
the power spectrum of an initial data u0(x) takes the maximal peak only at k = kc.
It should be noted that this is valid for general systems regardless of whether they
have gradient/skew-gradient dissipative structures.

Here we are interested in a spatial profile and the Fourier power spectrum of
u(x, T1) for sufficiently large T1 for a uniform distribution u0(x) ∈ (−1/2, 1/2) gener-
ated by pseudorandom numbers. Noting km(µc) = kc and the above mentioned fact,
we expect that the distribution of power spectrum of u(x, T1) is concentrated in a
cluster centered at k = kc near the Turing bifurcation point µ = µc. We investigate
the peak of distribution of power spectrum of u(x, T1) in the cluster.

Let us first consider the Swift–Hohenberg equation

ut = µu− (1 + ∂xx)2u− u3.(8.2)

As seen in section 2, (8.2) is a gradient system that can be rewritten as (2.1). It is easy
to see that (8.2) has a Turing bifurcation point µc = 0 with a critical wavenumber
kc = 1. In fact, it is well known [5] that (8.2) has a family of spatially periodic
stationary solutions

φ(x; k, µ) =
2a√

3
cos(kx) + O(a3),

where a =
√
µ− (1 − k2)2. Applying the results in the previous section, we find that

km(µ) ≈ kc holds. This suggests that the power spectrum of u(x, T1) for sufficiently
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large T1 takes the maximal peak at kc = 1. We set L = 200π so that L/λc is
an integer, where λc = 2π is wavelength of the Turing pattern with wavenumber
kc. In this case, the discrete FFT can capture a variation of wavenumber of the
Turing pattern in the accuracy δk = 2π/L = 0.01. Notice that a relative variation
of wavenumber to the basic pattern associated with kc = 1 is given by δk/kc = 0.01.
For µ = 0.01 and ε = 0.0001, Figures 4 and 5 show snapshots of spatial profiles and
the Fourier power spectra of a numerical solution of (8.2). After sufficiently large
time, the spatial profile in Figure 4(e) looks like a (meta)stable stationary pattern
with spatially periodic structure. In what follows, T1 is determined by the time when
a solution of a system reaches a (meta)stable stationary pattern as in Figure 4(e).
Notice that T1 depends on an initial condition and all parameters in a system. In
this case, we set T1 = 2000. We regard a spatial pattern of u(x, T1) as the Turing
pattern in our numerical experiments. Furthermore, we say that the Turing pattern
with wavenumber 1.00 is selected because the Fourier power spectrum in Figure 5(e)
has the maximal peak at k = 1.00.

In order to study what Turing pattern is to be uniquely selected among many,
we numerically solve (8.2) for some other initial data. In general, the Fourier power
spectrum of u(x, T1) does not necessarily have a clear (bell) shape (for example, see
Figure 6). Therefore, we compute the power spectra of u(x, T1) for 30 random initial
data and take their average. The result shows that the wavenumber k = 1.00 is se-
lected with the highest probability. We call this wavenumber the selected wavenumber
denoted by ks(µ). In this case, ks(0.01) = 1.00. The selected wavenumbers for various
µ are shown in Table 1.

Thus we see that ks(µ) ≈ km(µ) ≈ kc holds near the Turing bifurcation point in
this example.

Next, we treat again the model system (7.2) from the previous section:

τ1ut = d1uxx + α(1 − u2)u− βv, τ2vt = d2vxx − γ(1 + v2)v + βu.

This system was used in Ben-Jacob et al. [3] for a study of patterns generated from
small initial data with compact support in various dissipative systems. They studied
the problem of front propagation of local Turing patterns generated by a small local
perturbation into a linearly unstable steady state. For recent progress of this topic,
we refer to Ebert and Saarloos [9] and Saarloos [34].

First, we consider a case µ = β2. As was seen in the previous section, in this case,
km(µ) ≈ kc holds, and we may expect that ks(µ) ≈ km(µ). In a manner similar to the
previous example, we set L = 200π for kc = 1. We choose α = 1.0, γ = 2.0, d1 = 0.25,
and d2 = 1.0 satisfying (7.12). Then, it follows from (7.13) that βc = 1.5. Moreover,
noting (7.10), we choose β = 1.48, so that the distance from the bifurcation point is
given by |µ− µc|/µc = (β2

c − β2)/β2
c ≈ 0.0264889.

For τ1 = τ2 = 1.0, ε = 0.0001, and these parameter values, numerically solving
(7.2), we have a spatial profile and the Fourier power spectrum of u(x, T1) for T1 =
3000 as in Figure 6. In a manner similar to the previous example, computing the
power spectra of u(x, T1) for 30 random initial data, and taking their average, we
determine that ks((1.48)2) = 0.97. Moreover, the selected wavenumber ks(µ) for
various µ are shown in Table 2.

Contrary to our expectation, this statistical result shows that ks(µ) does not
necessarily coincide with km(µ). More precisely, ks(µ) ≈ km(µ) ≈ kc holds in a
sufficiently small neighborhood of the Turing bifurcation point, while ks(µ) < km(µ)
holds slightly away from the bifurcation point. Similar results, as in Table 2, can also
be obtained for other values of α, γ, d1, d2, τ1, and τ2.
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(a)

(b)

(c)

(d)

(e)

Fig. 4. Snapshots of spatial profiles for numerical solutions of (8.2) in a window 0 ≤ x ≤ 50π;
(a) t = 0, (b) t = 50, (c) t = 100, (d) t = 1000, (e) t = 2000.
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(b)

(a)

(d)

(e)

(c)

Fig. 5. Snapshots of the Fourier power spectra for numerical solutions of (8.2) in a window
0.64 ≤ k ≤ 1.28; (a) t = 0, (b) t = 50, (c) t = 100, (d) t = 1000, (e) t = 2000.
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(a)

(b)

Fig. 6. A snapshot for numerical solutions of (7.2) at t = 3000; (a) spatial profile in a window
0 ≤ x ≤ 50π, (b) the Fourier power spectrum in a window 0.64 ≤ k ≤ 1.28.

Table 1

The selected wavenumbers ks(µ) for various µ.

µ T1 ks(µ)

0.01 2000 1.00

0.02 1500 1.00

0.05 1000 1.00

0.1 500 1.00

Table 2

The selected wavenumbers ks(µ) for various µ.

µ |µ− µc|/µc kc(≈ km(µ)) ks(µ)

(1.49)2 0.0132889 1.00 0.99

(1.485)2 0.0199 1.00 0.97

(1.48)2 0.0264889 1.00 0.97

(1.46)2 0.0526222 1.00 0.94

Next, we consider the case µ = d2. As was seen in section 7, in this case,
km = km(µ) does not coincide kc, and km > kc holds for µ > µc. In the following
numerical experiments, we set τ1 = τ2 = 1.0, ε = 0.0001, and L = 200π for kc = 1 as
in the previous case. Noting (7.10), we choose α = 1.0, β = 1.5, and γ = 2.0. Then
it follows from (7.8) and (7.9) that d1 = 0.25 and dc2 = 1.0. In order to compare kc
and km, by using (7.11), we choose µ = d2 such that km(µ) can be captured by the
discrete FFT. In a manner similar to the previous case, we can obtain (see Table 3)
the selected wavenumbers ks(µ) for various µ = d2.
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Table 3

ks(µ) and km(µ) for various µ when α = 1.0, β = 1.5, and γ = 2.0.

µ |µ− µc|/µc kc ks(µ) km(µ)

1.01354 0.0135359 1.00 1.00 1.01

1.02749 0.0274873 1.00 1.00 1.02

1.072 0.0720021 1.00 1.01 1.05

1.1562 0.156203 1.00 1.01 1.10

Table 4

ks(µ) and km(µ) for various µ when α = 1.0, β = 1.43, γ = 2.0.

µ |µ− µc|/µc kc ks(µ) km(µ)

0.352115 0.0120813 1.00 1.01 1.02

0.358726 0.0310831 1.00 1.03 1.05

0.370618 0.0652656 1.00 1.05 1.10

0.383708 0.102891 1.00 1.08 1.15

Similarly, Table 4 shows a case in which α = 1.0, β = 1.43, γ = 2.0, d1 ≈ 0.129056,
and dc2 ≈ 0.347912.

In this example, the above statistical results show that ks(µ) ≈ km(µ) ≈ kc holds
in a sufficiently small neighborhood of the Turing bifurcation point, while ks(µ) ≤
km(µ) holds (slightly) away from the bifurcation point.

As expected, these numerical results show that ks(µ) ≈ kc holds in a sufficiently
small neighborhood of the Turing bifurcation point µc. This is certainly true for any
general system. On the other hand, the above results clearly show that ks(µ) ≈ kc
is not always true, even if µ is rather close to the bifurcation point µc. Thus, the
statement ks(µ) ≈ kc, which has been widely accepted as a working principle1 in
many previous references, has to be modified so that it is valid in a realistic parameter
region near the bifurcation point. As for gradient/skew-gradient dissipative systems,
keeping Remark 6.3(2) in mind, we propose the following conjecture as a general
(modified version of) pattern selection principle which is consistent with the above
experimental results.

Conjecture 8.1. For gradient/skew-gradient dissipative systems, the inequality

ks(µ) ≤ km(µ)(8.3)

holds near the Turing bifurcation point.
The reader may wonder about the validity of the above conjecture because ks(µ)

has no precise definition; how can we predict ks(µ)? A partial answer for this problem
is reported in a separate paper [21]. In fact, for two component gradient/skew-gradient
systems, we can explain a mechanism which determines ks(µ) and confirm the validity
of (8.3) near the Turing bifurcation point. As for n-component systems, however,
we do not know whether or not (8.3) is true because we have not yet performed
analytical calculations and numerical experiments as in sections 7 and 8. In general,

1This principle and the definition of the pattern to be (uniquely) selected have not been explicitly
expressed.
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some nondegeneracy conditions such as Ec > 0 may be required, where Ec is defined
in Hypothesis 6.1.

The inequality (8.3) turns out to be very important in selection problems for roll
patterns in two-dimensional problems. In [21], we verify the validity of the marginal
stability hypothesis [30, 31, 32], which asserts that the selected roll pattern is de-
termined by D⊥ = 0 corresponding to the zigzag instability criterion. As seen in
[20], D⊥ = 0 is given by km(µ) in gradient/skew-gradient dissipative systems. For
roll patterns in two-dimensional problems, we can introduce ks(µ) in a manner sim-
ilar to the one-dimensional case, and we find that (8.3) plays a key role in studying
marginal stability hypotheses for roll patterns in two-dimensional problems under the
gradient/skew-gradient structure.

9. Summary. In this paper, we consider some fundamental properties of Turing
patterns in gradient/skew-gradient dissipative systems. The results are summarized
as follows:

(1) To prove that QD is definite, we cannot produce the Turing patterns (The-
orem 3.2). This characterizes Turing patterns a little more precisely than commonly
accepted explanations based on two types of components with opposing kinetics and
different diffusion rates.

(2) To give an instability criterion for spatially periodic steady states (Theo-
rem 4.1), it is represented in terms of I(k) and E(k). E(k) is (skew) free energy per
unit length of spatially periodic steady states and convexity of E(k) in wavenumber
k determines the instability. This is an extension of the Eckhaus instability criterion.
Notice that this criterion is valid far from a bifurcation point.

For any fixed bifurcation parameter µ, we define I(k, µ) and E(k, µ) for spatially
periodic patterns φ(x; k, µ) with wavenumber k near a bifurcation point.

(3) The sign of I(k, µ) at a bifurcation point determines the sign of time constant
coefficient of the amplitude equation, which describes dynamics in a sufficiently small
neighborhood of the bifurcation point. Moreover, I(k, µ) affects the instability of the
underlying homogeneous steady state to be equipped with spatially periodic structure
(see Observation 5.3).

(4) Uniqueness of extremum of E(k, µ) in k is established under the nondegen-
eracy condition (Theorem 6.2). This condition can be easily verified at the Turing
bifurcation point.

(5) The wavenumber corresponding to the unique extremum of E(k, µ) gives an
upper bound for the wavenumber of the Turing pattern to be uniquely selected among
many near the Turing bifurcation point (Conjecture 8.1). The intrinsic symmetric
property in the gradient/skew-gradient structure gives a prohibition law in selection
of the Turing patterns near a bifurcation point.

As seen in section 7, from a practical viewpoint we propose the following calcu-
lation procedure to obtain the Turing pattern with minimum (skew) free energy per
unit length:

(1) To verify that QD is not definite.
(2) To determine Turing bifurcation point, choose a bifurcation parameter µ,

seek the relation µ = µ̂(k2) by solving det(k2D − fu(ū)) = 0, and determine Tur-
ing bifurcation point µc and critical wavenumber kc by ∂θµ̂(θ)|θ=k2

c
= 0 and µc =

µ̂(k2
c ).
(3) To compute zero eigenvector Ψk by (k2D − fu(ū))Ψk = 0 for µ = µ̂(k2).
(4) To check the hypothesis

Ic := Re〈TΨk, QΨk〉|k=kc > 0 and Ec := Re ∂k〈DΨk, QΨk〉|k=kc > 0.
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(5) To compute the wavenumber km = km(µ) corresponding to minimizer of
(skew) free energy by Re〈DΨk, QΨk〉 = 0.

In addition to the above summary, we mention some remarks. First, we notice
that if the bifurcation parameter µ is in reaction term f (not in D), km(µ) ≈ kc holds
(Remark 6.3(1)). In many practical problems, µ is often an external parameter such
as temparature, which is in the reaction term. Thus, recalling Conjecture 8.1, this
suggests that a wavenumber to be selected is likely to deviate from kc to the left in
one-dimensional problems.

Moreover, we notice that it is necessary that Ic > 0 so that skew-gradient dissi-
pative systems can admit gradient structure near a bifurcation point. On the other
hand, when we change the sign of Ic, the underlying homogeneous steady state to be
equipped with spatial structure becomes unstable, so that the spatial patterns lose
their stability.

Furthermore, from the analytical results of section 7, we find that in two com-
ponent gradient/skew-gradient dissipative systems, the Turing bifurcation point is
nondegenerate and Ec > 0. This is a universal feature of two component systems.
The degenerate case Ec = 0 can be observed for n ≥ 3, and the complex spatial
patterns near the bifurcation point in this case will be reported in a separate paper.

Finally, we mention further problems that should be studied in the framework
of our theory. They seem to be significant steps to understand pattern selection
principle in various fields of science. First, we must clarify what mechanism determines
the selected wavenumber ks(µ) and verify Conjecture 8.1. In particular, we must
clarify conditions to guarantee the validity of inequality (8.3) in general n-component
gradient/skew-gradient systems. This study is now in progress and is treated in a
forthcoming paper [21].

In section 8, we consider what Turing pattern is to be selected among many for
small random initial data. We are also interested in small initial data with compact
support which is natural from a practical viewpoint. In this case, a local Turing
pattern generated by a small local perturbation propagates into a linearly unstable
uniform steady state [9, 34]. According to [9, 34], the wavenumber of spatially periodic
structure of propagating patterns is determined by the (linear) marginal stability
criterion, which yields a different one from kc, km(µ), and ks(µ) introduced here.
Comparisons of our theory and theirs should be studied in the future.

In this paper, we consider pattern selection problems in a uniform environment.
It is an ideal situation in which standard analysis such as asymptotic expansion can
be easily performed. We are also interested in various cases that we meet in realistic
problems. For example, the Turing parameter µ is dependent on spatial variable x,
i.e., µ = µ(x). This is known as a ramp problem [7, 19] which describes a bifurcation
phenomena in a spatially nonuniform environment. In addition, a case in which µ
is dependent on time variable t should be studied to compare our theory with real
experiments.

Although pattern selection problems attracted the attention of many researchers,
convincing mathematical results are very few. In fact, they are essentially to classify
basins of attraction for stable steady states, and it turns out to be quite difficult in
many cases. Our strategy to study pattern selection problems is not to determine
the basins of attraction for steady states. The aim of our theory is rather to order
steady states by using an appropriate (energy) functional which provides useful and
practical information to determine what steady state is to be selected. We believe
that our approach is a first step in understanding pattern selection mechanisms in
various dissipative systems.
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Abstract. A stability analysis is presented for neural field equations in the presence of finite
propagation speed along axons and for a general class of connectivity kernels and synaptic proper-
ties. Sufficient conditions are given for the stability of equilibrium solutions. It is shown that the
propagation delays play a significant role in nonstationary bifurcations of equilibria, whereas the
stationary bifurcations depend only on the connectivity kernel. In the case of nonstationary bifurca-
tions, bounds are determined on the frequencies of the resulting oscillatory solutions. A perturbative
scheme is used to calculate the types of bifurcations leading to spatial patterns, oscillations, and
traveling waves. For high propagation speeds a simple method is derived that allows the determi-
nation of the bifurcation type by visual inspection of the Fourier transforms of the kernel and its
first moment. Results are numerically illustrated on a class of neurologically plausible systems with
combinations of Gaussian excitatory and inhibitory connections.
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1. Introduction. In recent years, there has been growing interest in the mecha-
nisms of spatiotemporal activity in neural tissue. In this field, applications of various
experimental techniques [37, 21, 39, 41] revealed formations of different spatial pat-
terns, traveling waves, and pulses [28, 43, 48], standing pulses (e.g., [18]), or irregular
spatial patterns [2, 40]. Since neural tissue exhibits multiscale properties in space and
time, the analysis of such activity represents a challenging task. However, reduced
biological models at fixed scales in time and space simplify the analysis and allow for
analytical treatments (see, e.g., [5, 12, 42] for review). In this context, a well-known
approach is to focus on neuronal ensembles [46, 47, 29], which allows for the successful
reconstruction of empirical data measured on a macroscopic scale [24, 30, 35, 34, 25].

On a small spatial level (∼ 50µm), model neurons may consist of two compart-
ments: synapses, which convert incoming action potentials to postsynaptic potentials,
and a trigger zone, where these potentials sum up and are reconverted to outgoing
action potentials. Due to the large spatial density of neurons (∼ 104 neurons/mm3),
one might consider ensemble activity on a larger spatial scale (> 1 mm), obtaining
a coarse-grained description in space and time [46]. Consequently, macroscopic state
variables of neuronal ensembles are mean pulse rates P (x, t) and mean postsynaptic
potentials V (x, t), with x and t denoting the space and time coordinates, respectively.
In the following, all quantities are meant to represent means of microscopic quantities.

Since the link between the microscopic description and the level of neural ensem-
bles has been established in several previous works (e.g., [46, 38, 5, 4]), we only briefly
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outline the basic mechanisms of activity conversion in neuronal fields. At chemical
passive synapses, incoming pulse activity J(x, t) is converted to postsynaptic poten-
tials by convolution with an impulse response function h(t), yielding

V (x, t) =

∫ t

−∞
h(t− τ)J(x, τ)dτ.

Since neuronal fields exhibit nonlocal interactions via axonal connections between
synapses, incoming pulse activity obeys

J(x, t) = β

∫
Ω

K(x, y)P (y, t− ∆(x, y))dy + E(x, t),

where Ω is an appropriate spatial domain, K is the connectivity kernel, β > 0 is
a scaling factor, and E is an additional external input. In the case of undamped
axonal pulse propagation with finite velocity v and no additional constant delay, we
get ∆(x, y) = |x − y|/v. Essentially, the chain of activity conversion closes by the
conversion of postsynaptic potentials to pulse rates

P (x, t) = S[V (x, t)],

where S is called the transfer function, which is taken to have a sigmoidal shape in
most works. Considering all conversions, we obtain the integral equation

V (x, t) = β

∫ t

−∞

∫
Ω

(h(t− τ)K(x, y)S[V (y, τ − |x− y|/v)] + E(x, τ)) dy dτ.

We then recast the impulse response function as a Green’s function and thus stipulate

Lh(t) = δ(t),

introducing a temporal differential operator L. Finally, we assume a homogeneous
field where the connectivity K(x, y) depends only on the distance |x− y|, and so we
replace K(x, y) by an even function K(x− y). Hence, the final equation has the form

L(∂/∂t)V (x, t) = β

∫
Ω

K(x− y)S(V (y, t− |x− y|/v)) dy + E(x, t),(1.1)

where L is a polynomial and L(∂/∂t) denotes a temporal differentiation operator with
constant coefficients. We shall refer to (1.1) as an nth-order system, where n ≥ 1 is
the order of L.

The model (1.1) has been treated in the literature in several contexts and with
different choices for L. In most studies the effect of transmission speed has been
neglected by letting v = ∞ in the model, the justification being that the signal
propagation is sufficiently fast or the spatial scales of the problem are small [32].
Some recent works [5, 15, 19, 31, 23, 8] have addressed the case of finite v by numerical
investigations for particular choices of the kernel K. Our aim is to give an analytical
treatment of the effects of finite transmission speeds for general K and L, in relation
to the stability and bifurcation of the equilibrium solutions.

In the next section we consider the equilibrium solutions of (1.1) and give a suffi-
cient condition for their stability. Section 3 discusses the types of dynamics that may
emerge when stability is lost. Here it is shown that the transmission speed needs to
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be smaller than a certain threshold in order to have oscillatory bifurcations in first-
and second-order systems. Furthermore, bounds are calculated for the frequencies
of the oscillatory solutions. In section 4, a perturbative analysis is used to compute
the bifurcating solutions, and a graphical method is given to determine the possible
bifurcations for a given kernel. Applications to kernels derived from Gaussian distri-
butions are presented in section 5, and the paper concludes with a discussion of the
results.

2. Stability of equilibrium solutions. For the rest of the paper we make the
following assumptions regarding (1.1). For the spatial domain we assume Ω = R,
although the results remain valid virtually without modification when Ω is a circle.
The polynomial L is stable; i.e., all its roots have negative real parts. The kernel
K : R → R is continuous, integrable, and even; that is, K(−z) = K(z) for all z ∈ R.
Finally, the transfer function S : R → R is differentiable and monotone increasing.

It is often convenient to normalize the time and space in (1.1). For instance, if
l and τ are some characteristic length and time of the physical problem, then one
can define t̄ = t/τ , x̄ = x/l, V̄ (x̄, t̄) = V (lx̄, τ t̄), Ē(x̄, t̄) = E(lx̄, τ t̄), L̄(∂/∂t̄) =
τnL(τ−1∂/∂t̄), K̄(z̄) = K(lz̄), and v̄ = τv/l so that (1.1) becomes

L̄(∂/∂t̄)V̄ (x̄, t̄) = lτnβ

∫
Ω

K̄(x̄− ȳ)S(V̄ (ȳ, t̄− |x̄− ȳ|/v̄)) dȳ + Ē(x̄, t̄),

which has the same form as (1.1). A common choice for characteristic time is τn =
1/L(0), in which case L̄(0) = 1. Thus, without loss of generality we consider (1.1)
with the assumption that L(0) = 1. Most studies of neuronal fields assume first- or
second-order time derivatives in (1.1). To address these models in a unified manner,
we shall often refer to the following specific form:

L(λ) = ηλ2 + γλ + 1, η = 0 or 1, γ > 0,(2.1)

although certain results will be stated for arbitrary order stable polynomials L.
For a constant input E(x, t) ≡ E∗, an equilibrium solution V (x, t) ≡ V ∗ satisfies

V ∗ = β

∫ ∞

−∞
K(x− y)S(V ∗) dy + E∗.(2.2)

Let

κ =

∫ ∞

−∞
K(z) dz = 2

∫ ∞

0

K(z) dz.(2.3)

Then (2.2) can be written as

f(V ∗)
def
= V ∗ − κβS(V ∗) = E∗.(2.4)

If S is bounded, then f : R → R is surjective; thus (2.4) has a solution V ∗ for any
E∗ ∈ R. The uniqueness of V ∗ depends on the sign of κ and the shape of S. If S
is positive and increasing on R, such as a sigmoid function, and if κ ≤ 0, then f is
increasing and hence also injective, in which case the solution V ∗ is unique. On the
other hand, if κ > 0, then there may be multiple equilibria, as (2.4) can have more
than one solution V ∗ for a given E∗.
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The stability of the equilibrium solution V ∗ is determined by the linear variational
equation

L(∂/∂t)u(x, t) = α

∫ ∞

−∞
K(x− y)u(y, t− |x− y|/v) dy,(2.5)

where u(x, t) = V (x, t) − V ∗ and α = βS′(V ∗) ≥ 0. We shall use α as a bifurcation
parameter in the following sections. Using the ansatz u(x, t) = eλtϕ(x) in (2.5) one
obtains

L(λ)ϕ(x) = α

∫ ∞

−∞
K(x− y) exp(−λ|x− y|/v)ϕ(y) dy.(2.6)

Thus ϕ is an eigenfunction of an integral operator. Due to the difference kernel the
eigenfunctions have the form ϕ(x) = eikx for some k ∈ R, and substituting into (2.6)
followed by a change of variables z = x− y in the integral gives

L(λ) = α

∫ ∞

−∞
K(z) exp(−λ|z|/v) exp(−ikz) dz.(2.7)

The integral above is the Fourier transform of the function Kλ(z) = K(z) exp(−λ|z|/v)
(up to a multiplicative factor, depending on which definition one uses), which is also
equal to its cosine transform since Kλ(z) is an even function of z. The dispersion
relation (2.7) between the temporal and spatial modes λ and k is in general difficult
to solve explicitly. A notable exception is the case of instantaneous information trans-
mission, since when v = ∞, the right-hand side of (2.7) is independent of λ. In this
paper we are interested in the effects of finite transmission speeds.

The solutions (λ, k) of (2.7) correspond to the perturbations u(x, t) = eλteikx

about the equilibrium solution, which grow or decay in time depending on whether
Reλ is positive or negative, respectively, thus determining the stability of V ∗. We
give sufficient conditions for asymptotic stability.

Theorem 2.1. Let c = α
∫∞
−∞ |K(z)| dz. If

c < min
ω∈R

|L(iω)|,(2.8)

then V ∗ is asymptotically stable. In particular, if L(λ) = λ + 1, then the condition

c < 1(2.9)

is sufficient for the asymptotic stability of V ∗. If L(γ) = λ2 +γλ+1 with γ > 0, then
V ∗ is asymptotically stable provided that the condition

γ2

2
> 1 −

√
1 − c2(2.10)

holds, in addition to (2.9).
The following lemma will be useful in the proof of the theorem.
Lemma 2.2. Let L(λ) be a polynomial whose roots have nonpositive real parts.

Then

|L(σ + iω)| ≥ |L(iω)|

for all σ ≥ 0 and ω ∈ R.
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Proof. If λk denote the roots of L, then L(λ) = (λ − λ1)(λ − λ2) · · · (λ − λn),
where n is the order of L. Thus

|L(σ + iω)| =

n∏
k=1

|σ + iω − λk|

=

n∏
k=1

(
(σ − Re[λk])

2 + (ω − Im[λk])
2
)1/2

.

By assumption, σ ≥ 0 and Re[λk] ≤ 0 for all k, so

|L(σ + iω)| ≥
n∏

k=1

(
(−Re[λk])

2 + (ω − Im[λk])
2
)1/2

=

n∏
k=1

|iω − λk|

= |L(iω)|.

Proof of Theorem 2.1. In the ansatz u(x, t) = eλteikx, let λ = σ + iω, where σ
and ω are real numbers. We will prove that σ < 0 if (2.8) holds. Suppose by way of
contradiction that (2.8) holds but σ ≥ 0. From the dispersion relation (2.7) it follows
that

|L(σ + iω)| = α

∣∣∣∣
∫ ∞

−∞
K(z) exp(−(σ + iω)|z|/v) exp(−ikz) dz

∣∣∣∣
≤ α

∫ ∞

−∞
|K(z)| | exp(−(σ + iω)|z|/v)| dz

≤ α

∫ ∞

−∞
|K(z)|dz = c.(2.11)

On the other hand, by Lemma 2.2,

|L(iω)| ≤ |L(σ + iω)|,

which together with (2.11) implies

|L(iω)| ≤ c

for some ω ∈ R. This, however, contradicts (2.8). Thus σ < 0, and the equilibrium
solution is asymptotically stable. This proves the first statement of the theorem. In
the specific case when L is given by L(λ) = λ + 1, one has |L(iω)|2 = 1 + ω2. Hence
if (2.9) is satisfied, then

c2 < 1 ≤ 1 + ω2 = |L(iω)|2 for all ω ∈ R,

which is a sufficient condition for stability by (2.8). Similarly, suppose that L has the
form L(λ) = λ2 + γλ + 1 and that (2.9) and (2.10) are satisfied. Then

|L(iω)|2 = (1 − ω2)2 + (γω)2.

Now consider the function

g(ω)
def
= |L(iω)|2 − c2

= ω4 + (γ2 − 2)ω2 + (1 − c2).(2.12)
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If γ2 ≥ 2, then g(ω) is positive for all ω by (2.9). On the other hand, if γ2 < 2, then
by (2.10)

0 < 2 − γ2 < 2
√

1 − c2,

implying that the discriminant (γ2 − 2)2 − 4(1 − c2) is negative; thus g has no real
roots. Thus, in either case, g(ω) is positive, or, equivalently, c < |L(iω)| for all ω, and
stability again follows by the first statement of the theorem.

3. Bifurcations. When α = 0, the eigenvalues λ are simply given by the roots
of L, so that Reλ < 0 by the assumption that L is a stable polynomial, and the
equilibrium point is asymptotically stable. As α is increased, stability can be lost
if an eigenvalue λ crosses the imaginary axis. At the critical transition there is an
eigenvalue of the form λ = iω, ω ∈ R, and the dispersion relation (2.7) has the form

L(iω) = α

∫ ∞

−∞
K(z) exp(−i(kz + ω|z|/v)) dz.(3.1)

The possibilities for the resulting behavior when α is near such a critical value can
then be qualitatively classified as follows:

I. Stationary bifurcations
a. ω = 0 and k = 0: bifurcation to a spatially and temporally constant solu-

tion.
b. ω = 0 and k �= 0: bifurcation to a spatially periodic solution which is

constant in time, leading to spatial patterns (Turing modes).
II. Nonstationary bifurcations

a. ω �= 0 and k = 0: Hopf bifurcation to periodic oscillations of a spatially
uniform solution.

b. ω �= 0 and k �= 0: bifurcation to traveling waves, with wave speed equal to
ω/k.

The conditions for stationary bifurcations are easily characterized by the relation
(3.1), recalling the assumption that L(0) = 1. Thus for case Ia one has

1 = α

∫ ∞

−∞
K(z) dz = ακ(3.2)

with κ as defined in (2.3). This is only possible if κ > 0 and is the mechanism for
appearance of multiple equilibrium solutions of (2.2). Similarly, the condition (2.7)
for case Ib is

1 = α

∫ ∞

−∞
K(z) exp(ikz) dz = αK̂(k), k �= 0,(3.3)

where K̂ denotes the Fourier transform of K. As α is increased from zero, the first
mode that becomes unstable in the linearized equation is expected to give an indi-
cation of what would be observed in the full nonlinear system (1.1). Hence, spatial
patterns are typically observed as bifurcations from equilibria if a nonzero k is the
first mode that loses stability. From (3.3) it follows that a necessary condition for this
is that the maximum value of the Fourier transform of K is positive and occurs at a
nonzero frequency k.

It is clear from (3.2) and (3.3) that stationary bifurcations are independent of the
order of the temporal differentiation operator L or the transmission speed v. Their
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analysis only involves the properties of the Fourier transform of the kernel function.
On the other hand, L and v turn out to be crucial in nonstationary bifurcations.
Indeed, our next result shows that a sufficiently small transmission speed is actually a
necessary condition for nonstationary bifurcations in first- and second-order systems.

Theorem 3.1. Suppose L(λ) = ηλ2 + γλ + 1, where η may possibly be zero. If

v >
α

|γ|

∫ ∞

−∞
|zK(z)| dz,(3.4)

then (2.5) has no solutions of the form u(x, t) = exp i(ωt + kx) with ω real and
nonzero.

Proof. From the dispersion relation (2.7),

L(λ) = α

∫ ∞

−∞
K(z) exp(−λ|z|/v)(cos kz − i sin kz) dz

= α

∫ ∞

−∞
K(z) exp(−λ|z|/v) cos kz dz

since the function K(z) exp(−λ|z|/v) is even in z. Separating the real and imaginary
parts of the above expression at the bifurcation value λ = iω gives

ReL(iω) = α

∫ ∞

−∞
K(z) cos(ωz/v) cos(kz) dz,(3.5)

ImL(iω) = −α

∫ ∞

−∞
K(z) sin(ω|z|/v) cos(kz) dz.(3.6)

Suppose L(λ) = ηλ2 + γλ + 1. Then ImL(iω) = γω, and (3.6) implies

|γω| = α

∣∣∣∣
∫ ∞

−∞
K(z) sin(ω|z|/v) cos(kz) dz

∣∣∣∣
≤ α

∫ ∞

−∞
|K(z) sin(ωz/v)| dz

≤ α

∫ ∞

−∞
|K(z)ωz/v| dz,

where we have used the estimate | sin(x)| ≤ |x| for all x ∈ R. If ω �= 0, then |ω| may
be cancelled in the last inequality to yield

|γ| ≤ α

v

∫ ∞

−∞
|zK(z)| dz.

This, however, contradicts the assumption (3.4). Hence ω = 0, which proves the
theorem.

We note that the above result is valid for first- and second-order systems; in
higher order systems, bifurcation values λ = iω �= 0 may occur even with v = ∞ [12].

For bifurcating oscillatory solutions, it is possible to put a priori bounds on the
possible values of the frequencies ω in terms of the kernel function and the operator
L, as given by the next result.

Theorem 3.2. Let c be as defined in Theorem 2.1. Then there exists B > 0,
depending only on L and c, such that

|ω| ≤ B(3.7)
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whenever u(x, t) = exp i(ωt + kx), ω, k ∈ R, is a solution of (2.5). Furthermore, if
c < 1, then there exists A > 0, depending only on L and c, such that

0 < A ≤ |ω|.(3.8)

In particular, if L(λ) = λ + 1, then

ω2 ≤ c2 − 1,(3.9)

and if L(λ) = λ2 + γλ + 1, then

(1 − 1
2γ

2) − δ ≤ ω2 ≤ (1 − 1
2γ

2) + δ if 0 ≤ c < 1,
0 ≤ ω2 ≤ (1 − 1

2γ
2) + δ if c ≥ 1,

(3.10)

where δ =
√

(1 − 1
2γ

2)2 − 1 + c2.

Remark. The existence of a solution of the form u(x, t) = exp i(ωt + kx) implies
that the equilibrium point is not asymptotically stable. It is then a consequence of
Theorem 2.1 that the right sides of the inequalities in (3.9) and (3.10) are nonnegative.

Proof of Theorem 3.2. If λ = iω satisfies the dispersion relation (2.7) for some k,
then

|L(iω)| ≤ α

∫ ∞

−∞
|K(z)| dz = c.(3.11)

Since |L(iω)| → ∞ as ω → ±∞ for any nonconstant polynomial L, the above inequal-
ity implies an upper bound B on |ω|, which proves (3.7). For the particular case when
L(λ) = λ + 1, (3.11) gives

|L(iω)|2 = ω2 + 1 ≤ c2,

proving (3.9). Similarly, for L(λ) = λ2 + γλ + 1, (3.11) yields

|L(iω)|2 = ω4 + (γ2 − 2)ω2 + 1 ≤ c2.(3.12)

If we let u = ω2, then the inequality above is equivalent to saying that possible values
of u ≥ 0 are those which render the function

h(u)
def
= u2 + (γ2 − 2)u + (1 − c2)

negative or zero. This is only possible if h has at least one root in the interval
[0,∞), implying that the discriminant (γ2 − 2)2 − 4(1 − c2) is nonnegative. Letting

δ =
√

(1 − 1
2γ

2)2 − 1 + c2, the roots of h can be written as (1 − 1
2γ

2) ± δ. Thus

h(ω2) ≤ 0 for ω2 satisfying

(1 − 1
2γ

2) − δ ≤ ω2 ≤ (1 − 1
2γ

2) + δ.(3.13)

It remains to ensure that the interval above is a subset of [0,∞). If c < 1, then it is
easy to see that both roots of h are nonnegative. For if the smaller root is negative,
we have

0 > (1 − 1
2γ

2) − δ > (1 − 1
2γ

2) − |1 − 1
2γ

2|,
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so (1 − 1
2γ

2) < 0. But then both the conditions (2.9) and (2.10) are satisfied, and by
Theorem 2.1 λ = iω cannot be a solution to (2.7). On the other hand, if c ≥ 1, then

(1 − 1
2γ

2) − δ ≤ (1 − 1
2γ

2) − |1 − 1
2γ

2| ≤ 0

and

(1 − 1
2γ

2) + δ ≥ (1 − 1
2γ

2) + |1 − 1
2γ

2| ≥ 0.

So, in this case the lower bound on ω2 in (3.13) can be replaced by zero. This
establishes (3.10). Finally, to prove (3.8) for arbitrary L assume that c < 1. Then
1 = L(0) > c. By the continuity of L there exists A > 0 such that |L(iω)| > c
whenever |ω| ≤ A. Since (3.11) is not satisfied, (2.5) does not have a solution of the
form exp i(ωt + kx) with |ω| ≤ A, which completes the proof.

4. Perturbative analysis. In order to study the type of bifurcations that may
arise in a given situation, the dispersion relation (3.1) needs to be solved for ω and
k. However, explicit solutions are difficult to obtain for general kernel functions.
The results of the previous sections imply that in the absence of delays, one has a
simpler case, where nonstationary bifurcations do not exist in first- and second-order
systems. Consequently, the role of delays can be systematically examined by following
the changes in the bifurcation structure as the value of the transmission speed is
decreased from infinity. Hence we introduce the parameter ε = 1/v and consider
the change in dynamics as ε is increased from zero. This leads to an approximation
scheme that provides valuable insight into the effects of axonal delays in the dynamics
of the system.

Consider the power series estimate

exp(−λ|z|/v) =

N∑
m=0

(−λ|z|/v)m
m!

+ O(v−(N+1)).

Substitution in the dispersion relation (2.7) at the bifurcation value λ = iω gives a
finite series in powers of ε = 1/v,

L(iω) = α

∫ ∞

−∞
K(z) exp(−ikz)

[
N∑

m=0

(−iεω|z|)m
m!

+ O(εN+1)

]
dz

= α

N∑
m=0

(−iεω)m

m!
K̂m(k) + O(εN+1),(4.1)

where the K̂m denote the transforms of the moments of K:

K̂m(k) =

∫ ∞

−∞
|z|mK(z) exp(−ikz) dz = 2

∫ ∞

0

zmK(z) cos(kz) dz(4.2)

and the integrals are assumed to exist. Separating the real and imaginary parts of
(4.1) then yields

α−1 ReL(iω) = K̂0(k) − ε2

2
ω2K̂2(k) +

ε4

24
ω4K̂4(k) − · · · ,(4.3)

α−1 ImL(iω) = −εωK̂1(k) +
ε3

6
ω3K̂3(k) − ε5

120
ω5K̂5(k) + · · · .(4.4)
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The number of terms needed for the above series to be useful depends on the value
of ε as well as the shape of the kernel K. If K is highly concentrated near the origin,
then a few terms are sufficient. To make this precise, suppose that K is of exponential
order, which is a reasonable assumption in most practical situations. In other words,
suppose there exist positive numbers κ1 and κ2 such that

|K(z)| ≤ κ1 exp(−κ2|z|) for all z ∈ R.

Then, by (4.2),

∣∣∣K̂m(k)
∣∣∣ ≤ ∫ ∞

−∞
|z|mκ1 exp(−κ2|z|) dz = 2κ1

∫ ∞

0

zm exp(−κ2z) dz

= 2κ1κ
−(m+1)
2 Γ (m + 1) = 2κ1κ

−(m+1)
2 m!,

so the mth term in the series (4.1) is bounded in absolute value by

2
κ1

κ2

(
ε|ω|
κ2

)m

≤ 2
κ1

κ2

(
B

κ2
ε

)m

,

where we have used Theorem 3.2 to bound the values of ω. Hence, in case of small
ε (large transmission speed) or B (e.g., small α) or a large value of κ2 (fast decay of
K away from the origin), the finite series has increased accuracy. We assume that at
least one of these conditions is satisfied so that a small number of terms suffices to
determine the general behavior.

In order to observe the qualitative effects of finite transmission speed, we thus
neglect third- and higher order terms in ε in the series (4.1). Then, for L given by

L(λ) = ηλ2 + γλ + 1, η = 0 or 1, γ > 0,

(4.3)–(4.4) become

α−1(1 − ηω2) = K̂(k) − 1
2ε

2ω2K̂2(k),(4.5)

α−1γω = −εωK̂1(k),(4.6)

where we have substituted the more conventional notation K̂ for the Fourier transform
K̂0 of the kernel. For stationary bifurcations (ω = 0), one obtains from the first
equation that

K̂(k) = 1/α,(4.7)

which is the same as the conditions (3.2)–(3.3) given by exact calculation. For a
nonstationary bifurcation, ω �= 0, so (4.6) implies that

K̂1(k
∗) = −γ/εα.(4.8)

If K̂1(k) assumes negative values, then it has a minimum since it is continuous and
tends to zero as k → ±∞; this minimum value corresponds to the first mode that
loses stability as ε or α is increased. More precisely, if

k∗ = min
k

K̂1(k) = min
k

∫ ∞

−∞
|z|K(z) exp(−ikz) dz(4.9)
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exists and K̂1(k
∗) < 0, then k∗ is the sought solution of (4.8). Substituting k∗ into

(4.5) gives

ω2 =
αK̂(k∗) − 1

1
2αε

2K̂2(k∗) − η
,(4.10)

which has a solution for ω whenever the right-hand side is nonnegative. This gives
a simple procedure to calculate the pairs (ω, k) satisfying the dispersion relation and
corresponding to the bifurcating solution exp(ωt + kx).

It remains to determine what type of bifurcation actually occurs. This depends
on the mode by which the equilibrium solution, which is stable for α = 0, loses its
stability as the bifurcation parameter α is increased. The procedure described in
the above paragraph gives a simple graphical method. Thus if one plots the curves
K̂(k) and −K̂1(k)/γv in the same graph and thinks of 1/α as a horizontal line being
lowered from +∞, then the first intersection point specifies the bifurcation type. If the
horizontal line touches the graph of K̂(k) first, then (4.7) is satisfied and a stationary
bifurcation occurs. If, on the other hand, it touches −K̂1(k)/γv first, then (4.8) is
satisfied and a nonstationary bifurcation occurs. Furthermore, the value of k at the
intersection point being zero or nonzero specifies whether the bifurcating solution is
spatially constant or not, respectively. It is worthwhile to note that the types of
bifurcations that can occur depends only the extremal values of K̂ and K̂1 and not on
the exact shapes of their graphs. This observation has two important consequences.
First, the bifurcation structure depends on some general qualities of the kernel and not
on its precise shape. And second, although our analysis is based on an approximation
scheme, the qualitative conclusions regarding the type of bifurcations are generally
robust, except for some degenerate cases, such as when the maximum values of K̂(k)
and −K̂1(k)/γv are equal.

An example for the investigation of possible bifurcations is illustrated in Figure 1
for some typical kernel functions representing the possibilities for different types of
inhibitory and excitatory interaction within the field. For each kernel type in the first
column of the figure, the corresponding graphs of K̂(k) and −K̂1(k)/γv are plotted in
the second column. By the argument outlined above, the possible bifurcations for each
type of kernel can be directly read off from the graphs in the second column. The ac-
tual graphs in the figure are calculated from Gaussian distributions; however, it is clear
that small variations in the graphs do not change the bifurcation types. In this way,
it is possible to draw some general conclusions concerning different interaction kernels.

The analysis presented in this section is useful for understanding the relationship
between the interactions within the field and the resulting dynamics. The stationary
bifurcations of equilibria are determined by the Fourier transform K̂ of the connec-
tivity kernel. The nonstationary bifurcations, on the other hand, are characterized by
the transforms of the moments of the kernel. For first- and second-order systems this
characterization can be reduced to the consideration of the single term K̂1/γv, over
the parameter ranges where the approximation scheme is justified. Outside of this
range, e.g., for very low transmission speeds, more terms need to be considered in the
series (4.1), together with a numerical solution of the system (4.3)–(4.4). Nevertheless,
already in the term K̂1/γv one can see the ingredients responsible for nonstationary
bifurcations: the operator L (through γ) representing the local temporal behavior,
the kernel (through K̂1) representing spatial interaction, and the transmission speed
v connecting the two aspects of the dynamics. Figure 1 gives a summary of the
bifurcations resulting from the interplay of these elements. In the next section we



STABILITY AND BIFURCATIONS IN NEURAL FIELDS 655
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K(z)

(a)

(b)

(c)

(d)

k

K^ (k)
−K^ 1(k)/γv

Fig. 1. Typical interaction kernels and possible bifurcation types. The first column shows the
kernels, with the corresponding Fourier transforms in the second column. The maxima of K̂ and
−K̂1/γv, respectively, determine the stationary and oscillatory bifurcations, the largest peak giving
the actual bifurcation taking place as α is increased. Hence, depending on the value of γv, some
typical cases are (a) an excitatory field, possible bifurcations Ia and IIb; (b) an inhibitory field,
possible bifurcation IIa; (c) local inhibition and lateral excitation, possible bifurcations Ia and IIb;
(d) local excitation and lateral inhibition, possible bifurcations Ib and IIa or IIb. In the last subfigure,

two distinct possibilities for −K̂1/γv are shown with dashed and dotted lines.

present numerical simulations for the corresponding dynamical behavior in the non-
linear system (1.1), obtained on the basis of the foregoing analysis.

5. Applications. We now examine the previous results numerically for a par-
ticular model. To this end, we set the differential operator to

L

(
∂

∂t

)
=

∂2

∂t2
+ γ

∂

∂t
+ 1(5.1)
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and further specify the connectivity kernel. Since a neuronal field might exhibit
excitatory and inhibitory connections, the kernel K contains both excitatory and
inhibitory distributions over space. In case of a homogeneous and isotropic neuronal
field, a choice of K is

K(z) =
1√
π

(aee
−z2 − aire

−r2z2

),(5.2)

where ae, ai denote excitatory and inhibitory synaptic weights and r = σe/σi gives the
relation of excitatory and inhibitory spatial connectivity ranges σe and σi. Since the
present work treats dynamics on a mesoscopic spatial scale, it does not resolve single
synapses and synaptic interaction is considered in terms of normalized distributions of
excitatory and inhibitory connections as in (5.2). Thus a purely excitatory connection
(Figure 1(a)) is obtained when ai = 0 and ae > 0, whereas the choice ae = 0 and
ai > 0 gives an inhibitory connection (Figure 1(b)). Similarly, for ae > ai > 0, local
inhibition and lateral excitation (Figure 1(c)) or local excitation and lateral inhibition
(Figure 1(d)) can be obtained by choosing r > ae/ai or 0 < r < 1, respectively. We
shall mostly focus on these last two cases. Finally, we take β = 1 and choose the
transfer function in (1.1) as the sigmoid S(y) = 1/(1 + exp(−1.8(y − 3))) according
to previous works [46, 36].

The subsequent temporal integration procedure applies a fourth-order Runge–
Kutta algorithm, while the spatial integration algorithm discretizes the field into N
intervals and applies

∫ l

0

f(z)dz ≈
N∑
i=1

1

2
(f(zi) + f(zi+1))∆x(5.3)

for any function f , with l the field length and ∆x = l/N . Further, for periodic
boundary conditions, the integration obeys the circular rule∫ ∞

−∞
K(|x− y|)f(y)dy ≈

∫ l

0

K(l/2 − |l/2 − |x− y||)f(y)dy.(5.4)

5.1. Stability of V ∗. The equilibria V ∗ are found from (2.4). Figure 2 shows
solutions V ∗ of (2.4) with respect to the external input for various values of κ. In
the case where κ > 2.2, there exist up to three solutions A, B, and C subject to
the external input, whereas there is only a single solution for κ ≤ 2.2. Theorem 2.1
gives a sufficient condition for the stability of these equilibria. Note that for γ >

√
2

the inequality (2.10) is automatically satisfied, so c < 1 is a sufficient condition for
asymptotic stability by the theorem. From (5.2) we have

c = α|2aeΦ(x0) − 2aiΦ(x0r) − (ae − ai)|, x0 =

√
1

1 − r2
ln

(
ae

air

)
,(5.5)

where Φ is the Gaussian error function and 0 < r < 1 or r > ae/ai. The spatial dis-
tance x0 marks the change of sign of the kernel function and thus separates inhibitory
from excitatory connections. The external input E∗ affects c through α = S′(V ∗). In
Figure 3, c is plotted with respect to the input E∗ for r = 0.5 and various parameter
values of ae, ai at the different equilibria V ∗. Stability is guaranteed by Theorem 2.1
at least in the region c < 1. In this line, Figure 4 shows a space-time plot of field
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Fig. 2. Stationary constant fields V ∗ plotted with respect to the external input E∗ for various
parameters κ. Up to three solutions A, B, and C may exist for a given input level.

activity that relaxes to a lower solution A for c = 0.85 (cf. Figure 2). On the other
hand, at sufficiently high values of α (and thus of c), stability is lost since when

α =
1

κ
,(5.6)

the condition (3.2) for a type Ia bifurcation, is satisfied. This bifurcation point is also
indicated in Figure 3. Therefore, the constant solutions denoted B in Figures 2–3 are
unstable. Interestingly, this general result shows accordance to findings in previous
works for special connectivity kernels [36, 23]. Finally, in the region c > 1 and α < 1/κ,
additional bifurcations might occur, yielding loss of stability. These are discussed in
the following section.

5.2. Bifurcations. Recall that the external input defines the set of constant
fields V ∗, which subsequently determine the value of α; hence α is an appropriate
bifurcation parameter. For bifurcations to periodic patterns (Turing case Ib), the
threshold condition from (3.3) reads

αthr =
1

aee−k2
0/4 − aie−k2

0/4r
2
, k2

0 =
4r2

r2 − 1
ln

aer
2

ai
,(5.7)

where k0 = arg maxk K̂(k). As α > 0, we obtain directly from (5.7) that r < 1, i.e.,
there is no Turing instability for r > 1. Figure 5 displays thresholds αthr with respect
to parameters r, confirming this finding. Figure 6 displays a space-time plot of the
corresponding Turing instability with r = 0.5.
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Fig. 3. Parameter c from Theorem 2.1 plotted with respect to the external input E∗ for various
parameters ae, ai and r = 0.5, γ >

√
2. The characters A,B, and C denote stationary solutions (see

Figure 2) and solutions in the region below the dashed line fulfill the sufficient condition of asymptotic
stability. It turns out that stationary solutions C are asymptotically stable for all external inputs in
case of ae = 18, ai = 10 and ae = 60, ai = 55.
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Fig. 4. Space-time plot of an asymptotically stable field for the Gaussian connectivity kernel
and parameters E∗ = 0.5, r = 0.5, γ = 2, ae = 60, ai = 55, v = 100, β = 1, N = 400. Initial values
V 0(x, t) are chosen randomly from a uniform distribution on [V ∗ − 0.1, V ∗ + 0.1] for t ∈ [−l/v, 0],
where l = 40. The gray scale encodes the deviations from the stationary solution.
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Fig. 5. Thresholds of stationary Turing bifurcations αthr plotted for two parameter sets ae, ai.
The regime of the Turing instability obeys α > αthr, i.e., the right-hand side of each curve. The
thresholds αthr are independent from the synaptic parameter γ and the propagation speed v, while
the external input E∗ determines α implicitly.

Next, we consider oscillatory phenomena. From Theorem 3.1, a necessary condi-
tion for oscillatory behavior is

v < vthr =
α

|γ|
√
π

[ai

r
− ae + 2

(
aee

−x2
0 − ai

r
e−r2x2

0

)]
,(5.8)

with x0 taken from (5.5). Figure 7 shows plots of thresholds vthr with respect to the
parameter r for two parameter couples of ae, ai. It turns out that condition (5.8) is
fulfilled and oscillations are expected for a wide range of r > 1, whereas r < 1 (lateral
inhibition) allows only for a small parameter regime. For appropriate parameters,
the properties of the kernel and the temporal delays introduced by finite propagation
speed interact in a way that destabilizes the stationary state and produces oscillations.
Similar effects have also been found in previous works [6, 22].

Section 4 gives conditions for an oscillatory bifurcation in case of large propaga-
tion velocity. To obtain oscillating activity constant in space (case IIa), Figure 1(d)
illustrates the conditions r < 1 and −K̂1(0)/(γv) > maxk K̂(k), implying

ae − ai/r

γv
√
π

> aee
−k2

0/4 − aie
−k2

0/4r
2

,(5.9)

where k0 is taken from (5.7). Figure 8 displays the corresponding spatiotemporal
activity for appropriate parameters. From the figure, an oscillation frequency of
about ω = 0.28 can be observed. This agrees well with the theory, as from (3.10)
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Fig. 6. Space-time plot of the Turing instability, obtained for the Gaussian connectivity kernel
and parameters E∗ = 0.74, r = 0.5, γ = 2, ae = 60, ai = 55, v = 100, β = 1, N = 400,
and 1/α = 0.727. Initial conditions V 0(x, t) are chosen randomly from a uniform distribution on
[V ∗ − 0.1, V ∗ + 0.1] for t ∈ [−l/v, 0], where l = 40.

with c ≥ 1 a frequency in the interval [0, 0.26] is predicted at the bifurcation. The
small discrepancy arises from choosing the simulation parameters somewhat beyond
the bifurcation values in order to obtain reasonably high amplitude solutions for
visualization.

On the other hand, for traveling waves (case IIb) k �= 0 and Figure 1(c) gives
the conditions r > ae/ai and maxk −K̂1(k)/(γv) > K̂(0). A series expansion for K̂1

[20] yields a single implicit condition for parameters ae, ai, r and k. Figure 9 shows
the corresponding space-time plot of the wave instability for appropriate parameters.
Here r > 1, and the field activity is shifted from local to lateral spatial locations,
facilitating traveling waves.

Finally we examine how the phase velocity of traveling waves depends on the
propagation velocity v in the system. From (4.10) the phase velocity reads

vph =
ω

k∗
=

v

k∗

√
αK̂(k∗) − 1

1
2αK̂2(k∗) − v2

,(5.10)

where k∗ solves (4.8). In Figure 10, vph is plotted and exhibits a slightly nonlinear
dependence on the propagation velocity for the applied parameters. We point to
the small ratio of phase velocity to propagation velocity in accordance with previous
findings [32, 23].
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Fig. 7. Thresholds of oscillatory phenomena vthr for two parameter sets ae, ai. The sufficient
condition for oscillations is fulfilled for v < vthr, i.e., the left-hand side of each curve.

6. Conclusion. We have presented an analysis of the stability of equilibrium
solutions for a general class of neural field equations on the real line. The details of
bifurcations arising from loss of stability provide important information concerning
a variety of dynamical behavior that is of neuroscientific interest, including spatial
patterns and traveling waves. The stationary bifurcations and the resulting spatial
patterns depend only on the connectivity kernel, and are completely determined by
its Fourier transform K̂(k). On the other hand, the axonal delays due to finite prop-
agation speed are shown to have significant effects on the nonstationary bifurcations.
In fact, we have proved that in first- and second-order systems, nonstationary bifurca-
tions of equilibria can occur only if the delays are sufficiently large, that is, when the
transmission speed is sufficiently small. This behavior is different from that of higher
order systems, where nonstationary bifurcations can occur even in the absence of de-
lays. By a perturbation approach we have expressed the conditions for bifurcation
in terms of the Fourier transforms of the moments of the kernel function. For high
signal transmission speeds, only the first kernel moment needs to be considered to
draw qualitative conclusions. For first- and second-order systems this leads to a sim-
ple method for determining the possible bifurcation types by comparing the Fourier
transforms K̂(k) and −K̂1(k)/vγ. Furthermore, the bifurcations depend only on the
extremal values of the transforms, rather than the precise shapes of the kernels.

The analysis presented here, being applicable to a broad range of connectivity and
synaptic properties and transfer functions, suggests some general conclusions on the
types of nonlinear dynamics that can be observed in a fairly wide class of systems.
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Fig. 8. Space-time plot of the Hopf instability leading to periodic oscillations of a spatially
constant solution (type IIa bifurcation), obtained for the Gaussian connectivity kernel and parameters
E∗ = 0.91, r = 0.2, γ = 0.5, ae = 18, ai = 10, v = 6, β = 1, N = 400. Initial conditions are
V 0(x, t) = V ∗ + 0.02 for t ∈ [−l/v, 0], with V ∗ = 0.11 and l = 40.

For instance, one generally expects to see oscillatory behavior whenever the signal
transmission speed is sufficiently small. In fact, for completely general kernels, the
peaks of K̂(k) and −K̂1(k) are more likely to occur at some nonzero k rather than
at the precise value k = 0. This suggests that in first- and second-order systems
the prevalent dynamics arising from bifurcations of equilibria will be either spatial
patterns or traveling waves, depending on whether the transmission speed is large
or small, respectively. Nevertheless, more specific kernel types may dictate different
dynamical behavior depending on the application.

There are many studies of discrete networks which exhibit in-phase periodic be-
havior by increased constant delay (e.g., [49, 6]) and propagation delay (e.g., [17, 26,
22]). These studies consider specific network connectivities and obtain similar results
with respect to the role of delays in oscillatory behavior. In this context, we would
like to mention the recent work of Earl and Strogatz [9], who studied the stability
of discrete, homogeneous oscillator networks with constant connection delays. They
obtain a rather strong stability condition for global in-phase oscillations that is in-
dependent of the connectivity topology, provided each node has the same number
of connections. The in-phase oscillations correspond to type IIa bifurcations in our
study; however, we also have the possibility of other bifurcation types, indicating that
the neural fields considered here can exhibit a richer range of dynamics. An impor-
tant difference arises from the nature of the delays in the two models. In the discrete
network with a constant connection delay, each unit knows the state of its neighbors
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Fig. 9. Space-time plot of the wave instability (type IIb bifurcation), obtained for the Gaussian
connectivity kernel and parameters E∗ = 1.29, r = 3, γ = 2, ae = 60, ai = 55, v = 1, β = 1,
N = 400. Initial conditions V 0(x, t) are chosen randomly from a uniform distribution on [V ∗ −
0.1, V ∗ + 0.1] for t ∈ [−l/v, 0], where l = 40.

Fig. 10. The wave velocity of traveling waves with respect to axonal propagation velocity.
Parameters are γ = 0.2, 0.03 ≤ α ≤ 0.11 and ω/v ≈ 0.7 (left, for v ≈ 2) and ω/v ≈ 0.3 (right, for
v ≈ 7), respectively.
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at the same time instant (although not at the present time), so it is plausible that
this type of arrangement favors in-phase oscillations. On the other hand, our model
involves distance-dependent delays, for which travelling waves may be the more nat-
ural type of oscillatory behavior. The details of this interesting connection will be
given in a future paper.

Our work is mostly motivated by experimental findings (e.g., [29, 44, 16]). In
this line, the presented study aims to generalize the analysis of synaptically coupled
neuronal fields in order to gain a classification scheme for observed spatiotemporal
patterns. Here, we would like to mention the important generalization of Amari [1] in
lateral-inhibition-type fields without axonal delay. Since neurophysiological proper-
ties of observed neural tissue are not accessible precisely, a classification scheme might
link model functionals with observed phenomena. For example, observed traveling
waves necessitate an axonal propagation velocity below a certain threshold defined by
connectivity kernel properties and synaptic response properties (Theorem 3.1), and
furthermore, their frequencies are confined to a bounded band (Theorem 3.2). In
addition, this classification might be important for estimating interaction parameters
from multisite neuronal data (e.g., [14]). Due to the large number of different activity
phenomena, further studies in this area could incorporate additional mechanisms like
standing and traveling pulse fronts as in [32, 33], boundary effects in local neuronal
areas (e.g., [7]), the influence of external inputs [45, 10] local in space and time, or the
constant delayed feedback found experimentally in thalamocortical connections [41]
and visual areas [27, 11] and which has been addressed in several theoretical stud-
ies (e.g., [13, 5, 3]). In particular, the mutual treatment of both constant delayed
feedback and propagation delay proposes new insights into information processing
between distant brain areas. Moreover, consideration of neural fields in higher space
dimensions might yield further interesting results.

Acknowledgment. We thank Matthew P. James for a critical reading of the
manuscript.
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Abstract. We discuss the problem of deriving estimates for the resolvent of the linear operator
associated with three-dimensional perturbations of plane Couette flow and determining its depen-
dence on the Reynolds number R. Depending on the values of the parameters involved, we derive
estimates analytically. For the remaining values of the parameters, we prove that deriving estimates
for the resolvent can be reduced to estimating the solutions of a 4th-order linear homogeneous or-
dinary differential equation with nonhomogeneous boundary conditions. We study these boundary
value problems numerically. Our results indicate the L2 norm of the resolvent to be proportional
to R2.
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1. Introduction. It is well known that plane Couette flow is stable for infinites-
imal perturbations for all values of the Reynolds number R [12]. In laboratory ex-
periments, though, transition to turbulence is observed for Reynolds numbers as low
as approximately 350 [4, 16]. This discrepancy may be caused by a small domain of
attraction of the Couette flow. Therefore, it is of great interest to understand how
this domain of attraction scales with the Reynolds number R.

The so-called resolvent technique for nonlinear differential equations allows one to
derive nonlinear stability results from linear stability. To this end, one uses estimates
for the resolvent of a linear operator. One of its advantages is the quantification of
stability; that is, when successfully applied, the method gives information about the
domain of attraction of a stable solution [7, 8].

For plane Couette flow, recent works use the resolvent technique to derive a
threshold amplitude for perturbations of the base flow, that is, to give a lower bound
on the size of perturbations that can lead to turbulence [9, 6, 2]. In this case, successful
application of the method requires estimates for the resolvent (sI − LR)−1 of the
linear operator LR associated with perturbations of the base flow, for the parameter s
belonging to the unstable half-plane Re(s) ≥ 0. These estimates should show exactly
how the norm of the resolvent depends on R. Our aim is to study this dependence.

For large enough values of |s|, depending on the Reynolds number, analytical
estimates for the L2 norm of the resolvent have already been proved [1, 10]. To derive
an estimate valid for the whole unstable half-plane, direct numerical computations
have been used indicating the L2 norm of the resolvent to be proportional to R2

[6, 17]. In [10], R-dependent weighted norms are used. Direct numerical computations
indicate that in one of the norms considered, the resolvent is proportional to R.

We study the three-dimensional case, with periodic boundary conditions in two of
the directions. Our results indicate the L2 norm of the resolvent to be proportional to
R2, agreeing with the computations in [6, 17]. Our main result is a theorem showing
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that the problem of proving the resolvent estimates can be reduced to estimating
the solutions of a 4th-order homogeneous linear ordinary differential equation with
nonhomogenous boundary conditions. Numerical computations, which are simple
and reliable in this case, are used only to study the norms of the solutions of those
boundary value problems. The analysis carried out here has other advantages. First
of all, it clarifies the reasons for the R2 growth of the L2 norm of the resolvent,
since it shows exactly where the extra factor of R comes into the game. It also
gives some physical insight about the problem, showing that different components of
perturbations of the base flow have different scales with respect to R. We also discuss
the reasons for the better dependence of the resolvent on R when the weighted norm
from [10] is used.

2. The problem. We first give some notations that will be used throughout
this work.

In general, elements of R3 will be represented by boldface letters. The same letter
may be used for one of the coordinates of the vector. For example, when convenient,
we write x = (x, y, z) ∈ R3. We denote by Ω the set

Ω := [0, 2π] × [0, 2π] × [0, 1].

The Euclidean inner product in R3 is denoted by ·; that is, for x = (x1, x2, x3),
y = (y1, y2, y3), we have

x · y =

3∑
i=1

xiyi.

The L2 inner product and norm over Ω are denoted, respectively, by

〈u1,u2〉 =

∫
Ω

u1 · u2 dx, ‖u‖2 = 〈u,u〉.

In our choice of coordinates, the Couette flow is the vector field U = (0, z, 0), which
is a steady solution of

Ut + (U · ∇)U + ∇P =
1

R
∆U,

∇ · U = 0,

U(x, y, 0, t) = (0, 0, 0),

U(x, y, 1, t) = (0, 1, 0),

U(x, y, z, t) = U(x + 2π, y, z, t),

U(x, y, z, t) = U(x, y + 2π, z, t)

(2.1)

for P a constant. The positive parameter R is the Reynolds number. We consider
R ≥ 1, since this is the physically interesting case. We also note that there are no
technical reasons for this assumption, only a slight simplification of the presentation.
Problem (2.1) describes the flow of an incompressible fluid between the two parallel
planes z = 0 and z = 1, the plane z = 0 at rest and the plane z = 1 moving in the y
direction with constant velocity 1.

We want to analyze the resolvent of the linear operator associated with pertur-
bations of the Couette flow U. Therefore, we consider the initial boundary value
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problem

ut + (u · ∇)U + (U · ∇)u + ∇p =
1

R
∆u + F,

∇ · u = 0,

u(x, y, 0, t) = u(x, y, 1, t) = (0, 0, 0),

u(x, y, z, t) = u(x + 2π, y, z, t),

u(x, y, z, t) = u(x, y + 2π, z, t),

u(x, y, z, 0) = (0, 0, 0),

(2.2)

which is the linearization of the equations governing three-dimensional perturbations
u(x, t) = (u(x, t), v(x, t), w(x, t)) of U. The forcing F(x, t) = (F (x, t), G(x, t), H(x, t))
is a given C∞ function, satisfying∫ ∞

0

‖F(·, t)‖2 dt < ∞, ∇ · F = 0.(2.3)

The pressure term p(x, y, z, t) in (2.2) is determined up to a constant in terms of u
by the linear elliptic problem

∆p = −∇ · ((u · ∇)U) −∇ · ((U · ∇)u) = −2wy,

pz(x, y, 0, t) =
1

R
wzz(x, y, 0, t),(2.4)

pz(x, y, 1, t) =
1

R
wzz(x, y, 1, t).

Moreover, if p is given by the problem above, the solution u of (2.2) remains divergence-
free. Therefore, we drop the continuity equation and write (2.2) as the linear evolution
equation

ut = LRu + F,
(2.5)

u(x, 0) = (0, 0, 0),

where the linear operator LR is defined by

LRu :=
1

R
∆u − (u · ∇)U − (U · ∇)u −∇p,(2.6)

with p given in terms of u by (2.4).
It was proven in [12] that all the eigenvalues of LR have negative real part for all

values of R and that the eigenvalue with the greatest real part is at least at a distance
proportional to 1

R from the imaginary axis. Our aim is to estimate the L2 norm of the
resolvent (sI−LR)−1 of LR on the unstable half-plane Re(s) ≥ 0, and to determine its
dependence on R. Our results indicate the resolvent constant supRe(s)≥0 ‖(sI−LR)−1‖
to be proportional to R2, which agrees with the direct numerical computations of
[6, 17]. Our analysis clarifies the role played by each component of the function u,
and it allows us to determine the origin of the R2 growth of the resolvent constant.

3. Estimates for the resolvent. For large |s|, estimates were already proved
[1, 10]. We state Theorem 1 from [1].

Theorem 3.1. If Re(s) ≥ 0, |s| ≥ 2
√

2(1 +
√
R), then

‖(sI − LR)−1‖2 ≤ 8

|s|2 (1 +
√
R)2 ≤ 1.
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Using these estimates and the maximum modulus theorem for holomorphic map-
pings in Banach spaces [3], one can prove (see [1]) that

sup
Re(s)≥0

‖(sI − LR)−1‖ = sup
ξ∈R

‖(iξI − LR)−1‖.(3.1)

Therefore, for our purposes, it is sufficient to consider s = iξ purely imaginary. Using
this result one can easily prove (see [1]) the following corollary.

Corollary 3.2. Let s = iξ, ξ ∈ R. If |ξ| ≥ 2(1 +
√
R), then

‖(sI − LR)−1‖2 ≤ 8

|s|2 (1 +
√
R)2 ≤ 1.

Hence, our aim is to estimate the resolvent (sI − LR)−1 for s = iξ, 0 ≤ |ξ| <
2(1 +

√
R). We write the problem (2.2) componentwise:

ut + zuy + px =
1

R
∆u + F,

vt + zvy + w + py =
1

R
∆v + G,

wt + zwy + pz =
1

R
∆w + H,(3.2)

ux + vy + wz = 0,

u(x, 0) = v(x, 0) = w(x, 0) = 0,

with u, v, w vanishing at z = 0, z = 1 and 2π periodic in both x and y directions.
Taking the Laplace transform with respect to t of the equation in (2.5), we get the
resolvent equation

sũ = LRũ + F̃.(3.3)

Componentwise, the transformed problem is

sũ + zũy + p̃x =
1

R
∆ũ + F̃ ,

sṽ + zṽy + w̃ + p̃y =
1

R
∆ṽ + G̃,

(3.4)

sw̃ + zw̃y + p̃z =
1

R
∆w̃ + H̃,

ũx + ṽy + w̃z = 0.

Our aim is to get an estimate of the form

‖ũ(·, s)‖2 ≤ CRγ‖F̃(·, s)‖2(3.5)

for Re(s) ≥ 0, where C is an absolute constant. Since the most important part of the
argument is to determine the exponent γ, we keep the notation simple by representing
by C any absolute constant appearing in different parts of this work, possibly with
different numerical values. We obtain γ = 4, which implies the norm of the resolvent
to be proportional to R2. Actually, our analysis shows that different components of
the velocity have different dependence on R. We get

‖ũ‖2 ≤ CR4‖F̃‖2,

‖ṽ‖2 ≤ CR4‖F̃‖2,(3.6)

‖w̃‖2 ≤ CR2‖F̃‖2.
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The inequalities above provide some physical insight about the problem. For a given
forcing, components of the perturbations which are parallel to the planes may grow
as R2, while the worst growth for the normal component is R.

To derive the estimates, we use the well-known equivalent formulation of the
problem in terms of the normal velocity and the normal vorticity [13, 10]. The vorticity
is defined by

η = (η1, η2, η3) := curl u.(3.7)

The transformed normal component of the velocity w̃ is the solution of(
s + z

∂

∂y

)
∆w̃ =

1

R
∆2w̃ + ∆H̃,

w̃(x, y, 0, s) = w̃(x, y, 1, s) = 0,(3.8)

w̃z(x, y, 0, s) = w̃z(x, y, 1, s) = 0.

The transformed normal component of the vorticity η̃3 satisfies(
s + z

∂

∂y

)
η̃3 + w̃x =

1

R
∆η̃3 + G̃x − F̃y,

(3.9)
η̃3(x, y, 0, s) = η̃3(x, y, 1, s) = 0.

Expand in a Fourier series in the x and y directions. We represent by k1 and k2 the
respective parameters. Let k2 := k2

1 + k2
2. The transformed functions ŵ, η̂3 are the

solutions of the system

1

R
ŵ′′′′ −

(
s +

2k2

R
+ ik2z

)
ŵ′′ +

(
sk2 +

k4

R
+ ik2k

2z

)
ŵ = k2Ĥ − Ĥ ′′,

(3.10)
ŵ(k1, k2, 0, s) = ŵ(k1, k2, 1, s) = ŵ′(k1, k2, 0, s) = ŵ′(k1, k2, 1, s) = 0,

and

1

R
η̂′′3 −

(
s +

k2

R
+ ik2z

)
η̂3 = ik1ŵ + ik2F̂ − ik1Ĝ,

(3.11)
η̂3(k1, k2, 0, s) = η̂3(k1, k2, 1, s) = 0.

In the problems above, ′ denotes the derivative with respect to z. The equations in
(3.10) and (3.11) are, respectively, the classical Orr–Sommerfeld and Squire equations
[13, 11, 14, 15]. The transformed normal velocity ŵ, solution of (3.10), acts as a
forcing term in the equation of the transformed normal vorticity (3.11). To simplify
the notation, we define the differential operators T , T0 by

T :=
1

R
D2 −

(
s +

k2

R
+ ik2z

)
,

(3.12)
T0 := D2 − k2,

where D denotes the derivative with respect to z. Then, the differential equation in
(3.10) is written as

TT0ŵ = N := k2Ĥ − Ĥ ′′.(3.13)
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The equation for the transformed normal vorticity is

T η̂3 = ik1ŵ + ik2F̂ − ik1Ĝ.(3.14)

Lemma 3.3 follows directly from Parseval’s identity.
Lemma 3.3. If

‖û(k1, k2, ·, s)‖2 ≤ CRγ‖F̂(k1, k2, ·, s)‖2(3.15)

for all (k1, k2) ∈ Z × Z and for all s ∈ C, Re(s) ≥ 0, then

‖(sI − LR)−1‖2 ≤ CRγ , ∀s ∈ C, Re(s) ≥ 0.(3.16)

Therefore, we aim for an estimate of the form (3.15). We begin by estimating the
normal velocity.

3.1. Estimates for the normal velocity. We separate the analysis into three
cases: k2 ≥ R√

2
, k = 0, and 0 < k2 < R√

2
.

Case k2 ≥ R√
2
. The transformed normal velocity is the solution of problem

(3.10). By Corollary 3.2, we need only to consider s = iξ, ξ ∈ R, 0 ≤ |ξ| < 2(1+
√
R).

Therefore, (3.10) reads as

1

R
ŵ′′′′ −

(
iξ +

2k2

R
+ ik2z

)
ŵ′′ +

(
iξk2 +

k4

R
+ ik2k

2z

)
ŵ = N,

(3.17)
ŵ(k1, k2, 0, ξ) = ŵ(k1, k2, 1, ξ) = ŵ′(k1, k2, 0, ξ) = ŵ′(k1, k2, 1, ξ) = 0,

where N = k2Ĥ − Ĥ ′′. We prove the following theorem.
Theorem 3.4. If k2 ≥ R√

2
, then

‖ŵ′′(k1, k2, ·, s)‖2 + (k2 + k2
1)‖ŵ′(k1, k2, ·, s)‖2 + k4‖ŵ(k1, k2, ·, s)‖2

≤ CR2‖Ĥ(k1, k2, ·, s)‖2.

Proof. Taking the inner product of the differential equation in (3.17) with ŵ and
integrating by parts, one obtains

1

R
‖ŵ′′‖2 +

(
2k2

R
+ iξ

)
‖ŵ′‖2 +

(
iξk2 +

k4

R

)
‖ŵ‖2

(3.18)
+ ik2〈ŵ, ŵ′〉 + ik2〈ŵ′, zŵ′〉 + ik2k

2〈ŵ, zŵ〉 = 〈ŵ,N〉.

As can be easily checked through integration by parts, 〈ŵ, ŵ′〉 is purely imaginary,
and 〈ŵ, zŵ〉, 〈ŵ′, zŵ′〉 are both real. Hence, taking the real part of (3.18) and using
the triangle inequality, one gets

1

R
‖ŵ′′‖2 +

2k2

R
‖ŵ′‖2 +

k4

R
‖ŵ‖2 − |k2| |〈ŵ, ŵ′〉| ≤ |〈ŵ,N〉|.(3.19)

We note that (3.19) is valid for all values of the parameters.
If k2 �= 0, use the inequality

|〈ŵ, ŵ′〉| ≤ R

4|k2|
‖ŵ‖2 +

|k2|
R

‖ŵ′‖2
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to get

1

R
‖ŵ′′‖2 +

(
2k2

R
− k2

2

R

)
‖ŵ′‖2 +

(
k4

R
− R

4

)
‖ŵ‖2 ≤ |〈ŵ,N〉|.(3.20)

Since k2 ≥ R√
2

implies k4

R − R
4 ≥ k4

2R , inequality (3.20) gives

1

R
‖ŵ′′‖2 +

k2 + k2
1

R
‖ŵ′‖2 +

k4

2R
‖ŵ‖2 ≤ |〈ŵ,N〉|.(3.21)

The desired estimates follow from this inequality. To derive them, we first note that
the differential equation in (3.17) is linear. Therefore, if ŵ1, ŵ2 are the solutions of

TT0ŵ1 = k2Ĥ,

TT0ŵ2 = −Ĥ ′′,

both satisfying the same boundary conditions as ŵ, then ŵ = ŵ1 + ŵ2. We prove
estimates for ŵ1 and ŵ2.

Using inequality (3.21) for ŵ1, and the Cauchy–Schwarz inequality, one gets

1

R
‖ŵ′′

1‖2 +
k2 + k2

1

R
‖ŵ′

1‖2 +
k4

2R
‖ŵ1‖2 ≤ k2‖ŵ1‖‖Ĥ‖.(3.22)

This inequality implies

‖ŵ′′
1‖2 + (k2 + k2

1)‖ŵ′
1‖2 + k4‖ŵ1‖2 ≤ CR2‖Ĥ‖2.(3.23)

For ŵ2, first note that

〈ŵ2, Ĥ
′′〉 = 〈ŵ′′

2 , Ĥ〉,(3.24)

since the boundary conditions satisfied by ŵ2 imply that the boundary terms af-
ter integration by parts vanish. Therefore, using (3.21), and the Cauchy–Schwarz
inequality, we get

1

R
‖ŵ′′

2‖2 +
k2 + k2

1

R
‖ŵ′

2‖2 +
k4

2R
‖ŵ2‖2 ≤ ‖ŵ′′

2‖‖Ĥ‖.(3.25)

This inequality implies

‖ŵ′′
2‖2 + (k2 + k2

1)‖ŵ′
2‖2 + k4‖ŵ2‖2 ≤ CR2‖Ĥ‖2.(3.26)

Since ŵ = ŵ1 + ŵ2, inequalities (3.23) and (3.26) imply

‖ŵ′′‖2 + (k2 + k2
1)‖ŵ′‖2 + k4‖ŵ‖2 ≤ CR2‖Ĥ‖2.(3.27)

If k2 = 0, then k1 �= 0 and inequality (3.19) is

1

R
‖ŵ′′‖2 +

2k2
1

R
‖ŵ′‖2 +

k4
1

R
‖ŵ‖2 ≤ |〈ŵ,N〉|.

From this inequality, estimates follow by the same argument as above, with no re-
striction on k1.

Case k = 0. In this case, we prove the following.
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Theorem 3.5. If k = 0, we have

‖ŵ′′(0, 0, ·, s)‖2 + ‖ŵ′(0, 0, ·, s)‖2 + ‖ŵ(0, 0, ·, s)‖2 ≤ CR2‖Ĥ(0, 0, ·, s)‖2.(3.28)

Proof. For this case, problem (3.17) is

1

R
ŵ′′′′ − iξŵ′′ = −Ĥ ′′,

(3.29)
ŵ(0, 0, 0, s) = ŵ(0, 0, 1, s) = ŵ′(0, 0, 0, s) = ŵ′(0, 0, 1, s) = 0,

where s = iξ. Taking the inner product of the equation with ŵ and integrating by
parts, one gets

1

R
‖ŵ′′‖2 + iξ‖ŵ′‖2 = −〈ŵ′′, Ĥ〉.(3.30)

Taking the real part of this equation, and using the Cauchy–Schwarz inequality on its
right-hand side, we obtain

‖ŵ′′‖2 ≤ R2‖Ĥ‖2.(3.31)

Application of Poincaré’s inequality twice gives us the estimate

‖ŵ′′‖2 + ‖ŵ′‖2 + ‖ŵ‖2 ≤ CR2‖Ĥ‖2.(3.32)

Case 0 < k2 < R√
2
. For this case, we show that the problem can be reduced to

estimating the solutions of linear homogeneous ordinary differential equations with
nonhomogeneous boundary conditions. The method used here is similar to the ap-
proach in [1] to estimate the stream function for the case of two space dimensions.

Theorem 3.6. If, for all R ≥ 1, the solutions φ1(k1, k2, z, s) and φ2(k1, k2, z, s)
of

TT0φ1 = 0,
φ1(k1, k2, 0, s) = 0,
φ1(k1, k2, 1, s) = 0,
φ′

1(k1, k2, 0, s) = 1,
φ′

1(k1, k2, 1, s) = 0,

TT0φ2 = 0,
φ2(k1, k2, 0, s) = 0,
φ2(k1, k2, 1, s) = 0,
φ′

2(k1, k2, 0, s) = 0,
φ′

2(k1, k2, 1, s) = 1

(3.33)

satisfy

|k|‖φ1(k1, k2, ·, s)‖2 ≤ C
‖φ′

1(k1, k2, ·, s)‖2 ≤ C
|k|‖φ2(k1, k2, ·, s)‖2 ≤ C
‖φ′

2(k1, k2, ·, s)‖2 ≤ C
(3.34)

for some absolute constant C > 0 and for all 0 < k2 < R√
2
, s = iξ, ξ ∈ R, 0 ≤ |ξ| <

2(1 +
√
R), then

|k|‖ŵ′(k1, k2, ·, s)‖2 + k2‖ŵ(k1, k2, ·, s)‖2 ≤ CR2‖F̂‖2(3.35)

for all R ≥ 1, 0 < k2 < R√
2
, s = iξ, ξ ∈ R, 0 ≤ |ξ| < 2(1 +

√
R).

Proof. The transformed normal velocity ŵ is the solution of

TT0ŵ = N,
(3.36)

ŵ(0) = ŵ(1) = ŵ′(0) = ŵ′(1) = 0,
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where N = k2Ĥ − Ĥ ′′. To simplify the notation, we do not write explicitly the
dependence of ŵ on all the parameters.

Let g and h be solution of the system

Th =

(
1

R
D2 −

(
iξ +

k2

R
+ ik2z

))
h = N, h(0) = h(1)= 0,

(3.37)
T0g = (D2 − k2)g = h, g(0) = g(1) = 0.

Taking the inner product of the first equation with h, and integrating by parts, one
gets

− 1

R
‖h′‖2 − k2

R
‖h‖2 − iξ‖h‖2 − ik2〈h, zh〉 = 〈h,N〉.(3.38)

Taking the real part of the equation above, and noting that 〈h, zh〉 ∈ R, we get

1

R
‖h′‖2 +

k2

R
‖h‖2 ≤ |〈h,N〉|.(3.39)

As done before, since the equation satisfied by h in (3.37) is linear, we study separately
h1, h2, the solutions of

Th1 = k2Ĥ, h1(0) = h1(1) = 0,
(3.40)

Th2 = −Ĥ ′′, h2(0) = h2(1) = 0.

For h1, inequality (3.39) is

1

R
‖h′

1‖2 +
k2

R
‖h1‖2 ≤ |〈h1, k

2Ĥ〉| ≤ k2‖h1‖‖Ĥ‖,(3.41)

which implies

‖h1‖2 ≤ R2‖Ĥ‖2.(3.42)

For h2, using inequality (3.39) and integrating by parts once, we have

1

R
‖h′

2‖2 +
k2

R
‖h2‖2 ≤ |〈h2,−Ĥ ′′〉| = |〈h′

2,−Ĥ ′〉| ≤ ‖h′
2‖‖Ĥ ′‖.(3.43)

Therefore,

‖h′
2‖2 + k2‖h2‖2 ≤ CR2‖Ĥ ′‖2.(3.44)

From (2.3), we have

Ĥ ′ = −ik1F̂ − ik2Ĝ.(3.45)

Therefore, (3.44) gives

‖h′
2‖2 + k2‖h2‖2 ≤ CR2(k2

1‖F̂‖2 + k2
2‖Ĝ‖2) ≤ Ck2R2(‖F̂‖2 + ‖Ĝ‖2),(3.46)

which implies

‖h2‖2 ≤ CR2(‖F̂‖2 + ‖Ĝ‖2).(3.47)
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Using (3.42) and (3.47), we conclude that h = h1 + h2 satisfies

‖h‖2 ≤ CR2(‖F̂‖2 + ‖Ĝ‖2 + ‖Ĥ‖2) = CR2‖F̂‖2.(3.48)

For g, estimates follow in a similar and simpler way. Taking the inner product of the
second equation in (3.37) with g and integrating by parts, one can prove that

k2‖g′‖2 + k4‖g‖2 ≤ C‖h‖2.(3.49)

Using the differential equation for g in (3.37), one can also bound g′′. Therefore, one
gets

‖g′′‖2 + k2‖g′‖2 + k4‖g‖2 ≤ C‖h‖2.(3.50)

Using (3.48) and (3.50), we conclude that

‖g′′‖2 + k2‖g′‖2 + k4‖g‖2 ≤ CR2‖F̂‖2.(3.51)

It follows from the definition of g that it satisfies

TT0g = k2Ĥ − Ĥ ′′,
(3.52)

g(0) = g(1) = 0.

Therefore, g satisfies the same differential equation satisfied by ŵ, but with different
boundary conditions, since g′(0) and g′(1) do not necessarily vanish. But those values
can be estimated. Indeed, using the one-dimensional Sobolev inequality |g′|2∞ ≤
‖g′‖2 + 2‖g′‖‖g′′‖, and (3.51), we have

|k||g′(0)|2 ≤ |k||g′|2∞ ≤ |k|‖g′‖2 + 2|k|‖g′‖‖g′′‖ ≤ CR2‖F̂‖2,
(3.53)

|k||g′(1)|2 ≤ |k||g′|2∞ ≤ |k|‖g′‖2 + 2|k|‖g′‖‖g′′‖ ≤ CR2‖F̂‖2.

Now, let φ be the solution of

TT0φ = 0,

φ(0) = φ(1) = 0,

φ′(0) = g′(0),

φ′(1) = g′(1).

(3.54)

Then, ŵ = g − φ, as can be easily checked. Since we already have estimates for
g, estimates for φ will imply estimates for ŵ. Now, note that if φ1 and φ2 are the
solutions of

TT0φ1 = 0,
φ1(0) = φ1(1) = 0,

φ′
1(0) = 1,

φ′
1(1) = 0,

TT0φ2 = 0,
φ2(0) = φ2(1) = 0,

φ′
2(0) = 0,

φ′
2(1) = 1,

(3.55)

then φ = g′(0)φ1 + g′(1)φ2. Therefore, if for some absolute constant C we have

|k|‖φ1(k1, k2, ·, s)‖2 ≤ C,
‖φ′

1(k1, k2, ·, s)‖2 ≤ C,
|k|‖φ2(k1, k2, ·, s)‖2 ≤ C,
‖φ′

2(k1, k2, ·, s)‖2 ≤ C,
(3.56)
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then, using (3.53), we get

k2‖φ‖2 ≤ 2k2|g′(0)|2‖φ1‖2 + 2k2|g′(1)|2‖φ2‖2 ≤ CR2‖F̂‖2,
(3.57)

|k|‖φ′‖2 ≤ 2|k||g′(0)|2‖φ′
1‖2 + 2|k||g′(1)|2‖φ′

2‖2 ≤ CR2‖F̂‖2.

Since ŵ = g − φ, inequalities (3.51) and (3.57) imply

|k|‖ŵ′‖2 + k2‖ŵ‖2 ≤ CR2‖F̂‖2,(3.58)

which proves the theorem.
We study the solutions φ1 and φ2 of (3.55) numerically. These problems are suit-

able for a numerical approach for two main reasons: First, they are homogeneous
problems, with fixed nonhomogeneous boundary conditions for all values of the pa-
rameters k1, k2, ξ, R. Second, they need to be studied only for bounded values of k1,
k2, and s, namely for 0 < k2 < R√

2
, and s = iξ, ξ ∈ R, 0 ≤ |ξ| < 2(1 +

√
R). The

results are shown in section 4, providing evidence for the bounds (3.56).
Therefore, from the three cases studied above, we conclude that for all values of

the parameters k1, k2, and s, we have

|k|‖ŵ′‖2 + k2‖ŵ‖2 ≤ CR2‖F̂‖2, k2 �= 0,
(3.59)

‖ŵ′‖2 + ‖ŵ‖2 ≤ CR2‖F̂‖2, k = 0.

Having bounds for the normal velocity ŵ, we now derive the bounds for the normal
vorticity and use them to estimate û, v̂, the remaining components of the velocity.

3.2. Estimates for the normal vorticity. We prove the following theorem.
Theorem 3.7. If the estimates (3.59) hold, then

‖η̂′3‖2 + k2‖η̂3‖2 ≤ CR4‖F̂‖2.(3.60)

Moreover, inequality (3.60) implies

‖û‖2 + ‖v̂‖2 ≤ CR4‖F̂‖2.(3.61)

Proof. The function η̂3 is the solution of

T η̂3 =
1

R
η̂′′3 −

(
iξ +

k2

R
+ ik2z

)
η̂3 = ik1ŵ + ik2F̂ − ik1Ĝ,

(3.62)
η̂3(k1, k2, 0, ξ) = η̂3(k1, k2, 1, ξ) = 0.

Taking the inner product of the differential equation with η̂3, and integrating by parts
the first term of the resulting equation once, we get

1

R
‖η̂′3‖2 +

(
iξ +

k2

R

)
‖η̂3‖2 + ik2〈η̂3, zη̂3〉 = −ik1〈η̂3, ŵ〉 − ik2〈η̂3, F̂ 〉 + ik1〈η̂3, Ĝ〉.

Since 〈η̂3, zη̂3〉 ∈ R, taking the real part of the equation above and using the Cauchy–
Schwarz inequality, we have

1

R
‖η̂′3‖2 +

k2

R
‖η̂3‖2 ≤ |k1|‖η̂3‖‖ŵ‖ + |k2|‖η̂3‖‖F̂‖ + |k1|‖η̂3‖‖Ĝ‖.(3.63)
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If k2 = 0, the desired estimates follow directly. For k2 �= 0, (3.63) implies

|k|
R

‖η̂3‖ ≤ |k1|
|k| ‖ŵ‖ +

|k2|
|k| ‖F̂‖ +

|k1|
|k| ‖Ĝ‖ ≤ ‖ŵ‖ + ‖F̂‖ + ‖Ĝ‖ ≤ CR‖F̂‖,

where we used (3.59) to bound ‖ŵ‖. Therefore,

k2‖η̂3‖2 ≤ CR4‖F̂‖2.(3.64)

Using (3.63) and (3.64), we can bound η̂′3 by

‖η̂′3‖2 ≤ CR4‖F̂‖2.(3.65)

Inequalities (3.64) and (3.65) together give

‖η̂′3‖2 + k2‖η̂3‖2 ≤ CR4‖F̂‖2,(3.66)

which proves the first part of the theorem.
We now use (3.64) to bound û, v̂, components of the velocity. The velocity

components u and v can be recovered once one knows the normal velocity w and
normal vorticity η3 by solving, with appropriate boundary conditions, the equations

−uxx − uyy = η3y + wxz,(3.67)

−vxx − vyy = wyz − η3x.(3.68)

For the transformed functions, the equations above are

k2û = ik2η̂3 + ik1ŵ
′,(3.69)

k2v̂ = ik2ŵ
′ − ik1η̂3.(3.70)

Using (3.59) and (3.64), the estimates

k2‖û‖ ≤ CR2‖F̂‖,(3.71)

k2‖v̂‖ ≤ CR2‖F̂‖(3.72)

follow.
Inequalities (3.59), (3.71), (3.72) and Corollary 3.2 together imply

‖û(k1, k2, ·, s)‖2 =‖û(k1, k2, ·, s)‖2 + ‖v̂(k1, k2, ·, s)‖2 + ‖ŵ(k1, k2, ·, s)‖2

≤CR4‖F̂(k1, k2, ·, s)‖2 +CR4‖F̂(k1, k2, ·, s)‖2 +CR2‖F̂(k1, k2, ·, s)‖2

≤CR4‖F̂(k1, k2, ·, s)‖2

for all (k1, k2) ∈ Z × Z and for all s ∈ C, Re(s) ≥ 0. By Lemma 3.3, this implies the
resolvent estimate

‖(sI − LR)−1‖2 ≤ CR4 ∀s ∈ C, Re(s) ≥ 0.(3.73)

Remarks about weighted norms. In [10], the authors define a weighted norm ‖ ·‖3,
which is given in our coordinate system by

‖ũ‖2
3 := ‖ũ‖2 + ‖ṽ‖2 + R2‖w̃‖2.(3.74)
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Via direct numerical computations, they conclude that

‖ũ‖2
3 ≤ CR2‖F̃‖2

3.(3.75)

Our analysis shows that, if one gets estimates of the type (3.27) for all values of k1,
k2, (that is, estimating the normal velocity by the normal component of the forcing
only), inequality (3.75) follows. Indeed, in this case, the estimates for the normal
vorticity would be

‖η̂′3‖2 + k2‖η̂3‖2 ≤ CR2‖F̂‖2 + CR2‖Ĝ‖2 + CR4‖Ĥ‖2.

Then, using (3.69) and (3.70),

‖û‖2 ≤ CR2‖F̂‖2 + CR2‖Ĝ‖2 + CR4‖Ĥ‖2,

‖v̂‖2 ≤ CR2‖F̂‖2 + CR2‖Ĝ‖2 + CR4‖Ĥ‖2.

Therefore,

‖û‖2 + ‖v̂‖2 + R2‖ŵ‖2 ≤ CR2‖F̂‖2 + CR2‖Ĝ‖2 + CR4‖Ĥ‖2 = CR2‖F̂‖2
3.

We believe this to be the case. In our argument though, we need to use all the
components of the forcing F̂ to bound ŵ for 0 < k2 < R√

2
. We do not see how to

overcome this technical difficulty at the moment. To get a better R growth for the
perturbations using our estimates, we could define a weighted norm ‖ · ‖R, scaling the
components of û in the obvious way:

‖û‖2
R :=

1

R2
‖û‖2 +

1

R2
‖v̂‖2 + ‖ŵ‖2.(3.76)

For this norm, we have

‖û‖2
R ≤ CR2‖F̂‖2,(3.77)

but this does not imply a resolvent estimate, since we do not have the same norms
on both sides of the inequality.

4. Numerical results. The only part of the argument that relies on numerical
computations are the estimates for φ1 and φ2, solutions of

1

R
φ′′′′

1 −
(
iξ +

2k2

R
+ ik2z

)
φ′′

1 +

(
iξk2 +

k4

R
+ ik2k

2z

)
φ1 = 0,

φ1(k1, k2, 0, ξ) = φ1(k1, k2, 1, ξ) = 0,

φ′
1(k1, k2, 0, ξ) = 1,

φ′
1(k1, k2, 1, ξ) = 0,

and

1

R
φ′′′′

2 −
(
iξ +

2k2

R
+ ik2z

)
φ′′

2 +

(
iξk2 +

k4

R
+ ik2k

2z

)
φ2 = 0,

φ2(k1, k2, 0, ξ) = φ2(k1, k2, 1, ξ) = 0,

φ′
2(k1, k2, 0, ξ) = 0,

φ′
2(k1, k2, 1, ξ) = 1,
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Fig. 1. maxk1,k2,ξ |k|‖φ1(k1, k2, ·, iξ)‖2 for 0 < k2
1 + k2

2 < R√
2
, 0 ≤ |ξ| < 2(1 +

√
R).

for the parameter range

(k1, k2) ∈ Z, 0 < k2 = k2
1 + k2

2 <
R√
2
,

(4.1)
ξ ∈ R, 0 ≤ |ξ| < 2(1 +

√
R).

We solved these problems using the MATLAB boundary value problem solver BVP4C,
which makes use of a collocation method. A detailed description of the routine, and
the methods used therein, can be found in [5]. For each value of R, we calculate the
maximum of |k|‖φ1(k1, k2, ·, ξ)‖2, ‖φ′

1(k1, k2, ·, ξ)‖2, ‖φ2(k1, k2, ·, ξ)‖, ‖φ′
2(k1, k2, ·, ξ)‖

for the parameter range (4.1). The results, for values of R up to 10000, are shown in
Figures 1–4. The curves for φ1 and φ2 are very similar. Actually, for all considered
values of R, the absolute value of the difference between the values in Figures 1 and 3
is of order 10−6; the difference between the values in Figures 2 and 4 is of order 10−5.
These results are shown in Figures 5 and 6.

The numerical computations were performed with different absolute and relative
tolerances, using continuation in the Reynolds number for the initial guess of the
solution. The results were similar in all cases. Moreover, one just needs to ensure
that the values of the norms above are bounded. Therefore, the results should be
reliable. They indicate that, for all R,

|k|‖φ1(k1, k2, ·, s)‖2 ≤ 1,

‖φ′
1(k1, k2, ·, s)‖2 ≤ 1,

|k|‖φ2(k1, k2, ·, s)‖2 ≤ 1,

‖φ′
2(k1, k2, ·, s)‖2 ≤ 1

for 0 < k2 < R√
2
, s = iξ, ξ ∈ R, 0 ≤ |ξ| < 2(1 +

√
R).

5. Conclusions. The estimates derived here indicate the L2 norm of the resol-
vent of the linear operator associated with three-dimensional perturbations of plane
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Couette flow to be proportional to R2 for the whole unstable half-plane Re(s) ≥
0. They agree with previous numerical computations [6, 17]. In our argument
though, numerical computations are used only to estimate the solutions of 4th-order
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homogeneous linear ordinary differential equations, with nonhomogeneous boundary
conditions. Deriving the estimates analytically for the entire unstable half-plane is an
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open problem, as far as we know. We believe that Theorem 3.6 may be useful towards
a complete proof of the resolvent estimates. We hope to address this question in the
future.
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Abstract. The population of Easter Island grew steadily for some time and then suddenly
decreased dramatically. This is not the sort of behavior predicted by the usual logistic differential
equation model of an isolated population or by the predator-prey model for a population using
resources. We present a mathematical model that predicts this type of behavior when the growth
rate of the resources, such as food and trees, is less than the rate at which resources are harvested.
Our model is expressed mathematically as a system of two first-order differential equations, both
of which are generalized logistic equations. Numerical solution of the equations, using realistic
parameters, predicts values very close to archaeological observations of Easter Island. We analyze
the model by using a coordinate transformation to blow up a singularity at the origin. Our analysis
reveals surprisingly rich dynamics including a degenerate Hopf bifurcation.
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1. The model. At one time inhabitants of Easter Island prospered. They were
sufficiently sophisticated, artistically and technologically, to build and transport the
enormous mysterious statues for which the island is famous. Yet when westerners
first came in contact with the island in the late eighteenth century, the inhabitants
lived meagerly in flimsy huts and there were no trees left on the island. The island
is extremely isolated, surrounded by over 1000 miles of ocean. Archaeological records
indicate that a small group, about 50 to 150 people, sailed to Easter Island between
400 and 700 AD. The population grew to about 10,000 between 1200 and 1500 AD. It
is thought that at this time the inhabitants built the biggest statues, had large boats,
sailed on the ocean for fishing, and used the abundant large trees for building. The
inhabitants overused the resources to the point of starvation and the island’s human
population decreased drastically. As a consequence of the population’s actions, the
large trees and other resources completely disappeared from the island. For a more
detailed discussion of the history of Easter Island, see [4] and [8].

Neither of the standard elementary types of population models, logistic models
and predator-prey models, predicts this sort of growth and decline. We present a
system of differential equations for an isolated population that uses self-replenishing
resources (such as trees, plants, and animals) which exhibits this booming and crash-
ing behavior. We prove that if the population uses resources too quickly relative to
the rate at which the resources replenish themselves, then the population will increase
and then disappear in finite time. If the population uses the resources more slowly,
then the population and resources do not disappear. A thorough characterization of
solutions for various parameter values is given in Figure 5.
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For our model, let P be a population and let R be the amount of resources. Our
model is given by (1). To derive these equations, we assume that the resources would
equilibrate in the absence of people. So when the population is zero the equation
for the resources should be the standard logistic equation with c,K > 0. As in the
standard logistic model we call c the growth rate of the resources and K the carrying
capacity. The constant c has units of inverse time; it is the fraction by which the
resource supply would increase per unit time were the resource supply far from the
island’s carrying capacity. The carrying capacity K has the same units as R; it is the
maximum resource supply that the island can support.

The term −hP accounts for the harvesting of the resources. The constant h, the
harvesting constant, has units of reciprocal time; it is on the order of the reciprocal
of the average lifetime of members of the population. The population P has units of
persons, as does R; one unit of the resources is the amount of resources required to
support a member of the population through his or her lifetime. We assume that the
resources are accessible so that the amount of harvesting is proportional only to the
population. This is a reasonable assumption for people on a small island.

At any given time the size of the population that our island can support depends
on the amount of resources on the island. Given our choice of units, the island has
the capacity to support R people. The evolution of the population is described by a
logistic equation with the carrying capacity equal to R.

dR

dt
= cR

(
1 − R

K

)
− hP,(1)

dP

dt
= aP

(
1 − P

R

)
.

The positive constant a has units of inverse time. The quantity aP is the net
growth rate of the population in circumstances in which resources are abundant.
Observe that when there are no resources (R = 0) the carrying capacity for the
population is zero. This makes sense, but it causes mathematical trouble in the
form of a singularity on the P -axis. The P/R term in (1) places our model in the
class of ratio-dependent models, a class that has recently received much attention in
the population biology literature. (See [9].) In fact, a discrete predator-prey model
analogous to ours has been used by Eberhardt in [5].

The main virtues of this model are that it incorporates a variable carrying ca-
pacity for the population and that it is based on a simple but sensible account of the
interaction between a population and its resources. Moreover, the predictions of this
model match archeological data for the population of Easter Island; the predictions
of standard models, such as the logistic model and the Lotka–Volterra model, do not.
Of course a model’s prediction matching data is not sufficient, though it is necessary,
to establish the model’s validity.

Our model is notable for the singularity in (1) when R = 0. Other models of
populations similar to that of Easter Island do not involve such singularities; recent
contributions to the literature have favored modified Lotka–Volterra models. An-
deries [1] presents a general form for such models:

dR

dt
= ρ(R) −H(R,P ),(2)

dP

dt
= G(H,R)P.
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Here, ρ(R) is the growth rate of the resources, H = H(R,P ) is the rate at which
resources are harvested, and G(H,R)P is the growth rate of the population; that is,
G is the difference between the per person birth and death rates.

Brander and Taylor [3] choose the logistic form ρ(R) = cR(1−R/K) that we use
in (1). Their harvesting rate is proportional to PR, while ours is simply proportional
to P . For G, they use the linear function G(H,R) = (b−d+φR), where b is the birth
rate, d is the death rate, and φ is a constant. (The function P (t), in Anderies’s work
and in the work of some other researchers in this field, is the labor pool, whereas we
have considered, instead, the entire population.)

The harvesting model of Brander and Taylor accounts for the fact that as re-
sources become scarce, less of the resources will be harvested per person. In our
model, by contrast, the same amount of resources is harvested per person in all con-
ditions. Consequently, our model does not capture details of low-resource conditions.
The harvesting model, in which the harvesting rate is proportional to the amount of
resources, seems to err in the other direction; it probably produces an underestimate
of the harvesting rate in conditions of scarce resources. The truth is probably some-
where between the two models. While scarcity should diminish the harvesting rate,
there will be a tendency for members of the population to maintain their standard of
living at the cost of depleting resources. For conditions of plenty, our model seems
sensible, and the assumption that the harvesting rate is proportional to the resources
probably overestimates the harvesting rate.

Brander and Taylor use a population growth rate model in which the difference
between the per person birth and death rates, (b − d + φR), which is negative in
the absence of resources, increases linearly with resources. In our population growth
model, the difference between the per person birth and death rates is a(1 − P/R),
which is proportional to the unused fraction of the island’s carrying capacity.

The per person growth rate of Brander and Taylor has the familiar mathematical
form of an exponential decay model in conditions of scarcity. In the absence of re-
sources, the population in the Brander and Taylor model dies out exponentially. Our
model has the population, along with the resources, die out exponentially in some
cases and in finite time in other cases. The appealing feature, in our model, of allow-
ing the population to die out in finite time comes at the cost of an unbounded per
person death rate. As resources increase, the model of Brander and Taylor has the
difference between the per person birth and death rates become arbitrarily large. In
our model, when resources are more than sufficient for the population, the difference
between the per person birth and death rates approaches a finite positive constant.

Brander and Taylor derive their model in the framework of neoclassical economics;
they justify the form of their harvesting rate by maximizing a Cobb–Douglas utility
function. Anderies [2] takes a similar approach. He improves on their model by
introducing a more general type of utility function, a Stone–Geary utility function.
In this way, Anderies allows for a structural change in the culture when resources
are scarce. He derives a continuous per person harvesting rate that is constant in
conditions of scarcity and approaches a smaller constant asymptotically like 1/R in
conditions of great abundance. This extra level of detail allows Anderies to fit the
population data of Easter Island better than Brander and Taylor. (See graphs in [1]
and [2].)

We have not embedded our model in neoclassical economic theory; we have simply
made some plausible assumptions. We shall show, in section 2, that with reasonable
values of the parameters, our model fits the archaeological data for Easter Island
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closely. In the rest of the paper, we elaborate upon what we consider our model’s
other virtue: its exceptionally rich dynamics. We expect that this feature of the
model makes it valuable as an example of the sorts of behavior that even a simple
two-dimensional population model can exhibit.

Discussions of mathematical models like ours—models of the interaction of a
human population and its resources—often include speculation about implications
of the analysis for the population of the earth as a whole. We shall do this too,
but with misgivings; models like ours do not capture the causes of the growth and
advancement of modern technological societies. For example, one of the premises of
our model is that resources grow and flourish independent of humans, that the only
effect that the humans have on the resources is that the humans harvest them. This
is a simplification even for the case of the Easter Islanders, who probably engaged in
some of the cultivation of resources that is a hallmark of technological civilizations.
For modern civilization, even the idea of resources as something given, apart from
humans, is wrong; human ingenuity turns natural materials and phenomena into
resources. Finally, at the most abstract level, models like ours do not even address the
essential issues of the survival of a species that does things like construct mathematical
models of its interaction with its environment.

That said, our model suggests a scenario not often considered for the overpopu-
lation of the Earth. If a population overuses its resources (for our model, if h > c),
the population will become large while the resources decrease. This situation results
in a gradual exponential population growth for an extended period of time and then
a sudden catastrophic elimination of the population. (See Figure 2.)

In section 2 we compare numerical approximations of solutions to archaeological
data of Easter Island. In section 3 we prove our main theorem and describe general
behavior of solutions.

2. Archaeological data of Easter Island and the world population. In
this section we compare the population of Easter Island and the population predicted
by a numerical solution of (1). We also provide a projection of the world population
under the assumption the humans are overusing their resources. It is well accepted
that numerical models do not provide accurate numbers for projecting human popula-
tions, in part because the constants (growth rate, etc.) for human populations depend
on ever-changing social and technological factors. However, mathematical models do
provide the approximate “shape” of the graph of a human population. We provide
the Easter Island model in part as confirmation that the shape of solutions to (1)
is reasonable for the human population and apply a solution with this shape to the
world’s human population.

A good summary of Easter Island history is given in Cohen’s excellent text [4] on
global population:

The best current estimate is that the population began with a
boatload of settlers in the first half millennium after Christ, perhaps
around 400 A.D. The population remained low until about A.D. 1100.
Growth then accelerated and the population then doubled every cen-
tury until about 1400. Slower growth continued until at most 6000 to
8000 people occupied the island around 1600. The maximum popu-
lation may have reached 10,000 people in A. D. 1680. A Decline then
set in. Jean François de Galaup Comte de La Pérouse, who visited
the island in 1786, estimated a population of 2000, and this estimate
is now accepted as roughly correct.
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The graph of population as a function of time for a numerical approximation
to system 1 is shown in Figure 1. Note that the solution matches Cohen’s historical
estimate until around 1780. However, the population of Easter Island did not actually
disappear as it does in the model. We expect that once the population became small
enough, factors other than those considered in the model became important for the
population. For example, records suggest that the people on Easter Island changed
their diet to smaller animals and grasses after their larger ecosystem was destroyed.

In the numerical solution graphed in Figure 1 we used a = .0044, which is con-
sistent with historical observations of developing countries prior to the second world
war. We took the island’s carrying capacity, K, to be 70, 000. It has been estimated
(see [4]) that the amount of fertile land needed to supply food for one person is ap-
proximately 350 square meters, varying to a great degree depending on the type of
land and climate. The area of Easter Island is approximately 166,000,000 square me-
ters. If all of it were fertile and if it were farmed efficiently, there would be enough
food for 475,000 people. Since only some of the land is farmable, this makes our
approximation of K = 70, 000 reasonable. The values c = 0.001 and h = 0.025 are
more difficult to justify; we chose these values to fit the data. Note, however, that h
is on the order of the reciprocal of a lifespan as suggested in section 1.
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Fig. 1. The graph of population versus time for a solution to (1) modeling the population of
Easter Island. Each “x” is a data point approximated using archaeology.

We do not claim that Figure 1 proves that the population of Easter Island evolved
according to the dynamics of (1). But we think it suggests that these equations do
provide a reasonable model for an isolated population with limited self-replenishing
resources.

A numerical approximation of the world’s population using (1) is shown in Fig-
ure 2. All of the units are in billions. We assume that the Earth’s population in
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the year 2000 is 6 (billion). For this approximation we use the carrying capacity of
the Earth as K = 1000. Approximations to the carrying capacity of the Earth vary
widely, as do definitions of what the carrying capacity means. Estimations vary from
1 billion to 1,000 billion, (see [4]), and we choose the upper limit. The growth rate
of the Earth’s human population has been in the range from 1.73 to over 2 (again,
see [4]). We use a conservative estimate of a = 1.5. We choose c and h to model a
situation where humans are barely overusing resources, h = 0.6, c = 0.5. The model
suggests that the Earth’s human population will grow steadily until it reaches a max-
imum of 350 billion in the year 2350, and then over the next 20 years the population
will decrease until either extinction or another model, such as small local farmers,
becomes appropriate. As stated earlier, we make no claim to the accuracy of these
numbers other than that the prospect of a collapse of a population, instead of a grad-
ual leveling off, is an important scenario to consider. Recall that by Figure 5, the
long term behavior of the solution, extinction or equilibrium, depends only on the
harvesting rate and the growth rate of the resources.
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Fig. 2. The graphs of population and resources versus time for a solution to (1) modeling the
world’s population.

3. Analysis of the equations. Solutions of (1) fall into three qualitatively
different categories: solutions that are asymptotic to an equilibrium point with P,R >
0, solutions that approach the singularity at P = R = 0, and periodic solutions. A
characterization of solutions for various values of h and c is given in Figure 5.

The nullclines provide some insight into the behavior of the system. The nullcline
on which dP/dt = 0 consists of the lines

P = 0, P = R.
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The nullcline on which dR/dt = 0 is the parabola P = (c/h)R
(
1 − R

K

)
or

P =
−c

hK
R2 +

c

h
R

(this can be determined by setting dR/dt = 0 and solving for P ). These nullclines
are shown, along with the direction field and a numerically integrated solution, in
Figures 3 and 4. The parabola P = ( −c

hK )R2 + c
hR always intersects the line P = 0

at (0, 0) and (K, 0). The point (K, 0) is an equilibrium point, but the point (0, 0) is
a singular point. The parabola P = ( −c

hK )R2 + c
hR intersects the line P = R at (0, 0)

and, if c > h, at (Kc (c − h), K
c (c − h)). A characterization of solutions is given in

Figure 5.
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Fig. 3. The direction field for (1) is shown along with the nullclines and one numerically
integrated solution. The constants are a = .004, c = .01,K = 25000, h = .015. The initial condition
for the solution is P = 75, R = K, which were approximately the values when settlers first landed
on Easter Island.

We simplify the equations without loss of generality by rescaling time so that
a = 1. This puts the differential equations in the form

dP

dt
= P

(
1 − P

R

)
,(3)

dR

dt
= cR

(
1 − R

K

)
− hP.(4)
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Fig. 4. The direction field for (1) is shown along with the nullclines and one numerically
integrated solution. The constants are a = .004, c = .01,K = 25000, h = .005. The initial condition
for the solution is P = 75, R = K, which were approximately the values when settlers first landed
on Easter Island. (Note that the singularity along the P -axis causes improperly drawn vectors along
the P -axis.)

We are most concerned about solutions that approach the origin, solutions that
correspond to the disappearance of both the resources and the population. Standard
local analysis near (0, 0) is not possible because of the singularity there. We blow up
this singularity through a change of variables. Let

z = P,(5)

ξ = P/R.

The equations in these new coordinates are

z′ = z(1 − ξ),(6)

ξ′ = (h− 1)ξ2 + (1 − c)ξ +
c

K
z.

Note that the new system is free of singularities. We are most interested in values
of the new coordinates for which P and R are both positive. For these values the
change of variables is invertible. Note that the change of variables takes the first
quadrant in P,R-coordinates to the first quadrant in z, ξ-coordinates, it takes vertical
lines to themselves, and it is the identity mapping (z = P, ξ = R) along the parabola
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Fig. 5. The long-term behavior of solutions depending on the growth rate of resources, c, and
the harvesting rate, h. The number in each region indicates the corresponding proposition.

P = R2. Also, the region near (0, 0) with P,R > 0 has been “blown up” to the
region near the positive ξ-axis. In particular, if an orbit approaches (0,0) with P and
R asymptotically proportional to each other, the corresponding orbit in (z, ξ) will
approach the point (0,Θ), where Θ is the asymptotic proportion. If P approaches 0
faster than R, we have ξ → 0, and if P approaches 0 slower than P , we get ξ → ∞.
Behavior near the positive P -axis is obscured. However, behavior here is easy to
understand in P,R-coordinates: the equation for the resources reduces to a logistic
equation and the population grows.

We denote the first quadrant {(z, ξ) | z > 0, ξ > 0} by Ω and denote the region
{(z, ξ) | z ≥ 0, ξ > 0} by Ω∗. Although the positive ξ-axis does not correspond to
distinct values of P and R—the whole axis corresponds to P = R = 0—we need
it to analyze asymptotic behavior. Our main tool will be the Lyapunov function
λ : Ω → R ,

λ(z, ξ) = z2h−2

(
K

2c
ξ2 − K

c
ξ +

z

2h− 1
+

K

2c
− K(1 − h/c)

2h− 2

)
,

the properties of which will be established in Lemma 2. First we establish some
qualitative behavior of the system. By linearizing the system about the point {(z, ξ)}
we obtain the Jacobian

J =

[
1−ξ z
c

K
2(h− 1)ξ + 1 − c

]
.

The equilibrium points of our system are
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• (0, 0), at which J has eigenvalues 1 and 1 − c;
• (0, c−1

h−1 ), at which J has eigenvalues h−c
h−1 and c− 1;

• (K(1 − h/c), 1), at which J has eigenvalues
2h−c−1±

√
(2h−c−1)2−4(c−h)

2 .
The behavior of solutions depends in a surprisingly complex way on the constants

h and c. This dependence is summarized in Figure 5. Our main tools in establishing
this characterization are Lemma 2, which establishes the properties of a Lyapunov
function, and Lemma 3.

We shall begin our analysis with some lemmas about basic structural features of
the system. We shall then use these lemmas to characterize the qualitative behavior
of the system for various values of h and c.

Lemma 1. The regions Ω and Ω∗ are both positive invariant. That is, if a solution
is in one of these regions initially, then it remains in the region as long as it exists.

Proof. The ξ-axis is invariant and the vector field is pointing into the first quadrant
along the positive z-axis. Specifically, if z > 0 and ξ = 0, then z′ = z and ξ′ = c

K > 0.
If z = 0 and ξ > 0, then z′ = 0 and ξ′ = (h− 1)ξ2 + (1 − c)ξ.

Note that the regions are not negative invariant and that it is possible that orbits
become unbounded in finite time.

Lemma 2. Let

λ(z, ξ) = z2h−2

(
K

2c
ξ2 − K

c
ξ +

z

2h− 1
+

K

2c
− K(1 − h/c)

2h− 2

)
.

(a) If 2h− c− 1 = 0, λ is constant on trajectories in Ω.
(b) If 2h − c − 1 < 0, λ is strictly decreasing on trajectories in Ω that are not

equilibria.
(c) If 2h − c − 1 > 0, λ is strictly increasing on trajectories in Ω that are not

equilibria.
Proof. A direct (but not short) computation yields

λ′ = (2h− c− 1)(K/c)(ξ − 1)2z2h−2,

where ′ denotes the derivative with respect to time. Statement (a) follows directly
from this computation.

To prove (b), assume 2h − c − 1 < 0. Note that λ′ < 0 except when ξ = 1. By
differentiating twice more, we obtain

λ′′ = (2h− c− 1)
K

c
[2(ξ − 1)(ξ′)z2h−2 + (ξ − 1)2(2h− 2)z2h−1z′],

λ′′′ = (2h− c− 1)
K

c
[2(ξ′)(ξ′)z2h−2 + 2(ξ − 1)(ξ′′)z2h−2

+2(ξ − 1)(ξ′)(2h− 2)z2h−1z′ + 2(ξ − 1)(ξ′)(2h− 1)z2h−1z′

+(ξ − 1)2(2h− 2)(2h− 1)z2h(z′)2 + 2(ξ − 1)(ξ′)(2h− 1)z2h−1z′′].

When ξ = 1, we have λ′′ = 0 and λ′′′ is strictly negative unless ξ′ = 0. Since the only
points with ξ = 1 and ξ′ = 0 are equilibria, statement (b) follows. Statement (c) is
proven similarly.

If xe is an equilibrium point, a function L defined on a neighborhood of xe is
called a Lyapunov function if it has a minimum at xe and is strictly decreasing on all
trajectories other than xe. The existence of a Lyapunov function establishes xe as an
attractor or a stable equilibrium (see [7].) When the level sets of L are compact and
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xe is a global minimum, the point xe is a global attractor. Since the level sets of λ
are not all compact, we use topological methods to understand global behavior.

We say that an orbit γ(t) is positively bounded if the positive orbit O+(γ) =
{γ(t) | t > 0} is bounded. We say that γ is positively unbounded if O+(γ) is unbounded.
Lemma 2 allows us to prove Lemma 3, which characterizes the long term behavior of
positively bounded solutions.

Lemma 3. Suppose that 2h−c−1 �= 0. Any positively bounded solution beginning
in Ω is asymptotic to an equilibrium point (in Ω∗).

Proof. The ω-limit set of a solution curve is defined to be

ω(γ) = ∩s>0∪t>sγ(t),

where the overbar denotes closure. It is a standard result [7] that a point p is in ω(γ) if
and only if there is a sequence {tn} with tn → ∞ as n → ∞ such that γ(tn) → p. This
follows directly from the definition of ω(γ). Another standard result [7] is that any
positively bounded solution has a nonempty ω-limit set. This result follows from the
Bolzano–Weierstrass theorem applied to the set {γ(n) |n ∈ N }. Define the ωΩ-limit
set of γ by ωΩ(γ) = ω(γ) ∩ Ω.

For this proof let γ(t) = (z(t), ξ(t)) denote a positively bounded solution of the
differential equation beginning from an initial condition in Ω. Since λ is strictly
monotonic on trajectories and continuous on Ω, it must be constant on the ωΩ-limit
set of any solution. Hence the ωΩ-limit set of any solution is the (possibly empty)
union of equilibrium points.

We claim that if ωΩ(γ) contains an equilibrium point p ∈ Ω, then ω(γ) = p. For
any δ > 0 there is a time s ∈ R such that γ(t) ∈ Bδ(p) for all t > s. Were this not
so, then for every δ > 0 the set ∂(Bδ(p))∩ γ (where ∂(Bδ(p)) = {(z, ξ) | z2 + ξ2 = δ})
would be infinite and hence have a limit point in ∂(Bδ(p)), which we call pδ. Then
pδ ∈ ω(γ) for each δ, and the limit of pδ as δ → 0 is p. Since our equilibrium
points are isolated, infinitely many of these points are nonequilibrium points, which
is impossible.

We have shown that ω(γ) either is a single equilibrium point in Ω or is contained
in Ω∗ − Ω. We claim that if ω(γ) ⊆ Ω∗ − Ω, then it consists of a single equilibrium
point. Let p ∈ Ω∗ − Ω such that p is not an equilibrium point. Since Ω∗ − Ω is the
positive ξ-axis, p is either in the stable manifold or in the unstable manifold of an
equilibrium point in Ω∗ − Ω. If p is in the stable or unstable manifold of a sink or
source, then it cannot be an ω-limit point of an orbit in Ω. Suppose that p is in
the unstable manifold of an equilibrium point pe ∈ Ω∗ − Ω and p ∈ ω(γ) for some
γ(t). The unstable manifold of pe in Ω consists of an orbit extending into Ω. By the
Lambda lemma (see [6]), this orbit is in ω(λ), contradicting our earlier assertion that
the only points of ω(γ) in Ω are equilibrium points. Similarly, p cannot be in the
stable manifold of a saddle. Hence, an ω-limit set of a positively bounded orbit in Ω
is a single equilibrium point.

In the next two lemmas we characterize unbounded solutions.
Lemma 4. If h < 1, then all orbits are positively bounded.
Proof. Suppose that γ(t) is positively unbounded. We claim that either ξ → ∞

or z → ∞. Otherwise, there exist an M > 0 and a sequence t1, t2, . . . with tn → ∞ as
n → ∞ such that ||γ(tn)|| < M for all n. Then by the Bolzano–Weierstrass theorem
the set {γ(tn) |n ∈ N } would have a limit point x0 ∈ BM ((0, 0)). This limit point
would be in the ω-limit set of γ. By the argument in the proof of Lemma 3, γ(t)
would have to be asymptotic to x0 and γ would be bounded.
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The Poincaré sphere is a standard tool for analyzing the behavior of a two-
dimensional differential equation near infinity. (See [7, p. 169].) A simple calculation
using the Poincaré sphere shows that for h < 1 there are no orbits asymptotic to
infinity. In the notation of [7], P2(X,Y ) = −XY , Q2(X,Y ) = (h − 1)Y 2, and hence
the only equilibrium points on the circle at infinity are ±(1, 0, 0) and ±(0, 1, 0), and
none of these have a stable manifold which intersects Ω.

Lemma 5. If h > 1, then any positively unbounded orbit has the property that
z(t) → 0 and ξ(t) → ∞ as t → t∗ for some finite t∗. Moreover, if ξ > max{1, c−1

h−1}
at any time along an orbit, then the orbit is positively unbounded.

Proof. Assume h > 1. Consider an orbit with initial condition (z0, ξ0) with
z > 0 and ξ > max{1, c−1

h−1}. We will show that any such orbit has the property that
z(t) → 0 and ξ(t) → ∞ as t → t∗ < ∞. For such an orbit,

ξ′ = (h− 1)ξ

(
ξ +

1 − c

h− 1

)
+

c

K
z

> (h− 1)ξ

(
ξ +

1 − c

h− 1

)
> 0.

Hence, ξ(t) > max{1, c−1
h−1} and ξ′(t) > (h− 1)ξ(ξ + 1−c

h−1 ) > 0 for all t > 0.

The differential inequality ξ′ ≥ (h − 1)ξ(ξ + 1−c
h−1 ) implies that ξ behaves like a

solution of x′ = x2; it approaches infinity in finite time. More precisely, this differential
inequality can be integrated to yield

(
ξ(ξ0 + 1−c

h−1 )

ξ0(ξ + 1−c
h−1 )

) 1
1−c

> et,

which implies that ξ → ∞ before t = (ln(ξ0+
1−c
h−1 )−ln(ξ0))/(1−c) < ln(h−c

h−1 )/(1−c) <
∞.

We now show that z(t) → 0 for this orbit. Since z′ = z(1 − ξ) and ξ → ∞, it
follows that z(t) is eventually monotonic decreasing. Since z(t) is bounded below by
0, z(t) converges to some value z∗ ≥ 0. Since ξ′ = (h− 1)ξ2 + (1 − c)ξ + c

K z and z is
bounded, ξ(t) is eventually monotonic increasing. Without loss of generality, assume
that the initial condition for this orbit is (z0, ξ0) and that z is monotonic decreasing
and ξ is monotonic increasing for all t ≥ 0. The positive orbit (z(t), ξ(t)), t ≥ 0, then
corresponds to the graph of a function z = f(ξ), f : (ξ0,∞) → (z∗, z0). Then

df

dξ
=

dz/dt

dξ/dt
< 0,

and by the fundamental theorem of calculus

z0 − z∗ =

∫ ∞

ξ0

f ′(ξ)dξ(7)

=

∫ ∞

ξ0

f(ξ)(1 − ξ)

(h− 1)ξ2 + (1 − c)ξ + c
K f(ξ)

dξ.

Note that f ′(ξ) < 0 because ξ′ > 0 and z′ < 0. Since z∗ ≤ f(ξ) ≤ z0 for all ξ,

f(ξ)(1 − ξ)

(h− 1)ξ2 + (1 − c)ξ + c
K f(ξ)

<
z∗(1 − ξ)

(h− 1)ξ2 + (1 − c)ξ + c
K z0

.



696 BILL BASENER AND DAVID S. ROSS

Observe that

lim
ξ→∞

z∗(1−ξ)
(h−1)ξ2+(1−c)ξ+ c

K z∗
−1
ξ

≥ z∗
(h− c)

≥ 0,

with equality if and only if z∗ = 0. If z∗ �= 0, the limit comparison test for indefinite
integrals implies that the integral in (7) diverges because the integral∫ ∞

ξ0

−1

ξ
dξ

diverges. This is a contradiction since z0 − z∗ is finite. Hence z(t) → z∗ = 0.
Now consider an orbit with initial condition (z0, ξ0) with z0 > 0 and ξ0 ≤

max{1, c−1
h−1}. We will show that if ξ(t) is bounded, then so is z(t). This will complete

the proof of the h > 1 portion of the lemma. Suppose, to obtain a contradiction,
that z(t) is unbounded for some orbit (z(t), ξ(t)). Since the set ξ′ = 1 is a parabola
opening to the left, there is some M such that if z > M , then ξ′ > 1. Since z(t) is
unbounded and z′(t) = z(ξ − 1) < z, there are times ta < tb with z(t) > M for all
t ∈ [ta, tb] and tb − ta > max{1, c−1

h−1}. Since Ω is positive invariant, ξ(ta) > 0. Hence,

ξ(tb) > ξ(tb) − ξ(ta) =

∫ tb

ta

ξ′dt >

∫ tb

ta

1dt > tb − ta > max

{
1,

c− 1

h− 1

}
.

Therefore, by the previous assertion, ξ(t) → ∞ and z(t) → 0. This proves that z(t)
is bounded for positive time for all orbits.

In the course of this proof, we have established an upper bound on the time
a population takes to disappear if the orbit begins in Ω with ξ > max{1, c−1

h−1}.
Specifically, ξ → ∞ before t = (ln(ξ0 + 1−c

h−1 )− ln(ξ0))/(1− c) < ln(h−c
h−1 )/(1− c). This

implies that P (t), R(t) → 0 while t < ln(h−c
h−1 )/(1 − c) < ∞.

Proposition 1. Suppose that h < c and h < 1. Then all solutions beginning in
Ω are asymptotic to the stable equilibrium at (z, ξ) = (Γ, 1), where Γ = K(1 − h/c).
Hence, in P,R-coordinates, all solutions beginning in the first quadrant are asymptotic
to the equilibrium at (P,R) = (Γ,Γ).

Proof. Since h < 1, by Lemma 4 every solution is bounded and approaches an
equilibrium solution. For these parameter values the equilibrium solutions in Ω∗ are
(0, 0), (K(1 − h/c), 1), and possibly (0, c−1

h−1 ). The only equilibrium with a nonempty
stable manifold in Ω is (K(1 − h/c), 1). Hence, all solutions are asymptotic to this
equilibrium.

Proposition 2. If h > c and h < 1, then (z, ξ) → (0, c−1
h−1 ) as t → ∞ for all

solutions. Hence, (P,R) → (0, 0) as t → ∞ with

P

R
∼ c− 1

h− 1
.

Proof. Since h < 1, by Lemma 4 all solutions are bounded. The only equilibrium
point in Ω∗ with a nonempty stable manifold in Ω is (0, c−1

h−1 ). By Lemma 3, all

solutions are asymptotic to (0, c−1
h−1 ).

An alternative proof of Proposition 2 is based on the Lyapunov function

L =
1

2

(
ξ +

1 − c

h− 1

)2

+
c

K
z
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Fig. 6. The phase planes with c = 1, h = 0.5, and K = 1 satisfying the hypothesis of Proposi-
tion 1. The nullclines are indicated by dashed lines.
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Fig. 7. The phase planes with c = 0.3, h = 0.6, and K = 1 satisfying the hypothesis of
Proposition 2. The same set of initial conditions is used for the solutions shown in each coordinate
system. The nullclines are indicated by dashed lines.

with

dL

dt
= (h− 1)ξ

(
ξ +

1 − c

h− 1

)2

+
c

K

(
h− c

h− 1

)
z,

which is negative when c < h < 1. Moreover, the level sets of L are compact. This
constitutes an alternate proof that (0, c−1

h−1 ) is a global attractor.
Proposition 3. If h > c and h > 1, then z → 0 and ξ → ∞ in finite time for

all solutions. Hence, (P,R) goes to the singularity at (0, 0) in finite time with

P

R
→ ∞.
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Fig. 8. The phase planes with c = 1, h = 2, and K = 1 satisfying the hypothesis of Proposi-
tion 3. The nullclines are indicated by dashed lines.

Proof. For our parameter values the only equilibrium solutions in Ω∗ are (0, 0)
and possibly (0, c−1

h−1 ). The equilibrium (0, 0) is unstable and (0, c−1
h−1 ) is unstable

if (0, c−1
h−1 ) ∈ Ω∗. Therefore, there are no solutions in Ω that are asymptotic to

an equilibrium solution. By Lemma 3, all solutions are unbounded. By Lemma 5,
z(t) → 0 and ξ(t) → ∞ in finite time for all solutions.

Proposition 4. Suppose that h < c, h > 1, and 2h − c − 1 > 0. For almost
every solution, z(t) → 0 and ξ(t) → ∞ in finite time. There is one solution with
ξ(t) → c−1

h−1 and one unstable equilibrium solution at (K(1 − h/c), 1).
In P,R-coordinates, almost every solution goes to the singularity at (0, 0) in finite

time with

P

R
→ ∞.

There is one solution that is asymptotic to (0, 0) with P/R ∼ c−1
h−1 and one unstable

equilibrium solution at (K(1 − h/c),K(1 − h/c)).
Proof. For our parameter values the equilibrium solutions in Ω∗ are (0, 0), (0, c−1

h−1 ),
and (K(1 − h/c), 1). The equilibrium at (0, 0) is a saddle with its stable manifold
contained in Ω∗ − Ω. The equilibrium at (0, c−1

h−1 ) is a saddle, and its stable mani-
fold is a solution extending into Ω. The equilibrium at (K(1 − h/c), 1) is unstable.
Therefore, all solutions except (K(1 − h/c), 1) and the stable manifold (0, c−1

h−1 ) are
unbounded by Lemma 3. By Lemma 5, z(t) → 0 and ξ(t) → ∞ in finite time for these
solutions.

Proposition 5. Suppose that h < c, h > 1, and 2h − c − 1 < 0. Let A denote
the region

0 < z <
−K(2h− 1)

2c

(
ξ2 − 2ξ +

2h− c− 1

h− 1

)
.

All orbits that intersect A approach the equilibrium point (Γ, 1) asymptotically; in
fact, these solutions constitute the basin of attraction of this sink. The single solution
stable manifold of (0, c−1

h−1 ) is a separatrix. All other solutions have the property that
z → 0, ξ → ∞ in finite time.
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Fig. 9. The phase planes with c = 2.5, h = 2, and K = 1 satisfying the hypothesis of Proposi-
tion 4. The nullclines are indicated by dashed lines.
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Fig. 10. The phase planes with c = 3, h = 1.5, and K = 1 satisfying the hypothesis of
Proposition 5. The nullclines are indicated by dashed lines.

In P,R-coordinates, there is an open set of orbits which are asymptotic to the
equilibrium at (P,R) = (Γ,Γ). There is an open set of orbits which approach (0, 0) in
finite time. There is a single solution that is asymptotic to (0, 0) with P/R ∼ c−1

h−1 as
t → ∞, and this solution is the separatrix between the two open sets.

Proof. By solving λ = 0 we obtain

z =
−K(2h− 1)

2c

(
ξ2 − 2ξ +

2h− c− 1

h− 1

)
.

It is easy to see that λ < 0 on A and (Γ, 1) ∈ A. Observe that the only equilibrium
point in A whose stable manifold has a nonempty intersection with A is (Γ, 1). Since
λ′(t) < 0 for all orbits in Ω by Lemma 2, all orbits are forward asymptotic to (Γ, 1).

The stable manifold of (0, c−1
h−1 ) in Ω is a single orbit. Denote this orbit by α(t).
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Near (0, c−1
h−1 ), there is a well-defined notion of above and below α. Orbits just above

α follow the unstable manifold of (0, c−1
h−1 ) up the ξ-axis. Eventually ξ(t) > c−1

h−1 for

these solutions. Since 2h−c−1 < 0, we have c−1 > 2(h−1) and c−1
h−1 = max{1, c−1

h−1}.
Therefore, ξ(t) max{1, c−1

h−1} for each of these solutions and z(t) → 0, ξ(t) → ∞ by
Lemma 5.

Orbits just below α follow the unstable manifold of (0, c−1
h−1 ) down the ξ-axis into

the region A, and these orbits are asymptotic to (Γ, 1). Therefore, α is the separatrix
between orbits asymptotic to (Γ, 1) and ones that approach (0,∞) in finite time. By
Lemmas 3 and 5, every orbit is asymptotic to (Γ, 1), (0, c−1

h−1 ), or (0,∞).
Proposition 6. Suppose that h < c, h > 1, and 2h − c − 1 = 0. Let A denote

the region

0 < z <
−K(2h− 1)

2c

(
ξ2 − 2ξ

)
.

There is a heteroclinic orbit from (0, 0) to (0, c−1
h−1 ). The boundary of A consists of this

orbit, a heteroclinic orbit in Ω∗ −Ω from (0, 0) to (0, c−1
h−1 ), and these two equilibrium

points. All orbits inside A are periodic. All orbits outside of A approach (0,∞) in
finite time.

In P,R-coordinates, there is a heteroclinic orbit from (K, 0) to (0, 0). This orbit
together with the orbit in the R-axis from (0, 0) to (K, 0) and these two equilibrium
points forms a limit cycle. Orbits within this limit cycle are all periodic. Orbits outside
of this limit cycle approach (0, 0) in finite time.
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Fig. 11. The phase planes with c = 6, h = 3.5, and K = 1 satisfying the hypothesis of
Proposition 6. The nullclines are indicated by dashed lines.

Proof. For this case, λ′(t) = 0 by Lemma 2, so λ is an integral of the system. We
want to show that it is a nondegenerate integral. The gradient of λ is

∇λ =

(
(2h− 2)z2h−3

(
K

2c
ξ2 − K

c
ξ +

z

2h− 1
+

K

2c
− K(1 − h/c)

2h− 2

)

+
z2h−2

2h− 1
, z2h−2K

c
(ξ − 1)

)
.
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Since ∂λ/∂ξ = z2h−2 K
c (ξ − 1), if ∇λ = 0 in Ω, then ξ = 1. Substituting ξ = 1 into

∂λ/∂z = 0 gives z = Γ. Hence, the only point in Ω where ∇λ = 0 is the equilibrium
(Γ, 1), and λ is nondegenerate.

From (3) with 2h− c− 1 = 0, solving λ = 0, we get

z =
−K(2h− 1)

2c

(
ξ2 − 2ξ

)
.

This is a parabola opening to the left. It intersects the ξ-axis at ξ = 0, c−1
h−1 . Since λ

is constant along solutions, this parabola is a heteroclinic orbit.

By direct computation, λ(1,Γ) = −Γ2h−1

(2h−2)(2h−1) . The orbits with −Γ2h−1

(2h−2)(2h−1) <

λ < 0 are nested periodic orbits in A that enclose convex regions containing (1,Γ).
This follows from differentiation of λ.

There are no equilibria outside A. Hence, by the Poincaré–Bendixson theorem,
all orbits outside of A are unbounded. By Lemma 5, all of these orbits approach
(0,∞) in finite time.

In conclusion we note that our system undergoes a degenerate Hopf bifurcation
when h < c, h > 1, and 2h− c− 1 changes sign. The equilibrium at (K(1 − h/c), 1)
changes from a spiral source for 2h − c − 1 > 0 to a spiral sink for 2h − c − 1 > 0.
When such a transition occurs through a classic Hopf bifurcation, a single periodic
orbit emerges from (or contracts to) the equilibrium point. The Hopf bifurcation
theorem (see [7]) identifies a large class of conditions under which such bifurcations
occur. Our system falls through the cracks of the theorem; the theorem applies to
all systems except those whose Taylor coefficients at the equilibrium satisfy a certain
equation, and the Taylor coefficients of our system satisfy that equation.
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Abstract. We give an exposition of Plücker vectors for a system of joint axes in projective
3-space. We use Plücker vectors to analyze dependencies among joint axes and in particular to show
that two rotational joints rigidly joined by a bar and each with 3 degrees of freedom always form
a 5-dimensional system. We introduce the concept of reduced redundancy in a dependent set of
projective Lines and argue that reduced redundancy in the axes of a body position increases injury
risk. We apply this to a simple two-joint model of bowling in cricket and show by analysis of some
experimental data that reduced redundancy around ball release is observed in some cases.
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1. Introduction. A variety of techniques exist for the mathematical analysis of
human motion, including techniques that are also used in robotics [15, 2]. However,
to our knowledge, nobody has yet employed the formalisms and insights of projective
geometry, well known in robotics [18, 3].

We are motivated by the analysis of certain complicated athletic effects achieved
by throwlike motions, such as a topspin serve in tennis and an away-swinger in cricket.
It is clear that the brief interval ending in the release of the ball is crucial: after release,
the ball is in free fall, except for some aerodynamic and gyroscopic effects. Thus the
athlete must release the ball in a particular state of motion (translational as well as
rotational).

Several questions arise: By what movements of the joints does a given athlete
achieve a given effect? Is there more than one way to achieve a given effect? Do some
effects require motions that are inherently more risky than others, and if so, can this
risk be characterized analytically?

Many of these questions can be illuminated by using techniques from the math-
ematics of robotics, in which the following are possible: a simple description which
unifies all aspects of the motion of the athlete and the ball, a representation in which
rotation and translation are easily combined, and a level of generality at which all
cases of reduced mobility can be found (and explicitly calculated).

In this report, we analyze what appears to us be a simple, interesting case: the
motion of a cricketer’s arm (much simplified) near the moment of delivery. We regard
the hips as fixed, the torso as rigid, and the waist and shoulder as joints, each of
which provides 3 degrees of freedom. Alert readers will notice that we ignore the
elbow, wrist, and fingers, as well as any contact motion of the ball in the hand prior
to release. For our purposes, it is assumed that the requirements of a given delivery
have prescribed the motion at the center of the wrist. However, we will see that in our
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model in all positions there are only 5 degrees of freedom for the motion of the ball.
Consequently, our system of 6 axes possesses intrinsic redundancy by design! It can
be regarded as the solution of nature to the human desire to accomplish complicated
motions. Indeed, kinematic redundancy offers an opportunity to distribute stress
over many joints (see also [15]). Our main result is to prove the existence of special
positions where reduced redundancy occurs: that is, for a given motion the amount
of rotation about one or more joint axes is fixed, while there is some freedom in
distributing motion about the remaining joint axes. These positions should not be
confused with standard kinematic singularities, as no decrease of mobility is involved;
5 degrees of freedom are always maintained. We interpret reduced redundancy as a
source of injury risk.

The paper is organized as follows: First, we describe the use of Plücker coordinates
as a unified framework for computations concerning rotations and translations in many
linked joints. Second, we describe a simplified model for the motion of an arm in the
act of releasing a legal cricket delivery, a motion associated with risk of overuse injury
[12, 14, 11]. Third, we analyze the degrees of freedom for the motion of the ball in
this model, for the general case as well as all special cases; this includes a full analysis
of reduced redundancy. Fourth, we discuss the analysis from two points of view: the
prevention of injury and the forbidden motions of the wrist. Finally, we show that
reduced redundancies indeed occur in real bowling actions by analyzing data from
two bowlers with an injury history.

2. Plücker coordinates for human motion. Human motion is the result
of rotations around joint axes, at least, infinitesimally in the first approximation
(that is, neglecting the play in the joints and the deformation of bone, cartilage, and
ligament). However, the desired motion of the end effector (in our case, the cricket
ball) will in general have components of both rotation and translation. In projective
geometry, translation can be rendered as rotation about an axis at infinity. In this
view, all motions are rotations, and Plücker coordinates are merely a convenient way
of describing them.

2.1. Projective points. In projective geometry, we identify all points on a line
through the origin in R4 with a projective Point in the corresponding projective space
P3. Thus the vector x = (λa, λb, λc, λd) ∈ R4 corresponds to p ∈ P3 for all λ �= 0.
Such a 4-vector is referred to as a set of homogeneous coordinates for p. By the usual
convention, the hyperplane H:x4 = 1 in R4 is considered as (a copy of) affine 3-space.
All Points of P3 which correspond to lines intersecting this hyperplane are called finite
points, and these are identified with the affine point of H where they intersect. So for
finite points,

(a, b, c, d) ∼ (a/d, b/d, c/d, 1) ∼ (a/d, b/d, c/d).

Notice that some lines through the origin in R4 do not intersect the hyperplane H,
and therefore some projective Points are not finite. They are said to lie at infinity,
and they are represented by homogeneous coordinates with 0 as the fourth coordinate:
(a, b, c, 0).

Similarly, planes through the origin of R4 correspond to Lines in P3. If such a
plane is parallel to the hyperplane H, then it represents a Line at infinity. Finally,
each 3-dimensional subspace of R4 is associated with a Plane in P3. The Plane
corresponding to x4 = 0 is the Plane at infinity of P3, and it contains all Points at
infinity.
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2.2. Plücker coordinates. From an algebraic point of view, a chosen set of
homogeneous coordinates for a Point p ∈P3 represents a vector in the vector space
V = R4. Now we can consider the exterior algebra built on V :

∧V = V (0)⊕V (1) ⊕ V (2) ⊕ V (3) ⊕ V (4),

which enables us to make computations with scalars (R = V (0)), vectors (V = V (1)),
but also with more complicated objects called antisymmetric tensors, and this in the
same framework. The exterior product ∧ is a bilinear, antisymmetric operation on
∧V , such that for A ∈ V (i) and B ∈ V (j) we get A ∧ B ∈ V (i+j) if i + j ≤ 4 or
A ∧ B = 0 otherwise (also in the case i + j ≤ 4 it can happen that A ∧ B = 0 in
V (i+j)).

Example 1. The elements in V (2) (the so-called 2-tensors) are products p ∧ q of
vectors p and q in V , or linear combinations of these. Notice that p ∧ q = 0 in V (2)

if p and q represent the same projective point, due to the antisymmetry.
For the reader who is not familiar with the exterior algebra it suffices to know

for our purposes that each tensor can be regarded as just some vector, and V (i)

as a real vector space of dimension
(
4
i

)
. For example, V (2) ∼= R6. Furthermore,

using the standard basis of V , there is a canonical way to construct a basis for V (i).
The corresponding coordinates arising in this manner for tensors are called Plücker
coordinates.

Let us be more specific in the case of 2-tensors, because they will be needed most
in this article. If L ∈ V (2) then we have 6 Plücker coordinates for L, by convention
labeled by double-indices:

L = (L12, L13, L14, L23, L24, L34).

In the special case that L = p ∧ q with p = (p1, p2, p3, p4) and q = (q1, q2, q3, q4),
there is an easy rule to obtain the coordinates for L: Lij = piqj − pjqi.

p ∧ q =

⎛
⎜⎜⎜⎜⎜⎜⎝

p1q2 − p2q1
p1q3 − p3q1
p1q4 − p4q1
p2q3 − p3q2
p2q4 − p4q2
p3q4 − p4q3

⎞
⎟⎟⎟⎟⎟⎟⎠

,

the elements of which are the 2× 2 minors of the matrix ( p1 p2 p3 p4
q1 q2 q3 q4 ) in lexicographic

order. If p and q represent different projective Points, then L = p ∧ q represents the
projective Line through these two Points. Of course, many other 2-tensors represent
the same Line in P3. Indeed, we can use a multiple of p or q without changing
the involved projective Points, or we can even choose another pair of Points on the
same Line. Fortunately, the new 2-tensor L′= p′∧q′ will always be a multiple of
L: L′ = αL. We conclude that the Plücker coordinates of L can be considered
as a 6-tuple of homogeneous coordinates for the projective Line represented by L.
Notice that Lines at infinity are characterized by having Plücker coordinates with
L14 = L24 = L34 = 0.

Because not every 2-tensor in V (2) can be written as the exterior product of two
vectors in V , not every 6-tuple of Plücker coordinates represents a Line in P3. More
precisely, one can prove that (L12, L13, L14, L23, L24, L34) corresponds to a projective
line if and only if it differs from zero and the Grassmann–Plücker relation is satisfied:

(GP) L14L23 − L24L13 + L34L12 = 0.
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Thus, “most” 6-tuples in R6 are not the Plücker coordinates of a projective Line.
However, there is an interesting theorem, Poinsot’s central axis theorem, which says
that each 2-tensor A not obeying (GP) can be expressed as a sum A = L + M such
that

1. L corresponds to a finite Line (not at infinity),
2. M corresponds to a Line at infinity,
3. Every affine Plane through M is perpendicular to L.

Let us give one more illustration of Plücker coordinates. Given is a 2-tensor
A = (A12, A13, A14, A23, A24, A34) and a vector p =(p1, p2, p3, p4). Then P = A ∧ p
belongs to the 4-dimensional space V (3): P = (P123, P124, P134, P234), with

P123 = A12p3 −A13p2 + A23p1,

P124 = A12p4 −A14p2 + A24p1,

P134 = A13p4 −A14p3 + A34p1,

P234 = A23p4 −A24p3 + A34p2.

In particular, if A represents a projective Line, which moreover does not contain the
projective Point represented by p, then P represents the projective Plane determined
by this Line and this Point. If the Point lies on the Line, then P = 0. In any case, if a
3-tensor differs from zero, it will represent a Plane in P3. Furthermore, it is the Plane
at infinity if and only if P124 = P134 = P234 = 0. On the other hand, if P ∈ V (3)

represents a finite Plane, the vector (P234,−P134, P124) ∈ R3 is perpendicular to the
associated affine plane.

For a good introduction to Plücker coordinates and antisymmetric tensors, in-
cluding the formal definitions, we refer to [18].

2.3. Dependencies among lines. A set of Lines in P3, finite or at infinity,
is called independent (resp., dependent) if the corresponding 2-tensors are linearly
independent (resp., dependent) in V (2) or, equivalently, if the corresponding Plücker
coordinates are linearly independent (resp., dependent) in R6. These concepts are
defined in algebraic terms; nevertheless, the possible dependencies among projective
Lines have a transparent geometric characterization. We refer to [5] for a complete
description of this. We quote only those situations that will be relevant for our
analysis.

• Two Lines can only be dependent when they coincide.
• Three Lines are dependent if and only if they lie in the same Plane and go

through the same Point.
• Four Lines are dependent if and only if at least one of the following cases

occur:
1. Three of the four Lines are dependent.
2. The four Lines lie in the same Plane.
3. The four Lines go through the same Point.
4. Two of the Lines lie in a Plane α, intersecting in Point p, and the re-

maining two Lines lie in a Plane β, intersecting in Point q, such that the
Planes α and β meet in the line pq.

5. The four Lines belong to the same system of rulers on a quadratic sur-
face.

In particular, if we are given two parallel Lines (intersecting at infinity), then a
linear combination of their Plücker coordinates will always represent a Line in the
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unique Plane through the given Lines, and which either lies at infinity, or which is
parallel to the given Lines. Four parallel Lines in 3-space are always dependent.

Example 2. As an illustration, let us consider a situation of 4 Lines, with
L1,L2,L3 concurrent (but not coplanar) through Point p, and L4 not containing
p. Clearly, these 4 Lines are independent. By taking linear combinations of the 3
concurrent Lines we can generate any Line L through p. Furthermore, if L happens to
intersect L4 (in q, say), then linear combinations of L and L4 generate Lines through
q, lying in the Plane determined by L and L4. If L and L4 do not intersect each
other, then we cannot obtain new Lines by combining them (a violation of (GP)).
We conclude that the Lines which depend on L1,L2,L3,L4, are exactly those that
contain p or that lie in the Plane through L4 and p.

Next, we will elaborate on a special case which will be important for the applica-
tions in this paper.

Theorem 2.1. Let W1,W2,W3 and S1,S2,S3 be two triples of concurrent Lines
in P3 through different Points w and s. Assume moreover that W1,W2,W3 are not
coplanar, neither are S1,S2,S3. Then the set {W1,W2,W3,S1,S2,S3} always has
rank 5. Or more explicitly, these 6 Lines are always dependent but always contain a
subset of 5 Lines which is independent.

Proof. Choose a Plücker vector P to represent the Line sw. By abuse of notation,
we let W1, . . . ,S3 stand for the Plücker vectors of the corresponding lines as well.
Then there exist linear combinations

P = α1W1+α2W2+α3W3,

P = β1S1+β2S2+β3S3,

which gives rise to the claimed dependency:

α1W1+α2W2+α3W3 − β1S1 − β2S2 − β3S3 = 0.

Next, we observe that at least one of {S1,S2,S3} does not pass through w, say
S1. From the example above we learn that {W1,W2,W3,S1} is a set of indepen-
dent Lines, and moreover, the only Lines which are dependent on these 4 Lines are
Lines through w, or Lines in the Plane determined by S1 and w. Because the triple
{S1,S2,S3} is assumed to be nonplanar, it is impossible that both S2 and S3 depend
on {W1,W2,W3,S1}, which completes the proof.

2.4. Describing kinematics by Plücker coordinates. For a more extended
exposition of the material presented in this paragraph, we refer to [18] and [4]. Con-
sider a motion of a rigid body B in 3-space. Then, every point p of B traces a path,
p = p(t). If the motion is sufficiently smooth from a mathematical point of view, we
can compute the derivative at a certain time t0, giving us the infinitesimal motion of
B at t = t0. This results in a velocity vector vp = ṗ(t0) for every point p of B. The
rigidity of B can be translated into the statement that for every pair of its points
{p, q} the distance between these points must remain constant during the motion,

||p(t) − q(t)||2 = constant,

or infinitesimally (preserved distance property),

(PDP) (vp − vq) · (p− q) = 0.

From now on, when we use the term “motion,” we always mean an infinitesimal rigid
motion: the assignment of a velocity vector to every point of B such that (PDP) is
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satisfied. Thus, we associate a vector vp to every point p of B, taking (PDP) into
account.

One important example of such a motion is a spatial rotation about the origin.
Here, there is always a line A involved, the so-called axis of rotation, containing the
origin. Points on A remain fixed (zero velocity vector), but for other points p the
velocity vp is perpendicular to the plane determined by A and p. As a matter of
fact, the rotation is specified by a vector ω along A, such that vp = ω × p (vector
cross product). The length of ω is called the angular velocity, and together with the
distance of p from the axis A, it determines the length of vp.

Another fundamental motion is a translation along a given vector v. Here, we
have a constant velocity: for every point p we put vp = v.

A crucial theorem says that every rigid motion is the composition of rotations
and translations, or infinitesimally, the velocity vectors can be written as the sum of
rotation velocities and/or translation velocities.

Consider a rotation about some axis A, not necessarily containing the origin. If
we embed affine 3-space into P3, as described in section 2.1, then we can associate
with A a projective line A, and hence a Plücker vector PA. For each point p in R3

we choose the standard homogeneous coordinates for the associated projective point
p (having p4 = 1). Now we can define the “motion of p” as the following 3-tensor:

M(p) = M = PA ∧ p ∈ V (3).

To see that this makes sense, consider a vector M = (M123,M124,M134,M234) of
Plücker coordinates. This determines the vector vp = (M234,−M134,M124) ∈ R3,
which is zero if p ∈ A, or else it is perpendicular to the plane determined by p and
A. And indeed, as one can prove that (PDP) holds for these vectors, they represent
a rotation about axis A. The unused coordinate M123 in M(p) is determined by the
fact that this 3-tensor corresponds to a plane through p. Of course, the magnitude of
the vectors vp depends on the chosen Plücker coordinates PA for A, but then again
there are an infinite number of possible rotations about axis A in R3. One can say
that the magnitude of the chosen Plücker vector accounts for the involved angular
velocity. We conclude that the 2-tensor PA encodes both the rotation axis A and the
angular velocity. Therefore, it is called the center of the motion. Taking a multiple
of PA does not change the axis, only the angular velocity. If you are interested in
the velocity of a specific point p under this motion, just perform the exterior product
PA∧p, using standard homogeneous coordinates for p.

Now that we have put spatial rotations in the setting of projective geometry, we
can extend the notion of rotation axis. Indeed, we can take A to be a line at infinity,
so if P = PA, then P14= P24= P34= 0. If we copy the previous computations for
some point p, we observe, surprisingly, that the last three Plücker coordinates of
M(p) do not depend on p. Therefore, we see that vp is a constant vector if we
perform a rotation about an axis at infinity, which must be a translation! More
precisely, vp= (P23,−P13,P12), a vector which is perpendicular to any plane in R3

whose projective extension contains the given axis at infinity A. For the sake of
uniformity, we will again call the 2-tensor PA the center of the motion, and the
3-tensor M(p) the motion itself of the point p.

Our arguments will directly take place in P3 or ∧R4, but readers who like to
switch to affine space now and then should remember

p = (p1, p2, p3) −→p = (p1, p2, p3, 1),

vp = (M234,−M134,M124) ←−M(p) =(M123,M124,M134,M234).



708 H. LAURIE AND R. PENNE

In this setting, the zero-tensor in V (3) corresponds to the zero velocity.
As mentioned before, composing two motions comes down to adding the velocity

vectors in each point p. Let the corresponding centers of motion be denoted by C1

and C2, Plücker vectors in R6. Then the resulting motion of p equals

C1 ∧ p + C2 ∧ p = (C1 + C2) ∧ p

due to a basic property of the exterior product. Now we can consider C = C1+C2

to be the center of the composite motion. This means that every Plücker vector P
in R6 can play the part of a center of some motion. More precisely, if P represents
a projective Line (satisfying (GP)), then it gives rise to a rotation (finite line) or a
translation (line at infinity); otherwise it is the center of a composition of rotations
and translations. As a consequence of Poinsot’s central axis theorem (section 2.2) we
can be even more specific in the latter case. To this end, we define a screw motion
as the composition of a rotation (infinitesimal, of course) about some axis, and a
translation (ditto) along the same axis. If a motion is not a pure translation or
rotation, then it is a screw motion.

From now on, Plücker coordinates of 2-tensors (the space R6) are interpreted as
centers of infinitesimal rigid motions.

3. A simple model for bowling a cricket delivery. Biomechanical models
for cricket motions are not that rare, but few exist for bowling [1, 11]. For our
purposes, a model simpler than either of these will suffice. We make the following
assumptions about motion just prior to delivery:

1. There is no rotation in the elbow (as is required in a legal delivery).
2. There is no rotation in the wrist, and the state of motion of the ball upon release

prescribes the motion of the so-called tool center (a term from robotics), which we
take to be the wrist.

3. The spine is taken as rigid but free to rotate as if its base is attached to the
pelvis in a ball joint (i.e., we ignore deformation of the torso), and the shoulder is
rigidly joined to the spine.

4. The joint axes of both joints pass through the center of the joint.
For greater realism, one might add more joints; for example, it is known that

the shoulder does rotate relative to the torso [8], and the ball might leave the hand
in a contact motion. This is not conceptually difficult but is computationally and
experimentally challenging. The same applies to relaxing assumption 4, to allow
noncoincident joint axes. Still more challenging would be the direct modeling of
muscle groups (as in [6, 16]), as this would increase the number of axes of rotation
substantially, and one might be hard put to identify an axis of rotation for every
muscle group, particularly those with attachments over more than one joint.

3.1. Introducing the joint axes of our model. With assumptions 1 to 4,
the system reduces to two joints, which we call the waist (w) and the shoulder (s).
Although in general w may be in motion, there is no loss of generality if we place w at
the fixed origin and identify its joint axes with axes of a reference coordinate system
XY Z. They are interpreted as follows: for a person standing, X points horizontally
forward, Y horizontally points to the left, and Z points vertically along the spine, in
our case upwards.

We choose units of length so that the right shoulder joint s is at (0,−1, 1) in the
system; since the torso is rigid, it stays there. The three joint axes through s follow
the usual convention: We choose S1 as the axis that passes through shoulder and
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Fig. 3.1. Configuration of joint axes in our simplified model of a right-handed cricket bowler,
facing away from the reader. w is the waist joint and s is the shoulder joint. Distances are
normalized so that the shoulder is at (0,−1, 1) in the waist joint axes. The dashed line corresponds
to the arm in standard position: horizontal, palm down. Note that the shoulder axes move with the
arm so that S3 is always pointing in the same direction as the palm.

elbow, in the direction of the shoulder, and S2, S3 perpendicular to each other and
to S1 so that when the arm is extended sideways horizontally wrist down, S2 points
forwards and S3 points downwards. This means that the S1S2S3 system moves with
the arm, and in particular that S3 is always perpendicular to the palm. The general
configuration is illustrated in Figure 3.1.

We note that some of our results below depend on the choice of shoulder axes. In
particular, we find a case where rotation about the s3 axis plays a significant role in
predicting injury risk. This would be indefensible if all we knew of the shoulder joint
was that it had 3 degrees of rotational freedom, because our result would disappear
under many other apparently equivalent choice of axes.

However, we do know more about how the shoulder moves and about the motion
of the arm of a fast bowler near the point of release. In that context, the s1s2s3 system
as described above is preferred and has intrinsic interpretation for two reasons. First,
s1 is an anatomically intrinsic axis in all rotations of the shoulder, because of the
role of the rotator cuff, which are the only muscles that cause rotation around s1.
Second, during the final phase of the delivery of a fast ball in cricket, the bowler’s
arm moves in a plane. Near the moment of release, the direction of s3 is tangential to
this motion (since these bowlers aim for high speed deliveries), so the plane of motion
is the s1s3 plane, and in that plane the motion is a pure rotation around the s2 axis.
By orthogonality to both the s1 and s2 axes, the s3 axis is also intrinsic.

3.2. Plücker coordinates of the 6 joint axes. The positions of the waist and
the shoulder are given by

w =
(
0 0 0 1

)
and s =

(
0 −1 1 1

)
.
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The directions of the joint axes are

W1 =
(
1 0 0 0

)
,

W2 =
(
0 1 0 0

)
,

W3 =
(
0 0 1 0

)
,

S1 =
(
a1 b1 c1 0

)
,

S2 =
(
a2 b2 c2 0

)
,

S3 =
(
a3 b3 c3 0

)
.

The six centers of rotation are then

P1 = W1 ∧ w =

(
1 0 0 0
0 0 0 1

)
=

(
0 0 1 0 0 0

)
,

P2 = W2 ∧ w =

(
0 1 0 0
0 0 0 1

)
=

(
0 0 0 0 1 0

)
,

P3 = W3 ∧ w =

(
0 0 1 0
0 0 0 1

)
=

(
0 0 0 0 0 1

)
,

P4 = S1 ∧ s =

(
a1 b1 c1 0
0 −1 1 1

)
=

(
−a1 a1 a1 b1 + c1 b1 c1

)
,

P5 = S2 ∧ s =

(
a2 b2 c2 0
0 −1 1 1

)
=

(
−a2 a2 a2 b2 + c2 b2 c2

)
,

P6 = S3 ∧ s =

(
a3 b3 c3 0
0 −1 1 1

)
=

(
−a3 a3 a3 b3 + c3 b3 c3

)
.

We collect these in the columns of the motion matrix M :

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 −a1 −a2 −a3

0 0 0 a1 a2 a3

1 0 0 a1 a2 a3

0 0 0 b1 + c1 b2 + c2 b3 + c3
0 1 0 b1 b2 b3
0 0 1 c1 c2 c3

⎞
⎟⎟⎟⎟⎟⎟⎠

.

All the information regarding configurations of the joints and possible motions can
be found by analyzing M . More precisely, infinitesimally, the motion of the wrist is a
composition of a rotation about w and a rotation about s (in our model). Thus, the
center of this motion is a linear combination of the six Plücker coordinates which we
assigned to the six given axes. This motivates us to define the column space of the
matrix M to be the motion space (of the wrist in the given position of the human
body), MS. Recall from Theorem 2.1 that the matrix M always has rank equal to
5, implying a constant dimension of 5 for the motion space. Notice that we never
obtain the full R6 as motion space in our model; this would require including further
rotations in our model, such as about the elbow or the wrist.

3.3. Possible motions under the model. Suppose the human body (in par-
ticular, the torso and the bowling arm) is in a certain position. If one intends to propel
the ball in some specific way, then this is accomplished by performing an infinitesimal
motion with the hand. In our model, the only way to realize a hand motion is by
means of rotations about the waist (3 joint axes) and/or about the shoulder (3 joint
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axes). Every (infinitesimal) rotation about one of these 6 axes is given by an appro-
priate multiple of the corresponding Plücker vector. We conclude that the motion
of the ball is controlled by a 2-tensor which is a linear combination of the 6 Plücker
vectors of our model; that is, it belongs to the column space of the matrix M (MS).
In particular, a linear combination which gives the zero 2-tensor corresponds to not
moving at all (the zero center of motion).

Clearly, the first two rows of M are equal in magnitude but opposite in sign. This
implies that every possible motion is represented by a 2-tensor with opposite Plücker
coordinates in the first two places,

B = (−a, a, b, c, d, e),

or equivalently, a possible motion is a point of R6 in the hyperplane H : p12 = −p13,
so MS ⊂ H. Furthermore, since both spaces have dimension 5, we can state that
MS = H.

Example 3. Try to perform a pure translation with your hand along the Z-axis
(the direction of the spine) by only using the waist joint and the shoulder joint. You
will not succeed! The algebraic proof for this goes as follows. Each translation along
Z is represented by a set of Plücker coordinates of the line at infinity of the XY -plane.
This means that it is a multiple of

(1, 0, 0, 0) ∧ (0, 1, 0, 0) = (1, 0, 0, 0, 0, 0),

which is not a possible motion, because it does not belong to H.
Example 4. In an analogous fashion we see that a pure translation along the

Y -axis is not possible. Indeed, such a translation is always represented by a multiple
of (0, 1, 0, 0, 0, 0), the Plücker vector for the line at infinity of the XZ-plane.

Example 5. However, a translation along the X-axis appears to be possible (this
is the direction perpendicular to the plane of the torso; fortunately for cricketers, this
direction is the one they want the ball to go). Indeed, the corresponding 2-tensor is a
multiple of (0, 0, 1, 0, 0, 0), the line at infinity of Y Z; hence it belongs to MS. But how
can this be accomplished in practice? Let L be the line through s and parallel to Y .
Because the Plücker vector of L is a linear combination of the Plücker vectors of S1,
S2, and S3, any rotation about L can be realized. Notice that L lies in the Y Z-plane,
as does the shoulder joint s in our model. Because Y and L intersect at infinity, an
appropriate linear combination of their Plücker vectors yields the line at infinity of
Y Z. We conclude that a pure translation along X can be realized by composing a
rotation about Y and a rotation about L.

Forbidden motions are interesting for two reasons. First, they are a simple way of
describing what is possible. Second, they have an associated injury risk: attempting
forbidden motion will introduce extremely large stresses, and coming close to forbid-
den motion (in the sense of a path through the motion space) may also require large
stresses, a well-known phenomenon in robotics [3].

3.4. Critical positions of the human body. In our model, the possible mo-
tions are supported by six joint axes, each with a natural physical interpretation.
Giving the spatial positions of these six axes determines what we will call the “po-
sition of the human body.” In the previous sections we explained that our analysis
of cricket bowling comes down to exploring the linear relations between the Plücker
coordinates of these six axes. To simplify computations we are entitled to make the
fixed coordinate frame coincide with the three waist axes, and that is what we did in
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section 3.2, yielding the simple structure of matrix M . So, in fact, by describing a
body position we will mean the specification of the relative position of the shoulder
axes with respect to the waist axes. It needs 3 parameters to be specified in order to
fix the orientation of S1S2S3 relative to W1W2W3 (= XY Z), for example the 3 Euler
angles. Thus the very limited positions of the human body relevant to this paper can
be regarded as points in a 3-dimensional space Pos.

3.5. Redundancy and supports. As a consequence of Theorem 2.1 we know
that, in each position of the body, our six joint axes span a 5-dimensional space (MS).
We say that our kinematic system has a generic redundancy. Further, still in each
position, basic linear algebra teaches us that we have a 1-dimensional space of linear
dependencies between our six 2-tensors (6 − 5 = 1). Redundancy in a model for
human motion is also treated in [15], where the emphasis is also on the potential for
fatigue management but the operational definition and mathematical treatment are
different.

Definition 3.1. The support of a linear dependency among a set A of vectors
is the subset of A consisting of exactly those vectors with nonzero coefficient in this
dependency.

In a given position of the body, each (nontrivial) linear dependency of the six
joint axes is a multiple of every other one. Thus, we can define merely the “support
of a body position” without specifying the linear dependency. Notice that, whatever
position we are in, we always use the same notation for our six joints axes; hence the
support can always be considered as a subset of J = {X,Y, Z, S1, S2, S3}. This can
be mathematically encoded in a map:

supp :Pos → 2J : p 
→ supp(p).

Before proceeding, let us explain the relevance of the this concept. Suppose the body
is in some position p. Let M = (M12,M13,M14,M23,M24,M34) be the motion in MS

that we want to perform. This is achieved by finding appropriate coefficients (angular
velocities):

M = αX + βY + γZ + σ1S1 + σ2S2 + σ3S3,

where the bold font reminds us of the fact that we switched to Plücker vectors (or
2-tensors). Now suppose that supp(p) = {Y,Z, S3}, corresponding to the following
relation:

λY+µZ + νS3 = 0

with nonzero coefficients λ, µ, ν. Then we can realize the same motion M as

M = αX + (β + kλ)Y + (γ + kµ)Z + σ1S1 + σ2S2 + (σ3 + kν)S3

with k an arbitrary constant. This means that the efforts done by Y , Z, and S3 can
be traded among each other, while the contributions by X, S1, and S2 are given by
fixed coefficients with no chance for compensation. From this we learn two important
things:

1. The concept of redundancy of joint axes is inherent to the human body. It is
the solution supplied by nature to distribute the necessary efforts among the
several joints for achieving a certain motion.

2. Positions in which the human body has abundant support are less strenuous
than positions with limited support.
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3.6. Critical positions. Now we arrive at the core of this paper. We will classify
the possible supports in our model. A position of the human body is called critical if
the support is smaller than expected, that is, smaller than in generic positions. We
say that a critical position suffers from redundancy with reduced support or shortly,
reduced redundancy. Our first observation says that the required work for joint axis
X can never be compensated by one of the other five axes.

Theorem 3.2. For each position p ∈ Pos we have that X /∈ supp(p).
Proof. Since the shoulder joint s is assumed to lie in the Y Z-plane, the Line

L = sw is a linear combination of Y and Z. And of course, L is a linear combina-
tion of S1,S2,S3; hence the set {S1,S2,S3,Y,Z} is dependent. Because the motion
space MS has dimension 5 in every position, X cannot be a linear combination of
S1,S2,S3,Y,Z; hence, it does not belong to the support.

Theorem 3.3. Let p be a position of the human body. We distinguish three cases
for the Line L = sw.

1. The Line L is not contained in a plane determined by any two Lines of
{S1,S2,S3}. In this case

supp(p) = {S1,S2,S3,Y,Z}.

2. The Line L does not coincide with a line of {S1,S2,S3}, but it lies in the
plane generated by two of them (L ∈ SiSj). Then

supp(p) = {Si,Sj,Y,Z}.

3. The Line L coincides with one of {S1,S2,S3} (i.e., L = Si). Then

supp(p) = {Si,Y,Z}.

Proof. The claims are an immediate consequence of what is said in section 2.3.
In case 3, if L = Si, then the Lines Y,Z,Si are concurrent and coPlanar, and so

they are dependent. The support cannot be smaller, because this would mean that
at least two of these lines coincide.

In case 2, either Lines Si,Sj,Y,Z are coPlanar or the pairs {Y,Z} and {Si,Sj}
determine two Planes that meet in the line sw through their intersections. In both
cases, the four Lines are dependent. Furthermore, no three of them are concurrent,
implying that the support is not smaller.

In case 1, we can rule out the five possibilities for the dependency of four lines
(section 2.3). We refer to Theorem 3.2 for the claim that {S1,S2,S3,Y,Z} is a
dependent set.

Remark. Cases 2 and 3 of the previous theorem correspond to the critical positions
of our model.

4. Reduced redundancy as injury risk. It is known that high levels of fitness
are attained in many cricketers [13]; nevertheless, injuries are fairly common [10] and
fatigue may play a significant role [7]. This is not the place to review the mechanisms
of overuse injury (the interested reader is referred to [17] as a starting point). We
adopt the common perspective that overuse injuries start as microinjuries such as
bruised bone and microtorn ligament. We suggest that overuse is more likely in
situations of reduced redundancy. In such cases, no compensation that reduces the
strain on a microinjured site is possible. The subject, in repeating the action, is
condemned to repeating, at the same intensity, a motion that already caused a micro-
injury. By contrast, the ability to achieve a desired motion with a range of different



714 H. LAURIE AND R. PENNE

joint rotations amounts to having the option of avoiding a motion that has caused
a microinjury. The probability of overuse injury should decrease; hence, redundancy
should correlate with reducing the risk of overuse injury. If so, then bowlers whose
body position at ball release has more reduced redundancy than others should be at
higher risk of injury, because such bowlers are less able to adapt. We also assume that
microinjury is more likely in fatigued tissues, and hence adopt the view that reducing
the probability of overuse injury is equivalent to reducing fatigue.

4.1. The role of the various joint axes. We interpret a joint axis that does
not belong to the support in a given body position as a “necessary” axis of that
position.

The joint axis X is through the “waist” joint and perpendicular to the pelvis; it
is more or less parallel to the direction of the ball around the time of release. It is
always a necessary axis, so for a particular desired motion, the amount of sideways
bending of the spine is prescribed.1 One implication of this is that injury risk due to
this motion cannot be modified.

We noted above that a largely supported redundancy should help to reduce fa-
tigue. Similarly, if an axis is necessary then no fatigue management can reduce the
rate of tiring in structures involved in rotations around it. While the human body
will have many more joint axes, our analysis suggests that bowlers will find it hard to
compensate for fatigue related to rotation around the X-axis. Anecdotal evidence sug-
gests that bowlers may attempt compensation by “falling over” as they tire. However,
studies on changes in bowling action over long spells [9] have not reported rotation
around this axis, so no scientific judgment is possible.

In critical positions we even suffer from reduced redundancy. The calculations for
reduced redundancy depend on the choice of shoulder axes. We argued above that
the s1 axis is anatomically an intrinsic axis of rotation and that s2 is dynamically an
intrinsic axis of rotation for fast bowlers, because the motion of the arm is in the s1s3

plane around the time of delivery of a fast ball.
In the bowling of a cricket fast ball, the worst-case scenario of reduced redundancy

is that S1 passes through the waist joint, which corresponds to case 3 above and implies
that rotation about the other two shoulder axes are prescribed in all motions. Let
us consider the simplest (and also most common) example: a straight arm. For such
bowlers, the most risky action is one in which wrist, elbow, shoulder, and waist all
lie on the same line very near or at the moment of delivery. Their ability to modify
the amount of rotation will be limited to axes S1, Y , and Z; thus one expects overuse
injury related to such rotations to be less common. So for them tradeoffs are only
possible among axial rotations of the arm, twisting of the spine, and bending forward
at the waist. On the other hand, coaches need to be aware that changing the rotation
in one of these axes will cause compensation in the other two axes.

We note that this situation is avoided by releasing the ball either behind or in
front of the plane of the torso (more on this below) by a round-arm action, where S1

is nearer to horizontal, and by a very upright action, where S1 is nearer to vertical.
Vertical action is usually encouraged by coaches but in some cases may tend to align
the wrist with shoulder and waist and so increase injury risk.

Furthermore, Y and Z are never necessary, so that the amount of twisting and
bending (backwards/forwards, that is) can be modified. Thus, in case of excessive

1Some care is needed here: In our model, bending of the spine is approximated by rotation of an
inflexible spine in the “waist” joint. It may be that more than one pattern of rotations of vertebrae
can achieve the desired rotation.
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rotation in these directions at the waist, it should be possible to modify the bowler’s
action to reduce these, no matter what the configuration of their joints at the moment
of delivery. For instance, excessive twisting around the Z-axis during the delivery
stride is currently regarded as a major source of injury risk (the “mixed” action, which
starts with hips and shoulders facing forwards; then the shoulders rapidly rotate and
counterrotate—see [9, 12] and many others). Our study suggests that bowlers using
a mixed action should be able to change action with relative ease.

Finally, is it possible to deliver a cricket ball with a maximally supported redun-
dancy? Yes, but such actions are unusual and discouraged by coaches. The Line
L in the analysis above corresponds to the line through waist and shoulder; it is re-
quired that this line be perpendicular to none of the shoulder joint axes. For instance,
suppose that at delivery, the X and S3 axes are parallel (certainly an aim in some
deliveries by fast- and medium- pace bowlers). Then the wrist should not be in the
plane formed by spine and shoulder (otherwise case 2 applies: L perpendicular to S2

or, equivalently, L is a linear combination of S1 and S3). So these bowlers should
deliver such balls from behind or in front of the torso (the former seems to be com-
mon). The other axes have similar requirements. L perpendicular to S1 would be
an excessively round-arm action and perhaps unlikely (though it could occur in the
slinging action of some fast bowlers). L perpendicular to S3 is perhaps harder to
avoid but should still be rare; for instance a round-arm action with the palm down at
the moment of release, which might occur in some spin bowling actions.

4.2. An example. We give an analysis of the action of two medium-fast bowlers,
both from the youth academy and hence at risk of injury, as potentially elite medium-
fast or fast bowlers. The data were kindly provided by Janine Gray of Sports Science
Institute of South Africa, who collected the data on these two bowlers as part of a
larger study. Both subjects were 17 years old and free of injury at the time the data
were collected. Bowler B had a long history of injuries, some of them from noncricket
activities. In particular, he had suffered a stress injury to the lower back, which was
seen as due to cricket. Bowler A had never been injured. Their historical workloads
were different—Bowler B had played cricket from early boyhood, while Bowler A was
a recent recruit to the game.

For each bowler, reflectors were attached to the body surface. Under stroboscopic
lighting (frequency 120 Hz), video cameras recorded the positions of the reflectors at
intervals (interval length about 8 milliseconds). The following reflectors were used
in the calculation below: two on the wrist, one on the shoulder, and three on the
waist. The three waist coordinates were assumed to lie at the vertices of a symmetric
trapezium, and the center of its circumrectangle was calculated to give w, the center
of the waist joint. In calculating s, the center of the shoulder joint, we assumed
that the shoulder is fixed relative to the waist, so a simple correction allowed us to
move from the position of the reflector on the acromion to s. The midpoint of the
two reflectors on the wrist provided the position of r, the center of the wrist. In
Figures 4.1 and 4.2 we depict aspects of the raw data: wrist position as a function of
time for both bowlers.

Calculation of redundancy then proceeds as follows. The simple subtraction w−s
and normalization gave us the unit vector l, which gives the direction of the Line L
through waist and shoulder. Similarly, s − r gives s1, the direction of S1. Since the
wrist reflectors lie in the S1S2-plane as does s1, simple orthogonalization gives s2,
and s3 is then available as the cross-product of s1 and s2. The dot products of l with
the si are then calculated, giving the direction cosines of l in the S1S2S3 axes. When
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(a)

(b)

(c)

Fig. 4.1. Wrist position as a function of time for Bowler A. The three diagrams give different
aspects. (a) Wrist height as a function of time. (b) Wrist path in the Y Z-plane (movement is
leftward on diagram). (c) Wrist path in the XZ-plane. Height and displacement in millimeters;
time steps 0.83 milliseconds apart.
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(a)

(b)

(c)

Fig. 4.2. Wrist position as a function of time for Bowler B. The three diagrams give different
aspects. (a) Wrist height as a function of time. (b) Wrist path in the Y Z-plane. (c) Wrist path in
the XZ-plane. Height and displacement in millimeters; time steps 0.83 milliseconds apart.
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Fig. 4.3. Reduced redundancy as revealed by the direction of the waist-shoulder line in shoulder
coordinates. Curves give direction cosines of L, the line from waist to shoulder, in the axes S1, S2,
and S3 of the shoulder; they are plotted against time steps (one unit of time is a few milliseconds).
Vertical lines indicate the approximate points of release. Whenever one of the direction cosines goes
to zero, reduction of redundancy occurs and the corresponding axis is absent from the support of the
body position. Bowler A maintains full support until well after the moment of delivery, but Bowler
B loses the S3 axis from the support of the motion for about 15 milliseconds on either side of the
moment of release.

reduced redundancy occurs, then l is perpendicular to one or two of the si—that is,
one of the direction cosines is zero. This is easily spotted on a graph of direction
cosines vs. time (see Figure 4.3).

The plots in Figure 4.3 cover approximately 0.4 s in time and forward motion of
about 2 meters in space. Note that for Bowler A all three direction cosines stay well
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away from zero in the period prior to release, but that for Bowler B the S3 axis goes
to zero about 15 milliseconds before release, and stays there for about 30 milliseconds.
With respect to our choice of axes, Bowler B operates with reduced redundancy around
the time of release of the ball, but not Bowler A. This suggests that Bowler B may be
less able to modify his action to cope with fatigue. This is consistent with their injury
history, as Bowler B indeed has had more injuries than Bowler A. However, it is also
true that Bowler B has had much more opportunity for overuse than Bowler A, due
to a far longer playing career. We hope to track both subjects to test whether indeed
Bowler A will remain relatively free from overuse injury, as we predict.
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1. Introduction. Recently, rod theory has been applied to the mathematical
modeling of bacterial fibers and biopolymers (e.g., DNA) to study their mechanical
properties and shapes (e.g., supercoiling). In static rod theory, an elastic rod in
equilibrium is the critical point of an elastic energy. This induces a natural question
of how to find elasticae. In our project, we ask the question, Starting from a given
rod configuration Γ in R3, can we find the critical points of a Kirchhoff elastic energy,
or the so-called elasticae, by means of geometric gradient flows? In order to keep the
model problem in this paper simple, we consider only a special isotropic Kirchhoff
elastic energy. For more general rod theory, readers are referred to [1].

Suppose f : I = R/Z → R3 is the centerline of a closed rod. Let γ = |∂xf |,
ds = γ dx be the arclength element, and ∂s = γ−1∂x be the arclength differentiation.
Denote by T = ∂sf the unit tangent vector and by κ = ∂2

sf the curvature vector of f .
A rod configuration Γ is a framed curve described by {f (s) ;T (s) ,M1 (s) ,M2 (s)},
where the material frame {T,M1,M2} forms an orthonormal frame field along f .
Thus, we can write the skew-symmetric system⎛

⎝ T ′

M ′
1

M ′
2

⎞
⎠ =

⎛
⎝ 0 m1 m2

−m1 0 m
−m2 −m 0

⎞
⎠

⎛
⎝ T

M1

M2

⎞
⎠ ,

with arbitrary functions m1 (s), m2 (s), and m (s). Consider the Kirchhoff elastic
energy E of an isotropic rod Γ, defined by

E [Γ] :=

∫
I

(
α · (m2

1 + m2
2) + β ·m2

)
ds,
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with material constants α > 0 and β ≥ 0. The term involving α gives the bending
energy, while the term involving β gives the twisting energy.

Whenever a smooth curve f has no inflection points, the Frenet frame field
{T,N,B} along f is well defined. By using the Frenet frame field, it can be eas-
ily verified that

E [Γ] =

∫
I

(
α |κ|2 + βm2

)
ds(1.1)

(e.g., see [7]). A natural frame is an orthonormal frame field along a given curve f ,
which is uniquely determined by its initial data at a point and the skew-symmetric
system, ⎛

⎝ T ′

U ′

V ′

⎞
⎠ =

⎛
⎝ 0 u v

−u 0 0
−v 0 0

⎞
⎠

⎛
⎝ T

U
V

⎞
⎠

(see [3] or [7, p. 607]). A natural frame can be thought as a frame without twisting.
As we denote by θ the angle from U to M1 with θ (0) = 0, one can verify that m
is equal to the twisting rate, i.e., m (s) = θ′ (s). Whenever f contains no inflection
points, the Frenet frame is well defined along f . Denote by φ the angle from U to
N ; then it is easy to verify that the torsion of the curve satisfies τ = φ′. Denote by
Ψ := θ−φ the angle from N to M1 and let �Ψ := Ψ (L)−Ψ (0), where L is the total
length of f . By these notations, we have

Tw [Γ] =

∫
I

m ds = �Ψ +

∫
I

τ ds.(1.2)

It is worth mentioning here that whenever f contains neither self-intersection nor
inflection points, applying the so-called Fuller–Calugareanu–White formulas provides
another approach to derive (1.2). This approach is less general and less direct, but
it reveals the topological meaning of �Ψ, although the total twisting number of Γ,
Tw [Γ], and the total torsion of f ,

∫
I
τ ds, are not topological invariants. We thus set

up the boundary value problem by prescribing a real number, �Ψ, which is called the
endpoint condition of rod configurations in the rest of this paper. From above, we
would like to emphasize that the bending energy and twisting energy interact as rod
configurations achieving the critical points of the elastic energy. More precisely, the
twisting depends on the centerlines of rods as well. Otherwise, the twisting energy
and bending energy can be considered separately, and the resulting centerlines of rod
elasticae would simply be curve elasticae.

In [7], Langer and Singer proposed to study the generalized elastic curves by

introducing the geometric functional F̃ of curves f : I → R3,

F̃ [f ] := λ3K [f ] + λ2T [f ] + λ1L [f ] ,(1.3)

where

K [f ] :=

∫
I

1

2
|κ|2 ds, T [f ] :=

∫
I

τ ds, L [f ] :=

∫
I

ds,

and λi in (1.3) are Lagrange multipliers for i = 1, 2. According to their formulation,

a generalized elastic curve f in equilibrium is a critical point of the elastic energy F̃
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among the class of curves with fixed total torsion T [f ] = T0 and length L [f ] = L. As
long as λi together with the fixed total torsion T0 fit certain relations, they showed
that f is the centerline of an isotropic elastic rod in equilibrium. The problems con-
sidered in this paper and in (1.3) are closely related to curve straightening flows.
To the authors’ knowledge, curve straightening flows have been studied by Wen [9],
Polden [8], Koiso [6], and Dziuk, Kuwert, and Schätzle [4]. At the beginning, we
tried to apply the method used in the problems of curve straightening flows to the
geometric functional F̃ proposed in [7]. However, an essential difficulty coming from
the constraint of fixing the total torsion fails this approach. Namely, after multiplying
the term of the first variation of the total torsion T [f ] by its Lagrange multiplier, the
method of L2 curvature estimates combined with Gagliardo–Nirenberg-type interpo-
lation inequalities used in the problems of curve straightening flows fails, because this
term has higher power of derivatives in total than those from K [f ].

In order to resolve the difficulty mentioned above, we propose another approach
based on Theorem 1.1 below. We learn from [5] and [7] that a symmetric elastic
rod (or, equivalently, an isotropic elastic rod) must have a constant twisting rate.
Observe that among all isotropic rod configurations Γ with constant twisting rate

m = T [f ]+�Ψ
L , and fixed length L but without inflection points, we have the identity

E [Γ] = G�Ψ,L [f ] := 2αK [f ] +
β

L
(T [f ] + �Ψ)

2
.

Theorem 1.1 basically means that the equilibrium elastic rods must stay in the subclass
of rod configurations with constant twisting rate and fixed length L. Thus, in order
to find closed elastic rods of E , we work with the geometric functional

F [f ] := G�Ψ,L [f ] + λ1 · (L [f ] − L) ,(1.4)

where λ1 is the Lagrange multiplier. It turns out that working with the functional
G�Ψ,L of curves with fixed length L is more suitable than working directly with the
rod energy E in our geometric approach.

Theorem 1.1. Let f : I = R/Z → R3 be the centerline of a closed rod Γ.
Assume f contains no inflection points. Then, subject to variations of fixed length L
and endpoint condition �Ψ in (1.2), Γ is an equilibrium of the elastic energy E if and
only if f is a critical point of the geometric functional F and the twisting rate is equal

to the constant ∆Ψ+T [f ]
L .

The inflection points in the above theorem simply mean points of zero curvature.
We exclude the situation of the limit curves containing inflection points because our
argument in Theorem 1.1 relies on the formulation of Frenet frames, which are ill-
defined at an inflection point. By the first variational formulas in Lemma 3.1, we
obtain, for the length-preserving L2 gradient flow of F the evolution equation,

∂tf = λ3 ·
(
−∇2

sκ− |κ|2

2
κ

)
+ λ2 (t) · ∇s (T × κ) + λ1 (t) · κ,(1.5)

where f : [0,∞) × I → R3 has smooth initial data f0. Here, the covariant derivative
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∇sη denotes the normal component of ∂sη, i.e., ∇sη = ∂sη − 〈∂sη, T 〉T , and

λ1 (t) :=
2α

∫
I
〈κ,∇2

sκ + |κ|2
2 κ〉 ds− 2β

L (T [f ] + �Ψ)
∫
I
〈κ,∇s (T × κ)〉 ds∫

I
|κ|2 ds

,(1.6)

λ2 (t) :=
2β

L
(T [f ] + �Ψ) , L, β > 0,(1.7)

λ3 := 2α, α > 0.(1.8)

Notice that λ1 (t) in (1.6) is chosen so that d
dtL [ft] = 0 for all time. The following

theorem is the main result of this paper.
Theorem 1.2. For any real number �Ψ and any smooth initial closed curve f0,

there exists a smooth solution to the L2-gradient flow in (1.5) until the appearance
of inflection points. With the assumption of no inflection points appearing during
the flow, the curves subconverge to f∞, an equilibrium of the energy functional F ,
after reparametrization by arclength and translation. Furthermore, if f∞ contains no
inflection points, then f∞ is the centerline of an equilibrium Kirchhoff elastic rod with

constant total twisting rate T [f∞]+�Ψ
L .

This paper is arranged as follows. In section 2 we introduce further notation and
collect the results needed from [4]. Since most of these preliminaries follow the lines
in [4], the reader is recommended to consult [4] for further details. In section 3 we
present the proof of the main results. Finally, section 4 is devoted to the numerical
treatment of the problem. We explain the algorithm we have used and show several
computational results.

2. Preliminaries.
Lemma 2.1 (Lemma 2.1 in [4]). Suppose φ is any normal field along f and

f : [0, ε)× I → Rn is a time-dependent curve satisfying ∂tf = V +ϕT , where V is the
normal velocity and ϕ = 〈T, ∂tf〉. Then the following formulas hold:

∇sφ = ∂sφ + 〈φ, κ〉T,(2.1)

∂t (ds) = (∂sϕ− 〈κ, V 〉) ds,(2.2)

∂t∂s − ∂s∂t = (〈κ, V 〉 − ∂sϕ) ∂s,(2.3)

∂tT = ∇sV + ϕ · κ,(2.4)

∂tφ = ∇tφ− 〈∇sV + ϕ κ, φ〉T,(2.5)

∇tκ = ∇2
sV + 〈κ, V 〉κ + ϕ · ∇sκ,(2.6)

(∇t∇s −∇s∇t)φ = (〈κ, V 〉 − ∂sϕ)∇sφ + 〈κ, φ〉∇sV − 〈∇sV, φ〉 · κ.(2.7)

Lemma 2.2 (Lemma 2.2 in [4]). Suppose f : [0, T̂ ) × I → Rn moves in a normal
direction with velocity ∂tf = V , φ is a normal vector field along f , and ∇tφ+∇4

sφ =
Y . Then

d

dt

1

2

∫
I

|φ|2 ds +

∫
I

∣∣∇2
sφ

∣∣2 ds =

∫
I

〈Y, φ〉 ds− 1

2

∫
I

|φ|2 〈κ, V 〉 ds.(2.8)

Furthermore, ψ = ∇sφ satisfies the equation

∇tψ + ∇4
sψ = ∇sY + 〈κ, φ〉∇sV − 〈∇sV, φ〉κ + 〈κ, V 〉ψ.(2.9)

For normal vector fields φ1, . . . , φk along f , we denote by φ1 ∗ ∗ ∗φk a term of the
type

φ1 ∗ ∗ ∗ φk =

{
〈φi1 , φi2〉 · · · 〈φik−1

, φik〉 for k even,
〈φi1 , φi2〉 · · · 〈φik−2

, φik−1
〉 · φik for k odd,
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where i1, . . . , ik is any permutation of 1, . . . , k. Slightly more generally, we allow some
of the φi to be functions, in which case the ∗-product reduces to multiplication. For a
normal vector field φ along f , we denote by Pµ

ν (φ) any linear combination of terms of
the type ∇i1

s φ ∗ · · · ∗∇iν
s φ with universal constant coefficients, where µ = i1 + · · ·+ iν

is the total number of derivatives. Notice that the following formulas hold:

⎧⎨
⎩

∇s (P a
b (φ) ∗ P c

d (φ)) = ∇sP
a
b (φ) ∗ P c

d (φ) + P a
b (φ) ∗ ∇sP

c
d (φ) ,

P a
b (φ) ∗ P c

d (φ) = P a+c
b+d (φ) , ∇sP

c
d (φ) = P c+1

d (φ) .
(2.10)

Similarly, we denote by Qµ
ν (κ) the linear combination of ∂i1

s κ ∗ ∗ ∗ ∂iν
s κ, where

i1 + · · · + iν = µ.

The following lemma states the important interpolation inequality for higher order
curvature functionals.

Lemma 2.3 (Proposition 2.5 in [4]). For any term Pµ
ν (κ) with ν ≥ 2 which

contains only derivatives of κ of order at most k − 1, we have∫
I

|Pµ
ν (κ)| ds ≤ c L [f ]

1−µ−ν ‖κ‖ν−γ
2 ‖κ‖γk,2 ,(2.11)

where γ =
(
µ + 1

2ν − 1
)
/k, c = c (n, k, µ, ν), and

‖κ‖k,p :=

k∑
i=0

∥∥∇i
sκ

∥∥
p
,

∥∥∇i
sκ

∥∥
p

:= L [f ]
i+1− 1

p

(∫
I

∣∣∇i
sκ

∣∣p ds

) 1
p

.

Moreover, if µ + 1
2ν < 2k + 1, then γ < 2 and we have for any ε > 0,

∫
I

|Pµ
ν (κ)| ds ≤ ε

∫
I

| ∇k
sκ |2 ds + cε

−γ
2−γ

(∫
I

|κ|2 ds

) ν−γ
2−γ

+ c

(∫
I

|κ|2 ds

)µ+ν−1

.

(2.12)

Lemma 2.4 (Lemma 2.6 in [4]). We have the identities

∇sκ− ∂sκ = |κ|2 T,(2.13)

∇m
s κ− ∂m

s κ =

[m2 ]∑
i=1

Qm−2i
2i+1 (κ) +

[m+1
2 ]∑

i=1

Qm+1−2i
2i (κ)T.(2.14)

Lemma 2.5 (Lemma 2.7 in [4]). Assume the bounds ‖κ‖L2 ≤ Λ0 and ‖∇m
s κ‖L1 ≤

Λm for m ≥ 1. Then for any m ≥ 1 one has

∥∥∂m−1
s κ

∥∥
L∞ + ‖∂m

s κ‖L1 ≤ cm (Λ0, . . . ,Λm) .(2.15)

3. Proof of the main results. The formulas in the next lemma can be directly
verified by applying the general formulas in Lemma 2.1. Thus, we skip the detail of
the computation and leave the verification to the reader.

Lemma 3.1. Let f : I = R/Z → R3 represent a smooth curve in R3 without
inflection points. Then, for any variation fε (x) = f (x) + εW (x), where f , W ∈
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C∞ (I), one has the following:

d
dε�ε=0L [fε] = −

∫
I

〈κ,W 〉 ds + [〈T,W 〉]L0 ,

d
dε�ε=0T [fε] = −

∫
I

〈∇s (T × κ) ,W 〉 ds

+
[
〈∇2

s (W − 〈W,T 〉T ) + 〈W,T 〉 · ∇sκ,
B
|κ| 〉 + 〈W,T × κ〉

]L
0
,

d
dε�ε=0K [fε] =

∫
I

〈∇2
sκ + |κ|2

2 κ,W 〉 ds

+
[
〈T,W 〉 · |κ|2

2 + 〈κ,∇s (W − 〈W,T 〉T )〉 − 〈∇sκ,W 〉
]L
0
.

Proof of Theorem 1.1. If we perturb the rod configuration Γ of a given elastic rod
in equilibrium without perturbing the centerline f , then

0 = δE [Γ] = β · δ
∫
I

m2 ds = 2β ·
∫
I

m · (δm) ds.(3.1)

By the endpoint condition in (1.2) and the formula m (s) = θ′ (s), we conclude that
m is a constant and

m =
(�Ψ + T [f ])

L
= L−1

∫
I

m ds.

Thus, any closed Kirchhoff elastic rod in equilibrium with endpoint condition �Ψ and
length L belongs to the subclass of rod configurations A�Ψ,L, where

A�Ψ,L :=

{
Γ : m (s) =

�Ψ + T [f ]

L
, L [f ] = L

}
.

Observe that for any rod configurations Γ ∈ A�Ψ,L, we have

E [Γ] = G�Ψ,L [f ] .(3.2)

Now, perturbations of Γ preserving the length in the subclass of rod configurations
A�Ψ,L induce the variational equation

δ (G�Ψ,L [f ] + λ1 · (L [f ] − L)) = 0,

where λ1 is the Lagrange multiplier.
Conversely, by assuming that f is the critical point of F , we have

δLG�Ψ,L [f ] = 0,

where δL denotes perturbations of preserving the length. The rod configuration Γ has

constant twisting rate (�Ψ+T [f ])
L ; therefore Γ ∈ A�Ψ,L. Thus,

δLE [Γ] = δLG�Ψ,L [f ] = 0.

Proof of Theorem 1.2. The proof is motivated by the arguments in [4]. Recalling
that no inflection point is on the initial curve, the short time existence is a standard
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argument. We thus skip it here and focus on the long time existence and asymptotic
behavior.

To prove global bounds we wish to estimate higher Sobolev norms of the curvature.
Their evolution is given by

∇t∇m
s κ = −∇4

s∇m
s κ + tensors of lesser order.

Therefore we arrive at

d

dt

1

2

∫
I

| ∇m
s κ |2 ds +

∫
I

| ∇m+2
s κ |2 ds = terms of lesser order.

It will not be necessary to compute the error terms explicitly; it is sufficient to keep
track of their scaling. In other words, we have to know the order of the derivatives
involved. Using the notation introduced before, the next lemma characterizes the
error terms coming from the twist term, i.e., dealing with the new situation that the
total torsion is included in our energy.

Lemma 3.2. For m ≥ 2, we have the formula

∇m
s (T × κ) = T ×∇m

s κ +
∑

a1,b1,c1,d1

[
P a1

b1
(κ) × P c1

d1
(κ)

]⊥
+

∑
i=1,2

∑
a
(i)
2 ,b

(i)
2 ,c

(i)
2 ,d

(i)
2 ,e

(i)
2 ,f

(i)
2

[(
P

ai
2

bi2
(κ) × P

ci2
di
2

(κ)
)
∗ P ei2

fi
2

(κ)
]⊥

+
∑

i=1,2

∑
a
(i)
3 ,b

(i)
3 ,c

(i)
3 ,d

(i)
3

((
T × P

a
(i)
3

b
(i)
3

(κ)

)
∗ P c

(i)
3

d
(i)
3

(κ)

)
,

where the sums are taken such that (a1 + c1) + (b1 + d1) /2 = m, (a
(i)
2 + c

(i)
2 + e

(i)
2 ) +

(b
(i)
2 + d

(i)
2 + f

(i)
2 )/2 = m − i, and (a

(i)
3 + c

(i)
3 ) + (b

(i)
3 + d

(i)
3 )/2 = m − i + 1/2 for

i ∈ {1, 2}.
Proof of Lemma 3.2. We first need the following formulas, which easily can be

verified by applying (2.1). Assume P a
b (φ) and P c

d (φ) are normal vector fields; then⎧⎨
⎩

∇s (P a
b (φ) × P c

d (φ)) = [(∇sP
a
b (φ) + 〈κ, P a

b (φ)〉 · T ) × P c
d (φ)

+P a
b (φ) × (∇sP

c
d (φ) + 〈κ, P c

d (φ)〉 · T )]⊥,

∇s (T × P c
d (φ)) = [κ× P c

d (φ)]
⊥

+ T × P c+1
d (φ) ,

(3.3)

where [· · ·]⊥ denotes its normal component and × denotes the exterior product in R3.
Notice that in (3.3), we use + instead of − for our convenience because the sign is
meaningless as using universal constant coefficients in those terms, Pα

β (φ).
Now the proof is an induction argument. As m = 2,

∇2
s(T × κ) = T ×∇2

sκ + (κ×∇sκ)
⊥

= T ×∇2
sκ +

(
P 0

1 (κ) × P 1
1 (κ)

)⊥
.

As m ≥ 3, we apply (2.1), (2.10), and (3.3) in the following calculation:

∇m
s (T × κ) = ∇s

{
T ×∇m−1

s κ +
∑

a1,b1,c1,d1

[
P a1

b1
(κ) × P c1

d1
(κ)

]⊥
+

2∑
i=1

∑
a
(i)
2 ,b

(i)
2 ,c

(i)
2 ,d

(i)
2 ,e

(i)
2 ,f

(i)
2

[(
P

ai
2

bi2
(κ) × P

ci2
di
2

(κ)
)
∗ P ei2

fi
2

(κ)
]⊥

+
2∑

i=1

∑
a
(i)
3 ,b

(i)
3 ,c

(i)
3 ,d

(i)
3

((
T × P

a
(i)
3

b
(i)
3

(κ)

)
∗ P c

(i)
3

d
(i)
3

(κ)

)}

= ∇s

{
I1 + I2 +

2∑
i=1

I
(i)
3 +

2∑
i=1

I
(i)
4

}
.
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1.

∇sI1 = ∇s

[
T ×∇m−1

s κ
]

= T ×∇m
s κ +

[
P 0

1 (κ) × Pm−1
1 (κ)

]⊥
.

2.

∇sI2 =
∑

a1,b1,c1,d1

∇s

[
P a1

b1
(κ) × P c1

d1
(κ)

]⊥
=

∑
a1,b1,c1,d1

∇s[P
a1

b1
(κ) × P c1

d1
(κ)] − 〈P a1

b1
(κ) × P c1

d1
(κ) , T 〉 · κ

=
∑

a1,b1,c1,d1

[((P a1+1
b1

(κ) + P a1

b1+1 (κ)T ) × P c1
d1

(κ))

+ (P a1

b1
(κ) ×

(
P c1+1
d1

(κ) + P a1

b1+1 (κ)T
)
]⊥ +

(
T × P a1

b1
(κ)

)
∗ P c1

d1+1 (κ)

=
∑

a,b,c,d

[P a
b (κ) × P c

d (κ)]
⊥

+
∑

A,B,C,D

(
T × PA

B (κ)
)
∗ PC

D (κ) ,

where (a + c) + (b + d) /2 = (a1 + c1) + (b1 + d1) /2 + 1 and (A + C) + (B + D) /2 =
(a1 + c1) + (b1 + d1) /2 + 1/2.

3.

∇sI
(i)
3 =

∑
a
(i)
2 ,b

(i)
2 ,c

(i)
2 ,d

(i)
2 ,e

(i)
2 ,f

(i)
2

∇s

[(
P

ai
2

bi2
(κ) × P

ci2
di
2

(κ)
)
∗ P ei2

fi
2

(κ)
]⊥

=
∑

a
(i)
2 ,b

(i)
2 ,c

(i)
2 ,d

(i)
2 ,e

(i)
2 ,f

(i)
2

∇s[(P
a
(i)
2

b
(i)
2

(κ) × P
c
(i)
2

d
(i)
2

(κ)) ∗ P e
(i)
2

f
(i)
2

(κ)]

− 〈(P a
(i)
2

b
(i)
2

(κ) × P
c
(i)
2

d
(i)
2

(κ)) ∗ P e
(i)
2

f
(i)
2

(κ) , T 〉 · κ

=
∑

a
(i)
2 ,b

(i)
2 ,c

(i)
2 ,d

(i)
2 ,e

(i)
2 ,f

(i)
2

∇s[(P
a
(i)
2

b
(i)
2

(κ) × P
c
(i)
2

d
(i)
2

(κ))] ∗ P e
(i)
2

f
(i)
2

(κ)

+ (P
a
(i)
2

b
(i)
2

(κ) × P
c
(i)
2

d
(i)
2

(κ)) ∗ ∇sP
e
(i)
2

f
(i)
2

(κ)

− 〈(P a
(i)
2

b
(i)
2

(κ) × P
c
(i)
2

d
(i)
2

(κ)) ∗ P e
(i)
2

f
(i)
2

(κ) , T 〉 · κ

=
∑

a,b,c,d,e,f

[(P a
b (κ) × P c

d (κ)) ∗ P e
f (κ)]⊥ +

∑
A,B,C,D

(
T × PA

B (κ)
)
∗ PC

D (κ) ,

where (a + c + e) + (b + d + f) /2 = (a
(i)
2 + c

(i)
2 + e

(i)
2 ) + (b

(i)
2 + d

(i)
2 + f

(i)
2 )/2 + 1 and

(A + C) + (B + D) /2 = (a
(i)
2 + c

(i)
2 ) + (b

(i)
2 + d

(i)
2 )/2 + 1/2.

4.

∇sI
(i)
4 =

∑
a
(i)
3 ,b

(i)
3 ,c

(i)
3 ,d

(i)
3

∇s[(T × P
a
(i)
3

b
(i)
3

(κ)) ∗ P c
(i)
3

d
(i)
3

(κ)]

=
∑

a
(i)
3 ,b

(i)
3 ,c

(i)
3 ,d

(i)
3

{∂s[(T × P
a
(i)
3

b
(i)
3

(κ)) ∗ P c
(i)
3

d
(i)
3

(κ)]}⊥

=
∑

a
(i)
3 ,b

(i)
3 ,c

(i)
3 ,d

(i)
3

{(P 0
1 (κ) × P

a
(i)
3

b
(i)
3

(κ) + (T × P
a
(i)
3 +1

b
(i)
3

(κ))) ∗ P c
(i)
3

d
(i)
3

(κ)}⊥

+ (T × P
a
(i)
3

b
(i)
3

(κ)) ∗ P c
(i)
3 +1

d
(i)
3

(κ)

=
∑

a,b,c,d

[(P a
b (κ) × P c

d (κ)) ∗ P e
f (κ)]⊥ +

∑
A,B,C,D

(
T × PA

B (κ)
)
∗ PC

D (κ) ,
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where (a + c + e) + (b + d + f) /2 = (a
(i)
3 + c

(i)
3 ) + (b

(i)
3 + d

(i)
3 )/2 + 1/2 and (A + C) +

(B + D) /2 = (a
(i)
3 + c

(i)
3 ) + (b

(i)
3 + d

(i)
3 )/2 + 1.

The proof is finished by summing up all of these terms from part 1 through part
4.

Lemma 3.3 (corresponding to Lemma 2.3 in [4]). Suppose

∂tf = −∇2
sκ + σ |κ|2 κ + λ1κ + λ2∇s (T × κ) ,

where σ, λi ∈ R. Then, for m ≥ 0, the derivatives of the curvature φm = ∇m
s κ satisfy

∇tφm + ∇4
sφm

= Pm+2
3 (κ) + σ ·

(
Pm+2

3 (κ) + Pm
5 (κ)

)
+ λ1 ·

(
∇m+2

s κ + Pm
3 (κ)

)
+ λ2 ·

(
∇m+3

s (T × κ) + ∇m+1
s (T × κ) ∗ P 0

2 (κ) + · · +∇1
s(T × κ) ∗ Pm

2 (κ)
)
.

(3.4)

The statement is still true when λi = λi (t) depends on time.
Proof of Lemma 3.3. The case of m = 0 follows from (2.6) and the definition of

∂tf ,

∇tκ = −∇4
sκ + σ · (∇2

s(|κ|
2
κ) + |κ|4 κ) + λ1 · (∇2

sκ + |κ|2 κ)
+λ2 ·

(
∇3

s(T × κ) + κ〈κ,∇s(T × κ)〉
)
.

For m ≥ 1, (3.4) can be inductively derived by using (2.9),

∇tφm + ∇4
sφm

= ∇s[P
m+1
3 (κ) + σ ·

(
Pm+1

3 (κ) + Pm−1
5 (κ)

)
+ λ1 ·

(
∇m+1

s κ + Pm−1
3 (κ)

)
+ λ2 · (∇m+2

s (T × κ) + ∇m
s (T × κ) ∗ P 0

2 (κ) + · · · + ∇1
s (T × κ) ∗ Pm−1

2 (κ))]

+ 〈κ, φm−1〉 · ∇s[−∇2
sκ + σ |κ|2 κ + λ1κ + λ2∇s (T × κ)]

− 〈∇s[−∇2
sκ + σ |κ|2 κ + λ1κ + λ2∇s (T × κ)], φm−1〉 · κ

+ 〈κ,−∇2
sκ + σ |κ|2 κ + λ1κ + λ2∇s (T × κ)〉 · φm

= Pm+2
3 (κ) + σ ·

(
Pm+2

3 (κ) + Pm
5 (κ)

)
+ λ1 ·

(
∇m+2

s κ + Pm
3 (κ)

)
+ λ2 · (∇m+3

s (T × κ) + ∇m+1
s (T × κ) ∗ P 0

2 (κ) + · · · + ∇1
s (T × κ) ∗ Pm

2 (κ)).

By (2.8) and (3.4), we have

d
dt

1
2

∫
I

| ∇m
s κ |2 ds +

∫
I

| ∇m+2
s κ |2 ds + λ1 (t)

∫
I

| ∇m+1
s κ |2 ds

= λ1 (t)

∫
I

〈∇m
s κ, Pm

3 (κ)〉 ds +

∫
I

〈∇m
s κ, Pm+2

3 (κ) + Pm
5 (κ)〉 ds

+ λ2 (t)

∫
I

〈∇m
s κ,∇m+3

s (T × κ) + ∇m+1
s (T × κ) ∗ P 0

2 (κ)

+ · · · + ∇1
s(T × κ) ∗ Pm

2 (κ)〉 ds.

(3.5)

Notice that estimating terms in (3.5) is the key argument of this paper. One can
verify from Lemma 3.1 that

d
dtF [ft] = 2α d

dtK [f ] + 2β
L (T [f ] + �Ψ) d

dtT [f ] + λ1 (t) · d
dtL [f ]

=

∫
I

〈2α(∇2
sκ +

|κ|2

2
κ) − λ2 (t)∇s(T × κ) − λ1 (t)κ, ∂tf〉 ds

= −
∫
I

| 2α(−∇2
sκ− |κ|2

2
κ) + λ2 (t)∇s(T × κ) + λ1 (t)κ |2 ds

≤ 0.

(3.6)
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Note that λ1 (t) is chosen to fulfill L [ft] ≡ L. From (3.6), F [ft] is nonincreasing as t
is increasing. Thus,

β
L (T [ft] + �Ψ)

2 ≤ 2αK [ft] + β
L (T [ft] + �Ψ)

2

= G�Ψ,L [ft] = F [ft] ≤ F [f0]

= 2αK [f0] + β
L (T [f0] + �Ψ)

2
.

Therefore,

|λ2 (t)| =
2β

L
|T [f ] + �Ψ| ≤ C (f0,�Ψ, α, β, L)(3.7)

is uniformly bounded. Furthermore, by (3.6),

‖κ‖2
L2 = 2K [ft] ≤ C (f0, α) .(3.8)

Thus ‖κ‖2
L2 is uniformly bounded for any t ≥ 0.

By applying (2.12), (3.7), (3.8), and Lemma 3.2, the sum of the last two terms in
(3.5) satisfies the inequality∫

I

〈∇m
s κ, Pm+2

3 (κ) + Pm
5 (κ)〉 ds

+λ2 (t)

∫
I

〈∇m
s κ,∇m+3

s (T × κ) + ∇m+1
s (T × κ) ∗ P 0

2 (κ)

+ · · · + ∇1
s(T × κ) ∗ Pm

2 (κ)〉 ds

≤ C (f0,�Ψ, α, β, L) ·
(
ε

∫
I

∣∣∇m+2
s κ

∣∣2 ds + C (f0,m, ε)

)
.

(3.9)

Now we estimate the term involving λ1 (t) on the right-hand side of (3.5). Since
κ = ∂2

sf , by applying the Poincaré inequality to ∂sf , we have the estimate

L ‖κ‖2
L2 ≥ 4π2.

Thus, by applying (2.11) to the right-hand side of (1.6) involving λ1 (t), we have the
estimates

|λ1 (t)|
≤ C (f0,�Ψ, α, β, L) ·

∫
I

(∣∣P 2
2 (κ)

∣∣ +
∣∣P 0

4 (κ)
∣∣ +

∣∣P 1
2 (κ)

∣∣) ds

≤ C · (‖κ‖
2

m+2

m+2,2 · ‖κ‖
2− 2

m+2

2 + ‖κ‖
1

m+2

m+2,2 · ‖κ‖
4− 2

m+2

2 + ‖κ‖
1

m+2

m+2,2 · ‖κ‖
2− 1

m+2

2 )

and∣∣∣∣
∫
I

〈∇m
s κ, Pm

3 (κ)〉 ds

∣∣∣∣ ≤
∫
I

∣∣P 2m
4 (κ)

∣∣ ds ≤ c (m,L) · ‖κ‖2− 3
m+2

m+2,2 · ‖κ‖2+ 3
m+2

2 .

Therefore, ∣∣∣∣λ1 (t)

∫
I

〈∇m
s κ, Pm

3 (κ)〉 ds

∣∣∣∣
≤ C (f0,�Ψ, α, β, L,m) · (‖κ‖2− 1

m+2

m+2,2 + ‖κ‖2− 2
m+2

m+2,2 )

≤ ε

∫
I

∣∣∇m+2
s κ

∣∣2 ds + C (f0,�Ψ, α, β, L,m, ε) ,

(3.10)
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where the last inequality comes from applying Young’s inequality and the inequality

‖κ‖2
k,2 ≤ c (k)

(∥∥∇k
sκ

∥∥2

2
+ ‖κ‖2

2

)
(can be yielded by a standard interpolation inequality; see [2]).

The remaining term in (3.5) to be estimated is λ1 (t) ·
∫
I

∣∣∇m+1
s κ

∣∣2 ds, which is
the borderline case as applying the above estimates. In other words, the interpolation
technique fails now. Instead, we use the observation that the total torsion is invariant
under the rescaling; therefore, the rescaling argument in [4] still works. More precisely,
it can be verified that as we rescale f by f (ρ) = p + ρ (f − p), we have the properties
K
[
f (ρ)

]
= 1

ρK [f ], T
[
f (ρ)

]
= T [f ] and L

[
f (ρ)

]
= ρL [f ]. Taking the derivative of

F
[
f (ρ)

]
at ρ = 1 and using (1.5), we have

2αK [f ] − λ1L [f ] = − d

dρ
F
[
f (ρ)

]
�ρ=1=

∫
I

〈∂tf, f − p〉 ds.

Thus, as long as p = p (t) is properly chosen, e.g., p = L−1
∫
I
f ds, and by the energy

identity

d

dt
F [ft] = −

∫
I

|∂tf |2 ds,(3.11)

one has the inequality

−λ1 (t) ≤ L1/2 ‖∂tf‖L2 ,

which implies the estimate∫ t

0

(
λ−

1 (τ)
)2

dτ ≤ C (f0,�Ψ, α, β, L) ,

where λ−
1 (t) = −min {0, λ1 (t)}. By applying integration by parts and the Hölder

inequality, we have

−λ1

∫
I

∣∣∇m+1
s κ

∣∣2 ds ≤ ε ·
∫
I

∣∣∇m+2
s κ

∣∣2 ds + c (ε) ·
(
λ−

1

)2 · ∫
I

|∇m
s κ|2 ds.(3.12)

Note that by applying the Poincaré inequality twice, we have

∫
I

∣∣∇m+2
s κ

∣∣2 ds ≥
(

2π

L

)4 ∫
I

|∇m
s κ|2 ds.(3.13)

Now, by (3.5), (3.9), (3.10), (3.12), (3.13), and a small enough number ε =
ε (f0,�Ψ, α, β, L,m) > 0, we have

d

dt

∫
I

|∇m
s κ|2 ds + C1 ·

∫
I

|∇m
s κ|2 ds ≤ C2 ·

(
1 + (λ−

1 (t)
2
) ·

∫
I

|∇m
s κ|2 ds

)
,

(3.14)

where we let Ci = Ci (f0,�Ψ, α, β, L,m) > 0 for all i ∈ Z, from now on. Let

um (t) := exp (C1 · t) ·
∫
I

|∇m
s κ|2 ds.
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By applying the Gronwall inequality to (3.14), we have

um (t) ≤ ea(t) ·
(
um (0) + C2 ·

∫ t

0

eC1·τ dτ

)
,

where

a (t) =

∫ t

0

C2 · (λ−
1 (τ))2 dτ ≤ C (f0,�Ψ, α, β, L,m) .

Therefore, we obtain

‖∇m
s κ‖2

L2 (t) ≤ C (f0,�Ψ, α, β, L,m) · (1 + e−C1·t · ‖∇m
s κ‖2

L2 (0))
≤ C (f0,�Ψ, α, β, L,m)

(3.15)

for all m ≥ 0. In addition, from the definition of λ1 in (1.6), we conclude that
|λ1| ≤ C (f0,�Ψ, α, β, L). Notice that one has the estimate∥∥∂m−1

s κ
∥∥
L∞ ≤ c · ‖∂m

s κ‖L1 ∀ m ≥ 1.(3.16)

Now, by applying the induction argument on m, and using Lemmas 2.4 and 2.5,
(3.15), (3.16), and the Hölder inequality, we derive the inequalities

‖∇m
s κ‖L∞ + ‖∂m

s κ‖L∞ ≤ C (f0,�Ψ, α, β, L,m) ∀ m ≥ 0.(3.17)

On the asymptotic behavior of the flow, we choose a subsequence of curves f (t, ·)
which converges smoothly to a curve f∞, after reparametrizations of arclength and
translations. Lemma 3.3 and (3.17) imply

‖∇t (∇m
s κ)‖L∞ ≤ C (f0,�Ψ, α, β, L,m) ∀ m ≥ 0.(3.18)

From (3.17) and (3.18), one sees that for u (t) :=
∫
I
| ∂tf |2 ds, the inequality

|u′ (t)| ≤ C (f0,�Ψ, α, β, L)

holds. On the other hand, the energy identity, (3.11), implies u (t) ∈ L1 ([0,∞)).
Therefore, u (t) → 0 as t → ∞. In other words, f∞ is independent of t and thus, by
(1.5), is an equilibrium of F . Now, by Theorem 1.1, the proof is finished.

4. Numerical algorithm. We base our numerical treatment on the algorithm
proposed in [4] and implement the new nonlinear term λ2∇s (T × κ) explicitly in time.

First, observe that the divergence form of the main part in the evolution equation
admits a weak formulation of the flow. In fact, we have

∇2
sκ + 1

2 |κ|
2
κ− λ2∇s (T × κ) = ∂s

(
∂sκ + 3

2 |κ|
2
T − λ2 T × κ

)
.

Second, the common way of avoiding higher order elements for the discretization is
to rewrite the equation as a second-order system for position vector f and the mean
curvature vector κ:

∂tf + ∂s

(
∂sκ + 3

2 |κ|
2
T − λ2 T × κ

)
= λ1κ,(4.1)

∂2
sf = κ.(4.2)
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The weak form of the problem leads in one space dimension to a difference scheme.
Decompose I = R/Z = ∪N

1 Ij into intervals Ij = [xj−1, xj), where xj are the nodal
points. We discretize the space H1(I,R3) by the space

Xh =
{
g ∈ C0(I,R3) : g|Ij ∈1 (Ij)

}
= (span {φ1, . . . , φN})n

of periodic piecewise affine functions spanned by the nodal basis functions φj ∈ Xh

satisfying φj(xi) = δij . The discretization parameter is given by h = maxj hj , hj =
|Ij |. We use the pointwise interpolation Ihg, g ∈ C0(I,R3) uniquely defined by
Ihg ∈ Xh and Ihg(xj) = g(xj) for all j = 1, . . . , N . A discrete (weak) solution to
(4.1) is then a pair of functions (fh, κh) : [0, T ] → Xh ×Xh,

fh(x, t) =

N∑
j=1

fj(t)φj(x), κh(x, t) =

N∑
j=1

κj(t)φj(x)

satisfying for all φh, ψh ∈ Xh the weak problem

∫
I

(
Ih(∂tfhφh)|∂xfh| −

∂xκh

|∂xfh|
∂xφh − 3

2
|κh|2

∂xfh
|∂xfh|

∂xφh

)
dx

=

∫
I

(
λ1

∂xfh
|∂xfh|

× κh∂xφh + λ2Ih(κhφh)|∂xfh|
)
dx = 0,

(4.3)

−
∫
I

∂xfh
|∂xfh|

∂xψhdx =

∫
I

Ih(κhψh)|∂xfh|dx.(4.4)

In the time direction we discretize semi-implicitly. In particular, the new nonlinear
term λ2∇s (T × κ) in our flow equation is treated explicitly. For functions defined on
the time interval [0, T ] we use the notation gm = g(·,mk), kM = T .

Algorithm. For given initial data f0(x) and nodal points of the parameterization
xj , j = 1, . . . , N let f0

j = f0(xj), h
0
j = |f0

j − f0
j−1|, and

κ0
j =

2

h0
j+1(h

0
j + h0

j+1)
f0
j+1 −

2

h0
jh

0
j+1

f0
j +

2

h0
j (h

0
j + h0

j+1)
f0
j−1,

where we use the extensions f0
0 = f0

N , f0
N+1 = f0

1 , h0
0 = h0

N , h0
N+1 = h0

1.

For m = 0, . . . ,M − 1 we set

hm
j = |fm

j − fm
j−1|,

βm
j = |κm

j−1|2 + κm
j−1κ

m
j + |κm

j |2,

γm
j =

fm
j − fm

j−1

hm
j

×
κm
j + κm

j−1

2
,
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and solve for fm+1
j , κm+1

j in

βm
j

2hm
j

fm+1
j−1 +

(
hm
j + hm

j+1

2k
−

βm
j

2hm
j

−
βm
j+1

2hm
j+1

)
fm+1
j +

βm
j+1

2hm
j+1

fm+1
j+1

+
1

hm
j

κm+1
j−1 −

(
1

hm
j

+
1

hm
j+1

+
λm

1

2
(hm

j + hm
j+1) + λm

2 ∗
)
κm+1
j +

1

hm
j+1

κm+1
j+1

=
hm
j + hm

j+1

2k
fm
j + λm

2

(
γm
j+1 − γm

j

)
,

1

hm
j

fm+1
j−1 −

(
1

hm
j

+
1

hm
j+1

)
fm+1
j +

1

hm
j+1

fm+1
j+1 =

hm
j + hm

j+1

2
κm
j .

Here, the Lagrange multipliers are computed according to

λm
2 =

2β

Lm
(τm + ∆Ψ),

λm
1 = −

N∑
j=1

(
|κm

j − κm
j−1|2/hm

j + (fm
j − fm

j−1) · (κm
j − κm

j−1)β
m
j /2hm

j + λm
2 Γm

j

)
N∑
j=1

hm
j βm

j /3

,

where

Γm
j = κm

j · (γm
j+1 − γm

j ),

τm = −3

N∑
j=1

Γm
j /βm

j ,

Lm =

N∑
j=1

hm
j .

The algorithm is intrinsic in the sense that it does not explicitly depend on the grid
parameter h = maxj hj . Nevertheless, during time evolution the distribution of nodes
drift away from the equidistant grid. Thus, we redistribute the nodes tangentially
according to arclength if the ratio maxj hj/minj hj exceeds 2.

We also mention that the linear system for fm+1
j , κm+1

j can be decoupled, giving

a linear system for fm+1
j alone. The tridiagonal structure of the matrices is then

replaced by a five-diagonal structure, where the periodicity of the curve implies non-
zero elements in the upper right and lower left corners. The implementation of a
fifth-diagonal linear solver can easily be generalized to such a situation.

Computations and figures. Let us first note that numerical computations
show that the flat circle is a stationary solution which continues to stay stable for
small values of β. For increasing values of β the circle loses stability, and we observe
nontrivial equilibria of nonzero total torsion.

Figure 4.1 shows a table of stationary states for given values of ∆Ψ in the interval
(−π, π). Observe that equilibria corresponding to the same absolute value of ∆Ψ bend
into the opposite direction leading to a reflection symmetry w.r.t. the horizontal plane.

It is interesting to see that the issue of inflection points comes into play if |∆Ψ|
approaches the value π. Then the corresponding asymptotic stationary curve contains
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Fig. 4.1. Stationary curves of length 6.31 for β = 35 and ∆Ψ = −3.1,−2,−1,−0.5, 0, 0.5, 1, 2, 3.1.

points having a very small magnitude of the curvature vector κ. We mentioned before
that the flow equation and the computation of the torsion τ gets ill-defined in such
a situation. We observe this problem also in our computations in the sense that the
flow gets numerically unstable if curves with points of small |κ| evolve.
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Fig. 4.2. Evolution of a curve of length 18.9 under the flow with β = 60, ∆Ψ = −2 at times
t = 0, 1, 2, 3, 4, 6, 8, 13, 52.

The next table in Figure 4.2 presents the evolution of a strongly bent initial curve
unfolding along our flow to a stationary curve. Recalling the different lengths, the
curve is similar (but not identical) to the one from Figure 4.1.
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BIFURCATIONS OF A RATIO-DEPENDENT PREDATOR-PREY
SYSTEM WITH CONSTANT RATE HARVESTING∗
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Abstract. The ratio-dependent predator-prey model exhibits rich interesting dynamics due to
the singularity of the origin. The objective of this paper is to study the dynamical properties of
the ratio-dependent predator-prey model with nonzero constant rate harvesting. For this model, the
origin is not an equilibrium. It is shown that numerous kinds of bifurcation occur for the model, such
as the saddle-node bifurcation, the subcritical and supercritical Hopf bifurcations, Bogdanov–Takens
bifurcation, the homoclinic bifurcation, and the heteroclinic bifurcation, as the values of parameters
of the model vary. Hence, there are different parameter values for which the model has a limit cycle,
or a homoclinic loop, or a heteroclinic orbit, or a separatrix connecting a saddle and a saddle-node.
These results reveal far richer dynamics compared to the model with no harvesting.

Key words. ratio-dependent predator-prey system, constant rate harvesting, bifurcation, ex-
tinction, coexistence

AMS subject classifications. Primary, 34C25, 92A15; Secondary, 58F14

DOI. 10.1137/S0036139903428719

1. Introduction. In population dynamics, both ecologists and mathematicians
are interested in the following Michaelis–Menten-type predator-prey model, the so-
called ratio-dependent predator-prey model:

ẋ = rx

(
1 − x

K

)
− cxy

my + x
,

ẏ = y

(
−D +

fx

my + x

)
,

(1.1)

where x(t) and y(t) represent population densities of prey and predator at time t,
respectively. r, K, c, m, D, and f are positive constants. The prey grows with
intrinsic growth rate r and carrying capacity K in the absence of predation. D,
c, m, and f stand for the predator death rate, capturing rate, half saturation con-
stant, and conversion rate, respectively. The reason for the model is that numerous
field and laboratory experiments and observations (Abrams and Ginzburg [1], Arditi
and Berryman [3], Arditi and Ginzburg [4], Arditi, Ginzburg, and Akcakaya [5], Ak-
cakaya, Arditi, and Ginzburg [2], Cosner et al. [14], and Gutierrez [20]) showed that
functional and numerical responses over typical ecological timescales ought to depend
on the densities of both prey and predators, especially when predators must search for
food (and therefore must share or compete for food). The suitable functional response
is a ratio-dependent response function, which, roughly, the per capita predator growth
rate should be a function of the ratio of prey to predator abundance. For more bio-
logical background concerning the model, the reader can refer to the above references
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and the extensive references cited. The dynamics of system (1.1) has been studied
extensively (Berezovskaya, Karev, and Arditi [7], Hsu, Hwang, and Kuang [21], Jost,
Arino, and Arditi [22], Kuang [23], Kuang and Beretta [24], Xiao and Ruan [29], and
references therein). Research on the ratio-dependent predator-prey model (1.1) re-
vealed rich interesting dynamics such as deterministic extinction, existence of multiple
attractors, and existence of a stable limit cycle. It was shown in [7], [21], and [29] that
system (1.1) has very complicated dynamics close to the origin: there exist numerous
kinds of topological structures in a neighborhood of the origin, including parabolic or-
bits, elliptic orbits, hyperbolic orbits, and any combination thereof, depending on the
different values of parameters. Thus, the origin is a degenerate equilibrium with high
codimension. Mathematically, from the point of view of bifurcation, it is a very inter-
esting question what kinds of bifurcation will occur when system (1.1) is perturbed
by a small constant term. From the perspective of biology, the complicated dynamics
clearly indicates that for the ratio-dependent model, even if there is a positive equi-
librium, both prey and predator can still go extinct for some values of parameters,
and the extinction occurs in two distinct ways. One of the ways is that both species
become extinct regardless of the initial densities such as the Gause’s classic obser-
vation of mutual extinction. The other way is that both species will die out only if
the initial prey/predator ratio is too low. Some researchers regard such interesting
dynamics as “pathological behavior” and hope to remove it so as to guarantee the
persistence of the system. From the point of view of human needs, the exploitation
of biological resources and the harvesting of populations are commonly practiced in
fishery, forestry, and wildlife management. There is a wide range of interest in the
use of bioeconomic models to gain insight into the scientific management of renew-
able resources like fisheries and forestries. It is related to the optimal management of
renewable resources (an excellent introduction to optimal management of renewable
resources is given by Clark in [13]). Generally speaking, it is necessary to consider
the harvesting of populations in some models. Taking into consideration the above
two-fold reasons, we focus on the ratio-dependent predator-prey model with constant
harvesting. For mathematical simplicity, let us first nondimensionalize system (1.1)
as in Kuang and Beretta [24] with the following scaling:

t → rt, x → x/K, y → my/K.

Then system (1.1) takes the form

ẋ = x(1 − x) − axy

y + x
,

ẏ = y

(
−d +

bx

y + x

)
,

(1.2)

where a = c
mr , b = f

r , and d = D
r are positive constants. For simplicity, in the

following, we keep the biological implications of parameters a, b, and d the same as
c, f , and D, respectively.

In this paper, we assume that the predator in the model (1.2) is not of commer-
cial importance. The prey is continuously being harvested at a constant rate by a
harvesting agency. The harvesting activity does not affect the predator population
directly. It is obvious that the harvesting activity does reduce the predator population
indirectly by reducing the availability of the prey to the predator.
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We formulate the problem as:

ẋ = x(1 − x) − axy

y + x
− h,

ẏ = y

(
−d +

bx

y + x

)
,

(1.3)

where h represents the rate of harvesting or removal; hence, h > 0.
The objective of this paper is to systematically study the dynamical properties of

the ratio-dependent predator-prey model with constant harvesting. It will be better
for us to determine how the constant harvesting affects the dynamics of system (1.3).
The occurrence of change of structure, or bifurcation, in a system with parameters is
a major way to predict global dynamics of the system. By making local calculations,
we give bifurcation analysis for system (1.3) and show that system (1.3) can exhibit
numerous kinds of bifurcation phenomena in terms of the original parameters in the
model, including the bifurcation of cusp type of codimension 2 (i.e., Bogdanov–Takens
bifurcation), the heteroclinic bifurcation, and the separatrix connecting a saddle-node
and a saddle bifurcation. However, the ratio-dependent model (1.2) cannot undergo
these bifurcations. From the point of view of the optimal management of renewable
resources, the aim is to determine how much we can harvest without altering dan-
gerously the harvested population. According to Clark in [13], the management of
renewable resources has been based on the maximum sustainable yield (MSY), with
the property that any larger harvest rate will lead to the depletion of the popula-
tion (eventually to zero). If x is harvested by some process of overexploitation (i.e.,
h > hMSY ), then the prey species can be led to extinction. The most rapid recovery
of the population is achieved by means of a moratorium on harvesting, i.e., h = 0. In
this paper, qualitative and bifurcation analyses are combined to determine hMSY = 1

4
for the model (1.3). Biologically, when h ≥ 1

4 , overharvesting of prey species occurs
for model (1.3), which may lead to the collapse of the whole system. Hence, 0 < h < 1

4
is of interest for model (1.3). Another noteworthy prediction from model (1.3) is that
prey and predator species cannot become extinct simultaneously (mutual extinction)
for all values of parameters and initial values. This, however, contradicts the observa-
tion of mutual extinction for the ratio-dependent model (1.2). Thus, prey harvesting
prevents mutual extinction as a possible outcome of predator-prey interaction and
removes the “pathological behavior” of model (1.2).

This paper is organized as follows. In section 2, we study the existence of the
equilibria and various types of dynamical behavior in the small neighborhood of the
equilibrium for the model (1.3). Some proofs of various types of dynamics are placed in
the appendices. We also describe the phase portraits and the biological ramifications
of our results. In section 3 we consider all possible bifurcations of the model depending
on all parameters. We show that the model exhibits the saddle-node bifurcation, the
subcritical and supercritical Hopf bifurcations, the Bogdanov–Takens bifurcation of
codimension 2, the separatrix connecting a saddle and a saddle-node bifurcation, and
the heteroclinic bifurcation in terms of the original parameters. The paper ends with
a brief discussion.
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2. General phase portraits analysis of equilibria. In this section, we con-
sider the ratio-dependent predator-prey system with a constant rate harvesting:

ẋ = x(1 − x) − axy

y + x
− h

∆
= f1(x, y),

ẏ = y

(
−d +

bx

y + x

)
∆
= f2(x, y),

(2.1)

where a, h, d, and b are positive parameters. From the standpoint of biology, we are
interested only in the dynamics of system (2.1) in the closed first quadrant R2

+. Thus,
we consider only the biologically meaningful initial condition

x(0) ≥ 0, y(0) ≥ 0.

Straightforward computation shows that f1(x, y) and f2(x, y) are continuous and Lip-
schizian in the closed first quadrant R2

+ if we let f1(0, 0) = −h, f2(0, 0) = 0. Hence,
solution of (2.1) with nonnegative initial condition exists and is unique. It is also
easy to see that the x-axis is invariant under the flow. However, this is not the case
on the y-axis. All solutions touching the y-axis cross out of the first quadrant, and
the origin (0, 0) is not an equilibrium of system (2.1). Thus, the first quadrant is no
longer positively invariant under the flow generated by system (2.1), which makes the
qualitative analysis of system (2.1) difficult.

First, let us begin to determine the location and number of the equilibria of system
(2.1) in the first quadrant R2

+. From system (2.1), we can see that there exists an
equilibrium of system (2.1) in R2

+ if and only if the equations

x(1 − x) − axy

y + x
− h = 0,

y

(
−d +

bx

y + x

)
= 0

(2.2)

have a pair of nonnegative real solutions (x, y). It is clear that equations (2.2) have
at most four pairs of nonnegative real solutions (xi, yi) and (x∗

i , y
∗
i ),

xi =
1 + (−1)i

√
1 − 4h

2
, yi = 0;

x∗
i =

b− a(b− d) + (−1)i
√

∆

2b
, y∗i =

b− d

d
x∗
i ,

where i = 1, 2, ∆ = (a(b − d) − b)2 − 4hb2. Therefore, we have the following simple
lemma which describes the number and location of equilibria of system (2.1). The
proof is omitted.

Lemma 2.1.

(1) System (2.1) has no equilibria in R2
+ if h > 1

4 .

(2) System (2.1) has a unique equilibrium in R2
+, which is (x0, y0) = ( 1

2 , 0) if
h = 1

4 .
(3) System (2.1) has two equilibria in R2

+, which are (x1, y1) and (x2, y2) if one
of the following conditions holds:
(3.i) b ≤ d and 0 < h < 1

4 ;

(3.ii) b− d ≥ b
a and 0 < h < 1

4 ;

(3.iii) 0 < b− d < b
a and (a(b−d)−b

2b )2 < h < 1
4 .
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(4) System (2.1) has three equilibria in R2
+, which are (x∗, y∗) = ( b−a(b−d)

2b , b−d
d x∗),

(x1, y1), and (x2, y2) if 0 < b− d < b
a and (a(b−d)−b

2b )2 = h < 1
4 .

(5) System (2.1) has four equilibria in R2
+, which are (x∗

1, y
∗
1), (x∗

2, y
∗
2), (x1, y1),

and (x2, y2) if 0 < b− d < b
a and 0 < h < min{(a(b−d)−b

2b )2, 1
4}.

When h > 1
4 , system (2.1) has no equilibria, and ẋ(t) < 0 in R2

+. The dynamics of
system (2.1) in R2

+ is trivial and all orbits in R2
+ will cross the y-axis and go out of R2

+

in finite time. This implies that the prey species goes extinct, which in turn causes
the extinction of the predator. Biological overharvesting occurs. When 0 < h ≤ 1

4 ,
system (2.1) has some equilibria, and there exist some initial values such that the
population of prey in system (2.1) does not go extinct. Thus, hMSY = 1

4 for system
(2.1) from Lemma 2.1.

Next we consider the dynamics of system (2.1) in the neighborhood of each equi-
librium. The linear part of system (2.1) at these equilibria is determined by the
matrix

Df(x, y) =

(
1 − 2x− ay2

(x+y)2 − ax2

(x+y)2

by2

(x+y)2 −d + bx2

(x+y)2

)
,

where x and y are coordinates of these equilibria, respectively. More precisely, we
have

Df(xi, yi) =

(
(−1)i+1

√
1 − 4h −a

0 b− d

)
,

and

Df(x∗
i , y

∗
i ) =

(
a(b−d)d+(−1)i+1

√
∆

b2 −ad2

b2
(b−d)2

b
d(b−d)

b

)
.

The dynamics of system (2.1) in the neighborhood of an equilibrium comes directly
from the property of eigenvalues of the matrix Df(x, y) at the equilibrium.

When h = 1
4 , system (2.1) has a unique equilibrium (x0, y0) = ( 1

2 , 0). The linear
part of system (2.1) at (x0, y0) is determined by the matrix

Df(x0, y0) =

(
0 −a
0 b− d

)
.

Using classical qualitative methods, it is straightforward to show that the equilibrium
(x0, y0) is nonhyperbolic, i.e., it is degenerate. More precisely, we have the following
theorem. The proof is placed in Appendix A.

Theorem 2.2. When h = 1
4 , system (2.1) has only a unique equilibrium (x0, y0) =

( 1
2 , 0), and

(i) (x0, y0) is a saddle-node of codimension 1 if b �= d;
(ii) (x0, y0) is a degenerate saddle-node of codimension 4 if b = d and 2a−5b �= 0.

Their phase portraits are shown in Figure 2.1.
Notice that the codimension of a degenerate equilibrium of vector field v(x) is the

codimension of the bifurcation at the degenerate equilibrium, which is the minimum
number of the parameters necessary for vector field v(x, λ) with parameter pertur-
bation to be a universal unfolding of v(x). However, it is very difficult to determine
a universal unfolding of v(x). Therefore, the following view is usually used to deter-
mine codimension of the bifurcation: suppose that S is the set of all structurally stable
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y

x(x0, y0)

(i)    b-d<0;   or  (ii) b-d=0

o o

y

x(x0,  y0)

(i)  b-d>0 

Fig. 2.1. The phase portrait of system (2.1) with one equilibrium.

vector fields in C1(E) (the set of all differential vector fields on E), and vector field
v(x) is in the complement of S. Then v(x) belongs to the bifurcation set in C1(E)
that is locally isomorphic to a manifold M in vector space or Banach space and the
codimension of the bifurcation that occurs at v(x) is equal to the codimension of the
manifold M (cf. [19], [26]). The codimension in Theorem 2.3 is the codimension of
the manifold.

In Theorem 2.2, ẋ = −(x − 1
2 )2 − axy

x+y < 0 in R2
+, which implies that the prey

species may go extinct as time increases for some initial values. And when b ≤ d,
predator death rate d is greater than the predator conversion rate b (i.e., the conversion
efficiency of prey to predator), ẏ < 0. Hence, the predator species goes extinct as time
increases for some initial values. But both cannot go to extinction simultaneously.

For sustainable development of resource, we assume that the harvesting agency
has an obligation to the society and ecology of preserving the prey species. Hence,
the harvesting rate h must satisfy 0 < h < 1

4 . From Lemma 2.1 and using routine
qualitative analysis, we have the following.

Theorem 2.3. If system (2.1) has only two equilibria, then the dynamics of
system (2.1) is trivial in R2

+, with no limit cycles in R2
+. Each orbit of system (2.1)

in R2
+ goes to either one equilibrium on the x-axis or out of R2

+. More precisely,
(a) if b < d and 0 < h < 1

4 , then system (2.1) has two equilibria (x1, 0), a
hyperbolic saddle, and (x2, 0), a hyperbolic stable node;

(b) if b = d and 0 < h < 1
4 , then system (2.1) has two equilibria (x1, 0) and

(x2, 0), both saddle-nodes;

(c) if 0 < b − d < b
a and (a(b−d)−b

2b )2 < h < 1
4 (or b − d > b

a and 0 < h < 1
4),

then system (2.1) has two equilibria (x1, 0), a hyperbolic unstable node, and
(x2, 0), a hyperbolic saddle.

Their phase portraits are shown in Figure 2.2.
Biologically, system (2.1) is not persistent under the conditions of Theorem 2.3.

The predator species goes extinct for some initial data or the prey species goes extinct
for other initial data in R2

+. Hence, for the persistence of the ecosystem, the equilib-
rium of the greatest interest would be an equilibrium interior to the first quadrant.

Theorem 2.4. Let h0 = (a(b−d)−b
2b )2. If 0 < b − d < b

a and h = h0 < 1
4 , then

system (2.1) has three equilibria and no closed orbits in R2
+. Moreover,

(I) if a �= b, then system (2.1) has three equilibria in R2
+, which are the

saddle-node (x∗, y∗) = ( b−a(b−d)
2b , b−d

d x∗) = (
√
h0,

b−d
d

√
h0), the hyperbolic
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(a) 0<b<d (b)  b=d (c) 0<b-d<b/a,  or  b-d>b/a

x

y

(x1, 0) (x2, 0) x

y y

x(x2, 0)(x1,0)(x2, 0)(x1,0)

Fig. 2.2. The phase portraits of system (2.1) with two equilibria.

(I)  a<b (I)  a>b        (II)  a=b 

x

y

(x1, 0) (x2, 0) x

y y

x(x2, 0)(x1,0)(x2, 0)(x1,0)

(x*, y*) (x*, y*)
(x*, y*)

Fig. 2.3. The phase portraits of system (2.1) with three equilibria.

unstable node (x1, y1) = ( 1−
√

1−4h0

2 , 0), and the hyperbolic saddle (x2, y2) =

( 1+
√

1−4h0

2 , 0);
(II) if a = b, then system (2.1) has three equilibria in R2

+, which are the cusp

(x∗, y∗) = (
√
h0,

b−d
d

√
h0) of codimension 2, the hyperbolic unstable node

(x1, y1) = ( 1−
√

1−4h0

2 , 0), and the hyperbolic saddle (x2, y2) = ( 1+
√

1−4h0

2 , 0).
Their phase portraits are shown in Figure 2.3.

The proof of Theorem 2.4 is given in Appendix B. The outcome indicates that
the predator species increases for all nonzero initial populations of predator except y∗

when harvesting rate h = h0 and the predator death rate is less than the predator
conversion rate (i.e., b > d); however, the coexistence of predator species and prey
species is possible only for some initial data and the condition that the predator
capturing rate a is less than the predator conversion rate b (i.e., a < b). If a > b, the
prey species goes extinct for almost all initial data in R2

+.

If 0 < b − d < b
a and 0 < h < min{h0,

1
4}, then system (2.1) has two positive

equilibria from Lemma 2.1. When system (2.1) has two positive equilibria, the global
dynamics of system (2.1) is pretty complicated and many kinds of bifurcations will
occur. We leave these to be discussed in the next section. Now we give the local
dynamics of system (2.1) at the equilibria (x∗

1, y
∗
1) and (x∗

2, y
∗
2).

Theorem 2.5. If 0 < b− d < b
a and 0 < h < min{h0,

1
4}, then system (2.1) has

four equilibria in R2
+ as shown in Lemma 2.1. Moreover, the equilibria (x2, 0) and

(x∗
1, y

∗
1) are hyperbolic saddles, the equilibrium (x1, 0) is a hyperbolic unstable node,

and the equilibrium (x∗
2, y

∗
2) has the following three possibilities:
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(i) (x∗
2, y

∗
2) is a hyperbolic stable focus (or node) if either

0 < b− d ≤ 1 <
b

a

or, letting h∗ = (a(b−d)−b)2−(d(b−d)(a−b)/b)2

4b2 ,

0 < b− d <
b

a
< 1, 0 < h < min

{
h0,

1

4
, h∗

}
;

(ii) (x∗
2, y

∗
2) is a weak focus or center if

0 < b− d <
b

a
< 1, 0 < h = h∗ < min

{
h0,

1

4

}
;

(iii) (x∗
2, y

∗
2) is a hyperbolic unstable focus (or node) if

0 < b− d <
b

a
< 1, 0 < h∗ < h < min

{
h0,

1

4

}
.

3. The bifurcations of the model (2.1). In this section, we investigate the
bifurcations that take place in system (2.1).

3.1. Saddle-node bifurcations. From Lemma 2.1 and Theorem 2.3, we have
that

SN1 =

{
(a, b, d, h) : h =

1

4
, b− d �= 0, a > 0, b > 0, d > 0

}

is a saddle-node bifurcation surface. When the parameters pass from one side of
the surface to the other side, the number of equilibria of system (2.1) changes from
zero to two, and the two equilibria which are boundary equilibria are the hyperbolic
saddle and node. This is the first saddle-node bifurcation surface of the model. The
biological interpretation for the first saddle-node bifurcation is that hMSY = 1

4 , the
prey species is driven to extinction, and the system collapses for h > 1

4 , but the prey
species do not go to extinction for some initial data when 0 < h < 1

4 . On the other
hand, from Theorems 2.4 and 2.5, we know that the surface

SN2 =

{
(a, b, d, h) : 0 < b− d <

b

a
, h = h0 <

1

4
, a > 0, b > 0, d > 0

}

is a saddle-node bifurcation surface, which is the second saddle-node bifurcation the
model undergoes. The saddle-node bifurcation yields two positive equilibria. This
implies that there exists a critical harvest rate h0 such that the predator species goes
either extinct or out of R2

+ in finite time when the harvest rate h is greater than h0,
and coexistence for model (2.1) is certain in the form of a positive equilibrium for
certain choices of initial values when 0 < h < h0 and 0 < b− d < b

a .

3.2. Hopf bifurcations. From the term (ii) of Theorem 2.5, we know that the
positive equilibrium (x∗

2, y
∗
2) of system (2.1) is a center-type nonhyperbolic equilibrium

when 0 < b− d < b
a < 1, 0 < h = h∗ < min{h0,

1
4}. Hence, system (2.1) may undergo

Hopf bifurcation. To determine the stability of the equilibrium and direction of Hopf
bifurcation in this case, we must compute the Liapunov coefficients of the equilibrium.
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We first translate the positive equilibrium (x∗
2, y

∗
2) of system (2.1) to the origin. Then,

system (2.1) in a neighborhood U of the origin can be written as

ẋ = a10x + a01y + a20x
2 + a11xy + a02y

2

+ a30x
3 + a21x

2y + a12xy
2 + a03y

3 + O1(|(x, y)|4),
ẏ = b10x + b01y + b20x

2 + b11xy + b02y
2

+ b30x
3 + b21x

2y + b12xy
2 + b03y

3 + O2(|(x, y)|4),

(3.1)

where aij and bij are the coefficients of the power series expansions of f1(x, y) and
f2(x, y) at (x∗

2, y
∗
2) in U , respectively, i, j = 0, 1, 2, 3. Ok(|(x, y)|4) is the same order

infinity, k = 1, 2. Hence, using the formula of the first Liapunov number σ for the
focus at the origin of (3.1) in [26, p. 344], we have, after a tedious computation using
Mathematica,

σ =
3πd(b− d)Q

4ab9x2
2

√
∆3

1

,

where ∆1 = (a−b)(b−d)2d2

b3 ,

Q = a5(b− d)8 + 2b5(b− d)3d3 + 2a4b(b− d)5(−2b2 + b(3 + b)d− 2(1 + b)d2 + d3)

+ 2a2b3(b− d)(b4(−2 + d) + 18bd4 − 9d5 + 3b3d(1 + d) − b2d2(2 + 15d))

+ a3b2(b− d)3(b(−2 + d)d2(−4 + 3d) + b2d(−10 + (10 − 3d)d))

+ b3(6 + (−4 + d)d) − d3(6 + (−4 + d)d))

+ ab4(44b3d3 − 79b2d4 + 62bd5 − 18d6 + b4(1 − 9d2)).

By numerical calculation, we know there exist parameter values (a, b, d) = (1, 0.5, 0.25),
which satisfies the conditions of the term (ii) of Theorem 2.5, such that σ = 465.961.
On the other hand, there exist parameter values (a, b, d) = (4, 2, 1.85), which also satis-
fies the condition of the term (ii) of Theorem 2.5, such that σ = −788.639. Therefore,
there exists an open set V1 in the parameter space (a, b, d), such that σ > 0 and
0 < b− d < b

a < 1, 0 < h∗ < min{h0,
1
4}, i.e.,

V1 =

{
(a, b, d) : 0 < b− d <

b

a
< 1, 0 < h∗ < min

{
h0,

1

4

}
, and σ > 0

}
.

And there exists another open set V2 in the parameter space (a, b, d), such that σ < 0
and 0 < b− d < b

a < 1, 0 < h∗ < min{h0,
1
4}, i.e.,

V2 =

{
(a, b, d) : 0 < b− d <

b

a
< 1, 0 < h∗ < min

{
h0,

1

4

}
, and σ < 0

}
.

This implies the following.
Theorem 3.1.

(a) If h = h∗, and if the parameter (a, b, d) is in V1, then the equilibrium (0, 0)
of system (3.1) is a weak focus of multiplicity 1 and is unstable.

(b) If h = h∗, and if the parameter (a, b, d) is in V2, then the equilibrium (0, 0)
of system (3.1) is a weak focus of multiplicity 1 and is stable.

From Theorems 2.5 and 3.1, we know that the equilibrium (x∗
2, y

∗
2) is a hyperbolic

unstable focus if (a, b, d) ∈ V1 and h ≥ h∗, but the equilibrium (x∗
2, y

∗
2) is a hyperbolic



746 DONGMEI XIAO AND LESLIE STEPHEN JENNINGS

stable focus if (a, b, d) ∈ V1 and 0 < h < h∗. Hence, when parameters pass from one
side of the following surface to the other side, system (2.1) can undergo a subcritical
Hopf bifurcation. An unstable limit cycle appears in the small neighborhood of (x∗

2, y
∗
2)

when (a, b, d) ∈ V1 and 0 < h < h∗. Thus, for some initial values, both species coexist
for model (2.1) in the form of a positive equilibrium (x∗

2, y
∗
2), and for other initial

values, both species coexist for model (2.1) in the form of an oscillatory solution,
which is unstable, when (a, b, d) ∈ V1 and 0 < h < h∗. The surface

Hb = {(a, b, d, h) : h = h∗, (a, b, d) ∈ V1}

is called the subcritical Hopf bifurcation surface of system (2.1).
On the other hand, the equilibrium (x∗

2, y
∗
2) is a hyperbolic stable focus if (a, b, d) ∈

V2 and 0 < h ≤ h∗, and the equilibrium (x∗
2, y

∗
2) is a hyperbolic unstable focus if

(a, b, d) ∈ V2 and h > h∗. Hence, when parameters pass from one side of the following
surface to the other side, system (2.1) can undergo a supercritical Hopf bifurcation.
A stable limit cycle appears in the small neighborhood of (x∗

2, y
∗
2) when (a, b, d) ∈ V2

and h > h∗. Hence, the predator and the prey coexist for model (2.1) in the form of
an oscillatory solution, which is stable, for some initial values when (a, b, d) ∈ V2 and
h > h∗. The surface

Hp = {(a, b, d, h) : h = h∗, (a, b, d) ∈ V2}

is called the supercritical Hopf bifurcation surface of system (2.1).
Summarizing the above, we have the following.
Theorem 3.2.

(i) System (2.1) has at least one unstable limit cycle if 0 < h < h∗ and (a, b, d) ∈
V1.

(ii) System (2.1) has at least one stable limit cycle if h∗ < h < 1
4 and (a, b, d) ∈

V2.
Remark 3.1. Since there exist some parameter values such that σ = 0, system

(2.1) maybe undergo degenerate Hopf bifurcation for some parameter values (cf. [6],
[11], [12], and [26]).

3.3. The cusp bifurcation of codimension 2 (i.e., the Bogdanov–Takens
bifurcation). From the item (II) of Theorem 2.4, we know that system (2.1) has a
cusp (x∗, y∗) of codimension 2 when h = h0, a = b, and 0 < b − d < b

a . We now
discuss if there exist the original parameters in system (2.1) such that system (2.1)
exhibits Bogdanov–Takens bifurcation. We will show that a and h can be chosen as
bifurcation parameters and system (2.1) can exhibit Bogdanov–Takens bifurcation.

Consider the system

u̇ = u(1 − u) − (b + λ1)uv

1 + v
− (h0 + λ2),

v̇ = v

(
−d +

b

1 + v

)
− v(1 − u) +

(b + λ1)v
2

1 + v
+

(h0 + λ2)v

u
,

(3.2)

where λ1 and λ2 are very small parameters. When λ1 = λ2 = 0, system (3.2) has one
positive equilibrium (u∗, v∗), which is a cusp of codimension 2.
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Let u1 = u− u∗, v1 = v − v∗. Then system (3.2) becomes

u̇1 = −λ2 −
λ1u

∗v∗

1 + v∗
− (b + λ1)u

∗d2

b2
v1 − u2

1 −
(b + λ1)d

2

b2
u1v1

+
(b + λ1)u

∗d3

b3
v2
1 + O1((u1, v1)

3),

v̇1 =
λ1v

∗2

1 + v∗
+

λ2v
∗

u∗ +
dλ1(b− d)

b2
v1 +

(b− d)

du∗ u2
1 +

λ1d
3

b3
v2
1 + O2((u1, v1)

3).

(3.3)

Next, we reduce system (3.3) to the normal form in successive steps. These steps are
reminiscent of those performed in [28]. For simplicity, we omit the laborious steps
and write down the normal form directly

u̇2 = v2,

v̇2 = µ1(λ1, λ2) + µ2(λ1, λ2)v2 +
u∗(b− d)d7

2b4
u2

2 +
2u∗d2

b
u2v2 + O((λ, u1, v1)

3),

(3.4)

where

µ1(λ1, λ2) =

(
v∗2

1 + v∗
− d4(b− d)

4b3
+

d9

16b8
+

d4v∗2

2(1 + v∗)b2

)
λ1

+

(
v∗

u∗ +
v∗d4

2u∗b2

)
λ2 + O1((λ)2),

µ2(λ1, λ2) =

(
d(b− d)

b2
− d6

2b4
+

v∗

1 + v∗
+

(b− d)d5

2b4
− d10

4b6

)
λ1 +

1

u∗λ2 + O2((λ)2).

If the above parameter transformation from (λ1, λ2) to (µ1, µ2) is not singular in a
small neighborhood of (λ1, λ2) = (0, 0), then by the Bogdanov–Takens theory, system
(3.4) is strongly topologically equivalent to

u̇3 = v3,

v̇3 = µ1 + µ2v3 + u2
3 + u3v3.

(3.5)

By numerical computation, we know that there exist some values of parameter (b, d)
such that this parameter transformation is not singular in a small neighborhood of
(λ1, λ2) = (0, 0). Therefore, we have the following.

Theorem 3.3. When 0 < |h − h0| � 1, 0 < |a − b| � 1, and 0 < b − d < b
a ,

system (2.1) undergoes the cusp bifurcation of codimension 2 (i.e., the Bogadnov–
Takens bifurcation). Hence, there exist values of the parameters (h, a, b, d) such that
system (2.1) has a unique unstable limit cycle for some parameter values, and system
(2.1) has an unstable homoclinic loop for other parameter values.

We observe that in the model (2.1), the harvesting rate h plays the key role in
determining the dynamics of (2.1). When the harvesting rate h tends to the critical
harvesting rate h0 and the predator capturing rate a tends to the predator conversion
rate b, Theorem 3.3 says that if the predator death rate d satisfies 0 < b − d < b

a ,
then there exist some values of parameters such that the prey and predator coexist in
the form of a positive equilibrium or a periodic orbit with a finite period for different
initial values, respectively. And there exist other values of parameters such that the
prey and predator coexist in the form of a positive equilibrium for all initial values
lying inside the homoclinic loop, and the prey and predator coexist in the form of a
periodic orbit with infinite period for all initial values on the homoclinic loop.
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3.4. The heteroclinic bifurcation and separatrix connecting a saddle-
node and a saddle bifurcation. From Theorem 2.4, there may exist a separatrix
connecting the saddle-node (x∗, y∗) and the saddle (x2, 0) when a < b, 0 < b− d < b

a ,
and h = h0. By Theorem 2.5, the saddle-node (x∗, y∗) separates into two hyperbolic
equilibria, (x∗

1, y
∗
1) and (x∗

2, y
∗
2). Thus, when a < b, 0 < b − d < b

a , and 0 < h < h0,
the separatrix connecting is broken and the separatrix connecting a saddle-node and a
saddle bifurcation occurs. There are only three possibilities for the separatrix of saddle
(x2, 0) of system (2.1): (i) the separatrix of saddle (x2, 0) tends to the stable focus
(x∗

2, y
∗
2); (ii) there exists a heteroclinic orbit connecting saddles (x2, 0) and (x∗

1, y
∗
1);

(iii) the separatrix of saddle (x2, 0) goes out of the first quadrant. If possibility (ii)
occurs, then system (2.1) undergoes the heteroclinic bifurcation. Because of technical
problems, we cannot determine the exact bifurcation points.

The existence of the heteroclinic bifurcation and separatrix connecting a saddle-
node and a saddle bifurcation implies that the prey and predator can coexist in the
form of two positive equilibria for some initial values.

4. Discussion. Our systematic work on system (2.1) reveals that the ratio-
dependent model with a constant rate harvesting is more interesting and richer in dy-
namics compared to the ratio-dependent model. It has been shown that the nonzero
constant prey harvesting rate prevents mutual extinction as a possible outcome of
predator-prey interaction. Biologically, there is still a lot of work to do in this area.
For example, it would be interesting to see what the behavior of model (1.2) would be
when the harvesting constant is in the predator equation. Ideally, we would be inter-
ested in studying model (1.2) with both predator and prey harvesting constants since
we usually harvest, or would like to harvest, both populations. In [8], [9], and [10],
Brauer and Soudack noticed some different types of dynamics whether the harvest-
ing was in the prey or in the predator equation for a class of predator-prey system.
Mathematically, we would like to point out here that our analysis of model (2.1) is
a first look at the local bifurcations of the degenerate saddle-node of codimension 4,
but it is far from complete. Many questions on the dynamics of the unfoldings of the
saddle-node singularity of codimension 4 remain untouched. To the best of our knowl-
edge, there are four kinds of Bogadnov–Takens-type singularity (cusp, saddle, focus,
elliptic) of codimension 3, and the unfoldings of these singularities of codimension 3
are extremely complicated (cf. [19], [27], [12] and therein). The dynamical features
of codimension 4 are so rich that a full description of the topology of the unfolding
seems hopeless. Luckily, however, we see that there have been some perfect works that
deal with the unfoldings of singularity of saddle (or cusp or elliptic) of codimension 4
(cf. [15], [16], [17], [18], [25]). In those papers, delicate results such as the limit cycles,
their number, and bifurcation patterns are discussed. And it is interesting that the
bifurcation of these singularities of codimension 4 can undergo the bifurcation of only
the same type as singularity of codimension 3. Different from the known results of
codimension 4, the bifurcation of the saddle-node singularity of codimension 4 can
undergo the bifurcation of different-type singularity of codimension 3 from the follow-
ing arguments. The canonical family of the saddle-node singularity of codimension 4
is

ẋ = y,

ẏ = εx4 + µ3x
2 + µ2x + µ1 + y(µ4 + bx + cx3),

(4.1)

where ε = ±1, c, b > 0 are parameters, and 0 < |µi| � 1, i = 1, 2, . . . , 4, are small
parameters.
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The number of equilibrium points of system (4.1) depends on the number of real
roots of

εx4 + µ3x
2 + µ2x + µ1 = 0.(4.2)

If (4.2) has a multiple real root with multiplicity 3, then system (4.1) has a singularity
of codimension 3. The singularity can be saddle, focus, or elliptic depending on the
different values of parameters (µ1, µ2, µ3) and b, respectively. Thus, the unfoldings of
the saddle-node singularity of codimension 4 should undergo the saddle, focus, and
elliptic bifurcations of codimension 3 generally when the values of parameters vary.
Its detailed qualitative and general dynamical picture of the unfoldings of the saddle-
node singularity of codimension 4 remain to be seen. Naturally, these interesting
topics should be pursued in the future.

It is a pity that system (2.1) does not have the singularity of codimension 3 for
all possible values of original parameters in R2

+. Thus, system (2.1) cannot be a
universal unfolding of the saddle-node singularity of codimension 4. Hence, system
(2.1) is only an unfolding of the saddle-node singularity of codimension 4, which leads
to some bifurcations and loses some bifurcations for all possible values of parameters;
for example, system (2.1) may undergo the separatrix connecting a saddle-node and
a saddle bifurcation and the heteroclinic bifurcation according to the results of the
saddle bifurcation of codimension 3 in [19] and [27], but system (2.1) cannot undergo
the bifurcation of heteroclinic connections of two hyperbolic saddle which are produced
by the saddle bifurcation of codimension 3.

Appendix A. Proof of Theorem 2.2. Since we consider the topological struc-
ture of orbits of system (2.1) in a small neighborhood of (x0, y0), we make the following
change of variable:

u = x, v =
y

x
.

There exists a neighborhood N(x0,y0) of (x0, y0) such that system (2.1) in N(x0,y0)

is differential homeomorphic to the following system in a neighborhood N̄(u0,v0) of

(u0, v0), where u0 = 1
2 , v0 = 0,

u̇ = u(1 − u) − auv

1 + v
− 1

4
,

v̇ = v

(
−d +

b

1 + v

)
− v(1 − u) +

av2

1 + v
+

v

4u
.

(A.1)

Moving the equilibrium (1
2 , 0) to the origin, system (A.1) becomes

u̇ = −1

2
av − u2 − auv +

1

2
av2 + auv2 − 1

2
av3 − auv3 +

1

2
av4 + O((u, v)5),

v̇ = (b− d)v + (a− b)v2 + 2u2v + (b− a)v3 + (a− b)v4 − 4u3v + O((u, v)5).
(A.2)

The conclusion (i) comes from straightforward analysis of system (A.2), as used in [30].
When b − d = 0, we use the procedure, used in [28], to reduce system (A.2) via

the normal form method. Let

w1 = −2

a
u, z1 = v.
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We have

ẇ1 = z1 +
a

2
w2

1 − aw1z1 − z2
1 + aw1z

2
1 + z3

1 − aw1z
3
1 − z4

1 + O((w1, z1)
5),

ż1 = (a− b)z2
1 +

a2

2
w2

1z1 − (a− b)z3
1 +

1

2
a3w3

1z1 + (a− b)z4
1 + O((w1, z1)

5).
(A.3)

Consider the following C∞ changes of coordinates in a small neighborhood of (0, 0)
step by step

w2 = w1 +
b

2
w2

1 + w1z1, z2 = z1 +
a

2
w2

1 − (a− b)w1z1;

w3 = w2 +
a + ab + b2

6
w3

2 − a− 2b

2
w2

2z2, z3 = z2 +
ab

2
w3

2 − ab− 2a− b2

2
w2

2z2;

and

w4 = w3,

z4 = z3 +

(
1

2
a2b− 1

4
a2 − 3

4
ab2

)
w4

3 +

(
1

2
ab− 1

2
a2 − a2b + 2ab2

)
w3

3z3

+

(
−a + 2a2 − 7

2
ab + 5b2

)
w2

3z
2
3 + (4b− 2a)w3z

3
3 + O((w3, z3)

5).

Then system (A.3) can be transformed into

ẇ4 = z4,

ż4 = aw4z4 +
1

2
abw2

4z4 +

(
a3

2
− 5

4
a2b

)
w4

4

+

(
10

3
a2b− 8

3
ab2 − 7

6
a2 − a3

)
w3

4z4 +

(
−a2 + 3ab− a2b +

3

2
ab2 +

5

2
b3
)
w2

4z
2
4

+ (4b− 2a)z4
4 + O((w4, z4)

5).

(A.4)

The equilibrium (0, 0) of system (A.4) is a degenerate saddle-node of codimen-
sion 4 if 2a− 5b �= 0. The proof is completed.

Appendix B. Proof of Theorem 2.4. The existence of three equilibria comes
from Lemma 2.1. Straightforward computing of the eigenvalues of the linear matrix at
the equilibrium (x1, y1) and (x2, y2), respectively, reveals that (x1, y1) is a hyperbolic
unstable node, and (x2, y2) is a hyperbolic saddle in both cases. Next, we determine
only the various types of dynamical behavior of the equilibrium (x∗, y∗).

For simplicity, to reduce the normal form of system (2.1) at (x∗, y∗), we make the
following change of variable

u = x, v =
y

x
.

This transformation of variable is a differential homeomorphism in the interior of R2
+.

Thus, there exists a neighborhood B(x∗,y∗) of (x∗, y∗) such that system (2.1) in B(x∗,y∗)

is differential homeomorphic to the following system in a neighborhood B̄(u∗,v∗) of
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(u∗, v∗), where u∗ = b−a(b−d)
2b , v∗ = b−d

d ,

u̇ = u(1 − u) − auv

1 + v
− h0

∆
= f̄1(u, v),

v̇ = v

(
−d +

b

1 + v

)
− v(1 − u) +

av2

1 + v
+

h0v

u

∆
= f̄2(u, v).

(B.1)

It is clear that the functions f̄1(u, v) and f̄2(u, v) are analytic functions in B̄(u∗,v∗).
Let

u1 = u− u∗, v1 = v − v∗.

Then system (B.1) can be transformed into

u̇1 = −au∗d2

b2
v1 − u2

1 −
ad2

b2
u1v1 +

au∗d3

b3
v2
1 + g1(u1, v1),

v̇1 =
d(a− b)(b− d)

b2
v1 +

b− d

du∗ u2
1 +

(a− b)d3

b3
v2
1 + g2(u1, v1),

(B.2)

where gi(u1, v1) is an analytic function with at least powers uj
1v

k
1 , j + k ≥ 3, i = 1, 2.

In the case (I), i.e., a �= b, straightforward analysis, as used in [30], shows
that (x∗, y∗) is a saddle-node and there exist three eigendirections of (x∗, y∗): θ1 =

arctg(−(a−b)(b−d)
adu∗ ), θ2 = π, and θ3 = π + arctg(−(a−b)(b−d)

adu∗ ). Furthermore, when
a > b, there exists a unique orbit in R2

+ convergent to (x∗, y∗), and all other orbits
in R2

+ go out of R2
+ by crossing the y-axis. Hence, there does not exist a separatrix

connecting the saddle-node (x∗, y∗) and the saddle (x2, 0). When a < b, there exist
many orbits in R2

+ convergent to (x∗, y∗), and the other orbits in R2
+ go out of R2

+ by
crossing the y-axis. In this case, there may exist a separatrix connecting the saddle-
node (x∗, y∗) and the saddle (x2, 0). The phase portraits are shown in Figure 2.3
(both parts (I)).

In the case (II), i.e., a = b, let

u2 = − b

d2u∗u1, v2 = v1.

Then system (B.2) becomes

u̇2 = v2 +
u∗d2

b
u2

2 −
d2

b
u2v2 −

d

b
v2
2 + ḡ1(u2, v2),

v̇2 =
u∗d3(b− d)

b2
u2

2 + ḡ2(u2, v2),

(B.3)

where ḡi(u2, v2) is an analytic function with at least powers uj
2v

k
2 , j + k ≥ 3, i = 1, 2.

We make the following near-identity changes of variables of system (B.3) in a
small neighborhood of (0, 0),

u3 = u2 +
d2

2b
u2

2 +
d

b
u2v2, v3 = v2 +

u∗d2

b
u2

2,

and

u4 = u3, v4 = v3 + O1(|(u3, v3)|3).



752 DONGMEI XIAO AND LESLIE STEPHEN JENNINGS

Then by two steps, system (B.3) becomes the normal form of the cusp of codimension 2

u̇4 = v4,

v̇4 =
u∗d3(b− d)

b2
u2

4 +
2u∗d2

b
u4v4 + O(|(u4, v4)|3),

(B.4)

where O(|(u4, v4)|3) is of the same order infinity.
Hence, the equilibrium (0, 0) of system (B.4) is a cusp of codimension 2, i.e., the

equilibrium (x∗, y∗) is a cusp of codimension 2, or a Bogdanov–Takens singularity.
The phase portrait is shown in Figure 2.3 (II).

Since the closed orbit must include the equilibria in its interior and since the total
sum of index of these equilibria equals one, system (2.1) does not have a closed orbit
in R2

+ under the conditions of (I) and (II). This completes the proof of the theorem.
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Abstract. Boundary value problems of a one-dimensional steady-state Poisson–Nernst–Planck
(PNP) system for ion flow through a narrow membrane channel are studied. By assuming the ratio of
the Debye length to a characteristic length to be small, the PNP system can be viewed as a singularly
perturbed problem with multiple time scales and is analyzed using the newly developed geometric
singular perturbation theory. Within the framework of dynamical systems, the global behavior is
first studied in terms of limiting fast and slow systems. It is rather surprising that a complete set of
integrals is discovered for the (nonlinear) limiting fast system. This allows a detailed description of
the boundary layers for the problem. The slow system itself turns out to be a singularly perturbed
one, too, which indicates that the singularly perturbed PNP system has three different time scales. A
singular orbit (zeroth order approximation) of the boundary value problem is identified based on the
dynamics of limiting fast and slow systems. An application of the geometric singular perturbation
theory gives rise to the existence and (local) uniqueness of the boundary value problem.
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1. Introduction. Poisson–Nernst–Planck (PNP) systems serve as basic elec-
trodiffusion equations modeling, for example, ion flow through membrane channels,
and transport of holes and electrons in semiconductors (see [1, 2, 11, 14] and references
therein). In the context of ion flow through a membrane channel, the flow of ions is
driven by their concentration gradients and by the electric field modeled together by
the Nernst–Planck equations, and the electric field is in turn governed by the ion
concentrations through the Poisson equation. To motivate the one-dimensional PNP
system to be studied, we give a brief account of the modeling. We will be inter-
ested in flow of two types of ions through a narrow membrane channel. For practical
purposes, the narrow membrane channel through which ions flow is tubelike with a
small aspect ratio and, in this regard, it is natural to approximate the channel as a
one-dimensional object (see, e.g., [1, 2]). Now consider flow of two types of ions, S1

and S2, with valences α > 0 and −β < 0, passing through an ion channel viewed as
a line segment. Let x be the coordinate along the channel normalized from x = 0 to
x = 1. Denote the concentrations of S1 and S2 at location x and at time t by c1(t, x)
and c2(t, x). Then the electric potential φ(t, x) in the channel at time t is determined
by the Poisson equation

∂2φ

∂x2
= − 1

ε2
(αc1 − βc2),

where the parameter ε2 is related to the ratio of the Debye length to a characteristic
length scale. The flux densities, J̄1 and J̄2, of the two ions contributed from the
concentration gradients of the two ions and the electric field satisfy the Nernst–Planck
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equations

D1

(
∂c1
∂x

+ αc1
∂φ

∂x

)
= −J̄1, D1

(
∂c2
∂x

− βc2
∂φ

∂x

)
= −J̄2,

where D1 and D2 are the diffusion constants of ions S1 and S2 relative to the mem-
brane channel, together with the conservation of mass

∂c1
∂t

+
∂J̄1

∂x
= 0,

∂c2
∂t

+
∂J̄2

∂x
= 0.

Combining the above equations, we obtain the one-dimensional PNP system as a
simplified model for flow of two ions through a narrow membrane channel:

ε2
∂2φ

∂x2
= −(αc1 − βc2),

∂c1
∂t

+
∂J̄1

∂x
= 0,

∂c2
∂t

+
∂J̄2

∂x
= 0,

D1

(
∂c1
∂x

+ αc1
∂φ

∂x

)
= − J̄1, D1

(
∂c2
∂x

− βc2
∂φ

∂x

)
= −J̄2.

(1)

To understand the asymptotic behavior that is most relevant from a physical point
of view, the first step is to study the steady-state problem. On one hand, steady-state
solutions are among those that are responsible for the global structure of the full
system and, on the other hand, they often represent asymptotic states of solutions
of general initial conditions. In this work, we study boundary value problems of the
one-dimensional steady-state PNP system. The corresponding system is

ε2
d2φ

dx2
= −(αc1 − βc2),

dJ1

dx
= 0,

dJ2

dx
= 0,

dc1
dx

+ αc1
dφ

dx
= −J1,

dc2
dx

− βc2
dφ

dx
= −J2,

(2)

where J1 = J̄1/D1 and J2 = J̄2/D2, and the boundary conditions are

φ(0) = v0, c1(0) = L1, c2(0) = L2,

φ(1) = 0, c1(1) = R1, c2(1) = R2.
(3)

Many mathematical works have been done on the existence, uniqueness, and
qualitative properties of boundary value problems even for high dimensional systems,
and algorithms have been developed toward numerical approximations (see, e.g., [5, 6,
13, 7]). Under the assumption that ε � 1, the problem can be viewed as a singularly
perturbed system. Typical solutions of singularly perturbed systems exhibit different
time scales; for example, boundary and internal layers (inner solutions) evolve at
fast pace and regular layers (outer solutions) vary slowly. For the boundary value
problems (2) and (3), there are two boundary layers, one at each end. Physically,
near boundaries x = 0 and x = 1, the potential function φ(x) and the concentration
functions c1(x) and c2(x) exhibit a large gradient or a sharp change. In [2], for α = β =
1, the boundary value problem was studied using the method of matched asymptotic
expansions as well as numerical simulations, which provide a good quantitative and
qualitative understanding of the problem.

We also treat the problem as a singularly perturbed one by assuming ε � 1
but for general α and β. Our approach uses the newly developed geometric singular
perturbation theory (see, e.g., [4, 8, 10, 12]). The basic ideas behind this theory for
boundary value problems are
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(i) to derive, based on different time scales of the system, various limiting systems
for ε = 0 and examine their dynamical structures;

(ii) to construct a singular orbit (zeroth order approximation) consisting of or-
bits of limiting systems, which include boundary layers, regular layers, and,
sometimes, internal layers;

(iii) to show that there are true solutions near the singular orbit for ε > 0.

Since limiting systems essentially have lower order than the full system, it is often
easier to study which make (i) useful. Understanding the dynamics of limiting subsys-
tems allows one to carry out (ii). The most difficult part is the task (iii). It requires
us to investigate the interaction between the fast and slow dynamics. A successful
type of results is called the exchange lemma (see, e.g., [8, 10, 15, 12]). Its objective is
to track the smooth configuration of an invariant manifold as it passes regions over-
lapping different time scales. For boundary value problems, two invariant manifolds,
say, ML and MR, will be tracked: ML will be the trace of one boundary under the
flow, and MR will be the trace of the other boundary. The existence of a solution for
ε > 0 is then reduced to the nontrivial intersection of ML and MR. This is where the
exchange lemma comes in to play the crucial role. This approach provides not only a
construction of a limiting solution but also a direct verification of the validity of the
limiting solution.

The rest of the paper is organized as follows. Section 2 contains three subsections.
In section 2.1, the PNP system (2) is rewritten as a singularly perturbed system of first
order equations, and the boundary value problem is converted to a connecting problem.
Two systems, slow and fast systems, with different scales are first identified according
to different time scales, and some general aspects of dynamical system theory are laid
out for the boundary value problem. The boundary layer behavior governed by the
limiting fast system is studied in section 2.2. It is rather surprising that a complete set
of integrals is discovered for the nonlinear limiting fast system which allows a detailed
study of the boundary layer behavior. (The physical meanings of the integrals remain
unclear.) The regular layers governed by the slow flow are analyzed in section 2.3. It
turns out that the slow system itself is a singularly perturbed one which is examined
using again the geometric singular perturbation theory. In section 3, we construct a
singular orbit of the boundary value problem and apply the exchange lemma to show
the existence and uniqueness of a solution near the singular orbit. A derivation of the
integrals of the fast system is given in section 4 as an appendix.

2. A dynamical system framework.

2.1. A basis of geometric singular perturbation theory. We will recast
the singularly perturbed PNP system into a system of first order equations. This
singularly perturbed system corresponds to the slow scale which is suitable for under-
standing dynamics within the membrane channel. A fast scale system can be derived
through a change of scale of the independent variable x, which can be used to cap-
ture the sharp boundary behavior. Slow and fast systems of the singularly perturbed
PNP system are equivalent for ε �= 0, but their limits are not: they provide comple-
mentary limiting information for the full system. We begin with a dynamical system
formulation of the singularly perturbed PNP system (2).

Denote derivatives with respect to x by overdot symbols and introduce

u = εφ̇, v = βc2 − αc1, w = α2c1 + β2c2, and τ = x.
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System (2) becomes

εφ̇ =u, εu̇ = v, εv̇ = uw − ε(βJ2 − αJ1),

εẇ =αβuv + (β − α)uw − ε(α2J1 + β2J2),

J̇1 = 0, J̇2 = 0, τ̇ = 1.

(4)

System (4) will be treated as a dynamical system with the phase space R7, and the
independent variable x will be viewed as time. The boundary condition (3) becomes

φ(0) = v0, v(0) = βL2 − αL1, w(0) = α2L1 + β2L2, τ(0) = 0,

φ(1) = 0, v(1) = βR2 − αR1, w(1) = α2R1 + β2R2, τ(1) = 1.
(5)

Formulation of high order equations into dynamical systems of first order equa-
tions is not unique. For the boundary value problem considered in this paper, two
issues need particular attention. One is toward the derivative of φ(x). Since φ(x) is
expected to have large derivatives near the boundaries, the introduction of u = εφ̇
seems natural. The introduction of a new variable τ = x is a special treatment for
boundary value problems. The small price paid is the addition of an extra dimension
with trivial dynamics to the phase space. The apparent advantage is that, to find a
solution of the boundary value problem, one needs only an orbit from one boundary
to the other without worrying how much time it takes the orbit to move from one side
to the other: it is automatically 1 since, as a component of the orbit, τ = x will vary
from 0 to 1. The change of variables from c1 and c2 to v and w is motivated purely
from the analysis point of view.

Observe that by setting ε = 0 in system (4), we get u = v = 0. The set Z0 = {u =
v = 0} is called the slow manifold which supports the regular layer of the boundary
value problem. The regular layer will not satisfy all conditions in (5) if βL2−αL1 �= 0
or βR2−αR1 �= 0, and this defect has to be remedied by boundary layers. To examine
boundary layer behavior, we will now derive a system, the fast system, with a time
scale different from that of (4). This will be achieved through the following rescaling
of time (independent variable) for dependent variables:

Φ(ξ) = φ(εξ), U(ξ) = u(εξ), V (ξ) = v(εξ), W (ξ) = w(εξ),

Ii(ξ) =Ji(εξ), and T (ξ) = τ(εξ).

Note that capital letters for same dependent variables are used to indicate merely
different time scales. In terms of ξ, we obtain the fast system of (4):

Φ′ =U, U ′ = V, V ′ = UW − ε(βI2 − αI1),

W ′ =αβUV + (β − α)UW − ε(α2I1 + β2I2),

I ′1 = 0, I ′2 = 0, T ′ = ε,

(6)

where the prime symbol denotes the derivative with respect to the variable ξ. The
limiting fast system at ε = 0 is

Φ′ =U, U ′ = V, V ′ = UW, W ′ = αβUV + (β − α)UW,

I ′1 = 0, I ′2 = 0, T ′ = 0.
(7)

The slow manifold Z0 is precisely the set of equilibria of (7).
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Now let BL and BR be the subsets of R7 defined, respectively, by

BL ={φ = v0, v = βL2 − αL1, w = α2L1 + β2L2, τ = 0},
BR ={φ = 0, v = βR2 − αR1, w = α2R1 + β2R2, τ = 1}.

(8)

The boundary value problem is then equivalent to the following connecting problem:
finding a solution of (4) from BL to BR.

For ε > 0, let M ε
L be the union of all forward orbits of (4) starting from BL and

let M ε
R be the union of all backward orbits starting from BR. To obtain the existence

and (local) uniqueness of a solution for the connecting problem, it thus suffices to
show M ε

L and M ε
R intersect transversally. The intersection is exactly the orbit of

a solution of the boundary value problem, and the transversality implies the local
uniqueness. The strategy is to obtain a singular orbit and track the evolution of M ε

L

and M ε
R along the singular orbit. As discussed in the introduction, a singular orbit

will be a union of orbits of subsystems of (4) with different time scales.
The boundary layers will be two orbits of (7): one from BL to Z0 in forward time

along the stable manifold of Z0 and the other from BR to Z0 in backward time along
the unstable manifold of Z0. The two boundary layers will be connected by a regular
layer on Z0, which is an orbit of a limiting system of (4). The next two subsections
are devoted to the study of boundary layers and regular layers.

2.2. Fast dynamics and boundary layers. We start with the study of bound-
ary layers governed by system (7). This system has many invariant structures that
are useful for characterizing the global dynamics.

The slow manifold Z0 = {U = V = 0} consisting entirely of equilibria of sys-
tem (7) is a five-dimensional manifold of the phase space R7. For each equilibrium
z = (Φ, 0, 0,W, I1, I2, T ) ∈ Z0, the linearization of system (7) has five zero eigenvalues
corresponding to the dimension of Z0, and two eigenvalues in directions normal to
Z0. The latter two eigenvalues and their associated eigenvectors are given by

λ± = ±
√
W and n± =

(
(±

√
W )−1, 1,±

√
W,±(β − α)

√
W, 0, 0, 0

)τ

.(9)

Thus, every equilibrium has a one-dimensional stable manifold and a one-dimensional
unstable manifold. The global configurations of the stable and unstable manifolds
will be needed for the boundary layer behavior. For any constants I∗1 , I∗2 , and T ∗, the
set N = {I1 = I∗1 , I2 = I∗2 , T = T ∗} is a four-dimensional invariant subspace of the
phase space R7.

Surprisingly, system (7) possesses a complete set of integrals with which the dy-
namics can be fully analyzed; in particular, the stable and unstable manifolds can be
characterized and the behavior of boundary layers can be described in detail.

Proposition 2.1. (i) System (7) has a complete set of six integrals given by

H1 = W − (β − α)V − αβ

2
U2, H2 = Φ − ln |W + αV |

β
,

H3 = |W + αV |α|W − βV |β , H4 = I1, H5 = I2, and H6 = T,

where the argument of Hi’s is (Φ, U, V,W, I1, I2, T ).
(ii) The stable and unstable manifolds W s(Z0) and Wu(Z0) of Z0 are character-

ized as follows:

W s(Z0) = ∪{W s(z∗) : z∗ ∈ Z0} and Wu(Z0) = ∪{Wu(z∗) : z∗ ∈ Z0}
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and, for z∗= (Φ∗, 0, 0,W ∗, I∗1 , I
∗
2 , T

∗)∈Z0, a point z = (Φ, U, V,W, I1, I2, T )∈W s(z∗)∪
Wu(z∗) if and only if

H1(z) = W ∗, H2(z) = Φ∗ − lnW ∗

β
, H3(z) = (W ∗)α+β , Ii = I∗i , T = T ∗.

(iii) The stable manifold W s(Z0) intersects BL transversally at points with

U = −sgn (βL2 − αL1)

√
2αβ(L1 + L2) − 2(α + β)(αL1)

β
α+β (βL2)

α
α+β

αβ
(10)

and arbitrary I1 and I2, where sgn is the sign function. The unstable manifold Wu(Z0)
intersects BR transversally at points with

U = sgn (βR2 − αR1)

√
2αβ(R1 + R2) − 2(α + β)(αR1)

β
α+β (βR2)

α
α+β

αβ
(11)

and arbitrary I1 and I2. Let NL = BL ∩W s(Z0) and NR = BR ∩Wu(Z0). Then,

ω(NL) =

{(
v0 +

1

α + β
ln

αL1

βL2
, 0, 0, (α + β)(αL1)

β
α+β (βL2)

α
α+β , I1, I2, 0

)}
,

α(NR) =

{(
1

α + β
ln

αR1

βR2
, 0, 0, (α + β)(αR1)

β
α+β (βR2)

α
α+β , I1, I2, 1

)}

for all I1 and I2.
Proof. The statement (i) can be verified directly (see section 4 for a derivation

of H3). The statement (ii) is a simple consequence of (i) together with the fact that
Φ(ξ) → Φ∗, W (ξ) → W ∗, U(ξ) → 0, and V (ξ) → 0 as ξ → ∞ for the stable manifold
and as ξ → −∞ for the unstable manifold.

For the statement (iii), we present only the proof regarding the intersection of
W s(Z0) and BL. Suppose

z0 = (Φ0, U0, V 0,W 0, I0
1 , I

0
2 , 0) = (v0, U

0, βL2 − αL1, α
2L1 + β2L2, I

0
1 , I

0
2 , 0)

is a point in BL ∩W s(Z0). Then, using the integrals H1, H2, and H3, the solution
z(ξ) = (Φ(ξ), U(ξ), V (ξ),W (ξ), I0

1 , I
0
2 , 0) of system (7) with initial condition z(0) = z0

satisfies

H1(z(ξ)) =W (ξ) − (β − α)V (ξ) − αβ

2
U2(ξ) = A,

H2(z(ξ)) = Φ(ξ) − ln |W (ξ) + αV (ξ)|
β

= B,

H3(z(ξ)) = |W (ξ) + αV (ξ)|α|W (ξ) − βV (ξ)|β = C

for some constants A, B, and C, and for all ξ. Since U(ξ) → 0 and V (ξ) → 0 as
ξ → +∞, W (+∞) = A from H1(z(ξ)) = A, and hence, C = Aα+β from H3(z(ξ)) = C.
Now using the equations H3(z(0)) = C = Aα+β and H2(z(0)) = B, we have

A = (α + β)(αL1)
β

α+β (βL2)
α

α+β , B = v0 −
ln ((α + β)βL2)

β
.
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Then, from H1(z(0)) = A and H2(z(∞)) = B, one has

U0 = −sgn (V 0)

√
2(αβ(L1 + L2) −A)

αβ
and Φ(+∞) = v0 +

1

α + β
ln

αL1

βL2
.

The choice of the sign for U0 comes from the consideration that the stable eigenvector
n− in (9) has U and V components with opposite signs. Thus, BL and W s(Z0)
intersect at the points with U = U0 given above, and all I1 and I2. If NL = BL ∩
W s(Z0), then ω(NL) = {(Φ(+∞), 0, 0,W (+∞), I1, I2, 0)}. The above formulas for
Φ(+∞) and W (+∞) = A give the desired characterization of ω(NL). Lastly, since
the stable manifold is completely characterized, one can compute its tangent space
at each intersection point to verify the transversality of the intersection. It is slightly
complicated but straightforward. We will omit the detail here.

Part (iii) of this result implies that the boundary layer on the left end will be an
orbit of (7) from (v0, UL, βL2 − αL1, α

2L1 + β2L2, I1, I2, 0) ∈ BL to the point

zL =

(
v0 +

1

α + β
ln

αL1

βL2
, 0, 0, (α + β)(αL1)

β
α+β (βL2)

α
α+β , I1, I2, 0

)
∈ Z0,

where UL is given by the display (10) and I1 and I2 are arbitrary at this moment,
and that on the right end will be a backward orbit of (7) from the point (0, UR, βR2−
αR1, α

2R1 + β2R2, I1, I2, 1) ∈ BR to the point

zR =

(
1

α + β
ln

αR1

βR2
, 0, 0, (α + β)(αR1)

β
α+β (βR2)

α
α+β , I1, I2, 1

)
∈ Z0,

where UR is given by the display (11) and I1 and I2 are arbitrary at this moment. It
turns out that there is a unique pair of numbers I1 and I2 so that the corresponding
points zL and zR can be connected by a regular layer solution on Z0. The regular
orbit together with the two boundary layer orbits provides the singular orbit.

Remark 2.1. The integrals H2 and H3 imply that

H̃2 = Φ +
ln |W − βV |

α

is also an integral which can be viewed as the symmetric part to H2.
To find the explicit expressions of the boundary layers from BL and BR to Z0,

there are certain technical difficulties. But for some special cases, for example, α = β,
or α = 2 and β = 1, or α = 1 and β = 2, the difficulty can be overcome. In particular,
our results for the case α = β = 1 agree with those in [2], and we provide the detail
below for demonstration.

Corollary 2.2. If α = β = 1, then the expressions of the solutions from BL

and BR to Z0 can be explicitly given.
Proof. We will derive the solution from BL to Z0 for general α and β first. Let

r = W +αV and s = W −βV . Then, rαsβ = Aα+β , where A is as in Proposition 2.1,
W = (βr + αs)/(α + β), and V = (r − s)/(α + β). Using the equations in (7), one
gets

r′ = ±
√

2β

α(α + β)
r

√
αr + βA

α+β
β r−

α
β − (α + β)A.
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The technical difficulty mentioned above for general α and β is the integration of this
equation. Once r is found, the rest can be explicitly solved. The equation can be
integrated for the cases mentioned above. We now carry out the rest of the analysis
for α = β = 1.

Without loss of generality, we assume L2 > L1. Then, A = 2
√
L1L2 and

r′ = −
√
r(r − 2

√
L1L2).

Solving the equation and using r(0) = W (0) + V (0) = 2L2, one gets

r =
A(1 + ce−

√
Aξ)2

(1 − ce−
√
Aξ)2

, where c =
L

1/4
2 − L

1/4
1

L
1/4
2 + L

1/4
1

.

Thus,

s =
A2

r
=

A(1 − ce−
√
Aξ)2

(1 + ce−
√
Aξ)2

, W =
r + s

2
= A

(
1 +

8c2e−2
√
Aξ

(1 − c2e−2
√
Aξ)2

)
,

V =
r − s

2
=

4Ace−
√
Aξ(1 + c2e−2

√
Aξ)

(1 − c2e−2
√
Aξ)2

, U = −
√

2W − 2A = − 4
√
Ace−

√
Aξ

1 − c2e−2
√
Aξ

,

Φ = B + ln(W + V ) = v0 +
1

2
ln

L1

L2
+ 2 ln

∣∣∣∣∣1 + ce−
√
Aξ

1 − ce−
√
Aξ

∣∣∣∣∣ .
The expression for Φ is obtained by either using the integral H2 and the solutions for
V and W or by directly integrating Φ′ = U from U .

2.3. Slow dynamics and regular layers. We now examine the slow flow in
the vicinity of the slow manifold Z0 = {u = v = 0} for regular layers. If we take ε = 0
in system (4), we get u = v = 0 and

J̇1 = 0, J̇2 = 0, τ̇ = 1.

The information on φ and w is lost. This indicates that the slow flow in the vicinity
of Z0 is itself a singular perturbation problem. To see this, we zoom into an O(ε)-
neighborhood of Z0 by blowing up the u and v coordinates; that is, we make a scaling
u = εp and v = εq. System (4) becomes

φ̇ = p, εṗ = q, εq̇ = pw − (βJ2 − αJ1),

ẇ = εαβpq + (β − α)pw − (α2J1 + β2J2),

J̇1 = 0, J̇2 = 0, τ̇ = 1,

(12)

which is indeed a singular perturbation problem. When ε = 0, the system reduces to

φ̇ = p, 0 = q, 0 = pw − (βJ2 − αJ1),

ẇ = (β − α)pw − (α2J1 + β2J2),

J̇1 = 0, J̇2 = 0, τ̇ = 1.

(13)
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The dynamics of φ and w survives in this limiting process. For this system, the slow
manifold is

S0 =

{
p =

βJ2 − αJ1

w
, q = 0

}
.

The corresponding fast system obtained by the scaling of time

Φ(ξ) = φ(εξ), P (ξ) = p(εξ), Q(ξ) = q(εξ), and W (ξ) = w(εξ)

is

Φ′ = εP, P ′ = Q, Q′ = PW − (βI2 − αI1),

W ′ = ε2αβPQ + ε(β − α)PW − ε(α2I1 + β2I2),

I ′1 = 0, I ′2 = 0, T ′ = 0.

(14)

The limiting system of (14) when ε = 0 is

Φ′ = 0, P ′ = Q, Q′ = PW − (βI2 − αI1),

W ′ = 0, I ′1 = 0, I ′2 = 0, T ′ = 0.
(15)

The slow manifold S0 is the set of equilibria of (15). The eigenvalues normal to S0

are λ±(p) = ±
√
W . In particular, the slow manifold S0 is normally hyperbolic, and

hence, it persists for system (14) for ε > 0 small (see [4]).
The limiting slow dynamic on S0 is governed by system (13), which reads

φ̇ =
βJ2 − αJ1

w
, ẇ = −αβ(J1 + J2), J̇i = 0, τ̇ = 1.

The general solution is characterized as follows: J1 and J2 are arbitrary constants,
and

τ(x) = τ0 + x, w(x) = α0 − αβ(J1 + J2)x,

φ(x) =φ0 −
βJ2 − αJ1

αβ(J1 + J2)
ln

(
1 − αβ(J1 + J2)

α0
x

)
,

(16)

where τ0 = τ(0), φ(0) = φ0, and w(0) = α0. Note that if J1 +J2 = 0, then w(x) = α0

and φ(x) = φ0+(βJ2−αJ1)x/α0. The latter is the limit of φ(x) in (16) as J1+J2 → 0.
We thus use the unified formula (16) even if J1 + J2 = 0.

To identify the slow portion of the singular orbit on S0, we need to examine the
ω-limit (resp., the α-limit) set of M ε

L ∩W s(S0) (resp., M ε
R ∩Wu(S0)) as ε → 0. To

do this, we fix an O(1)-neighborhood of S0. In terms of U and V , this neighborhood
is of order O(ε). For ε > 0 small, the time taken in terms of ξ for M ε

L and M ε
R to

evolve to any O(ε)-neighborhood of {U = V = 0} is of order O(ε| ln ε|). Thus, the
λ-lemma (see [3]) implies that M ε

L (resp., M ε
R) is C1 O(ε)-close to M0

L (resp., M0
R) in

any O(ε)-neighborhood of {U = V = 0}. Therefore, in an O(1)-neighborhood of S0 in
terms of P and Q, M ε

L (resp., M ε
R) intersects W s(S0) (resp., Wu(S0)) transversally.

And, by abusing the notation, if NL = M0
L ∩ W s(S0) and NR = M0

R ∩ Wu(S0),
then ω(NL) and α(NR) have the same descriptions as those in Proposition 2.1 with
U = V = 0 replaced by P = (βI2 − αI1)/W and Q = 0.

The slow orbit should be one given by (16) that connects ω(NL) and α(NR). Let
M̄L (resp., M̄R) be the forward (resp., backward) image of ω(NL) (resp., α(NR))
under the slow flow (13).
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Proposition 2.3. M̄L and M̄R intersect transversally along the unique orbit
given by (16) from x = 0 to x = 1 with

τ0 = 0, α0 = (α + β)(αL1)
β

α+β (βL2)
α

α+β , φ0 = v0 +
1

α + β
ln

αL1

βL2
,

J1 =

(
ln R1

L1
− αv0

)(
(αL1)

β
α+β (βL2)

α
α+β − (αR1)

β
α+β (βR2)

α
α+β

)
αβ
α+β ln R1

L1
+ α2

α+β ln R2

L2

,

J2 =

(
ln R2

L2
+ βv0

)(
(αL1)

β
α+β (βL2)

α
α+β − (αR1)

β
α+β (βR2)

α
α+β

)
β2

α+β ln R1

L1
+ αβ

α+β ln R2

L2

.

Proof. We show first that M̄L and M̄R intersect along the orbit with the above
characterization. In view of (16) and the descriptions for ω(NL) and α(NR) in Propo-
sition 2.1, the intersection is uniquely determined by

τ0 = 0, α0 = w(0) = (α + β)(αL1)
β

α+β (βL2)
α

α+β ,

w(1) = (α + β)(αR1)
β

α+β (βR2)
α

α+β ,

φ0 = Φ(0) = v0 +
1

α + β
ln

αL1

βL2
, Φ(1) =

1

α + β
ln

αR1

βR2
.

Substituting into (16) gives

J1 + J2 =
α + β

αβ

(
(αL1)

β
α+β (βL2)

α
α+β − (αR1)

β
α+β (βR2)

α
α+β

)
,

βJ2 − αJ1 =
(α + β)

(
(αL1)

β
α+β (βL2)

α
α+β − (αR1)

β
α+β (βR2)

α
α+β

)
β

α+β ln R1

L1
+ α

α+β ln R2

L2

×
(
v0 +

1

α + β
ln

L1R2

L2R1

)
,

which in turn yields the expressions for J1 and J2. To see the transversality of the
intersection, it suffices to show that ω(NL) · 1 (the image of ω(NL) under the time
one map of the flow of system (13)) is transversal to α(NR) on S0 ∩ {τ = 1}. If we
use (φ,w, J1, J2) as a coordinate system on S0 ∩ {τ = 1}, then the set ω(NL) · 1 is
given by {(φ(J1, J2), w(J1, J2), J1, J2)} with

φ(J1, J2) = v0 +
1

α + β
ln

αL1

βL2
− βJ2 − αJ1

αβ(J1 + J2)
ln

(
1 − αβ(J1 + J2)

α0

)
,

w(J1, J2) = (α + β)(αL1)
β

α+β (βL2)
α

α+β − αβ(J1 + J2).

Thus, the tangent space to ω(NL) · 1 restricted on S0 ∩ {τ = 1} is spanned by
(φJ1

, wJ1
, 1, 0) = (φJ1

,−αβ, 1, 0) and (φJ2
, wJ2

, 0, 1) = (φJ2
,−αβ, 0, 1). In view of

the display in Proposition 2.1, the tangent space to α(NR) restricted on S0 ∩{τ = 1}
is spanned by (0, 0, 1, 0) and (0, 0, 0, 1). Note that S0 ∩ {τ = 1} is four-dimensional.
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Thus, it suffices to show that the above four vectors are linearly independent or,
equivalently, φJ1 �= φJ2 . The latter can be verified by a direct computation. Indeed,
if J1 + J2 �= 0 at the intersection points, then

φJ1
− φJ2

=
α + β

αβ(J1 + J2)
ln

(
1 − αβ(J1 + J2)

α0

)
�= 0;

if J1 + J2 = 0 at the intersection points, then φ(J1, J2) = φ0 + (βJ2 − αJ1)/α0 and
hence φJ1 − φJ2 = −(α + β)/α0 �= 0.

3. Main result. Based on the study of the limiting behavior of boundary layers
and regular layers in the previous section, we can easily construct a singular orbit
(zeroth order approximation) of the boundary value problem. To show that there
indeed exists a true solution near the singular orbit, we apply the exchange lemma to
show M ε

L and M ε
R intersect around the singular orbit.

We now state the existence and uniqueness result of the boundary value problem,
which also provides the description of a singular orbit.

Theorem 3.1. Assume that αL1 �= βL2 and αR1 �= βR2. For ε > 0 small, the
connecting problem (4), (8) has a unique solution near a singular orbit. The singular
orbit is the union of two fast orbits of system (7) and one slow orbit of system (13);
more precisely, with both I1 = J1 and I2 = J2 given in Proposition 2.3,

(i) the fast orbit representing the limiting boundary layer at x = 0 lies on BL ∩
W s(Z0) from BL to ω(NL) ⊂ Z0, whose starting point has the U -component given
by (10) in Proposition 2.1;

(ii) the fast orbit representing the limiting boundary layer at x = 1 lies on BR ∩
Wu(Z0) from BR to α(NR) ⊂ Z0, whose starting point has the U -component given
by (11) in Proposition 2.1;

(iii) the slow orbit on S0 connecting the two boundary layers from x = 0 to x = 1
is displayed in (16) together with the quantities in Proposition 2.3.

Proof. The singular orbit which has been studied in sections 2.2 and 2.3 is sum-
marized in (i), (ii), and (iii) of this theorem. It remains to show the existence and
uniqueness of a solution near the singular orbit for ε > 0. Recall that M ε

L (resp.,
M ε

R) is the union of all forward (resp., backward) orbits starting from BL (resp., BR).
It suffices to show that, for ε > 0 small, M ε

L and M ε
R intersect transversally with

each other around the singular orbit. We note that the assumptions αL1 �= βL2 and
αR1 �= βR2 imply that the vector field of (4) is not tangent to BL and BR and hence,
M ε

L and M ε
R are smooth invariant manifolds.

For ε > 0 small, the evolutions of M ε
L and M ε

R from BL and BR, respectively, to
an ε-neighborhood of Z0 along the two boundary layers are governed by system (6).
Since, for system (7), M0

L and M0
R intersect W s(Z0) and Wu(Z0) transversally, we

have that M ε
L and M ε

R intersect W s(Z0) and Wu(Z0) transversally. As discussed in
section 2.3, in terms of the blow-up coordinates, M ε

L and M ε
R intersect W s(S0) and

Wu(S0) transversally for system (14). And, if we denote NL = M0
L ∩ W s(S0) and

NR = M0
R ∩Wu(S0), then the vector field on S0 is not tangent to ω(NL) and α(NR).

Furthermore, the traces M̄L and M̄R of ω(NL) and α(NR), respectively, under the
slow flow on S0 intersect transversally. All conditions for the exchange lemma (see [15]
and also [10, 8, 9]) are satisfied, and hence, M ε

L and M ε
R intersect transversally. The

intersection has dimension

dimM ε
L + dimM ε

R − 7 = 4 + 4 − 7 = 1,
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which is the orbit of the unique solution for the connecting problem near the singular
orbit.

Remark 3.1. We have considered the situation that αL1 �= βL2 and αR1 �= βR2.
In the case that αL1 = βL2 or αR1 = βR2, then BL or BR is on the slow manifold
S0 and hence there is no boundary layer at x = 0 or x = 1.

4. Appendix. A derivation of the integral H3 in Proposition 2.1. The
complete set of six integrals of system (7) in Proposition 2.1 is crucial in the quantita-
tive investigation of the boundary layers of the boundary value problem. The integrals
H1 and H2 are relatively easy to guess. The integral H3, although easily verified, is
discovered through several observations. It may have some general interest, and we
provide a formal derivation below.

We divide the W -equation by the V -equation from system (7) to get

dW

dV
=

αβV

W
+ (β − α),

which is a homogeneous equation of order zero. This leads to the substitution W =
yV . From dW = V dy + ydV and the above equation one gets(

αβV

yV
+ (β − α)

)
dV = V dy + ydV or − dV

V
=

ydy

y2 − (β − α)y − αβ
.

Integrating both sides, we have, for some constant C,

− lnV + C =
α

α + β
ln |y + α| + β

α + β
ln |y − β|,

or, for some constant D,

V =
D

|y + α| α
α+β |y − β|

β
α+β

, W =
Dy

|y + α| α
α+β |y − β|

β
α+β

.

Substitute y = W/V to get

|W + αV |α|W − βV |β = Dα+β .

This completes the derivation of the integral H3.
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THE DETERMINATION OF THE SURFACE CONDUCTIVITY OF
A PARTIALLY COATED DIELECTRIC∗

FIORALBA CAKONI† , DAVID COLTON† , AND PETER MONK†

Abstract. A variational method is given for determining the essential supremum of the surface
conductivity of a partially coated anisotropic dielectric medium from a knowledge of the far field
pattern of the time-harmonic electric field at fixed frequency corresponding to an incident plane
wave. It is assumed that the shape of the scatterer has been determined (e.g., by solving the far field
equation and using the linear sampling method). Numerical examples are given for the scalar case
with constant surface conductivity.

Key words. inverse scattering problem, interior transmission problem, electromagnetic waves,
mixed boundary value problems

AMS subject classifications. 35P25, 35R30, 78A45
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1. Introduction. In a previous paper in this journal [5], we considered the
problem of determining the surface impedance of a perfect conductor that is partially
coated with a dielectric from a knowledge of the far field pattern of the scattered
electromagnetic wave corresponding to an incident time-harmonic plane wave at fixed
frequency. Such problems are the simplest model for detecting hostile objects that
have been partially coated with a dielectric in order to avoid detection by using such
a coating to reduce the radar cross section of the scattered wave. In [5] it was shown
that the solution of the far field equation that determines the shape of the scatterer
by means of the linear sampling method [11] can also be used in conjunction with a
variational method to determine the essential supremum of the surface impedance of
the coated portion of the boundary, and numerical examples were given showing the
viability of our method.

In this paper we consider the problem complementary to the one described above;
i.e., we now wish to detect a benign object that has been partially coated by a thin
conducting material in order to make it appear hostile [6]. An example of this is a
wooden decoy in the shape of a tank that is partially coated by metallic paint. The
problem is again to determine a coefficient (the surface conductivity) in the boundary
condition from a knowledge of the far field pattern of the scattered electromagnetic
wave corresponding to an incident time-harmonic plane wave. (The shape of the scat-
terer can again be determined by the linear sampling method.) However, the problem
of determining the surface conductivity is considerably more complicated than the
problem of determining the surface impedance of a coated perfect conductor since we
now have a mixed boundary value problem for a penetrable obstacle. In particular, we
now must consider an interior transmission problem with mixed boundary conditions,
and the well-posedness of such problems is unknown.

The plan of our paper is as follows. After formulating the mathematical model
for the scattering of time harmonic electromagnetic waves by an anisotropic medium
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that is partially coated by a thin conducting layer, we consider the scalar case cor-
responding to the scattering of electromagnetic waves by an infinite cylinder. We
first show that in this case both the direct scattering problem and the interior trans-
mission problem are well posed. We then use these results to derive a variational
formula for the determination of the essential supremum of the surface conductivity
of the coated portion of the boundary from a knowledge of the far field pattern of the
scattered time-harmonic magnetic field. Finally, we derive an analogous formula for
determining the surface conductivity in the case of Maxwell’s equations in R3 under
the assumption that the interior transmission problem in this case is well posed. We
conclude by presenting some numerical examples for the scalar case with constant
surface conductivity.

2. Formulation of the direct and inverse scattering problem. We consider
the scattering of time-harmonic electromagnetic waves with frequency ω from an
infinitely long cylindrical anisotropic dielectric partially coated with a very thin layer
of a highly conductive material. We assume that the electric permittivity ε0 and
magnetic permeability µ0 of the exterior dielectric background medium are positive
constants, whereas the scatterer has the same magnetic permeability µ0 as the exterior
medium but the electric permittivity ε and the conductivity σ are real 3 × 3 matrix
valued functions. After an appropriate scaling [12], the total electric and magnetic
fields E,H satisfy the time-harmonic homogeneous Maxwell equations in the exterior
of the scatterer,

{
∇× E − ikH = 0,
∇×H + ikE = 0,

(2.1)

and the interior electric and magnetic fields E0, H0 solve the following equations in
the interior of the scattering object:

{
∇× E0 − ikH0 = 0,
∇×H0 + ikN(x)E0 = 0,

(2.2)

where k2 = ε0µ0ω
2 and the index of refraction is given by N(x) = 1

ε0

(
ε(x) + iσ(x)

ω

)
.

Let the real valued function η > 0 defined on the coated portion of the boundary
of the scatterer describe the physical properties of the highly conductive coating (see
[1]). As shown in [8], the tangential component of the electric field is continuous
across the boundary

ν × E − ν × E0 = 0,(2.3)

while the tangential component of the magnetic field is continuous only on the un-
coated part of the boundary

ν ×H − ν ×H0 = 0(2.4)

and satisfies the following relation on the coated part of the boundary:

ν ×H − ν ×H0 = η(x)(ν × E) × ν.(2.5)
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The exterior field E, H is given by

E = Ei + Es, H = Hi + Hs,(2.6)

where Es, Hs is the scattered field satisfying the Silver–Müller radiation condition at
infinity [12] and Ei, Hi is the given incident field.

Now we assume that the scatterer is an infinitely long cylinder with axis in the
z-direction and that the incident electromagnetic field is a plane wave propagating
in the direction perpendicular to the cylinder. Let the bounded domain D ⊂ R2

with Lipschitz boundary Γ be the cross section of the cylinder such that the exterior
domain De := R2 \D is connected. We denote by ν the outward unit normal to Γ
defined almost everywhere on Γ. The boundary Γ = Γ1 ∪Π∪Γ2 is split into two open
disjoint parts Γ1 and Γ2 having Π as their possible common boundary in Γ. Here Γ1

corresponds to the uncoated part and Γ2 corresponds to the coated part. We assume
that the dielectric is orthotropic; i.e., the matrix N is of the form

N =

⎛
⎝n11 n12 0
n21 n22 0
0 0 n33

⎞
⎠ ,

and the functions N and η do not depend on z. If we consider incident waves such
that the electric field is polarized perpendicular to the z-axis, then the magnetic fields
have a component in only the z-direction, i.e.,

Hi = (0, 0, ui), H0 = (0, 0, v), Hs = (0, 0, us).

Assuming that N−1 exists and expressing the electric fields in terms of magnetic
fields, (2.1)–(2.6) now lead to the following transmission problem for v and u:

(i) ∇·A∇v + k2 v = 0 in D,

(ii) ∆u + k2 u = 0 in De,

(iii) v − u = 0 on Γ1,

(iv) v − u = −iη
∂u

∂ν
on Γ2,

(v)
∂v

∂νA
− ∂u

∂ν
= 0 on Γ,

(vi) u = us + ui,(2.7)

(vii) lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0,

r = |x|, where us is the scattered field and ui is the given incident field. In the case
of plane waves the incident field is given by ui := eikx·d, d ∈ Ω := {x : |x| = 1}.
Moreover,

∂v

∂νA
(x) := ν(x) ·A(x)∇v(x), x ∈ Γ,

A =
1

n11n22 − n12n21

(
n11 n21

n12 n22

)
,



770 FIORALBA CAKONI, DAVID COLTON, AND PETER MONK

and the radiation condition (2.7)(vii) holds uniformly with respect to x̂ = x/|x|. Note
that A is not the inverse of a 2 × 2 submatrix N but rather comes from substituting
H0 = (0, 0, v) into (2.2).

In the following we assume that A is a 2×2 matrix valued function whose entries
are continuously differentiable functions in D such that A is symmetric, Re( ξ̄ ·Aξ ) ≥
γ|ξ|2, and Im( ξ̄ · Aξ ) ≤ 0 for all ξ ∈ C2 and x ∈ D, where γ is a positive constant.
Note that, due to the symmetry of A, we have Re( ξ̄ ·Aξ ) = ξ̄ · Re(A) ξ and Im( ξ̄ ·
Aξ ) = ξ̄ · Im(A) ξ. Moreover, we require that η ∈ L∞(Γ2) and η(x) ≥ η0 > 0 for all
x ∈ Γ2.

Let H1(D) and H1
loc(De) denote the usual Sobolev spaces and H

1
2 (Γ) the corre-

sponding trace space. For Γ2 ⊂ Γ we define

H
1
2 (Γ2) := {u|Γ2 : u ∈ H

1
2 (Γ)},

H̃
1
2 (Γ2) := {u ∈ H

1
2 (Γ2) : suppu ⊆ Γ2},

and denote by H− 1
2 (Γ2) and H̃− 1

2 (Γ2) the dual spaces (H̃
1
2 (Γ2))

′ and (H
1
2 (Γ2))

′,
respectively, with L2 as a pivot space (for details, see [16]). We recall that a function

in H̃
1
2 (Γ2) and H̃− 1

2 (Γ2) can be extended by zero to a function in H
1
2 (Γ) and H− 1

2 (Γ),

respectively. Note that for u ∈ H1(D) with ∆u ∈ L2(D) the trace ∂u
∂ν ∈ H− 1

2 (Γ) is
well defined.

For later use we also define the Hilbert space

H1(D,Γ2) :=

{
u ∈ H1(D) such that

∂u

∂ν
∈ L2(Γ2)

}

equipped with the usual graph norm

‖u‖2
H1(D,Γ2)

:= ‖u‖2
H1(D) +

∥∥∥∥∂u∂ν
∥∥∥∥

2

L2(Γ2)

.

The forward scattering problem reads: Given D, A, η as above and the incident
field ui ∈ H1

loc(R
2), find v ∈ H1(D) and u ∈ H1

loc(De) that satisfy (2.7), where the
boundary conditions are assumed in the sense of the trace operator. In what follows,
we refer to this mixed transmission problem as (MTP).

It is known [12] that solutions of the Helmholtz equation that satisfy the Som-
merfeld radiation condition (2.7)(vi) have the asymptotic behavior

us(x) =
eikr√
r
u∞(x̂) + O(r−3/2), r → ∞,(2.8)

where u∞(x̂) is the far field pattern of the radiating solution us. In the case of
incident plane waves, u∞(x̂) depends on the incident direction d, which we indicate
by u∞(x̂, d). The inverse scattering problem we are concerned with is to determine D
and η from a knowledge of the far field pattern u∞(x̂, d) of the scattered field us for
x̂, −d ∈ Ω0, where Ω0 is a subset of the unit circle Ω. Note that no a priori knowledge
of the amount of coating is required.

3. The direct scattering problem. First we want to show that the mixed
transmission problem (2.7) is well posed.

Lemma 3.1. The problem (MTP) has at most one solution.
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Proof. Let v ∈ H1(D) and u ∈ H1
loc(De) be the solution of (2.7) corresponding

to the incident wave ui ≡ 0. Applying Green’s formula in D and De ∩BR, where BR

is a disk of radius R containing D, and using the transmission conditions, we have∫
D

(
∇v ·A∇v − k2|v|2

)
dy +

∫
De∩BR

(
|∇u|2 − k2|u|2

)
dy

=

∫
Γ

v · ∂v

∂νA
ds−

∫
Γ

u · ∂u
∂ν

ds +

∫
SR

u · ∂u
∂ν

ds

= i

∫
Γ2

1

η
|v − u|2 ds +

∫
SR

u · ∂u
∂ν

ds.

Now taking the imaginary part of both sides and using the fact that Im(A) ≤ 0 is a
real valued matrix and η ≥ η0 > 0, we obtain

Im
∫
SR

u · ∂u
∂ν

ds ≥ 0.

Finally, an application of Rellich’s lemma and the unique continuation principle yield
u = v = 0.

In order to give a variational formulation of the problem (MTP) we introduce

the Dirichlet-to-Neumann map Λ : H
1
2 (SR) → H− 1

2 (SR), which maps h ∈ H
1
2 (SR)

to ∂ũ
∂ν , where ũ solves the exterior Dirichlet problem for the Helmholtz equation in

R2\BR with Dirichlet boundary data h. The following result is known [12], [15].

Lemma 3.2. There exists an operator Λ0 : H
1
2 (SR) → H− 1

2 (SR) such that∫
SR

ϕΛ0ϕds ≤ 0(3.1)

and Λ − Λ0 is a compact operator from H
1
2 (SR) to H− 1

2 (SR).
Integrating by parts the equations of (MTP) with a test function ϕ, we can put

(MTP) into the following variational form: Find w ∈ H1(BR\Γ2) such that∫
D

(
∇ϕ ·A∇w − k2ϕw

)
dy +

∫
De∩BR

(
∇ϕ · ∇w − k2ϕw

)
dy(3.2)

−
∫

Γ2

i

η
[ϕ] · [w] ds−

∫
SR

ϕΛw ds = −
∫
SR

ϕΛui ds +

∫
SR

ϕ
∂ui

∂ν
ds

for any function ϕ ∈ H1(BR\Γ2), where [u] = u+|Γ2 − u−|Γ2 denotes the jump of u

across Γ2. Note that for u ∈ H1(BR\Γ2) the jump [u] ∈ H̃
1
2 (Γ2). Let us denote by

A1 and A2 the following sesquilinear forms:

A1(w,ϕ) :=

∫
D

(∇ϕ ·A∇w + ϕw) dy +

∫
De∩BR

(∇ϕ · ∇w + ϕw) dy

−
∫

Γ2

i

η
[ϕ] · [w] ds−

∫
SR

ϕΛ0w ds(3.3)

and

A2(w,ϕ) := −
∫
BR

(k2 + 1)ϕw dy −
∫
SR

ϕ (Λ0 − Λ)w ds,
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respectively. Then (3.2) becomes the following: Find w ∈ H1(BR\Γ2) such that

A1(w,ϕ) + A2(w,ϕ) = L(ϕ) ∀ϕ ∈ H1(BR\Γ2),(3.4)

where L(ϕ) denotes the continuous antilinear form defined by the right-hand side of
(3.2). Obviously if w is a solution of (3.4), then v := w|D and u := w|BR∩De

satisfy the
differential equations and the transmission conditions of (MTP). Then using Green’s
formula and the radiation condition, one can extend w = u−ui to a radiating solution
of the Helmholtz equation in the exterior domain De (see, e.g., [15]).

Next we want to show that there exists a function w ∈ H1(BR\Γ2) that satisfies
(3.4). The uniqueness of (3.4) is equivalent to the uniqueness of a solution to (MTP)
(see Lemma 3.1). Note that, due to (2.7(iv)) and (2.7(v)), if u ∈ H1(D) and v ∈
H1

loc(D
e) solve (2.7), then w ∈ H1(BR\Γ2). Using the classical trace theorems and

Cauchy–Schwarz inequality, the chain of continuous imbeddings

H̃
1
2 (Γ2) ⊂ H

1
2 (Γ2) ⊂ L2(Γ2) ⊂ H̃− 1

2 (Γ2) ⊂ H− 1
2 (Γ2),

and the boundedness of A and η, we obtain

|A1(w,ϕ)| ≤ C1‖w‖H1(BR\Γ2)
‖ϕ‖H1(BR\Γ2)

with C1 > 0 independent of w and ϕ. Hence A1 is bounded. Furthermore, from the
fact that Re(A) is positive definite together with Lemma 3.2, we obtain the following
coercivity result:

Re (A1(w,w)) ≥ C2‖w‖2
H1(BR\Γ2)

,

where the constant C2 > 0 does not depend on w.
Next, based on the Riesz representation theorem, we define an operator K :

H1(BR\Γ2) → H1(BR\Γ2) by

(Kw, ϕ) = A2(w, ϕ) ∀w,ϕ ∈ H1(BR\Γ2).

The compact embedding of H1(BR \Γ) into L2(BR) and the compactness of the
operator Λ − Λ0 from Lemma 3.2 imply that the operator K is compact.

The above analysis shows that the Fredholm alternative can be applied to (3.2),
which, together with the uniqueness of a solution to (3.2), implies the solvability of
(3.2) and therefore the solvability of (2.7). Summarizing the above analysis, we have
proved the following theorem.

Theorem 3.3. For any incident field ui ∈ H1
loc(R

2) there exists a unique solution
(v, u) ∈ H1(D) ×H1

loc(De) of (MTP) which depends continuously on ui.

3.1. The interior transmission problem. As will be seen in what follows, an
important role in solving the inverse problem of determining D and η is played by the
interior transmission problem: Given f ∈ H

1
2 (Γ), h ∈ H− 1

2 (Γ), and r ∈ L2(Γ2), find
v ∈ H1(D) and w ∈ H1(D,Γ2) such that

(i) ∇·A∇v + k2 v = 0 in D,

(ii) ∆w + k2 w = 0 in D,

(iii) v − w = f |Γ1
on Γ1,(3.5)

(iv) v − w = −iη
∂w

∂ν
+ f |Γ2 + r on Γ2,

(v)
∂v

∂νA
− ∂w

∂ν
= h on Γ.
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In the remainder of the paper we will refer to (3.5) as (IMTP). The well-posedness of
the interior transmission problem in the case when η ≡ 0 and r = 0 is established in
[7]. Here we will adapt the variational approach used in [7] to our mixed transmission
case. In order to avoid repetition we will only sketch the proof, emphasizing the
changes due to the boundary terms involving η. We first modify (IMTP) to

(i) ∇·A∇v −mv = 
1 in D,

(ii) ∆w − w = 
2 in D,

(iii) v − w = f |Γ1 on Γ1,(3.6)

(iv) v − w = −iη
∂w

∂ν
+ f |Γ2

+ r on Γ2,

(v)
∂v

∂νA
− ∂w

∂ν
= h on Γ,

where m > 0, 
1 ∈ L2(D), and 
2 ∈ L2(D). We will now reformulate (3.6) as an
equivalent variational problem. To this end let

W(D) = {w ∈ L2(D)2 : ∇·w ∈ L2(D), and curlw = 0 and ν · w|Γ2 ∈ L2(Γ2)}

equipped with the natural norm

‖w‖2
W = ‖w‖2

L2 + ‖∇·w‖2
L2 + ‖ν · w‖2

L2 ,

and denote by 〈· , ·〉 the duality pairing between H
1
2 (Γ) and H− 1

2 (Γ). We also intro-
duce the duality identity

〈ϕ, ψ · ν〉 =

∫
D

ϕ ∇·ψ dx +

∫
D

∇ϕ · ψ dx(3.7)

for (ϕ, ψ) ∈ H1(D) × W(D).
By doing exactly the same as in the proof of Theorem 3.3 in [7], one can show

that the modified interior transmission problem (3.6) is equivalent to the following
variational problem: Find V = (v,w) ∈ H1(D) × W(D) such that

A(V,Ψ) = L(Ψ), Ψ ∈ H1(D) × W(D),(3.8)

where the sesquilinear form A defined in (H1(D) × W(D))2 is given by

A(V,Ψ) =

∫
D

A∇v · ∇ϕ̄ dx +

∫
D

mv ϕ̄ dx +

∫
D

∇·w∇· ψ̄ dx +

∫
D

w · ψ̄ dx

− i

∫
Γ2

η (w · ν) (ψ̄ · ν), ds−
〈
v, ψ̄ · ν

〉
− 〈ϕ̄, w · ν〉(3.9)

and the antilinear form L is given by

L(Ψ) =

∫
D

(
1 ϕ̄ + 
2 ∇· ψ̄) dx− i

∫
Γ2

η r (ψ̄ · ν) + 〈ϕ̄, h〉 −
〈
f, ψ̄ · ν

〉
.

The modified interior transmission problem (3.6) has a unique solution (v, w) ∈
H1(D)× H1(D,Γ2) if and only if the variational problem (3.8) has a unique solution
V ∈ H1(D) × W (D). If (v, w) is the unique solution (3.6), then V = (v,∇w) is a
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unique solution to (3.8). Conversely if V is the unique solution to (3.8), then the
unique solution (v, w) to (3.6) is such that V = (v,∇w).

Now assume that there exists a constant γ > 1 such that ξ̄ · Re(A) ξ ≥ γ|ξ|2 and
choose m > 1. Classical trace theorems and Schwarz’s inequality ensure the continuity
of the sesquilinear form A and the antilinear form L. On the other hand, by taking
the real and the imaginary part of A(V, V ), we have from the assumptions on Re(A),
Im(A), and η that

|A(V, V )| ≥ γ‖v‖2
H1(D) +‖w‖2

L2(D) +‖∇·w‖2
L2(D) −2Re(〈v̄, ν · w〉)+η0‖ν ·w‖2

L2(Γ2)
.

From the duality identity (3.7) and Schwarz’s inequality we have

2Re(〈v̄, ν · w〉) ≤ | 〈v̄, w〉 | ≤ ‖v‖H1(D)(‖w‖2
L2(D) + ‖∇·w‖2

L2(D))
1
2 .

Hence since γ > 1, we conclude that

|A(V, V )| ≥ γ − 1

γ + 1
(‖v‖2

H1(D) + ‖w‖2
L2(D) + ‖∇·w‖2

L2(D)) + η0‖ν · w‖2
L2(Γ2)

,

which means that A is coercive; i.e.,

|A(V, V )| ≥ C(‖v‖2
H1(D) + ‖w‖2

W (D)),

where C = min((γ − 1)/(γ + 1), η0). Therefore from the Lax–Milgram theorem we
have that the variational problem (3.8) is uniquely solvable, whence the modified
interior transmission problem has a unique solution (u, v) that satisfies

‖v‖H1(D) + ‖w‖H1(D,Γ2) ≤ C(‖f‖
H

1
2 (Γ)

+ ‖h‖
H− 1

2 (Γ)
+ ‖r‖L2(Γ2)),

where C > 0 is independent on f, h, r.

Theorem 3.4. Assume that ξ̄ · Re(A) ξ ≥ γ|ξ|2 with γ > 1 and η(x) ≥ η0 > 0.
Then the Fredholm alternative can be applied to the problem (IMTP).

Proof. Let us define

Y(D) :=
{
(v, w) ∈ H1(D) × H1(D,Γ2) : ∇·A∇v ∈ L2(D) and ∆w ∈ L2(D)

}
and consider the operator G from Y(D) into L2(D) × L2(D) × H

1
2 (Γ1) × L2(Γ2) ×

H− 1
2 (Γ) defined by

G(v, w) =

{
∇·A∇v −mv, ∆w − w, (v − w)|Γ1

,

(
v − w + iη

∂w

∂ν

)
Γ2

,

(
∂v

∂νA
− ∂w

∂ν

)
Γ

}
,

where m > 1. We have shown that the inverse of G exists and is continuous. Since G
is continuous, we deduce that G is a bijective operator. Now consider the operator T
from Y(D) into L2(D) × L2(D) ×H

1
2 (Γ1) × L2(Γ2) ×H− 1

2 (Γ) defined by

T (v, w) = {(k2 + m)v, (k2 + 1)w, 0, 0, 0}.

By the compact embedding of H1(D) into L2(D), the operator T is compact. Hence
G + T is a Fredholm operator of index one, which proves the theorem.
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By modifying the variational approach of [9] in a similar way, one can also prove
the following result.

Theorem 3.5. Assume that ξ̄ ·Re(A−1) ξ ≥ γ|ξ|2 with γ > 1. Then the Fredholm
alternative can be applied to the problem (IMTP).

Lemma 3.6. Assume that ξ̄ · Im(A) ξ < 0 at a point x0 ∈ D and η ≥ η0 > 0 on
Γ2. Then (IMTP) has at most one solution.

Proof. Let us consider the homogeneous problem (i.e., f = h = r = 0). Applying
the divergence theorem to v and A∇v, making use of the boundary conditions, and
applying Green’s theorem for w and w, we obtain

∫
D

∇v ·A∇v dy −
∫
D

k2|v|2 dy =

∫
D

|∇w|2 dy −
∫
D

k2|w|2 dy +

∫
Γ2

iη

∣∣∣∣∂w∂ν
∣∣∣∣
2

ds.

Hence

Im
(∫

D

∇v ·A∇v dy

)
= 0 and

∫
Γ2

η

∣∣∣∣∂w∂ν
∣∣∣∣
2

ds = 0.

Since ξ̄ · Im(A)ξ < 0 in a small ball Bx0 ⊂D, from the first equality we obtain that
∇v = 0 in Bx0 , whence v ≡ 0 in D since the unique continuation principle holds for
(3.5)(i). From the boundary conditions and the integral representation, formula w
also vanishes in D.

We summarize the above analysis in the following theorem.
Theorem 3.7. Assume that ξ̄ · Im(A) ξ < 0 at a point x0 ∈ D and η ≥ η0 > 0.

In addition, assume that there exists a constant γ > 1 such that

either ξ̄ · Re(A) ξ ≥ γ|ξ|2 or ξ̄ · Re(A−1) ξ ≥ γ|ξ|2 ∀ ξ ∈ C2.

Then the interior transmission problem (IMTP) has a unique solution (v, w) which
satisfies

‖v‖2
H1(D) + ‖w‖2

H1(D,Γ2)
≤ C (‖f‖

H
1
2 (Γ)

+ ‖h‖
H− 1

2 (Γ)
+ ‖r‖L2(Γ2)

).(3.10)

The values of k for which (IMTP) is not uniquely solvable are called the trans-
mission eigenvalues. The latter may occur, for example, if ξ̄ · Im(A) ξ = 0 in D. In
this case, from the proof of Lemma 3.6 we obtain that ∂w

∂ν = 0 on Γ2, whence the
eigenvalues of (IMTP) form a subset of the transmission eigenvalues corresponding to
the (usual) interior transmission problem discussed in [7]. Moreover, if Γ2 = Γ, then
the eigenvalues of (IMTP) form a subset of the Neumann eigenvalues of −∇ ·A∇.

4. The inverse problem. The inverse problem that we consider here is to
determine both the shape of the scattering object D and the surface conductivity
η from a knowledge of the far field pattern u∞(x̂, d) for all incident plane waves
ui := eikx·d, d ∈ Ω, and all observation directions x̂ ∈ Ω. (Note that it suffices to
know the far field pattern corresponding to all d ∈ Ω1 ⊂ Ω and all x̂ ∈ Ω2 ⊂ Ω; of
particular interest is the case d = −x̂ ∈ Ω0 ⊂ Ω.) We start the investigation of the
inverse problem by stating a uniqueness theorem for determining the support D.

Theorem 4.1. Let the domains D1 and D2 with the boundaries Γ1 and Γ2,
respectively; the matrix valued functions A1 and A2; and the functions η1 and η2

determined on the portions Γ1
2 ⊆ Γ1 and Γ2

2 ⊆ Γ2, respectively (either Γ1
2 or Γ2

2 or
both can possibly be empty sets), satisfy the assumptions of (MTP ) in section 2.
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Moreover, let us assume that either ξ̄ · �(A1) ξ ≥ γ|ξ|2 or ξ̄ · �(A−1
1 ) ξ ≥ γ|ξ|2, and

either ξ̄ · �(A2) ξ ≥ γ|ξ|2 or ξ̄ · �(A−1
2 ) ξ ≥ γ|ξ|2 for some γ > 1. If the far field

patterns u1
∞(x̂, d) corresponding to the data D1, A1, η1 and u2

∞(x̂, d) corresponding to
the data D2, A2, η2 coincide for all x̂, d ∈ Ω, then D1 ≡ D2.

This theorem is proved in [8] for the case of Maxwell’s equations in R3. In the
scalar case under consideration, one can adapt the approach of Hähner in [15] to
prove the above theorem. Note that the main ingredient of Hähner’s approach is
the well-posedness of the (modified) interior transmission problem investigated in
section 3.1.

The next question to ask is the uniqueness of the surface conductivity η. From the
above theorem we can now assume that D is known. Furthermore, we require that for
an arbitrarily choice of Γ2, A, and η there exist at least one incident plane wave such
that the corresponding total field u satisfies ∂u

∂ν

∣∣
Γ0

�= 0, where Γ0 ⊂ Γ is an arbitrary
portion of Γ. In the context of our application this is a reasonable assumption since
otherwise the portion of the boundary where ∂u

∂ν

∣∣
Γ0

= 0 for all incident plane waves
will behave like a perfect conductor, contrary to the assumption that the metallic
coating is thin enough for the incident field to penetrate into D. We can prove the
following result.

Theorem 4.2. Assume that η ∈ C(Γ2) and that k is not a Neumann eigenvalue
for −∇ · A∇. Then, under the above assumption and for fixed D and A, the sur-
face conductivity η is uniquely determined from the far field pattern u∞(x̂, d) for all
x̂, d ∈ Ω.

Proof. Let D and A be fixed, and suppose there exist η1 ∈ C(Γ
1

2) and η2 ∈ C(Γ
2

2)
such that the corresponding scattered fields us,1 and us,2, respectively, have the same
far field patterns u1

∞(x̂, d) = u2
∞(x̂, d) for all x̂, d ∈ Ω. Then from Rellich’s lemma,

us,1 = us,2 in R2\D. Hence, from the transmission condition, the difference V = v1−v2

satisfies

∇·A∇V + k2 V = 0 in D,(4.1)

∂V

∂νA
= 0 on Γ,(4.2)

V = −i(η̃1 − η̃2)
∂u1

∂ν
on Γ,(4.3)

where η̃1 and η̃2 are the extension by zero of η1 and η2, respectively, to the whole of
Γ and u1 = us,1 + ui. Assuming that k is not a Neumann eigenvalue for −∇·A∇ (in
particular, this is the case if Im(A) < 0 at x0 ∈ D, (4.1)), (4.2) implies that V = 0
in D, and hence (4.3) becomes

(η̃1 − η̃2)
∂u1

∂ν
= 0 on Γ

for all incident waves. Since for a given Γ0 ⊂ Γ there exists at least one incident plane

wave such that ∂u1

∂ν

∣∣
Γ0

�= 0, the continuity of η1 and η2 in Γ
1

2 and Γ
2

2, respectively,
implies that η̃1 = η̃2.

We now define the far field operator F : L2(Ω) → L2(Ω) by

Fg(x̂) :=

∫
Ω

u∞(x̂, d)g(d) ds(d)(4.4)

and introduce the far field equation

(Fg)(x̂) = γe−ikx̂·z, g ∈ L2(Ω), z ∈ D,(4.5)
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where γ = eiπ/4
√

8πk
and γe−ikx̂·z is the far field pattern of the fundamental solution

Φ(x, z) := i
4H

(1)
0 (k|x−z|) to the Helmholtz equation in R2, with H

(1)
0 being a Hankel

function of the first kind of order zero. A reconstruction of D can be obtained by
using the linear sampling method which characterizes the support D from a solution
of the far field equation (4.5) (see, e.g., [3], [7]). Assuming that D is known, our goal
is to provide a formula for computing the L∞ norm of η in terms of the solution of
the far field equation (4.5).

To this end, assuming that k is not a transmission eigenvalue, for z ∈ D we denote
by vz and wz the unique solution of the interior transmission problem

∇·A∇vz + k2 vz = 0 in D,

∆wz + k2 wz = 0 in D,

vz − (wz + Φ(·, z)) = 0 on Γ1,(4.6)

vz − (wz + Φ(·, z)) = −iη
∂

∂ν
(wz + Φ(·, z)) on Γ2,

∂vz
∂νA

− ∂

∂ν
(wz + Φ(·, z)) = 0 on Γ.

We recall that a Herglotz wave function with kernel g ∈ L2(Ω) is an entire solution
of the Helmholtz equation defined by

vg(x) =

∫
Ω

eikx·dg(d)ds(d), x ∈ R2.(4.7)

The following theorem holds.
Theorem 4.3. Assume that k is not a transmission eigenvalue. Let ε > 0,

z ∈ D, and (wz, vz) be the unique solution of (4.6). Then there exists a Herglotz wave
function vgz

ε
with kernel gzε ∈ L2(Ω) such that

‖wz − vgz
ε
‖H1(D,Γ2) ≤ ε.(4.8)

Moreover, there exists a positive constant c > 0 independent of ε and z such that

‖(Fgzε )(x̂) − γe−ikx̂·z‖L2(Ω) ≤ cε.(4.9)

Proof. To prove the first part of the theorem we first show that the operator
H : L2(Ω) → H

1
2 (Γ1) × L2(Γ2) defined by

(Hg)(x) :=

⎧⎪⎨
⎪⎩

∫
Ω

e−iky·x̂g(x̂)ds(x̂), y ∈ Γ1,

∂

∂ν

∫
Ω

e−iky·x̂g(x̂)ds(x̂) + i

∫
Ω

e−iky·x̂g(x̂)ds(x̂), y ∈ Γ2,
(4.10)

has dense range. To this end it suffices to show that the corresponding dual operator
H∗ : H̃− 1

2 (Γ1) × L2(Γ2) → L2(Ω) defined by

〈Hg, φ〉
H

1
2 (Γ1),H̃

− 1
2 (Γ1)

+ 〈Hg, ψ〉L2(Γ2),L2(Γ2)
= 〈g, H∗(φ, ψ)〉L2(Ω),L2(Ω)

for all g ∈ L2(Ω), φ ∈ H̃− 1
2 (Γ1), ψ ∈ L2(Γ2) is injective. By interchanging the order

of integration, one can show that

H∗(φ, ψ)(x̂) =

∫
Γ

e−iky·x̂φ̃(y) ds(y) +

∫
Γ

∂e−iky·x̂

∂ν
ψ̃(y) ds(y) + i

∫
Γ

e−iky·x̂ψ̃(y) ds(y),
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where φ̃ ∈ H− 1
2 (Γ) and ψ̃ ∈ L2(Γ) are the extension by zero to the whole boundary

Γ of φ and ψ, respectively. Assume that H∗(φ, ψ) = 0. Since H∗(φ, ψ) is, up to a
constant, the far field pattern of the potential

P (x) =

∫
Γ

Φ(x, y)φ̃(y) ds(y) +

∫
Γ

∂Φ(x, y)

∂ν
ψ̃(y) ds(y) + i

∫
Γ

Φ(x, y)ψ̃(y) ds(y),

which satisfies the Helmholtz equation in De, from Rellich’s lemma we have that
P (x) = 0 in De. As x → Γ, the following jump relations (in the L2 limit sense [12],
[16]) hold:

P+ − P−|Γ1 = 0, P+ − P−|Γ2
= ψ,

∂P+

∂ν
− ∂P−

∂ν

∣∣∣∣
Γ1

= −φ,
∂P+

∂ν
− ∂P−

∂ν

∣∣∣∣
Γ2

= −iψ,

where by the superscript + and − we distinguish the limits obtained by approaching

the boundary Γ from De and D, respectively. Using the fact that P+ = ∂P+

∂ν = 0, we
see that P satisfies the Helmholtz equation and

P−|Γ1 = 0,
∂P−

∂ν
+ iP−

∣∣∣∣
Γ2

= 0,

where the equalities are understood in the L2 limit sense. Using Green’s theorem and
a parallel surface argument, one can conclude as in Theorem 2.1 in [3] that P = 0 in
D, whence from the above jump relations φ = ψ = 0.

Now let w ∈ H1(D,Γ2) be a solution of the Helmholtz equation in D. From the

above we can approximate w|Γ1
∈ H

1
2 (Γ1) and ∂w

∂ν + iw|Γ2
∈ L2(Γ2) by Hg. Hence

using the a priori estimate for the solution of the mixed boundary value problem for
the Helmholtz equation (see Theorem 2.3 in [3]),

‖w‖H1(D) +

∥∥∥∥∂w∂ν
∥∥∥∥
L2(Γ2)

≤ C

(
‖w‖

H
1
2 (Γ1)

+

∥∥∥∥∂w∂ν + iw

∥∥∥∥
L2(Γ2)

)
,

we obtain that w can be approximated by a Herglotz wave function vg with respect
to the H1(D,Γ2)-norm, which proves the first part of the theorem. Note that, by a
change of variable, vg defined by (4.7) can be written as

∫
Ω
e−ikx·dg(d)ds(d).

Next let z ∈ D. Then γe−ikx̂·z is the far field pattern of the radiating solution
Φ(x, z). Let wz and vz be the unique solution of (4.6). Obviously vz and Φ(x, z)
satisfy (MTP) with incident field the H1

loc(R)-extension of wz. The well-posedness of
(MTP) (section 3) together with the classical trace theorems and the approximation
of wz by a Herglotz wave function vgz

ε
show that for every ε > 0

‖(Fgzε )(x̂) − γe−ikx̂·z‖L2(Ω) ≤ c1‖us
gz
ε
− Φ(·, z)‖H1(De∩BR) ≤ c‖vgz

ε
− wz‖H1(D) ≤ cε

for c1, c > 0, where us
gz
ε

is the scattered field corresponding to vgz
ε

as the incident wave.
(Note that by superposition Fgzε coincides with us

gz
ε
.) This ends the proof.

Now let us define Wz by

Wz := wz + Φ(·, z).(4.11)

In particular, since wz ∈ H1(D,Γ2), ∆wz ∈ L2(D), and z ∈ D, we have that Wz|Γ ∈
H

1
2 (Γ), ∂Wz

∂ν |Γ ∈ H− 1
2 (Γ), and ∂Wz

∂ν |Γ2 ∈ L2(Γ2).
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Lemma 4.4. For every two points z1 and z2 in D we have that

−2

∫
D

∇vz1 · Im(A)∇vz2 dx + 2

∫
Γ2

η(x)
∂Wz1

∂ν

∂W z2

∂ν
ds(4.12)

= −4kπ|γ|2J0(k|z1 − z2|) + i (wz1(z2) − wz2(z1)) ,

where wz1 , Wz1 and wz2 , Wz2 are defined by (4.6) and (4.11), respectively, and J0 is
a Bessel function of order zero.

Proof. Let z1 and z2 be two points in D and vz1 , wz1 , Wz1 and vz2 , wz2 , Wz2 the
corresponding functions defined by (4.6) and (4.11). Applying the divergence theorem
to vz1 , vz2 and using (4.6) together with the fact that A is symmetric, we have∫

Γ

(
vz1

∂vz2
∂νA

− vz2
∂vz1
∂νA

)
ds =

∫
D

(
∇vz1 ·A∇vz2 −∇vz2 ·A∇vz1

)
dx

+

∫
D

(
vz1∇·A∇vz2 − vz2∇·A∇vz1

)
dx = −2i

∫
D

∇vz1 · Im(A)∇vz2 dx.

On the other hand, from the boundary conditions we have∫
Γ

(
vz1

∂vz2
∂νA

− vz2
∂vz1
∂νA

)
ds

=

∫
Γ

(
Wz1

∂W z2

∂ν
−W z2

∂Wz1

∂ν

)
ds− 2i

∫
Γ2

η(x)
∂Wz1

∂ν

∂W z2

∂ν
ds.

Hence

−2i

∫
D

∇vz1 · Im(A)∇vz2 dx + 2i

∫
Γ2

η(x)
∂Wz1

∂ν

∂W z2

∂ν
ds

=

∫
Γ

(
Wz1

∂W z2

∂ν
−W z2

∂Wz1

∂ν

)
ds =

∫
Γ

(
Φ(·, z1)

∂Φ(·, z2)

∂ν
− Φ(·, z2)

∂Φ(·, z1)

∂ν

)
ds

+

∫
Γ

(
wz1

∂Φ(·, z2)

∂ν
− Φ(·, z2)

∂wz1

∂ν

)
ds +

∫
Γ

(
Φ(·, z1)

∂wz2

∂ν
− wz2

∂Φ(·, z1)

∂ν

)
ds.

Green’s theorem applied to the radiating solution Φ(·, z) of the Helmholtz equation
in De implies that [13]

∫
Γ

(
Φ(·, z1)

∂Φ(·, z2)

∂ν
− Φ(·, z2)

∂Φ(·, z1)

∂ν

)
ds = −2ik

∫
Ω

Φ∞(·, z1)Φ∞(·, z2)ds

= −2ik

∫
Ω

|γ|2e−ikx̂·z1eikx̂·z2 ds = −4ikπ|γ|2J0(k|z1 − z2|),

and from the representation formula for wz1 and wz2 we now obtain

−2i

∫
D

∇vz1 · Im(A)∇vz2 dx + 2i

∫
Γ2

η(x)
∂Wz1

∂ν

∂W z2

∂ν
ds

= −4ikπ|γ|2J0(k|z1 − z2|) + wz2(z1) − wz1(z2).

Dividing both sides of the above relation by i yields the result.
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In the following we consider a ball Br ⊂ D of radius r contained in D and define
a subset of L2(Γ2) by

V :=

⎧⎨
⎩f ∈ L2(Γ2) :

f =
∂Wz

∂ν

∣∣∣∣
Γ2

with Wz = wz + Φ(·, z),

z ∈ Br and wz, vz the solution of (4.6).

⎫⎬
⎭

Lemma 4.5. Assuming that k is neither a transmission eigenvalue nor a Neu-
mann eigenvalue for −∇ ·A∇, then V is complete in L2(Γ2).

Proof. Let ϕ be a function in L2(Γ2) such that for every z ∈ Br∫
Γ2

∂Wz

∂ν
ϕ ds = 0.

Construct v ∈ H1(D) and w ∈ H1(D,Γ2) as the unique solution of the interior
transmission problem

(i) ∇·A∇v + k2 v = 0 in D,

(ii) ∆w + k2 w = 0 in D,

(iii) v − w = 0 on Γ1,

(iv) v − w = −iη
∂w

∂ν
+ ϕ on Γ2,

(v)
∂v

∂νA
− ∂w

∂ν
= 0 on Γ.

Then we have

0 =

∫
Γ2

∂Wz

∂ν
ϕ ds =

∫
Γ

∂Wz

∂ν
(v − w) ds + i

∫
Γ2

η
∂Wz

∂ν

∂w

∂ν
ds

=

∫
Γ

∂Wz

∂ν
v ds−

∫
Γ

∂Wz

∂ν
w ds + i

∫
Γ2

η
∂Wz

∂ν

∂w

∂ν
ds.(4.13)

Next from the equations for vz and v, the divergence theorem, and the transmission
conditions, we have∫

Γ

∂Wz

∂ν
v ds =

∫
Γ

∂vz
∂νA

v ds =

∫
Γ

∂v

∂νA
vz ds

=

∫
Γ

∂w

∂ν
Wz ds− i

∫
Γ2

η
∂Wz

∂ν

∂w

∂ν
ds.(4.14)

Finally, substituting (4.14) into (4.13) and using the integral representation formula
yields

0 =

∫
Γ

(
∂w

∂ν
Wz −

∂Wz

∂ν
w

)
ds =

∫
Γ

(
∂w

∂ν
wz −

∂wz

∂ν
w

)
ds

=

∫
Γ

(
∂w

∂ν
Φ(·, z) − ∂Φ(·, z)

∂ν
w

)
ds = w(z) ∀z ∈ Br.(4.15)

The unique continuation principle for the Helmholtz equation now implies that w = 0
in D. Hence if k is not a Neumann eigenvalue corresponding to −∇·A∇ (e.g., if
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Im(A) < 0 at a point x0 ∈ D), then v ≡ 0 and therefore ϕ = 0, which proves the
lemma.

Now we are ready to prove the main result of this section.
Theorem 4.6. Let η ∈ L∞(Γ2) be the surface conductivity of (MTP), and assume

that Im(A) = 0 in D and k is neither a transmission eigenvalue nor a Neumann
eigenvalue for −∇ ·A∇. Then

‖η‖L∞(Γ2) = sup
zi, zj ∈ Br

αi ∈ C

∑
i,j αiαj

(
−4πk|γ|2J0(k|zi − zj |) + iwzi(zj) − iwzj (zi)

)
2‖

∑
i αi

∂
∂ν (wzi + Φ(·; zi))‖2

L2(Γ2)

,

(4.16)

where wz is such that (wz, vz) solves (4.6) and the sums are arbitrary finite sums.
Proof. We recall that

‖η‖L∞(Γ2) := ess sup η = sup
f∈L2(Γ2)

1

‖f‖2
L2(Γ2)

∫
Γ2

η(x)|f |2ds.

The theorem then follows from Lemmas 4.4 and 4.5 by fixing first z2 and then z1 and
considering linear combinations of ∂Wz

∂ν for different z ∈ Br.
Given that D is known, wz in the right-hand side of (4.16) still cannot be com-

puted, since it depends on the unknown functions η and A. However, from Theorem
4.3, we can use in (4.16) an approximation to wz given by the Herglotz wave function
vgz with kernel gz being the (regularized) solutions of the far field equation (4.5).

In the particular case where the coating is homogeneous, i.e., the surface conduc-
tivity is a positive constant η > 0, we can further simplify (4.16). In particular, fix
an arbitrary point z0 ∈ Br and consider z1 = z2 = z0. Then (4.12) simply becomes

η =
−2kπ|γ|2 − Im (wz0(z0))

‖ ∂
∂ν (wz0 + Φ(·; z0))‖2

L2(Γ2)

.(4.17)

A drawback of (4.16) and (4.17) is that the extent of the coating Γ2 is not known.
Thus, in practice these expressions provide only a lower bound for ‖η‖L∞(Γ2). How-
ever, if the object is fully coated, that is, Γ2 = Γ, we can compute an approximation
of ‖η‖L∞(Γ2) by (4.12) and (4.17), where Γ2 is replaced by of Γ.

5. Remarks on Maxwell’s equations in R3. The analysis of the previous
three sections for the case of scattering by an infinite cylinder can in principle be
extended to the scattering of electromagnetic waves by a bounded dielectric in R3.
In this case the direct scattering problem is given by (2.1)–(2.6), and the existence of
a unique solution to this problem was established in [8]. The results for the inverse
scattering problem for an infinite cylinder established in section 4 of this paper can
in turn be extended to the case of Maxwell’s equations in R3, provided that one can
establish the existence of a unique solution to the interior transmission problem

∇× Ez − ikHz = 0
in D,

∇×Hz + ikEz = 0
(5.1)

∇× Eint
z − ikH int

z = 0
in D,

∇×H int
z + ikN(x)Eint

z = 0
(5.2)
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together with the boundary relations

ν × Eint
z − ν × Ez = ν × Ee(·, z, q) on Γ,

ν ×H int
z − ν ×Hz = ν ×He(·, z, q) on Γ1,(5.3)

ν ×H int
z − ν ×Hz = −η [ν × (Ez + Ee(·, z, q)) × ν] + ν ×He(·, z, q) on Γ2,

where Ee(·, z, q), He(·, z, q) is the electric dipole defined by

Ee(x, z, q) :=
i

k
∇x ×∇x × qΦ(x, z), He(x, z, q) := ∇x × qΦ(x, z),(5.4)

where q ∈ R3 is a constant vector and

Φ(x, z) :=
1

4π

eik|x−z|

|x− z| .

Unfortunately this result remains an open problem. (For the existence of a unique
solution to a modified version of (5.1)–(5.3), see [8].)

Assuming the existence of a unique solution of (5.1)–(5.3), one can now proceed
to derive the three-dimensional analogue of Theorem 4.6; i.e., if Im(N) = 0 and k is
not a transmission eigenvalue, then

‖η‖L∞(Γ2) = sup
zi ∈ Br, q ∈ R

3

αi ∈ C

∑
i,j αiαj

[
−‖q‖2A(zi, zj , k, q) + q · Ezi(zj) + q · Ezj (zi)

]
2‖

∑
i αi ν × (Ezi + Ee(·, zi, q))‖2

L2
t (Γ2)

,

(5.5)

where Br ⊂ D is a ball of radius r;

A(zi, zj , k, q) =
k2

6π

[
2j0(k|zi − zj |) + j2(k|zi − zj |)(3 cos2 φ− 1)

]
,(5.6)

j0 and j2 being spherical Bessel functions of order 0 and 2, respectively; φ is the angle
between (zi−zj) and q; and Ez, E

int
z is the unique solution of the interior transmission

problem (5.1)–(5.3). In particular, Ez can be approximated by

Egz (x) := ik

∫
Ω

eikx·dgz(d)ds(d),(5.7)

where Ω := {x ∈ R3 : |x| = 1} and gz is the (regularized) solution of the far field
equation ∫

Ω

E∞(x̂, d, g(d))ds(d) = Ee,∞(x̂, z, q).(5.8)

Here E∞ is the electric far field pattern corresponding to the scattering problem (2.1)–
(2.6), and Ee,∞ is the electric far field pattern of the electric dipole (5.4). For details
in the case of a perfect conductor coated by a dielectric, see section 3 of [5].

In the special case when η is a constant, (5.5) simplifies to

η =
− k2

6π‖q‖2 + Re (q · Ez0(z0))

‖ν × (Ez0 + Ee(·, z0, q))‖2
L2

t (Γ2)

,(5.9)

where z0 is an arbitrary point in D.
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6. Numerical examples. In this section we shall present some numerical tests
of the inversion scheme using synthetic far field data for the Helmholtz equation. For
a given scatterer, the far field data is computed by using a cubic finite element code
to approximate the near field, and then employing a near to far field transformation
[18]. The finite element computational domain is terminated by a rectilinear perfectly
matched layer using a linear absorption function in the layer [2], [10].

Having computed approximate values of the far field pattern at N uniformly
spaced points on the unit circle for N incoming waves, we have an N ×N matrix A
of approximate far field data

Am,n = uh,∞(dm, dn) where dm =

(
cos

(
2π(m− 1)

N

)
, sin

(
2π(m− 1)

N

))T

for 1 ≤ m,n ≤ N, where uh,∞ is the finite element far field pattern. To this we add
further noise with parameter ε to obtain Aε using

(Aε)m,n = Am,n(1 + ε(ξ1,m,n + iξ2,m,n)),

where ξ1,m,n and ξ2,m,n are given by a random number generator, uniformly dis-
tributed in the range [−1, 1]. Unless otherwise stated, ε = 0.01 in these studies.

For a given sampling point z, the discrete far field equation is then to compute
�g = (g1, . . . , gN ) such that Aε�g = �b, where

bm = Nγ exp
(−ik(z · dm))

(2π)
, 1 ≤ m ≤ N.

This ill-conditioned problem is solved approximately using the Tikhonov regulariza-
tion and the Morozov discrepancy principle as described, for example, in [14].

6.1. Exact knowledge of the boundary. We start as in [5], assuming an
exact knowledge of the boundary in order to assess the accuracy of (4.17) without
the added error of computing an approximation to the boundary of the scatterer. In
this case, for a given scatterer, we compute �g for z = z0 using the Morozov method
outlined in the previous section, and then approximate (4.17) using the trapezoidal
rule with 100 integration points. After limited experiments, we choose z0 = (0, 0)T

(both upcoming examples have this point as their centroid).

To simplify the presentation, we have limited our discussion to two scatterers:
an ellipse given by x = 0.5 cos(s) and y = 0.2 sin(s), s ∈ [0, 2π], and the rectangle
[−0.5, 0.5] × [0.4, 0.4]. In (2.7) we choose A = (1/4)I. In all cases k = 5.

For the ellipse we consider either a fully coated or partially coated object. The
partially coated boundary is shown in Figure 6.1. In Figure 6.2 we show results of
the reconstruction of a range of conductivities η for the fully coated ellipse, partially
coated ellipse, and fully coated rectangle. For each exact η we compute the far field
data, add noise, and compute an approximation to wz0 , as discussed before. Despite
the noise on the data, η is well approximated in the case of the fully coated scatterers,
provided that the conductivity is not too large. In all cases the approximation of η
deteriorates for large conductivities, and as expected, (4.17) leads to an underestimate
of η when the boundary is partially coated. These limited examples suggest that (4.17)
provides a viable method for reconstructing η, provided that η is small enough and
the boundary of the scatterer is known sufficiently accurately.
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Fig. 6.1. A diagram showing the coated portion of the partially coated ellipse as a thick line.
The dotted square is the inner boundary of the PML, and the solid square is the boundary of the
finite element computational domain.
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Fig. 6.2. Computation of η using the exact boundary. Panel (a) shows results for the fully and
the partially coated ellipse. Panel (b) shows the corresponding results for the fully coated rectangle.
Clearly in all cases the approximation of η deteriorates for large conductivities.

6.2. The ellipse. We now wish to investigate the solution of the full inverse
problem. We start by using the standard linear sampling method to approximate the
boundary of the scatterer. In particular we compute 1/‖�g‖ for z on a uniform grid in
the sampling domain. In the upcoming numerical results we have arbitrarily chosen
N = 61, and we sample on a 101 × 101 grid on the square [−1, 1] × [−1, 1]. This
procedure takes around 10 seconds in MATLAB on an Apple G5 computer, so it is
not time-consuming.

Having computed �g for each sample point, we have a discrete level set function
1/‖�g‖. Choosing a contour value C then provides a reconstruction of the support of
the given scatterer. We extract the edge of the reconstruction and then fit this using
a trigonometric polynomial of degree M , assuming that the reconstruction is star-like
with respect to the origin. (For more advanced applications it would be necessary to
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Fig. 6.3. Illustration of the steps in the computation of η. First the standard linear sampling
method is used to compute 1/‖�g‖, as shown in panel (a) (the bar labeled λ shows the wavelength
of the radiation). Choosing a cutoff C (in this case C = 0.3), the surface in panel (a) provides an
approximation to the boundary of the scatterer shown as shaded blocks in panel (b). Each square in
this figure contains one sampling point z at its center. We also show in panel (b) the outline of the
true scatterer as a smooth solid line, and as a white line the fit of the trigonometric series to the
reconstruction. In this case C is chosen too small and the computed boundary lies outside the true
scatterer.

employ a more elaborate smoothing procedure.) Thus for an angle θ the radius of the
reconstruction is given by

r(θ) = �
(

M∑
n=−M

rn exp(inθ)

)
,

where r is measured from the origin (since in all the examples here the origin is within
the scatterer). The coefficients rn are found using a least squares fit to the boundary
identified in the previous step of the algorithm. Once we have a parameterization
of the reconstructed boundary, we can compute the normal to the boundary and
evaluate (4.17) for some choice of z0 (in the examples always z0 = (0, 0)T ) using the
trapezoidal rule with 100 points. This provides our reconstruction of η.

Figure 6.3 shows the main steps for evaluating our prediction of η for the ellipse.
Here we choose η = 1 on the entire ellipse (fully coated). In (a) we see a plot of 1/‖�g‖
(normalized so that the maximum value is 1) as a function of position. In this case
the choice ε = 0.01 for the additional error in the far field pattern gives an error of
1.3% in the spectral norm for A.

We then make the arbitrary choice C = 0.3 (i.e., due to the normalization, the
value is 0.3 times the maximum of 1/‖�g‖). Figure 6.3(b) shows a plot of the pixels
separating regions where 1/‖�g‖ > C and 1/‖�g‖ < C. For clarity, we have graphed
only the region [−0.6, 0.6] × [−0.6, 0.6]. The black pixels in Figure 6.3(b) are then
fitted using M = 8 in the trigonometric polynomial for r(θ), and the resulting curve
is shown as a light curve on the figure. We also indicate, using a thick black line, the
true ellipse. We have deliberately chosen a contour value C that does not give the
best reconstruction of the ellipse so that the different geometric features can be easily
seen. Using this reconstruction results in a predicted value of η = 0.8372 (compared
to the true value η = 1).
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Fig. 6.4. Panel (a) shows the computed value of η as a function of the cutoff C. The dashed
line is the true value η = 1, and the dotted line marks the maximum predicted η. The corresponding
reconstruction of the ellipse is shown in panel (b) using the same convention as in panel (b) of
Figure 6.3.
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Fig. 6.5. Reconstruction of a range of η. For each exact η we apply the reconstruction algorithm
using a range of cutoffs and plot the corresponding reconstruction. An exact reconstruction would
lie on the dotted line.

With both scatterers in this study we have observed that a poor choice of the
cutoff C tends to result in a predicted value of η that is too small. Therefore we now
suggest sweeping through a range of values of C, and we find that the maximum value
of η correlates with a good reconstruction of the scatterer and a better approximation
of the true value of η. We show this in Figure 6.4 for the fully coated ellipse. The
largest predicted value of η is η = 1.05 when C = .3567, and the reconstruction of the
scatterer is better than choosing C = 0.3.

The reconstruction algorithm is next investigated for a range of values of η. For
each exact η we apply the reconstruction algorithm using multiple cutoffs and plot
the corresponding reconstruction of η. The results are shown in Figure 6.5 and should
be compared to those in Figure 6.2(a). Given that the shape of the object and the
parameter η are both being reconstructed, the results show reasonable agreement of
the reconstruction up to approximately η = 1.5. For larger values of η the recon-
struction deteriorates, perhaps because the field inside the scatterer diminishes as η
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Fig. 6.6. Reconstruction of the partially coated ellipse for η = 1. (a) The indicator function
1/‖�g‖ resulting from the standard linear sampling method. (b) The computed value of η for a range
of cutoffs C. The best reconstruction (maximum value of η) is η = 0.61793 when C = 0.3114. (c)
The reconstruction of the ellipse using C = 0.3114. (d) The reconstruction of a range of η; this
should be compared to Figure 6.2(a).

increases. In this case the linear sampling method is able to provide a sufficiently
accurate approximation of the ellipse so that the reconstruction of η in Figures 6.2
and 6.5 is of comparable accuracy.

Next we consider the partially coated ellipse (see Figure 6.1). The inversion
algorithm is unchanged (both the boundary of the scatterer and η are reconstructed).
The results are shown in Figure 6.6(a)–(c) when η = 1, and the results for a range
of η are shown in Figure 6.6(d). The linear sampling method can still reconstruct
the ellipse with reasonable fidelity despite the partial coating, and so the results in
Figure 6.6(d) and Figure 6.2(a) are comparable. Recall that, for a partially coated
obstacle, (4.17) provides only a lower bound for η.

6.3. Rectangular scatterer. Finally we show the reconstruction of the surface
conductivity of the fully coated rectangular scatterer. Results for a range of η are
shown in Figure 6.7. Comparing this to the reconstruction computed using the exact
boundary (shown in Figure 6.2(b)), the results are much worse.

The deterioration of the results for the full inversion scheme can be explained by
considering one choice of η in detail. In Figure 6.8 we show the full reconstruction
procedure for η = 1. As in the case of the ellipse, we use the linear sampling method
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Fig. 6.7. Results of reconstructing a range of conductivities for the fully coated rectangle.
We plot the computed conductivity against its exact value. The results should be compared to Fig-
ure 6.2(b), and are seen to be substantially worse than that case.
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Fig. 6.8. Details of the reconstruction of η when the exact value is η = 0.5. (a) The indicator
function computed by the linear sampling method. Clearly, whatever the choice of C, the reconstruc-
tion of the scatterer will not provide an accurate normal. (b) The best reconstruction corresponding
to C = 0.52, which yields the computed value of η = 0.28.

to provide an indicator function for the boundary of the rectangle, but, compared to
the ellipse, the reconstruction of the boundary shown in Figure 6.8(b) (at the best
cutoff C) is now quite poor. From this reconstruction we need to compute the normal
derivative of wz0 . It is clear that this will be poorly approximated, and thus (4.17)
will provide a poor approximation to η.

7. Conclusion. We have provided a method for estimating the surface conduc-
tivity of a scatterer from far field measurements. Numerical experiments show that
this method can be combined with the linear sampling method to simultaneously
identify the shape of the scatterer and the conductivity, provided that the shape of
the scatterer can be computed with sufficient accuracy. Limitations include the fact
that the method becomes inaccurate for large values of the surface conductivity, and
the quality of the reconstruction of the conductivity can also be adversely influenced
by the quality of the reconstruction of the scatterer. This may in part be due to the
need to use the normal derivative of the Herglotz wave function in (4.17). We now
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plan to investigate the use of the electric far field pattern, which should allow us to
avoid the normal derivative. However considerable mathematical difficulties need to
be overcome, and in particular the existence of a solution of the interior transmission
problem is not known in this case.
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Abstract. In the limit of small chemoattractant diffusivity ε, the existence, stability, and
dynamics of spiky patterns in a chemotaxis model are studied in a bounded multidimensional domain.
In this model, the transition probability density function Φ(w) is assumed to have a power law
form Φ(w) = wp, and the production of chemoattractant w is assumed to saturate according to a
Michaelis–Menten kinetic function. In the limit ε → 0, it is proved that there is a steady-state single
boundary spike solution located at the maximum of the mean curvature of the boundary. Moreover,
a steady-state interior spike solution is proved to concentrate at a maximum of the distance function.
The single interior spike solution is shown to be metastable for certain ranges of p and the dimension
N . The stability of a single boundary spike solution is also analyzed in detail. Finally, a formal
asymptotic analysis is used to characterize the metastable interior spike dynamics in both a one-
dimensional and a multidimensional domain.
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1. Introduction. In this paper, we investigate qualitative properties of a class
of solutions to a special case of the following generalized chemotaxis system. Let
Ω ⊂ RN be a bounded domain with boundary ∂Ω. We seek solutions, P ∈ R and
W ∈ Rm+1, of the system

Pt = D∇ ·
(
P∇

(
log

(
P

Φ(W )

)))
, Wt = d∆W + F (P,W ), (x, t) ∈ Ω × (0, T ),

(1.1)

subject to the “no-flux” boundary condition

P∇
(

logP

Φ(W )

)
· ν(x) = 0, ∇W · ν(x) = 0.(1.2)

Here ν(x) denotes the inward pointing normal to ∂Ω. To close the system we prescribe
the initial conditions

P (x, 0) = P0(x) > 0, W (x, 0) = W0(x) ≥ 0, for x ∈ Ω.

In this system, D is a constant diffusion coefficient, d is a positive semidefinite diagonal
matrix, P is a population density, log Φ(W ) is the chemotactical sensitivity function,
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and W is a vector of nutrients or chemicals whose dynamics influences the movement
of P . The function Φ(W ) is a prescribed “transition probability function.” This gen-
eral system includes the so-called Keller–Segel model of biology [17]. To biologically
motivate our study we begin by outlining two themes, one basic to developmental bi-
ology and the other from angiogenesis. Our contribution to the mathematical analysis
of chemotactic systems is discussed at the end of the introduction.

A basic quality of all living systems is that they sense the environment in which
they live and respond to it. The response often involves movement toward or away
from an external stimulus. The mechanism for the response is called taxis. Any taxis
involves two components: an external signal and the response of the organism to
the signal. The response also involves two steps: the detection of the signal and the
transduction of the external signal into an internal signal that triggers the response.

In many mathematical models analyzing taxis the signal is transported by diffu-
sion, convection, or some other mechanism. There are, however, instances in which the
organism seems to modify its environment in a strictly local manner and there is little
or no transport of the modifying substance. A typical example of this is myxobacte-
ria, which produce slime over which their cohorts can easily move. Myxobacteria are
soil bacteria which glide on suitable surfaces or at air-water interfaces. Under starva-
tion conditions they tend to move close together, forming complex patterns. Finally
they aggregate to build fruiting bodies. Inside the fruiting bodies they survive as
dormant myxospores. An account of this intriguing sequence of events can be found
in [1].

A novel approach to the modeling of aggregation in myxobacteria is due to Othmer
and Stevens [29]. Their inspiration and motivation comes from the work of Davis [6]
concerning reinforced random walks. The models developed by Othmer and Stevens
are of the form (1.1), (1.2) with d = 0 and have been studied in depth by Levine and
Sleeman [19], who were able to provide some understanding of the numerical findings
in [29], particularly with regard to aggregation, blow-up, and collapse of solutions.

More recently the idea of mathematical modeling based on the idea of reinforced
random walks has been developed to gain some understanding of tumor angiogenesis.
Angiogenesis is a morphogenetic process whereby new blood vessels are induced to
grow out of a pre-existing vasculature. It is fundamental to the formation of any
new blood vessels during embryonic development and contributes to the maintenance
of tissue functionality in the adult (e.g., placental growth). Angiogenesis is also an
important feature of various pathological processes such as wound healing and cancer
progression. We are particularly interested in tumor angiogenesis.

Capillaries, which are the main microvessels involved in tumor angiogenesis, are
composed of three components: (a) the basement membrane, which is a complex
extra cellular matrix (ECM) encircling and supporting the cellular components; (b)
the endothelial cells (EC), which form a monolayer of flattened and extended cells
lining the lumen of the vessel and resting on the basement membrane; and (c) pericyte
cells, which form a periendothelial cellular network embedded within the basement
membrane.

The first event of tumor-induced angiogenesis is triggered by the secretion of a
number of chemicals, collectively called tumor angiogenesis factors (TAFs) (cf. [4], [8],
[9]) from a colony of cancerous cells of a solid tumor. These factors diffuse through
the tissue, creating a chemotactic gradient which eventually reaches neighboring cap-
illaries and other blood vessels. In response to TAFs the EC in nearby capillaries
appear to thicken (i.e., aggregate) and produce a proteolytic enzyme, which in turn
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degrades the basement membrane.
In response to the TAFs the normally smooth EC surface begins to develop

pseudopodia which penetrate the weakened basement membrane. Capillary sprouts
are formed by the accumulation of EC from the parent vessel. The sprouts grow in
length, proliferate, form loops leading to microcirculation of blood (i.e., anastomoses);
and also branch successively. The resulting capillary network continues to progress
through the tissue ECM, forming a microvasculature, and eventually invades the tu-
mor colony, leading to rapid growth and metastasis. The means of progress through
the tissue ECM is via chemotaxis and haptotaxis.

Chemotaxis is the response of EC to chemical gradients set up by the TAFs. A
major component of the tissue ECM is fibronectin. It has been verified experimentally
that fibronectin stimulates directional migration of EC by establishing an adhesive
gradient, i.e., via haptotaxis.

Mathematical modeling of the complex processes involved in tumor angiogenesis
has been vigorously pursued in recent years. For recent overviews of some of the
modeling ideas, see [36] and [33].

Driven by the need to understand the underlying biochemistry and also to attempt
to bridge the gap between micro- and macrocellular events, Sleeman, together with
Levine, Pamuk, Nilsen-Hamilton [20], [21], [22], Holmes [14], Plank [31], and Wallis
[35], has modeled angiogenesis on the basis of reinforced random walks and Michaelis–
Menten kinetics. In these modeling ideas, systems of equations of the form (1.1) play
a crucial role.

Systems of the form (1.1) enjoy very rich dynamics. Consider, for example, the
following two-component system in one space dimension

Pt = D

(
Pxx − a

(
P
Wx

W

)
x

)
, Wt = λPW − µW for 0 < x < �, t > 0,

Px

P
− a

Wx

W
= 0 for x = 0, �, t > 0,(1.3)

P (x, 0) = P0(x) > 0, W (x, 0) = W0(x) > 0 for 0 ≤ x ≤ �.

In [19] it is shown, among other things, that when a = 1, there are solution
pairs (P,W ) for which P > 0 but for which P blows up in finite time and that the
power spectrum converges to that of the delta function in finite time. Indeed, it is
possible to construct an explicit family of such solutions. When a = −1, there exist
solution pairs (P,W ) for which P > 0 and P collapses to a constant in infinite time
but exponentially fast.

In this context we mention the related work of Rascle and Ziti [34]. In our notation
they considered the following system in RN :

Pt = D1∆P −∇ · [PW−α∇W ], Wt = D2∆W − kWmP.(1.4)

Here all the constants are positive unless otherwise specified. They constructed
similarity solutions of the form (P,W ) = ((T − t)aP (ξ), (T − t)bw(ξ)), where ξ =

(T − t)−1 |x|2 for x ∈ RN in one, two, or three space dimensions, when 0 < m < α = 1
and D2 = 0. (Here a, b ≥ 0.) When D1 = 0 as well, they construct such solutions
which blow up in infinite time in one and two dimensions. In the case D1 > 0 they
are able to construct only global self-similar solutions.



SPIKE PATTERNS IN A CHEMOTAXIS MODEL 793

An important question which again is motivated by the need to understand how
new capillaries sprout via angiogenesis from a preexisting vasculature is: Can we ex-
pect solutions of system (1.1) (with d = 0) to possess spatially nonconstant, piecewise
constant aggregating solutions? Here we define aggregation as follows: P (x, t) as a
solution to (1.1), aggregates if it converges to a nonconstant steady state in finite or
infinite time.

From numerical experiments, Othmer and Stevens [29] show that P (x, t) can
evolve to an aggregating solution through the formation of a “shock.” In their exper-
iments they consider system (1.1) with

Φ(W ) =

(
β + W

γ + W

)a

, F (P,W ) =
PW

1 + νW
− µW + γr

P

1 + P
.(1.5)

In [19] it is argued that the seeds of such shock formation are already present in the
case of the simpler system (1.3).

During the initiation of angiogenesis, as outlined above, the EC in capillaries near
the tumor produce a proteolytic enzyme in response to the TAFs. While a detailed
analysis of the process involved in angiogenesis initiation has been given in [20], a
simple model involving only the EC and the proteolytic enzyme can be formulated.
Such a model is of the form (1.1), in which P represents EC density and W is enzyme
concentration. In this model d is small since in the capillary diffusion takes place on
a much longer time scale than the kinetic reactions. This, of course, is not the case
for the developing angiogenesis in the ECM.

It has been demonstrated recently by Holash et al. (cf. [13]) that once a tumor has
become vascularized, the resulting capillary network may undergo periods of dramatic
collapse and remodeling. Paradoxically, the coopted vasculature does not undergo
angiogenesis to support the growing tumor, but instead regresses via a process that
involves disruption of EC/smooth muscle cell interactions and EC apoptosis (i.e.,
programmed cell death). This vessel regression in turn results in necrosis within the
central part of the tumor. However vigorous angiogenesis is initiated at the tumor
boundary, rescuing the surviving tumor and supporting further growth. This behavior
could be modeled by systems of the form (1.1) and suggests the existence of point-
condensation solutions or spike-type patterns.

It is the purpose of this paper to investigate the existence, stability, and dynamics
of the spike patterns in the following variant of (1.1) and (1.5). That is, we consider
the system

{
Pt = D1∇ ·

(
P∇

(
log P

Φ(W )

))
, Wt = D2∆W − µW + PW

1+γW in Ω × (0,+∞),
∂P
∂ν = ∂W

∂ν = 0 on ∂Ω × (0,+∞), P (x, 0) = P0(x) ≥ 0, W (x, 0) = W0(x) ≥ 0,

(1.6)

where D1 > 0 and D2 > 0 are two diffusion coefficients, P (x, t) is the particle
density of a particular species, W (x, t) is the concentration of the “active agent,”
Ω ⊂ RN (N ≤ 3) is a smooth and bounded domain, µ and γ are positive constants,
and ν = ν(x) is the unit normal derivative at x ∈ ∂Ω. The term W

1+γW is a typical

Michaelis–Menten saturating function. Throughout the paper, we take Φ(W ) = W p,
where p > 1, which corresponds to a logarithmic chemotactical sensitivity function.

We will show that the inclusion of a small diffusion coefficient D2 can produce
stable spiky patterns. By nondimensionalizing (1.6), we may assume, without loss of
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generality, that

µ = 1, D1 = 1, D2 = ε2 � 1.(1.7)

In this new setting, (1.6) becomes

{
Pt = ∇ ·

(
P∇

(
log P

Wp

))
, Wt = ε2∆W −W + PW

1+γW in Ω × (0,+∞),
∂P
∂ν = ∂W

∂ν = 0 on ∂Ω × (0,+∞), P (x, 0) = P0(x) ≥ 0, W (x, 0) = W0(x) ≥ 0.

(1.8)

For γ � 1, (1.8) is the Keller–Segel model with a logarithmic chemotactical sen-
sitivity function. A survey of the existence and regularity properties of solutions of
the classic Keller–Segel model with a linear chemotactical sensitivity function, and
for certain extensions of the basic model, is given in [15]. Results for global existence
of solutions for the limiting model (1.8) where γ � 1 are surveyed in section 6.1.1 of
[15]. Our results for the stability of spike-type patterns of (1.8) for γ > 0 are, to our
knowledge, new. In particular, for certain ranges of p, we prove that an interior spike
solution for (1.8) is metastable. The existence of metastable phenomena is known
in certain reaction-diffusion systems, including the shadow Gierer–Meinhardt model
(cf. [16] and [5]), but to our knowledge has never been shown previously in a chemo-
taxis system. After submission of this article, the occurrence of metastability has
been shown asymptotically and numerically in [32] for the volume-filling chemotaxis
model of [12] and [30].

Integrating the equation for P over Ω and using the Divergence theorem, we
obtain ∫

Ω

P (x, t) =

∫
Ω

P (x, 0) = m.(1.9)

This conservation of mass condition plays a central role in stabilizing nontrivial spatial
patterns. To simplify the computations, we will assume that m = 1. The steady-state
problem for (1.8) becomes⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇ ·
(
P∇

(
log P

Wp

))
= 0 in Ω,

ε2∆W −W + PW
1+γW = 0 in Ω,

∂P
∂ν = ∂W

∂ν = 0 on ∂Ω,
∫
Ω
P (x) = 1.

(1.10)

Note that both P and W must be nonnegative. From the equation for P in (1.10)
and the condition that m = 1, we get

P (x) =
1∫

Ω
W p

W p(x).(1.11)

Defining the new function Ŵ by

W (x) =
1

γ
∫
Ω
Ŵ p

Ŵ(1.12)
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and substituting (1.11) and (1.12) into (1.10), we obtain an equation for Ŵ :

ε2∆Ŵ − Ŵ +
Ŵ p+1∫

Ω
Ŵ p + Ŵ

= 0 in Ω, Ŵ > 0 in Ω,
∂Ŵ

∂ν
= 0 on ∂Ω.

(1.13)

Equation (1.13) without the nonlocal term
∫
Ω
Ŵ p has a variational structure and

has been studied by numerous authors. For results on the existence of boundary
spike solutions, see [2], [27], [28], [40], [43], and the references therein. Results for
the existence of interior spike solutions are given in [11], [38], [39], and the references
therein. A survey of some of these previous results is given in [26].

Throughout the paper, C > 0 is a generic constant, which is independent of ε,
that may change from line to line. The notation O(A), o(A) means that |O(A)| ≤
C|A|, limε→0

o(A)
|A| = 0.

The organization of the paper is as follows. In section 2, we state our main
results. In section 3, we construct both single boundary and single interior spikes. In
sections 4–6, we analyze the spectrum of the linearized problem. In the spectrum there
are eigenvalues that are O(1) as ε → 0, called the large eigenvalues, and eigenvalues
that tend to zero as ε → 0, called the small eigenvalues. In section 4, we study
the linearized eigenvalue problem and reduce the study of the large eigenvalues to
a nonlocal eigenvalue problem. In section 5, we analyze this nonlocal eigenvalue
problem. In section 6, we analyze the small eigenvalues. In section 7, we derive the
dynamical law for the motion of an interior spike and present some numerical results.
Finally, a brief discussion in given in section 8.

2. Statements of main results. We first state our main results on the existence
of steady-state solutions.

Theorem 2.1. Assume that

1 < p < +∞ if N = 1, 2; 1 < p < 5, if N = 3.(2.1)

Then, for ε � 1, there exists a steady-state solution for (1.10) of the following
form:

(Pε,Wε) =

(
1∫

Ω
Ŵ p

ε

Ŵ p
ε ,

Ŵε

γ
∫
Ω
Ŵ p

ε

)
, where Ŵε = w

(
x−Qε

ε

)
+ O(ε).(2.2)

Here w(y) is the unique solution of

∆w − w + wp = 0, w > 0 in RN , w(0) = max
y∈RN

w(y), w(y) → 0 as |y| → +∞.

(2.3)

The point Qε is classified either by
(a) (single boundary spike) Qε ∈ ∂Ω, H(Qε) → maxQ∈∂Ω H(Q), where H(Q) is

the mean curvature function at Q ∈ ∂Ω, or
(b) (single interior spike) Qε ∈ Ω, d(Qε, ∂Ω) → maxQ∈Ω d(Q, ∂Ω), where d(Q, ∂Ω)

is the distance function at Q ∈ Ω.
Next, we study the linearized stability of the solutions constructed in Theorem 2.1.

To this end, we linearize (1.8) around (Pε,Wε), as given in Theorem 2.1, to obtain
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the following linearized eigenvalue problem:

∇ ·
(
ψε∇ log

(
Pε

W p
ε

))
+ ∇ ·

(
Pε∇

(
ψε

Pε
− p

φε

Wε

))
= λεψε in Ω,(2.4)

ε2∆φε − φε +
Pε

(1 + γWε)2
φε +

Wε

1 + γWε
ψε = λεφε in Ω,(2.5)

∂φε

∂ν
=

∂ψε

∂ν
= 0 on ∂Ω,(2.6)

where λε ∈ C—the set of complex numbers.
Note that (2.4)–(2.6) is not self-adjoint, and so complex eigenvalues are expected.

We say that (Pε,Wε) is linearly stable if for all eigenvalues λε of (2.4)–(2.6) we have
Re(λε) < 0. We say that (Pε,Wε) is linearly unstable if there exists an eigenvalue
λε of (2.4)–(2.6) such that Re(λε) > 0. We say that (Pε,Wε) is metastable if for all
eigenvalues λε of (2.4)–(2.6) we have either Re(λε) < 0 or |λε| = O(e−d/ε) for some
d > 0 independent of ε > 0. With these definitions, we now give our main results
classifying the stability of (Pε,Wε).

Theorem 2.2. Assume that

1 < p < +∞ if N = 1; 2 ≤ p ≤ 5 if N = 2; 2 ≤ p ≤ 3 if N = 3.(2.7)

Let (Pε,Wε) be the solution given in Theorem 2.1.
(a) (metastability) The single interior spike is metastable.
(b) (stability) If N = 1, then the single boundary spike is linearly stable.
(c) (stability) If Ω = BR(0) = {x||x| < R} and (P (x, t),W (x, t)) = (P (|x|, t),

W (|x|, t)), then the single interior spike is linearly stable.
(d) (stability) If N = 2, 3 and Q0 is a nondegenerate global maximum point of

H(P ), where Qε → Q0, then the single boundary spike is linearly stable.
Remark 2.3. The condition on the exponent p given in (2.7) is needed for the

analysis in section 5 of a nonlocal eigenvalue problem. Certainly it is not optimal.
We conjecture that the same conclusion holds if p satisfies (2.1) only.

Remark 2.4. As ε → 0, we have
∫
Ω
Ŵ p

ε ∼ εN . Therefore, we see from (2.2)
that Pε(Qε) ∼ ε−N , Wε(Qε) ∼ ε−N , and Pε(x),Wε(x) → 0 for all x ∈ Ω with
|x−Qε| ≥ δ > 0.

Remark 2.5. Theorems 2.1 and 2.2 remain true for the following Keller–Segel
model with logarithmic growth ([17], [23], [24]):

{
Pt = ∇ ·

(
P∇

(
log P

Wp

))
, Wt = ε2∆W −W + P in Ω × (0,+∞),

∂P
∂ν = ∂W

∂ν = 0 on ∂Ω × (0,+∞), P (x, 0) = P0(x) ≥ 0, W (x, 0) = W0(x) ≥ 0.

(2.8)

Remark 2.6. In Theorems 2.1 and 2.2, we have assumed that D1 = 1, where D1

is the diffusion coefficient of P . Theorem 2.1 holds true for any D1 > 0. It is not
difficult to see that Theorem 2.2 also holds, provided that

ε2

D1
� 1.(2.9)
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Biologically, this means that if the active agent W diffuses more slowly than the
species P , the species will move toward the boundary and form nontrivial stable

spiky patterns. It is unclear what happens if ε2

D1
∼ 1.

Remark 2.7. There may be solutions with multiple spikes. We will not discuss
this case here, as most likely multiple spike solutions are unstable.

The existence of spiky patterns for the steady states of Keller–Segel model (2.8)
has been established in [23], [27], [28]. Theorem 2.1 establishes the existence of spiky
patterns for the more general case (1.8). As far as the authors know, Theorem 2.2 is
the first rigorous result on the stability of spiky patterns for a chemotaxis system.

3. Construction of the steady state: Proof of Theorem 2.1. In this sec-
tion we construct steady-state solutions for (1.8) and prove Theorem 2.1. By the
transformation leading to (1.13), we need to find a Ŵ satisfying (1.13). We do this
in two steps.

In the first step, we fix δ small and solve the following problem:

ε2∆Ŵ − Ŵ +
Ŵ p+1

δ + Ŵ
= 0, Ŵ > 0 in Ω,

∂Ŵ

∂ν
= 0 on ∂Ω.(3.1)

This yields a solution Ŵε,δ. In the second step, we solve the algebraic equation

δ =

∫
Ω

Ŵ p
ε,δ.(3.2)

The first step is more or less standard, but we have to treat the dependence of
Ŵ on δ. In the second step we have to make sure that the function on the right-hand
side of (3.2) is continuous in δ. We begin with the following simple but important
observation.

Lemma 3.1. There exists a unique solution to

∆w − w +
wp+1

δ + w
= 0, w > 0 in RN , w(0) = max

y∈RN
w(y),

w(y) → 0 as |y| → +∞.(3.3)

We call such a solution wδ(y). As δ → 0, we have

|wδ(y) − w(y)| ≤ Cδe−min(1,p−1)|y|,(3.4)

where C is independent of δ > 0 and w is the unique solution of (2.3).
Proof. By the well-known Gidas–Ni–Nirenberg theorem, all solutions to (3.3) are

radially symmetric. Let fδ(u) = up+1

δ+u . Then we have
(

fδ(u)
u

)′

≥ 0. By [18], there

exists a unique solution, called wδ(|y|), to (3.3). Since p is subcritical and fδ(u) ≤ up,
we see that wδ is uniformly bounded in δ. By compactness and the uniqueness of wδ,
it follows that as δ → 0, wδ → w(y), where w(y) is the unique solution of (2.3). This
implies that

wδ(y) < Ce−|y|,(3.5)

where C is independent of δ > 0. Next we consider wδ = w + δŵδ. It is easy to see
that ŵδ satisfies

∆yŵδ − ŵδ + pwp−1ŵδ + δ−1

(
(w + δŵδ)

p+1

δ + wδ
− wp − pδwp−1ŵδ

)
= 0,(3.6)



798 B. D. SLEEMAN, MICHAEL J. WARD, AND J. C. WEI

where, by (3.5),∣∣∣∣δ−1

(
(w + δŵδ)

p+1

δ + wδ
− wp − pδwp−1ŵδ

)∣∣∣∣ ≤ Cwp−1
δ ≤ Ce−(p−1)|y|.(3.7)

Since the operator L0 := ∆ − 1 + pwp−1 is invertible from H2
r (RN ) = H2(RN ) ∩

{u(y) = u(|y|)} to L2
r(R

N ) = L2(RN )∩ {u(y) = u(|y|)} (see Lemma 4 of [45]), we see
from (3.6) and (3.7) that

‖ŵδ‖H2(RN ) ≤ C and |ŵδ| ≤ Ce−min(1,p−1)|y|.

To analyze single boundary spikes we proceed as follows. For each δ > 0 small,
we define

Jε,δ[u] =
ε2

2

∫
Ω

|∇u|2 +
1

2

∫
Ω

u2 −
∫

Ω

Fδ(u) for u ∈ H1(Ω),(3.8)

where Fδ(u) =
∫ u

0
sp+1

s+δ ds. By taking a function e(x) ≡ k for some constant k in Ω
and by choosing k large enough, we have Jε,δ(e) < 0 for all ε ∈ (0, 1) and δ ∈ (0, 1).
Then, for each ε ∈ (0, 1) and δ ∈ (0, 1), we can define the so-called mountain-pass
value

cε,δ = inf
h∈Γ

max
0≤t≤1

Jε,δ[h(t)],(3.9)

where Γ = {h : [0, 1] → H1(Ω)|h(t) is continuous, h(0) = 0, h(1) = u0}.

Since p satisfies (2.1), p is subcritical. Furthermore,
(

fδ(u)
u

)′

≥ 0. Thus fδ sat-

isfies all the assumptions in [27]. Similar to the analysis in section 2 of [27], cε,δ is

attained by some function Ŵε,δ, which satisfies (3.1), and cε,δ is the least among all
nonzero critical values of Jε,δ. Furthermore, the analysis in section 3 of [27] shows

that for ε sufficiently small, and uniformly in δ, Ŵε,δ has a unique maximum point
Qε,δ, with Qε,δ ∈ ∂Ω and H(Qε,δ) → maxP∈∂Ω H(P ) as ε → 0. This completes the
first step in the proof.

Next we define the following set:

Sε,δ = {W | W satisfies (3.1) and Jε,δ[W ] = cε,δ}.(3.10)

In other words, Sε,δ contains the set of all least energy solutions of (3.1). By our first
step above, Sε,δ is not empty. Moreover, S is a compact set (uniformly in δ and ε
small) since

supW∈Sε,δ
‖W‖ε ≤ C,(3.11)

where C is independent of ε and δ and

‖W‖2
ε := ε−N

(
ε2

∫
Ω

|∇W |2 +

∫
Ω

W 2

)
.(3.12)

(In fact, by Lemma 3.1 and by using a test function, we have cε,δ ≤ CεN , where C is
independent of ε and δ. Integrating the equation (3.1) gives (3.11).)

We consider the algebraic equation

β(δ) = δ − ρ(δ) = 0, where ρ(δ) := infW∈Sε,δ

∫
Ω

W p.(3.13)



SPIKE PATTERNS IN A CHEMOTAXIS MODEL 799

Note that for any W ∈ Sε,δ, the same asymptotic analysis holds for mountain-pass
solutions (since they have the energy level). Thus we have∫

Ω

W p = εN
(

1

2

∫
RN

wp
δ + o(1)

)
,(3.14)

where o(1) → 0 as ε → 0 uniformly in δ. We also remark that, by the compactness of
the set Sε,δ, ρ(δ) is attained and is a continuous function in δ.

Note that β(0) < 0 and β(εN
∫

RN wp) > 0. Therefore, by the mean-value theorem,

there exists a δε ∈ (0, εN
∫

RN wp) such that β(δε) = 0. That is, there exists a Ŵε,δε ∈
Sε,δε such that δε =

∫
Ω
Ŵ p

ε,δε
.

Let Ŵε = Ŵε,δε and Qε = Qε,δε . Then, Ŵε is a single boundary spike and
satisfies the properties stated in Theorem 2.1. This completes our second step for
single boundary spikes.

Finally, we use a similar method to discuss the case of single interior spikes. We
follow the analysis in [11]. By [11], there exists solution Ŵε,δ to (3.1), with a single

interior spike for ε small (uniformly for δ small). Moreover, Ŵε,δ has a unique local
maximum point Qε,δ such that d(Qε,δ, ∂Ω) → maxQ∈Ω d(Q, ∂Ω). Now we fix one such
solution W̄ε,δ, and consider the following set:

S ′

ε,δ = {u|u satisfies (3.1) and ‖u− W̄ε,δ‖ε ≤ ε}.(3.15)

Similarly S ′

ε,δ is a nonempty compact set, and the following problem has a solution
δε:

β
′
(δ) = δ − ρ

′
(δ) = 0, where ρ

′
(δ) := infŴ∈S′

ε,δ

∫
Ω

Ŵ p.(3.16)

Let Ŵε = Ŵε,δε and Qε = Qε,δε . Then, Ŵε is a single interior spike solution and
satisfies the properties stated in Theorem 2.1.

Remark 3.2. If N = 1, both the single boundary spike solution and the single
interior spike solution are unique.

Remark 3.3. If Ω = BR(0), (Pε,Wε) can be chosen to be radially symmetric if
we restrict our analysis to the class of radially symmetric functions.

We list several properties of Ŵε for later use. Their proofs can be found in [27],
[28], and [11].

Lemma 3.4. Let Ŵε be given in Theorem 2.1. Then, we have
(1)

δε =

∫
Ω

Ŵ p
ε =

⎧⎪⎪⎨
⎪⎪⎩

εN
(∫

RN

wp + o(1)

)
for Qε ∈ Ω,

εN
(

1

2

∫
RN

wp + o(1)

)
for Qε ∈ ∂Ω.

(2) Ŵε(x) ≤ Ce−c|x−Qε|/ε for some constants C, c > 0.

(3) ε |∇xŴε(x)|
Ŵε(x)

≥
√

1 − η for |x − Qε| > εR, where 0 < η < 1 is a fixed constant,

R is large, and ε is sufficiently small.
(4)

Ŵε = wδε

(
x−Qε

ε

)
+

⎧⎨
⎩

O(e−d/ε) for Qε ∈ Ω,

O(ε) for Qε ∈ ∂Ω.
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Here wδε is the unique solution of (3.3), and d > 0 is some constant (independent
of ε).

4. Study of the linearized eigenvalue problem. In this section, we begin to
study the stability of (Pε,Wε). We consider the interior spike case first. The boundary
spike case will be treated later.

We introduce a perturbation around (Pε,Wε) of the following:

P (x, t) = Pε(x) + ηeλεtψε, W (x, t) = Wε(x) + ηeλεφε.(4.1)

Substituting (4.1) into (1.8) and discarding higher order terms, we obtain the following
linearized eigenvalue problem:

∇ ·
(
Pε∇

(
ψε

Pε
− p

φε

Wε

))
= λεψε in Ω,(4.2)

ε2∆φε − φε +
Pε

(1 + γWε)2
φε +

Wε

1 + γWε
ψε = λεφε in Ω,(4.3)

∂φε

∂ν
=

∂ψε

∂ν
= 0 on ∂Ω,(4.4)

where λε ∈ C. Note that the conservation of mass (1.9) requires that
∫
Ω
ψε = 0.

Recall from (2.2) that

Pε =
1∫

Ω
W p

ε
W p

ε =
1∫

Ω
Ŵ p

ε

Ŵ p
ε , Wε =

1

γ
∫
Ω
Ŵ p

ε

Ŵε,(4.5)

where Ŵε satisfies (1.13) and has all the properties listed in Lemma 3.4.
We begin by simplifying (4.2) and (4.3). We introduce ψ̃ε by

ψε = p
Pε

Wε
φε − ηεPε + ψ̃ε,(4.6)

where ηε is a constant and ψ̃ε satisfies∫
Ω

ψ̃ε = 0.(4.7)

Since
∫
Ω
ψε = 0, from (4.6), we obtain that ηε = (

∫
Ω
Pε)

−1p
∫
Ω

Pε

Wε
φε. Therefore, using

(4.5), we get

ψε = pγŴ p−1
ε φε − pγ

∫
Ω
Ŵ p−1

ε φε∫
Ω
Ŵ p

ε

Ŵ p
ε + ψ̃ε.(4.8)

Substituting (4.5) and (4.8) into (4.2), we obtain that

∇ ·
(
Pε∇

(
ψ̃ε

Pε

))
= λε

(
pγŴ p−1

ε φε − pγ

∫
Ω
Ŵ p−1

ε φε∫
Ω
Ŵ p

ε

Ŵ p
ε + ψ̃ε

)
.(4.9)
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We introduce local coordinates y and ψ̂ε by

x = Qε + εy, y ∈ Ωε := {y|εy + Qε ∈ Ωε}, ψ̃ε(x) = ε2λεγŴ
p/2
ε ψ̂ε(y),(4.10)

where Qε is the unique maximum point of Ŵε. We still use Ŵε, φε, etc. to denote the
functions Ŵε, φε, etc. under the new coordinate y.

A simple computation shows that (4.7) and (4.9) become∫
Ωε

Ŵ
p
2
ε ψ̂ε(y) = 0,(4.11)

∆yψ̂ε − h(Ŵε)ψ̂ε − ε2λεψ̂ε = pŴ
p
2−1
ε φε − p

∫
Ω
Ŵ p−1

ε φε∫
Ω
Ŵ p

ε

Ŵ
p
2
ε , y ∈ Ωε,(4.12)

where h(Ŵε) =
∆yŴ

p/2
ε

Ŵ
p/2
ε

. Substituting (4.5) and (4.8) into (4.3), we obtain that φε

satisfies

∆yφε − φε + f
′

δε(Ŵε)φε − p

∫
Ωε

Ŵ p−1
ε φε∫

Ωε
Ŵ p

ε

Ŵ p+1
ε

δε + Ŵε

= λε

(
φε −

ε2Ŵ
1+p/2
ε ψ̂ε

δε + Ŵε

)
, y ∈ Ωε,

(4.13)

where f
′

δε
(Ŵε) is defined by

f
′

δε(Ŵε) =
pŴ p

ε

δε + Ŵε

+
δεŴ

p
ε

(δε + Ŵε)2
.(4.14)

The boundary condition (4.4) becomes

∂φε

∂νε
=

∂ψ̂ε

∂νε
= 0 on ∂Ωε,(4.15)

where νε is the unit normal derivative of ∂Ωε at y.
We now need to solve the reformulated eigenvalue problem (4.12) and (4.13),

subject to (4.11) and (4.15). We begin with the following simple observation.
Lemma 4.1. There exists a constant C > 0 such that for ε sufficiently small we

have

∫
Ωε

(|∇ψ|2 + h(Ŵε)ψ
2) ≥ C

∫
Ωε

ψ2 ∀ψ ∈ H1(Ωε) such that

∫
Ωε

Ŵ p/2
ε ψ = 0.

(4.16)

Proof. We just need to show that the principal eigenvalue νε1 of

∆yψ
ε − h(Ŵε)ψ

ε = νε1ψ
ε in Ωε,

∫
Ωε

Ŵ p/2
ε ψε = 0,

∂ψε

∂νε
= 0 on ∂Ωε(4.17)

satisfies νε1 < −C < 0. Suppose not. Multiplying (4.17) by ψε and integrating over
Ωε, we obtain

νε1

∫
Ωε

(ψε)2 =

∫
Ωε

(
∇ ·

(
Pε∇

(
ψε

√
Pε

)))
ψε

√
Pε

= −
∫

Ωε

Pε

∣∣∣∣∇ ·
(

ψε

√
Pε

)∣∣∣∣
2

.(4.18)
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Hence νε1 ≤ 0 and νε1 = 0 if and only if ψε

√
Pε

is identically a constant. Since
∫
Ωε

ψε
√
Pε =

0, we see that νε1 < 0. Suppose now that as ε → 0 we have νε1 < 0 with νε1 → 0. We
proceed to derive a contradiction.

We calculate

h(Ŵε) =
p

2

(p
2
− 1

) |∇Ŵε|2

Ŵ 2
ε

+
p

2
− p

2

Ŵ p
ε

δε + Ŵε

.(4.19)

By Lemma 3.4 we see that, for ε sufficiently small, the inequalities

|∇Ŵε|
Ŵε

≥
√

1 − η,
Ŵ p

ε

δε + Ŵε

< η(4.20)

hold for any η small and |y| large. Hence, for |y| large, we have

h(Ŵε) ≥
p

2

(p
2
− 1

)
(1 − η) +

p

2
− p

2
η =

p2

4
(1 − η).

Therefore, by the maximum principle, we get

|ψε(y)| ≤ C‖ψε‖H1(Ωε)e
−δ|y|,(4.21)

where δ = p2

8 (1 − η). By (4.21) and a compactness argument we can now take a
subsequence ε → 0 such that ψε → ψ0 in H1(Ωε), and ψ0 satisfies

∆yψ
0 − h(wp/2)ψ0 = 0, ψ0 ∈ H1(RN ),

∫
RN

wp/2ψ0 = 0.

This is impossible by the same reasoning leading to (4.18). (Note that ψ0 ∈ H1(RN )
and w decays exponentially fast.)

From Lemma 4.1, we have the following result.
Lemma 4.2. Let λε be such that Re(λε) ≥ 0. Then, there exists a constant C > 0

such that |λε| ≤ C, uniformly for ε small.

Proof. Multiplying (4.12) by the conjugate function of ψ̂ε, labeled by ψ̂ε, and
integrating over Ωε, we obtain∣∣∣∣∣

∫
Ωε

(|∇ψ̂ε|2 + h(Ŵε)|ψ̂ε|2 + ε2λε|ψ̂ε|2)
∣∣∣∣∣

=

∣∣∣∣∣p
∫

Ωε

Ŵ p/2−1
ε φεψ̂ε − p

∫
Ωε

Ŵ p−1
ε φε∫

Ωε
Ŵ p

ε

∫
Ωε

Ŵ p/2
ε ψ̂ε

∣∣∣∣∣ ≤ C‖ψ̂ε‖L2(Ωε)‖φε‖L2(Ωε).

(4.22)

Now applying Lemma 4.1 and the fact that Re(λε) ≥ 0, we arrive at

‖ψ̂ε‖H1(Ωε) ≤ C‖φε‖L2(Ωε).(4.23)

Multiplying (4.13) by φ̄ε, the conjugate function of φε, and integrating over Ωε, we
get ∣∣∣∣

∫
Ωε

(|∇φε|2 + |φε|2 + λε|φε|2)
∣∣∣∣ ≤ C

(∫
Ωε

|φε|2 + ε2|λε|
∫

Ωε

|φε||ψ̂ε|
)
.(4.24)
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This yields that |λε| ≤ C, using (4.23).
A corollary of Lemma 4.2 is the following.
Corollary 4.3. Let λε be such that Re(λε) ≥ 0. Assume that for a subsequence

ε → 0, λε → λ0. Then λ0 is an eigenvalue of the nonlocal eigenvalue problem

∆yφ0 − φ0 + pwp−1φ0 − p

∫
RN wp−1φ0∫

RN wp
wp = λ0φ0, φ0 ∈ H1(RN ),(4.25)

λ0 ∈ C, Re(λ0) ≥ 0.

Proof. By Lemma 4.2, we have |λε| ≤ C. We may assume that for a subsequence
ε → 0, λε → λ0. Assume that ‖φε‖H1(Ωε) = 1. Then, from Lemma 4.1, we have

‖ψ̂ε‖H1(Ωε) ≤ C, ‖ψ̂ε‖L∞(Ωε) ≤ C.

By taking a limit in (4.13), we see that φε → φ0 in H1(Ωε) and λε → λ0, where
(λ0, φ0) satisfies (4.25).

Finally we discuss the boundary spike case. Let Qε ∈ ∂Ω be the global maximum
point Ŵε. Without loss of generality we may assume from now on that Qε = 0 and
that the normal derivative at Qε is ν(Qε) = (0, . . . ,−1). Similarly as in the interior
spike case, we have the following conclusion.

Corollary 4.4. Let (Pε,Wε) be a single boundary spike at Qε. Let λε be such
that Re(λε) ≥ 0. Assume that for a subsequence ε → 0, λε → λ0. Then, λ0 is an
eigenvalue of the nonlocal eigenvalue problem

∆yφ0 − φ0 + pwp−1φ0 − p

∫
RN

+
wp−1φ0∫

RN
+
wp

wp = λ0φ0 in RN
+ ,(4.26)

∂φ0

∂yN
= 0 on ∂RN

+ , φ0 ∈ H1(RN
+ ),

with Re(λ0) ≥ 0, where RN
+ = {(y′

, yN ) ∈ RN |yN > 0}.
Let φ0 be a solution of (4.26) on RN

+ . By an even extension of φ0 to RN , it is

easy to see that the new function, denoted by φ̃0, satisfies (4.25).

5. Study of a nonlocal eigenvalue problem. In this section, we study the
following nonlocal eigenvalue problem derived in Corollary 4.3:

Lφ := ∆yφ− φ + pwp−1φ− p

∫
RN wp−1φ∫

RN wp
wp = λ0φ, φ ∈ H1(RN ), Re(λ0) ≥ 0,

(5.1)

where w is the unique solution of (2.3) and λ0 ∈ C is the set of complex numbers.
Nonlocal eigenvalues of this type have been studied in several papers. For the case of
N = 1, we refer to [7] and [41]. For the case of p = 2, we refer to [5] and [41]. In the
general (p,N) case, we follow an approach in [45].

We first characterize the kernel of L as follows.
Lemma 5.1. We have

{φ ∈ H1(RN )|Lφ = 0} = K0 := span

{
∂w

∂yj
, j = 1, . . . , N

}
,
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φ ∈ H1(RN

+ )|Lφ = 0,
∂φ

∂yN
= 0 on ∂RN

+

}
= span

{
∂w

∂yj
, j = 1, . . . , N − 1

}
.

Proof. The proof is similar to that of Lemma 5.1 of [41]. We omit the details
here.

From Lemma 5.1, we may assume that λ0 �= 0. The following result was proved
in [44].

Lemma 5.2. Assume that N = 1 and 1 < p < +∞. Then, for any nonzero
eigenvalue λ0 of (5.1), we have Re(λ0) ≤ −C < 0 for some constant C > 0.

We are left with the case of N = 2, 3. We now use a continuation argument,
similar to [45], where p is a continuation parameter. For p = 2, (5.1) was studied in
[41]. Applying Theorem 1 of [45], we have the next result.

Theorem 5.3. Suppose that p satisfies (2.7) in Theorem 2.2. Then, for any
nonzero eigenvalue λ0 of (5.1), we have Re(λ0) ≤ −C < 0 for some constant C > 0.

Proof. Let r = p and γ = p
p−1 . Using (2.7), it is easy to see that F (p) =

1 − p−1
2p N ≥ 0. Applying Theorem 1 of [45], we just need to check that

F (p) ≥ γ − 2

γ
F (p + 1) +

|γ − 2|
γ

√
F (p + 1)(F (p + 1) − F (2)),(5.2)

where F (r) = 1 − p−1
2r N . Note that for 2 ≤ p, we have γ−2

γ = 2−p
p ≤ 0.

If N = 2, we have F (p) = 1
p , F (p + 1) = 2

p+1 , F (2) = 3−p
2 . By simple computa-

tions, (5.2) is equivalent to p2 − 6p + 5 ≤ 0, which holds if 2 ≤ p ≤ 5.
If N = 3, we have F (p) = 3−p

2p , F (p + 1) = 5−p
2(p+1) , F (2) = 7−3p

4 . By simple

computations, γ−2
γ F (p + 1) + |γ−2|

γ

√
F (p + 1)(F (p + 1) − F (2)) ≤ 0 ≤ F (p) if 2 ≤

p ≤ 3.

6. Study of the small eigenvalues: Proof of Theorem 2.2. In this section,
we study the asymptotic behavior of the small eigenvalues that tend to zero as ε → 0.
We also prove Theorem 2.2.

Suppose that p satisfies (2.7) and that λε is an eigenvalue with Re(λε) ≥ 0.
Then, by Corollaries 4.3 and 4.4, Lemma 5.1, and Theorem 5.3, we must have that
limε→0 λε = λ0 = 0. Namely, if Re(λε) ≥ 0, then necessarily λε → 0. By Lemma 5.1,
we have φ0 ∈ span { ∂w

∂yj
, j = 1, . . . , N} for Qε ∈ Ω, and φ0 ∈ span { ∂w

∂yj
, j = 1, . . . , N−

1} for Qε ∈ ∂Ω. This result is summarized as follows.
Lemma 6.1. Suppose that p satisfies (2.7). Let λε be an eigenvalue of (4.2) and

(4.3) with Re(λε) ≥ 0. Then, for ε → 0 and y ∈ Ωε, we must have

φε =

⎧⎨
⎩

∑N
j=1 a

ε
j
∂w
∂yj

(y) + o(1) if Qε ∈ Ω,∑N−1
j=1 aεj

∂w
∂yj

(y) + o(1) if Qε ∈ ∂Ω.
(6.1)

Lemma 6.1 immediately implies that for N = 1 the single boundary spike is
linearly stable. Next, consider the radially symmetric case where (P (x, t),W (x, t)) =
(P (|x|, t),W (|x|, t)). Then φ0(y) = φ(|y|), and by Lemma 6.1 we conclude that φ0 = 0.
Hence, there are no small eigenvalues. Moreover, if p satisfies (2.7), then Re(λ0) < 0
for limε→0 λε = λ0 �= 0. Therefore, we conclude that in the radially symmetric case
(Pε,Wε) is linearly stable. This proves (b) and (c) of Theorem 2.2.

Now we prove (a) of Theorem 2.2. Let (Pε,Wε) be a single interior spike solution.
We now show that (Pε,Wε) is metastable. Namely, we need to show that for Re(λε) ≥
0 we must have |λε| = O(e−d/ε).
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Suppose now that Re(λε) ≥ 0. From (4.13), the equation for φε becomes

∆yφε − φε + f
′

δε(Ŵε)φε − p

∫
Ωε

Ŵ p−1
ε φε∫

Ωε
Ŵ p

ε

Ŵ p+1
ε

δε + Ŵε

= λε

(
φε − ε2

Ŵ
1+p/2
ε

δε + Ŵε

ψ̂ε

)
, y ∈ Ωε.

(6.2)

We introduce the new function φ̂ε by

φε = φ̂ε + cεŴε, where cε = −p

∫
Ωε

Ŵ p−1
ε φ̂ε∫

Ωε
Ŵ p

ε

.(6.3)

Then, it is easy to see that φ̂ε satisfies

∆yφ̂ε − φ̂ε + f
′

δε(Ŵε)φ̂ε + cε
δεŴ

p+1
ε

(δε + Ŵε)2
= λε

(
φ̂ε + cεŴε − ε2

Ŵ
1+p/2
ε

δε + Ŵε

ψ̂ε

)
.(6.4)

Let η(x) be a smooth cut-off function such that η(x) = 1 for |x| ≤ 1, and η(x) = 0
for |x| > 2. Set r = 1

4d(Qε, ∂Ω). Consider the following functions:

φε,j(y) =
∂wδε

∂yj
(y)η

(εy
r

)
, j = 1, . . . , N, y ∈ Ωε.(6.5)

Then, by Lemma 3.4, we have

∆yφε,j − φε,j + f
′

δε(Ŵε)φε,j = O(e−d/ε),

∫
Ωε

φε,jφε,k = O(e−d/ε) for j �= k.

(6.6)

Next, we decompose φ̂ε as follows:

φ̂ε =

N∑
j=1

cεjφε,j + φ̂⊥
ε ,

where φ̂⊥
ε ⊥ φε,j for j = 1, . . . , N and

∑N
j=1 |cεj |2 = 1. Lemma 6.1 implies ‖φ̂⊥

ε ‖ε → 0
as ε → 0.

Note that from Lemma 3.4 we have∣∣∣∣
∫

Ωε

Ŵ p−1
ε φε,j

∣∣∣∣ +

∣∣∣∣
∫

Ωε

Ŵ p
ε φε,j

∣∣∣∣ = O(e−d/ε), j = 1, . . . , N.(6.7)

The proof of part (a) of Theorem 2.2 proceeds in two steps. First, we obtain the

estimates for φ̂⊥
ε . Then, we deduce the equation for λε. Similar arguments have been

used in section 4 of [41].

It is easy to see that φ̂⊥
ε satisfies

∆yφ̂
⊥
ε − φ̂⊥

ε + f
′

δε(Ŵε)φ̂
⊥
ε = −cε

δεŴ
p+1
ε

(δε + Ŵε)2
(6.8)
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+

N∑
j=1

cεjO(e−d/ε) + λε

⎛
⎝φ̂ε +

N∑
j=1

cεjφε,j + cεŴε − ε2
Ŵ

1+p/2
ε

δε + Ŵε

ψ̂ε

⎞
⎠.

Note that from the definition of cε, we have that

cε = −p

∫
Ωε

Ŵ p−1
ε (

∑N
j=1 c

ε
jφε,j + φ̂⊥

ε )∫
Ωε

Ŵ p
ε

= O

(
e−d/ε +

∣∣∣∣
∫

Ωε

Ŵ p−1
ε φ̂⊥

ε

∣∣∣∣
)
.(6.9)

Let us define

Kε = span {φε,j , j = 1, . . . , N} ⊂ H2
νε

(Ωε), Cε = span {φε,j , j = 1, . . . , N} ⊂ L2(Ωε),

(6.10)

where H2
νε

(Ωε) = H2(Ωε) ∩ { ∂u
∂νε

= 0 on ∂Ωε}. Let K⊥
ε and C⊥

ε be the orthogonal

space of Kε and Cε, respectively, under the L2(Ωε) inner product. Set

Lε := ∆yφ− φ + f
′

δε(Ŵε)φ : H2
νε

(Ωε) → L2(Ωε).(6.11)

Then, as in Lemma 2.3 of [41], we have that the map Lε = πε ◦ Lε : K⊥
ε → C⊥

ε is
invertible and the inverse is bounded uniformly in ε. Here πε is the projection from
L2(Ωε) into C⊥

ε .
From (6.8) and (4.23) we obtain

‖φ̂⊥
ε ‖H2(Ωε) ≤ C

(
|cε|δε + |cε||λε| + e−d/ε + ε2|λε|

)
.

From (6.9), this implies that

‖φ̂⊥
ε ‖H2(Ωε) ≤ C(e−d/ε + ε2|λε|).(6.12)

Multiplying (6.8) by φε,k and integrating over Ωε, we obtain

(6.13)

λε

⎛
⎝ N∑

j=1

cεj

∫
Ωε

φε,jφε,k + O(ε2)

⎞
⎠ = O(e−d/ε) +

∫
Ωε

φε,k

(
∆φ̂⊥

ε − φ̂⊥
ε + f

′

δε(Ŵε)φ̂
⊥
ε

)

= O(e−d/ε).

This shows that |λε| = O(e−d/ε), which proves part (a) of Theorem 2.2.
Finally, we prove (d) of Theorem 2.2. Let us assume that Qε → Q0, where Q0

is a nondegenerate global maximum point of H(P ). For single boundary spikes, we
have from Theorem 1.3 of [42] or Theorem 2.2 of [3] that the eigenvalue problem

∆yφ− φ + f
′

δε(Ŵε)φ = τεφ in Ωε,
∂φ

∂νε
= 0 on ∂Ωε,(6.14)

has N − 1 normalized eigenfunctions {φε,j , j = 1, . . . , N − 1} with N eigenvalues
(multiplicity is allowed)

τ ε1 ≤ · · · ≤ τ εN−1, τ εj = c0ε
2λj + o(ε2).(6.15)
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Here λj is the eigenvalue of the matrix (∇2H(Q0)), and c0 > 0 is a generic constant.
Moreover, we have ∫

Ωε

φ2
ε,j = 1,

∫
Ωε

φε,jφε,k = 0, for j �= k,(6.16)

φε,j(y) =

N−1∑
k=1

ajk
∂w

∂yk
+ O(ε), j = 1, . . . , N − 1,

for some constants ajk.
Similar to the analysis above, we now have from Lemma 3.4 that

Ŵε(y) = wδε(y) + O(ε),

∣∣∣∣
∫

Ωε

Ŵ p−1
ε φε,j

∣∣∣∣ +

∣∣∣∣
∫

Ωε

Ŵ p
ε φε,j

∣∣∣∣ = O(ε), j = 1, . . . , N − 1.

(6.17)

We decompose

φ̂ε =

N−1∑
j=1

cεjφε,j + φ̂⊥
ε , φ̂⊥

ε ⊥ φε,j , j = 1, . . . , N − 1.

Hence, we have

cε = −p

∫
Ωε

Ŵ p−1
ε (

∑N
j=1 c

ε
jφε,j + φ̂⊥

ε )∫
Ωε

Ŵ p
ε

= O

(
ε +

∣∣∣∣
∫

Ωε

Ŵ p−1
ε φ̂⊥

ε

∣∣∣∣
)
.(6.18)

From (6.8) we obtain that

∆yφ̂
⊥
ε − φ̂⊥

ε + f
′

δ(Ŵε)φ̂
⊥
ε = O

(
εδε + δε

∫
Ωε

Ŵ p−1
ε |φ̂⊥

ε |
)

(6.19)

−
N−1∑
j=1

cεjτ
ε
jφε,j + λε

⎛
⎝N−1∑

j=1

cεjφε,j + φ̂⊥
ε + cεŴε − ε2

Ŵ
1+p/2
ε

δε + Ŵε

ψ̂ε

⎞
⎠.

Similar arguments leading to (6.12) imply that

‖φ̂⊥
ε ‖H2(Ωε) ≤ C

(
εδε + ε2|λε| + |cε||λε|

)
.(6.20)

Multiplying (6.19) by φε,k and integrating over Ωε, we obtain

λε

⎛
⎝N−1∑

j=1

cεj

∫
Ωε

φε,jφε,k + O(ε2)

⎞
⎠ = O(εδε) +

N−1∑
j=1

cεjτ
ε
j

∫
Ωε

φε,jφε,k.(6.21)

Therefore,

λε(c
ε
k + O(ε2)) = O(εN+1) + cεkτ

ε
k.(6.22)

Since
∑N

k=1 |cεk|2 = 1, we see that there exists some k such that λε = τ εk + o(ε2).
Since τ εk < 0, we see that Re(λε) ≤ −c1ε

2 < 0, where c1 > 0 is a generic constant.
This finishes the proof of part (d) of Theorem 2.2.
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7. Metastable dynamics and numerical results. In this section, we assume
that p satisfies the conditions (2.7) under Theorem 5.3. We then use a formal asymp-
totic analysis to characterize the metastable dynamics of an interior spike solution for
(1.8). The metastability analysis is similar to that given in [16] for an interior spike
solution to the Gierer–Meinhardt model of [10]. We look for a solution to (1.8) in the
form

W (x, t) = Wε

(
ε−1|x− x0|

)
+ R(x, t), P (x, t) = Pε

(
ε−1|x− x0|

)
+ H(x, t).

(7.1)

Here (Wε, Pε) satisfy the PDEs of (1.10), and the error terms R and W are such that
R � Wε and H � Pε. In (7.1), x0 = x0(t) ∈ Ω is the unknown location of the center
of the spike. Our goal is to derive an equation of motion for x0(t). We will only
consider the long-time evolution of the spike, and do not discuss the transient process
by which a spike forms from initial data. Therefore, we assume that at t = 0 we
have x0(0) = x0

0 ∈ Ω and R(x, 0) = H(x, 0) = 0. Since the linearized problem has an
exponentially small principal eigenvalue, we expect that the speed x

′

0 is exponentially
small as ε → 0.

Substituting (7.1) into (1.8) and linearizing the resulting system, we obtain

∇ ·
(
Pε∇

(
H

Pε
− pR

Wε

))
= ∂tPε + ∂tH in Ω;

∂R

∂ν
= −∂Wε

∂ν
on Ω,(7.2a)

ε2∆R−R +
Pε

(1 + γWε)2
R +

Wε

1 + γWε
H = ∂tWε + ∂tR;

∂H

∂ν
= −∂Pε

∂ν
on ∂Ω.

(7.2b)

Since both ∂H/∂ν on ∂Ω and the right-hand side of the PDE in (7.2a) are small, we
can asymptotically solve (7.2a) for H to get

H ∼
(
pPε

Wε

)
R− pPε

∫
Ω

PεR

Wε
.(7.3)

Substituting (7.3) into (7.2b), we obtain

ε2∆R−R + f
′
(Wε)R− pWεPε

1 + γWε

∫
Ω

PεR

Wε
= ∂tWε + ∂tR in Ω,(7.4)

∂R

∂ν
= −∂Wε

∂ν
on ∂Ω.

Here f
′
(Wε) is defined by

f
′
(Wε) =

Pε

(1 + γWε)
2 +

pPε

1 + γWε
.(7.5)

Next, we use (2.2) to write (7.4) as

LεR ≡ ε2∆R−R + f
′

δε(Ŵε)R− pŴ p+1
ε

δε + Ŵε

∫
Ω
Ŵ p−1

ε R∫
Ω
Ŵ p

ε

= ∂tWε + ∂tR in Ω,(7.6a)

∂R

∂ν
= −∂Wε

∂ν
on ∂Ω.(7.6b)
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Here δε and f
′

δε
(Ŵε) are defined in Lemmas 3.4 and 4.14, respectively, and Ŵε satisfies

(1.13).
We define the local operator in (7.6) as

LεR ≡ ε2∆R−R + f
′

δε(Ŵε)R.(7.7)

By translation invariance, we find upon differentiating (1.13) that

Lε

(
∂xjŴε

)
= 0, j = 1, . . . , N.(7.8)

In addition, since x0 ∈ Ω and Ŵε is locally radially symmetric near x0, then Lε(∂xjŴε)

is exponentially small as ε → 0. Moreover, ∂xjŴε is exponentially small on ∂Ω for
j = 1, . . . , N .

From part 4 of Lemma 3.4, we recall that

Ŵε = wδε

[
ε−1|x− x0|

]
+ O(e−d/ε),(7.9)

where d > 0 is some constant independent of ε. Here wδε satisfies (3.3), with δε =∫
Ω
Ŵ p

ε = O(εN ). The far-field behavior of the solution, valid for |x− x0| � O(ε), is

Ŵε ∼ a

(
|x− x0|

ε

)(1−N)/2

e−|x−x0|/ε.(7.10)

Here a is a positive constant that depends on N , p, and ε. However, as ε → 0 we
have a → a0 > 0, where a0 is determined from the far-field behavior of (2.3), which
corresponds to setting δ = 0 in (3.3). In section 7.1 we derive an ODE for x0(t)
for the multidimensional case where N ≥ 2. The one-dimensional case is studied in
section 7.2.

7.1. The multidimensional case. To derive an equation of motion for x0(t),
we first must determine the eigenfunctions of Lε in (7.6) corresponding to the ex-
ponentially small eigenvalues. Let (λ0j , φ0j), for j = 1, . . . , N , be the eigenpairs
of Lεφ0 = λ0φ0, where λ0j is exponentially small as ε → 0. From (7.8), we note
that these eigenfunctions are given asymptotically, in the interior of the domain, by
φ0j ∼ ∂xjŴε for j = 1, . . . , N . However, as in [16], we must insert a boundary layer
correction term near Ω to ensure that φ0j satisfies the homogeneous boundary con-
dition ∂φ0j/∂ν = 0 on ∂Ω. In order to resolve the boundary layer, we define a local
coordinate system. Let η̂ represent the distance from a point in Ω to ∂Ω, where η̂ < 0
corresponds to the interior of Ω. Let s correspond to the other N − 1 orthogonal
coordinates. To localize the region near ∂Ω, we let η = ε−1η̂. The eigenfunction is
then approximated by

φ0j ∼ ∂xjŴε + φ̂j , j = 1, . . . , N.(7.11)

Substituting (7.11) into (7.6a), we obtain that φ̂j satisfies

∂ηηφ̂j − φj = 0, η < 0, ∂ηφ̂j = −ε∂η̂(∂xjŴε)|η=0 on η = 0,(7.12)

with φ̂j → 0 as η → −∞. Below, we require a formula for φ0j on ∂Ω. Solving (7.12)
and using the far-field form (7.10), we substitute the resulting expression into (7.11)
to get for j = 1, . . . , N that

φ0j ∼ −aε(N−3)/2r−(1+N)/2 (xj − x0j) e
−r/ε (1 + r̂ · n̂) on Ω.(7.13)
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Here xj denotes the jth coordinate of x, r ≡ |x − x0|, r̂ = (x− x0)/r, and n̂ is the
unit outward normal to ∂Ω. A similar calculation was done in [16] with regards to
metastable behavior in the Gierer–Meinhardt model [10]. For further details of the
calculation leading to (7.13), see [16].

Next, we multiply (7.6a) by φ0j and integrate over Ω. Integrating the resulting
equation by parts over Ω and assuming that ∂tR is asymptotically small, we obtain

(∂tWε, φ0j) = −ε2
∫
∂Ω

φ0j ∂νŴε dS + (R,Lε
∗φ0j) .(7.14)

We now evaluate the terms in (7.14) using Wε = CŴε, for some constant C. The
dominant contribution to the integral on the left-hand side of (7.14) arises from the
region near x = x0. Using φ0j ∼ ∂xjŴε, Wε = CŴε, and (7.9) for Ŵε, we calculate
for j = 1, . . . , N that

(∂tWε, φ0j) ∼ −CεN−2x
′

0j

(
ωNβN

N

)
, βN ≡

∫ ∞

0

ρN−1
[
w

′

δε(ρ)
]2

dρ.(7.15)

Here (u, v) ≡
∫
Ω
uv, x

′

0j ≡ dx0j/dt, wδε(ρ) is the radially symmetric solution to (3.3),
and ωN is the surface area of the unit N -sphere. Next, we use (7.10) and (7.13) to
estimate the boundary integral term in (7.14) as

−ε2
∫
∂Ω

φ0j ∂νŴε dS ∼ −Ca2εN−1

∫
∂Ω

r1−Ne−2r/ε (xj − x0j)

r
r̂ · n̂ (1 + r̂ · n̂) dS.

(7.16)

This expression shows that the boundary integral term in (7.14) is O(εqe−2r0/ε), where
q is some constant, and r0 = dist (x0, ∂Ω).

We now show that the inner product term on the right-hand side of (7.14) is
asymptotically negligible in comparison with (7.16). We calculate, using δε = O(εN )
and symmetry, that

Lε
∗φ0j ∼ −pŴ p−1

ε∫
Ω
Ŵ p

ε

∫
Ω

Ŵ p+1
ε

δε + Ŵε

∂xjŴε ∼ − pŴ p−1
ε

N (p + 1)
∫
Ω
Ŵ p

ε

∫
Ω

∇ · Ŵ p+1
ε .(7.17)

Then, using the divergence theorem and the far-field behavior (7.10), we obtain

Lε
∗φ0j ∼ − pŴ p−1

ε

N
∫
Ω
Ŵ p

ε

∫
∂Ω

Ŵ p+1
ε

p + 1
= Ŵ p−1

ε O
(
εqe−(p+1)r0/ε

)
.(7.18)

Here q is a constant, and r0 = dist (x0, ∂Ω). Since R � 1 and p > 1, it follows that
the exponentially small term (R,Lε

∗φ0j) is asymptotically negligible in comparison
with the boundary integral term in (7.16).

Therefore, substituting (7.15) and (7.16) into (7.14) and neglecting (R,Lε
∗φ0j)

in (7.14), we obtain

dx0

dt
∼ a2Nε

βNωN

∫
∂Ω

r1−Ne−2r/ε r̂ (1 + r̂ · n̂) r̂ · n̂ dS.(7.19)

Assuming that there is a unique point xm ∈ ∂Ω closest to the initial center x0(0)
of the spike, we can evaluate the surface integral in (7.19) using Laplace’s method.
This leads to the following explicit result.
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Proposition 7.1. For ε � 1, a metastable spike solution for (1.8) is given by

Wε ∼
wδε

[
ε−1(x− x0)

]
γεN

∫
RN [wδε(y)]

p
dy

, Pε ∼
(
wδε

[
ε−1(x− x0)

])p
εN

∫
RN [wδε(y)]

p
dy

.(7.20a)

Here wδε satisfies (3.3). Let xm be the point on ∂Ω closest to x0(0). Then, for t > 0,
the spike moves in the direction of xm, and the distance rm(t) = |xm−x0(t)| satisfies
the first order nonlinear differential equation

drm
dt

∼ −ξrm

(
ε

rm

)(N+1)/2

K(rm)e−2rm/ε,(7.20b)

where ξ > 0 and the functions K(rm) are defined by

ξ ≡ 2Na2

ωNβN
π(N−1)/2, K(rm) ≡

(
1 − rm

R1

)−1/2(
1 − rm

R2

)−1/2

· · ·
(
1 − rm

RN−1

)−1/2

.

(7.20c)

Here Rj > 0, for j = 1, . . . , N − 1, are the principal radii of curvature of ∂Ω at xm,
ωN is the surface area of the unit N-sphere, and a and βN were defined in (7.10) and
(7.15), respectively.

This result is valid up until the time when the spike approaches to within an O(ε)
distance of xm. If the initial condition for (7.20b) is rm(0) = r0, then the time T
needed for rm(T ) = 0, is readily found to be

T ∼ ε(1−N)/2r
(N−1)/2
0

2K(r0)ξ
e2r0/ε.(7.21)

7.2. The one-dimensional case. Let (λ0, φ0) be the principal eigenpair of
Lεφ0 = λ0φ0 with φ

′

0(±1) = 0. Here Lε is defined in (7.6), and λ0 is exponentially
small. Similar to the analysis for the multidimensional case, φ0 has the boundary
layer form

φ0 ∼ ∂xŴε + φl

[
ε−1(1 + x)

]
+ φr

[
ε−1(1 − x)

]
.(7.22)

Substituting (7.22) into (7.6), we obtain that the boundary layer correction terms
φl(η) and φr(η) satisfy v

′′ − v = 0. Imposing that φ
′

0(±1) = 0, and using the far-field
behavior (7.10) with N = 1, we get

φl(η) = aε−1e−(1+x0)/εe−η, φr(η) = −aε−1e−(1−x0)/εe−η.(7.23)

Combining (7.10), (7.22), and (7.23), and where a is defined in (7.10), we calculate

φ0(−1) ∼ 2ε−1ae−(1+x0)/ε, φ0(+1) ∼ −2ε−1ae−(1−x0)/ε.(7.24)

To derive a differential equation for x0, we proceed as in the multidimensional
case. We multiply both sides of (7.6) by φ0 and integrate over the domain. Assuming
that ∂tR on the right-hand side of (7.6) is asymptotically small, we integrate the
resulting expression by parts, and then use the boundary condition (7.6b), to obtain

(φ0, ∂tWε) = −ε2φ0∂xWe|1−1 + (R,Lε
∗φ0).(7.25)
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Here Lε
∗ denotes the adjoint operator of Lε. As in the multidimensional case, the

second term on the right-hand side of (7.25) is asymptotically negligible in comparison
to the other two terms in (7.25). Then, since Wε = CŴε for some constant C, (7.25)
reduces to (

φ0, ∂tŴε

)
∼ −ε2φ0Ŵεx|1−1.(7.26)

Using (7.9), (7.10), (7.22), and (7.24), we calculate

(
φ0, ∂tŴε

)
∼ −ε−1x

′

0

∫ ∞

−∞

[
Ŵ

′

ε (y)
]2

dy,(7.27)

ε2φ0Ŵεx|1−1 ∼ 2a2
(
e−2(1−x0)/ε − e−2(1+x0)/ε

)
.

Substituting (7.28) into (7.26), we obtain the ODE for the spike location. The corre-
sponding asymptotic solution is obtained by combining (2.2) and part 4 of Lemma 3.4.
We summarize the result as follows.

Proposition 7.2. For ε � 1, a metastable spike solution for (1.8) is given by

Wε ∼
wδε

[
ε−1(x− x0)

]
γε

∫∞
−∞ [wδε(y)]

p
dy

, Pε ∼
(
wδε

[
ε−1(x− x0)

])p
ε
∫∞
−∞ [wδε(y)]

p
dy

.(7.28a)

Here wδε satisfies (3.3), and the spike location x0(t) satisfies the differential equation

dx0

dt
∼ 2a2ε

β

(
e−2(1−x0)/ε − e−2(1+x0)/ε

)
, x0(0) = x0

0, β ≡
∫ ∞

−∞

[
w

′

δε(y)
]2

dy.

(7.28b)

The constant a > 0 is defined in (7.10).
Following ideas in [37], the homoclinic orbit constants a, β, and δε can be com-

puted numerically in terms of the nonlinearity of (3.3). In this way, we obtain the
explicit formulae for a and β:

log a ≡ logwm +

∫ wm

0

(
1

[η2 − 2Q(η)]
1/2

− 1

η

)
dη, β = 2

∫ wm

0

[
η2 − 2Q(η)

]1/2
dη.

(7.29a)

Here wm = wδε(0), which denotes the maximum of wδε(y) on y ≥ 0, satisfies the
transcendental equation

w2
m = 2Q(wm), where Q(w) =

∫ w

0

yp+1

δε + y
dy.(7.29b)

The nonlocal term δε, defined in Lemma 3.4, can be rewritten by determining a
formula for w

′

δε
in terms of wδε for y ≥ 0. In this way, we get

δε = 2ε

∫ wm

0

wp√
w2 − 2Q(w)

dw.(7.29c)

We use Newton’s method to solve the coupled system (7.29b) and (7.29c) for wm and
δε for various values of ε. In terms of these values, we then calculate a and β from
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Table 1

Numerical values for the homoclinic orbit constants at different values of ε when p = 2.

ε wm δε a β
0.01 1.587 0.0625 5.34 1.38
0.02 1.679 0.137 5.27 1.57
0.03 1.776 0.225 5.28 1.79
0.04 1.880 0.331 5.34 2.03
0.05 1.993 0.458 5.45 2.31
0.06 2.115 0.610 5.59 2.64
0.07 2.248 0.793 5.77 3.01
0.08 2.396 1.017 5.98 3.45
0.09 2.559 1.286 6.22 3.97
0.10 2.741 1.627 6.51 4.60

Table 2

Numerical values for the homoclinic orbit constants for different values of p when ε = 0.06.

p wm wm0 δε δ0 a β
2 2.115 1.500 0.610 0.360 5.59 2.64
3 1.604 1.414 0.351 0.267 2.85 1.77
4 1.456 1.357 0.276 0.228 2.17 1.59
5 1.379 1.316 0.240 0.207 1.89 1.51

(7.29a). An important feature of these formulae is that they do not require an explicit
pointwise expression for the solution wδε(y) to (3.3).

When ε → 0, then δε → 0. Consequently, in this limit, the solution to (3.3) is
given to leading order by the solution to (2.3), which is given explicitly by

w(y) =

(
p + 1

2

)1/(p−1) (
cosh

[
(p− 1)y

2

])−2/(p−1)

.(7.30)

Therefore, as ε → 0, we have for p = 2 that wm → wm0 = 1.5, δε → δ0 =
ε
∫∞
−∞ w2 dy = 6ε, a → a0 = 6, and β → β0 = 6/5. In Table 1 we give numeri-

cal values for the homoclinic orbit constants for different values of ε when p = 2. In
Table 2 numerical values are given for these constants for different values of p when
ε = 0.06. In the latter table we compare the numerical values for wm and δε with the
numerical values for the corresponding leading order approximations wm0 and δ0 at
different values of p. These values show that the nonlocal term δε is significant at this
value of ε.

The ODE (7.28b) shows that the spike moves exponentially slowly towards the
right or the left boundary when x0(0) > 0 or x0(0) < 0, respectively. In Figure 1(a)
we plot the numerical solution to (7.28b) in the form log10(1 + t) versus x0 when
ε = 0.06 for p = 2, p = 3, and p = 4. The homoclinic orbit constants needed in
(7.28b) are given in Table 2. The initial value for (7.28b) is x0(0) = −0.4. The spike
motion is found to be slower for larger values of p. For p = 2 and the initial value
x0(0) = −0.4, in Figure 1(b) we plot log10(1 + t) versus x0 for ε = 0.04, ε = 0.06,
and ε = 0.08. Notice the dramatic change in the time-scale of the metastability for a
small change in ε. For p = 2 and ε = 0.06, in Figure 2(a) and (b) we plot the leading
order solutions for Wε and Pε, respectively, at different times. These leading order
solutions are obtained by replacing wδε in (7.28a) by w as given in (7.30).

Finally, we compare full numerical results for the evolution of an interior spike for
(1.8) with the asymptotic dynamical behavior given in (7.28). The routine D03PCF
of the NAG library [25] is used to compute the numerical solution to (1.8). The initial
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(a) log10 t̃ versus x0: t̃ = 1 + t.
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(b) log10 t̃ versus x0: t̃ = 1 + t.

Fig. 1. (a): Plot of asymptotic spike location computed from (7.28b) when ε = 0.06, for p = 2
(heavy solid curve), p = 3 (solid curve), and p = 4 (dashed curve). (b): Similar plot when p = 2,
for ε = 0.08 (heavy solid curve), ε = 0.06 (solid curve), and ε = 0.04 (dashed curve).

condition for the numerical solution to (1.8) is

W (x, 0) =
w
[
ε−1(x− x0

0)
]

γε
∫∞
−∞ [w(y)]

p
dy

, P (x, 0) =

(
w
[
ε−1(x− x0

0)
])p

ε
∫∞
−∞ [w(y)]

p
dy

,(7.31)

where w is given in (7.30). In the computations, we choose p = 2, γ = 1, ε = 0.06,
and x0

0 = −0.4. The spike location is determined numerically from the maximum of
the numerical solution for W . In Figure 3, we show a favorable comparison between
the asymptotic and numerical results for x0. For this value of ε, the relative error
between the asymptotic and numerical predictions for the time at which the spike hits
the boundary at x = −1 is about 3%.

8. Concluding remarks. Motivated by the general system (1.1), (1.2) in which
we have a single equation governing the population density P coupled with a system
governing several substrates or nutrients, we have focussed on the simpler system (1.5)
in which the transition probability function is represented by a power law.
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(a) Wε versus x.

���

���

���

���

���� ���� ���� ���� ���� ���

��

�

(b) Pε versus x.

Fig. 2. Plot of the leading order solutions for Wε and Pε at four different times when p = 2,
γ = 1, and ε = 0.06. The heavy solid curve is for t = 0, the solid curve is for t = 4.01 × 105, the
dashed curve is for t = 1.0214 × 107, and the widely spaced dots are for t = 1.0227 × 107.
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Fig. 3. Comparison of numerical and asymptotic results for log10 t̃, where t̃ = 1 + t, versus x0

when p = 2, γ = 1, x0
0 = −0.4, and ε = 0.06. The solid curve is the full numerical result computed

from (1.8). The dashed curve is the asymptotic result computed from the ODE (7.28b).
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Under weak diffusion of the substrate, we have established the existence of spike
solutions and investigated their stability. Of particular interest is the existence of
metastable spikes. With regards to the modeling of the movement of myxobacteria
our results suggest that bacteria which aggregate when diffusion of the substrate is
neglected are, in fact, metastable spikes under weak diffusion. A similar observation
can be made regarding the initiation of capillary sprouts in tumor angiogenesis under
the simple model indicated in section 1. Furthermore, it is an important problem to
investigate whether spike behavior can account for the observed vigorous angiogenesis
in a vascularised tumor.

The investigations of this paper suggest a number of open problems. For example,
it is of interest to investigate whether spikes arise for more a general transition prob-
ability function Φ. In addition, we may ask whether spike patterns exist for systems
of the form (1.1) in which there are several substrates or nutrients.

Acknowledgments. We would like to thank the referees for their careful reading
of the manuscript.
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Abstract. In this paper a novel filtered back-projection algorithm for inversion of a discretized
Radon transform is presented. It makes use of invariance properties possessed by both the Radon
transform and its dual. By switching to log-polar coordinates, both operators can be expressed
in a displacement invariant manner. Explicit expressions for the corresponding transfer functions
are calculated. Furthermore, by dividing the back-projection into several partial back-projections,
inversion can be performed by means of finite convolutions and hence implemented by an FFT-
algorithm. In this way, a fast and accurate reconstruction method is obtained.

Key words. Radon transform, filtered back-projection
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1. Introduction. Computerized tomography, CT, is a well established image
acquisition technique with a growing range and diversity of applications. The most
common algorithm used in X-ray CT, SPECT, and many other image modalities is
called filtered back-projection. It consists of two steps: a one-dimensional filtering
of the data followed by a back-projection step, where the filtered data values are
distributed along the lines of measurement. In standard implementations of filtered
back-projection algorithms, the latter part is by far the most time-consuming. Dou-
bling the image resolution requires four times the amount of measurement data, while
the computational cost in the back-projection step increases by a factor of eight. For
the reconstruction of an image with resolution q × q, the number of computations
needed in the back-projection part is O(q3).

The principle of CT is mathematically described by the Radon transform. The
two-dimensional Radon transform is the mapping of a function in R2 to its line integral
values, and the reconstruction problem of CT lies in inverting this mapping. The back-
projection mentioned above is mathematically described by the dual Radon transform
which integrates over all lines passing through a point.

Several suggestions on how to invert the Radon transform in O(q2 log q) time have
appeared in the literature during the years. Most common are Fourier-based methods.
Using such an approach results in data of the two-dimensional Fourier transform of
the sought function on a nonuniform grid. Direct interpolation to a rectangular grid
followed by FFT inversion results in O(q2 log q) complexity but gives rise to unac-
ceptable artifacts. To cope with this one can, e.g., use over-sampling combined with
more sophisticated interpolation, as suggested in [14], or use fast Fourier algorithms
for unequally spaced data; cf. [2], [16], [8].

For issues of quality, the algorithms of filtered back-projection type have tradi-
tionally been preferred among the manufacturers of CT machines. Fast techniques
for filtered back-projection algorithms are presented in [15], [6], [3], [4], where the
back-projection is calculated recursively in O(q2 log q) time.
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In this paper we exploit the fact that both the Radon transform and its dual pos-
sess similar invariance properties. By a change of coordinates to log-polar coordinates,
the operators can be expressed as convolutions. In particular, by introducing an ap-
propriate Fourier transform, it is possible to compute parts of the back-projection in
a fast manner by means of the FFT. In this way a filtered back-projection algorithm
is constructed which works in O(q2 log q) time.

A log-polar grid is hence introduced for treating the back-projection part in a
fast manner. Log-polar grids have previously been used in an ART fashion; cf. [7].
However, according to [7], this approach was not successful in competition with the
standard filtered back-projection algorithm, in either speed or quality.

The methods developed in this paper may also be used in fast calculation of
the (forward) Radon transform, although the focus of the paper lies on the inverse
problem. Fast computation of the forward problem has also appeared in, e.g., [9], [3].
Besides simulation possibilities, this is, e.g., useful in fast computation of the Hough
transform, a tool used in image analysis and pattern recognition for finding lines.

The paper begins with a brief review of the Radon transform and its inversion. In
section 3.1 follows a discussion on the invariance properties possessed by the Radon
transform and its dual. We show that when expressed by log-polar coordinates, both
can be written in terms of convolutions. Explicit expressions for the corresponding
kernels are given in section 3.2. However, the geometry of log-polar grids makes it
impractical to use the convolutional structure directly. In section 3.3 the concept
of partial back-projections is introduced to deal with this problem. The discrete
setting is dealt with in section 4, where implementation techniques are discussed and
numerical experiments displayed.

2. Preliminaries. The two-dimensional Radon transform is the mapping from
(sufficiently regular) functions on R2 to line integrals in R2,

Rf(θ, s) =

∫
x·θ=s

f(x) dx,(2.1)

i.e., the integral of f over the line with normal direction θ and (signed) distance s to
the origin. When defined on the unit cylinder S = S1×R, the two-dimensional Radon
transform (defined by (2.1)) is even, i.e., Rf(−θ,−s) = Rf(θ, s), since each line can be
parameterized in two ways. Here S1 denotes the unit circle, parameterized by [−π, π).
When describing an element of S1, it is sometimes advantageous to describe it via
a unit vector and sometimes with the corresponding angle in a polar representation.
To avoid cumbersome notation, it is customary to use the same symbol in both cases,
and we will follow this tradition. Sometimes it is convenient to work on S+ = S1×R+

or S1/2 = [−π/2, π/2) × R instead of S, both able to describe all lines in the plane.

It is well known that the Radon transform as a mapping S(R2) → S(S) is injective,
where S denotes the Schwartz space. In this paper we are especially interested in
the Radon transform of compactly supported functions, and inversion techniques for
such. The Radon transform can then (possibly combined with a suitable preceding
translation) be viewed as an injective mapping C∞

0 (S+) → C∞
0 (S+).

The dual Radon transform R# integrates functions defined on S over subsets of
S corresponding to lines passing through a point x ∈ R2,

R#g(x) =

∫
S1

g(θ, x · θ) dθ.(2.2)
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It is dual in the sense that∫
S

(Rf)(θ, s)g(θ, s) dsdθ =

∫
R2

f(x)(R#g)(x) dx,

and in the literature is commonly referred to as the back-projection operator.
In order to write the inversion formula for the Radon transform in a simple form,

we introduce the operator J acting on (sufficiently regular) functions on S, defined
by

J =
∂

∂s
H,

where H is the Hilbert transform operator, applied to the second variable in S. Here,
the Hilbert transform is defined by

Hf(x) =
1

π

∫
R

1

x− y
f(y) dy,

where the integral is interpreted as a principal value.
An inversion formula then reads as

f =
1

4π
R#JRf.(2.3)

For more details, see [14]. A factor of 1/2 on the right-hand side is due to the fact that,
in the interpretation of R#, each line is taken into account twice. Using instead S+ or
S1/2, the factor 1/4π is replaced by 1/2π. The operator J cannot be defined directly
on S+, and hence instead it is defined as the restriction of the action on S to S+.

In practice, where Radon data are given on a discrete sampling grid, the operator
J is usually implemented by a discrete convolution in the s-variable with a band-
limited filter. More specifically, one makes use of the formula

W ∗ f = R#(w
s∗ Rf),(2.4)

where
s∗ denotes one-dimensional convolution with respect to the second variable,

s, in S, and where W and w are related by W = R#w; cf. [14]. By choosing W
to approximate a δ-distribution, an approximate reconstruction is obtained. More
specifically, one usually chooses W = Wb to be radially symmetric and band-limited
with some cut-off frequency b. When chosen in this way, w = wb depends only on the
s-variable, in which it is band-limited by b; cf. [14].

Let us consider the problem of making reconstructions on a rectangular grid
of size q × q. To do that, the number of needed parallel lines and directions in
data measurements are both of order q; cf. [14]. By approximating the continuous

convolution in (2.4) by a discrete one, the filtering step w
s∗Rf can be accomplished,

by use of FFT, with a time complexity O(q2 log q). A more time-consuming step is the
computation of the back-projection. The straightforward numerical implementation of
R# uses, for each discrete direction sample point θj , some kind of interpolation in the
s-variable to approximate g(θj , x · θj) in (2.2), in combination with some quadrature
rule on S1:

R#
d g(x) =

∑
j

αjg(θj , x · θj).
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Hence, roughly q values are summed up at each reconstruction point, giving a time
complexity of order O(q3) for q2 reconstruction points. Reconstruction methods which
are based on (2.3) are referred to as filtered back-projection algorithms.

Next, we present a discussion about some properties of the continuous Radon
transformation and its dual, which are both of interest on their own and useful for the
discrete approximative inversion presented below. A somewhat reminiscent discussion
is given in [1], where some closed-form formulas, involving Chebyshev polynomials, are
given starting from a polar representation. A numerical implementation is presented
in [1], but the number of computations needed is of order O(q3).

3. Properties of the continuous Radon transform and its dual.

3.1. Convolution operators. Consider the cylinder S+ = S1 ×R+ as a group,
provided with the algebraic structure inherited from its components, i.e., the additive
group S1 = R/2πZ (addition modulo 2π) and the multiplicative group R+ (positive
real numbers).

Let z = (θ, s) ∈ S+. The group operation on S+, written multiplicatively, is

(θ1, s1)(θ2, s2) = ((θ1 + θ2) mod 2π, s1s2).

The Haar measure on S+ = S1 × R+ is inherited from the components and can
be written dh(z) = dθ ds/s. Hence

∫
S+

f(z) dh(z) =

∫ 2π

0

∫ ∞

0

f(θ, s) dθ
ds

s
for f ∈ Ċ∞

0 (S+),

where Ċ∞
0 (S+) is the C∞

0 class on S+, with support outside the origin S1 × {0}. The
Haar property means that∫

S+

f(wz) dh(z) =

∫
S+

f(z) dh(z) for w ∈ S+, f ∈ Ċ∞
0 (S+).

There exists a natural isomorphism between S+ and the punctured complex plane
Ċ = C \ {0} considered multiplicatively, parameterized by (θ, s) ←→ seiθ. Using the
Cartesian representation z = x + iy for Ċ, the Haar measure on S+ can be written

dh(z) = dθ
ds

s
=

dx dy

x2 + y2
.

If Ċ is represented instead by coordinates

seiθ = eρeiθ, ρ ∈ R,(3.1)

which we will refer to as log-polar coordinates, then the Haar measure on S+ becomes

dh(z) = dθ dρ.

Let λ be the distribution that represents integration over the line x = 1 in Ċ,

λ : f �−→
∫ ∞

−∞
f(1, y) dy =

∫
Ċ

f(x, y)δ(x− 1) dx dy, f ∈ S(S+).
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In the (θ, s) = z representation, it can be written

λ : f �−→
∫ π

2

−π
2

f

(
θ,

1

cos θ

)
1

cos2 θ
dθ =

∫
S+

f(θ, s)δ(s cos θ − 1)s ds dθ

=

∫
S+

f(z)λ(z) dh(z), with λ(z) = s2δ(s cos θ − 1).

Let lines in Ċ be denoted Lξ, where ξ is the footprint of the normal of the line
through the origin. The Radon transform (2.1) can be expressed as

g(ξ) = Rf(ξ) = |ξ|
∫

S+

f(zξ)λ(z) dh(z).(3.2)

This follows from the fact that, in the last integral, the distribution λ is applied to
a function that is obtained from f by a similarity transformation of the coordinate
plane, such that the line Lξ is transferred to L1, which is the support of λ. Using |ξ|
to compensate for the change in scale, we obtain the Radon transform.

The duality between points on a line in Ċ and lines through a point in Ċ motivates
interest in the distribution

λ# : f �−→
∫ π

2

−π
2

f(θ, cos θ) dθ =

∫ π
2

−π
2

∫
R+

f(θ, s)δ(cos θ − s) ds dθ

=

∫
S+

f(z)λ#(z) dh(z), with λ#(z) = sδ(cos θ − s).

If f is interpreted as a function on lines in Ċ, then this represents the integral of f
over all lines through the point 1 ∈ Ċ. Also note that∫ β

α

∫
R+

f(s, θ)λ#(s, θ) ds dθ(3.3)

is the integral over all lines through the point 1 ∈ Ċ with normal direction in the
interval [α, β].

The distributions ζ(z) = λ(1/z) and ζ#(z) = λ#(1/z), formally defined by

ζ : f �−→
∫

S+

f

(
1

z

)
λ(z) dh(z),

ζ# : f �−→
∫

S+

f

(
1

z

)
λ#(z) dh(z), f ∈ Ċ∞

0 (S+),

will be crucial in what follows. In the (θ, s) = z representation, these can explicitly
be written

ζ(z) = s−2δ(s−1 cos θ − 1),

ζ#(z) = δ(s cos θ − 1).

Using the Haar property on the integral, the formula (3.2) can also be written

Zf(ξ) =
Rf(ξ)

|ξ| =

∫
f(z)ζ

(
ξ

z

)
dh(z).(3.4)
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Apart from the scaling factor |ξ|, the Radon transform can thus be expressed as a
convolution on S+.

For the back-projecting operator (2.2), note that if ξ ∈ Ċ and if g ∈ Ċ∞
0 (S+) is

interpreted as a function on lines in Ċ, then

R#g(ξ) =

∫
S+

g(ξz)λ#(z) dh(z)

is the integral of g over all lines that pass through ξ. Hence, again by using the Haar
property,

R#g(ξ) =

∫
S+

g(z)ζ#

(
ξ

z

)
dh(z),(3.5)

which in the log-polar representation can be expressed by the following convolution:

R#g(ρ, θ) =

∫
S+

g(ρ′, θ′)ζ#(ρ− ρ′, θ − θ′) dρ′ dθ′.(3.6)

This fact opens the possibility of performing the inversion in (2.3) by means of an
appropriate Fourier transform.

Note also that by using (3.3) and the same arguments as above, it follows that
the back-projection restricted to lines with normal directions in the interval [α, β] can
be written

R#
[α,β]g(ρ, θ) =

∫ β

α

∫
R+

g(ρ′, θ′)ζ#(ρ− ρ′, θ − θ′) dρ′ dθ′.(3.7)

3.2. Fourier analysis. The Fourier transform FS+
= F on S+ is a compound

of the Fourier series transform on S1 and the Mellin transform on R+:

F : f(θ, s) �−→ g(µ, σ) =

∫ 2π

0

∫ ∞

0

e−iµθs−σf(θ, r)
ds

s
dθ, µ ∈ Z, σ ∈ C.

In a log-polar representation, (3.1), the Fourier transform instead becomes a com-
pound of the Fourier series transform and the Laplace transform on R,

F : f(θ, ρ) �−→ g(µ, σ) =

∫ 2π

0

∫ ∞

−∞
e−iµθe−σρf(θ, r) dρ dθ, µ ∈ Z, σ ∈ C.

As the operators Z in (3.4) and R# in (3.5) can be expressed as convolutions on
S+, it suffices to calculate the corresponding transfer functions for determination of
Fζ and Fζ#.

It is readily verified using (3.2) that, for ξ = reiψ,

Zf(ξ) =

∫
S+

f(θ + ψ, rs)δ(s cos θ − 1)s ds dθ =

∫ π/2

−π/2

f
(
θ + ψ,

r

cos θ

) 1

cos2 θ
dθ.

Let f(θ, s) = sσeiµθ. Then the transfer function for Z is obtained by

Zf(ξ) =

∫ π/2

−π/2

eiµ(θ+ψ)
( r

cos θ

)σ 1

cos2 θ
dθ = rσeiµψ

∫ π/2

−π/2

eiµθ
(
cos θ

)−σ−2
dθ

= f(ξ)Fζ(µ, σ).



824 FREDRIK ANDERSSON

Fig. 3.1. The absolute value and real part of Fζ#(µ, iω).

Here, Fζ(µ, σ) converges in the classical sense for Reσ < −1, where it defines an
analytic function.

Similarly, the transfer function for the back-projecting operator R# is obtained
by

R#f(ξ) =

∫ π/2

−π/2

eiµθ(r cos(θ − ψ))σ dθ =

∫ π/2

−π/2

eiµ(θ+ψ)(r cos θ)σ dθ

= rσeiµψ
∫ π/2

−π/2

eiµθ(cos θ)σ dθ = f(ξ)Fζ#(µ, σ),

where Fζ#(µ, σ) converges in the classical sense for Reσ > −1.
Note that Fζ(µ, σ) and Fζ#(µ, σ) are not simultaneously (classically) well de-

fined, and note further the resemblance between the two Fourier transforms:

Fζ(µ, σ) = Fζ#(µ,−σ − 2).

An analogue to the following formula can be found in [10, p. 372].∫ π
2

−π
2

eiµθ cosσ(θ) dθ =
πΓ(σ + 1)

2σΓ(σ+µ
2 + 1)Γ(σ−µ

2 + 1)
, Reσ > −1.

Hence we conclude that

Fζ(µ, σ) =
πΓ(−σ − 1)

2−σ−2Γ(−σ+µ
2 )Γ(−σ−µ

2 )
, Reσ < −1,

Fζ#(µ, σ) =
πΓ(σ + 1)

2σΓ(σ+µ
2 + 1)Γ(σ−µ

2 + 1)
, Reσ > −1.(3.8)

Figure 3.1 illustrates the function Fζ#(µ, iw). The real part is displayed in the
form of a surface plot, and the absolute value is shown on a coarser grid in a mesh
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 β

 a
m

 a
R

β/2

β/2

O

Lθ,s

Fig. 3.2. Lines with directions θ ∈ [−β
2
, β

2
], passing through a circle inscribed in a segment.

plot. Its energy content is mainly contained in a neighborhood of the origin and along
the line µ = 0. Note that, although its absolute value is rather smooth, the real and
imaginary parts are strongly oscillating.

3.3. Partial back-projection. Our aim is to present a fast procedure for com-
puting the back-projection as a discrete convolution on a uniformly sampled grid in
log-polar coordinates. However, the counterpart in polar coordinates will be nonuni-
form, corresponding to a dense assembling of grid points close to the origin in C. This
assembling causes large variation in the density of both reconstruction grid points and
data sample points. By moving the origin it is possible to obtain a more uniform struc-
ture within the grid points of the reconstruction region, but this does not simplify
the treatment of the data sample points. The difficulty here is the need to deal with
lines with various distances to the origin, and this problem exists no matter where
the origin is situated, if lines with all directions must be considered.

To cope with this, we divide the measurement data into m ≥ 3 (disjoint) sets,
each containing lines with directions in an interval of length π

m . Corresponding to
each such set, we choose an origin outside the region of interest, in such a way that
the back-projection from lines with directions within each interval (cf. (3.3)) can be
calculated by means of finite integrals. We refer to this procedure as partial back-
projection. By putting these partial back-projections together, it is possible to obtain
a total back-projection. To begin with, we consider one special case.

Let β = π
m for some positive integer m ≥ 3, and let aR denote the radius of the

largest circle inscribed in a sector with unit radius and central angle β; cf. Figure 3.2.
It is straightforward to show that

aR =
sin(β2 )

1 + sin(β2 )
.(3.9)

Consider the set of all lines Lθ,s, with normal directions |θ| ≤ β
2 with respect to the

symmetry axis of the sector, passing through the inscribed circle; cf. Figure 3.2. It is
clear that the normal distances to the origin, s, of these lines will be in the interval
(am, 1), where

am + aR = (1 − aR) cos

(
β

2

)
,(3.10)
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or, by using (3.9),

am =
cos(β2 ) − sin(β2 )

1 + sin(β2 )
.(3.11)

Suppose that f ∈ C∞
0 has its support inside the inscribed circle, and that Rf(θ, s) is

known. Let

h0(θ, s) = χβJRf(θ, s),

where χβ is the characteristic function of the set{
θ : −β

2
≤ θ <

β

2

}
.

The contribution

f0(x) =

∫ β
2

− β
2

JRf(θ, θ · x) dθ

from the back-projection of lines with directions in the interval (−β
2 ,

β
2 ) in log-polar

coordinates, for x inside the inscribed circle, may be written as (by using (3.7))

f0(θ, ρ) =

∫ β
2

− β
2

∫ 0

ln(am)

h0(θ′, ρ′)ζ#(θ − θ′, ρ− ρ′) dρ′dθ′.

Furthermore, if ζ#
p (θ, ρ) is defined as the periodic extension of ζ#(θ, ρ) for θ ∈ [β, β]

and ρ ∈ [ln(am), 0], then

f0(θ, ρ) =

∫ β

−β

∫ 0

ln(am)

h0(θ′, ρ′)ζ#
p (θ − θ′, ρ− ρ′) dρ′dθ′,(3.12)

when θ ∈ [−β
2 ,

β
2 ] and ρ ∈ [1 − 2aR, 1]. This is due to the fact that the interval

length in the θ′-direction is twice the θ′-support of h0(θ′, ρ′), and to the fact that the
values of h0(θ′, ρ′) for ρ′ outside [ln(am), 0] are of no importance in (partial) back-
projecting for x = (θ, ρ) inside the inscribed circle. Thus, replacing h0(θ′, ρ′) with a
periodical extension of h0(θ′, ρ′) as above (which is equivalent to extending ζ#) does
not influence the result. Hence, the partial back-projection at points of interest can
be calculated as a periodic convolution.

Now, let f ∈ C∞
0 (Ω2), where Ω2 denotes the unit disc in R2, and suppose that

Rf(θ, s) is known. By dividing the data into m different parts, each spanning an
angle interval of length β, and making a suitable change of coordinates to each such
set, one transforms the full back-projection problem into m subproblems of the form
above. An illustration of the procedure, for m = 3, is given in Figure 3.3. The co-
ordinate transformation x → xν consists of, after a rescaling with aR, a rotation by
the angle β followed by a translation of the origin O to Oν . Each part is then of the
form discussed above. Adding the respective partial back-projections gives the total
back-projection, since each partial back-projection integrates over disjunct intervals
(−β/2 + νβ, β/2 + νβ), which together covers an interval length of mβ = π. For the
sake of completeness, we include the details.
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 O O
0

 O
1
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2

Fig. 3.3. Reconstruction from three views.

Let ν = 0, . . . ,m− 1; introduce for each ν new coordinates

xν = aR

(
cos(νβ) sin(νβ)
− sin(νβ) cos(νβ)

)
x +

(
1 − aR

0

)
;

and let fν(xν) = f(x). Each fν then has its support inside a circle inscribed in a
sector with unit radius and central angle β, as in Figure 3.2. Let hν = χβJRfν . The
following relation, easily verified,

xν · θ = x · aR(θ + νβ) + (1 − aR) cos(θ),(3.13)

will be useful. Any line in the x-coordinate system may be written

Lθ+νβ,s = {x|x · (θ + νβ) = s},

for some ν ∈ {0, . . . ,m − 1} and −β
2 ≤ θ < β

2 . In the xν-coordinate system the
corresponding line may then, by using (3.13), be written

Lν
θ,aRs+(1−aR) cos(θ) = {xν |xν · θ = aRs + (1 − aR) cos(θ)},

and hence,

hν(θ, s) = χβJRf

(
θ + νβ,

s− (1 − aR) cos(θ)

aR

)
.(3.14)

The total back-projection for some point x inside the support of f can now, again by
using (3.13), be written as

R#JRf(x) =

∫
S1

JRf(θ, x · θ) dθ

= 2
m−1∑
ν=0

∫ β
2

− β
2

JRf(θ + νβ, (θ + νβ) · x) dθ

= 2

m−1∑
ν=0

∫ β
2

− β
2

hν(θ, aR(θ + νβ) · x + (1 − aR) cos(θ)) dθ

= 2

m−1∑
ν=0

∫ β
2

− β
2

hν(θ, xν · θ) dθ,
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where the factor 2 in the last expression is due to the fact that the total integration
is performed on only half of S1.

We now have reduced the full back-projection problem to m partial reconstruc-
tions of the form discussed above. For future reference, let us introduce

fν
r (xν) =

1

2π

∫ β
2

− β
2

hν(θ, xν · θ) dθ.(3.15)

The inversion formula (2.3) then allows us to write

f(x) =

m−1∑
ν=0

fν
r (xν).(3.16)

We have deduced that it is possible to compute the total back-projection as a sum
of partial back-projection. The sharp cutoff caused by χβ will, however, in practice
give rise to artifacts in the form of sharp lines with normal directions corresponding
to the cutoff angles. Therefore it is desirable to make a smoother cutoff. This requires
that the supports in the θ-direction for the respective hν overlap. The angle β is then
not equal to π

m (where m is the number of partial back-projections to be used) but
larger. Suppose π

m ≤ β ≤ 2π
m . By letting

η(t) =

{
e

−β2

β2−4t2 if |t| < β
2 ,

0 otherwise,

a smooth cutoff function

χβ,m(θ) =
η(θ)

η(θ) + η( π
m − arccos(cos θ))

,(3.17)

with support in [−β
2 ,

β
2 ], can be formed. Since

∞∑
k=−∞

χβ,m

(
θ + k

π

m

)
≡ 1,

it follows that the reconstruction (3.16) is still valid if χβ in (3.14) is replaced by
χβ,m.

4. Discrete log-polar reconstruction.

4.1. Principles. In this section we describe how to use the method of section 3.3
to make reconstructions from discrete measurements. For simplicity, in this paper we
deal with the case of parallel beam data. Let f ∈ C∞

0 (Ω2); let g = Rf be sampled
at (θj , sl), j = 0, . . . , p− 1, l = 0, . . . , q − 1 (parallel beam geometry), where θj ∈ S1

and sl = 2l
q − 1; and let h = wb

s∗ g, in accordance with (2.4). The latter quantity is
approximated by the discrete convolution

wb
d∗ g(θj , s) =

1

q

q∑
l=−q

wb(s− sl)g(θj , sl).(4.1)

What now remains for reconstruction is the back-projection. To this end, let the
integer m be the number of partial reconstructions to be used, let β = π/mβ , suppose

that m and mβ are divisors of p, and let θj = −β
2 + jπ

p .
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For the construction of the discrete back-projecting operator we will make use
of the interpolation results discussed in section A. To begin with, suppose h(θ, s) is
known, and make a uniform sampling of hν defined in (3.14), with χβ replaced by χβ,m

from (3.17), in a log-polar representation (θj , ρi) covering (−β
2 ,

β
2 )×(− ln(am), 0). Let

I∆2 = I(∆θ,∆ρ) be a quasi-interpolator of order o2, with kernel ϕ(θ, ρ) = ϕθ(θ)ϕρ(ρ),
where ∆θ and ∆ρ is the grid spacing of (θj , ρi).

Construct

hν
∗(θ, ρ) =

∑
j

∑
i

hν [j, i]ϕ

(
θ − θj
∆θ

,
ρ− ρi
∆ρ

)
,

as an approximation of hν . Now the back-projection of hν
∗ , for xν represented by

θ ∈ [−β
2 ,

β
2 ] and ρ ∈ [1 − 2aR, 1], can be written

R#hν
∗(θ, ρ) =

∫ β

−β

∫ 0

ln(am)

hν
∗(θ − θ′, ρ− ρ′)ζ#(θ′, ρ′) dρ′ dθ′

=

∫ β

−β

∫ 0

ln(am)

⎛
⎝∑

j

∑
i

hν [j, i]ϕ

(
θ − θ′ − θj

∆θ
,
ρ− ρ′ − ρi

∆ρ

)⎞⎠ζ#(θ′, ρ′) dρ′ dθ′

=
∑
j

∑
i

hν [j, i]Z(θ − θj , ρ− ρi),(4.2)

where

Z(θ, ρ) =

∫ β

−β

∫ 0

ln(am)

ϕ

(
θ − θ′

∆θ
,
ρ− ρ′

∆ρ

)
ζ#(θ′, ρ′) dθ′dρ′.(4.3)

This follows by exchanging the order between sums and integrals. Note that Z is
independent of the Radon data.

Due to this structure, it is particularly convenient to make reconstructions on
some uniformly sampled (θ, ρ)-grids, e.g., the same upon which hν was resampled, as
this enables computation of the discrete convolutions by means of two-dimensional
FFT (after appropriate zero padding). Once the partial back-projections fν

r are com-
puted on the (θj , ρi)-grid, it remains only to interpolate them onto a Cartesian rep-
resentation and sum up the results to obtain a reconstruction f . A survey of relevant
interpolation methods is given in the appendix.

The procedure discussed above involves three quasi interpolators. The first one
(not discussed above) is needed in the resampling onto the uniform (θj , ρi)-grid; let
it be denoted by I∆1 = I 2

q
, and its interpolating order by o1. Hence, h[j, i] above

should be replaced by (I∆1
h)[j, i]. The second quasi interpolator, represented by I∆2

above, is naturally incorporated into Z(θ, ρ) as described by (4.3), and the third, I∆3

of interpolating order o3, is needed when adding up the parts. In short, a pseudocode
for the reconstruction is presented below.

Algorithm 4.1.

function f=iradonlp(g,m,mbeta);

[p,q]=size(g);

h=wfilter(g);

FZ=fft2(get_Z(p,q,mbeta));

chi=get_chi(m,mbeta,q);

f=0;
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for nu=0:m-1,

hlp=interp_pol2lp(chi.*h(nu*p/m+(0:p/mbeta-1),:));

hlp=[hlp;zeros(size(hlp))];

flp=ifft2(FZ*fft2(hlp));

f=f+interp_lp2cart(flp);

end;

end;

Let us discuss the first interpolation step in slightly more detail. Since, for each
fixed θ, h(θ, s) is band-limited by b, the first interpolation step can actually be com-
puted exactly from h(θj , sl) by (A.1), as long as the Nyquist condition b < πq

2 is
satisfied. However, this is quite time-consuming and ruins the time gain achieved by
using log-polar coordinates in the back-projection.

The nonuniformity between data in polar and log-polar representation requires
use of more sample points in the log-polar representation in order to avoid too much

loss of information. Suppose ∆ρ = − ln(am)
q′−1 and ρi = 1− i∆ρ, i = 0, . . . , q′ − 1, where

q′ = κq for some oversample factor κ. If the filter bandwidth of (4.1) is given by
b = πq

2 , then by choosing

κ > − ln(am)

2aR
,

the knowledge of h(θ, ρi) at all grid points suffices to reconstruct h(θ, ρi); cf. Theo-
rem 3.1 in [22]. A typical choice here is κ = 2.

Remark. The combination of uniformly spaced FFT and the interpolation scheme
described above is in principle the same as in the procedures used in fast Fourier
transforms for unequally spaced data; cf. [2]. Usage of the fast implementations
available for such routines allows simple and fast implementation of the algorithm
described above. It should be stressed that, although the tools used are the same as
in, e.g., [16], the underlying method is quite different; the approach of this paper is
based on the filtered back-projection technique, whereas the others have been based
on the Fourier slice theorem.

4.2. Error analysis. In the algorithm described above, errors are introduced at
several places. The first one is in the filtering step, caused by the discrete convolution
(4.1). This is common for algorithms of filtered back-projection type, and estimated
in [14] by

|wb
d∗ g − wb

s∗ g|(θ, s) ≤ 1

2

∫
σ≥b

|σ|n−1f̂(σθ) dσ = e1.(4.4)

To describe the errors caused by interpolation we need to introduce modified
Sobolev norms for polar and log-polar coordinates. The main reason for not using the
natural definitions is that each filtering h of Radon data of some compactly supported
function is not compactly supported. In particular, since the filtering does not vanish
in a neighborhood of s = 0, the natural Sobolev norm in log-polar coordinates of h is
in general, if it exists, infinite.

As in the definition (A.4), let

||f ||Hγ
pol

=
∑
|α|≤γ

∫ ∫
|Dα

θ,sf(θ, s)|2χpol(θ, ρ) dθ ds
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and

||f ||Hγ
lp

=
∑
|α|≤γ

∫ ∫
|Dα

θ,ρf(θ, ρ)|2χlp(θ, ρ) dθ dρ

be polar and log-polar Sobolev norms, respectively. Here f(θ, s) and f(θ, ρ) are con-
nected through the change of variables

ρ = ln

(
s− (1 − aR) cos(θ)

aR

)
,(4.5)

χpol is a smooth cutoff function equal to one on (−β
2 ,

β
2 ) × (−1, 1), and similarly χlp

equal to one on (−β
2 ,

β
2 ) × (− ln(am), 0). Since the function defined by (4.5) is C∞

for s ∈ [−1, 1], and correspondingly ρ ∈ [− ln(am), 0], it is possible to choose χpol and
χlp such that the two norms above are equivalent. It is clear that the results in the
appendix are also valid with the norms above. By abuse of notation, we will denote
all constants in the remainder of this section by C.

The error introduced in the first interpolation step can now be expressed as

||I∆1h
ν − hν ||H0

pol
≤ C|∆1|o1 ||hν ||Ho1

pol
,(4.6)

by using (A.5) of Theorem A.1. Because of the norm equivalence between || · ||Hγ
pol

and || · ||Hγ
lp

, the analogous estimate of (4.6) holds for || · ||Hγ
lp

. This, in combination

with the triangle inequality, implies that

||hν
∗ − hν ||H0

lp
= ||I∆2I∆1h

ν − hν ||H0
lp
≤ ||I∆2I∆1h

ν − I∆1h
ν ||H0

lp
+ ||I∆1h

ν − hν ||H0
lp

≤ C|∆2|o2 ||I∆1h
ν ||Ho2

lp
+ C|∆1|o1 ||hν ||Ho1

lp
.

Since I∆1 is bounded, it follows that

||hν
∗ − hν ||H0

lp
≤ C(|∆2|o2 ||hν ||Ho2

lp
+ |∆1|o1 ||hν ||Ho1

lp
).

Hence, for the partial back-projection

||R#(hν
∗ − hν)||H0

lp
≤ βC(|∆2|o2 ||hν ||Ho2

lp
+ |∆1|o1 ||hν ||Ho1

lp
),

since both hν and hν
∗ are zero outside a θ-interval of length β. The total error from

one partial back-projection is then bounded by

||I3R#hν
∗ −R#hν)||H0

lp
≤ ||I3R#hν

∗ −R#hν
∗)||H0

lp
+ ||R#hν

∗ − hν)||H0
lp

≤ C|∆3|o3 ||R#I∆2
I∆1

hν ||Ho3
lp

+ βC(|∆2|o2 ||hν ||Ho2
lp

+ |∆1|o1 ||hν ||Ho1
lp

)

≤ C(|∆3|o3 ||hν ||Ho3
lp

+ |∆2|o2 ||hν ||Ho2
lp

+ |∆1|o1 ||hν ||Ho1
lp

),

and hence also the total back-projection. We summarize the analysis above in the
following theorem.

Theorem 4.1. The reconstruction error made in the back-projection step of
Algorithm 4.1 satisfies

||(R#
lp −R#)h||H0

lp
≤ C(|∆3|o3 ||h||Ho3

lp
+ |∆2|o2 ||h||Ho2

lp
+ |∆1|o1 ||h||Ho1

lp
).
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We end with a quantitative remark on the estimates above. The frequency content
of quasi interpolators is, generally speaking, one at a neighborhood of zero and dies
out for higher frequencies; cf. [21]. In principle they mimic sinc-interpolation, where
the frequency content of the kernel is a box function centered at the origin. Thus, the
error introduced by replacing the operator R# with I∆3R#I∆2 is mainly due to what
happens with Radon data far away from the origin. Now, consider the back-projection
kernel of Figure 3.1. Apart from along the line µ = 0, most of its energy lies in a
neighborhood of the origin. As pointed out above, if data (limited to s ∈ [ln(am), 1])
is smooth when represented in polar coordinates, it is smooth also in the log-polar
representation. The fact that data is band-limited with respect to s in combination
with the fast decay in the ω-direction should therefore keep the errors relatively small
in practice.

4.3. Time complexity and implementation. Let us analyze Algorithm 4.1
in slightly more detail. The first filtering step is the same as in other filtered back-
projection algorithms and can be implemented by p FFT operations of length 2q in
time O(pq log(q)). At the first interpolation step, each interpolation (I∆1h

ν)(θj , ρi)
consists of a weighted sum of h(θj , sl) at points where sl is within a kernel length
distance from ρi. Hence this step is O(d1pq

′) = O(d1pκq), with d1 the kernel length
of I∆1 . Similarly, each interpolation from log-polar coordinates to a Cartesian q × q-
grid is made by a weighted sum, in both θ and ρ directions, giving a time complexity of
O(d3q

2), where d3 is the kernel area of I∆3 . Assuming both d1 and d3 to be relatively
small, and using the optimal relation between p and q in parallel beam geometry,
p = πq

2 (cf. [14]), we arrive at a time complexity of O(q2) for both interpolation
steps.

Note that both for the interpolation weights above as well as for the computation
of the kernel Z defined in (4.3), only geometry matters; i.e., these can be precomputed
to save time. What remains are then the two-dimensional FFT steps. Taking into
account the needed zero-padding, 2m two-dimensional FFT operations of size ( 2p

m ×q′)
are required. This is performed in time O(pq log(pq)) = O(q2 log(q)), i.e. at the
same complexity as other fast reconstruction methods. However, in comparison to,
e.g., Fourier slice-reconstruction on a q × q grid, the constant of the leading term
is worse. In principle this is due to oversampling factors of κ and 2 in the s and θ
directions, respectively, and to the fact that both transformation and inversion are
used. Together, this causes a worsening by a factor of about ten. However, that is
in comparison with the most simple Fourier slice-reconstruction, with its well-known
severe drawbacks in quality and without the effort of speeding up our proposed method
(it is possible to use the zero-padded structure to decrease needed calculations). It
should be added that more sophisticated slice-reconstruction schemes also require
oversampling for accurate results.

Throughout section 4.1 we worked with quasi interpolators. The structure of
Algorithm 4.1 easily incorporates usage of the prefiltering required by, e.g., spline in-
terpolators discussed in section A. Required prefiltering for I∆1 can thus be included
in wb of (4.1), and prefiltering needed for I∆2 and I∆3 can be included in Z, defined
by (4.3). This allows the usage of spline interpolators without increasing the compu-
tational cost, and thus allows higher interpolation orders than the ones achieved by
interpolators of the same kernel length.

4.4. Simulations. Finally, let us look at some numerical results. In these sim-
ulations we have used cubic spline interpolators for I∆1 , I∆2 , and I∆3 ; m = 4 par-
tial reconstructions; mβ = 3; and κ = 2. The number of parallels and directions
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Fig. 4.1. Impulse responses for log-polar (above) versus classical (below) back-projection
at points (0.1233, 0.3816), (0.0998, 0.0998), (0.8004,−0.0020) and (−0.3229,−0.2368), respectively,
from left to right.

are q = 512 and p = 768, respectively. Furthermore, to limit the regularization
impact from the choice of filter in the filtering step, the Ram–Lak filter suggested by
Ramachandran and Lakshminarayanan in [17] is used. One of the most commonly
used filters in CT is the Shepp–Logan filter. For purposes of noise-reduction, high
frequency content is suppressed when using this filter, and the reconstructions ob-
tained are somewhat smoothed. In the simulations presented below there is no noise
present. We want to compare our proposed reconstruction method with the standard
one, and the most honest way of doing this is without any smoothing present. The
tests performed with the Ram–Lak filter are thus more unmasking than tests with
the Shepp–Logan filter.

In, e.g., [11], analytic expressions are derived for the Radon transform of functions
being characteristic functions of elliptical discs. We use such functions as reconstruc-
tions objects, since they allow us to sample the Radon data exactly.

To test the performance of our proposed method, we consider two types of test
objects. First we use the characteristic function of small circles as approximations
of delta functions, and then apply the Shepp–Logan phantom, described in [11], to
analyze an artificial slice of a head built up by characteristic functions of ellipses.

In Figure 4.1 are shown impulse responses at four different points for log-polar
and classically computed back-projection. The reconstructions show quite high resem-
blance to one another. Reconstruction on a Cartesian grid makes the impulse response
vary slightly, depending on the placement of the impulse. Recall that the responses
usually are wider and smoother when the ordinary filters (such as the Shepp–Logan
filter) of the filtering step are used.
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Fig. 4.2. Upper left shows reconstruction using log-polar coordinates, upper right classical
reconstruction. The two plots at center show comparisons between the two reconstructions along
a horizontal line, where the upper one show their values, and the lower one their difference in
log10-scale. The two lower images show the difference between the two reconstructions at different
scales.

Next we turn our attention to the Shepp–Logan phantom; cf. Figure 4.2. The
true head phantom carries an intensity of 1.02 at its inner part, a border of intensity
2.0, “eyes” at 1.0, and additional ellipses at 1.03 (except at intersections). The two
top images of Figure 4.2 show reconstruction by log-polar (right) and traditional (left)
back-projection. Visually they appear to be identical, and it is hard to draw further
conclusions. For a better perspective, we have chosen to plot the two reconstructions
along a horizontal line through the “mouth” part of the phantom. This is shown
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in the upper plot of Figure 4.2. More precisely the values of the two reconstructions
along row 410 have been plotted. Except for minor disparities at the points of discon-
tinuity, visually the two reconstructions agree completely. The (absolute) difference
between the two reconstructions has therefore been plotted in log10-scale in the lower
of the plots in Figure 4.2. This illustrates the high accuracy of our proposed method,
compared to standard methods of higher complexity. For comparison, similar plots
of the “mouth” part are made in [6], but there, differences between the different
reconstruction methods investigated can be seen in the (linear scaled) plots.

For further comparison, the differences between the two reconstructions are shown
as images below in Figure 4.2, with different intensity scales. The left panel displays
differences in the reconstruction of the high intensity border around the skull. At
right we can also see differences at the other discontinuity parts, but note the low
intensity span. This image also clearly shows a slightly inhomogeneous assembling of
lines outside the head, an effect of the different techniques used.

5. Conclusion. In this paper we have made use of the invariance properties of
the Radon transform and its dual to construct a method of inversion based on log-polar
representations. An analysis of the continuous case as well as analytical expressions
for the kernels have been presented. To deal with the nonuniformity of the discrete
case, the concept of partial reconstructions was introduced. The nonuniformity also
enforces the discrete reconstruction developed to rely on interpolation. Fortunately,
these can be invoked in the reconstruction procedure, for construction of a fast and
accurate back-projection algorithm, based on use of the (uniform) two-dimensional
FFT. The algorithm presented has a time complexity of O(q2 log(q)), the same as
those of other fast reconstruction algorithms. From the tests presented in this paper,
the accuracy of the method seems to be of the same order as the traditional back-
projection algorithms, having time complexity O(q3).

Appendix. Some properties of convolution interpolators. According to
the Whittaker–Shannon sampling theorem, for any b-band-limited function f , i.e., a
function with a Fourier transform f̂(ξ) vanishing for |ξ| > b, it is possible to recon-
struct f given the uniformly sampled values of f at xk = kT , where T = π/b, k ∈ Z.
The reconstruction formula reads as

f(x) =
∑
k∈Z

f(xk)sinc(x− xk).(A.1)

A drawback of this sinc-based interpolation is the slow decay of the sinc-function.
The sinc-interpolation is an example of convolution-based interpolation for uniformly
sampled data:

IT f(x) =
∑
j∈Z

cj [f ]ϕ
( x

T
− j

)
,(A.2)

a semidiscrete convolution of a set of coefficients and an interpolation kernel ϕ. The
coefficients cj [f ] are generally obtained from

cTj [f ] = µ

(
f

(
· + j

T

))
,(A.3)

where µ is a linear functional. For an overview of convolution-based interpolation, see
[13]. The operator IT is said to be an interpolator (sometimes referred to as cardinal
interpolator) if IT f coincides with f at the sample points.
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In some cases it is of more interest if IT manages to reconstruct polynomials of a
certain order correctly. To this end, IT is said to be a quasi interpolator of order p if it
successfully interpolates all polynomials of degree p− 1. In order to construct a quasi
interpolator of order p from an interpolation kernel ϕ, ϕ must satisfy the Strang–Fix
Conditions; cf. [20]. Of course, there are additional requirements on the coefficients
cj [f ].

In this paper, the error estimates in approximating a function by (A.2) are carried
out in Sobolev-norms, where Hγ(Rn) or Hγ of real order γ consists of the functions
f such that

||f ||2Hγ =
∑
|α|≤γ

||Dαf ||2L2(Rn) is finite,(A.4)

where

Dαf =

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

, α = (α1, . . . , αn).

The following theorem is a somewhat weaker version of Theorem 2.2 in [5].

Theorem A.1. Let IT be a quasi interpolator of order p, defined by (A.2), where
ϕ satisfies the Strang–Fix conditions and, in addition, ϕ and µ of (A.3) satisfy the
conditions given in Theorem 2.1 in [5]. Then for f ∈ Hp the following estimate holds:

||f − IT f ||H0 ≤ C|T |p||f ||Hp .(A.5)

An important type of interpolators are the spline interpolators [18], [19]. The
B-spline kernel of order m is defined by

ϕBm =

(
1

2
χ[− 1

2 ,
1
2 ] +

1

2
χ(− 1

2 ,
1
2 )

)
∗ · · · ∗

(
1

2
χ[− 1

2 ,
1
2 ] +

1

2
χ(− 1

2 ,
1
2 )

)
(m + 1 factors).

It is readily verified that ϕBm consists of piecewise polynomials of degree m, and that
it is supported in (−m+1

2 , m+1
2 ).

A quasi interpolator of order m can be constructed with ϕBm as interpolation
kernel, and with

ck[f ] =
∑
j∈Z

bkf(xj−k),(A.6)

where

∑
k∈Z

bke
−iξk =

1∑
k∈Z

ϕBm(k)e−iξk
, ξ ∈ R.

This follows, e.g., from [12], [21]. The construction of the coefficients ck[f ] in (A.6) can
be interpreted as a prefiltering step, which preferably is computed by means of FFT.
Note that since the support of the B-spline kernel is relatively short, the number of
terms needed in (A.2) are relatively few. Hence, an accurate interpolation procedure
can be constructed which, in contrast to the sinc-interpolation of (A.1), requires data
in only a small neighborhood around the point of evaluation.
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[9] W. A. Götz and H. J. Druckmüller, A fast digital Radon transform—An efficient means
for evaluating the Hough transform, Pattern Recognition, 28 (1995), pp. 1985–1992.

[10] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 6th ed., Academic
Press, San Diego, CA, 2000 (translated from the Russian; translation edited by A. Jeffrey
and D. Zwillinger).

[11] A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, Classics in
Appl. Math. 33, SIAM, Philadelphia, PA, 2001.

[12] E. Maeland, On the comparison of interpolation methods, IEEE Trans. Med. Imag., 7 (1988),
pp. 213–217.

[13] E. Meijering, A chronology of interpolation. From ancient astronomy to modern signal and
image processing, Proc. IEEE, 90 (2002), pp. 319–342.

[14] F. Natterer, The Mathematics of Computerized Tomography, B. G. Teubner, Stuttgart, 1986.
[15] S. Nilsson, Applications of Fast Backprojection Techniques for Some Inverse Problems of In-

tegral Geometry, Ph.D. thesis, Department of Mathematics, Linköping University, Sweden,
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ON THE DESIGN AND ANALYSIS OF INFLATED MEMBRANES:
NATURAL AND PUMPKIN SHAPED BALLOONS∗

FRANK BAGINSKI†

Abstract. Large scientific balloons are used by NASA and the space agencies of many countries
to carry out research in the upper stratosphere. Such a balloon typically consists of a thin plastic
shell with several external caps. Load tendons run the length of the balloon from top fitting to
bottom fitting, dividing the balloon into identical regions called gores. The gores are made from flat
panels of 20–30 µm polyethylene film that are sealed edge-to-edge to form the complete shape. A
typical fully inflated shape can be over 120 meters in diameter and over 1 million cubic meters in
volume. To date, the workhorse of NASA’s balloon program has been the zero-pressure natural shape
balloon, an axisymmetric onion-like design that dates back to the 1950s. The equilibrium equations
at float for a natural shape balloon lead to a nonlinear boundary value problem that can be solved
to determine the design shape. In recent years, demand for long duration midlatitude balloon flights
has led to a design concept known as the pumpkin balloon. A number of ad hoc approaches based on
crude approximations of equilibrium have been put forth that lead to pumpkin-like balloon shapes.
In this paper, we derive equilibrium equations for a pumpkin balloon. We also present a brief review
of balloon models that follow from the axisymmetric membrane theory. Numerical solutions are
included.

Key words. high altitude balloons, inflated membranes

AMS subject classification. 74K15
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1. Introduction. Balloons play an important role in NASA’s current scientific
investigations, including upper atmosphere research, high energy astrophysics, strato-
spheric composition, meteorology, and astronomy. With the development of the ultra
long duration balloon and the possible uses of balloons in the exploration of planets
in our solar system, balloons will play an important role in NASA’s future scientific
endeavors.

A high altitude large scientific balloon is normally designed to carry a payload
of instruments to a certain altitude and then to maintain constant altitude while the
science is carried out. The theoretical shape of a fully inflated high altitude balloon
at float altitude is called the design shape. The design shape is normally modeled
as an inextensible membrane. Quantities such as film weight density wf , payload L,
specific buoyancy of lifting gas b, circumferential stress σc, and differential pressure at
the base of the balloon p0 are parameters that affect the final shape. An axisymmetric
model commonly used for applications to large scientific balloons is the natural shape
model, which assumes that σc = 0, i.e., that all tension is meridional. When p0 = 0
in the natural shape model, we have the so called zero-pressure natural shape (ZPNS)
balloon (see Figure 1.1(a)), a design that NASA flies regularly in its scientific balloon
program. Venting ducts open to the atmosphere are located at the base of a ZPNS
balloon. During daylight, when the balloon envelope and lifting gas are heated, excess
gas is vented through these ducts. At night, when the gas cools and the volume
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(a) Zero-pressure natural shape (b) Pumpkin shape

Fig. 1.1. A 20-gore zero-pressure natural (onion-)shape balloon and a 20-gore pumpkin balloon.

of the balloon decreases, ballast is dropped to maintain altitude. The number of
diurnal cycles limits ZPNS balloons to midlatitude flights of a few days due to ballast
limitations. ZPNS flights of several weeks have been achieved in Antarctica where
day/night diurnal cycles can be avoided during certain times of the year. One way to
avoid carrying significant ballast is to design a balloon that can hold enough gas to
maintain a positive differential pressure during the night and is strong enough to hold
the overpressure caused by solar heating during the day. Thus, by reducing the volume
variation over diurnal cycles, altitude excursions will be reduced and less ballast will
be required during the life of the mission. This approach led to a design that has
come to be known as the pumpkin balloon (see Figure 1.1(b)), a concept that goes
back to the 1970s. While there have been a number of pumpkin-like balloon models
proposed, many are based on ad hoc analysis and approximate equilibrium conditions.
In this paper, we develop equilibrium equations for a pumpkin balloon based on a
simplification of a unishell theory. As defined by Libai and Simmonds [17, p. 343],
a unishell is a shell in which there is a system of coordinates (σ, τ) on the reference
surface in which the components of the deformed metric and curvature tensors are
independent of τ . In the case of a pumpkin balloon, we will develop a system of
equilibrium equations that depend only on the arc-length of the generating curve for
a tubular surface corresponding to one lobe of the pumpkin shape. We formulate the
equilibrium equations for a pumpkin balloon in the deformed configuration and derive
a set of nonlinear ordinary differential equations (ODEs). The ODEs can be solved to
determine the generating curve for the tubular surface defining the pumpkin balloon.

The original work on high altitude plastic balloons was carried out in the 1950s
at the University of Minnesota, where the term natural shape balloon emerged (see
[1]). In the 1960–70s, Justin Smalley did extensive work on axisymmetric balloon
shapes (see e.g., [22], [23], [24]). He extended the natural shape model to handle a
number of related axisymmetric cases, and implemented these mathematical models
on a digital computer. Even though many axisymmetric balloon models are discussed
in the literature, most follow from the natural shape equations. For the convenience
of the reader, we will present a brief review of axisymmetric membrane models. By
choosing parameters in the axisymmetric model in a certain way, we are led to various
balloon models, including the ZPNS balloon, the super-pressure natural shape balloon,
the Σ-shape, the Euler-elastica, and others. For an axisymmetric shape with σc �= 0,
we present one model whose solutions give rise to Delaunay surfaces (the spherical
balloon is a special case).
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The idea behind the pumpkin balloon is to use a light film as a gas barrier
together with strong reinforcing tendons for both pressure confinement and to carry
the weight of the balloon system. Roughly speaking, the shape of the pumpkin gore
transfers much of the film stress to the load tendons. The term pumpkin balloon was
coined by Smalley in his original work on the e-balloon (a model whose governing
equations are the same as those for the Euler–Bernoulli elastica; “e” is for Euler).
Smalley’s original idea was to use the straining in an inflated gore to form a doubly
curved surface. When fully pressurized, the balloon would take on the appearance of
a pumpkin-like shape (see [25]). Shortly after Smalley’s work on the e-balloon, the
French carried out work on pumpkin balloons (see, e.g., [20]). There have been many
variants on the pumpkin design. One notable effort in the 1980s was the Endeavour
of Julian Nott in the race for the first circumnavigation of the globe. The Endeavour
was a 64 gore constant bulge shape design; i.e., the angular width of the circular arc
of a lobe was constant. There were some deployment problems related to this design
(see section 3 for further details). The Japanese have studied pumpkin balloons (see,
e.g., [26]), introducing cinching techniques in sewing to achieve a pressurized pumpkin
shape. Using a constant bulge radius design and a tendon-based theory, Schur was
the first to give a more analytical treatment of the pumpkin balloon (see [21]).

In ad hoc approaches to pumpkin balloons, it is usual to assume that the tendon
profiles are known a priori from axisymmetric models (like those discussed in section
2). While this may be adequate as a rough first approximation, it is straightforward
to model the pumpkin gore as a tubular surface and derive the generating curve for
the pumpkin gore as the solution of a set of equilibrium equations. The formulation
of a membrane model for a pumpkin gore is presented in section 3. Our formula-
tion introduces the number of gores ng and the bulge radius rB as additional design
parameters in the model equations.

It should be noted that a number of underlying assumptions made to determine
shapes are sometimes violated in the real balloon. For example, the assumption of
zero circumferential stress cannot hold in a real ZPNS balloon that is elastic: once it
is pressurized, the hoop and meridional stresses will be nonzero and roughly the same
order of magnitude in the upper portion of the balloon. Moreover, the ZPNS model
assumes an axisymmetric surface of revolution, while the real balloon is constructed
from long flat panels of film. This is not a problem, due in part to the compliant nature
of polyethylene. Decades of successful ZPNS flights demonstrate the effectiveness of
the ZPNS balloon.

The real ZPNS balloon has a curved unstrained reference configuration (bend a
flat panel so that a developable surface spans the region between adjacent tendons).
There is no such analogous unstrained/unwrinkled state of a three dimensional pump-
kin balloon that is constructed from flat panels of film. This poses some complications
in the construction process and is discussed in section 3. In this paper, our analysis
assumes that the material is inextensible. However, we refer the reader to the liter-
ature for more on the subject of strained elastic balloons (see, [3], [6], [9], and the
references therein).

The remainder of this paper is divided into four sections. In section 2, we provide
some historical background on models that have been used in the design of scientific
balloons. The most common models are derived from the equations for an axisym-
metric membrane, and we establish connections between a number of special models.
In section 3, we propose a model for a pumpkin balloon that reduces to a system of
ODEs. In section 4, we present numerical solutions and also discuss some aspects of
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Table 1.1

Design parameters.

Description Variable Value

Bulge radius (pumpkin only) rB 0.1066 m
Weight of top fitting L1 8.45 N
Radius of top/bot fittings r1 0.10 m
Number of gores ng 96
Tendon weight density wt 0.03 N/m
Film weight density wf 0.344 N/m2

Payload L0 283 N
Buoyancy at design altitude bd 3.441 N/m3

Buoyancy at sea level b0 10.258 N/m3

the various balloon shape models. Table 1.1 contains design parameters that were
used to generate shapes presented in this paper.

2. Axisymmetric membrane models for a balloon. First, it is instructive
to consider the problem of “designing” an inextensible spherical balloon. Suppose that
we wish to determine the radius R of a spherical balloon that must carry a weight
L0 at a constant design altitude. The density of the lifting gas ρg and the density
of the atmosphere ρa are assumed to be known at the design altitude. Archimedes’
Principle states that a balloon enclosing a gas volume V of density ρg will exert a net
upward force (lift) that is equal in magnitude to the difference between the weight of
the displaced air and the weight of the lifting gas, i.e.,

Lift = gρaV − gρgV.

The specific buoyancy of the lifting gas is b = Lift
V = g(ρa − ρg), where b has the

dimensions of force per volume. In our example, the balloon is assumed to be made of
a single layer of film with weight density wf . We assume that n load tendons of weight
density wt run from top to bottom of the balloon. From Archimedes’ Principle, we
know that a spherical balloon of radius R in equilibrium must satisfy

4

3
bπR3 = 4wfπR

2 + nwtπR + L0.(2.1)

Solving for R, we find the spherical design shape. It is not difficult to show that there
is exactly one solution of (2.1) with R > 0 (see [7]). Finding the natural shape or a
pumpkin shape is more involved. From force balance equations at float, a system of
ODEs can be derived. Solving the ODEs yields the design shape.

2.1. Equilibrium equations for an axisymmetric membrane. The equa-
tions for a natural balloon shape were first derived by researchers at the University of
Minnesota (see [1]). These equations and other related models are presented in [15,
section V]. In [8], design and ascent shapes for axisymmetric membranes are consid-
ered for constant film weight density (i.e., the Σ-shape equations). In [7], the film
weight density included contributions from external reinforcing caps and load tapes.
For convenience, we present a synopsis of the equilibrium equations for an axisym-
metric membrane. We choose a coordinate system such that the nadir of the balloon
is located at the origin.
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Since we seek axisymmetric solutions, we need to find a generating curve s →
(z(s), r(s)), where s is the arc-length. Let �d be the total length of the generating
curve. The surface of the balloon S can be parametrized by x(s, φ), where

x(s, φ) = r(s)e1(φ) + z(s)k, 0 < s < �d, 0 ≤ φ < 2π,(2.2)

e1(φ) = cosφi + sinφj, 0 ≤ φ ≤ 2π.

The set {e1(φ), e2(φ),k} is an orthonormal basis for R3, where e2(φ) = k × e1(φ) =
− sinφi+cosφj. The balloon’s shape is defined by S = {x(s, φ) | s ∈ [0, �d], φ ∈ [0, 2π]} .
At each point along the curve, s → x(s, φ), the tangent vector is given by

t(s, φ) =
∂x

∂s
(s, φ) = sin θ(s)e1(φ) + cos θ(s)k,

where θ(s) is the angle between t and k, z′(s) = cos θ(s), and r′(s) = sin θ(s). The
inward normal is b(s, φ) = t × e2(φ) = − cos θe1(φ) + sin θk. Because the balloon is
modeled as a membrane, we can ignore all stress couples. Under the assumption of
axisymmetry, we can write the contact forces as

n1(s, φ) = σm(s)t(s, φ),

n2(s, φ) = σc(s)e2(φ),

where σm is the meridional stress resultant and σc the circumferential stress resultant.
The forces acting on a curvilinear patch A ⊂ S are the internal forces, n1(s, φ) and
n2(s, φ), and the external forces,

f(s, φ) = −p(s)b(s, φ) − w(s)k,

where p is hydrostatic differential pressure and w is the balloon film weight density. All
external forces are measured per unit area in the deformed configuration. Balancing
the forces that act on A, we are led to the following equilibrium equations (see [7]):

∂

∂s
(rσmt) − σce1(φ) + rf = 0.(2.3)

If we carry out the differentiation in (2.3) and project the result onto t and b, we
obtain

(rσm)
dθ

ds
= σc cos θ − rw sin θ − rp,(2.4)

d

ds
(rσm) = σc sin θ + rw cos θ,(2.5)

respectively. Equations (2.4)–(2.5) are in agreement with those in [1, Vol. I, p. 3-2,
(6)–(7)].

The hydrostatic pressure can be written as p = bz + p0, where p0 is the pressure
at the base of the balloon (z = 0) and b = g(ρa − ρg). While b is assumed to be
known as a function of altitude, it depends on a number of other parameters such
as air and gas temperatures. A natural shape balloon derived under the assumption
p0 = 0 is called a ZPNS balloon. If p0 > 0, we refer to the corresponding shape as a
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superpressure natural shape balloon (SPNS balloon). At the bottom of a zero-pressure
balloon are venting ducts which are open to the atmosphere. A superpressure balloon
is sealed.

2.2. The natural shape model equations (σc = 0). In this section, we
formulate the natural shape model (i.e., σc = 0). It is convenient to define the total
film load T in the meridional direction, i.e., T = 2πrσm. Multiplying (2.4)–(2.5) by
2π, substituting T for 2πrσm, and setting σc = 0, we have

θ′(s) =
−2πr (w sin θ + p)

T
,

T ′(s) = 2πrw cos θ.

For applications considered here, we will assume that a load L0 is suspended
from the base of the balloon. In addition, we assume that the balloon is attached
to a circular disk of radius r0 at the bottom and disk of radius r1 at the top. In a
superpressure balloon, a force of magnitude p0πr

2
0 acts on the bottom end-cap. Thus,

cos θ0T (0) = L0 + p0πr
2
0,(2.6)

where p0 ≥ 0, θ(0) = θ0, and θ0 is one-half the “cone-angle” at the base of the balloon.
Note that θ0 is not known a priori and must be computed based on certain parameter
values and boundary conditions.

The governing differential equations for a natural shape balloon in terms of T are

θ′(s) =
−2πr(w sin θ + p)

T
,(2.7)

T ′(s) = 2πrw cos θ,(2.8)

z′(s) = cos θ,(2.9)

r′(s) = sin θ.(2.10)

The initial conditions for (2.7)–(2.10) are

θ(0) = θ0,

T (0) =
(L0 + πr2

0p0)

cos θ0
,

z(0) = 0,
r(0) = r0.

(2.11)

For a given pair (θ0, �), (2.7)–(2.10) can be integrated over the interval 0 < s < � be-
ginning with the initial conditions in (2.11). Using a shooting method, one determines
(θ0, �) = (θd, �d) and the functions θ(s; θd, �d), T (s; θd, �d), z(s; θd, �d), and r(s; θd, �d)
that satisfy (2.7)–(2.10), and

cos θ1T (�d; θd, �d) = −L1 + πr2
1p1,

r(�d; θd, �d) = r1,
(2.12)

where L1 is the weight of the top fitting, θ1 = θ(�d; θd, �d), z1 = z(�d; θd, �d), and
p1 = bz1+p0. Note that when L1 > 0, we expect −π < θ1 < − 1

2π. With p(z) = bz+p0,
such a solution automatically satisfies Archimedes Principle. If we project (2.3) onto
the k direction, multiply by 2π, integrate from s = 0 to s = �d, and use the identity

r(bz + p0)
dr

ds
=

1

2

d

ds

(
r2(bz + p0)

)
− 1

2
br2 dz

ds
,
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we obtain T (�d) cos θ1 − T (0) cos θ0 = 2π
∫ �d
0

wrds− bV. After rearranging terms and
using (2.11) and (2.12), we observe that Archimedes Principle is satisfied; i.e.,

L1 + L0 + π(p1r
2
1 − p0r

2
0) + WB = bV,(2.13)

where WB is the total weight of the balloon system (balloon shell, caps, and load
tapes).

In the natural shape model presented in [8], the weight of the caps and load tapes
were added to the payload. The model presented here follows the approach in [7],
where a variable film thickness and tendons are introduced. Here, we assume that the
balloon system includes one cap that is modeled as an added thickness. The length
of the cap is denoted by c1 and is assumed to be known. For a given �, let s1 = �− c1.
This means that w(s1 +0) �= w(s1 − 0) and dθ/ds and dT/ds are discontinuous at s1.
The number of gores in a complete shape is ng.

For shape determination, we assume that the tendon weight is distributed uni-
formly over the circumference of the balloon and is incorporated by modifying w
appropriately. We divide ngwt by 2πr(s) for 0 < s < � to get the average weight
density of load tape (tendon) with respect to area. We define the effective film weight
density,

w(s) = wf (s) + wt(s), 0 < s < �,(2.14)

where wt(s) = ngwtape/(2πr(s)), 0 < s < �,

wf (s) =

{
ws, 0 ≤ s ≤ s1,

ws + wc, s1 < s ≤ �,

ws is the weight density of a single layer of balloon film, and wtape is the load tape
weight density. Additional caps with different weight densities can be incorporated
easily. As a structural element, a load tendon and load tape behave very differently.
However, for a statically determinate balloon, weight is the only consideration that is
relevant.

In previous work (see, e.g., [7]), we handled the discontinuity in the effective
film weight density by using a parallel shooting method to break the integration of
(2.7)–(2.10) into subintervals. Doing so, we see that all functions are continuously
differentiable on each subinterval. Existence of solutions obtained by the shooting
method follows from standard arguments (see, e.g., [14]).

2.3. Axisymmetric balloon models related to the natural shape. In
the following subsections we present a number of balloon models that are based on
the natural shape equations (2.7)–(2.10). See [4] for further discussions on balloon
models.

2.3.1. ZPNS balloons.
Constant film weight density (Σ-shapes). In the early days of scientific ballooning

and before digital computers were readily available, balloon designers relied on the
Σ-shape model. Assuming p0 = 0 and w(s) = ws in (2.7)–(2.10), one finds that the
resulting equations can be rescaled in a convenient way using parameters λ and Σ

(see [15, p. V-8]), where λ3 = L0/b, Σ = (2π/L0)
1/3

(Vd/G)
2/3

ws, G is the gross
weight of the system, and Vd is the volume of the balloon at float. For this rea-
son, the resulting shapes were called Σ-shapes. See [8] for a discussion on Σ-shapes
and related axisymmetric ascent shapes for which the volume V ≤ Vd. See [1] and
[15] for more on Σ-shapes. The Σ-shape equations were first solved using an analog
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Fig. 2.1. Comparison of ZPNS and SPNS balloon profiles.

computer (see [1]). Using a set of tables with various values of λ and Σ, the balloon
designer could look up the appropriate value of θ0 and determine the gore length in
terms of λ.

Nonconstant film weight density. When w(s) = wf (s)+wt(s) is the effective film
weight density, this model will yield a shape that, in general, is slightly shorter and
fatter than the one determined by the Σ-shape model (see [7]). When w(s) is not
constant, then the basic equations cannot be rescaled as was done for the Σ-shapes.
Smalley was the first to use a digital computer in the analysis of balloon shapes, and
carried out extensive research and development of other related models (see, e.g., [22],
[23], [24], [25]). Variants of this model are used in the design and manufacture of high
altitude zero-pressure balloons.

2.3.2. Superpressure balloons. High altitude balloons are very sensitive to
temperature changes that are experienced during a day/night cycle. A ZPNS balloon
will lose significant altitude during the evening when the lifting gas cools and its
volume contracts. On the other hand, the lifting gas will expand during the day
when the balloon is heated by the sun. To reduce volume fluctuations, one idea is
to overpressurize the balloon in such a way that the differential pressure at the nadir
is positive for all conditions (day/night, clear/cloudy, etc.). While the axisymmetric
inextensible membrane theory suggests that a SPNS balloon might work, a stress
analysis of an elastic SPNS balloon shows that when p0 is too large, the corresponding
stress resultants for currently available films would be outside the safe operating
range (see [3]). In some ad hoc approaches to the pumpkin balloon, the tendons are
assumed to lie along the trace of the generating curve of a SPNS balloon, and so for
completeness we include results on SPNS balloons.

SPNS balloons. In a superpressurized natural shape balloon, we include p0 > 0 as
an additional design parameter and solve (2.7)–(2.10) to compute the balloon shape.
Compared to the zero-pressure design, the superpressure natural shape balloon is, in
general, shorter and wider (see Figure 2.1).

Euler elastica and the e-balloon. In this model, it is supposed that bz1 � p0 near
float. We neglect film and load tape weight contributions in the ODEs, and set p = p0

for shape determination. Weight contributions due to the load tapes, film, and caps
are added to the payload. The length of the generating curve must be chosen so
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that bV is equal to the weight of the balloon system. In particular, setting b = 0
and w = 0 in (2.7)–(2.10), we find that T must be constant and θ′(s) = −2πrp0/T .
Setting T = T0 and differentiating this result, we find θ′′(s) = −2πp0r

′(s)/T0 and

θ′′ + 2τ sin θ = 0,(2.15)

where τ = πp0/T0. In this model, T0 is the total tension. Typical boundary conditions
that are used in conjunction with (2.15) are

θ′(0) = θ′(�) = 0.(2.16)

For each �, there is a one parameter family of shapes parametrized by θ0. Equa-
tion (2.15) can be solved explicitly in terms of elliptic functions. Following Smalley’s
discussion in [25], we note that the radial component of the generating curve for the
e-balloon is

r2(θ) = τ−1 sin

(
1

2
π − θ

)
.(2.17)

An expression for z can be found by integrating the appropriate differential equation
or by using elliptic functions (see [16]). In [18], the problem of constructing a mylar
balloon from two circular disks is considered. While this approach is not practical
for large balloons, the shapes of [18] are not unrelated to the Euler-elastica balloon
discussed here and the Delaunay surfaces discussed in the following section.

In Figure 2.1, we present axisymmetric balloon designs based on the ZPNS and the
SPNS models. Design parameters and related quantities are presented in Tables 1.1
and 2.1. Numerical results will be discussed in more detail in section 4.

Table 2.1

Design values.

(a) Axisymmetric shapes
Description ZPNS SPNS Elastica
Nadir pressure (Pa) 0 200 200
Base angle (deg) 53.21 87.74 87.23
Height (m) 5.664 4.091 4.153
Diameter (m) 6.178 6.638 6.690
Tendon length (m) 8.988 8.547 8.628
Volume (m3) 102.07 101.91 104.73
Surface area (m2) 107.39 109.40 111.32
Skin weight (N) 36.91 37.60 0
Tape weight (N) 25.89 24.62 0
Load (N) 280 280 353

(b) Pumpkin shape: rB = 0.1066 m and p0 = 200 Pa
Description σc = 0 N/m σc = 10 N/m
Base angle (deg) 87.75 85.94
Height (m) 4.178 4.234
Diameter (m) 6.691 6.694
Volume (m3) 104.15 104.46
Surface area (m2) 133.50 133.7
Skin weight (N) 45.89 45.96
Tendon weight (N) 24.48 24.52
Tendon length (m) 8.501 8.513
Flat Tendon length (m) 8.662 8.674
Mid gore length (m) 8.659 8.668
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2.4. Axisymmetric balloons with σc �= 0. Smalley considered balloons with
nonzero circumferential stress in [23]. A spherical balloon under a buoyant load is
treated in [15, pp. V-19–V-21]. Balloons of this type have not been used as extensively
as the natural shape for high altitude balloons.

If we eliminate s in the problem formulation and use z to parametrize the gener-
ating curve (i.e., (r, z) = (r(z), z)), we find that the curvature θ′(s) can be expressed
as r′′/(

√
1 + r′2)3, and we can replace (2.4)–(2.5) by the following:

rr′′σm

(
√

1 + r′2)3
=

σc − wrr′√
1 + r′2

− pr,(2.18)

d

dz
(rσm) = σcr

′(z) + wr,

where r′(z) = dr/dz (see [1, Vol. I, p. 3-2]). If the weight of the film and buoyancy
are negligible (i.e., w = 0 and b = 0), and we set p = p0, with σm and σc constant,
then (2.19) is satisfied when σc = σm. Thus, if we let σf denote the common film
stress resultant, we find that (2.19) can be expressed as

2Hr(
√

1 + r′2)3 = −rr′′ + 1 + r′2.(2.19)

Equation (2.19) is the equation for a Delaunay surface with H = p0/(2σf ) (see [13,
p. 107]). A Delaunay surface (see [10]) is a surface of revolution with constant mean
curvature H. Thus (2.19) should not have been a complete surprise. Any soap
bubble, axisymmetric or otherwise, displays equal tension in all directions, and so
the equation of normal equilibrium immediately leads to the condition that the mean
curvature must be constant. For a sphere of radius R with constant pressure p0, we
find σf = 1

2p0R. If we set w = 0 and σf = 1
2Rp0, then we see θ(s) = 1

2π− s/R, r(s) =
R cos θ, z(s) = R − R sin θ satisfy (2.7)–(2.10), defining a sphere of radius R. A
thorough discussion of Delaunay’s surfaces can be found in [19, p. 115]. A number
of interesting geometrical characterizations of Delaunay surfaces can be found in [12].
See also [18] for a related discussion on small mylar balloons.

3. Pumpkin shape.

3.1. Background. As a first approximation to a pumpkin-like shape, it is not
uncommon to make ad hoc assumptions to simplify finding the shape (see, e.g., [25],
[26]). For example, in a constant bulge radius approach the author in [21] assumes
that a tendon follows the trace of the generating curve for a related SPNS balloon. If
the number of gores is sufficiently high and the bulge radius is chosen appropriately,
it is not unreasonable to suppose that the region between adjacent load tendons is
spanned by circular arcs, forming a pumpkin-like balloon. In the constant bulge
radius approach, one assumes that the tendon profiles are known. The tangent to the
tendon profile is orthogonal to a plane containing a circle of radius rB . The angular
width of the circular arc is then determined. In the constant bulge shape approach,
the angular width is assumed to be a constant value independent of s. Since it is
straightforward to formulate the equations for a pumpkin gore, assuming a tubular
surface geometry, we can avoid these ad hoc assumptions and obtain a model that is
a better representation of the three dimensional pumpkin gore. We will discuss the
merits and flaws of these various designs in section 2.3.1, but first we derive the ODEs
for a pumpkin balloon.
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3.2. Equilibrium equations for a pumpkin balloon. In this section, we
derive the equilibrium equations for a pumpkin shape balloon as a membrane with
the geometry of a tubular surface (see [17, Chapter VI] for a related discussion on
unishells). While tubular surfaces with boundary are considered in other works (see,
e.g., [2]), the balloon problem is somewhat simpler because we can ignore bending
moments. We will assume that the pumpkin shape is made up of ng symmetric
pumpkin gores.

We begin with a curve, Υ(s) = R(s)i+Z(s)k ∈ R3, that we call the generator of
the pumpkin gore. A priori, Υ ∈ R3 is unknown and must be derived from equilibrium
conditions. The generator is parametrized by arc length s, i.e., R′(s)2 + Z ′(s)2 = 1.
Let t denote the unit tangent of Υ, b its inward unit normal (j = t × b), θ = θ(s) is
the angle between t and k, and

t(s) = sin θi + cos θk,
b(s) = − cos θi + sin θk.

Typically, θ(s) is decreasing in superpressure applications. The set {b, t, j} gives a
right-hand curvilinear basis for R3. Since Υ is a plane curve, its torsion is zero, and
the Frenet equations reduce to

t′(s) = κ(s)b(s),
b′(s) = −κ(s)t(s),

where κ is the curvature of Υ (see [11, section 1.5]). We define a tubular surface in
the following manner. Let

x(s, v) = Υ(s) + rB (−b(s) cos v + j sin v) , −π < v < π, 0 < s < Ld,(3.1)

and x(s, v) = x(s, v) · i, y(s, v) = x(s, v) · j, and z(s, v) = x(x, v) · k.
In the following, we denote partial differentiation using subscript notation, e.g.,

xs = ∂x/∂s. By direct calculation, we have

xs(s, v) = (1 + rBκ(s) cos v)t(s),

xv(s, v) = rB (b(s) sin v + j cos v) ,

xs × xv = rB(1 + rBκ(s) cos v) (b(s) cos v − j sin v),

and dA = rB(1 + rBκ cos v)dsdv. A unit vector normal to the tubular surface is

N(s, v) =
xs × xv

|xs × xv|
= b(s) cos v − j sin v,

and the triple {xs,xv,N} gives a right-hand basis for R3.
By direct calculation, we have Ns(s, v) = −κ(s)t(s) cos v and Nv(s, v) = −b(s) sin v+

j cos v. The principal curvatures of the tubular surface are

κ1(s, v) = −Ns · xs

xs · xs
=

κ cos v

1 + rBκ cos v
,

κ2(s, v) = −Nv · xv

xv · xv
=

1

rB
.

The tubular surface is sufficiently smooth if we assume (see [11, p. 399])

rBκ0 < 1, where κ0 < max
0≤s≤Ld

|κ(s)|.(3.2)

We find that the condition in (3.2) is met for our work on pumpkin balloons.
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Fig. 3.1. A patch of a pumpkin gore with a1,a2,N.

For the problems considered here, (3.2) is satisfied. A unit tangent to the curve
s → x(s, v) is

a1(s, v) =
xs(s, v)

|xs(x, v)|
= t(s),

and a unit tangent to the curve v → x(s, v) is

a2(s, v) =
xv(s, v)

|xv(s, v)|
= b(s) sin v + j cos v.

Note that ∂a2/∂v = b(s) cos v−j sin v = N. In Figure 3.1, the geometry of a pumpkin
gore patch is illustrated with the vectors {a1,a2,N} when v = 0. Arc length in the
tubular surface along a curve parallel to the generator s → x(s, v) is s̄, where ds̄ = (1+
rBκ(s) cos v)ds. We formulate the equilibrium equations for the tubular surface using
(s, v) as parameters. We assume the meridional stress resultant is independent of v;
i.e., σm(s̄(s), v) = σm(s) and the circumferential stress resultant is σc(s̄(s), v) = σc(s).
The quantities σm(s) and σc(s, v) are measured per unit length in the tubular surface.
We define

n1(s, v) = σm(s)a1(s),

n2(s, v) = σc(s)a2(s, v).

A pumpkin gore will be a subset of a tubular surface. We assume that the
pumpkin gore is situated symmetrically with respect to the xz plane and interior
to the wedge defined by the half-planes y = ± tan(π/ng)x with x ≥ 0. We will
refer to rB as the bulge radius of the pumpkin gore. The curve traced by v →
Υ(s) + rB(−b(s) cos v + j sin v) is a circle lying in the plane with normal t(s). To
find the length of the segment of the circle that forms a circumferential arc of the
pumpkin gore, we need to find the values of v where this arc intersects the planes
y = ± tan(π/ng)x. For fixed s, we find that v must satisfy the condition

y(s, v) = tan

(
π

ng

)
x(s, v).

This leads us to the equation

A(s) + B(s) cos v + C sin v = 0,(3.3)
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where A(s) = −R(s) tan(π/ng), B(s) = −rB cos θ(s) tan(π/ng), C = rB . Now (3.3)
can be solved for v, yielding

v = vB = arccos

(
−AB + C

√
C2 + B2 −A2

B2 + C2

)
.

Since A and B are functions of s and other parameters, so is vB = vB(s, ng, R(s), θ(s)).
The parameter dependence will be clear from context, and so we write vB or vB(s) for
convenience. By symmetry, the solution corresponding to the plane y = − tan(π/ng)x
is v = −vB . We define the theoretical three dimensional pumpkin gore G to be the
set

G = {x(s, v), −vB(s) < v < vB(s), 0 < s < Ld} .

A complete shape S has cyclic symmetry and is made up of ng copies of G. Although
G is not axisymmetric, in practice ng is large, and so we ignore shear stress resultants
in our formulation. A priori, the generating curve Υ(s) for the pumpkin gore is
unknown. To determine Υ(s), we must first consider the equilibrium equations for an
arbitrary patch on the tubular surface. From these, we are led to a system of ODEs
that can be solved to determine Υ and then G.

We begin by deriving equilibrium equations for a patch, A = {x(ξ, v) | s0 < ξ < s,
v0 < v < v1}, where −vB(ξ) < v0 < v < v1 < vB(ξ) for s0 < ξ < s. Balancing forces
acting on A, we find

�0 =

∫ v1

v0

σm(s)a1(s)rBdψ −
∫ v1

v0

σm(s0)a1(s0)rBdψ

+

∫ s

s0

σc(ξ)a2(s, v1)(1 + rBκ cos v1)dξ −
∫ s

s0

σc(ξ)a2(s, v0)(1 + rBκ cos(v0))dξ

+

∫
A

f(ξ, ψ)rB(1 + rBκ(ξ) cosψ)dψdξ,(3.4)

where f is the external force. Thus, we can rewrite (3.4) in the form

�0 =

∫ s

s0

∫ v1

v0

{
∂

∂s
[σm(ξ)a1(ξ)rB ] +

∂

∂ψ
[σc(ξ)a2(ξ, ψ)(1 + rBκ(ξ) cosψ)]

+ f(ξ, ψ)rB(1 + rBκ(ξ) cosψ)

}
dψdξ,(3.5)

where

f(s, v) = −p(z(s, v))N(s, v) − w(s)k,
z(s, v) = Z(s) − rB sin θ cos v.

By differentiating (3.5), one is led to a system of partial differential equations that
determines the pumpkin gore. This system is complicated, and since ng is typically
large, it is tempting to use a small angle approximation to justify dropping terms in-
volving 2π/ng to obtain a simpler system. However, we can eliminate the dependence
on v by integrating and retain terms that influence the design profile. In particu-
lar, if we set v0 = −vB(s) and v1 = vB(s) in (3.5) and integrate with respect to ψ,
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we obtain

�0 =

∫ s

s0

{
∂

∂s
(σm(ξ)a1(ξ)2rBvB(ξ))

+ σc(ξ) (a2(ξ, vB(ξ)) − a2(ξ,−vB(ξ))) (1 + rBκ(ξ) cos vB)

+

∫ vB(ξ)

−vB(ξ)

(−p(z(ξ, ψ))N(ξ, ψ) − w(ξ)k) rB(1 + rBκ(ξ) cosψ)dψ

}
dξ.(3.6)

To add the tendon weight density to (3.6), we note that ds̄ = (1+rBκ cos vB(s))ds
is an arc-length measure along the tendon. The weight of a segment ds̄ is wtds̄, and
(3.6) becomes

�0 =

∫ s

s0

{
∂

∂s
(σm(ξ)a1(ξ)2rBvB(ξ))

+ σc(ξ) (a2(ξ, vB(ξ)) − a2(ξ,−vB(ξ))) (1 + rBκ(ξ) cos vB(ξ))
− wtk(1 + rBκ(ξ) cos vB(ξ))

+

∫ vB(ξ)

−vB(ξ)

(−p(z(ξ, ψ))N(ξ, ψ) − w(ξ)k) rB(1 + rBκ(ξ) cosψ)dψ

}
dξ.(3.7)

In balloon design, it is not uncommon to make some simplifying assumptions about
the form of σc. In the axisymmetric natural shape models, one assumes that σc = 0.
In the Delaunay surfaces, one assumes that σc = σm is constant. The assumption
σc(ξ) = σm(ξ) could be handled without difficulty, but for convenience of exposition
we will assume that σc is a nonnegative constant. Using the properties of a2 and
assuming σc(ξ, v) = σc, we find a2(ξ, v) − a2(ξ,−v) = 2b(ξ) sin v and

σc(ξ)(a2(ξ, vB(ξ)) − a2(ξ,−vB(ξ))) = 2σcb(ξ) sin vB(ξ).(3.8)

Using (3.7) and (3.8), we obtain the following:

�0 =

∫ s

s0

{
∂

∂s
(σm(ξ)a1(ξ)2rBvB(ξ))

+ [2σcb(ξ) sin vB(ξ) − wtk] (1 + rBκ(ξ) cos vB(ξ))

+

∫ vB(ξ)

−vB(ξ)

(−p(z(ξ, ψ))N(ξ, ψ) − w(ξ)k) rB(1 + rBκ(ξ) cosψ)dψ

}
dξ.(3.9)

From the last term in (3.9), we find

−
∫ vB(ξ)

−vB(ξ)

pN(ξ, ψ) rB(1 + rBκ cosψ)dψ = −b(ξ) (κQ1 + Q0) ,

where

Q1(b, p0, rB , vB , Z, θ) =
1

12
r2
B

(
12p0vB + 12bvBZ − brB cos(θ − 3vB)

− 9brB cos(θ − vB) + 9brB cos(θ + vB) + brB cos(θ + 3vB)
+ 6p0 sin(2vB) + 6bZ sin(2vB)

)
,

Q0(b, p0, rB , vB , Z, θ) =
1

4
rB

(
− brB cos(θ − 2vB) + brB cos(θ + 2vB)

− 4brBvB sin θ + 8p0 sin vB + 8bZ sin vB
)
.
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Equation (3.9) can be expressed in the form

�0 =

∫ s

s0

{
∂

∂ξ
(2vB(ξ)rBσm(ξ)t(ξ))

+ b(ξ) {2σc sin vB(1 + κrB cos vB) − κQ1 −Q0}

− 2krBwf {vB + rBκ sin vB} − kwt(1 + rBκ cos vB)

}
dξ.(3.10)

Differentiating (3.10) with respect to s and simplifying, we obtain

�0 = (σm(s)2rBvB(s))
′
t(s) + (σm(s)2rBvB(s)) (−θ′(s))b(s)

+ b(s) {2σc sin vB(1 + κrB cos vB) − κQ1 −Q0}
− 2krBwf {vB + rBκ sin vB} − kwt(1 + rBκ cos vB).(3.11)

The inner product of (3.11) with j is zero. Taking the inner product of (3.11) with t
and b, we obtain the respective equations

(σm(s)2rBvB(s))
′
= 2rBwf (vB + rBκ sin vB) cos θ + wt(1 + rBκ cos vB) cos θ

and

0 = −σm2rBvBθ
′(s) + 2σc sin vB(1 + κrB cos vB) − κQ1 −Q0

− 2rBwf (vB + rBκ sin vB) sin θ − wt(1 + rBκ cos vB) sin θ.

Using the definition κ = −θ′(s), we find

0 = θ′(s)
{
−σm2rBvB + Q1 + 2r2

Bwf sin vB sin θ − σcrB sin(2vB) + wtrB cos vB sin θ
}

+ 2σc sin vB −Q0 − 2rBwfvB sin θ − wt sin θ.

Defining the total meridional tension per gore,

Tm(s) = 2rBvB(s)σm(s),

and replacing κ with −θ′(s), we find

cos θ
(
2r2

Bwf sin vB + wtrB cos vB
)
θ′(s) + T ′

m(s) = 2rBvBwf cos θ + wt cos θ,

(
Tm(s) −Q1 − 2r2

Bwf sin vB sin θ − wtrB cos vB sin θ + σcrB sin(2vB)
)
θ′(s)

= 2(σc sin vB − 1
2Q0 − rBwfvB sin θ) − wt sin θ.

We are finally led to a system of ODEs in s that the generating curve for the
pumpkin gore must satisfy. Setting w∗(s) = 2rBvB(s)wf and

κ̂(θ, Tm, Z,Q0, Q1, rB , vB , σc, w
∗, wt)

= − 2σc sin vB −Q0 − (w∗ + wt) sin θ

Tm −Q1 − rB(w∗ sin vB/vB + wt cos vB) sin θ + σcrB sin(2vB)
,

we obtain

θ′(s) = −κ̂(θ, Tm, Z,Q0, Q1, rB , vB , σc, w
∗, wt),(3.12)

T ′
m(s) =

(
w∗

(
1 +

rBκ̂ sin vB
vB

)
+ wt(1 + rBκ̂ cos vB)

)
cos θ,(3.13)

R′(s) = sin θ,(3.14)

Z ′(s) = cos θ.(3.15)



INFLATED MEMBRANES 853

(a) (b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

meters

m
et

er
s

Constant bulge radius pumpkin, σ
c
=0

Constant bulge radius pumpkin, σ
c
>0

Fig. 3.2. (a) Tendon profiles for pumpkin balloon models σc = 0 N/m and σc = 10 N/m;
p0 = 200 Pa and rB = 0.1066 m. (b) Three dimensional pumpkin gore.

The ODEs (3.12)–(3.15) are supplemented by initial conditions

θ(0) = θ0,

Tm(0) =
(L0 + πR2

0p0)

(ng cos θ0)
,

R(0) + rB cos θ(0) = R0,
z(0) = Z0,

(3.16)

and auxiliary equations

ng cos θ1Tm(�) = L1 − πR2
1p1,

R(�) + rB cos θ(�) = R1.
(3.17)

Equations (3.12)–(3.17) are solved via a shooting method, and the generating curve Υ
is determined. In Figure 3.2(a), we present the tendon profiles for pumpkin balloons
with σc = 0 and σc > 0. The models will be discussed in more detail in the next
section. In Figure 3.2(b), we present a discretization of the theoretical pumpkin gore.

As a check that Archimedes’ Principle is satisfied at float, we take the dot product
of (3.9) with k, multiply by ng, and integrate from s = 0 to s = Ld; after simplifying
the result and using

2ngrBvB(Ld)σm(Ld) cos θ(Ld)−2ngrBvB(0)σm(0) cos θd+Wc+Wtapes+Wfilm−bV = 0,

Wc = 2

∫ Ld

0

σc(ξ)b(ξ) · k sin vB(ξ)(1 + κ(ξ) cos vB(ξ))dξ,

we find

L0 + L1 − π(p1R
2
1 − p0R

2
0) + Wtapes + Wc + Wfilm = bV.(3.18)

Note, if σc �= 0, that the boundary conditions along the edge of the gore contribute a
net force Wc in the k direction, which is reflected in (3.18). For the case considered
in Table 2.1(b), we find that Wc is approximately 2 N.
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4. Numerical results. In this section, we present numerical results for solutions
of the respective shape-finding problems for balloon models discussed in previous
sections. The design parameters used in our demonstration cases are those given
in Table 1.1. For each balloon type, we calculated the corresponding shape (ZPNS,
SPNS, and pumpkin) that would maintain a payload of 280 N at an altitude of 10 km.
Each balloon was constructed with 96 gores and no caps. We use a 1.5 mil polyethylene
skin for our designs. Relevant values (height, diameter, volume, etc.) of the specific
designs are presented in Table 2.1(a) for axisymmetric shapes and in Table 2.1(b) for
pumpkin shapes.

Normally, load tapes are used in the construction of natural shape balloons, and
(heavier) load tendons are used in the construction of pumpkin balloons. This dis-
tinction is important to the balloon designer. For example, since a load tape can
contain as much as 3% slackness and is less stiff than a load tendon, the balloon film
will bear a significant portion the weight of the balloon system in certain regions.
In a pumpkin balloon, the balloon film functions primarily as a gas barrier, locally
transmitting loads to the tendons. Because we are not concerned with straining of
the balloon film here, we use the same weight densities for tendons and load tapes.

While the Euler-elastica model utilizes some crude assumptions, it does have
the advantage of a closed form solution. We note that the maximum radius for an
Euler elastica profile is given by 1/

√
τ (see (2.17)). For the Euler-elastica shape

related to the designs presented in Figure 3.2(a) with p0 = 200 Pa, we find T0 =
(274 N)/ cos(1.526) = 6.134 kN and τ = πp0/T0 = 0.1024 m−2, and the maximum
radius is

√
1/τ = 3.1246 m. The maximal radius in the SPNS model is 3.0267 m.

The elastica model gives a 3.0% relative error.
It is important to keep in mind that in reality, the shape-finding process as de-

scribed in sections 2–3 is only one part of the process in the construction of a balloon.
In a ZPNS, once (θd, �d) are determined and r(s) and z(s) are known, the theoretical
natural shape gore is given by

N = {(x, y, z) = x(s, φ), 0 < s < �d,−π/ng < φ < π/ng}.

In reality, the true gore N is approximated by a developable surface,

N̂ =

{
(x, y, z) = (r(s), y, z(s)), 0 < s < �d,−r(s) tan

(
π

ng

)
< y < r(s) tan

(
π

ng

)}
.

The developable surface N̂ can be rolled into a plane without straining, thus defining
the lay-flat gore pattern to be cut. The complete balloon is then constructed by
seaming together ng individual gores. While a circumferential fiber in N has a length

of 2πr(s)/ng, when ng is large tan(π/ng) ≈ π/ng and we see that N̂ is a good
approximation of N . For a large balloon, r is comparatively large (away from the
end-caps), and we see that the curvature κ of the curve s → (r(s), 0, z(s)) is small.
The other principal curvature is − cos θ(s)/r(s), and so, away from the end-caps, it
is also small because r is large. For superpressure balloons, θ is near ±π/2 in the
vicinity of the end-caps. ZPNS balloons flown by NASA typically have between 100
and 200 gores. When a real ZPNS balloon is fully pressurized, the balloon will assume
a shape that is very nearly a surface of revolution.

The curvature of the pumpkin gore generator Υ is of the same order of magnitude
as the curvature of the generator of the corresponding SPNS. However, the curvature
in the hoop direction is r−1

B and in general is not small. If sc is arc-length measured
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Fig. 4.1. Normalized flat half-gore patterns.

down the center of the pumpkin gore, then dsc = (1 + rBκ(s))ds, and we define

G̃ = {(u, t) | t = sc(s),−rBvB(s) < u < rBvB(s), 0 < s < Ld}.

While G̃ can be thought of as a flat panel approximation to G, even when fully pres-
surized, the balloon will have difficulty achieving the desired doubly curved shape.
The length of an edge of G̃ is much longer than the length of the corresponding the-
oretical gore G. To achieve the desired shape in a real balloon, the material along

the edge of G̃ is gathered, and a tendon of length Lt =
∫ Ld

0
dst is attached. Note

that the gathering is nonuniform. (It is maximal near the equatorial latitudes and
decreases as one approaches the end-caps.) In any case, there will be wrinkling in
the inflated pumpkin balloon. If flat warped panels of film are used in the construc-
tion of a pumpkin gore, the amount of excess material and wrinkling can be reduced
(see [5]).

In Figure 4.1, we present three flat gore patterns: a constant bulge shape design,
a constant bulge radius design with σc = 0, and a constant bulge radius design with
σc = 10 N/m. The first design is based on the constant bulge shape approach, as was
utilized in the Endeavour design. In the constant bulge shape approach, it is assumed
that the load tendons followed the trace of the Euler-elastica curve and the region
between tendons is spanned by circular arcs, assuming a constant angular width. In
this approach, a node on the tendon in the φ = −π/ng plane is identified with the
corresponding node in the φ = π/ng plane. The chord length 2y(s) is replaced by a
circular arc of length 1.2 × 2y(s) (20% “added width”). It is clear from Figure 4.1
that the constant bulge shape approach has significantly more material away from
the equatorial region than G̃ for a comparable pumpkin gore. The Endeavor was built
with 64 constant bulge shape gores and, when fully pressurized, it assumed a severely
distorted configuration that did not resemble a pumpkin shape. In hindsight, this
should not have been a complete surprise, since the Endeavor gore pattern did not
follow from equilibrium equations of the fully inflated shape. Only when four gores
were removed was the Endeavor able to deploy into a shape one might characterize
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as pumpkin-like (see [16]).

5. Concluding remarks. In this paper, we reviewed a number of axisymmetric
balloon models including the zero-pressure natural shape balloon, the superpressure
natural shape balloon, the Euler-elastica, and the sphere. Based on a tubular surface
membrane theory, we developed a model for a three dimensional pumpkin gore. The
pumpkin model that we present is an improvement over previous models in that it
introduces a circumferential stress parameter into the model and leads to a more
accurate representation of the three dimensional gore. We also discussed some of the
practical issues that the manufacturer must deal with when trying to construct large
doubly curved gores from flat sheets of balloon film.

Acknowledgment. The author would like to thank the referees for their com-
ments.
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Abstract. Stents are used in interventional cardiology to keep a diseased vessel open. New
stents are coated with a medicinal agent to prevent early reclosure due to the proliferation of smooth
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1. Introduction. The use of stents (see Figure 1.1) in interventional cardiology
is fairly recent.1

An electrical engineer, Wiktor underwent open heart surgery to cor-
rect an aortic dissection in 1984. Following the procedure, he wondered
why such a vascular repair couldn’t be done with less surgical trauma,
and began to read about angioplasty. He came up with a variety of stent
designs and signed a consulting agreement with Medtronic in 1988.

The “Wiktor Stent,” an intravascular stent (U.S. patent No. 4,886,062)
provides an important solution to coronary artery reconstruction and re-
canalization. The stent keeps a diseased vessel open and prevents reclosure.
Made of tantalum, a noncorrosive and malleable metal which is easily seen
by the cardiologist during fluoroscopy, the stent is extremely easy to han-
dle, deliver and deploy, which is of the utmost importance in emergency
and routine situations.

In the case of the Wiktor Stent, the delivering catheter is inflated to

expand and deploy the stent to maintain the opening. The balloon is then

deflated and the catheter removed. Within a month, the stent becomes

incorporated into the artery wall. Today, Medtronics’ Wiktor stent has a

20 percent market share in Europe.
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Fig. 1.1. Wiktor stent as drawn in U.S. patent No. 4,886,062.

More than 40 percent of patients treated for atherosclerosis present restenosis
within six months of the operation. Indeed, implanting a stent generally leads to
complications, thrombosis and proliferation of smooth-muscle cells being the root
causes of restenosis. It is important to understand that stenosis and restenosis develop
by different mechanisms and over very different time scales: 30 years for stenosis, 6
months for restenosis. A great deal of research has been conducted on medicinal agents
designed to have an antithrombotic effect or to limit the proliferation of smooth-muscle
cells. This type of medication can be delivered in two ways: systematically or locally.
The primary disadvantage of systemic delivery is generally its greater toxicity in the
body, since, to be effective, a much higher level of the medication is a priori required
than for local delivery. For this reason, the local solution is the preferred choice.
For instance, a typical system consists of a stent coated with a thin layer of polymer
which has been impregnated with a molecule that has an effect on the proliferation
of smooth muscle cells [1, 9, 10].

Modern stents are designed to be less invasive from the hemodynamic point of
view. Engineers are introducing new shapes with minimal strut diameters to mini-
mize induced perturbations that would theoretically increase stresses on the fluid and
recirculation. Yet it is recognized that this strategy alone cannot prevent resteno-
sis and considerable efforts are currently aimed at developing new stent coating to
reduce or stop the proliferation of smooth muscle cells. However, to the authors’
knowledge, the distribution of the coating (mass and contact surface) are not part
of the design and the optimal selection of the shape parameters of the stent (coating
is added to an already mechanically designed stent). An optimal coated stent (that
would produce minimal restenosis) would be the result of a shape optimization that
would simultaneously account for the hemodynamic and mass transfer processes.

It is the purpose of this paper to broaden the knowledge and improve the craft
of the stent designer by providing new mathematical and numerical tools to help in
the preliminary shape selection of stents. Mechanically the stent has to be strong
enough to exert pressure on the wall of the vessel sufficient to keep it open and to
restore a normal flow of blood. Once the purely mechanical parameters are set (choice
of the material, contact surface, and thickness of the struts), there are a number of
parameters left to control the delivery of the molecule to the wall: the total mass of
the molecule and the distribution of the contact surface.

It is generally accepted that it is the effect of the concentration of the molecule
over time that effectively controls the proliferation of the smooth muscle cells (cf.
[2, 9, 10]). This naturally leads to the notion of a dose in each point of the artery.
Mathematically the dose is defined as the integral of the concentration over all times
ranging from 0 to ∞. The first key finding of this paper is the high sensitivity
of the dose to the geometric distribution of the contact surface. This leads to the
introduction of an asymptotic stent that describes the limit behavior of a family of
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Fig. 1.2. Typical patterns of stents.

periodic stents as the number of struts increases, while maintaining a constant contact
surface (and hence a constant distributed force on the wall to keep the vessel open).
Given a bioactive material or molecule and the appropriate therapeutic bounds on
the dose (a lower one to control the smooth muscle cells and an upper one to limit
the toxicity of the molecule), the asymptotic stent provides a first estimate of the
minimum total amount of bioactive material required. The second key finding is the
behavior of the dose as the number of struts increases: It is almost periodic, and its
amplitude decreases as the number of struts increases. It is then possible to select
a realistic number of struts to achieve the design objectives and deliver the proper
amount of bioactive material to the wall while respecting the upper therapeutic bound.
Obviously this design would be followed by three-dimensional simulations to confirm
the complete behavior of the device.

In this paper we have limited our investigation to the first two issues since they
steer the overall process and contribute to limiting the number of three-dimensional
simulations, thus reducing the cost of the design. For that purpose, we use a crude yet
operational model of the lumen and the wall of the vessel: two concentric cylinders
long enough not to affect the design in the target area where the stent will be deployed.
For simplicity, the stent is chosen to be periodic and made up of a finite number of
rings of radius R with no thickness and uniform width. However, our modeling and
our analysis (in sections 4 and 5) and their consequences readily extend to more
complex periodic stent structures (in section 5.3) of the type shown in Figure 1.2. In
its undeployed state we assume that all the struts of the stent are side by side without
space between them. When the stent is deployed to fill the target area, space is created
between the struts. We call ρ the ratio between the contact surface occupied by the
struts and the surface of the target area; it is a number between 0 and 1. When the
struts are periodically spaced, 1− ρ is a measure of the percentage of the area of the
interface lumen/wall in the target area which is open to chemical/biological exchanges.
The impact of such exchanges on the stent has not yet been fully investigated in the
literature.

In our analysis we assume that the mass per unit area of the molecule impregnated
in the thin layer on the stent is constant. We study the distribution of the dose in
the artery with respect to the number of struts and the ratio ρ while keeping the
surface of the target area constant. For a fixed ρ, as the number of struts increases,
their width and the space between two adjacent struts decrease. So we are naturally
led to introduce the notion of an asymptotic stent. We obtain the equations for the
dose of the asymptotic stent and study the distribution of the dose in the wall of
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the artery. One of the technical difficulties is to determine the right transmission
conditions at the wall/lumen interface in the target area. This naturally comes out of
our mathematical analysis without any ad hoc arguments: a variational formulation
for the zero-thickness periodic stent leading to the identification of the variational
equation of the asymptotic stent and a complete constructive proof of convergence
of the dose. The constructive analysis is certainly one of the main contributions of
this paper, since it clarifies and justifies the general mathematical modeling of the
biophysical process at hand.

Section 2 presents the time-space diffusion-transport equations for the concen-
tration of the product using appropriate conditions on the flow at both ends of the
artery. Section 3 gives the equations for the dose and the variational model. Since
the thickness of the layer of polymer is small compared to the other geometric param-
eters, we let the thickness of the layer go to zero in the variational model and obtain
in section 4 a new variational model for the dose which is a reasonable approximation.
The construction of the asymptotic stent2 and the corresponding variational equation
for the dose are given in section 5. The generalization to stents of arbitrary geometry
via an arbitrary characteristic function is developed in section 5.3. The asymptotic
model is related to the Neumann sieve studied in [13, 5, 7], where the plane surface
is replaced by the interface lumen/wall in the lateral boundary of a cylinder and the
possible apparition of a jump across the interface and a “strange term coming from
nowhere,” as in [3, 4, 12]. However, in our limiting process the surface of the holes
does not go to zero, and we do not get a jump in the dose across the interface lu-
men/wall in the target area. Section 6 presents selected numerical simulations for a
stent with 1, 6, 12, 24, 48, 96, 192, and 384 struts, and the asymptotic case for ρ
equal to 0.1, 0.2, 0.5, and 0.9. A table of the integral of the dose in the wall of the
artery is presented as a function of the ratio ρ and the number of struts N . Com-
plete results and details on the numerical implementation will be available in a more
specialized paper. This paper concentrates on the theory and the discussion of the
numerical simulation. Section 7 is a concluding section that reviews the theoretical
and numerical results and their impact on the design process and objectives.

2. Equations for the concentration of product. Consider a section of cylin-
dric artery of length H where the stent will be deployed (cf. Figure 2.1). For simplicity
assume that the artery is made up of two homogeneous regions: the lumen and the
wall. More realistic multilayer models of the wall can be considered [11], but this will
be sufficient for our purposes. Before the insertion of the stent, the lumen is assumed
to be the open cylinder

CR
def
=

{
(x1, x2, z) : x2

1 + x2
2 < R2, 0 < z < H

}
(2.1)

of radius R and length H. The wall is the open domain CR+E\CR between the closed
cylinder CR and the open cylinder

CR+E
def
=

{
(x1, x2, z) : x2

1 + x2
2 < (R + E)2, 0 < z < H

}
(2.2)

of radius R + E and length H, where E is the radial thickness of the wall.
A stent of zero thickness will be deployed in the target area

Σ̃
def
=

{
(x1, x2, z) : x2

1 + x2
2 = R2,

H − Ls

2
≤ z ≤ H + Ls

2

}
(2.3)

2When the number of struts goes to infinity and the width of each strut goes to zero, while the
surface of the target area, the ratio ρ, and the mass per unit area of product are kept fixed.
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Fig. 2.1. The lumen Ω̃l, the stent Ω̃s, and the wall Ω̃w in R3 and the associated two-
dimensional generating surfaces Ωl for the lumen, Ωs for the stent, and Ωw for the wall.

of the interface between the lumen and the wall. The length of the target region is
Ls < H. The actual stent will be characterized by a closed subset Σ̃s of the surface
Σ̃ (cf., for instance, one of the periodic patterns in Figure 1.2). By construction, the
region Σ̃ is centered in H/2 at equal distance

z0
def
=

H − Ls

2
> 0(2.4)

from the boundaries of CR+E in z = 0 and z = H, which are artificial boundaries
introduced for the analysis of the problem. The length H of the section of the artery
is assumed to be enough longer than Ls that the effect of introducing an artificial
boundary in z = 0 and z = H is negligible. It also means that the region Σ̃ does not
touch the boundaries of the cylinder CR+E in z = 0 and z = H.

The zero-thickness stent is coated with a polymer. Coating can exist on both
sides of the stent. The regions occupied by the polymer are denoted

Ω̃+
s

def
=

{
(x1, x2, z) :

(
R

(x1, x2)√
x2

1 + x2
2

, z

)
∈ Σ̃s and R <

√
x2

1 + x2
2 < R + e+

}
,

Ω̃−
s

def
=

{
(x1, x2, z) :

(
R

(x1, x2)√
x2

1 + x2
2

, z

)
∈ Σ̃s and R− e− <

√
x2

1 + x2
2 < R

}
,

Ω̃s
def
= Ω̃+

s ∪ Ω̃−
s ,

where e+ and e− are the respective thicknesses of the coating on the upper and lower
surfaces of Σ̃s. Once the stent is deployed, the open regions Ω̃l and Ω̃w occupied by
the lumen and the wall are

Ω̃l
def
= CR\Ω̃−

s and Ω̃w
def
= CR+E\Ω̃+

s ∪ CR.(2.5)
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Fig. 2.2. The two-dimensional boundaries and interfaces.

Mathematically, Ω̃l, Ω̃w, and Ω̃±
s are open domains in R3.

It is the design of the set Σ̃s which is the ultimate objective of the analysis. There
are several aspects to this design. For instance, the stent has to be mechanically strong
enough to keep the lumen open. In this paper we neglect this aspect and concentrate
on the delivery of the product to the wall. For simplicity we start with a periodic
stent (in the z-direction) with cylindric symmetry. Further assume that it is coated
only on its upper surface, that is, e− = 0, Ω̃−

s = ∅, and Ω̃s = Ω̃+
s (cf. Figure 2.1). In

addition, the stent is assumed to be a set of N equally spaced rings of width λ and
zero thickness with coating of thickness e = e+, that is, the region between the radius
R and the radius R + e. The centerlines of the rings are located at coordinates

{zi : 1 ≤ i ≤ N} , z0 < z1 < z2 < · · · < zN < z0 + Ls,(2.6)

along the z-axis as shown in the lower part of Figure 2.1 with zi + λ < zi+1. Thus all
the rings are contained in the target region Σ̃. The domains Ω̃l, Ω̃w, and Ω̃s and the
interfaces Σ̃ and Σ̃s are generated by rotation of the two-dimensional open domains
Ωl, Ωw, and Ωs and the interfaces Σ and Σs (cf. Figure 2.1) around the axis Γ0. In
what follows, the tilded domains, boundaries, and interfaces will always denote the
three-dimensional object generated by rotation around the axis Γ0.

The boundary Γ̃l = ∂Ω̃l of the lumen Ω̃l is made up of four parts:
- Σ̃s, the interface between Ω̃l and the region Ω̃s occupied by the polymer;
- Γ̃lw, the interface between Ω̃l and the region Ω̃w occupied by the wall;
- Γ̃li, the part of the boundary of Ω̃l where the blood flows in;
- Γ̃lo, the part of the boundary of Ω̃l where the blood flows out.

The corresponding parts of the generating surface are Σs, Γlw, Γli, Γlo, and the
centerline or axis Γ0 of the cylinders (cf. Figure 2.2).

The boundary Γ̃w = ∂Ω̃w of the wall Ω̃w is made up of five parts:
- Γ̃lw, the interface between Ω̃w and the region Ω̃l occupied by the lumen;
- Γ̃ws, the interface between Ω̃w and the region Ω̃s occupied by the polymer;
- Γ̃wi, the part of the boundary of Ω̃w where z = 0;
- Γ̃wo, the part of the boundary of Ω̃w, where z = H;
- Γ̃R+E , the outer lateral boundary of the cylinder of radius R + E.

The corresponding parts of the generating surface are Γlw, Γws, Γwi, Γwo, and the
upper boundary ΓR+E at r = R + E (cf. Figure 2.2).

The boundary Γ̃s = ∂Ω̃s of the polymer Ω̃s is made up of two parts:
- Σ̃s, the interface between Ω̃s and the region Ω̃l occupied by the lumen;
- Γ̃ws, the interface between Ω̃s and the region Ω̃w occupied by the wall.

The corresponding parts of the generating surface are Σs and Γws (cf. Figure 2.2).
The fluid (here, the blood) in the lumen is assumed to be incompressible,

div u = 0 in Ω̃l,(2.7)
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where u is the velocity of the fluid. Further assume that

u · nl ≤ 0 on Γ̃li and u · nl ≥ 0 on Γ̃lo,(2.8)

u · nl = 0 or u = 0 on Σ̃s ∪ Γ̃lw.(2.9)

Condition (2.8)–(2.9) means that the blood is coming in through the cross section Γ̃li

and going out through the cross section Γ̃lo. The velocity u and the pressure p will
also verify the Navier–Stokes equation with the condition u = 0 on Σ̃s ∪ Γ̃lw. Yet the
diffusion-transport equations will still make sense under the weaker condition u·nl = 0
on Σ̃s ∪ Γ̃lw. This would correspond to a non-Newtonian viscosity model, which is
not the purpose of this paper. For instance, experimental data show the existence of
a near-wall plasma layer that separates the blood corpuscles from the wall. The effect
of this small layer is to account for a slipping of the flow over the wall.

Assume that the concentration c(x, t) of product is given by the diffusion-transport
equation (lumen) and diffusion equations (wall and the polymer):

∂c

∂t
=

{
div(Dw∇c) in Ω̃w,

div(Ds∇c) in Ω̃s,
(2.10)

∂c

∂t
+ u · ∇c = div(Dl∇c) in Ω̃l,(2.11)

where Dw, Ds, and Dl are the respective diffusion constants in the wall, the polymer,
and the lumen. The inner product of two vectors u = (u1, u2, u3) and v = (v1, v2, v3)
in R3 is denoted by

u · v def
=

3∑
i=1

ui vi.

In view of the incompressibility condition (2.7), equation (2.11) can be rewritten

∂c

∂t
= div(Dl∇c− cu) in Ω̃l,(2.12)

since div u = 0 implies div(cu) = ∇c · u + cdiv u = ∇c · u.
The boundary conditions on c are

wall

[
∂c

∂nw
= 0 on Γ̃wi ∪ Γ̃wo ∪ Γ̃R+E ,

lumen

⎡
⎢⎢⎣
Dl

∂c

∂nl
− u · nl c = 0 or c = 0 on Γ̃li,

∂c

∂nl
= 0 on Γ̃lo,

(2.13)

where nw, nl, and ns are the respective unit outward normals to Ω̃w, Ω̃l, and Ω̃s. The
first boundary condition involving u at the entry Γ̃li of the lumen is a transparent
condition similar to those used in [2]. It allows for some backward diffusion at the
interface Γ̃li. In that case the first condition (2.8) has to be strengthened to

∃β > 0 such that − u · nl ≥
{

0 on Γ̃li\γ̃li,
β on γ̃li ⊂ Γ̃li,

and u · nl ≥ 0 on Γ̃lo,(2.14)
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where γ̃li is some fixed subarea of the cross section Γ̃li around its center. The second
case with c = 0 on Γ̃li corresponds to the assumption that Γ̃li is chosen sufficiently
far from the region of the stent Σ̃s that the concentration c on Γ̃li can be taken as
zero.

The conditions on c at the interfaces are

wall/polymer Dw
∂c

∂nw
+ Ds

∂c

∂ns
= 0 on Γ̃ws,

wall/lumen Dw
∂c

∂nw
+ Dl

∂c

∂nl
= 0 on Γ̃lw,

polymer/lumen
∂c+

∂ns
= 0 and

∂c−

∂nl
= 0 on Σ̃s.

(2.15)

Recall that the lumen is isolated from the polymer and that there is an upper trace c+

and a lower trace c− of the concentration on the two sides of the interface Σ̃s. Σ̃s is
made up of the N ring-shaped cracks in the three-dimensional domain, and different
boundary conditions are specified on each side.

The initial condition is

c(0, x) =

{
c0(x) in Ω̃s,

0 in Ω̃w ∪ Ω̃l,
(2.16)

for some positive function c0(x) ≥ 0 representing the initial concentration of the
product at time 0 in the polymer.

3. Mathematical models for the dose. The dose is the cumulative concen-
tration integrated over time from 0 to infinity in a given position x, that is,

q(x)
def
=

∫ ∞

0

c(t, x) dt.(3.1)

3.1. Equations for the dose. Since all our equations are linear, the equations,
boundary conditions, and interface conditions for q are readily obtained from those
for c. The equations for the dose q(x) are

div(Dw∇q) = 0 in Ω̃w,(3.2)

div(Ds∇q) = −c0 in Ω̃s,(3.3)

div(Dl∇q − qu) = 0 in Ω̃l.(3.4)

The boundary conditions are

wall

[
∂q

∂nw
= 0 on Γ̃wi ∪ Γ̃wo ∪ Γ̃R+E ,

lumen

⎡
⎢⎢⎣
Dl

∂q

∂nl
− u · nl q = 0 or q = 0 on Γ̃li,

∂q

∂nl
= 0 on Γ̃lo.

(3.5)

Again the choice of the first transparent condition on Γ̃li requires the stronger condi-
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Fig. 3.1. Schematic representation of the lumen, the polymer, and the wall (upper panel) and
its 2-dimensional generating surface (lower panel).

tion (2.14) on u. The conditions at the interfaces are

wall/polymer Dw
∂q

∂nw
+ Ds

∂q

∂ns
= 0 on Γ̃ws,

wall/lumen Dw
∂q

∂nw
+ Dl

∂q

∂nl
= 0 on Γ̃lw,

polymer/lumen
∂q+

∂ns
= 0 and

∂q−

∂nl
= 0 on Σ̃s.

(3.6)

3.2. Variational equation for the dose. In this section we construct a vari-
ational formulation of the equations of the dose over the domain (cf. Figure 3.1)

Ω̃
def
=

{
(x1, x2, z) : |x1|2 + |x2|2 < (R + E)2, 0 < z < H

}
\Σ̃s,(3.7)

that is, CR+E\Σ̃s. It is a bounded connected open domain with two-dimensional
cracks along the polymer/lumen interfaces Σ̃s. This is not a Lipschitzian domain.
The associated space of solution is

V (Ω̃)
def
=

{
H1(Ω̃) with condition (2.14)–(2.9) on u,

{v ∈ H1(Ω̃) : v|Γ̃li
= 0} with condition (2.8)–(2.9) on u.

(3.8)

We introduce the following bilinear form:

a(q, v)
def
=

∫
Ω̃w

Dw∇q · ∇v dx +

∫
Ω̃s

Ds∇q · ∇v dx

+

∫
Ω̃l

(Dl∇q − qu) · ∇v dx +

∫
Γ̃lo

u · nl q v dΓ.

Then q ∈ V (Ω̃) must verify the variational equation

∀v ∈ V (Ω̃), a(q, v) =

∫
Ω̃s

c0 v dx.(3.9)



MODELING AND DESIGN OF STENTS 867

The bilinear form can be rewritten as

a(q, v) =

∫
Ω̃

D∇q · ∇v dx−
∫

Ω̃l

q u · ∇v dx +

∫
Γ̃lo

u · nl q v dΓ,

by introducing the space-dependent diffusion defined almost everywhere on Ω̃:

D(x)
def
=

⎧⎪⎨
⎪⎩

Dw if x ∈ Ω̃w,

Ds if x ∈ Ω̃s,

Dl if x ∈ Ω̃l.

The bilinear form a is not symmetrical, but it is coercive on V (Ω̃) under the two
boundary conditions (2.8) and (2.9) on the velocity field u and q = 0 on Γ̃li and
under the two boundary conditions (2.14) and (2.9) on the velocity field u for the
transparent condition on q. Indeed, let α > 0 be the minimum of Dw, Ds, and Dl.
Then, using the fact that div u = 0 and condition (2.9) and (2.8), we get

a(q, q) ≥ α

∫
Ω̃

|∇q|2 dx− 1

2

∫
Γ̃li

u · nl |q|2 dΓ +
1

2

∫
Γ̃lo

u · nl |q|2 dΓ ≥ α

∫
Ω̃

|∇q|2 dx.

Using condition (2.9) and (2.14), we get

a(q, q) ≥ α

∫
Ω̃

|∇q|2 dx− 1

2

∫
Γ̃li

u · nl |q|2 dΓ +
1

2

∫
Γ̃lo

u · nl |q|2 dΓ

≥ α

∫
Ω̃

|∇q|2 dx +
β

2

∫
γ̃li

q2 dΣ̃ ≥ min

{
α,

β

2

}{∫
Ω̃

|∇q|2 dx +

∫
γ̃li

q2 dΣ̃

}
.

However, the last term on the right-hand side is an equivalent norm on H1(Ω̃) and
a is coercive on it. Therefore, by the Lax–Milgram theorem (cf. [8]), there exists a
unique q ∈ V (Ω̃) solution of the variational equation (3.9).

4. Equations for the dose as the thickness of the polymer goes to zero.
In this section we construct new equations for the dose as the thickness of the polymer
goes to zero, while keeping the total mass of product constant in the polymer. They
are obtained from the stent made up of N identical equally spaced flat rings, with
L > 0 the distance between the center of two consecutive struts; λ, 0 < λ < L, the
width of the rings; and e > 0 the thickness of the polymer.

4.1. Parametrization of the thickness. Start from the zero-thickness stent

Σ̃s
def
=

N⋃
i=1

{
(x1, x2, z) :

|x1|2 + |x2|2 = R2

0 < z < H and |z − zi| ≤ λ/2

}
(4.1)

made up of N identical equally spaced flat rings, with L > 0 the distance between
the centerlines of two consecutive struts and λ, 0 < λ < L, the width of the rings (cf.
Figure 3.1). Let ε, 0 < ε ≤ e, be the variable thickness of the polymer, and define the
new domain occupied by the polymer as

Ω̃ε
s

def
=

N⋃
i=1

{
(x1, x2, z) :

R2 < |x1|2 + |x2|2 < (R + ε)2

0 < z < H and |z − zi| < λ/2

}
,
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where zi is the position of the ith strut along the z-axis. This induces a new domain
for the wall

Ω̃ε
w

def
=

{
(x1, x2, z) :

R2 < |x1|2 + |x2|2 < (R + E)2

0 < z < H

}

\
N⋃
i=1

{
(x1, x2, z) :

R2 ≤ |x1|2 + |x2|2 ≤ (R + ε)2

0 < z < H and |z − zi| ≤ λ/2

}
.

For ε = 0, Ω̃0
s = ∅ and

Ω̃0
w =

{
(x1, x2, z) : R2 < |x1|2 + |x2|2 < (R + E)2 and 0 < z < H

}
= CR+E\CR.

Since, up to a set of zero measure, Ω̃ε
w∪Ω̃ε

s = Ω̃0
w and Ω̃ = Ω̃ε

w∪Ω̃ε
s∪Ω̃l = Ω̃0

w∪Ω̃l, it
will be convenient to define the new space-dependent diffusion Dε almost everywhere
on Ω̃ as

Dε(x)
def
=

⎧⎪⎨
⎪⎩

Dw if x ∈ Ω̃ε
w,

Ds if x ∈ Ω̃ε
s,

Dl if x ∈ Ω̃l,

and the new bilinear form

aε(q, v)
def
=

∫
Ω̃

Dε ∇q · ∇v dx−
∫

Ω̃l

q u · ∇v dx +

∫
Γ̃lo

u · nl q v dΓ,

which turns out to be coercive with the same constant (independent of ε) as for the
bilinear form a(q, v) on V (Ω̃). Here, to make the connection with the notation of the
previous sections, the bilinear form a(q, v) is now equal to ae(q, v). Note that the
parameter ε occurs only in the definition of the diffusion coefficient Dε and not in the
domains over which the integrals are defined.

The initial linear right-hand side

�(v)
def
=

∫
Ω̃s

c0 v dx(4.2)

(for the thickness e) has to be adjusted in order to deliver the same mass of product
for a thickness ε. Assume that the initial concentration c0 is constant in Ω̃s; that is,
the total mass of product in the polymer is

m
def
= c0

∫
Ω̃s

dx = c0

N∑
i=1

∫ zi+λ/2

zi−λ/2

dz

∫ R+e

R

2π r dr

= c0 N λπ
[
(R + e)2 −R2

]
= c0 N λπ e (2R + e).

Define the new concentration cε0 such that the total mass remains m over the new
domain Ω̃ε

s; that is,

m =

∫
Ω̃ε

s

cε0 dx =

N∑
i=1

∫ zi+λ/2

zi−λ/2

dz

∫ R+ε

R

cε0 2π r dr

= cε0 N λπ
[
(R + ε)2 −R2

]
= cε0 N λπ ε (2R + ε).
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In the domain Ω̃ε
s occupied by the polymer, choose the new concentration

cε0
def
=

1

ε

(
1

λ (2R + ε)π

)
m

N

and the corresponding linear right-hand side

�ε(v)
def
=

∫
Ω̃ε

s

cε0 v dx.(4.3)

The new variational problems indexed by ε, 0 < ε ≤ e, are

∃qε ∈ V (Ω̃) such that ∀v ∈ V (Ω̃), aε(qε, v) = �ε(v),(4.4)

where Ω̃ is the open cylinder CR+E minus the stent Σ̃s, as defined in (3.7).

4.2. Limiting process. The next step is to determine the limit q0 of the dose
qε as ε goes to zero, and to show that it is a solution of a new variational equation.

Theorem 4.1. As ε > 0 goes to zero, the solution qε ∈ V (Ω̃) of (4.4) weakly
converges to the solution q0 ∈ V (Ω̃) of the variational equation

∀v ∈ V (Ω̃), a0(q0, v) = �0(v),(4.5)

where

�0(v)
def
=

∫
Σ̃s

cs v
+ dx, cs

def
=

1

λ 2Rπ

m

N
,(4.6)

a0(q0, v)
def
=

∫
Ω̃

∇q0 ·D0 ∇v dx−
∫

Ω̃l

q0 u · ∇v dx +

∫
Γ̃lo

u · nl q
0 v dΓ(4.7)

are the respective continuous linear and bilinear forms on V (Ω̃), cs is the surface
density of the product in kg/m2, v+ is the trace of v on the upper side of Σ̃s, and
D0 is the diffusion defined almost everywhere in Ω̃:

D0(x)
def
=

{
Dw if x ∈ Ω̃0

w,

Dl if x ∈ Ω̃l.
(4.8)

Proof. The proof follows by standard arguments.

4.3. Equations for q0. From the variational equation (4.5) for q0 we get the
following set of equations for the dose q0(x, t):

div(Dw∇q0) = 0 in Ω̃0
w,(4.9)

div(Dl∇q0 − q0u) = 0 in Ω̃l.(4.10)
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Fig. 5.1. Stent/lumen and stent/wall interfaces for N struts (upper panel) and as N goes to
infinity (lower figure).

The boundary conditions are

wall

⎧⎪⎨
⎪⎩

∂q0

∂nw
= 0 on Γ̃wi ∪ Γ̃wo ∪ Γ̃R+E ,

Dw
∂q0+

∂nw
= cs on Σ̃s,

lumen

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dl
∂q0

∂nl
− u · nl q

0 = 0 or q0 = 0 on Γ̃li,

∂q0

∂nl
= 0 on Γ̃lo,

∂q0−

∂nl
= 0 on Σ̃s.

(4.11)

The condition at the interface is

wall/lumen Dw
∂q0

∂nw
+ Dl

∂q0

∂nl
= 0 on Γ̃lw.(4.12)

5. Asymptotic stent. In the design of the stent, we are left with several pa-
rameters: the surface density of product cs = m/(2πRNλ), the total length of the
space occupied by the stent Ls = NL, the ratio ρ = Nλ/NL = λ/L between the
width of a strut λ and the distance L between two successive struts, and the total
number N of struts. Recall that the stent (see Figure 5.1) is specified by the set

Σ̃N
s

def
=

N⋃
i=1

⎧⎨
⎩(x1, x2, z) :

x2
1 + x2

2 = R2

zi −
λ

2
≤ z ≤ zi +

λ

2

⎫⎬
⎭ , zi = z0 +

(
i− 1

2

)
L, 1 ≤ i ≤ N,

where the superscript emphasizes the dependence on N . Recall that

z0 =
H − Ls

2
> 0.
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Therefore the N -strut stent and the asymptotic stent will be centered in [0, H]:

[z0, z0 + Ls] = [z0, z0 + NL] ⊂ ]0, H[ and z0 +
NL

2
=

H

2
.

In this section we construct an asymptotic model for the dose q0
N = q0 as the

number of struts goes to infinity, while keeping constant the length Ls, the ratio ρ,
and the surface density of the product cs. Again the superscript on q0

N emphasizes
the dependence of q0 on N . The main technical difference between this and the
asymptotic analysis in the previous section is that the space of the solution will also
depend on N . In general, even if we can find a uniform bound in a large enough
function space independent of N , we will not be able to use test functions in the fixed
larger space unless the projection onto the N -dependent solution spaces is strongly
continuous. This asymptotic problem is very similar to the Neumann sieve studied by
[13, 5, 7], where the plane surface is replaced by the lateral boundary of the cylinder
of radius R. Fortunately here the total surface of the holes is constant and different
from zero in the limiting process, and there will be no discontinuity of the trace of
the asymptotic solution. The proof will use the weak convergence of a sequence of
characteristic functions associated with the N -stent strut as in [6].

5.1. Construction of the asymptotic problem. Recall that for fixed N the
dose q0

N is the solution in the space

V (Ω̃N )
def
=

{
H1(Ω̃N ), condition (2.14)–(2.9) on u,

{v ∈ H1(Ω̃N ) : v|Γ̃li
= 0}, condition (2.8)–(2.9) on u,

(5.1)

Ω̃N def
= {(x1, x2, z) : |x1|2 + |x2|2 < (R + E)2, 0 < z < H}\Σ̃N

s(5.2)

of the variational equation

∀v ∈ VN , a0(q0
N , v) = �0N (v).(5.3)

The linear form can now be rewritten in terms of the following characteristic
function on [0, H],

χN (z)
def
=

⎧⎪⎨
⎪⎩

1 if z ∈
N⋃
i=1

[
zi −

λ

2
, zi +

λ

2

]
,

0 otherwise,

(5.4)

�0N (v) =

∫
Σ̃N

s

cs v
+ dx =

N∑
i=1

∫ zi+
λ
2

zi−λ
2

dz R

∫ 2π

0

dθ cs v(R
+, θ, z)

= cs

∫ H

0

dz χN (z)R

∫ 2π

0

dθ v(R+, θ, z),

(5.5)

or in terms of the characteristic function χΣ̃N
s

, defined on the target area Σ̃ in the
lateral boundary of the cylinder CR,

�0N (v) =

∫
Σ̃

csχΣ̃N
s
v+ dΣ̃, χΣ̃N

s
(x)

def
=

{
1 if x ∈ Σ̃N

s ,

0 otherwise.
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The bilinear form

a0(w, v) =

∫
Ω̃0

w

Dw ∇w · ∇v dx +

∫
Ω̃l

(Dl ∇w − w u) · ∇v dx +

∫
Γ̃lo

u · nl w v dΓ(5.6)

is independent of N . Assuming that there exist constants Ls, 0 < Ls < H, and ρ,
0 < ρ < 1, such that, as N goes to infinity, LN = Ls and λN = ρLs, it is readily seen
that the sequence {χN} is uniformly bounded in L2(0, H) and weakly convergent:

∀p ≥ 1,

∫ H

0

(χN )
p
dz =

∫ H

0

χN dz = Nλ = ρLs = constant

⇒ χN ⇀ ρχ[z0,z0+Ls] L2(0, H)-weak,

∀ϕ ∈ L2(0, H),

∫ H

0

χN ϕdz → ρ

∫ z0+Ls

z0

ϕdz,

where

χ[z0,z0+Ls](z)
def
=

{
1, z ∈ [z0, z0 + Ls],

0 otherwise.
(5.7)

Equivalently,

χΣ̃N
s
⇀ ρχΣ̃ L2(Σ̃)-weakly and ∀ϕ ∈ L2(Σ̃),

∫
Σ̃

χΣ̃N
s
ϕdΣ → ρ

∫
Σ̃

ϕdΣ,

where Σ̃ is the target area as defined in (2.3).
Since Ls = NL, λN = ρLs, and ρ = λ/L are constant in the limiting process, we

get for all v in L2(Σ̃)

�0N (v) = cs

∫
Σ̃

χΣ̃N
s
v dΣ = cs

∫ H

0

dz χN (z)R

∫ 2π

0

dθ v(R+, θ, z)

→ �0∞(v)
def
= cs ρ

∫ z0+Ls

z0

dz R

∫ 2π

0

dθ v(R+, θ, z) = cs ρ

∫
Σ̃

v+ dΓ.

This suggests introducing the new domain Ω̃∞,

Ω̃∞ def
= Ω̃0\Σ̃,(5.8)

in the open cylinder CR+E ,

Ω̃0 def
= CR+E =

{
(x1, x2, z) : |x1|2 + |x2|2 < (R + E)2, 0 < z < H

}
,(5.9)

along with the new larger space of solution

V (Ω̃∞)
def
=

⎧⎨
⎩

H1(Ω̃∞), condition (2.14)–(2.9) on u,{
v ∈ H1(Ω̃∞) : v|Γ̃li

= 0
}
, condition (2.8)–(2.9) on u,

(5.10)

and the smaller space

V (Ω̃0)
def
=

⎧⎨
⎩

H1(Ω̃0), condition (2.14)–(2.9) on u,{
v ∈ H1(Ω̃0) : v|Γ̃li

= 0
}
, condition (2.8)–(2.9) on u.

(5.11)
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Observe that for all N ≥ 1, V (Ω̃0) ⊂ V (Ω̃N ) ⊂ V (Ω̃∞), and recall that the linear
term acts only on the upper part of the new crack Σ̃, that is,

�0∞(v)
def
=

∫
Σ̃

ρ cs v
+ dΓ.(5.12)

It is easy to show that the solutions q0
N are uniformly bounded in the norm of V (Ω̃∞),

that there is a subsequence which weakly converges to some q0
∞ ∈ V (Ω̃∞), and that

q0
∞ is a solution of the variational equation

∀v ∈ V (Ω̃0), a0(q0
∞, v) = �0∞(v).(5.13)

However this equation is incomplete since the test function belongs to the smaller
space H1(Ω̃0) which does not see the crack Σ̃.

Theorem 5.1. Assume that there exist constants Ls, 0 < Ls < H, and ρ,
0 < ρ < 1, such that, as N goes to infinity,3 LN = Ls and λN = ρLs. The sequence
of solutions q0

N ∈ V (Ω̃N ) converges V (Ω̃∞)-weakly to q0
∞, which is the solution in

V (Ω̃0) of the variational equation

∃q0
∞ ∈ V (Ω̃0) such that ∀v ∈ V (Ω̃0), a0(q0

∞, v) = �0∞(v),(5.14)

where the continuous bilinear and the linear forms a0 and �0∞ are given by the expres-
sions (5.6) and (5.12).

Remark 5.1. When the product is applied on the inner and outer surfaces of the
stent, the asymptotic model predicts that the two sides contribute to increasing the
total dose in the wall.

Proof. By the weak convergence of {q0
N} in V (Ω̃∞), the jump [q0

N ]
def
=

(
q0+
N − q0−

N

)∣∣
Σ̃

of q0
N across Σ̃ strongly converges:[

q0
N

]
→

[
q0
∞
]

L2(Σ̃)-strongly.

By continuity of the trace of q0
N across the region of the holes Σ̃\Σ̃N

s ,

∀ϕ ∈ L2(Σ̃),

∫
Σ̃\Σ̃N

s

[q0
N ]ϕdΓ = 0.

Since we already have

χN ⇀ ρχ[z0,z0+Ls] L2(0, H)-weakly and χΣ̃N
s
⇀ ρχΣ̃ L2(Σ̃)-weakly,

then for all ϕ ∈ L2(Σ̃)

0 =

∫
Σ̃\Σ̃N

s

[q0
N ]ϕdΓ =

∫
Σ̃

(
1 − χΣ̃N

s

)
[q0

N ]ϕdΓ

→
∫

Σ̃

(1 − ρχΣ̃) [q0
∞]ϕdΓ = (1 − ρ)

∫
Σ̃

[q0
∞]ϕdΓ

⇒ ∀ϕ ∈ L2(Σ̃), (1 − ρ)

∫
Σ̃

[q0
∞]ϕdΓ = 0.

Hence for 0 ≤ ρ < 1

[q0
∞] = 0 along Σ̃ ⇒ q0

∞ ∈ H1(Ω̃0) ⇒ q0
∞ ∈ V (Ω̃0).

Combining q0
∞ ∈ V (Ω̃0) with (5.13) and the fact that a0 is coercive on V (Ω̃0), we

conclude that q0
∞ is the unique solution of the variational equation (5.14).

3L = Ls/N and λ = ρLs/N both depend on N and go to zero as N goes to infinity.
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5.2. Equations for the dose of the asymptotic stent. From the variational
equation (5.14) for q0

∞ we get the following set of equations for the dose q0
∞(x, t):

div(Dw∇q0
∞) = 0 in Ω̃0

w,(5.15)

div(Dl∇q0
∞ − q0

∞u) = 0 in Ω̃l.(5.16)

The boundary conditions are

wall

{
∂q0

∞
∂nw

= 0 on Γ̃wi ∪ Γ̃wo ∪ Γ̃R+E ,

lumen

⎧⎪⎨
⎪⎩
Dl

∂q0
∞

∂nl
− u · nl q

0
∞ = 0 or q0

∞ = 0 on Γ̃li,

∂q0
∞

∂nl
= 0 on Γ̃lo.

(5.17)

The condition at the interface is

wall/lumen Dw
∂q0

∞
∂nw

+ Dl
∂q0

∞
∂nl

=

{
0 on Γ̃∞

lw,

ρ cs on Σ̃,
(5.18)

where

Γ̃∞
lw =

{
(x1, x2, z) : x2

1 + x2
2 + z2 = R2 and z ∈ ]0, H[ \ [z0, z0 + Ls]

}
.(5.19)

5.3. Extension to general periodic stents. The previous modeling and asymp-
totic analysis rests on the introduction of a periodic characteristic function (only a
function of the axial variable z). Yet the modeling and the variational equations of
section 4 remain true for an arbitrary characteristic function χ(z, θ) of the axial vari-
able z and the angular variable θ in cylindrical coordinates. Stents with a periodicity
in a transverse direction (e.g., a spiral or helical shape) can now be considered and,
once the pattern (cf. Figure 1.2) of the periodic stent has been selected, an asymptotic
analysis similar to that of the previous subsections can be carried out.

Given an arbitrary characteristic function χ defined in the target area Σ̃,

χ ∈ X(Σ̃)
def
= {χ ∈ L2(Σ̃) : (1 − χ)χ = 0 a.e. in Σ̃},(5.20)

the zero-thickness stent is completely specified by

Σ̃s(χ)
def
= {x ∈ Σ̃ : χ(x) = 1},(5.21)

the cracked open domain by

Ω̃(χ)
def
= {(x1, x2, z) : x2

1 + x2
2 < (R + E)2 and 0 < z < H}\Σ̃s(χ),(5.22)

and the space of solutions by

V (χ) = V (Ω̃(χ))
def
= {v ∈ V (Ω̃) : (1 − χ) [v] = 0 on Σ̃},(5.23)

where [v] denotes the jump of v across the target surface Σ̃. The dose q = q(χ) is the
solution of the variational equation

∃q ∈ V (χ) such that ∀v ∈ V (χ), a0(q, v) = �0(χ; v),(5.24)
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Table 6.1

Parameters.

Artery and Blood

Notation Description mm a-dimensional
R Radius of the lumen 1.5 0.5
E Thickness of the wall of the artery 0.4 0.133
Re Reynold’s number 141.8
Pel Peclet’s number 108

Wiktor stent

Notation Description mm x /3mm
N Number of struts 24

λ = 2r Diameter of the strut 0.15 0.05
L Distance between two struts 0.7 0.233
ρ Ratio = area of the stent/2π RLs 0.214
Ls Length of the target area 16.8 5.6

Geometry

Notation Description mm a-dimensional
R Radius of the lumen 1.5 0.5
E Thickness of the artery wall 0.4 0.133

R + E Radius of the artery 1.9 0.63333
Ls Length of the target area 16.8 5.6
z0 Length of the inlet section 16.8 5.6
z0 Length of the outlet section 16.8 5.6
H Length of the artery 50.4 16.8
ρ Ratio = area of the stent/2π RLs 0.1 to 0.9

Parameters of the diffusion

Notation Description a-dimensionsl
Pep Diffusion in the wall (Peclet’s number) 108

Pel Diffusion in the lumen (Peclet’s number) 108

cs Surface density of product 10−8

where

a0(w, v)
def
=

∫
Ω̃0

p

Dw ∇w · ∇v dx +

∫
Ω̃l

(Dl ∇w − w u) · ∇v dx +

∫
Γ̃lo

u · nl w v dΓ,(5.25)

�0(χ; v)
def
=

∫
Σ̃

cs χ v dΣ̃.(5.26)

The notation emphasizes the fact that �0 and V both depend on χ. This generalizes
the equation of the dose to a stent of arbitrary geometry.

6. Numerical experimentation. In this section we complete the theoretical
results by extensive numerical simulations in order to get a feeling for the kind of phe-
nomena involved. The velocity profile u of the flow in the lumen has been obtained by
solving the incompressible Navier–Stokes equations (269,000 unknowns). The geome-
try and the equation of the dose have been scaled in order to work with dimensionless
variables. The geometry of the artery, the parameters of the incompressible Navier–
Stokes equation, and the characteristics of the diffusion-transport equation are given
in Table 6.1 with the condition q = 0 on Σ̃li. As a point of comparison, the parameters
of the Wiktor stent were approximatively L = 0.7 mm for the distance between the
centers of two struts, λ = 0.15 mm for the width, and 3–4 mm for the diameter. The
number of struts was N = 24, which gives a target area of length Ls = 16.8 mm and
a ratio ρ = 0.15/0.7 � 0.214.
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Fig. 6.1. Dose versus the position z along the axis at the exterior radius R+E = 0.6333 of the
artery as a function of the number of struts N for ρ = 0.1.

We have made the computations for ρ = 0.1, 0.2, 0.5, and 0.9 and for N from 1 to
382. We have chosen to display the dose at the outer radius R+E of the artery for the
case ρ = 0.1 in order to avoid the large fluctuations at the lumen/wall interface. The
graphs of the dose start at z0 = 6 and extend to z0 + 18, which goes slightly beyond
the target region of length Ls = 16.8 with the variable z − z0 in abscissa. They are
displayed for different values of the number of struts N . Because of the broad range
of numerical values of the dose, three sets of graphs are used. Figure 6.1 is in the
range of 0 to 2.7 for N = 1, 6, 12, 24, 48, 96, ∞. At that scale, only the cases N = 1,
6, and 12 are visible. Figure 6.2 has two sets of graphs: the first one in the range of 0
to 0.0065 for N = 24, 48, 96, 192, 384, and N = ∞, and the second one in the range
of 0 to 0.0020 for N = 48, 96, 192, 384, and N = ∞.

As an indication of the highly irregular behavior of the dose in the vicinity of
the stent, two figures give an (r, z)-plot of the dose at the upstream end of the target
region occupied by the stent. For ρ = 0.1, Figure 6.3 corresponds to N = 382 struts
and Figure 6.4 to the asymptotic stent. Notice the sharp spikes in the area of the
struts and the sharp drop between two struts. It is also interesting that, even if the
asymptotic theory predicts that the dose is continuous across the wall/lumen interface,
a sharp drop is observed in the dose near the target area Σ̃ of the wall/lumen interface
due to the high level of convection in the lumen. To get sharp and stable results, a
very large number of variables was used in the numerical computations. Complete
numerical tests and a description of the numerical method used will be reported in
a subsequent paper. Finally, Table 6.2 gives the integral of the dose as a function of
the number of struts N and the ratio ρ.
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Fig. 6.2. Dose versus the position z along the axis at the exterior radius R+E = 0.6333 of the
artery as a function of the number of struts N for ρ = 0.1. The lower graph is a zoom of the upper
one to show the dose for N ≥ 48 in the range from 0 to .0020.
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Fig. 6.3. Dose as a function of (r, z) for N = 382 at the upstream end of Σ̃.
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MODELING AND DESIGN OF STENTS 879

Table 6.2

Integral of the dose in the wall as a function of ρ and N (blanks indicate no computation).

N ρ = 0.1 ρ = 0.2 ρ = 0.5 ρ = 0.9
1 2.44626 10−1 1.76146 10+0 2.57995 10+1 1.47576 10+2

6 1.57697 10−2 7.96223 10−2 8.84819 10−1 4.64757 10+0

12 7.37995 10−3 3.14226 10−2 2.79274 10−1 1.40548 10+0

24 3.82175 10−3 1.45893 10−2 1.04696 10−1 5.27827 10−1

48 2.10712 10−3 7.40946 10−3 4.83751 10−2 2.41867 10−1

96 1.25858 10−3 3.80518 10−3 2.47581 10−2 1.168133 10−1

192 9.4094 10−4

384 8.0285 10−4

asymptotic 7.79 10−4 1.54234 10−3 3.85586 10−3 6.94056 10−3

7. Concluding remarks.

7.1. The onchocerciasis control problem. A problem closely related to the
coating of stents is the onchocerciasis control program [2]. Black flies are known not
only as a nuisance, causing economic losses in different areas of human activities, but
also as transmitters of pathogens and parasites to man and animals. In some areas,
black flies are vectors of a filarial worm (Onchocerca volvulus) which causes a serious
endemic disease whose final stage is known as river blindness. The strategy chosen to
combat this parasite was to break the chain of transmission by destroying the vector
at its most vulnerable state, that is, the larval state. To control black fly larvae
in running waters, special products have been developed with targeted toxic effects.
Helicopters are used to periodically spray the rivers at prescribed sites over very large
geographical areas. The objective was to minimize the total amount of larvicide used
to treat a segment of river while maintaining a mortality rate P of the larvae at
each point in the river. The control parameters were the number of injections, the
amount injected, and the location of the injections. It turned out that the minimum
total weight corresponds to an infinity of uniformly distributed injection points. Of
course, this asymptotic solution is not practically implementable when the injections
are made by helicopters crossing the river. In practice, with real parameters, there
was a significant drop in the minimal weights going from 1 (166.9kg) to 2 (22.97kg)
to 3 (13.12kg) injections, and 20 (5.9kg) injections gave a total weight close to the
asymptotic solution (5.34kg). Experiments and measurements were possible in the
laboratory, and a reliable relation between the mortality rate P of the larvae and the
required dose was established.

Table 7.1

Approximate amplitude of the dose for ρ = 0.1 as a function of N .

N 1 6 24 48 96 192 384 asympt.
Dose 2.6000 0.1000 0.0068 0.0020 0.0010 0.00075 0.00065 0.00065

7.2. Analogies between the two problems. The injection points on the river
correspond to the positions of our struts. What is required is a relatively uniform dose
in the wall along the target area in the vicinity of the lumen. In Figure 6.1 the case
N = 1 gives a peak of 2.6 concentrated at the center of the stent for N = 1. Figure 6.2
goes to smaller scales. Starting with N = 6, the dose is roughly periodic in the target
area and its amplitude decreases as N increases, as shown in Table 7.1. As in the
onchocerciasis control problem and with realistic parameters, we observe a very high
sensitivity of the amplitude of the dose for N small, but after N = 24 we have
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practically reached the asymptotic level. Recall that the original Wiktor stent had
N = 24 struts. If the mass surface density cs becomes a design parameter, we could
require a minimum therapeutic dose qmin on the upper side of the target area Σ̃ or
in a small region S′ above Σ̃,

q(χ)+ ≥ qmin on Σ̃ or q(χ)+ ≥ qmin on S′,(7.1)

S′ def
=

{
(x1, x2, z) :

R2 < x2
1 + x2

2 < (R + e′)2

z0 < z < z0 + Ls

}
, 0 < e′ < E,(7.2)

while minimizing cs.
This strategy is probably not far from what is required for the design. Yet the

wall of the artery is quite different from a river. In the wall there are biochemical
effects and dynamics that are not fully understood or, more importantly, quantified.
Following the implant of a stent, the endothelial wall is seriously damaged. It is
necessary to delay the growth of smooth muscle cells to give time for the arterial wall
to be recolonized by endothelial cells that contain chemical mediators responsible for
orderly control of the growth process. Without such cells the growth process goes
incorrectly. What is required is a relationship between the rate of growth of the
smooth muscle cells (analgous to the larval mortality rate in [2]) and the dose in the
vicinity of the wall/lumen interface. This could be obtained by ex vivo experiments
and measurements to relate the rate of growth of the smooth muscle cells to the
therapeutic dose.

As a side remark, clinical observations indicate that restenosis often takes place
at the ends of the stent. This is corroborated by the fact that the dose sharply drops
at both ends of the stent, as predicted in Figures 6.2, 6.3, and 6.4.

7.3. Impact on the design process. Using real parameters, our numerical
simulations have revealed the high sensitivity of the dose to the number of struts
N of a periodic stent. The space distribution of the dose is almost periodic in the
target area: It is maximal at the strut and decreases to a minimal value between
two adjacent struts. The results also show that the design parameter N effectively
controls the amplitude and the uniformity of the dose in the target area and that the
dose is always above the dose of the asymptotic stent (cf. Figure 6.2). Furthermore,
the amplitude of the dose diminishes as the number of struts is increased.

As the quantitative discussion of section 7.2 indicates, even if an asymptotic stent
cannot be constructed, a periodic stent (with a sufficiently large number of struts)
can be designed to produce a distribution of the dose that is very close to that of
the asymptotic stent. In view of this analysis, the design of a stent should start from
the asymptotic analysis described in section 5. From a numerical point of view, this
is simple and requires only two-dimensional simulations. Given a bioactive material,
the lower therapeutic bound on the dose, a fixed target area, and a deployment ratio
ρ, the asymptotic stent would yield an estimate of the minimum value of the required
mass surface density cs (that is, a minimum total mass of bioactive material). The
coating thickness of this material is easily obtained from the required total mass and
the area of the target surface. Using the parameters obtained from the asymptotic
design, the next step is to choose the number of struts N of the periodic stent of
section 4. The numerical experiments of Figure 6.2 show that, for the same mass
surface density cs and ratio ρ, the dose of the periodic stent with a finite number of
struts always lies above the dose for the asymptotic stent. Hence the same cs can
be used for an N -strut stent to achieve the same lower therapeutic bound. Then the
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designer can adjust the number of struts and possibly reduce cs in order to keep the
dose under the upper therapeutic bound. This problem is two-dimensional and shares
with the asymptotic stent the same geometrical simplicity.

As is often the case in design problems associated with complex systems, a sim-
ple operational model incorporating sensitive design parameters and retaining the
essential features of the system can be extremely useful in quickly and economically
identifying a good suboptimal design. Our analysis and design approach fall into that
category and readily extend to more complex periodic stents (cf. section 5.3). As
a better understanding of the biochemical and biophysical mechanisms in the wall
becomes available, it will be incorporated into the model and the formulation of the
design objectives in order to sharpen our results and improve the design process.
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Abstract. The chief purpose of this paper is to formulate and partly analyze a new mathematical
model for continuous sedimentation-consolidation processes of flocculated suspensions in clarifier-
thickener units. This model appears in two variants for cylindrical and variable cross-sectional
area units, respectively (Models 1 and 2). In both cases, the governing equation is a scalar, strongly
degenerate parabolic equation in which both the convective and diffusion fluxes depend on parameters
that are discontinuous functions of the depth variable. The initial value problem for this equation
is analyzed for Model 1. We introduce a simple finite difference scheme and prove its convergence
to a weak solution that satisfies an entropy condition. A limited analysis of steady states as desired
stationary modes of operation is performed. Numerical examples illustrate that the model realistically
describes the dynamics of flocculated suspensions in clarifier-thickeners.
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1. Introduction. Continuously operated clarifier-thickener units for the solid-
liquid separation of suspensions are widely used in chemical engineering, mineral
processing, the pulp-and-paper and food industries, and wastewater treatment. For
many purposes, spatially one-dimensional mathematical models of these units are suf-
ficient. They are usually based on the kinematic sedimentation theory by Kynch [62],
which describes the batch settling of a so-called ideal suspension of small, equal-sized
rigid spheres in a viscous fluid by the conservation law ut + b(u)x = 0 for the solids
volume fraction u as a function of depth x and time t. The material-specific prop-
erties of the suspension are described by the Kynch batch flux density function b(u).
If a global conservation of mass principle is taken into account, then the extension
of this theory to clarifier-thickener units leads to a conservation law with a flux that
depends discontinuously on x, since the suspension feed flow is split into upwards-
and downwards-directed bulk flows into the clarification and thickening zones, re-
spectively. The discontinuous flux makes the well-posedness analysis and numerical
simulation of the clarifier-thickener model difficult.

As is well known, the solution of the conservation law arising from the kinematic
theory propagates along characteristics, which are straight lines in cylindrical vessels.
However, most suspensions are not ideal; rather, they consist of small flocs, or as we

∗Received by the editors April 2, 2004; accepted for publication (in revised form) August 23, 2004;
published electronically March 31, 2005. This work was supported by the Collaborative Research
Center (Sonderforschungsbereich) 404 at the University of Stuttgart, the BeMatA program of the
Research Council of Norway, and the European network HYKE, funded by the EC as contract
HPRN-CT-2002-00282.

http://www.siam.org/journals/siap/65-3/60620.html
†Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwald-

ring 57, D-70569 Stuttgart, Germany (buerger@mathematik.uni-stuttgart.de).
‡Centre of Mathematics for Applications (CMA), University of Oslo, P.O. Box 1053, Blindern,

N–0316 Oslo, Norway (kennethk@math.uio.no). The research of this author was supported in part
by an Outstanding Young Investigators Award from the Research Council of Norway.

§MiraCosta College, 3333 Manchester Avenue, Cardiff-by-the-Sea, CA 92007-1516 (jtowers@cts.
com).

882



CONTINUOUS SEDIMENTATION IN CLARIFIER-THICKENERS 883

Fig. 1.1. Clarifier-thickener units treating a flocculated suspension: (a) steady-state operation
in conventional mode, (b) steady-state operation in high-rate mode, (c) a variant of the clarifier-
thickener setup with a vertical feed inlet.

say, they are flocculated. These mixtures include inorganic slurries such as tailings
from mineral processing, which are flocculated artificially in order to enhance settling
rates, as well as biological sludges in wastewater treatment. They form compressible
sediment layers, which are characterized by curved isoconcentration lines in settling
columns, and can therefore not be predicted by the kinematic theory. Instead, an
extended dynamic model including pore pressure and effective solids stress has to be
used. Such a model is provided by a theory of sedimentation-consolidation processes
[10, 27], whose governing equation (if the model is reduced to one space dimension) is
a quasi-linear degenerate parabolic equation, which degenerates into the equation of
first-order hyperbolic type of the kinematic sedimentation model when u ≤ uc, where
uc is a material-dependent critical concentration or gel point at which the solid flocs
start to touch each other.

It is the purpose of this paper to present and analyze a clarifier-thickener model for
flocculated suspensions as a combination of the first-order models for ideal suspensions
with the sedimentation-consolidation theory, which contributes a strongly degenerate
diffusion term. The proposed model consists of an initial value problem for a strongly
degenerate parabolic PDE, in which both the convective flux and the diffusion flux
depend discontinuously on the spatial variable x.

To be more precise, we consider a continuously operated axisymmetric clarifier-
thickener vessel as drawn in two variants in Figures 1.1(a) and (b) and Figure 1.1(c),
respectively. Throughout this paper, we assume that all flow variables depend on
depth x and time t only. This means in particular that u is assumed to be constant
across each horizontal cross section. We subdivide the vessel into four different zones:
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the thickening zone (0 < x < xR), which is usually the unique zone considered in
conventional analyses of continuous sedimentation, the clarification zone (xL < x < 0)
located above, the underflow zone (x > xR), and the overflow zone (x < xL). The
vessel is continuously fed at depth x = 0, the feed level, with fresh feed suspension at
a volume feed rate QF(t) ≥ 0. The concentration of the feed suspension is uF(t). The
prescribed volume underflow rate, at which the thickened sediment is removed from
the unit, is QR(t) ≥ 0. Consequently, the overflow rate is QL(t) = QR(t) − QF(t),
where we assume that the two control functions QF(t) and QR(t) are chosen such that
QL(t) ≤ 0. Of course, the solids concentrations in the underflow and overflow cannot
be prescribed and are part of the solution. Furthermore, we distinguish between
the four abovementioned zones in the clarifier-thickener, which are a property of the
equipment modeled, and the clear liquid, hindered settling, and compression regions,
in which a suspension at a given point of time has the concentrations zero, 0 < u ≤ uc,
and u > uc, respectively. Thus, the time-dependent location of the regions is a
property of a particular flow, that is, of the solution to the problem. Finally, let
us mention that the hypothetical assumption QF < 0 would mean that material is
suctioned from rather than injected into the unit (as corresponding to our assumption
QF ≥ 0). This case is not included in the present analysis.

The model includes two different stationary modes of operation that are usually
distinguished in the applicative literature [34]: conventional operation, as shown in
Figure 1.1(a), when the sediment level (where u = uc) is located below the feed level,
and high-rate (also known as high-capacity) operation (Figure 1.1(b)), when one lets
the sediment level (and thus the compression region) rise into the clarification zone.
In the latter mode of operation, practitioners observe that the concentration above
the compression region usually is zero. These distinctions are made in engineering
applications, and we will show that both modes are captured by the model which
we analyze in this paper. Figure 1.1(c) shows a variant of the clarifier-thickener
setup of Figures 1.1(a) and (b), in which the feed flow enters the vessel from above
through a feed inlet. Note that the feed inlet will usually occupy some of the cross-
sectional area of the vessel. We assume that the vessel drawn in Figure 1.1(c) is
controlled by regulating the feed flow QF and the discharge flow QR, such that no
active control of the overflow rate QL is necessary. In any circumstance we consider a
submerged feed source at a fixed vertical location. The notion “high rate” stems from
the observation that this mode of operation usually permits higher solids throughput
than the conventional mode, since the clarification zone can handle part of the solids
feed flux. Capacity and design calculations based on the new model are, however,
outside the scope of this paper. For the sake of simplicity, we also neglect the action
of the rake provided in most industrial thickeners, which rotates above the gently
sloped floor of the thickener to move the concentrated sediment towards the discharge
opening.

Similar clarifier-thickener models were proposed by several authors including Bar-
ton, Li, and Spencer [6], Chancelier, Cohen de Lara, and Pacard [30], and Lev, Rubin,
and Sheintuch [64]. All available treatments are, however, limited to the case of an
ideal (nonflocculated) suspension, which is included as a special case in our analysis.
In addition, we point out that in [30] the problem of flux discontinuities is circum-
vented by smoothing out the flux in small ε-neighborhoods of the flux around the
levels zero and xR (in our notation). However, uniqueness for ε → 0 is proved in [30]
for steady-state solutions only. Important contributions to the analysis and the de-
termination of solutions to clarifier-thickener models for ideal suspensions have been
made by Diehl [39, 40, 41, 42, 43], in which local-in-time existence and uniqueness
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results for problems with piecewise constant initial data are obtained [39, 40, 41] and
stationary solutions are completely classified [41, 43]. Numerical simulations using a
Godunov-type scheme are presented in [40, 41, 42]. The paper [34] presents a limited
discussion of a steady-state clarifier-thickener model for flocculated suspensions that
has many features in common with the one presented here but is incomplete in that
boundary conditions or flux transitions at the discharge level are lacking.

In a recent series of papers [19, 21, 23, 25] the authors with collaborators have
initiated an activity aiming at providing a firm rigorous ground of mathematical
(existence and uniqueness) and numerical analysis for the first-order clarifier-thickener
models. Roughly speaking, the main ingredient in these clarifier-thickener models is
a first-order scalar conservation law of the type

ut + f
(
γ(x), u

)
x

= 0,(1.1)

where the (with respect to u, nonconvex) flux f and the discontinuous vector-valued
coefficient γ = (γ1, γ2) are given functions. As is well known, independently of the
smoothness of γ(x), solutions to (1.1) are in general not smooth, and weak solutions
must be sought. Moreover, discontinuous weak solutions are in general not uniquely
determined by their initial data. Consequently, an entropy condition must be imposed
to single out the physically correct solution. These “physically relevant” solutions are
called entropy weak solutions. When γ is smooth, Kružkov’s theory [61] ensures the
existence of a unique and stable entropy weak solution to (1.1). Kružkov’s theory
does not apply when γ is discontinuous. In our previous work cited above, which
culminated in [25], we suggested using a variant of Kružkov’s notion of entropy weak
solution for (1.1) that accounts for the discontinuities in γ. Moreover, we proved exis-
tence and uniqueness (stability) of such entropy weak solutions in a certain functional
class. The existence of such solutions was a consequence of convergence results for
various numerical schemes such as front tracking [19], a relaxation scheme [21], and
upwind difference schemes [23, 25].

The papers [19, 21, 23, 25] were inspired by previous work in the area of conser-
vation laws with discontinuous fluxes. Due to their many applications, this is an area
that has enjoyed a lot of interest in recent years [2, 5, 9, 12, 39, 40, 48, 49, 50, 51, 52,
57, 59, 60, 65, 66, 67, 70, 72, 73, 75, 76, 77, 78]. (This list is not complete.) Without
entering into too many details, let us just mention that the usual way to cope with
the discontinuous parameter γ(x) is to express it as an additional conservation law
γt = 0, which yields a system of conservations laws for the “unknowns” (γ, u). The
equation γt = 0 introduces linearly degenerate fields in this system with eigenvalues
that are zero. Consequently, if fu is zero at some points (γ, u), then the system is
nonstrictly hyperbolic and it experiences so-called nonlinear resonant behavior, which
means more complicated wave interactions than in strictly hyperbolic systems. In-
deed, one cannot in general expect to bound the total variation of the conserved
quantities directly but only when measured under a certain singular mapping, as was
done first in [76] for a related system. An alternative “scalar” approach in which γ is
not treated as a separate unknown is presented in [52, 54, 55, 57, 77, 78] and further
developed in [21, 23, 25] in the context of the first-order clarifier-thickener models.
If we took the model studied herein and discretized the discontinuity vector γ(x) as
an additional conservation law γt = 0, then we should expect similar nonlinear res-
onance phenomena as known for first-order systems, since our model degenerates to
first-order type on a solution value interval (u-interval) of positive length.

The main ingredient in the models suggested herein, which accounts for compres-
sion effects, is not a first-order equation like (1.1) but rather a second-order strongly
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degenerate parabolic (or mixed hyperbolic-parabolic) equation of the type

ut + f
(
γ(x), u

)
x

= (γ1(x)A(u)x)x,(1.2)

where A(·) is nondecreasing with A(0) = 0. Note that A(·) can have “flat” regions,
and thus (1.2) is strongly degenerate. As a consequence, independently of the smooth-
ness of γ = (γ1, γ2), solutions to (1.2) will in general be discontinuous, and it becomes
necessary to work within a framework of entropy weak solutions also for (1.2). In the
case of smooth coefficients, the general mathematical theory of hyperbolic conserva-
tion laws was developed more than 30 years ago. On the other hand, the mathematical
theory for strongly degenerate parabolic equations (with smooth coefficients) has ad-
vanced significantly only in the last few years [7, 8, 28, 31, 32, 53, 68, 69, 82, 83, 84].
(This list is not complete either.) Although conservation laws with discontinuous
fluxes are well studied by now, strongly degenerate parabolic equations with discon-
tinuous fluxes are much less studied. In fact, the only papers that we are aware of
are [54, 55, 56], among which the latter two are of importance for the present paper.
In [55] equations like (1.2) are studied with a concave convective flux u �→ f(γ(x), u)
and with (γ1(x)A(u)x)x replaced by A(u)xx. Existence of an entropy weak solution is
established by proving convergence of a difference scheme of the type discussed in this
paper. Uniqueness and stability issues for entropy weak solutions are studied in [56]
for a particular class of equations.

Herein we develop further the methods used in [25, 55, 56] in order to apply
them to our new mathematical model for the dynamics of flocculated suspensions
in clarifier-thickener units. The new results of this paper can be summarized as
follows. First, we introduce a suitable definition of entropy weak solutions for the
model variant with constant cross-sectional area (to which the mathematical and
numerical analysis is limited). We argue that the x-discontinuity of the diffusion term
(γ1(x)A(u)x)x requires an additional condition in this definition, which states that
A(u) is continuous across the jumps of γ1 (in our model γ1 is the characteristic function
on an interval (xL, xR)). Support for the necessity to state this condition comes from
analyses of similar equations for two-phase flow in heterogeneous porous media, in
which a similar condition is stated, and from the uniqueness analysis of our problem,
which is the second novel point and in particular relies on this condition. Third,
we formulate a simple finite difference scheme for the clarifier-thickener and prove
its convergence by a compactness analysis. A feature of the compactness analysis is
that the discontinuities in the fluxes make it hard to bound the total variation of
the conserved variable. Instead, we introduce a particular nonlinear functional under
which we are able to bound the total variation. We show that the limit element
satisfies all parts of the definition of entropy weak solutions, except for the continuity
of A(u). This issue is left as an open problem. Fourth, we present an analysis of
admissible stationary solutions based on the discussion of entropy weak solutions of
the stationary ODE variant of the governing PDE of the transient model and, finally,
a limited selection of numerical examples illustrating the clarifier-thickener model.
Both the steady-state analysis and the numerical simulations support the view that
it is reasonable to require A(u) to be continuous.

Before outlining the remainder of this paper, let us briefly mention that we do not
explicitly include the effect of hydrodynamic diffusion. This effect is also omitted in
the majority of clarifier-thickener papers by other authors [6, 30, 34, 39, 40, 41, 42, 43]
but is included in the analyses by Lev, Rubin, and Sheintuch [64] and Verdickt
et al. [81]. A profound justification of the omission of hydrodynamic diffusion is
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beyond the scope of this paper but is provided in section 7.4 of [10] on the basis
of practical limitations, theoretical considerations, computational comparisons, and
experimental results. If we had decided to include hydrodynamic diffusion by adding
a term, say µuxx, with µ > 0 to the right-hand side of (1.2), then the resulting gov-
erning PDE would possess smooth solutions and allow for a simpler analytical and
numerical treatment than the one advanced in this work. In essence, the discontinu-
ities appearing in transient solutions would be blurred, and in Remark 5.4 we discuss
how hydrodynamic diffusion affects steady states for the clarifier-thickener problem.
Finally, let us mention that hydrodynamic diffusion is not explicitly modeled but is
in a sense implicitly present in our model, since our concept of Kružkov entropy weak
solution is equivalent to stating that our solution is obtained in the limit µ → 0
of smooth solutions of strictly parabolic equations with regularizing (hydrodynamic)
diffusion term µuxx. See section 4.3.

The remainder of this paper is organized as follows. In section 2, the clarifier-
thickener model is derived. We consider two variants for units with constant and
variable interior cross-sectional area, respectively (Models 1 and 2). In particular, we
incorporate the governing equation of the sedimentation-consolidation theory devel-
oped in full detail in [10]. We describe in section 3 the finite difference scheme for the
simulation of both models. The scheme appears in two variants, an explicit one which
also is analyzed, and a semi-implicit one for which a less restrictive condition for the
time step size is valid, and which therefore is suitable for large-time simulations. In
section 4 we analyze the initial value problem for Model 1, relying on our previous
efforts [25, 55, 56]. A definition of entropy weak solutions is given (and discussed ex-
tensively), jump and entropy jump conditions are derived, and uniqueness of entropy
weak solutions is proved. We study the explicit difference scheme described in sec-
tion 3 and prove compactness of a family of approximate solutions generated by this
difference scheme. We prove that the limit function u is a weak solution of Model 1
that satisfies the entropy condition. The question of whether A(u) is continuous for
this limit function is left open. An important problem for practitioners are steady-
state solutions, which correspond to the normal operation of a clarifier-thickener unit
for constant feed and discharge control parameters. In section 5, we construct steady-
state solutions to Model 1 as piecewise continuous solutions to a time-independent
ODE version of the transient Model 1. These solutions are again based on the conti-
nuity of A(u), but this time this property follows from the ODE formulation. Finally,
section 6 presents a limited choice of numerical examples illustrating Models 1 and 2.

2. Mathematical model.

2.1. Balance equations. Consider a vessel with a variable cross-sectional area
S(x). Since we assume u = u(x, t), the continuity equations for the solids and the
fluid are given by

S(x)ut +
(
S(x)uvs

)
x

= 0,(2.1)

−S(x)ut +
(
S(x)(1 − u)vf

)
x

= 0,(2.2)

where vs and vf are the solids and the fluid phase velocity, respectively. The mixture
flux, that is, the volume average flow velocity weighted with the cross-sectional area
at height x, is given by Q(x, t) := S(x)(uvs + (1 − u)vf). The sum of (2.1) and (2.2)
produces the continuity equation of the mixture, Qx(x, t) = 0, which implies that
Q(·, t) is constant as a function of x. When Q suffers no jumps with respect to x,
we obtain Q(x, t) = Q(xR, t) = Q(t). This equation is equivalent to one of the mass
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balance equations. We let it replace (2.2) and rewrite (2.1) in terms of the flow rate
Q(t) and the solid-fluid relative velocity or slip velocity vr := vs − vf , for which a
constitutive equation will be formulated. Observing that

S(x)uvs = S(x)
[(
uvs + (1 − u)vf

)
u + u(1 − u)(vs − vf)

]
= Q(t)u + S(x)u(1 − u)vr,

(2.3)

we obtain from (2.1) the equation

S(x)ut +
(
Q(t)u + S(x)u(1 − u)vr

)
x

= 0.(2.4)

The kinematic sedimentation theory [62] is based on the assumption that vr is a
function of u only, vr = vr(u). However, the slip velocity is usually expressed in terms
of the Kynch batch flux density function b(u), such that vr(u) = b(u)/(u(1 − u)) and
(2.4) takes the form

S(x)ut +
(
Q(t)u + S(x)b(u)

)
x

= 0.(2.5)

The function b is usually assumed to be piecewise differentiable with b(u) = 0 for
u ≤ 0 or u ≥ umax, where umax is the maximum solids concentration, b(u) > 0 for
0 < u < umax, b

′(0) > 0, and b′(umax) ≤ 0. A typical example is [74]

b(u) = v∞u(1 − u)C if 0 < u < umax, b(u) = 0 otherwise,(2.6)

where C ≥ 1 and v∞ > 0 is the settling velocity of a single floc in pure fluid. It should
be pointed out that in the presence of diffusion terms modeling compression effects, to
be introduced later, the maximum concentration attained in a settling system depends
on the balance between convection and diffusion terms but not critically on the choice
of umax. In order to facilitate the analysis, we assume in this paper that umax = 1
and that b(u) is smooth on [0, 1].

We now apply the sedimentation-consolidation theory outlined in [10, 27] to in-
clude the sediment compressibility. By constitutive assumptions, a dimensional anal-
ysis, and considering one space dimension only, this theory leads to the following
equation for the relative velocity vr, which plays the role of one of the linear momen-
tum balances:

vr = vr(u, ux) =
b(u)

u(1 − u)

(
1 − σ′

e(u)

∆�gu
ux

)
,(2.7)

where ∆� > 0 denotes the solid-fluid density difference, g the acceleration of gravity,
and σe(u) is the effective solid stress function, which is now the second constitutive
function (besides b) characterizing the suspension. This function is assumed to satisfy
σe(u) ≥ 0 for all u and

σ′
e(u) :=

dσe(u)

du

{
= 0 for u ≤ uc,

> 0 for u > uc.
(2.8)

A commonly used semiempirical effective stress formula is the power law

σe(u) = 0 for u ≤ uc; σe(u) = σ0

(
(u/uc)

k − 1
)

for u > uc,(2.9)
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with parameters σ0 > 0 and k > 1. Note that the derivative σ′
e(u) of the function

defined in (2.9) is in general discontinuous at u = uc. Inserting (2.7) into (2.4) and
defining

a(u) :=
b(u)σ′

e(u)

∆�gu
, A(u) :=

∫ u

0

a(s) ds,(2.10)

we obtain the governing equation(
S(x)u

)
t
+
(
Q(t)u + S(x)b(u)

)
x

=
(
S(x)A(u)x

)
x
.(2.11)

Since a(u) = 0 for u ≤ uc and u = umax and a(u) > 0 otherwise, (2.11) is first-order
hyperbolic for u ≤ uc and second-order parabolic for u > uc. Since (2.11) degenerates
into hyperbolic type on a solution value interval of positive length, (2.11) is called
strongly degenerate parabolic. The location of the type-change interface u = uc (the
sediment level) is in general unknown beforehand.

For the determination of appropriate functions b and σe for real materials, see
[15, 16, 45]. Moreover, the sedimentation-consolidation model is equivalent to the
suspension dewatering theory employed in [4, 38, 63, 79] and other works by the same
group of authors.

2.2. The clarifier-thickener model. In the present model, the volume bulk
flows are Q(x, t) = QR(t) for x > 0 and Q(x, t) = QL(t) for x < 0. This suggests
employing (2.11) with Q(t) = QR(t) for 0 < x < xR and Q(t) = QL(t) for xL < x < 0.
Furthermore, we assume that in the overflow and underflow zones, the solid material
is transported with the same velocity as the liquid. This means that the solid-fluid
relative velocity vanishes, vr = 0. Moreover, the cross-sectional area S(x) needs to
be positive outside the interval [xL, xR]. We assume that S(x) = S0 for x < xL and
x > xR, where S0 > 0 is a small but positive pipe diameter. From (2.3) we now read
off that

S(x)uvs|x/∈[xL,xR] = S0uvs =

{
QL(t)u for x < xL,

QR(t)u for x > xR.
(2.12)

The feed mechanism is introduced by adding a singular source term to the right-hand
side of the solids continuity equation (2.1). If we prescribe an initial concentration u0

in the vessel, we can summarize the resulting dynamic model as

S(x)ut + G̃(x, t, u)x =
(
γ1(x)A(u)x

)
x

+ QF(t)uF(t)δ(x), x ∈ R, t > 0,(2.13)

u(x, 0) = u0(x), x ∈ R, u0(x) ∈ [0, umax],(2.14)

G̃(x, t, u) = S(x)uvs =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
QL(t)u for x < xL,

QL(t)u + S(x)b(u) for xL < x < 0,

QR(t)u + S(x)b(u) for 0 < x < xR,

QR(t)u for x > xR,

(2.15)

γ1(x) :=

{
S(x) if xL ≤ x ≤ xR,

0 otherwise.

For the mathematical analysis we assume that the control functions QL, QR, and uF

are constant. Finally, we may express the singular source term in (2.13) in terms of
the derivative of the Heaviside function. Adding the term −H(x)QFuF to G̃(x, u)
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and subtracting the term QLuF, which is constant with respect to x, we obtain the
strongly degenerate convection-diffusion problem

S(x)ut + G(x, u)x =
(
γ1(x)A(u)x

)
x
, x ∈ R, t > 0,(2.16)

u(x, 0) = u0(x), x ∈ R, u0(x) ∈ [0, umax],(2.17)

G(x, u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
QL(u− uF) for x < xL,

QL(u− uF) + S(x)b(u) for xL < x < 0,

QR(u− uF) + S(x)b(u) for 0 < x < xR,

QR(u− uF) for x > xR.

(2.18)

2.3. Model 1 (constant interior cross-sectional area). A simple but im-
portant subcase is a vessel whose cross-sectional area is constant in the interior; i.e.,
we consider

S(x) =

{
S0 for x < xL and x > xR,

Sint for xL ≤ x ≤ xR.
(2.19)

In this case, the solution of (2.16)–(2.18) does not depend on the value of S0. To see
this, we introduce the new space variable w = w(x) defined by the bijective mapping
R � x �→ w ∈ R,

w(x) :=

⎧⎪⎨
⎪⎩

(S0/Sint)(x− xL) + xL for x < xL,

x for xL ≤ x ≤ xR,

(S0/Sint)(x− xR) + xR for x > xR,

(2.20)

and from (2.16) we infer that the function v defined by v(w(x), t) = u(x, t) satisfies
the following initial value problem, where we define the velocities qR := QR/Sint,
qL := QL/Sint and the diffusion functions ã(·) := a(·)/Sint, A(·) := A(·)/Sint:

vt + g(w, v)w =
(
γ1(w)A(v)w

)
w
, w ∈ R, t > 0,(2.21)

v(w, 0) = u0

(
w(x)

)
, x ∈ R,(2.22)

g(w, v) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
qL(v − uF) for w < xL,

qL(v − uF) + b(v) for xL < w < 0,

qR(v − uF) + b(v) for 0 < w < xR,

qR(v − uF) for w > xR.

(2.23)

We refer to (2.21)–(2.23) as Model 1. Since the variation of S(x) at x = xL and
x = xR no longer appears in (2.21), Model 1 is formally attained by setting S ≡ 1 in
(2.18) for all x ∈ R. This significantly facilitates the analysis. Finally, we define the
vector of discontinuity parameters

γ := (γ1, γ2), γ1(w) :=

{
1 for w ∈ (xL, xR),

0 for w /∈ (xL, xR),
γ2(w) :=

{
qL for w < 0,

qR for w > 0

and the flux function

f
(
γ(w), u

)
:= g(x, u) = γ1(x)b(u) + γ2(x)(u− uF).(2.24)
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Fig. 2.1. (a) The Kynch batch flux density function b(u) and the fluxes adjacent to (b) x = xL,
(c) x = xR, and (d) x = 0.

Remark 2.1. Consider a nonflocculated ideal suspension for which A ≡ 0. Then
Model 1 recovers the clarifier-thickener model with S ≡ 1 and xL = −xR we ana-
lyzed previously [19, 21, 22, 25]. Our derivation now clearly shows that these analyses
(including well-posedness and convergence of numerical schemes) are in fact not re-
stricted to the assumption of transport pipes (leading away from the unit for x < xL

and x > xR) that have the same diameter as the thickening vessel. Rather, by appli-
cation of the inverse of (2.20), they are also valid for vessels with cylindrical interior
and transport pipes of arbitrarily small (but positive) pipe diameter S0.

For the function b(u) given by (2.6) with v∞ = 10−4 m/s, C = 5, the velocities
qL = −10−5 m/s and qR = 2.5× 10−6 m/s, and uF = 0.08, the flux functions b(u) and
the fluxes adjacent to the discontinuities of γ near x = xL, x = 0, and x = xR are
plotted in Figure 2.1. These parameters will also be utilized in sections 5 and 6.

2.4. Model 2 (variable interior cross-sectional area). In the case that S(x)
is variable on (xL, xR), we refer to (2.16)–(2.18) as Model 2. It is convenient to rewrite
(2.16) as

S(x)ut + F (γ(x), u)x = (γ1(x)A(u)x)x

and rewrite the flux function G(x, u) as

F (γ(x), u) := G(x, u) = γ1(x)b(u) + γ2(x)(u− uF),

where

γ1(w) :=

{
S(x) for x ∈ (xL, xR),

0 for x /∈ (xL, xR),
γ2(w) :=

{
QL for x < 0,

QR for x > 0.
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3. Numerical scheme. The numerical scheme for the solution of (2.16)–(2.18)
is a straightforward extension of that used in [23] for the first-order variant of (2.16).
To define it, choose ∆x > 0, set xj := j∆x, and discretize the parameter vector γ,
the initial data, and the cross-sectional area by

γj+1/2 := γ(xj+1/2), U0
j := u0(xj), Sj :=

1

∆x

∫ xj+1/2

xj−1/2

S(x) dx.

Here xj+1/2 := xj + ∆x/2, i.e., the midpoint in the interval [xj , xj+1). In contrast
to [25], we discretize u0 and γ in a pointwise manner, rather than via cell averages.
The discretization of u0 circumvents some analytical difficulties that would otherwise
turn up in the proof of Lemma 4.18 and is not unreasonable from a computational
point of view. For n > 0 we define the approximations according to the explicit
marching formula

Un+1
j = Un

j − λj∆−h
(
γj+1/2, U

n
j+1, U

n
j

)
+

λj

∆x
∆−

(
γ1,j+1/2∆+A(Un

j )
)
,(3.1)

where λj := ∆t/(Sj∆x), ∆−Vj := Vj − Vj−1, ∆+Vj := Vj+1 − Vj , and

h(γ, v, u) :=
1

2

[
f(γ, u) + f(γ, v) −

∫ v

u

∣∣fu(γ, w)
∣∣dw](3.2)

is the Engquist–Osher flux [44]. Let tn := n∆t, and let χn, χj , and χj+1/2 denote
the characteristic functions of the intervals [tn, tn+1), [xj−1/2, xj+1/2), and [xj , xj+1),
respectively. We then define

u∆(x, t) :=
∑
n≥0

∑
j∈Z

Un
j χj(x)χn(t), γ∆(x) :=

∑
j∈Z

γj+1/2χj+1/2(x).(3.3)

Note that the discontinuity vector γ is discretized on a spatial mesh which is staggered
(i.e., shifted by ∆x/2) with respect to that of the conserved quantity u. This makes it
possible to use the scalar Engquist–Osher function (3.2) for the convective part of the
problem. A natural alternative would be to align the two discretizations. However,
in that case one would have to solve (exactly or approximately) a Riemann problem
for a system of two equations in two variables (namely, for u and the volume average
velocity q) at each cell boundary, which makes the resulting numerical method rather
complicated; see [48, 59, 60, 65, 66]. In particular, our treatment of the convective
part is simpler than the complicated (but accurate) front tracking algorithm used
in [19]. Staggering the discretizations also simplifies the analysis, making it possible to
apply, with some allowances for the parabolic terms, some of the analytical techniques
developed for monotone schemes for purely hyperbolic problems.

Let us recall that the scheme stated here comprises both Model 1 and Model 2
and is employed for numerical examples for both models in section 6. The analysis of
the scheme is, however, limited to Model 1 (with S ≡ 1).

In section 6 we also use the following semi-implicit variant of (3.1) for large-time
computations:

Un+1
j = Un

j − λj∆−h
(
γj+1/2, U

n
j+1, U

n
j

)
+

λj

∆x
∆−

(
γ1,j+1/2∆+A(Un+1

j )
)
.(3.4)

The scheme (3.4) requires the solution of a system of nonlinear equations in each
time step by the Newton–Raphson method. This can be done efficiently by Thomas’s
algorithm, since the coefficient matrix is tridiagonal. The advantage of using (3.4)
lies in the fact that we need only to satisfy a CFL condition requiring that ∆t/∆x is
bounded; while (3.1) enforces that ∆t/(∆x)2 be bounded; see Lemmas 4.16 and 4.17.
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4. Mathematical analysis. In several instances we will not repeat arguments
that are only minor modifications of proofs that have already appeared in [25], [55],
or [56]. In various bounds, C denotes a universal constant.

4.1. The initial value problem. For the sake of consistency with our previous
papers, we will abuse the notation slightly by replacing the transformed spatial vari-
able w by x, and the transformed functions v and A by u and A, respectively. The
Cauchy problem of interest is then

ut + f(γ(x), u)x = (γ1(x)A(u)x)x, (x, t) ∈ ΠT := R × (0, T );

u(x, 0) = u0(x), x ∈ R,
(4.1)

where f(γ, u) = γ1b(u) + γ2(u − uF). The parameter vector for this problem is
γ := (γ1, γ2), where

γ1(x) :=

{
1 for x ∈ (xL, xR),

0 for x /∈ (xL, xR),
γ2(x) :=

{
qL for x ≤ 0,

qR for x > 0.

We assume that qL < 0 and qR > 0. This rules out the case of batch settling
(qL = 0, qR = 0). However, once our analysis is complete, it will be clear that
one can accommodate batch processing as a separate case where one restricts the
analysis to the interval [xL, xR]. We assume that b ∈ C2([0, 1]), and b(0) = b(1) = 0.
Furthermore, we assume that b′ vanishes at exactly one location u# ∈ (0, 1), where
the function has a maximum, and that b′′ vanishes at no more than one inflection
point in uinfl ∈ (0, 1); if such a point is present, we assume that uinfl ∈ (u#, 1). For
example, b(u) may be given by (2.6). In accordance with (2.9), (2.10), we will assume
that A ∈ Lip([0, 1]), A′(u) = 0 for u < uc and that A′(u) > 0 for u ∈ (uc, 1).

For the initial data, we assume that u0 satisfies{
u0 ∈ L1(R) ∩BV (R); u0(x) ∈ [0, 1] ∀x ∈ R;

A(u0) is absolutely continuous on [xL, xR]; γ1A(u0)x ∈ BV (R).
(4.2)

In this paper, γ is allowed to take values in G := {(qL, 0), (qL, 1), (qR, 0), (qR, 1)}
only. This simplifies matters somewhat compared to our previous paper [25], where
the cell average discretization of γ required us to consider several lateral sides of the
rectangle marked by the vertices in G.

4.2. Definition of entropy weak solution. If (4.1) is allowed to degenerate
at certain points, that is, A′(s) = 0 for some values of s, solutions are not necessarily
smooth, and weak solutions must be sought. This property is independent of the
smoothness of γ. Moreover, weak solutions are not necessarily unique, requiring
some additional condition, a so-called entropy condition, to single out the physically
meaningful solution.

As in [25], the function space BVt(ΠT ) plays an important role in our definition
of entropy weak solution. We denote by M(ΠT ) the locally finite Radon (signed)
measures on ΠT . The space BVt(ΠT ) consists of locally integrable functions W :
ΠT → R for which ∂tW ∈ M(ΠT ).

Let J := {xL, 0, xR} denote the set of points where γ is discontinuous. For a
point m ∈ J , we use the notation γ(m−) and γ(m+) for the one-sided limits at the
point m:

γ(m−) := lim
x↑m

γ(x), γ(m+) := lim
x↓m

γ(x).
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The following definition is motivated by [25, 55, 56].
Definition 4.1 (BVt entropy weak solution). A measurable function u : ΠT → R

is a BVt entropy weak solution of the initial value problem (4.1) if it satisfies the
following conditions:

(D.1) u ∈ L1(ΠT ) ∩ BVt(ΠT ), u ∈ [0, 1] a.e. in ΠT , and A(u)x ∈ L∞((xL, xR) ×
(0, T )).

(D.2) For all test functions φ ∈ D(ΠT )∫∫
ΠT

(
uφt +

[
f
(
γ(x), u

)
− γ1(x)A(u)x

]
φx

)
dx dt = 0.(4.3)

(D.3) The initial condition is satisfied in the following strong L1 sense:

ess lim
t↓0

∫
R

∣∣u(x, t) − u0(x)
∣∣ dx = 0.(4.4)

(D.4) For a.e. t ∈ [0, T ], x �→ A(u(x, t)) is continuous at x = xL and x = xR.
(D.5) The following Kružkov-type entropy inequality holds for all c ∈ R and all test

functions 0 ≤ φ ∈ D(ΠT ):∫∫
ΠT

(
|u− c|φt + sgn(u− c)

[
f
(
γ(x), u

)
− f

(
γ(x), c

)]
φx

− γ1(x)
∣∣A(u) −A(c)

∣∣
x
φx

)
dx dt

+

∫ T

0

∑
m∈J

∣∣f(γ(m+), c
)
− f

(
γ(m−), c

)∣∣φ(m, t) dt ≥ 0.

(4.5)

A function u : ΠT → R satisfying conditions (D.1), (D.2), and (D.3) is called a
BVt weak solution of the initial value problem (4.1).

4.3. Comments on the entropy weak solution concept.

4.3.1. Motivation of the entropy condition (4.5). It is possible to motivate
the entropy condition (4.5) by the fact that limit functions constructed by the method
of vanishing viscosity, in combination with smoothing of the coefficients, satisfy this
condition. To this end, let γε(x) := (γ1,ε, γ2,ε) be a C∞ approximation of γ, such that
γε equals γ everywhere except on (m− ε,m + ε) for m ∈ {xL, 0, xR}, and such that
the sign of γ′

ε is constant on (m − ε,m + ε) for m ∈ {xL, 0, xR}. Since γ �→ f(γ, c)
is linear, fγ(γ, c) does not depend on x. For each µ, ε > 0, let uµ,ε be a classical
solution to the uniformly parabolic equation

uµ,ε
t + f

(
γε(x), uµ,ε

)
x

=
(
γ1,ε(x)A(uµ,ε)x

)
x

+ µuµ,ε
xx .(4.6)

Let us suppose that uµ,ε → u in Lp
loc for any 1 ≤ p < ∞. The rest of this remark is

devoted to proving that the limit u satisfies the entropy condition (4.5).
Since γε is smooth, the chain rule and the convexity of η imply that uµ,ε satisfies

the following entropy condition for all convex C2 functions η : R → R:

η(uµ,ε)t + q
(
γε(x), uµ,ε

)
x
−
(
γ1,ε(x)r(uµ,ε)x

)
x
− µη(uµ,ε)xx

+ γ′
ε(x) ·

(
η′(uµ,ε)fγ(γε(x), uµ,ε) − qγ(γε(x), uµ,ε)

)
≤ 0 in D′(ΠT ),

(4.7)

where q : R2 × R → R and r : R → R are defined, respectively, by

qu(γ, u) = η′(u)fu(γ, u), r′(u) = η′(u)A′(u).
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By a standard approximation argument, (4.7) implies that the following Kružkov-type
entropy condition holds for any constant c ∈ R:

|uµ,ε − c|t +
[
sgn(uµ,ε − c)

(
f(γε(x), uµ,ε) − f(γε(x), c)

)]
x

−
(
γ1,ε

∣∣A(uµ,ε) −A(c)
∣∣
x

)
x

− µ|uµ,ε − c|x + sgn(uµ,ε − c)f
(
γε(x), c

)
x
≤ 0 in D′(ΠT ),

(4.8)

where

f(γε(x), c)x = γ′
ε(x) · fγ(γε(x), c) = γ′

1,ε(x)fγ1,ε(γε(x), c) + γ′
2,ε(x)fγ2,ε(γε(x), c).

From (4.8) it is clear that the following “less precise” inequality holds:

|uµ,ε − c|t +
[
sgn(uµ,ε − c)

(
f(γε(x), uµ,ε) − f(γε(x), c)

)]
x

−
(
γ1,ε

∣∣A(uµ,ε) −A(c)
∣∣
x

)
x
− µ|uµ,ε − c|xx −

∣∣f(γε(x), c
)
x

∣∣ ≤ 0 in D′(ΠT );
(4.9)

that is, for any 0 ≤ φ ∈ D′(ΠT ),∫∫
ΠT

(
|uµ,ε − c|φt + sgn(uµ,ε − c)

(
f(γε(x), uµ,ε) − f(γε(x), c)

)
φx

− γ1,ε

∣∣A(uµ,ε) −A(c)
∣∣
x
φx + µ|uµ,ε − c|φxx

)
dx dt

+

∫∫
ΠT

∣∣f(γε(x), c)x
∣∣φdx dt ≥ 0.

(4.10)

Using the properties of γ and γε, we can write (notice the signs)

∫∫
ΠT

∣∣f(γε(x), c)x
∣∣φdx dt =

∫ T

0

∫ xL+ε

xL−ε

γ′
1,ε(x)|b(c)|φ(x, t) dx dt

−
∫ T

0

∫ xR+ε

xR−ε

γ′
1,ε(x)|b(c)|φ(x, t) dx dt +

∫ T

0

∫ ε

−ε

γ′
2,ε(x)|c− uF|φ(x, t) dx dt.

After three integrations by parts and subsequently sending ε to zero, we obtain

lim
ε→0

∫∫
ΠT

∣∣f(γε(x), c)x
∣∣φdx dt =

∫ T

0

(γ1(xL+) − γ1(xL−)) |b(c)|φ(xL, t) dt

−
∫ T

0

(γ1(xR+) − γ1(xR−)) |b(c)|φ(xR, t) dt

+

∫ T

0

(γ2(0+) − γ2(0−)) |c− uF|φ(0, t) dt.

=

∫ T

0

∑
m∈J

∣∣f(γ(m+), c
)
− f

(
γ(m−), c

)∣∣φ(m, t) dt.

In view of the previous calculations, we can send µ, ε → 0 in (4.10) to conclude
that the limit function u satisfies the entropy condition (4.5).

4.3.2. Status of the weak formulation (4.3). We point out that the entropy
inequality (4.5) does not imply the weak formulation (4.3). In fact, the usual pro-
cedure to derive the weak formulation from the Kružkov entropy inequality consists
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in taking first c > ‖u‖∞ and then c < −‖u‖∞, and then combining the resulting
inequalities. This does not work here, since the term |f(γ(m+), c) − f(γ(m−), c)|
does not have compact support with respect to c, and therefore the sum over m ∈ J
in (4.5) will not disappear for these values of c. Consequently, we state the weak
formulation (4.3) and the entropy inequality (4.5) as independent ingredients of the
solution concept.

4.3.3. Alternative entropy weak solution concepts. Section 4.3.1 shows
that the (Kružkov) entropy formulation (4.5) for the clarifier-thickener model can be
derived from the parabolic regularization (4.6) when the regularization parameter µ
and the parameter ε that smoothes the flux discontinuities tend to zero. In section 1
we mentioned that the term µuxx corresponds to hydrodynamic diffusion. Conse-
quently, the entropy formulation (4.5), which eventually leads to uniqueness, encodes
that our “physically relevant” solutions are those obtained in the limit of vanishing
hydrodynamic diffusion.

Alternative entropy concepts for conservation laws with discontinuous flux, which
equally lead to unique solutions (that are, however, different from the ones constructed
here), are possible. For example, a mathematical model for two-phase flow in a one-
dimensional porous medium that changes its type at x = 0 can be written as the
conservation law with discontinuous flux

ut +
(
H(x)f(u) + (1 −H(x))g(u)

)
x

= 0,(4.11)

where u is the saturation of one of the phases, the functions f(u) and g(u) are the
rock-type dependent Darcy velocities for x > 0 and x < 0, respectively, and H(x) is
the Heaviside function. These models are usually based on the assumption that the
capillary pressure is continuous across heterogeneities of the porous medium. Con-
sequently, the appropriate viscous regularization term of (4.11) for this model is not
given by µuε

xx but by µ(λc(u
ε)pc(u

ε)x)x, where λc and pc are the mobility and capil-
lary pressure functions for the phase considered and x < 0 (c = L) and x > 0 (c = R),
respectively [51, 71]. Analyzing the limit ε → 0 for this regularization term, Kaasschi-
eter [51] shows that the corresponding viscosity limit produces an entropy condition
for the limiting equation (4.11) that excludes that characteristics leave the disconti-
nuity at x = 0 from both sides. In other words, the capillary pressure characterization
does not allow undercompressive shocks emerging from x = 0. This contrasts with
the role of the flux discontinuity at x = 0 in the clarifier-thickener model, in which
material is injected at x = 0 and transported from both sides of that source term
location, which allows characteristics to emerge to both sides of x = 0.

Based on the properties of this two-phase flow in heterogeneous porous media
model, Adimurthi, Jaffré, and Veerappa Gowda propose in [1] an entropy formulation
alternative to ours, which is essentially based on the usual Kružkov entropy character-
ization away from flux discontinuities, supplemented by an additional entropy jump
condition that rules out undercompressive shocks. In [1] it is shown that regular
solutions satisfying these conditions are unique, and convergence of a Godunov-type
scheme to weak solutions of this type is proved. The entropy concepts of [1] and [25]
(to which the present treatment reduces for A ≡ 0) coincide if the “left” and “right”
fluxes f(u) and g(u) do not intersect and in general yield different results if these
fluxes intersect in an “undercompressive” way. This means that if we suppose, for
simplicity, that the functions f(u) and g(u) intersect at only one point, called uχ here,
then in the vicinity of uχ we have g′(u) < 0 for u ≤ uχ and f ′(u) > 0 for u ≥ uχ.
Such a situation frequently occurs in the two-phase flow in porous media model and
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is also possible in the clarifier-thickener model. For example, consider the situation
near the feed level x = 0, and assume that we take the parameters qL and qR as used
in Figure 2.1 but set uF = 0.8. Graphically, this situation corresponds to moving the
two curves in Figure 2.1(d) further apart until they intersect at uχ = uF = 0.8. From
the shape of these curves it becomes clear that this is indeed a case of an “undercom-
pressive” intersection, where f(u) = qR(u− uF) + b(u) and g(u) = qL(u− uF) + b(u).
Furthermore, if we assume that the clarifier-thickener is initially filled with suspen-
sion of that same concentration u0 = uF, we expect that filling up the vessel with
(strongly concentrated) suspension of concentration u = uF produces a solution that
is constant near x = 0 (for small times at least, until waves coming from xL or xR start
to interfere). In this scenario, however, the theory of [1], which excludes undercom-
pressive shocks, leads to a different solution, which includes one stationary oscillation
between solution values θf and θg such that f ′(θf ) ≤ 0 or g′(θg) ≥ 0; i.e., the resulting
stationary discontinuity is not undercompressive. In [20] we also present a numerical
example for a similar case showing that both entropy theories, along with the conver-
gence of the respective associated schemes, lead to different admissible solutions. Of
course, these alternative theories mirror the different physics involved, as the different
viscous regularizations of the clarifier-thickener model and of the two-phase flow in
porous media model show. Finally, let us clarify that the problem of whether the
fluxes f(u) and g(u) intersect in an “undercompressive way” is not equivalent to the
satisfaction of the so-called crossing condition, to which we appeal in section 4.5 for
the uniqueness proof. See the comment following Lemma 4.14 for a discussion of this
point in the context of the clarifier-thickener model.

4.3.4. Motivation of condition (D.4). One consequence of this definition is
that for a.e. t ∈ [0, T ], A(u(x, t)) is absolutely continuous as a function of x on [xL, xR]
and that A(u)x exists a.e. in [xL, xR]. The point that deserves to be discussed exten-
sively is, however, our explicit requirement that A(u) be continuous across x = xL

and x = xR. To justify this assumption, we follow the analysis of van Duijn, de Neef,
and Molenaar [80] and Molenaar [71]. We consider the situation near xR. (The jump
across xL is handled in the same way.) We approximate the discontinuous coefficient
γ1(x) by a smooth function γε

1(x), where ε > 0 is a small smoothing parameter and
γε
1(x) = γ1(x) outside (xR − ε, xR + ε). The differential equation that should be sat-

isfied by the limit function in this interval for ε → 0 provides an additional interface
condition. We assume that vε is the solution of Model 1 with γ1(x) replaced by γε

1

and introduce the rescaled space variable y := (x − xR)/ε. Inside (xR − ε, xR + ε),
our equation can be written as εvεt + (fε(y, vε))y = 0 with

fε(y, vε) = qR(vε − uF) + γε
1b(v

ε) − γε
1

1

ε
A(vε)y.

We assume that vε with 0 ≤ vε ≤ 1 converges to a function v as ε → 0 and that the
total flux fε remains bounded uniformly in ε as ε → 0. Then the limit function v
should satisfy A(v)y = 0 for −1 < y < 1. Integrating this equation yields the following
relation between v(−1, t) and v(1, t), which are identified with the limits of u to the
left and to right of x = xR, u(xR−, t), and u(xR+, t):

A
(
u(xR+, t)

)
−A

(
u(xR−, t)

)
= A

(
v(1, t)

)
−A

(
v(−1, t)

)
=

∫ 1

−1

A(v)y dy = 0,

which motivates our condition (D.4).
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To highlight the status of condition (D.4), we first mention that (D.4) is the
analogue of the “extended pressure condition” postulated in problems of multiphase
flow in heterogeneous porous media [71, 80, 85]. These problems lead to equations with
discontinuous flux and discontinuous (with respect to the space variable) diffusion,
which require an additional jump condition across jumps of the diffusion coefficient
(apart from the appropriate Rankine–Hugoniot condition) to ensure uniqueness. This
analogy and the observation that in our case the diffusion terms are not present at
all for x < xL and x > xR and it is therefore unlikely to obtain control on the limits
of A(u)x for x ↓ xL and x ↑ xR strongly support the necessity to postulate (D.4) as
a separate ingredient of the definition of an entropy weak solution. This view is also
supported by the fact that our uniqueness proof relies on (D.4). In other words, (D.4)
is necessary to ensure uniqueness.

It should be mentioned, however, that it is currently unclear how to prove that the
numerical scheme converges to a solution that satisfies (D.4). In fact, we will prove
that the scheme converges to a limit u that satisfies all components of Definition 4.1
except (D.4). However, our numerical results support that A(u) is continuous across
x = xL and x = xR. In particular, transient numerical simulations converge (for
large times) to steady-state solutions. These are x-dependent piecewise continuous
functions that are defined by a time-independent version of Definition 4.1 which does
not include a postulate of continuity of A(u), since satisfaction of this condition can
be derived in the ODE context.

4.4. Existence of traces. In what follows, we often use the notation

F (γ, u, c) := sgn(u− c)
(
f(γ, u) − f(γ, c)

)
(4.12)

for the Kružkov entropy flux appearing in (4.5). Here, the sign function is de-
fined by sgn(w) := w/|w| for w �= 0 and sgn(0) := 0. It is sometimes conve-

nient to work with the function f̂(γ, u) := f(γ, u) + γ2uF and to use the identity

F (γ, u, c) = sgn(u − c)(f̂(γ, u) − f̂(γ, c)). We will also find the following notation
useful: a ∨ b := max{a, b}, a ∧ b := min{a, b}, a+ := a ∨ 0, and a− := a ∧ 0.

Our analysis makes use of certain jump conditions that relate limits from the right
and left of the entropy weak solution u at jumps in the spatially varying coefficient
γ(x). Thus, we need a notion of one-sided limits (from both the right and left) at the
points x ∈ J .

Definition 4.2 (traces). Let W ∈ L∞(ΠT ) be a real function. By the right and
left traces of W (·, t) at a point x = x0 ∈ R we understand functions t �→ W (x0±, t) ∈
L∞(0, T ) that satisfy

ess lim
x↓x0

∣∣W (x, t) −W (x0+, t)
∣∣ = 0 for a.e. t ∈ (0, T ),

ess lim
x↑x0

∣∣W (x, t) −W (x0−, t)
∣∣ = 0 for a.e. t ∈ (0, T ).

As in [25, 56], we now derive the existence of the required traces from our defi-
nition of BVt entropy weak solution. To this end, we introduce the so-called singular
mapping. Let S(w) denote the characteristic function of the interval [0, uc], where
A′(u) = 0, and recall that

f
(
γ(w), u

)
= γ1(x)b(u) + γ2(x)(u− uF).
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The singular mapping is defined by

Ψ(γ, u) := F(γ, u) + γ1A(u), F(γ, u) :=

∫ u

0

(
γ1S(w) + 1 − γ1

)
|fu(γ, w)| dw.

(4.13)

Following [55], we have broken the singular mapping into two parts: F for the
hyperbolic spatial operator and γ1A for the parabolic operator. Note that if γ1 = 0,
which means that x /∈ [xL, xR], the parabolic term will not be present, and the
singular mapping simplifies to Ψ(γ, u) = F(γ, u) =

∫ u

0
|fu(γ, w)| dw. If x ∈ (xL, xR),

then γ1 = 1, and

Ψ(γ, u) = F(γ, u) + A(u), F(γ, u) =

∫ u

0

S(w)|fu(γ, w)| dw.

Thus, for x ∈ (xL, xR),

∂uΨ(γ, u) =

{
|fu(γ, u)| for u ≤ uc,

A′(u) for u > uc.

Thus, we see that for any fixed value of x (and hence γ) and u, exactly one of the
mappings u �→ F(γ, u), u �→ γ1A(u) is increasing, and the other is constant. This
allows us to separate the hyperbolic and parabolic terms somewhat in our analysis
and is the motivation behind the particular form of the singular mapping given by
(4.13).

The following lemma records some easily verified properties of Ψ. We omit the
elementary proofs.

Lemma 4.3. The mapping u �→ Ψ(γ, u) is Lipschitz continuous on [0, 1], uni-
formly for γ ∈ G. In addition, u �→ Ψ(γ, u) is strictly increasing on [0, 1] for each
fixed vector γ ∈ G.

The proof of the following lemma is easily adapted to the present situation from
that of Lemma 3.1 of [56]. The key ingredients are (4.3), (4.5), and the fact that
ut ∈ M(ΠT ).

Lemma 4.4. Suppose u is a BVt entropy weak solution. Then, for any c ∈ R,(
f
(
γ(x), u

)
− f

(
γ(x), c

)
− γ1(x)

(
A(u) −A(c)

)
x

)
x
∈ M(ΠT ),(4.14) (

sgn(u− c)
[
f
(
γ(x), u

)
− f

(
γ(x), c

)]
− γ1(x)

∣∣A(u) −A(c)
∣∣
x

)
x
∈ M(ΠT ).(4.15)

Lemma 4.5. Let u be a BVt entropy weak solution of (4.1), and consider the

transformed function z(x, t) := Ψ(γ(x), u(x, t)). Then
∫ T

0
TV(z(·, t)) dt < C for some

finite constant C > 0. In other words, zx ∈ M(ΠT ).

Proof. For A ≡ 0, the proof of Lemma 2.2 of [25] applies unchanged up to
minor differences in notation. Here we modify that proof to account for the presence
of A(u). Let TV(z(·, t)|I) denote the spatial variation of z(·, t) measured over the

interval I. Then it suffices to show that
∫ T

0
TV(z(·, t)|I) dt is bounded for each of the

open intervals I = (−∞, xL), (xL, 0), (0, xR), and (xR,∞). Due to the factor γ1(x),
the singular mapping Ψ simplifies to Ψ(γ, u) =

∫ u

0
|fu(γ, w)| dw when I = (−∞, xL)

or I = (xR,∞), and so the proof of Lemma 2.2 of [25] applies to those intervals
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without any modifications. We will focus on the interval I = (0, xR) and omit the
proof for (xL, 0) since it is similar. Thus, we now set out to show that∫ T

0

TV
(
z(·, t)|{x| 0<x<xR}

)
dt < ∞.(4.16)

To this end, recall that for x ∈ (0, xR), we have γ = (1, qR), and

f(γ, u) = qRu + b(u) − qRuF = f̂(γ, u) − qRuF,

Ψ(γ, u) =

∫ u

0

S(w)
∣∣f̂u(γ, w)

∣∣ dw + A(u) =

∫ u

0

S(w)
∣∣qR + b′(w)

∣∣ dw + A(u),

F (γ, u, c) = sgn(u− c)
(
f(γ, u) − f(γ, c)

)
= sgn(u− c)

(
f̂(γ, u) − f̂(γ, c)

)
.

Let ΠR
T := (0, xR) × (0, T ) ⊂ ΠT . Since A(u)x ∈ L∞((xL, xR) × (0, T )), we have

A(u)x ∈ M(ΠR
T ),

(
A(u) −A(c)

)
x
∈ M(ΠR

T ),
∣∣A(u) −A(c)

∣∣
x
∈ M(ΠR

T ).

Thus, it suffices to show that F(γ, u)x ∈ M(ΠR
T ). Note that

F
(
γ(x), u(x, t)

)
=

∫ u(x,t)

0

S(w)
∣∣f̂u(γ, w)

∣∣ dw for (x, t) ∈ ΠR
T .

Due to the assumptions on qR and b(u), the function f̂ has at most two extrema for
u ∈ (0, 1). We assume that qR is chosen such that there are exactly two extrema
u∗

1 < u∗
2. The cases with one or no extremum will be omitted; they are handled in

a similar manner. It is clear that u �→ f̂(γ, u) is strictly monotone on intervals not
containing extrema. We need the following fact, which follows by subtracting (4.14)
from (4.15) and then dividing by 2:

(
χl(w; c)

(
f(γR, u) − f(γR, c)

)
− γ1(x)

(
(A(u) −A(c))−

)
x

)
x
∈ M(ΠR

T ) ∀c ∈ R.

(4.17)

Here χl(w; c) is the characteristic function for [0, c], and we have restricted our at-
tention to the smaller domain ΠR

T . Finally, we have used the fact that γ(x) ≡ γR for
x ∈ (0, xR).

Next, note that for c ≤ uc in (4.17), the term (A(u) − A(c))− vanishes. This is
easy to see by considering the two possible cases u > c and u ≤ c. In the first case,
A(u)−A(c) ≥ 0, since A(·) is nondecreasing, and in the second case A(u)−A(c) = 0,

since A(·) is constant on [0, uc]. Also, f̂(γ, u) − f̂(γ, c) = f(γ, u) − f(γ, c). Thus, we
conclude from (4.17) that(

χl(w; c)
(
f̂(γR, u) − f̂(γR, c)

))
x
∈ M(ΠR

T ) for c ≤ uc.(4.18)

In (4.18), we now take c1 := u∗
1 ∧ uc, c2 := u∗

2 ∧ uc, and c3 := 1 ∧ uc, and letting

Pi(γR, u) := χl(w; ci)
(
f̂(γR, u) − f̂(γR, ci)

)
, i = 1, 2, 3,

we have ∂xPi ∈ M(ΠR
T ). It is a straightforward exercise to verify that

F(γ, u) = P3(γR, u) − 2P2(γR, u) + 2P1(γR, u)

+ f̂(γR, c3) − 2f̂(γR, c2) + 2f̂(γR, c1),
(4.19)

from which it follows immediately that F(γ, u)x ∈ M(ΠR
T ).
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The proof of the following lemma is a direct application of Lemma 4.5. Its proof
follows from the proofs of Lemmas 3.3 and 3.4 of [56].

Lemma 4.6. A BVt entropy solution u and the quantities γ1A(u), γ1A(u)x, and
γ1|A(u) −A(c)|x admit right and left traces at each jump in γ.

4.5. Entropy jump conditions and uniqueness of entropy solutions. Our
objective in this section is to prove the L1 stability of entropy weak solutions, which
is stated in Theorem 4.15. If we had in our problem (4.1) the parabolic term A(u)xx
instead of (γ1(x)A(u)x)x, i.e., if γ1 ≡ 1, section 2 of [56] would apply verbatim, and
we could simply appeal to Theorem 2.1 of that paper. Thus we will follow closely
section 2 of [56]. Since the spatially varying parameter γ1 plays a key role here,
we remind the reader that γ1 is simply the characteristic function for the interval
(xL, xR).

As in [56], it is convenient, and sufficient, to work with limits in the sense of
Lebesgue. Specifically, let W = W (x) be any function on R, and fix a point x0 ∈ R.
We define Lebesgue-type one-sided limits as follows:

L lim
x↓x0

W (x) := lim
ε↓0

1

ε

∫ x0+ε

x0

W (x) dx, L lim
x↑x0

W (x) := lim
ε↓0

1

ε

∫ x0

x0−ε

W (x) dx.

The key fact here (see Lemma 2.1 of [56]) is the following.
Lemma 4.7. Let W ∈ L∞(ΠT ), and fix a point x0 ∈ R. If the right and left

traces t �→ W (x0±, t) exist in the sense of Definition 4.2, then for a.e. t ∈ (0, T ) they
also exist as right and left traces in the sense of Lebesgue points in L1:

L lim
x↓x0

W (x, t) = W (x0+, t), L lim
x↑x0

W (x, t) = W (x0−, t).

Next, we record the versions of Lemmas 2.2 and 2.3 of [56] that account for the
coefficient γ1(x) multiplying A(u)x. The proofs in [56] are easily modified to deal
with γ1 and are omitted here.

Lemma 4.8. Let u and v be a pair of BVt entropy weak solutions. Let F be the
Kružkov entropy flux defined in (4.12). Fix one of the jumps in γ located at m ∈ J .
Then for a.e. t ∈ (0, T )

L lim
x↓m

F
(
γ(x), u(x, t), v(x, t)

)
= F

(
γ(m+), u(m+, t), v(m+, t)

)
,

L lim
x↑m

F
(
γ(x), u(x, t), v(x, t)

)
= F

(
γ(m−), u(m−, t), v(m−, t)

)
,

(4.20)

L lim
x↓m

(
γ1(x)

∣∣A(u) −A(v)
∣∣
x

)
(x, t)

=

⎧⎪⎨
⎪⎩
γ1(m+)σ(m+, t)

(
A(u)x(m+, t) −A(v)x(m+, t)

)
if A(u(m+, t))

�= A(v(m+, t)),

γ1(m+)
∣∣A(u)x(m+, t) −A(v)x(m+, t)

∣∣ otherwise,

(4.21)

L lim
x↑m

(
γ1(x)

∣∣A(u) −A(v)
∣∣
x

)
(x, t)

=

⎧⎪⎨
⎪⎩
γ1(m−)σ(m−, t)

(
A(u)x(m−, t) −A(v)x(m−, t)

)
if A(u(m−, t))

�= A(v(m−, t)),

−γ1(m−)
∣∣A(u)x(m−, t) −A(v)x(m−, t)

∣∣ otherwise,

(4.22)

where σ(m+, t) := sgn(u(m+, t)−v(m+, t)) and σ(m−, t) := sgn(u(m−, t)−v(m−, t)).
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Lemma 4.9. Let u be a BVt entropy weak solution. Let F be the Kružkov entropy
flux defined in (4.12). Fix one of the jumps in γ located at m ∈ J . For any c ∈ R,
we have for a.e. t ∈ (0, T )

L lim
x↓m

F
(
γ(x), u(x, t), c

)
= F

(
γ(m+), u(m+, t), c

)
,

L lim
x↑m

F
(
γ(x), u(x, t), c

)
= F

(
γ(m−), u(m−, t), c

)
,

(4.23)

L lim
x↓m

(
γ1(x)

∣∣A(u) −A(c)
∣∣
x

)
(x, t)

=

{
γ1(m+)σ(m+, t)A(u)x(m+, t) if u(m+, t) �= c,

γ1(m+)
∣∣A(u)x(m+, t)

∣∣ if u(m+, t) = c,

(4.24)

L lim
x↑m

(
γ1(x)

∣∣A(u) −A(c)
∣∣
x

)
(x, t)

=

{
γ1(m−)σ(m−, t)A(u)x(m−, t) if u(m−, t) �= c,

−γ1(m−)
∣∣A(u)x(m−, t)

∣∣ if u(m−, t) = c,

(4.25)

where σ(m−, t) := sgn(u(m−, t) − c) and σ(m+, t) := sgn(u(m+, t) − c).
Before continuing, we introduce a notational convention that we hope will simplify

the appearance of the formulas that follow. Whenever we are discussing a fixed
element m ∈ J , and the time is fixed at t ∈ [0, T ] where all of the relevant right
and left limits exist, we use the notation u± = u±(t) = u(m±, t), γ± = γ(m±), and
(γ1A(ux))± = (γ1A(u)x)(m±, t).

We collect in the following lemma several properties of a BVt entropy weak solu-
tion near a jump in γ. The relationship (4.26) is the Rankine–Hugoniot condition for
this problem, while (4.28) is an entropy condition. The relationship (4.27) restricts
the sign of A(u)x at a jump in γ.

Remark 4.1. To highlight once again the significance of assumption (D.4), we
mention that the proof of (4.27) requires the hypothesis that A(u) is continuous across
the jumps in γ at xL and xR. Thus, (D.4) is crucial for the uniqueness of entropy
weak solutions of Model 1.

Lemma 4.10. Let u be a BVt entropy weak solution. Fix one of the jumps in
m ∈ J . Then the following relationships hold across the jump for a.e. t ∈ (0, T ):

f
(
γ+, u+

)
− (γ1A(u)x)+ = f

(
γ−, u−

)
− (γ1A(u)x)−,(4.26)

sgn(u+ − u−) sgn
(
(A(u)x)+

)
≥ 0, sgn(u+ − u−) sgn

(
(A(u)x)−

)
≥ 0.(4.27)

And for u−(t) �= u+(t),[
F
(
γ+, u+, c

)
− sgn(u+ − c) (γ1A(u)x)+

]
−
[
F
(
γ−, u−, c

)
− sgn(u− − c) (γ1A(u)x)−

]
≤

∣∣f(γ+, c) − f(γ−, c)
∣∣ ∀c ∈ R,

(4.28)

where F is the Kružkov entropy flux function defined in (4.12). In addition, the
appropriate inequality in Table 4.1 holds for all c between u− and u+.

Proof. The proofs of these assertions are similar to the proofs of Lemmas 2.4,
2.5, 2.6, and 2.7 of [56]. Since the proof of (4.27) relies on the assumption (D.4), we
will review its proof but will not repeat the proofs of the other assertions. We start
by fixing a time t ∈ (0, T ) where all of the relevant right and left spatial (essential)
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Table 4.1

Entropy jump conditions.

f(γ−, c) ≤ f(γ+, c) f(γ−, c) ≥ f(γ+, c)

u− ≤ c ≤ u+ f(γ+, u+) − (γ1A(u)x)+ f(γ−, u−) − (γ1A(u)x)−

≤ f(γ+, c) ≤ f(γ−, c)

u+ ≤ c ≤ u− f(γ−, u−) − (γ1A(u)x)− f(γ+, u+) − (γ1A(u)x)+

≥ f(γ−, c) ≥ f(γ+, c)

limits exist at x = m. We prove only the first inequality in (4.27); the proof of the
other inequality is similar. Let us suppress the dependence on t for the remainder of
the proof. If u+ = u−, the inequality is obvious, so assume that u+ > u−. We must
show that (A(u)x)+ ≥ 0. From

ess lim
ε↓0

u(m + ε) =: u+ > u−,

it is clear that u(m+ε) > u− for a.e. sufficiently small ε > 0. Next, we apply A to both
sides of u(m + ε) > u−. Since A is nondecreasing, we obtain A(u(m + ε)) ≥ A(u−)
for a.e. sufficiently small ε > 0. If the jump point is at the origin, i.e., m = 0,
then continuity of A(u) follows from assumption (D.1). If m = xL or m = xR, then
assumption (D.4) gives us continuity of A(u). In either case, we have A(u−) = A(u+).
Thus,

1

ε

∫ m+ε

m

A(u)x dx =
1

ε
(A(u(m + ε)) −A(u+)) ≥ 0(4.29)

for a.e. sufficiently small ε > 0. Letting ε ↓ 0 (along a subsequence for which (4.29)
holds) yields (A(u)x)+ ≥ 0. The proof is completed by showing via a similar argument
that if u+ < u−, then (A(u)x)+ ≤ 0.

Remark 4.2. Since A is nondecreasing, we can write the entropy condition (4.28)
in the alternative form

Φ(γ, u, c)+ − Φ(γ, u, c)− ≤
∣∣f(γ+, c) − f(γ−, c)

∣∣ ∀c ∈ R,(4.30)

where Φ(γ, u, c) := F (γ, u, c)−γ1|A(u)−A(c)|x. Note that the entropy jump condition
(4.28) is the same as the one stated in Lemma 2.6 of [56], with the exception that
γ1 = γ1(x) is not present in [56]. Similarly, this is the only difference between Table 1
of [56] and our Table 4.1.

The next lemma is basically Lemma 2.8 of [56], adapted to the present setup.
Lemma 4.11. Let u be a BVt entropy weak solution. Fix the jump in γ located

at m = 0 and a time t ∈ [0, T ] where all of the relevant right and left limits exist. If
u− �= u+, then A′(w) = 0 for w between u− and u+, and thus A(·) is constant on the
interval connecting u− to u+; that is,

A(w) = A(u−) = A(u+) for w between u− and u+.(4.31)

Taken together, Lemma 4.11 and assumption (D.4) guarantee continuity of x �→
A(u(x, t)) for a.e. t ∈ [0, T ] at each of the jumps m ∈ {xL, 0, xR}. Using this fact,
along with the relationships in Table 4.1, it is possible to prove the following lemma,
whose proof we omit, since it is essentially the same as the proof of Lemma 2.9 of [56].
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Lemma 4.12. Let u and v be a pair of BVt entropy weak solutions. Fix a jump
in γ located at m ∈ J and a time t ∈ (0, T ) where all of the relevant right and left
traces exist. Assume that u− > v−, u+ < v+. If u+ ≤ u−, then

v− ∈ [u+, u−), f(γ+, v−) ≥ f(γ−, v−)

=⇒ f(γ−, v−) −
(
γ1A(v)x

)
− ≤ f(γ−, u−) −

(
γ1A(u)x

)
−,

v+ ∈ (u+, u−], f(γ−, v+) ≥ f(γ+, v+)

=⇒ f(γ+, v+) −
(
γ1A(v)x

)
+
≤ f(γ+, u+) −

(
γ1A(u)x

)
+
.

(4.32)

If v− ≤ v+, then

u− ∈ (v−, v+], f(γ+, u−) ≤ f(γ−, u−)

=⇒ f(γ−, v−) −
(
γ1A(v)x

)
− ≤ f(γ−, u−) −

(
γ1A(u)x

)
−,

u+ ∈ [v−, v+), f(γ+, u+) ≥ f(γ−, u+)

=⇒ f(γ+, v+) −
(
γ1A(v)x

)
+
≤ f(γ+, u+) −

(
γ1A(u)x

)
+
.

(4.33)

Before proceeding to our main uniqueness theorem, let us recall the so-called
crossing condition that we introduced in [56].

Definition 4.13 (crossing condition). For any jump in γ with associated left
and right limits (γ−,γ+), we say that the crossing condition holds if, for any states
u and v,

f(γ+, u) − f(γ−, u) < 0 < f(γ+, v) − f(γ−, v) implies u < v.(4.34)

The geometric interpretation of this condition is that if the graphs of u �→ f(γ−, u)
and u �→ f(γ+, u) cross, then there can be at most one crossing, say at u = uχ, and
in this case the graph of f(γ−, u) lies above (below) the graph of f(γ+, u) for u < uχ

(u > uχ). The crossing condition is satisfied automatically if there is no crossing.
Figure 2.1(d) shows an example of a flux crossing that satisfies the crossing condition,
with crossing point uχ = uF. A motivation for the crossing condition in the present
context is given by the following lemma, whose elementary proof is provided in [25].
See also Figure 2.1.

Lemma 4.14. With our assumptions on b, qL, and qR, the crossing condition is
satisfied at each jump m ∈ J . Specifically, there are no flux crossings associated with
the jumps x = xL, x = xR. There may be a single crossing at the jump x = 0, but it
satisfies the crossing condition.

Satisfaction of the crossing condition at the nontrivial crossing at x = 0 may be
traced to the fact that a source is located there, and thus the flow diverges from the
origin. This is most easily understood by ignoring for a moment the batch flux b(u)
and the parabolic term. It is easy to check that these terms do not affect the crossing
relationship at x = 0. Then, if we use δ(x) to denote the delta function, our model
simplifies to

ut + q(x)ux = (qR − qL)uF δ(x), q(x) =

{
qL for x < 0,

qR for x > 0.

Since qL < 0 < qR, we have diverging flows, balanced by a source term on the right-
hand side. Notice that in this case the flux curves are the straight lines u �→ qL(u−uF)
and u �→ qR(u− uF), and the crossing condition is satisfied. On the other hand, if we



CONTINUOUS SEDIMENTATION IN CLARIFIER-THICKENERS 905

had qL > 0 > qR, then our simplified model would result in converging flows, balanced
by a sink term, and the crossing condition would be violated. Thus, from a physical
point of view, our assumption that the crossing condition is satisfied is a natural one
and follows directly from the fact that the clarifier-thickener model has a source term
(as opposed to a sink term).

If any of the jumps in γ violated the crossing condition, our definition of entropy
solution would not be strong enough to rule out so-called expansion shocks (see [56]
for a detailed explanation), and our uniqueness theory would break down. It turns
out that additional entropy conditions are required when the crossing condition is not
satisfied; we defer further discussion of this issue to a future paper since the crossing
condition is satisfied in the present context.

We are finally able to prove our main uniqueness theorem.
Theorem 4.15 (L1 stability and uniqueness). Let v and u be two BVt entropy

weak solutions to the initial value problem (4.1). For a.e. t ∈ (0, T ),∥∥v(·, t) − u(·, t)
∥∥
L1(R)

≤ ‖v0 − u0‖L1(R).(4.35)

Proof. For BVt entropy weak solutions u and v, a “doubling of variables” argu-
ment appearing in Appendix A of [56] yields

−
∫∫

ΠT

(
|v − u|ϕt + F (γ(x), v, u)ϕx +

∣∣γ1A(v) − γ1A(u)
∣∣ϕxx

)
dt dx ≤ 0(4.36)

for any 0 ≤ ϕ ∈ D(ΠT \ J ). Next, via a limiting argument (see the proof of Theo-
rem 2.1 of [56]) we extend this inequality to the larger class of test functions which
do not vanish near x ∈ J . Specifically, we obtain for any 0 ≤ φ ∈ D(ΠT )

−
∫∫

ΠT

(
|v − u|φt + F (γ(x), v, u)φx −

∣∣γ1A(v) − γ1A(u)
∣∣φxx

)
dt dx

≤
∑
m∈J

∫ T

0

[
F (γ(x), v, u) −

∣∣γ1A(v) − γ1A(u)
∣∣
x

]x=m+

x=m−
φ(m, t) dt,

(4.37)

where the notation indicates limits from the right and left at x = m.
We wish to show that each term in the sum on the right-hand side of (4.37) is

nonpositive. If we fix a jump point m ∈ J , then the contribution to this sum from
the jump point m is given by

R := Φ
(
γ(m+), v(m+, t), u(m+, t)

)
− Φ

(
γ(m−), v(m−, t), u(m−, t)

)
.(4.38)

Here Φ is defined in Remark 4.2 and appears in the entropy condition (4.30). Our
goal is now to show that R is nonpositive. Let us fix a time t ∈ (0, T ) where all
of the relevant essential right and left limits exist. If m = 0, then since γ1 = 1 on
the interval (xL, xR) containing x = 0, R ≤ 0 is immediate by repeating the relevant
portion (the seven cases) of the proof of Theorem 2.1 of [56]. (Note that in [56] we
used the symbol S for the quantity known here as R.) We will not reproduce that
proof here, but we emphasize that this (m = 0) is the only case where a nontrivial flux
crossing occurs, and thus we rely on the fact that the crossing condition is satisfied.

If x = xL or x = xR, then because of the jump in γ1, we cannot appeal directly
to [56], which did not address the case of a spatially varying parabolic term. We will
focus on the case x = xR and omit the similar case x = xL. The approach is to verify
that R ≤ 0 in each of the seven cases identified in [56]. The assumptions on b(u)
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ensure that at x = xR, we will always have f(γ−, u) ≥ f(γ+, u). In particular, there
are no flux crossings, which simplifies the proofs of Cases 6 and 7.

Case 1 (v− = u−, v+ = u+). Then F (γ+, v+, u+) = 0 and F (γ−, v−, u−) = 0,
and by Lemma 4.8 and the fact that γ1(xR+) = 0, R reduces to

R = −
∣∣(γ1A(u)x

)
− −

(
γ1A(v)x

)
−
∣∣ ≤ 0.

Case 2 (v− = u−, u+ �= v+). Assume that v+ > u+. In this case

R = f(γ+, v+) − f(γ+, u+) −
(
γ1A(v)x

)
+

+
(
γ1A(u)x

)
+

−
∣∣(γ1A(v)x

)
− −

(
γ1A(u)x

)
−
∣∣,(4.39)

where we have used the equality f(γ−, v−) = f(γ−, u−). Via the Rankine–Hugoniot
condition and another application of f(γ−, u−) = f(γ−, v−), we get

f(γ+, v+) − f(γ+, u+) = −
(
γ1A(v)x

)
− +

(
γ1A(u)x

)
−.

We have again used the fact that γ1(xR+) = 0. Substituting this into (4.39) gives

R = −
∣∣(γ1A(v)x

)
− −

(
γ1A(u)x

)
−
∣∣ ≤ 0.

The situation where v+ < u+ is handled similarly.
Case 3 (v+ = u+, u− �= v−). The proof of this case is similar to that of Case 2

and is therefore omitted.
Case 4 (u− < v−, u+ < v+). In this case, using γ1(xR+) = 0, we obtain from

(4.38)

R =
(
f(γ+, v+) − f(γ+, u+)

)
−
[
f(γ−, v−) − f(γ+, u+) −

(
γ1A(v)x

)
− +

(
γ1A(u)x

)
−
]
,

(4.40)

which equals zero, by the Rankine–Hugoniot condition (4.26).
Case 5 (u− > v−, u+ > v+). As in the preceding case, R = 0 due to a similar

calculation.
Case 6 (u− > v−, u+ < v+). In this case, (4.38) becomes

R = f(γ−, v−) + f(γ+, v+) − f(γ−, u−) − f(γ+, u+) −
(
γ1A(v)x

)
− +

(
γ1A(u)x

)
−

= 2f(γ+, v+) − 2f(γ+, u+)

(4.41)

= 2
[
f(γ−, v−) −

(
γ1A(v)x

)
−
]
− 2

[
f(γ−, u−) −

(
γ1A(u)x

)
−
]
,

(4.42)

where (4.41) and (4.42) follow from the Rankine–Hugoniot condition (4.26). In (4.41)
we have used again the fact that γ1(xR+) = 0. It follows from the assumption
u− > v−, u+ < v+ that u+ < v+ ≤ u− or v− < u− ≤ v+ must hold. Take the case
where u+ < v+ ≤ u−. Recalling that at m = xR we always have f(γ−, ·) ≥ f(γ+, ·),
we can apply (4.32) of Lemma 4.12, giving us f(γ+, v+) ≤ f(γ+, u+). With (4.41)
in mind, we see that R ≤ 0. In the case where v− < u− ≤ v+, (4.33) of Lemma 4.12
yields f(γ−, v−)−(γ1A(v)x)− ≤ f(γ−, u−)−(γ1A(u)x)−, again implying that R ≤ 0,
this time using (4.42).
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Case 7 (u− < v−, u+ > v+). The proof is identical to that of Case 6; we switch
the roles of u and v and use the version of Lemma 4.12 that results by also switching
the roles of u and v.

We have established that for any 0 ≤ φ ∈ D(ΠT )

−
∫∫

ΠT

(
|v − u|φt + F (γ(x), v, u)φx −

∣∣γ1A(v) − γ1A(u)
∣∣φxx

)
dt dx ≤ 0.(4.43)

The proof is concluded via a standard test function argument which is outlined in the
proof of Theorem 2.1 of [56].

4.6. Convergence of the numerical approximations. In what follows, let
us denote by ∆ the pair ∆ := (∆t,∆x). Our purpose in this section is to prove
convergence (along a subsequence) of the numerical approximations as ∆ ↓ 0, i.e., as
∆t,∆x → 0 with ∆t,∆x > 0. For the sake of simplicity, we will concentrate on the
explicit version of the algorithm.

Let (γ∆, u∆) be the finite difference approximation defined in (3.3). A signifi-
cant part of the convergence analysis consists of establishing a spatial total variation
estimate for the approximate solution u∆, measured with respect to a particular trans-
formed variable. More precisely, we prove that u∆ converges (along a subsequence) to
a weak solution by introducing a singular mapping Ψ : (γ, u) �→ (γ, z) such that strong
compactness of z∆ = Ψ(γ∆, u∆) can be obtained. As always in problems involving
resonance phenomena, one should measure the space translates with respect to a non-
linear transformation; as already mentioned in the introduction, there is generally no
spatial total variation bound for the conserved variable u itself. The singular mapping
approach has been used for many years in the purely hyperbolic setting, starting with
the paper [76].

On the other hand, the construction of a suitable singular mapping Ψ for second-
order equations is more recent and was done first in [55]. The idea is to construct
a singular mapping that includes a contribution from both the convective flux and
the diffusion function. We first prove compactness for the two parts of the singular
mapping separately. We then combine the two portions to recover the original singular
mapping and conclude that since the mapping is strictly increasing as a function of
the conserved variable u, convergence of the transformed variable implies convergence
of u.

Since we are applying the scheme described in section 3 to Model 1 (constant cross
section), we can simplify the analysis by taking Sj ≡ 1, and then λj =: λ = ∆t/∆x.
To simplify the notation a little further, let µ = λ/∆x, hn

j+1/2 = h(γj+1/2, U
n
j+1, U

n
j ),

γ1j+1/2 = sj+1/2, and An
j = A(Un

j ). The marching formula (3.1) then takes the form

Un+1
j = Un

j − λ∆+h
n
j−1/2 + µ∆+

(
sj−1/2∆−A

n
j

)
.(4.44)

The Engquist–Osher numerical flux is consistent with the actual flux, i.e.,
h(γ, u, u) = f(γ, u). In addition, for fixed γ, h(γ, v, u) is a two-point monotone
flux, meaning that it is nonincreasing with respect to v and nondecreasing with re-
spect to u. Due to the regularity assumptions on f , the numerical flux h is Lipschitz
continuous with respect to each of its arguments and in fact satisfies

f−
u (γ, v) = hv(γ, v, u) ≤ 0 ≤ hu(γ, v, u) = f+

u (γ, u),(4.45)

where f−
u (γ, u) := min{0, fu(γ, u)} and f+

u (γ, u) := max{0, fu(γ, u)} denote the
negative and positive parts of fu. Thus, whenever the flux u �→ f(γ, u) is C1, the
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numerical flux is also C1 as a function of the conserved variables u and v. The
following bound is easily checked:

‖h‖ := max
{∣∣h(γ, v, u)

∣∣ ∣∣∣ γ ∈ G, v, u ∈ [0, 1]
}
≤ ‖f‖ +

1

2
‖fu‖.

From formula (4.45) it is clear that ‖fu‖ is a Lipschitz constant for the numerical
flux h with respect to the conserved variables u and v.

We assume that the discretization parameters (∆x,∆t) are chosen so that the
following Courant–Friedrichs–Lewy (CFL) [35] condition holds:

λ
(
max{−qL, qR} + max

u∈[0,1]
|b′(u)|

)
+ µ max

u∈[0,1]
A′(u) ≤ 1/2.(4.46)

In our case, the stability analysis relies very much on the monotonicity prop-
erty of the scheme, where we recall that a finite difference scheme such as (4.44) is
monotone [36] if

Un
j ≤ V n

j ∀j =⇒ Un+1
j ≤ V n+1

j ∀j.(4.47)

The following lemma and its proof illustrate how the CFL condition (4.46) is derived
from the requirement that our scheme (4.44) be monotone.

Lemma 4.16. If the initial data {U0
j }j∈Z lies in the interval [0, 1] and the

CFL condition (4.46) is satisfied, then the solution {Un
j }j∈Z computed by the ex-

plicit scheme (4.44) also belongs to the interval [0, 1] for each n ≥ 0. Moreover, the
difference scheme (4.44) remains monotone at each time level n ≥ 0.

Proof. Let us first rewrite (4.44) as Un+1
j = Gj(U

n
j+1, U

n
j , U

n
j−1, γj+1/2, γj−1/2)

for j ∈ Z. Then the scheme is monotone, i.e., satisfies (4.47), if

∂Un+1
j /∂Un

j+1 ≥ 0, ∂Un+1
j /∂Un

j ≥ 0, ∂Un+1
j /∂Un

j−1 ≥ 0, j ∈ Z.(4.48)

However, in our case we have for j ∈ Z

∂Un+1
j /∂Un

j+1 = −λf−
u

(
γj+1/2, U

n
j+1

)
+ µγ1j+1/2A

′(Un
j+1

)
,(4.49)

∂Un+1
j /∂Un

j−1 = λf+
u

(
γj−1/2, U

n
j−1

)
+ µγ1j−1/2A

′(Un
j−1

)
,(4.50)

∂Un+1
j /∂Un

j = 1 + λf−
u

(
γj+1/2, U

n
j

)
− λf+

u

(
γj−1/2, U

n
j

)
(4.51)

− µ
(
γ1j−1/2 + γ1j+1/2

)
A′(Un

j

)
.

Since f−
u ≤ 0, f+

u ≥ 0, and A′(u) ≥ 0 by definition, we see that the right-hand sides
of (4.49) and (4.50) are always nonnegative. If Un

j ∈ [0, 1], then it is easy to deduce

from (4.51) and from γ1 ∈ [0, 1] that also ∂Un+1
j /∂Un

j ≥ 0 if the CFL condition (4.46)
is satisfied. Precisely speaking, Un

j ∈ [0, 1] and the CFL condition (4.46) ensure that
the scheme is monotone at time tn.

It remains to prove that if we have Un
j ∈ [0, 1], then the quantities Un+1

j calculated

by the scheme also satisfy Un+1
j ∈ [0, 1] for j ∈ Z. To this end, we now apply the

scheme (4.44) to the initial data V 0
j ≡ 0. The parabolic terms vanish, since the data

is constant, and at time level 1 we get V 1
j = V 0

j − λ∆−h(γj+1/2, V
0
j+1, V

0
j ). Since

b(u) = 0 for u = 0 and u = 1, it is easy to check that V 1
0 = λ(qR − qL)uF and V 1

j = 0
for j �= 0. The CFL condition implies that 0 ≤ λ(−qL) ≤ 1/2 and 0 ≤ λqR ≤ 1/2,
which yields 0 ≤ λ(qR − qL) ≤ 1, and thus V 1

j ∈ [0, 1].
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Next, we apply the scheme (4.44) to the initial data W 0
j ≡ 1, yielding at time

level 1 W 1
j = W 0

j − λ∆−h(γj+1/2,W
0
j+1,W

0
j ). This time we find that W 1

0 = 1 −
λ(qR − qL)(1 − uF) and W 1

j = 1 for j �= 0. The CFL condition again guarantees that

W 1
j ∈ [0, 1]. Thus, 0 ≤ V 1

j , W 1
j ≤ 1, the CFL condition remains valid for {V 1

j }j∈Z and

{W 1
j }j∈Z, and monotonicity implies that V 1

j ≤ U1
j ≤ W 1

j . Continuing inductively,
we see that 0 ≤ V n

j ≤ Un
j ≤ Wn

j ≤ 1, the CFL condition remains satisfied at each
successive time step, and we continue to have monotonicity for each n ≥ 0.

When sending ∆ ↓ 0, as we will do in the analysis of the explicit scheme (3.1),
the ratio µ = λ/∆x = ∆t/∆x2 will be kept constant, which means that λ = µ∆x is
variable with λ → 0 as ∆ ↓ 0.

The CFL condition for the semi-implicit scheme (3.4), which we do not analyze
here but use for some of the numerical examples, is

λ
(
max{−qL, qR} + max

u∈[0,1]
|b′(u)|

)
≤ 1/2.(4.52)

Consequently, the semi-implicit scheme behaves stably for ∆ ↓ 0 if we fix λ = ∆t/∆x
such that (4.52) is satisfied. The semi-implicit scheme (3.4) allows a faster computa-
tion than the explicit scheme (3.1), since ∆t needs to be chosen proportional to ∆x,
not ∆x2 (as for the explicit scheme). Again, the CFL condition (4.52) accrues from
the requirement that the scheme be monotone, as we shall see in the following version
of Lemma 4.16 for the semi-implicit scheme (3.4). This lemma can be considered as
a motivation for the CFL condition (4.52).

Lemma 4.17. If the initial data {U0
j }j∈Z lies in the interval [0, 1] and the CFL

condition (4.52) is satisfied, then the solution {Un
j }j∈Z computed by the semi-implicit

scheme (3.4) also belongs to the interval [0, 1] for each n ≥ 0. Moreover, the difference
scheme (3.4) remains monotone at each time level n ≥ 0.

Proof. Let V n := {V n
j }j∈Z and Wn := {Wn

j }j∈Z satisfy V n
j ,Wn

j ∈ [0, 1] for all

j ∈ Z. If we compute V n+1 and Wn+1 using the implicit scheme, then with the help
of (4.45) we can write their difference as

Wn+1
j − V n+1

j = Wn
j − V n

j + αj+1/2

(
Wn

j+1 − V n
j+1

)
− βj+1/2

(
Wn

j − V n
j

)
− αj−1/2

(
Wn

j − V n
j

)
+ βj−1/2

(
Wn

j−1 − V n
j−1

)
+ sj+1/2θj+1

(
Wn+1

j+1 − V n+1
j+1

)
− (sj+1/2 + sj−1/2)θj

(
Wn+1

j − V n+1
j

)
+ sj−1/2θj−1

(
Wn+1

j−1 − V n+1
j−1

)
,

(4.53)

where we define for j ∈ Z

αj+1/2 := −λ

∫ 1

0

f−
u

(
γj+1/2, V

n
j+1 + φ(Wn

j+1 − V n
j+1)

)
dφ ≥ 0,

βj+1/2 := λ

∫ 1

0

f+
u

(
γj+1/2, V

n
j + φ(Wn

j − V n
j )

)
dφ ≥ 0,

(4.54)

and

θj := µ
A(Wn+1

j ) −A(V n+1
j )

Wn+1
j − V n+1

j

≥ 0.(4.55)
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Let us abbreviate Dn
j := Wn

j − V n
j and rearrange (4.53) into the form(

1 + (sj+1/2 + sj−1/2)θj
)
Dn+1

j = (1 − βj+1/2 − αj−1/2)D
n
j + αj+1/2D

n
j+1

+ βj−1/2D
n
j−1 + sj+1/2θj+1D

n+1
j+1

+ sj−1/2θj−1D
n+1
j−1 .

(4.56)

Thanks to the CFL condition (4.52), we have 1−βj+1/2−αj−1/2 ≥ 0. Thus all of the
coefficients appearing in (4.56) are nonnegative, and taking absolute values results in(

1 + (sj+1/2 + sj−1/2)θj
)∣∣Dn+1

j

∣∣ ≤ (1 − βj+1/2 − αj−1/2)
∣∣Dn

j

∣∣
+ αj+1/2

∣∣Dn
j+1

∣∣ + βj−1/2

∣∣Dn
j−1

∣∣
+ sj+1/2θj+1

∣∣Dn+1
j+1

∣∣ + sj−1/2θj−1

∣∣Dn+1
j−1

∣∣.
(4.57)

Summing (4.57) over j ∈ Z, canceling wherever possible, and recalling the definition
of Dn

j , we find that

∑
j∈Z

∣∣Wn+1
j − V n+1

j

∣∣ ≤ ∑
j∈Z

∣∣Wn
j − V n

j

∣∣,(4.58)

indicating that the semi-implicit scheme is L1-contractive on data that is constrained
to the interval [0, 1]. It now follows from the Crandall–Tartar lemma [37] that the
scheme is also monotone (on data that is constrained to the interval [0, 1]).

We still must show that the solution remains in [0, 1]. First, observe that the
L1-contraction property (4.58) implies that the solution to the implicit scheme is
unique. Referring back to the portion of the proof of Lemma 4.16 where we used the
specific data V 0

j ≡ 0, and W 0
j ≡ 1, we see that the solutions V 1

j and W 1
j are also

(the unique) solutions to the implicit scheme at time level 1. With these observations
in mind, it is clear that the relevant portion of the proof of Lemma 4.16 also shows
invariance of the interval [0, 1] for the semi-implicit scheme.

We now continue our analysis of the explicit scheme (3.1).
Lemma 4.18. Our numerical approximation satisfies the following discrete time

continuity estimate (which is uniform in n and ∆):

∆x
∑
j∈Z

∣∣Un+1
j − Un

j

∣∣ ≤ ∆x
∑
j∈Z

∣∣U1
j − U0

j

∣∣ ≤ C∆t.(4.59)

It also satisfies a uniform (in n and ∆) L1 bound:

‖u∆(·, tn)‖L1(R) ≤ CT.(4.60)

Proof. The proof of Lemma 3.3 of [55] is almost entirely applicable to (4.59), the
only possible complication arising when we have to bound the quantity

∑
j∈Z

∣∣∣∣∆−
1

∆x
sj+1/2∆+A(U0

j )

∣∣∣∣.
One finds that the proof of the analogous bound in [55] can be modified to ac-
commodate the present situation. The key ingredients are the assumption that
γ1A(u0)x ∈ BV (R), along with the pointwise discretization of u0. For the proof
of (4.60), see Lemma 3.4 of [55].
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In what follows, it will be convenient to have available the notation O(1) to denote
a quantity that is bounded uniformly in n and ∆.

Lemma 4.19. The following bound holds independently of ∆ and the time level n:∑
j∈Z

sj−1/2

∣∣∆−A
n
j

∣∣ ≤ C.(4.61)

Proof. Let ρnj−1/2 := hn
j−1/2 − sj−1/2∆−A

n
j /∆x. By substituting Un+1

j − Un
j =

−λ∆+ρ
n
j−1/2 into (4.59) we find that

∑
j∈Z

∣∣∆+ρ
n
j−1/2

∣∣ = O(1).(4.62)

At the same time, if j is so large that xj > xR + 2∆x, then ρnj−1/2 = qRU
n
j . From

Lemma 4.16, we get that |ρnj−1/2| ≤ qR. This bound, together with the bound (4.62),

implies a uniform bound of the form |ρnj−1/2| = O(1). Since the convective numerical

flux h(γ, v, u) is continuous, the quantity hn
j−1/2 is also uniformly bounded, and so we

have the bound sj−1/2|∆−A
n
j |/∆x = O(1). The proof is completed by multiplying

both sides of this relationship by ∆x, summing over j, and recalling that sj−1/2

vanishes for xj outside of the interval [xL − ∆x, xR].
Let z∆(x, t) := Ψ(γ(x), u∆(x, t)). Defining (see (4.13) for the definition of F)

F∆(x, t) := F(γ(x), u∆(x, t)), A∆(x, t) := A(u∆(x, t)),

we can separate z∆ into its hyperbolic and parabolic contributions:

z∆(x, t) = F∆(x, t) + γ1(x)A∆(x, t).(4.63)

To prove that the difference scheme converges, we follow [25] and first prove
compactness for the transformed quantity z∆. We establish spatial variation bounds
separately for each of the intervals (−∞, xL), (xL, 0), (0, xR), (xR,∞). The jumps
in z∆ where these intervals meet are bounded, and so we can ignore them. Indeed
consider the jump in z∆(x, tn) that occurs at x = m ∈ {xL, 0, xR}, which is given by

z∆(m+, tn) − z∆(m−, tn) = Ψ
(
γ+, u∆(m+, tn)

)
− Ψ

(
γ−, u∆(m−, tn)

)
.

Since u∆ is bounded uniformly (by Lemma 4.16), γ is bounded by assumption, and
the transformation Ψ is Lipschitz continuous with respect to all variables, it is clear
that the magnitude of this jump is uniformly bounded also.

In the intervals (−∞, xL) and (xR,∞), the parabolic term is not present, and
(4.63) simplifies to z∆(x, t) = γ2u

∆(x, t). This makes it clear that the proof of the
variation bound for these intervals is the same as the proof of Lemma 3.5 of [25]. We
record this fact in the following lemma.

Lemma 4.20. We have the following bounds, which are independent of ∆ and n:

TV
(
z∆(·, tn)|{x|x<xL}

)
≤ C, TV

(
z∆(·, tn)|{x|x>xR}

)
≤ C.(4.64)

We now address the variation bound for the remaining intervals, (xL, 0) and
(0, xR). As in [25], we will focus on (0, xR), omitting the proof for the other interval,
since it is similar. Let γR := (qR, 1); i.e., let γR denote the value that γ takes on
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(0, xR). Recalling the definition (4.13), we see that γ1 = 1 for x ∈ (0, xR), and so Ψ
simplifies to

Ψ(γ, u) = F(γR, u) + A(u), F(γR, u) =

∫ u

0

S(w)|fu(γR, w)| dw.(4.65)

Let J− be the largest index j such that xj − ∆x/2 ≤ 0, and let J+ be the small-
est index j such that xj + ∆x/2 ≥ xR. Thus 0 ∈ IJ− , xR ∈ IJ+ , and [0, xR] ⊆
[xJ− − ∆x/2, xJ+ + ∆x/2].

The following lemma records a discrete entropy inequality. It can be proved via
a slight modification (to account for sj−1/2) of the proof of Lemma 4.1 of [56].

Lemma 4.21. For any c ∈ R, the following cell entropy inequality is satisfied by
approximate solutions Un

j generated by the scheme (4.44):

∣∣Un+1
j − c

∣∣ ≤ ∣∣Un
j − c

∣∣− λ∆−H
n
j+1/2 + µ∆+

(
sj−1/2∆−

∣∣A (
Un
j

)
−A(c)

∣∣)
− λ sgn

(
Un+1
j − c

)
∆+f

(
γj−1/2, c

)
,

(4.66)

where the numerical entropy flux Hj+1/2 is defined by

Hn
j+1/2 := h

(
γj+1/2, U

n
j+1 ∨ c, Un

j ∨ c
)
− h

(
γj+1/2, U

n
j+1 ∧ c, Un

j ∧ c
)
.(4.67)

Formally, the cell entropy inequality (4.66) can be motivated by assuming that
the function u in the integrand of (4.5) is piecewise constant on the rectangle Rn

j :=
(xj−1/2, xj+1/2)× (tn, tn+1) and by choosing a sequence of test functions φ with sup-
port on Rn

j that approximate the characteristic function χn
j of Rn

j . Moreover, the
exact entropy flux defined in (4.12) is replaced by the numerical entropy flux (4.67).
In this sense, the discrete entropy inequality (4.66) is consistent with the entropy
inequality (4.5) for the exact solution, but observe that the term in the second line of
(4.66), which mirrors the sum over m ∈ J in (4.5), is evaluated at time level tn+1.

Let χl(w; c) := H(c − w), where H(·) is the Heaviside function, and χr(w; c) :=
1 − χl(w; c). The following lemma is easily established using the calculations used
in Lemma 3.9 of [25], adapted to the cell entropy inequality (4.66) appearing in
Lemma 4.21.

Lemma 4.22. Fix c ∈ R and γ ∈ G. The following inequalities are valid for
J− ≤ j ≤ J+:

−
∫ Un

j+1

Un
j

χl(w; c)f−
u (γ, w) dw −

∫ Un
j

Un
j−1

χl(w; c)f+
u (γ, w) dw

≤ −1

λ

(
Un
j − Un+1

j

)
− − 1

∆x
∆+

(
sj−1/2∆−(A(Un+1

j ) −A(c))−
)

+ αn
j ,

(4.68)

∫ Un
j+1

Un
j

χr(w; c)f−
u (γ, w) dw +

∫ Un
j

Un
j−1

χr(w; c)f+
u (γ, w) dw

≤ 1

λ

(
Un
j − Un+1

j

)
+
− 1

∆x
∆+

(
sj−1/2∆−(A(Un+1

j ) −A(c))+
)

+ βn
j .

(4.69)

The quantities αn
j and βn

j are bounded independently of n and ∆. In fact, αn
j = βn

j = 0
for J− + 2 ≤ j ≤ J+ − 2.

With the help of these entropy inequalities, we can prove the following lemma.
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Lemma 4.23. The following spatial variation bounds are satisfied, independent
of ∆ and n:

TV
(
F∆(·, tn)|{x|xL<x<0}

)
≤ C, TV

(
F∆(·, tn)|{x|0<x<xR}

)
≤ C.

Proof. We prove only the second assertion; the proof of the first is similar. We
follow closely the proof of Lemma 3.10 of [25]. First, observe that if the term

1

∆x
∆−

(
∆+sj−1/2(A(Un

j ) −A(c))−
)

was not present in (4.68), the proof of Lemma 3.10 of [25] would apply verbatim.
Next, recall from the proof of Lemma 4.5 that if c ≤ uc, then (A(Un

j ) − A(c))− = 0.
Thus, when c ≤ uc, the parabolic term in (4.68) disappears, giving us

−
∫ Un

j+1

Un
j

χl(w; c)f−
u (γ, w) dw −

∫ Un
j

Un
j−1

χl(w; c)f+
u (γ, w) dw ≤ −1

λ

(
Un
j − Un+1

j

)
− + αn

j .

(4.70)

When x ∈ (0, xR), (γ1(x), γ2(x)) = (qR, 1) ≡ γR, and by the assumptions on
b and qR, u �→ f(γR, u) has at most two extrema for u ∈ (0, 1). For the sake of
argument, we assume that there are exactly two extrema. It will become clear that
a simplified version of the following proof will suffice if there are fewer than two. So
assume that there is one maximum located at u∗

1 ∈ (0, 1) and one minimum located
at u∗

2 ∈ (0, 1), with u∗
1 < u∗

2. The flux u �→ f(γR, u) is strictly monotone away from
these critical points. Let u∗

0 := 0 and u∗
3 := 1, and for ν = 0, 1, 2, let χν(u) be

the characteristic function of the interval [min{u∗
ν , uc},min{u∗

ν+1, uc}). Each of the
intervals [min{u∗

ν , uc},min{u∗
ν+1, uc}) either is empty (if the left endpoint happens to

equal uc) or f(γR, u) is strictly monotone in its interior. Define

φν(γR, u) :=

∫ u

0

χν(w)
∣∣fu(γR, w)

∣∣ dw, ν = 0, 1, 2.

Clearly, S(u) = χ0(u) + χ1(u) + χ2(u), so that F(γR, ·) has the decomposition

F(γR, u) = φ0(γR, u) + φ1(γR, u) + φ2(γR, u).(4.71)

We now use the entropy inequality (4.70) three times, just as in the proof of Lemma
3.10 of [25], except that now instead of c = uν , ν = 1, 2, 3, we take c = min{u∗

ν , uc},
ν = 1, 2, 3. In order to keep the analysis somewhat self-contained, let us review the
calculation appearing in [25] when c = u∗

1. We start by setting c = u∗
1 in inequality

(4.70) and observe that u �→ f(γR, u) is strictly increasing on (0, u∗
1). Then (4.70)

simplifies to

−
∫ Un

j

Un
j−1

χl(w;u∗
1)f

+
u (γR, w) dw ≤ −1

λ

(
Un
j − Un+1

j

)
− + αn

j .(4.72)

Since f+
u (γR, u) = |fu(γR, u)| for u ∈ (0, u∗

1), we find that∫ Un
j

Un
j−1

χl(w;u∗
1)f

+
u (γR, w) dw =

∫ Un
j

Un
j−1

χ0(w)
∣∣fu(γR, w)

∣∣dw
= φ0

(
γR, U

n
j

)
− φ0

(
γR, U

n
j−1

)
.
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Combining this last relationship with (4.72), we have the inequality

φ0
(
γR, U

n
j−1

)
− φ0

(
γR, U

n
j

)
≤ 1

λ

∣∣Un+1
j − Un

j

∣∣ + αn
j ,

and, since the right-hand side of this inequality is nonnegative, we also have

−
(
φ0

(
γR, U

n
j

)
− φ0

(
γR, U

n
j−1

))
−
≤ 1

λ

∣∣Un+1
j − Un

j

∣∣ + αn
j .(4.73)

Next, we sum (4.73) over j and invoke Lemmas 4.22 and 4.18 to obtain

−
J+∑

j=J−

(
φ0

(
γR, U

n
j

)
− φ0

(
γR, U

n
j−1

))
−
≤

J+∑
j=J−

(
1

λ

∣∣Un+1
j − Un

j

∣∣ +
∣∣αn

j

∣∣)

≤
∑
j∈Z

1

λ

∣∣Un+1
j − Un

j

∣∣ +
∣∣αn

J+

∣∣ +
∣∣αn

J+−1

∣∣ +
∣∣αn

J−

∣∣ +
∣∣αn

J−+1

∣∣ = O(1).

Finally, we observe that since φ0 is bounded uniformly in ∆ and n, it follows from
this bound on the negative variation that φ0 also has uniformly bounded total varia-
tion. Similar calculations (see [25]) result in uniform bounds on the total variation of
φ1 and φ2; i.e., we have

J+∑
j=J−

∣∣∣φν
(
γR, U

n
j

)
− φν

(
γR, U

n
j−1

)∣∣∣ = O(1), ν = 0, 1, 2.

In view of (4.71), the proof is completed by combining these three bounds.
With this spatial variation bound established, we can prove the following lemma.

We omit the proof, which is not essentially different from the proof of Lemma 3.8
of [55].

Lemma 4.24. There exists a subsequence of {F∆}, also denoted by {F∆}, and
a function F ∈ L1(ΠT ) ∩ L∞(ΠT ) such that F∆ → F in L1

loc(ΠT ) and a.e. in ΠT .
Furthermore, F(·, t) ∈ L1(R) for all t ∈ [0, T ].

The following lemma establishes convergence (along a subsequence) of the discrete
diffusion term A∆. The proof is similar to the proofs of Lemmas 3.9, 3.10, 3.11,
and 3.12 of [55].

Lemma 4.25. The following bounds are satisfied, independent of n and ∆:

{
∆t∆x

∑
n≥0

∑
j∈Z

sj+1/2

(
∆+A(Un

j )
)2}1/2

≤ C∆x,(4.74)

∥∥A(u∆(· + y, ·)
)
−A

(
u∆(·, ·)

)∥∥
L2(Ωy)

≤ C
√
|y|(|y| + ∆x) ∀y ∈ (xL, xR),∥∥A(u∆(·, · + τ)

)
−A

(
u∆(·, ·)

)∥∥
L2(Ωτ )

≤ C
√
τ + ∆t ∀τ ∈ (0, T ),(4.75)

where Ωy consists of all (x, t) ∈ ΠT such that x and x+ y belong to (xL, xR)× (0, T )
and Ωτ := (xL, xR) × (0, T − τ)). Finally, we have that there exists a subsequence
of {A∆}, also denoted by {A∆}, and a function A ∈ L2(0, T ;H1(xL, xR)) such that
A∆ → A in L2((xL, xR)×(0, T ) and boundedly a.e. in (xL, xR)×(0, T ). Furthermore,
A = A(u) a.e. in (xL, xR) × (0, T ), where u denotes the L∞ weak-∗ limit of u∆.
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It is possible to establish more regularity of the diffusion function than displayed
in Lemma 4.25. This additional regularity, which is stated in the lemma below, will
be used later in the proof of Theorem 4.27.

Lemma 4.26. There exists a constant C, independent of ∆, such that∣∣A(Un
j ) −A(Un

i )
∣∣ ≤ C|j − i|∆x,

∣∣A(Un
j ) −A(Um

j )
∣∣ ≤ C

√
|n−m|∆t

for all i, j, n,m such that (xi, tn), (xj , tn), and (xj , tm) belong to (xL, xR) × (0, T ).

Define Ãn(x) as

Ãn(x) =
1

∆x

(
(x− xj−1)A(Un

j ) + (xj − x)A(Un
j−1)

)
, x ∈ [xj−1, xj ].

Then define

Ã∆(x, t) =
1

∆t

(
(t− tn) Ãn+1(x) + (tn+1 − t) Ãn(x)

)
, t ∈ [tn, tn+1].

Then there exists a subsequence of Ã∆, also denoted by Ã∆, and a function

Ã ∈ C1,1/2
(
(xL, xR) × (0, T )

)
such that Ã∆ → Ā in L∞((xL, xR) × (0, T )). Moreover, there holds (Ã∆)x

�
⇀ Ãx in

L∞((xL, xR) × (0, T )).
This lemma can be proved by a straightforward adaptation of the proofs of Lem-

mas 4.1 and 4.2 and Theorem 4.1 in [55].
We can now prove our main convergence theorem.
Theorem 4.27. Assume that the hypotheses concerning the data stated in sec-

tion 4.1 are satisfied. Then there exists a BVt weak solution of the initial value problem
(4.1) that satisfies the entropy condition (D.5). Let u∆ be defined by (3.3) and the
scheme (4.44), with the parameters ∆x and ∆t chosen so that the CFL condition
(4.46) holds. Then, along a subsequence, u∆ → u in L1

loc(ΠT ) and a.e. in ΠT , where
u is a BVt weak solution.

Proof. The proof of convergence (along a subsequence) to a function u : ΠT →
R is essentially the same as the proof of Theorem 3.1 of [55]. The main idea is
to observe that z∆ = Ψ(γ∆, u∆) = F∆ + γ1A

∆. Convergence (along a subse-
quence) of {z∆} then follows from compactness for the sequences F∆ and γ1A

∆

(Lemmas 4.24 and 4.25). Letting z(x, t) denote lim∆→0 z
∆(x, t), one then recovers

the conserved quantity u via u(x, t) = Ψ−1(γ(x), z(x, t)). The arguments in [55]
also (with some slight modifications to account for γ1 multiplying A(u)x) show that
u ∈ L1(ΠT ) ∩ L∞(ΠT ) ∩ C(0, T ;L1(R)) and A(u) ∈ L2(0, T ;H1(xL, xR)). It fol-
lows readily from the discrete time continuity estimate (4.59) that u ∈ BVt(ΠT ) (see
the proof of Theorem 3.1 of [25]) and that the initial data is assumed in the strong
L1 sense; i.e, (4.4) is satisfied.

To show that the limit u is a BVt weak solution, it remains to verify that the
weak formulation (4.3) is satisfied, for which a a Lax–Wendroff-type calculation is
required. The proof of Theorem 3.1 of [55] applies in the present situation, with the
exception that the spatially varying coefficient sj−1/2 multiplying the parabolic term
causes some new complications. We can lay this matter to rest if we can show that
for φ ∈ D(ΠT ), and with φn

j := φ(xj , tn),

∆x∆t
∑
n≥0

∑
j∈Z

1

∆x2
∆+

(
sj−1/2∆−A

n
j

)
φn
j → −

∫∫
ΠT

γ1(x)A(u)xφx dx dt.(4.76)
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Summing by parts, we get the following expression for the left-hand side of (4.76):

−∆x∆t
∑
n≥0

∑
j∈Z

1

∆x

(
sj−1/2∆−A

n
j

) (
∆−φ

n
j /∆x

)
.(4.77)

Let Ã∆ be the interpolant defined in Lemma 4.26. Observe that (Ã∆)x =
∆+A(Un

j ) on the parallelogram Pn
j with vertices (xj , t

n−1), (xj , t
n), (xj+1, t

n), and

(xj+1, t
n+1).

We now have

−∆x∆t
∑
n≥0

∑
j∈Z

1

∆x

(
sj−1/2∆−A

n
j

) (
∆−φ

n
j /∆x

)

=
∑
n≥0

∑
j∈Z

∫∫
Pn+1

j

γ1(x)(Ã∆)xφx dx dt + O(∆x + ∆t)

=

∫∫
ΠT

γ1(x)(Ã∆)xφx dx dt + O(∆x + ∆t).

(4.78)

According to Lemma 4.26 we can assume that Ã∆ → Ā in L∞((xL, xR)× (0, T )).
Since u∆ → u a.e. in ΠT , we can repeat the proof of Theorem 4.1 in [55] to show that
Ã = A(u) a.e. in (xL, xR)× (0, T ). Recall that the parameter γ1(x) takes the value 1

for x ∈ (xL, xR) and is zero elsewhere. Using this and the convergence (Ã∆)x
�
⇀ A(u)x

in L∞((xL, xR) × (0, T )) when sending ∆ → 0 in (4.78), we get (4.76).
The proof that u satisfies the entropy inequality (4.5) requires another Lax–

Wendroff-type calculation, this time based on the cell entropy inequality (4.66). The
proof of Theorem 5.1 of [55], or Lemma 4.1 of [56], suffices for the situation at hand,
again with the exception of the parabolic terms, due to the presence of sj−1/2. It is
possible to resolve this matter by an argument (which we omit) similar to the one
above.

Remark 4.3. In this proof, we have verified all but condition (D.4) of Defini-
tion 4.1. Thus, if we were able to prove that (D.4) is satisfied, then the limit u of
Theorem 4.27 would be the BVt entropy solution whose uniqueness is guaranteed by
Theorem 4.15. Although our numerical results suggest that this condition is satisfied
by the limit of the sequence of approximate solutions, a rigorous proof of this property
is still left as an open problem.

5. Steady-state solutions. The construction of steady states is based on the
stationary version of (2.16) or (2.21). We do not present here a thorough analysis of all
steady states but identify some stationary solutions in order to motivate the choices of
the control parameters for the transient simulations. Our construction of steady states
will follow a procedure similar to that of the simpler continuous thickening models
treated in [16, 17]. Specifically, we fix the material model and the vessel geometry
and assume that the clarifier-thickener is to be operated at given values of QL, QF,
and uF and is supposed to produce a thickened sediment of a discharge concentration
uD > uc. Although the construction given below can be extended in a straightforward
manner to vessels with varying cross-sectional area, there are some subtle details that
require us to restrict the rigorous discussion to vessels with constant cross-sectional
interior area, so that we limit the discussion to Model 1.

Our notation is consistent with section 4; i.e., we refer to the space variable by x
(instead of w), to the solution by u (instead of v), and to the integrated diffusion
coefficient by A (instead of A).
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Definition 5.1. A piecewise twice differentiable function u : R → [0, umax] is a
steady-state entropy weak solution of Model 1 if the following conditions are satisfied:
(a) the function γ1(x)A(u)′ is bounded, where ′ = d/dx; (b) the function u is a weak
solution to the following ODE that arises from (2.21) and where g(x, u) is given by
(2.23):

g(x, u)′ =
(
γ1(x)A(u)′

)′
;(5.1)

i.e., for every test function φ ∈ C2
0 (R) with compact support we have∫

R

(
f
(
γ(x), u(x)

)
− γ1(x)A

(
u(x)

)′)
φ′(x) dx = 0;(5.2)

and (c) the following entropy inequality holds for all test functions φ ∈ C2
0 (R), φ ≥ 0,

and k ∈ R: ∫
R

(
sgn

(
u(ξ) − k

)(
f(γ(ξ), u(ξ)) − f(γ(ξ), k)

)
− γ1(ξ)A(u)′

)
φ′(ξ)dξ

+
∑
m∈J

∣∣f(γ(m+), k
)
− f

(
γ(m−), k

)∣∣φ(m) ≥ 0.
(5.3)

It is standard to conclude from (5.2) that the following jump condition has to be
satisfied across any discontinuity of the steady-state solution, where u(x+) and u(x−)
refer to limits of u(ξ) taken for ξ → x with ξ > x and ξ < x, respectively:

f
(
γ(x−), u(x−)

)
− γ1(x

−)A′(u)|x=x− = f
(
γ(x+), u(x+)

)
− γ1(x

+)A′(u)|x=x+ .

(5.4)

It is easy to see that this condition implies that steady-state solutions are constant
for x < xL and x > xR.

Lemma 5.2. Inequality (5.3) implies the following entropy jump condition:

sgn
(
u(x+) − k

)[
f
(
γ(x+), u(x+)

)
− f

(
γ(x+), k

)
− γ1(x

+)A′(u)|x=x+

]
− sgn

(
u(x−) − k

)[
f
(
γ(x−), u(x−)

)
− f

(
γ(x−), k

)
− γ1(x

−)A′(u)|x=x−
]

≤
∣∣f(γ(x+), k

)
− f

(
γ(x−), k

)∣∣ ∀k ∈ R.

(5.5)

(Note that the right-hand side of (5.5) is zero for x /∈ J .)
Proof. The proof is a simpler variant of the proof of Lemma 2.6 of [56]. To outline

it, let us fix m ∈ J = {xL, 0, xR}, and define the function

θε(x) :=

⎧⎪⎨
⎪⎩

(ε + x)/ε if x ∈ [−ε, 0],

(ε− x)/ε if x ∈ [0, ε],

0 otherwise

with a parameter ε > 0. A density argument will reveal that we may choose the
compactly supported Lipschitz continuous function θε(x − m) as a test function in
(5.3). This yields

1

ε

∫ m

m−ε

(
F
(
γ(ξ), u(ξ), k

)
− γ1(x)

∣∣A(u) −A(k)
∣∣′) dx

− 1

ε

∫ m+ε

m

(
F
(
γ(ξ), u(ξ), k

)
− γ1(x)

∣∣A(u) −A(k)
∣∣′) dx

+
∣∣f(γ(m+), k

)
− f

(
γ(m−), k

)∣∣ ≥ 0,

(5.6)
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where we recall the notation (4.12). Since the solution u(x) is piecewise smooth, we
may apply a time-independent version of Lemma 4.9 to conclude that for ε → 0, we
obtain from (5.6)

F
(
γ(m+), u(m+), k

)
− L lim

ξ↓m

(
γ1(ξ)

∣∣A(u) −A(k)
∣∣′)

− F
(
γ(m−), u(m−), k

)
+ L lim

ξ↑m

(
γ1(ξ)

∣∣A(u) −A(k)
∣∣′)

≤
∣∣f(γ(m+), k

)
− f

(
γ(m−), k

)∣∣.
(5.7)

Assume for the moment that u(m+) �= k and u(m−) �= k. Then Lemma 4.9 implies
that

L lim
ξ↓m

(
γ1(ξ)

∣∣A(u) −A(k)
∣∣′) = sgn

(
u(m+) − k

)
γ1(m

+)A′(u)|x=m+ ,

L lim
ξ↑m

(
γ1(ξ)

∣∣A(u) −A(k)
∣∣′) = sgn

(
u(m−) − k

)
γ1(m

−)A′(u)|x=m− ,

such that (5.7) already implies (5.5). To remove this restriction, assume that k =
u(m−). (The other case is similar.) Then the left-hand side of (5.5) is just

L := sgn
(
u(m+) − u(m−)

)[
f
(
γ(m+), u(m+)

)
− f

(
γ(m+), u(m−)

)
− γ1(m

+)A′(u)
∣∣
x=m+

]
.

Using the jump condition (5.4), we obtain

L = sgn
(
u(m+) − u(m−)

)[
f
(
γ(m−), u(m−)

)
− f

(
γ(m+), u(m−)

)
− γ1(m

−)A′(u)
∣∣
x=m−

]
≤

∣∣f(γ(m−), u(m−)
)
− f

(
γ(m+), u(m−)

)∣∣
− sgn

(
u(m+) − u(m−)

)
γ1(m

−)A′(u)
∣∣
x=m− ,

and applying a steady-state variant of the right inequality of (4.27) in Lemma 4.10,
we finally get

L ≤
∣∣f(γ(m−), u(m−)

)
− f

(
γ(m+), u(m−)

)∣∣,
which is the inequality (5.5). Finally, since we are dealing with time-independent
solutions, inequality (5.6) and the remaining discussion remain valid if we replace
m ∈ J by x ∈ R.

The following lemma states a useful continuity result.
Lemma 5.3. Let u(x) be a piecewise differentiable steady-state entropy weak

solution of Model 1. Then A(u(x+)) = A(u(x−)) for all x ∈ R.
Proof. We consider first a point x ∈ (xL, xR), at which γ1 is continuous. Then

the boundedness of γ1(x)A(u)′ implies that

0 = lim
ε→0

∫ x+ε

x−ε

γ1(ξ)A
(
u(ξ)

)′
dξ = lim

ε→0

∫ x+ε

x−ε

A
(
u(ξ)

)′
dξ = A

(
u(x+)

)
−A

(
u(x−)

)
.

Furthermore, consider that boundedness of γ1(x)A(u)′ implies that A(u)′ is uniformly
bounded on [xL, xR]. On the other hand, for x < xL and x > xR, the jump condition
(5.4) reduces to qLu(x−) = qL(x+) and qRu(x+) = qRu(x+), respectively, which
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implies that u(x−) = u(x+) and therefore no jumps are possible for x < xL and
x > xR. We conclude that piecewise smooth steady-state solutions are constant on
(−∞, xL) and (xR,∞), and therefore we have A(u)′ = 0 on (−∞, xL) ∪ (xR,∞).
Thus A(u)′ is uniformly bounded, and therefore has a continuous primitive A(u),
which implies that A(u(x+)) = A(u(x−)) for all x ∈ R.

Remark 5.1. We point out that the continuity property established by Lemma 5.3
includes the steady-state analogue of condition (D.4) stated for the time-dependent
Model 1. However, we see that for our class of steady-state solutions, the continuity
of A(u) across x = xL and x = xR is a result of a more general regularity property
and need not be postulated separately.

Constructively, we select the discharge concentration uD = u(x)|x>xR and then in-
tegrate the ODE arising from the steady-state version of Model 1 upwards by obeying
jump conditions wherever necessary. In doing so, we shall establish the limitations the
entropy condition imposes on the choice of control parameters. Thus, the one-sided
boundary condition is

u(x−
R) = uD > uc.(5.8)

The discussion will be limited to those cases where the compression zone does not
reach the overflow level. In addition, to further simplify the discussion, we assume
that the functions gL(u) := qLu + b(u) and gR(u) := qRu + b(u) are monotone on the
interval [0, uc]; i.e.,

qL + b′(u) > 0, qR + b′(u) > 0 for u ∈ [0, uc].(5.9)

Moreover, we limit ourselves to steady-state solutions for which the overflow or effluent
concentration uE := u(x)|x<xL is zero; that is, we choose the parameters uD and uF

such that

QFuF = (QR −QL)uF = QRuD −QLuE(5.10)

is satisfied with uE = 0, or, equivalently, and since we consider Model 1 only,

uF(qR − qL)/qR = uD.(5.11)

These steady states represent either the conventional or the high-rate mode of con-
tinuous operation shown in Figure 1.1(a) and Figure 1.1(b), respectively.

At this point it should be emphasized that our steady-state problem is in general
overdetermined. In fact, fixing uD and integrating (5.1) upwards and obeying entropy
and jump conditions, we will in general not achieve a solution with u|x<xL = uE = 0.
All profiles with u|w<xL �= uE = 0 have to be rejected as candidates for steady-state
entropy solutions, since the global mass balance (5.10) is a consequence of the weak
formulation (5.2). To make the analysis transparent, we will in some instances write
out the symbol uE in manipulations before setting it to zero. One result of this
procedure is that under our model assumptions, no steady states with the compres-
sion region completely contained in the thickening zone but with a nonzero effluent
concentration exist.

To determine a steady-state entropy weak solution that satisfies the global mass
balance, it is in general necessary, say, to fix uF, to choose uD, to solve (5.1), to verify
whether (5.10) is satisfied with uE replaced by u(x−

L ), and to iterate this solution
procedure (for example, by varying uD) until the global mass balance (5.10) is at-
tained. However, under the simplifying assumption (5.9), it turns out that solutions



920 R. BÜRGER, K. H. KARLSEN, AND J. D. TOWERS

with uE = 0 can easily be characterized: these are those steady-state entropy weak
solutions for which the compression region is strictly contained in the container, i.e.,
for which inf{x ∈ R : u(x) > uc} > xL. This is the most important subclass of steady
states, since they are the most desired mode of operation (see Figure 1.1). Moreover,
it turns out that these steady-state entropy weak solutions are strictly increasing.

5.1. Steady-state solution in the discharge zone. Before proceeding to
integrate the ODE (5.1) upwards from x = xR, we consider the discharge zone
x > xR. Since we are seeking solutions for which A(v) is continuous, we conclude
that A(u(x+

R)) = A(u(x−
R)) = A(uD), and therefore u(x+

R) = uD. On the other hand,
from (5.1) we infer that the steady-state solution must be constant for x > xR. We
conclude that u(x) = uD for x > xR.

5.2. Steady-state solution in the thickening zone. Now that the steady-
state solution has been determined in the interval (xR,∞), we determine the solution
in the interval (0, xR). To this end, note first that as a consequence of the jump
condition (5.4), the steady-state solution must satisfy the condition qRuD + b(uD) −
A(u)′|x=x+

R
= qRuD, which means

b(uD) −A(u)′|x=x+
R

= 0.(5.12)

Assume now that v(x) is a continuously differentiable solution of the following one-
sided boundary value problem, which is the subcase of (5.1) occurring for the interval
(0, xR]:

qR(u− uD) + b(u) −A(u)′ = 0 for x < xR, u(xR) = uD.(5.13)

Note that we have used (5.12) to reduce the second-order ODE (5.1) to the first-order
ODE (5.13). We consider the solution of (5.13) on the interval [xc, xR], where

xc := inf
{
x ∈ (0, xR]

∣∣ u(x) is the solution of (5.13) and u(x) > uc

}
.(5.14)

However, not every solution of (5.13) is an acceptable steady-state solution. Rather,
the following lemma shows that the entropy condition (5.3) imposes an additional ad-
missibility condition. This condition imposes a restriction on the choice of qR and uD

for a given flux density function b(u).
Lemma 5.4. Any steady-state entropy solution u(x) of the one-sided bound-

ary value problem (5.13) on the interval (xc, xR) is monotonically increasing; i.e.,
u′(x) ≥ 0 for x ∈ [xc, xR]. This statement is equivalent to the requirement

qRuD ≤ qRk + b(k) ∀k between u(x) and uD for x ∈ [xc, xR].(5.15)

Proof. In view of (5.12), we obtain from (5.5) the inequality

∀k ∈ R : ∀x ∈ (xc, xR) : sgn(uD − k)
(
qR(uD − k) − b(k)

)
− sgn

(
u(x) − k

)[
qR

(
u(x) − k

)
+ b

(
u(x)

)
− b(k) −A(u)′

]
≤ 0.

(5.16)

We now fix x ∈ (xc, xR) and evaluate (5.16) for different values of k. Setting k <
min{u(x), uD} and k > max{u(x), uD}, we obtain ±[qDuD − qRu− b(u) +A(u)′] ≤ 0,
which in view of (5.13) is no new information. The choices k = u(x) and k = uD are
covered as limiting cases in the subsequent discussion of the two alternatives in which
k is located strictly between u(x) and uD.
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Assume first that uD < k < u(x). Then (5.16) leads to the inequality

2
(
qRk + b(k)

)
− qRuD − qRu(x) − b

(
u(x)

)
+ A(u)′ ≤ 0 ∀k ∈ (uD, u(x)).(5.17)

Using that −qRu(x) − b(u(x)) + A(u)′ = −qRuD, we obtain from (5.17)

qR(k − uD) + b(k) ≤ 0 ∀k ∈ (uD, u(x)).(5.18)

However, (5.18) can never be satisfied, since qR > 0, k > uD, and we assume b ≥ 0.
The remaining case is the assumption u(x) < k < uD, which leads to the inequal-

ity

−2
(
qRk + b(k)

)
+ qRuD + qRu(x) + b

(
u(x)

)
−A(u)′ ≤ 0 ∀k ∈ (u(x), uD).(5.19)

Using that qRu(x) + b(u(x)) − A(u)′ = qRuD and that b(uD) > 0, we obtain from
(5.19)

qRuD ≤ qRk + b(k) ∀k ∈ [u(x), uD].(5.20)

Since (5.13) can be rearranged to give

u′(x) =
qR(u(x) − uD) + b(u(x))

a(u(x))
,(5.21)

we see that (5.20) implies that u′(x) ≥ 0 for x ∈ [xc, xR].
Remark 5.2. Note that (5.20) has a useful graphical interpretation: namely, the

graph of gR(u) = qRu + b(u) must lie above the horizontal line f = qRuD fixed by
the desired operation data. This condition implies a limitation of the attainable solids
throughput for the given material and vessel.

To proceed with the discussion, we distinguish between three cases: xc > 0
(Case 1), xc = 0 and u(0+) > uc (Case 2), and xc = 0 and u(0+) = uc (Case 3).

Case 1 (xc > 0). The Rankine–Hugoniot and entropy jump conditions across
x = xc are

qRu(x−
c ) + b

(
u(x−

c )
)
−A(u)′|x=x−

c
= qRu(x+

c ) + b
(
u(x+

c )
)
−A(u)′|x=x+

c
,(5.22)

∀k ∈ R : sgn
(
u(x+

c ) − k
)[
qR

(
u(x+

c ) − k
)

+ b
(
u(x+

c )
)
− b(k) −A(u)′|x=x+

c

]
− sgn

(
u(x−

c ) − k
)[
qR

(
u(x−

c ) − k
)

+ b
(
u(x−

c )
)
− b(k) −A(u)′|x=x−

c

]
≤ 0,

(5.23)

respectively. Moreover, from Lemma 5.3 it follows that A(u(x−
c )) = A(u(x+

c )) =
A(uc) = 0, so that 0 ≤ u(x−

c ) ≤ uc. From (5.13) and the definition of xc it follows
that qRu(x+

c ) + b(u(x+
c )) −A(u)′|x=x+

c
= qRuD. Inserting this into (5.22), we get

qRu(x−
c ) + b

(
u(x−

c )
)
−A(u)′|x=x−

c
= qRuD.(5.24)

Inserting (5.13), (5.24), and u(x+
c ) = uc into (5.23) yields

∀k ∈ R : sgn(uc − k)
(
qRuD − qRk − b(k)

)
− sgn

(
u(x−

c ) − k
)(
qRuD − qRk − b(k)

)
≤ 0.

Obviously, the unique nontrivial case that needs to be discussed here is u(x−
c ) < k <

uc. Then we have sgn(uc−k) = 1, sgn(u(x−
c )−k) = −1, and the inequality is reduced

to

qRuD ≤ gR(k) = qRk + b(k) ∀k ∈ (u(x−
c ), uc).(5.25)
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On the other hand, from (5.15) we infer that qRuD ≤ qRuc + b(uc). This means that
at u = uc, the graph of gR(u) lies above or intersects the horizontal line f = qRuD.
Consequently, u(x−

c ) is the largest intersection of gR(u) with the horizontal line f =
qRuD that is smaller than or equal to uc:

u(x−
c ) = inf

{
u ∈ [0, uc]

∣∣ ∀ξ ∈ [u, uc] : gR(ξ) = qRξ + b(ξ) ≥ qRuD

}
.

Since gR(0) = 0 < qRuD and gR(uc) > qRuD by assumption, it is ensured that the
curve u �→ gR(u) and the horizontal line u �→ qRuD always intersect on [0, uc], and thus
u(x−

c ) is well defined. Note that for a function b(u) with exactly one inflection point,
the infimum is taken over at most three solutions of the equation qRu+ b(u) = qRuD.
It is not difficult to see that the steady-state solution in the interval (xc, 0) is given
by the constant u(x−

c ), which is uniquely constructed here.
It is at this point that assumption (5.9) turns out to be convenient in order to

reduce the number of possible cases occurring in the continuation of the solution
into the clarification zone. There would be no difficulty associated with relaxing this
assumption.

Cases 2 and 3 (xc = 0, v(0+) ≥ uc). The construction of the steady-state solution
in the thickening zone (0, xR] is completed. The differentiable solution profile is given
by the solution of the one-sided boundary value problem (5.13).

5.3. Steady-state solution in the clarification zone.
Case 1 (xc > 0). At x = 0, the next flux discontinuity has to be dealt with.

However, since the solution for x > 0 is a constant not exceeding uc and since A(u)
is continuous across x = 0, we have to treat a transition between two fluxes of a
hyperbolic conservation law. The entropy weak solution to this problem has been de-
termined in several papers [19, 39, 40, 41, 46, 47, 48, 58, 75]. The basic complication is
that if the fluxes adjacent to x = 0 are nonmonotone, then there might be several pos-
sibilities to satisfy the Rankine–Hugoniot condition if u(0+) is given, and an entropy
condition is necessary to single out the unique entropy-satisfying solution. This will
in general generate a multitude of cases here, depending on the flux parameters and
properties of the function b and on which solution of the equation qRu+ b(u) = qDuD

yields the relevant state u(0+).
All these cases can be handled by the recent theory of conservation laws with

discontinuous flux. However, assumption (5.9) helps to avoid this complication since
it ensures that to a given value u(0+) there corresponds a unique value u(0−) such
that the jump condition across x = 0,

qR(u(0+) − uF) + b
(
u(0+)

)
= qL(u(0−) − uF) + b

(
u(0−)

)
,(5.26)

is satisfied. To see this, recall that the constancy of u on (0, xc) and (5.24) imply that
qRu(0+) + b(u(0+)) = qRuD. Inserting this into (5.26), we get

−(qR − qL)uF + qRuD = qLu(0−) + b
(
u(0−)

)
.(5.27)

However, the left-hand side of (5.27) is just qLuE ≤ 0. On the other hand, due to
(5.9) and since we seek a solution 0 ≤ u(0−) ≤ uc, the right-hand side of (5.27)
is nonnegative and is zero only for u(0−) = 0. Thus, the only solution is uE = 0,
u(0−) = 0, which implies that u(x) = 0 for all x ≤ 0.

Consequently, under the assumption (5.9) the only steady-state entropy weak
solutions for which the sediment level x = xc is located strictly below the feed level
x = 0 are solutions for which there is only clear liquid in the clarification and overflow
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zones (x ≥ 0). For these solutions, the feed and discharge concentrations uF and uD

are linked by (qR − qL)uF = qRuD.
Case 2 (xc = 0, u(0+) > uc). Lemma 5.3 implies that u(0−) = u(0+) if u+ > uc.

Thus, we can continue to solve (5.1) in the clarification zone x ∈ (xL, 0). Integrating
this ODE over the interval (x, 0), we obtain the following one-sided boundary value
problem for a first-order ODE:

qL
(
u(x) − u(0−)

)
+ b(u) − b

(
u(0−)

)
−A(u)′|x=0− = 0 for x < 0, u(0) = u(0−).

(5.28)

To determine u′(0−), we use the Rankine–Hugoniot condition (5.4) across x = 0,

qL
(
u(0−) − uF

)
+ b

(
u(0−)

)
−A(u)′|x=0−

= qR
(
u(0+) − uF

)
+ b

(
u(0+)

)
−A(u)′|x=0+ .

(5.29)

Recalling that we already know that u(0−) = u(0+), we get

A(u)′|x=0− = (qL − qR)
(
u(0−) − uF

)
+ A(u)′|x=0+ .(5.30)

On the other hand, in the present case we know that A(u)′|x=0+ = qR(u(0+)− uD) +
b(u(0+)). Inserting this into (5.30) and replacing u(0+) by u(0−), we get

A(u)′|x=0− = qLu(0−) − qRuD − (qL − qR)uF + b
(
u(0−)

)
.(5.31)

Finally, we insert (5.31) into (5.28) and obtain the one-sided boundary value problem

qLu(x) + b(u) −A(u)′ − qRuD − (qL − qR)uF = 0, x < 0; v(0) = v(0−).(5.32)

We now define

x̃c := inf
{
x ∈ [xL, 0)

∣∣ u(x) is the solution of (5.28) and umax ≥ u(x) > uc

}
(5.33)

and recall from (5.32) and (5.31) that we have

b
(
u(x)

)
−A(u)′ = −qLu(x) + qRuD + (qL − qR)uF for x ∈ (x̃c, 0],

as well as that we obtain from (5.5) the inequality[
sgn

(
u(0−) − k

)
− sgn

(
u(x) − k

)](
−qLk − b(k) + qRuD + (qL − qR)uF

)
≤ 0

∀x ∈ (x̃c, 0) and ∀k ∈ R.
(5.34)

We observe that qRuD + (qL − qR)uF = qLuE. Then, the solution in the interval
(x̃c, 0) is given by the solution of the one-sided boundary problem (which is a slight
rearrangement of (5.32))

u′(x) =
qLu(x) + b(u(x)) − qLuE

a(u(x))
, x < 0, u(0) = u(0−).(5.35)

Due to our assumption (5.9), since gL(0) = 0, and b(u) and therefore gL(u) has
exactly one inflection point, we know that gL(u) has exactly one positive maximum
uM > uc and that gL(u) is monotonically decreasing between uM and umax = 1
with gL(umax) = qLumax < 0. Consequently, there exists exactly one point u∗ with
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uc < u∗ < umax such that qLu
∗ + b(u∗) = qLuE. Since the maximum of gL is positive

but qLuE ≤ 0, we know that u∗ > uM, and therefore

gL(u) < gL(u∗) for u > u∗, u ≤ umax.(5.36)

We first assume that u(0+) = u(0−) > u∗. Our immediate goal is to show that
u(0−) > u∗ does not lead to an admissible steady-state solution. Note that by the
discussion of the solution in the thickening zone, we know that u(0−) < uD.

By the definition of u∗, we may rewrite the ODE (5.35) as

u′(x) =
gL(u(x)) − gL(u∗)

a(u(x))
, x < 0, u(0) = u(0−).

In light of (5.36), we see that inserting u(0−) > u∗ will cause the right-hand side
of the ODE in (5.35) to be negative at x = 0, and this right-hand side remains
negative if we proceed with the integration of (5.35), since we produce a solution that
is monotonically decreasing (increasing upwards). This integration may be continued
upwards until either u = umax = 1 is attained or x = xL is reached. In the first
case, however, there is no valid way to continue the solution to the remaining interval
(xL, x̃c) other than setting u = umax = 1 for x ∈ (xL, x̃c). This means that at x = xL,
the jump condition implies that qLumax = quE, that is, uE = umax, in contradiction
with the assumption uE < umax. In the other case, in which x = xL is reached by
integrating (5.35), we have the following Rankine–Hugoniot condition across x = xL:

qLu(x+
L ) + b

(
u(x+

L )
)
−A(u)′|w=x+

L
= qLu(x−

L ).(5.37)

On the other hand, since u(x+
L ) ≥ u(0−) > uc, we have A(u(x+

L )) > 0, and thus, due
to Lemma 5.3, u(x+

L ) = u(x−
L ), and therefore (5.37) reduces to b(u(x+

L )) = A(u)′|x=x+
L
.

However, since by assumption u′(x+
L ) < 0, we have that A′(u)|x=x+

L
< 0, which in

turn implies that b(u(x+
L )) < 0. This is a contradiction to the nonnegativity of b.

Thus, no admissible steady-state solution can be constructed if u(0−) > u∗.
The case u(0−) = u∗ equally leads to an inadmissible solution, since integrat-

ing (5.35) leads to the constant solution u ≡ u∗ on (xL, 0). Similarly to the dis-
cussion of the previous case, the jump condition (5.37) and Lemma 5.3 imply that
b(u∗) = A(u)′|x=x+

L
. However, the constancy of u along x ∈ (xL, 0) implies that

A(u)′|x=x+
L

= 0, and therefore b(u∗) = 0, in contradiction with the assumed prop-

erties of b. Another reason to reject the profiles with u(0−) ≥ u∗ as candidates for
steady-state entropy weak solutions is the violation of the global conservation princi-
ple (5.10), since we have chosen uD and uF such that uE = 0, but in these cases our
integration yields positive values of u(x−

L ), which should equal uE.
We now look at the remaining case u(0−) < u∗. Then the right-hand side of the

ODE in (5.35) is always positive, which implies a monotonically increasing (decreasing
upwards) solution u(x) until x = x̃c is reached. This solution also satisfies the entropy
condition. In fact, for any x ∈ (x̃c, 0) with u(x) < u(0−) and for all k ∈ (u(x), u(0−)),
condition (5.34) (which is void for all other values of k and for u(x) = u(0−)) implies
that 2(−qLk − b(k) + qLuE) ≤ 0, i.e.,

qLk + b(k) − qLuE ≥ 0 ∀k ∈ (u(x), u(0−)),(5.38)

which in view of (5.35) is satisfied if u(x) is a monotonically increasing solution on
(x̃c, 0).
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We summarize our discussion of Case 2 in the clarification zone by the following
lemma.

Lemma 5.5. Any admissible steady-state entropy solution u = u(x) of Model 1
with u(0−) = u(0+) > uc must satisfy u(0−) < u∗, where u∗ is the unique point in
(uc, umax) satisfying gL(u∗) ≡ qLu

∗ + b(u∗) = qLuE. This solution is monotonically
increasing on the interval (x̃c, 0), where x̃c is defined by (5.33).

Remark 5.3. The statement of Lemma 5.5 also has an obvious graphical inter-
pretation. However, this condition requires knowledge of the value u(0+) = u(0−).
Thus, it can be evaluated only after the solution in the thickening zone has been deter-
mined. Furthermore, combining this finding with Lemma 5.4 for the thickening zone,
we see that in any of the Cases 1, 2, or 3, the entropy condition and jump conditions
enforce that u′(x) ≥ 0 in the compression region.

With the present discussion, we have constructed a steady-state solution up to x̃c,
provided that u(x) > uc in the thickening zone x ∈ (0, xR). To finish the steady-
state construction, let us first recall that for sake of brevity and being well aware
of the incompleteness of the treatment in the present paper, we limit the discussion
to those steady states for which x̃c > xL. In this case, there is a jump located at
x = x̃c. We now seek the constant solution value u = u(x̃−

c ) in the interval (xL, x̃c).
This value must satisfy 0 ≤ u(x̃−

c ) ≤ uc. From the Rankine–Hugoniot condition
that follows from (5.4), qLu(x̃−

c ) + b(x̃−
c ) = qLuc + b(uc) − A(u)′|x=x̃+

c
, we see that

the constant u(x̃−
c ) = uc is not a solution. Consequently, we look for a constant

0 ≤ u(x̃−
c ) < uc. To this end, note that the steady-state jump condition at x = xL is

gL(u(x+
L )) = qLu(x+

L ) + b(u(x+
L )) = qLu(x−

L ) = qLuE. Taking into account that gL(u)
is a nonnegative monotonically increasing function on [0, uc], while the right-hand side
is a nonpositive constant, we conclude (similar as in the discussion of Case 1) that
uE = 0 and u(x̃−

c ) = 0; i.e., the solution is zero on (xL, x̃c).
Remark 5.4. The last result means that the mathematical model correctly de-

scribes the elimination of the hindered settling region in steady-state operation when
the sediment level (where u = uc) is allowed to rise above the feed level, as drawn in
Figure 1.1(b). No particles are elutriated from the compression region into the over-
flow. This supports the physical explanation that above the feed level, the sediment
bed acts as a filter medium for the portion of the feed flow that is directed into the
clarification zone.

If we added a small amount of hydrodynamic diffusion and used a strictly positive
diffusion coefficient a(u) such that the resulting model were strictly parabolic, then
there would be no upper limit for the integration of ODEs like (5.28), and under the
preconditions of Case 2 discussed here, the quantity x̃c defined by (5.33) would always
assume the value xL (corresponding to the overflow level) with u(x+

L ) > 0. In other
words, there would be a small but positive volume fraction of solids in the overflow.
Steady-state concentration profiles for a clarifier-thickener model with a strictly posi-
tive diffusion coefficient that illustrate this situation are plotted, for example, in [81].

Finally, we mention that Lev, Rubin, and Sheintuch [64] use a steady-state clar-
ifier-thickener model without compression effects but with a hydrodynamic diffusion
term instead. A discussion of possible concentration extrema at steady state leads them
to the conclusion that the concentration must increase downwards. Our analysis shows
that by applying the entropy concept to the steady-state ODE, this characterization
remains valid even when hydrodynamic diffusion vanishes.

Case 3 (xc = 0, u(0+) = uc). In this case, we have A(u(0+)) = 0 and due
to the continuity of A(u) across x = 0, A(u(0−)) = 0, which means u(0−) ∈ [0, uc].
Since, in the present case, it has been possible to integrate (5.13) up to x = 0+, we can
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replace the Rankine–Hugoniot condition across x = 0, (5.29), by qLu(0−)+b(u(0−))−
A(u)′|x=0− = (qL − qR)uF + qRuD. On the other hand, the following entropy jump
condition follows by evaluating (5.5) for x = 0:

sgn
(
u(0+) − k)

[
qR

(
u(0+) − k

)
+ b

(
u(0+)

)
− b(k) −A(u)′|x=0+

]
− sgn

(
u(0−) − k

)[
qL
(
u(0−) − k

)
+ b

(
u(0−)

)
− b(k) −A(u)′|x=0−

]
≤

∣∣qR(k − uF) − qL(k − uF)
∣∣ ∀k ∈ R.

(5.39)

Inserting (5.29), using once again (5.13) and that u(0+) = uc, we get

sgn
(
uc − k)

(
−qRk − b(k) + qRuD

)
− sgn

(
u(0−) − k

)(
−qLk − b(k) + (qL − qR)uF + qRuD

)
≤

∣∣(qR − qL)(k − uF)
∣∣ ∀k ∈ R.

Choosing k = 0 and exploiting that b(k) = 0, we get

sgn(uc)qRuD − sgn
(
u(0−)

)(
(qL − qR)uF + qRuD

)
≤

∣∣(qR − qL)(−uF)
∣∣,(5.40)

which in view of uc > 0, uF > 0, and qR − qL ≥ 0 implies that

qRuD + sgn
(
u(0−)

)
(qR − qL)uF + sgn

(
v(0−)

)
qRuD ≤ (qR − qL)uF.(5.41)

If sgn(u(0−)) = 1, then the left-hand side of (5.41) equals 2qRuD +(qR−qL)uF. Thus,
inequality (5.41) cannot be satisfied. The unique remaining option is sgn(u(0−)) = 0,
i.e., u(0−) = 0. It is then easily seen that the solution for x < 0, including also the
section x < xL, vanishes identically. Thus, the solution of Case 3 is the limiting case
of Cases 1 and 2 for u(0+) → uc.

Remark 5.5. The condition u′(x) ≥ 0 is in full agreement with engineering intu-
ition, since one expects that in a clarifier-thickener operating properly at steady state,
the concentration increases downwards. In fact, in several previous papers dealing with
a simpler model of an ideal continuous thickener [13, 16], which basically consists only
of the thickening zone of the model discussed here, the condition u′(x) ≥ 0 was pos-
tulated as a separate requirement for the determination of admissible steady states
following just from this intuition, and the graphical condition (5.20) was derived by
using this assumption in (5.21). We now clearly see that the natural requirement that
a steady state should be an entropy weak solution implies this monotonicity property
in the thickening zone, and it is therefore unnecessary to introduce it as an additional
condition.

Observe that in contrast to our analysis of the thickening zone, we do not ap-
ply the entropy condition to construct the restrictions on the parameters (expressed
by Lemma 5.5) in the clarification and overflow zones; rather, we exploit the jump
conditions to establish these restrictions and then check that the admissible solution
satisfies the entropy condition.

5.4. Examples of steady states. Here and in the numerical examples, the
flocculated suspension is characterized by the functions b(u) and σe(u) given by (2.6)
and (2.9), respectively, with v∞ = 10−4 m/s, C = 5, σ0 = 1.0 Pa, uc = 0.1, and k = 6.
The remaining parameters are ∆� = 1500 kg/m3 and g = 9.81 m/s2. These values are
fairly realistic and are also used in [14, 16].

Moreover, we assume the bulk velocities qR = 2.5 × 10−6 m/s and qL = −1.0 ×
10−5 m/s. Thus, we are interested in steady states for which uD = uF(qR − qL)/qR =
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Fig. 5.1. The flux functions qRu+b(u) (left) and qL +b(u) (right). The left diagram also shows
the constant lines qRuD for some values of uD.

5uF, and these parameters have been chosen so that assumption (5.9) is satisfied. The
relevant flux functions for the thickening and clarification zone, gR(u) and gL(u), are
plotted in Figure 5.1.

We start the steady-state construction by fixing values of uD and determining
the corresponding value xc. We limit ourselves to those values uD that ensure that
the entropy condition (5.15) is satisfied. To this end, we consider the plot of gR(u)
and draw horizontal line segments f = qRuD for a selection of values of uD and for
uc ≤ u ≤ uD, as has been done in the left plot of Figure 5.1. We see that these lines
remain strictly below the graph of gR(u) for those values of uD for which

qRuD < min
uc≤u≤1

gR(u) = gR(0.703) ≈ 1.92 × 10−6 m/s.

This implies that the entropy condition (5.15) is satisfied a priori (i.e., independently
of the depth of the thickening zone xR) for all uD with

uc ≤ uD < uDmax :=
1

qR
min

uc≤u≤1
gR(u) =

1.92 × 10−6 m/s

2.5 × 10−6 m/s
= 0.768.

For all other values of uD, it would be necessary to determine a solution to (5.13) and
to check whether this is monotone on [xc, xR]. We will not pursue this here.

Given this limitation on uD, we choose the profiles for uD = 0.3, 0.35, 0.4, 0.405,
0.41, . . . , 0.455 for closer inspection. Solving (5.13) with a standard numerical ODE
method, we obtain that for uD ≤ 0.41, we have xc > 0 and therefore steady states
of Case 1, while all other values lead to candidates for Case 2. Solving the equation
qRu(x−

c ) + b(u(x−
c )) = qRuD numerically yields the following values of u(x−

c ), which
are the constant values each entropy weak solution assumes on [0, xc]:

uD 0.3 0.35 0.4 0.405 0.41
u(x−

c ) 0.00759 0.00892 0.01026 0.01039 0.01053

For these values of uD, the steady-state entropy weak solution in the clarification and
overflow zones is zero. Figure 5.2 includes plots of these profiles.

It remains to deal with uD = 0.415, 0.42, . . . , 0.455, the candidates for Case 2,
for which the clarification zone has to be examined. We have just found out that
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Fig. 5.2. Steady-state concentration profiles in Vessel 1. The dotted curves show solutions of
(5.13) and (5.28) that do not lead to admissible steady states with zero overflow concentration.

all of these concentration values admit an entropy-satisfying steady-state solution in
the thickening zone. However, with the present parameters we have uE = 0, which
implies that u∗ = 0.369. This point is marked in Figures 5.1 and 5.2. We see that
integrating (5.13) from uD = 0.455 leads to a profile with u(0+) > u∗, which does
not lead to an admissible solution in the clarification zone. The tentative profile
for this case is the rightmost dotted profile in Figure 5.2. For uD = 0.445 and
uD = 0.45, we obtain admissible profiles in the clarification zone, which, however,
reach the overflow level x = xL and will produce an effluent with uE > 0. These
profiles are no admissible entropy steady-state solutions since the global conservation
principle is violated. The values uD = 0.415, 0.42, . . . , 0.435 lead to admissible steady-
state profiles with x̃c > xL, and, as a consequence of our analysis, uE = 0.

6. Numerical examples.

6.1. Preliminary remarks. Note that for k ∈ N, as chosen here, standard cal-
culus yields that the function A(u) has the explicit representation A(u) = A(u)−A(uc)
for u > uc with

A(u) := − v∞σ0

∆�guk
c

(1 − u)Cuk
k∑

j=1

cj

(
1

u
− 1

)j

, cj =

j∏
l=1

k + 1 − l

C + l
, j = 1, . . . , k;

it is straightforward to verify by differentiating A(u) that

dA(u)

du
= v∞u(1 − u)C · 1

∆�gu
· d

du

(
σ0

(
(u/uc)

k − 1
))

=
v∞σ0

∆�guk
c

(1 − u)Ckuk−1,

so that the function A(u) defined here indeed satisfies (2.10).



CONTINUOUS SEDIMENTATION IN CLARIFIER-THICKENERS 929

Fig. 6.1. The cylindrical clarifier-thickener (left) and the unit with discontinuously varying
cross-sectional area (right) used for numerical simulations.

We consider two units, a cylindrical one (Vessel 1) and one with discontinuously
varying cross-sectional area (Vessel 2); see Figure 6.1. The interior of Vessel 1 is
Sint = 1 m2. (Recall that the outer pipe diameter S0 can always be transformed away.)
The piecewise constant cross-sectional area function S(x) of the noncylindrical one,
Vessel 2, is defined in Figure 6.1.

The motivation of the choice of S(x) for Vessel 2 is that most clarifier-thickeners
have a conically shaped bottom to facilitate transport of material to the discharge
outlet and that we assume that one-quarter of the cross-sectional area in the clarifi-
cation zone is occupied by installations related to the feed mechanisms. Observe that
in the second case, both parameters γ1 and γ2 accounting for the cross-sectional area
and the bulk flow, respectively, have a discontinuity at x = 0.

6.2. Example 1: Batch settling. To illustrate the material behavior of the
suspension, we present in Figure 6.2 three simulations of the settling of an initially
homogeneous suspension at initial concentrations u0 = 0.02, 0.08, and 0.2 in a closed
column (for which all Q’s and q’s vanish) of height L = 1 m. We employ the explicit
numerical method (3.1), ∆x = L/500, and λ = 20 s/m. In the first two cases, we
have a(u0) = 0, and the suspension-clear liquid interface propagates as a sharp shock
and the transition between the region of initial concentration and the sediment rising
from below is sharp, while in the third case transitions are continuous. In all three
cases, a stationary sediment is forming. In Figure 6.2 and all subsequent three-
dimensional plots, the visual grid used to represent the solution is much coarser than
the computational.

6.3. Numerical simulations of Model 1.

6.3.1. Example 2: Variation of discharge and overflow rates. The four
simulations shown in Figure 6.3 have been computed using the unique feed flux qFuF =
(qR − qL)uF with qF = 1.25 × 10−5 m/s and uF = 0.08 but by using four different
“splits” of the feed rate into the discharge and overflow rates attained by varying the
parameter ν ∈ [0, 1] in qR = νqF and qL = −(1− ν)qF. In all four simulations, solving
the transient equations for sufficiently large times apparently leads to a stationary
solution. The numerical scheme is the explicit one (3.1) with λ = 40 s/m, and for this
and all other numerical simulations of Model 1, we choose ∆x = 1/300 m.

In Figure 6.3(a), we set ν = 1; i.e., the vessel is closed at the top and opened
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Fig. 6.2. Example 1: Simulation of batch settling of an initially homogeneous suspension with
u0 = 0.02 (a), u0 = 0.08 (b), and u0 = 0.20 (c).
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Fig. 6.3. Example 2: Simulation of filling up a cylindrical clarifier-thickener with uF = 0.08,
qF = 1.25 × 10−5m/s, qR = νqF, and qL = −(1 − ν)qF for ν = 1 (a) and ν = 0.5 (b).

at the bottom, with the volume feed rate equaling the discharge rate. We see that
the feed suspension is immediately diluted upon entering the vessel but attains its
original concentration, 0.08, again when passing the discharge level. No compression
region occurs.

For ν = 0.5 (Figure 6.3(b)), we obtain a very thin sediment layer at the bottom,
and the discharge concentration is 0.16, twice the feed concentration. The solution
qualitatively agrees with that for ν = 0.25 (Figure 6.3(c)). However, for ν = 0.25
the final discharge concentration is 0.32 = 4uF, and the sediment layer is appreciable.
The stationary solutions attained in these cases correspond to steady-state solutions
of Case 1 (conventional operation).

Finally, we take ν = 0; i.e., the vessel is closed at its bottom. The correspond-
ing solution is shown in Figure 6.3(d). We observe that the feed suspension is at
first immediately diluted upon entering the thickening zone. The material forms
a compressible sediment layer at the bottom. This layer rises at nearly constant
speed, breaks into the clarification zone, and, finally, produces an overflow at constant
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Fig. 6.3 (cont’d.). Example 2: Simulation of filling up a cylindrical clarifier-thickener with
uF = 0.08, qF = 1.25 × 10−5m/s, qR = νqF, and qL = −(1 − ν)qF for ν = 0.25 (c) and ν = 0 (d).

concentration 0.08, which is just the feed concentration. (Note that this kind of steady
state is not included in the analysis of section 5.)

6.3.2. Example 3: Transitions between approximate steady states. We
now utilize the examples of section 5.4 to design a long-time numerical example in
which the parameters for the time-dependent Model 1 are chosen in such a way that
the predetermined steady states may be attained. This example and Example 4 (for
Model 2) are solved by the semi-implicit method (3.4) with λ = 4000 s/m. We consider
the constant flow velocities qR = 2.5× 10−6 m/s and qL = −1.0× 10−5 m/s. The feed
concentration uF is varied in a stepwise fashion as follows:

uF(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.086 for 0 ≤ t ≤ t1 := 4.0 × 107 s,

0.08 for t1 < t ≤ t2 := 6.0 × 107 s,

0.088 for t2 < t ≤ t3 := 9.5 × 107 s,

0 for t > t3.

(6.1)
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Fig. 6.4. Example 3: Simulations of the fill-up and transitions between steady states in a
cylindrical clarifier-thickener (Vessel 1): filling up a cylindrical clarifier-thickener up to steady
state with uF = 0.086 (initial stages: (a), complete process: (b)).

The initial stage of the fill-up process is shown in Figure 6.4(a), while the complete
solution for the first time interval [0, t1] is plotted in Figure 6.4(b). We observe
that the feed propagates as a rarefaction wave into the thickening zone and that a
sediment layer is built up, which rises above the feed level. The interesting point is
that the numerical solution becomes stationary after the very long simulated time of
about 3.0× 107 s, which corresponds to roughly one year, and the stationary solution
closely approximates the steady-state profile corresponding to the same values of qL,
qR, and uF plotted in Figure 5.2. In particular, the numerical value of the overflow
concentration remains zero, and the solution value assumed at w = xR equals 0.42997.
Thus, we have reason to believe that this steady-state solution is indeed the limit
attained by the entropy weak solution for these parameters, at least for t → ∞;
whether the steady state is reached even in finite time would be a further question.

At the simulated time t = t1, we reduce uF to a value that in combination with
those of qL and qR once again corresponds to a steady state plotted in Figure 5.2 but
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Fig. 6.4 (cont’d.). Example 3: Simulations of the fill-up and transitions between steady states
in a cylindrical clarifier-thickener (Vessel 1): two different views of the complete simulation with
successive changes of uF from 0.086 to 0.08, 0.088, and 0 ( (c) and (d)).

this time to one of conventional operation. Figures 6.4(c) and (d) indicate that also
this steady state seems to be attained by the transient solution. In particular, the
hindered settling region becomes visible again. Shortly before t = t2, the numerical
solution value at x = xR equals 0.40001.

At t = t2, we increase uF to 0.088, and we observe that the simulation converges
again to the corresponding steady state of Figure 5.2. Shortly before the solution
becomes stationary, at t = t3, we switch off the feed by setting uF = 0, and the
clarifier-thickener unit empties rapidly.

Although the operations involved in this run—filling up, transitions between
steady states, and emptying of a clarifier-thickener—are typical control actions, prac-
titioners would, of course, accelerate the fill-up by closing the unit [15, 16]. The main
intention behind our example is, however, to illustrate that the model apparently
converges to steady-state solutions.
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Fig. 6.5. Example 4: Simulation of transitions between steady states in Vessel 2: plot of the
initial fill-up stage (a) and long-time simulation (b).

6.4. Example 4: Numerical simulation of Model 2. Finally, we repeat
the simulation of Example 3; that is, we use again the function uF(t) defined by
(6.1), but now we consider Model 2, Vessel 2 drawn in Figure 6.1, and select QL =
−1.0 × 10−5m3/s and QR = 2.5 × 10−6m3/s. Model 2 enforces a CFL condition
involving a factor maxS(x)/minS(x), which equals 25 here, so we have to decrease
accuracy to maintain acceptable computation time. We here choose λ = 100 s/m and
∆x = 1/50 m for the long-time run shown in Figure 6.5(b) but ∆x = 1/300 m for the
short simulated period in Figure 6.5(a).

We observe that the concentration profiles slightly reflects the thickener geometry,
although due to the diffusion term, this effect is less pronounced than for the same
model without compression (i.e., for A ≡ 0); see [23, 24]. First, observe the difference
between Figure 6.5(a) and the corresponding simulation for Model 1 and Vessel 1 in
Figure 6.4(a). The conical cross-section of the lower part of the thickening zone causes
a continuous variation of the concentration in the initial hindered settling region and
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Table 6.1

Approximate L1 errors for the numerical solution of Example 3.

t = 200000 s t = 1000000 s t = 2000000 s
J = 1 m

∆x
L1 error conv. rate L1 error conv. rate L1 error conv. rate

10 1.429e−2 2.301e−2 2.857e−2
20 7.092e−3 1.010 1.115e−2 1.004 1.424e−2 1.005
40 3.475e−3 1.029 5.666e−3 1.017 7.026e−3 1.019
80 1.691e−3 1.039 2.758e−3 1.038 3.425e−3 1.037

100 1.338e−3 1.048 2.176e−3 1.063 2.704e−3 1.059
160 8.004e−4 1.094 1.306e−3 1.087 1.623e−3 1.085
200 6.225e−4 1.126 1.015e−3 1.129 1.263e−3 1.124

accelerates the fill-up process.
Of course, a variable cross-sectional area S(x) complicates the discussion of steady

states but also offers new design opportunities [16]. Here, Vessel 2 no longer admits
a steady state for uF = 0.088 with uE = 0. In fact, we observe in Figure 6.5(b)
that a stationary profile is attained with nonzero overflow concentration. Rather, the
numerical values attained are overflow and underflow concentrations u(x−

L ) = 0.00121
and u(x+

R) = 0.43293. The stationary profile is probably a steady state with nonzero
effluent concentration (which is not included in the analysis of section 5, as are not
any other steady states for Model 2).

6.5. Comments on the numerical results. First of all, we mention that our
numerical results, including test runs with coarser discretizations (not shown here),
suggest that the scheme indeed converges to solutions for which A(u) is continuous
across xL and xR, as required by condition (D.4). However, it should be emphasized
that our scheme does not possess a built-in mechanism to enforce this property. As
emphasized before, a rigorous proof for the convergence of the scheme towards a
solution satisfying (D.4) is still an open problem, and it might be that one even
has to modify the scheme to ensure this property. This requires a deeper numerical
analysis, which we defer to another paper.

Furthermore, the accuracy and convergence rate of the numerical scheme used
herein may be of interest. To this end, we measured approximate L1 errors for the
simulation of Example 3 by measuring the difference ‖u∆(·, t)−uref(·, t)‖L1(−1.1 m,1.1 m)

for a number of discretizations (∆x,∆t = λ∆x) at t = 200000 s, t = 1000000 s,
and t = 2000000 s, where u∆ is the numerical solution obtained with ∆x = 1 m/J ,
J = 10, 20, 40, 80, 100, 160, 200, and uref is a high-accuracy reference solution with
J = 1600; see Table 6.1. In all cases, the semi-implicit scheme (3.4) with the parameter
λ = 4000 s/m was used.

We observe that the approximate L1 convergence rates are slightly larger than
but close to 1. This is consistent with the formal first-order accuracy of the time
discretization and of the discretization of the convective fluxes. Similar approximately
linear convergence has been observed for the explicit version (3.1) of the scheme
applied to a slightly simpler equation that does not involve a discontinuous parameter
in the diffusion term in [55], and for the application of the explicit scheme to the initial-
boundary value problem of batch settling of a flocculated suspension in [18], which
does not involve a discontinuous parameter at all. It should be pointed out that
observed convergence rates substantially depend on the parameters and numerical
examples chosen. For example, similar approximate L1 tables for the explicit scheme
(3.1) applied to the first-order clarifier-thickener model (obtained by setting A ≡ 0)
are presented in [25]. It turns out that when approximate L1 errors are measured at
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times when the solution includes nonstationary “hyperbolic” discontinuities (shocks),
then the observed L1 convergence rate measured on a succession of grids may fall
substantially below 1.

To put these observations into the proper perspective, let us mention that a
theoretical estimate of the rate of convergence of the numerical scheme presented
herein is outside current theory, even in the case of smooth coefficients. However, our
prime motivation behind advancing the scheme (3.1) (and its semi-implicit variant
(3.4)) was to use it as a constructive tool for the well-posedness analysis and to
employ it for simulations to illustrate the mathematical analysis. Clearly, we do not
propose (3.1) or (3.4) as the optimal scheme for simulations in practice. For that
purpose the scheme should be upgraded to formal second order both in time and in
space accuracy, which can be attained, for example, by combining flux correction and
Strang-type operator splitting between the hyperbolic and parabolic portions of the
problem. We pursue this further in [26].

Finally, there are conceivable alternative schemes for the clarifier-thickener model
that seem worth exploring. For example, one could combine the very efficient front
tracking method introduced in [19] for the hyperbolic portion and combine it with
finite differencing of the diffusion term in an operator splitting procedure. Alterna-
tively, the relaxation scheme used in [21] for the simulation of the first-order clarifier-
thickener model could be extended to handle the second-order degenerate diffusion
term accounting for sediment compressibility (as in [29]). Recent numerical schemes
for strongly degenerate parabolic equations that can possibly be extended to the
clarifier-thickener model also include the local discontinuous Galerkin method [33]
and diffusive kinetic BGK approximations [3, 11].

Acknowledgment. We are grateful to the referees for valuable comments that
resulted in a number of improvements in this paper.
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940 R. BÜRGER, K. H. KARLSEN, AND J. D. TOWERS

[63] D. R. Lester, Colloidal Suspension Dewatering Analysis, Ph.D. thesis, Department of Chem-
ical Engineering, University of Melbourne, Australia, 2002.

[64] O. Lev, E. Rubin, and M. Sheintuch, Steady state analysis of a continuous clarifier-thickener
system, AIChE J., 32 (1986), pp. 1516–1525.

[65] L. Lin, J. B. Temple, and J. Wang, A comparison of convergence rates for Godunov’s method
and Glimm’s method in resonant nonlinear systems of conservation laws, SIAM J. Numer.
Anal., 32 (1995), pp. 824–840.

[66] L. Lin, B. Temple, and W. Jinghua, Suppression of oscillations in Godunov’s method for a
resonant non-strictly hyperbolic system, SIAM J. Numer. Anal., 32 (1995), pp. 841–864.

[67] W. K. Lyons, Conservation laws with sharp inhomogeneities, Quart. Appl. Math., 40 (1982/
83), pp. 385–393.

[68] C. Mascia, A. Porretta, and A. Terracina, Nonhomogeneous Dirichlet problems for degen-
erate parabolic-hyperbolic equations, Arch. Ration. Mech. Anal., 163 (2002), pp. 87–124.

[69] A. Michel and J. Vovelle, Entropy formulation for parabolic degenerate equations with gen-
eral Dirichlet boundary conditions and application to the convergence of FV methods,
SIAM J. Numer. Anal., 41 (2003), pp. 2262–2293.

[70] S. Mishra, Convergence of Upwind Finite Difference Schemes for a Scalar Conservation Law
with Indefinite Discontinuities in the Flux Function, preprint, 2002.

[71] J. Molenaar, Entropy conditions for heterogeneity induced shocks in two-phase flow problems,
in Mathematical Modelling of Flow through Porous Media, A. P. Bourgeat, C. Carasso,
S. Luckhaus, and A. Mikelic, eds., World Scientific, Singapore, 1995.

[72] D. N. Ostrov, Viscosity solutions and convergence of monotone schemes for synthetic aperture
radar shape-from-shading equations with discontinuous intensities, SIAM J. Appl. Math.,
59 (1999), pp. 2060–2085.

[73] D. N. Ostrov, Solutions of Hamilton-Jacobi equations and scalar conservation laws with dis-
continuous space-time dependence, J. Differential Equations, 182 (2002), pp. 51–77.

[74] J. F. Richardson and W. N. Zaki, Sedimentation and fluidization: Part I, Trans. Instn.
Chem. Engrs. (London), 32 (1954), pp. 35–53.

[75] N. Seguin and J. Vovelle, Analysis and approximation of a scalar conservation law with a
flux function with discontinuous coefficients, Math. Models Meth. Appl. Sci., 13 (2003),
pp. 221–257.

[76] B. Temple, Global solution of the Cauchy problem for a class of 2 × 2 nonstrictly hyperbolic
conservation laws, Adv. in Appl. Math., 3 (1982), pp. 335–375.

[77] J. D. Towers, Convergence of a difference scheme for conservation laws with a discontinuous
flux, SIAM J. Numer. Anal., 38 (2000), pp. 681–698.

[78] J. D. Towers, A difference scheme for conservation laws with a discontinuous flux: The
nonconvex case, SIAM J. Numer. Anal., 39 (2001), pp. 1197–1218.

[79] S. P. Usher, R. G. De Kretser, and P. J. Scales, Validation of a new filtration technique
for dewaterability characterization, AIChE J., 47 (2001), pp. 1561–1570.

[80] C. J. van Duijn, M. J. de Neef, and J. Molenaar, Effects of capillary forces on immiscible
two-phase flow in strongly heterogeneous porous media, Transp. Porous Media, 21 (1995),
pp. 71–93.

[81] L. B. Verdickt, T. V. Voitovich, S. Vandewalle, K. Lust, I. Y. Smets, and J. F. Van Impe,
Role of the diffusion coefficient in one-dimensional convection-diffusion models for sedi-
mentation/thickening in secondary settling tanks, Math. Comp. Mod. Dyn. Syst., to ap-
pear.

[82] A. I. Volpert, Generalized solutions of degenerate second-order quasilinear parabolic and el-
liptic equations, Adv. Differential Equations, 5 (2000), pp. 1493–1518.

[83] A. I. Vol’pert and S. I. Hudjaev, Cauchy’s problem for degenerate second order quasilinear
parabolic equations, Math. USSR-Sb., 7 (1969), pp. 365–387.

[84] Z. Wu and J. Yin, Some properties of functions in BVx and their applications to the unique-
ness of solutions for degenerate quasilinear parabolic equations, Northeastern Math. J., 5
(1989), pp. 395–422.

[85] Y. C. Yortsos and J. Chang, Capillary effects in steady-state flow in heterogeneous cores,
Transp. Porous Media, 5 (1990), pp. 399–420.



SIAM J. APPL. MATH. c© 2005 Society for Industrial and Applied Mathematics
Vol. 65, No. 3, pp. 941–963

EXACT SOLUTIONS FOR THE EVOLUTION OF A BUBBLE IN
STOKES FLOW: A CAUCHY TRANSFORM APPROACH∗
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Abstract. A Cauchy transform approach to the problem of determining the free surface evolu-
tion of a single bubble in Stokes flow is developed. A number of exact solutions to a class of problems
have been derived in the literature using conformal mapping theory, and these solutions are retrieved
and further generalized using the new formulation. Certain quantities which are conserved by the
dynamics are also identified, the existence of which had not previously been pointed out. A principal
purpose of this paper is to use the new formulation to understand when it is possible to externally
specify the evolution of the bubble area in such classes of exact solution. It is found to be possible
only for certain types of far-field boundary conditions.
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1. Introduction. It is a well-known yet remarkable fact that large classes of
exact solutions can be found for unsteady two-dimensional (2-D) Stokes flow with a
free surface, both with and without surface tension. The solutions follow from the
application of powerful complex variable methods; most often these methods involve
the use of a conformal mapping z(ζ, t) to reformulate the free boundary problem as
a boundary value problem on a fixed domain in the ζ-plane (assumed in this paper
to be a unit disk). The free boundary evolution is then conveniently described by the
functional form of the map z(ζ, t).

Among the first results from the application of complex variable methods to free
boundary problems for 2-D Stokes bubbles are the steady bubble solutions of Richard-
son [18, 19]. Antanovskii [2] later constructed exact unsteady solutions in the case
when the asymptotic form of the far-field flow is given by an mth order irrotational
straining flow. Independently, Tanveer and Vasconcelos [23] derived explicit unsteady
solutions in the form of polynomial mappings in the case when the far-field flow is
purely linear, e.g., pure straining flow or simple shear flow with m = 1. They also con-
structed new exact solutions for an expanding/contracting bubble in a quiescent flow.
Antanovskii [3] also constructed explicit steady solutions in the case of nonlinear1

and rotational far-field conditions. The latter solutions were applied as a simple 2-D
model for flow in Taylor’s four roller mill. Siegel [22] later generalized these results
to include explicit unsteady solutions for certain nonlinear rotational far-field condi-
tions, including the time-dependent evolution of the solutions in [3]. Additionally,
there is a large amount of literature describing related developments for the evolution
of viscous blobs in 2-D Stokes flow (see, e.g., Howison and Richardson [14] and the
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references therein). Complex variable methods have also been applied to study the
evolution of bubbles in Hele–Shaw flow. Cummings, Howison, and King [10] provide
a comparison of the developments in Hele–Shaw flow and 2-D Stokes flows. Aside
from their intrinsic mathematical interest, these investigations have led to improved
understanding of the formation of cusp singularities in free surface flow. The exact
2-D solutions are also useful as an important component of the leading-order solution
to three-dimensional flow in slender geometries [9].

The aforementioned exact solutions for 2-D Stokes flow and Hele–Shaw flow all
take the form of rational conformal mappings which may be written as

z(ζ, t) =
a0(t) + a1(t)ζ + · · · + aN (t)ζN

ζ(1 + b1(t)ζ + · · · + bM (t)ζM )
.(1)

For convenience we have chosen b0(t) = 1 (this is always possible through a redefinition
of the other coefficients); if bi(t) ≡ 0, then the mapping reduces to a simpler polyno-
mial form. Note that the extra ζ term in the denominator of (1) is due to the mapping
of the inside of the unit disk to the exterior of the bubble. When the dynamics pre-
serves the form (1), the free boundary evolution reduces from an infinite-dimensional
dynamical system (namely, the original governing PDEs) to a finite system of ODEs
from which one can compute the N + M + 1 parameters of the conformal mapping
from given initial data and external flow.2

In essence, demonstration of the existence of a solution of the form (1) for a
given free boundary problem involves two key steps. First, it must be shown that the
form (1) is preserved in time; i.e., if z(ζ, 0) is a rational function of the form (1) for
some M,N , then, as long as the solution exists, z(ζ, t) remains a rational function
with the same M,N . In this paper we shall refer to this requirement as the closure
condition. In particular, this implies that the number and type of (pole) singularities
in the complex plane (i.e., |ζ| > 1) is invariant with time. Second, it is generally
required that solutions z(ζ, t) do not generate any flow singularities (i.e., sources or
sinks) in the finite fluid domain, although we do allow sources or sinks at infinity,
corresponding to expanding/contracting bubble area.

For the solutions described in [2, 23] the closure condition is automatically satis-
fied, i.e., without any restrictions on the map coefficients ai, bi. The governing ODEs
for the coefficients ai, bi therefore come strictly from the second requirement, which
gives N +M conditions for N +M + 1 unknowns. As a final condition, one is free to
specify the time rate of change of the bubble area or, in other words, to specify the
existence of a time-dependent source or sink fixed at infinity.

In contrast, for the solutions derived in [22] the closure condition imposes a con-
straint on the map coefficients ai, bi, in addition to the N + M constraints supplied
by the second condition above. Thus, seemingly, one is not free to arbitrarily specify
the bubble area. It therefore seems rather fortuitous that the constant area condition
employed in [22] is correct, i.e., that the dynamics actually preserves bubble area.
However, it is not at all clear from the discussion there how to ascertain if or when
this is the case.

In this paper, we provide a general discussion of when it is possible to obtain exact
solutions to a very broad class of problems which encompasses and expands the class
investigated in [2, 22, 23]. Additionally, we specify precisely when it is possible to
externally control the bubble area and, in cases for which the area is not controllable,

2Solutions to such a system of ODEs are commonly referred to as exact solutions.
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provide a simple means of ascertaining its time dependence. Our analysis involves a
different approach from the one given in [2, 22, 23], namely, that emphasis is placed
on consideration of the Cauchy transform which we define here as

1

2πi

∮
∂D(t)

z̄′

z′ − z
dz′,(2)

where ∂D(t) denotes the boundary of the fluid domain D(t). When z is inside the
bubble, the line integral (2) defines an analytic function, say C(z, t). The analytic
continuation of C(z, t) outside the bubble (and into the fluid region D(t)) contains
a great deal of information about the bubble shape. In many respects, C(z, t) is a
more natural mathematical object to consider; indeed, given the functional form of
C(z, t) at each instant it is possible to reconstruct the relevant conformal mapping.
The evolution equation for C(z, t) also has a convenient mathematical form which is
easy to analyze. In particular, using the new formulation presented here it is possible
to resolve such issues as the question of bubble area evolution, a question which often
involves formidable calculation in the usual conformal map approach. It is appropriate
to mention that the Cauchy transform has been used to great effect by many previous
authors in the study of Hele–Shaw free boundary problems [12, 20, 21, 24].

The rest of this paper is organized as follows. In section 2 we introduce the Cauchy
transform formulation for the problem of Stokes flow for a single bubble and prove its
equivalence to the usual Stokes flow formulation. We also demonstrate the existence
of certain conserved quantities which are useful in constructing exact solutions. In
section 3 we use the new formulation to retrieve the exact solutions which have been
previously presented in the literature and show how new classes of solutions may be
derived. In particular, with the new approach the closure condition is easily verified, in
contrast to the much more involved calculations that are necessary using the conformal
map approach. More importantly, we use our formulation to investigate when it is
possible to externally specify the evolution of bubble area. Some concluding remarks
are presented in section 4.

2. Mathematical formulation.

2.1. Stokes flow problem. Consider the quasi-steady evolution of a single bub-
ble in an ambient Stokes flow. The fluid inside the bubble is assumed to have zero
viscosity, implying that it is a passive fluid with spatially constant pressure, which for
convenience is set to zero. We denote the fluid region exterior to the bubble by D(t),
and the bubble is denoted by Dc(t). The flow is allowed to be singular at infinity,
although we do not consider any flow singularities (such as sources or sinks) in the
finite flow domain. Figure 1 gives a schematic. In view of the incompressibility of the
flow, it is convenient to introduce a streamfunction ψ(x, y) which satisfies

u = ∇⊥ψ.(3)

It is easily seen that

∇4ψ = 0 in D(t).(4)

We assume that surface tension acts on the bubble boundary so that the stress con-
dition is

−pnj + 2ejknk = κnj ,(5)
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Fig. 1. Schematic illustrating the bubble region Dc(t) and the fluid region D(t). There is a
singular flow field at infinity.

where κ is the surface curvature (assumed positive for a convex surface), p is the
pressure exterior to the bubble, n is a unit normal pointing outward from the bubble,
and

ejk =
1

2

(
∂uj

∂xk
+

∂uk

∂xj

)

is the rate of strain tensor. In (5) we have assumed that velocities are nondimension-
alized by σ/µ, where σ is the surface tension, lengths are nondimensionalized by R,
the undeformed bubble radius, and p is nondimensionalized by σ/R. Additionally,
time is nondimensionalized by Rµ/σ. The kinematic condition is that

u · n = Vn(6)

at each point on the interface.
The problem is now reformulated as a problem in analytic function theory fol-

lowing the formulation of Tanveer and Vasconcelos [23]. The general solution of (4)
at each instant has the form

ψ = Im[z̄f(z, t) + g(z, t)],(7)

where z = x+ iy and the overbar denotes complex conjugate. Here f(z, t) and g(z, t)
are the Goursat functions which are analytic everywhere in the fluid region D(t). In
terms of the Goursat functions, the following relations can easily be established:

p− iω = 4f ′(z, t),

u + iv = −f(z, t) + zf ′(z, t) + g′(z, t),

e11 + ie12 = zf ′′(z, t) + g′′(z, t),

(8)
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where ω is the vorticity and u, v are the x- and y-components of velocity. Defining
s to be the arclength traversed in a counterclockwise direction around the bubble
boundary z(s, t), the stress boundary condition can be written in the form

f(z, t) + zf ′(z, t) + g′(z, t) = −i
zs
2

on ∂D(t).(9)

Using the second equation of (8) and (9), the kinematic condition can be written as

Im [(zt + 2f) z̄s] = −1

2
on ∂D(t).(10)

Equations (9) and (10) are supplemented by boundary conditions on f(z, t) and g′(z, t)
at infinity. In this paper we consider far-field conditions of the form

f(z, t) = fnz
n + · · · + f0 + O

(
1

z

)
,(11)

g′(z, t) = gmzm + · · · + g0 + O

(
1

z

)
.(12)

2.2. Evolution of the Cauchy transform. Given the above formulation, it
is instructive to consider the evolution of the Cauchy transform C(z, t) introduced in
(2). The following result is central to the subsequent developments in this paper.

Theorem 2.1 (evolution of the Cauchy transform). The Stokes flow problem
described in section 2.1 is equivalent to the equation

∂C(z, t)

∂t
+

∂I(z, t)

∂z
= R(z, t)(13)

together with (10) and boundary condition (11). Here C(z, t) and I(z, t) are defined
for z ∈ Dc(t) (i.e., inside the bubble) by

C(z, t) =
1

2πi

∮
∂D(t)

z̄′

z′ − z
dz′,

I(z, t) =
1

2πi

∮
∂D(t)

−2f(z′, t)z̄′

z′ − z
dz′

(14)

and where the forcing term R(z, t) is given by

R(z, t) = 2
(
gmzm + gm−1z

m−1 + · · · + g0

)
.(15)

Remark. The viscous sintering problem, which involves the evolution of fluid drops
(rather than bubbles), has been investigated using the Cauchy transform approach
by Crowdy [5]. There, the Cauchy transform of the domain was defined by the area
integral

C(z, t) ≡ 1

π

∫ ∫
D(t)

dx′dy′

z′ − z
.(16)

In the case of a bounded fluid region, (16) is equivalent to our current definition (2),
by the complex form of Green’s theorem [1]. Note also that, in the viscous sintering
problem, the inhomogeneous term R(z, t) is absent since there are no singularities
present to drive the flow; i.e., the flow is driven purely by surface tension. For the
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Stokes bubbles considered here, the term R(z, t) represents the forcing due to the
singular behavior of the flow at infinity.

Remark. In the viscous sintering problem, [5] provides a proof of the forward
result for Theorem 2.1, i.e., that a solution to the Stokes flow problem satisfies (13)
(with R(z, t) = 0). This paper provides the first proof of the “backward” result, and
hence the equivalence of the two formulations. Although the proof here is for bubbles,
it may easily be modified to the case of fluid drops.

Proof of Theorem 2.1. We first prove the “backward” result; i.e., we assume
the existence of a solution C(z, t), f(z, t) to (10), (13) (with f(z, t) analytic in D(t)
and having far-field behavior (11)) and show that (9) is satisfied for an appropriately
defined g′(z, t) that is analytic in the fluid domain D(t) and satisfies (12). By direct
differentiation we have

∂C(z, t)

∂t
= − 1

2πi

∮
∂D(t)

z′tz̄
′dz′

(z′ − z)2
+

1

2πi

∮
∂D(t)

(z̄′dz′)t
z′ − z

.(17)

Next, the kinematic condition (10) is rewritten in the form

(z̄dz)t = ztdz̄ + z̄(dzt) + 2fdz̄ − 2f̄dz + ids.(18)

Substituting (18) into (17) gives the equation

∂C(z, t)

∂t
=

1

2πi

∮
∂D(t)

[
−z′tz̄

′dz′

(z′ − z)2
+

z′tdz̄
′ + z̄′(dz′)t
z′ − z

]

+
1

2πi

∮
∂D(t)

2f(z′, t)dz̄′ − 2f(z′, t)dz′ + ids

z′ − z
.(19)

The terms in square brackets represent a total (spatial) differential of z′tz̄
′/(z′ − z)

which is assumed to be single-valued. Therefore the first integral term is zero. After
replacing ∂C/∂t using (13), we obtain

R(z, t) +
1

2πi

∂

∂z

∮
∂D(t)

2f(z′, t)z̄′

z′ − z
dz′

− 1

2πi

∮
∂D(t)

2f(z′, t)dz̄′ − 2f(z′, t)dz′ + ids

z′ − z
= 0.(20)

But

1

2πi

∂

∂z

∮
∂D(t)

f(z′, t)z̄′

z′ − z
dz′ =

1

2πi

∮
∂D(t)

f(z′, t)z̄′

(z′ − z)2
dz′

=
1

2πi

∮
∂D(t)

fz′(z′, t)z̄′ + f(z′, t)z̄′z′

z′ − z
dz′,(21)

where the subscript z′ denotes partial differentiation, and the latter equality follows
after integration by parts. Substituting (21) into (20) then yields

R(z, t) +
1

2πi

∮
∂D(t)

(
2fz′(z′, t)z̄′ + 2f(z′, t)

)
− ids

z′ − z
= 0.(22)

It is convenient to introduce the notation

f̃(z, t) = f(z, t) − (fnz
n + · · · + f0)
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so that f̃(z, t) represents the component of f(z, t) that decays to zero as z → ∞. By
the well-known properties of Cauchy integrals, we have for z ∈ Dc(t)

1

2πi

∮
∂D(t)

f̃(z′, t)

z′ − z
dz′ = 0,(23)

1

2πi

∂

∂z

∮
∂D(t)

f̃(z′, t)

z′ − z
dz′ = 0,(24)

1

2πi

∮
∂D(t)

R(z′, t)

z′ − z
dz′ = R(z, t).(25)

Equation (22) is now modified by adding twice the conjugate of (23) and the product
of 2z̄ with (24) to it. After employing (25), the modified equation is written as

Φ(z, t) + z̄Φ′(z, t) + Ψ(z, t) = 0(26)

for z ∈ Dc(t), where

Φ(z, t) =
1

2πi

∮
∂D(t)

2f̃(z′, t)

z′ − z
dz′,(27)

Ψ(z, t) =
1

2πi

∮
∂D(t)

R(z′, t) + 2fz′(z′, t)z̄′ + 2f(z′, t)

z′ − z
dz′,

− 1

2πi

∮
∂D(t)

ids

z′ − z
.(28)

Additionally, upon taking the limit of (26) as z → τ , a point on the boundary of
Dc(t), we obtain the relation

Φ(τ, t) + τ̄Φ′(τ, t) + Ψ(τ, t) = 0.(29)

The functions Φ(z, t) and Ψ(z, t) are analytic in Dc(t), and the boundary condition
(29) is identical to the one satisfied by the Goursat functions in the plane problem of
the theory of elasticity for the region Dc(t), under the assumption that the boundary
of the region is free from the action of external forces. It follows from the theorem of
uniqueness [15] of the solution to the plane problem of elasticity that

Φ(z, t) = iαz + β,

Ψ(z, t) = −β̄,

where α is a real and β is a complex constant. But from (23), Φ(z) = 0 in Dc(t),
implying that α = β = 0. Hence

Φ(z, t) = 0, Ψ(z, t) = 0.(30)

From the second identity of (30) it is concluded that the following function may be
analytically continued to D(t):

χ(z, t) = gmzm + · · · + g0 + f(z, t) + z̄f ′(z, t) − i

2zs
.

Upon associating g′(z, t) with gmzm + · · ·+ g0 −χ(z, t), it is concluded that (10)–(13)
determine f(z, t) and g′(z, t) as analytic functions in D(t) that satisfy the boundary
condition (9) and far-field condition (12). This proves the “backward” result.
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We next consider the “forward” problem; i.e., we show that the Stokes problem
(9)–(12) implies (13). First, take the conjugate of (9) and use the fact that zsz̄s = 1
to write the stress condition in the form

2f̄dz + 2z̄df + 2dg = ids.

This equation is combined with the kinematic condition (10) to give

(z̄dz)t = 2dg + 2d (z̄f) + z̄dzt + ztdz̄.(31)

Substituting (31) into (17) then yields the equation

∂C(z, t)

∂t
=

1

2πi

∮
∂D(t)

2g′(z′, t)dz′

z′ − z
+

2d(z̄′f)

z′ − z
+

[
− z′tz̄

′dz′

(z′ − z)2
+

z̄′(dz′)t
z′ − z

+
z′tdz̄

′

z′ − z

]
.

The terms in square brackets represent a total (spatial) differential and therefore give
zero total contribution to the integral. The first integral term on the right-hand side
is rewritten using

1

2πi

∮
∂D(t)

2g′(z′, t)

z′ − z
dz′ = 2(gmzm + · · · + g0) = R(z, t).

Finally, using integration by parts on the second integral term and rearranging, we
obtain (13), which completes the proof.

2.3. Analytic continuation inside the fluid region. The functions C(z, t),
I(z, t), and R(z, t) defined by the integrals (14) and (15) are all analytic inside the
bubble. We now consider the analytic continuations of these functions inside the fluid
domain D(t), i.e., exterior to the bubble. By the continuation principle, (13) is also
the equation relating these (analytically continued) functions inside D(t).

It is assumed that the bubble boundary ∂D(t) is an analytic curve. This implies
that there exists a (unique) function (known as the Schwarz function of the curve
[11]) analytic inside an annular domain containing the curve ∂D(t) which satisfies the
equation

z̄ = S(z, t)(32)

everywhere on the curve ∂D(t). But, by the Plemelj formulae,

S(z, t) = C(z, t) − Ci(z, t),(33)

−2f(z, t)S(z, t) = I(z, t) − Ii(z, t),(34)

2g′(z, t) = R(z, t) −Ri(z, t),(35)

where, for z ∈ D(t), the functions Ci(z, t), Ii(z, t), and Ri(z, t) are given by the
integrals

Ci(z, t) =
1

2πi

∮
∂D(t)

z̄′

z′ − z
dz′,(36)
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Ii(z, t) =
1

2πi

∮
∂D(t)

−2f(z′, t)z̄′

z′ − z
dz′,(37)

Ri(z, t) =
1

2πi

∮
∂D(t)

2g′(z′, t)

z′ − z
dz′.(38)

The formulae (33)–(35) provide expressions for the analytic continuations of C(z, t),
I(z, t), and R(z, t) into the fluid domain D(t).

2.4. Conservation of finite poles of C(z, t). The following result will be
useful in constructing exact solutions to the Stokes flow problem (10)–(13).

Let C(z, t), f(z, t) be solutions to (10)–(13). If C(z, 0) initially has a pole at a
finite point zj(0) inside the fluid domain, then (provided the solution exists) C(z, t)
continues to have a pole at the point zj(t), where zj(t) satisfies the ODE

żj(t) = −2f(zj(t), t).(39)

To derive the result, first note that the complex form of Green’s theorem [1] can
be used to write I(z, t) in the form

I(z, t) = − 1

2πi

∮
∂D(t)

2f(z′, t) − 2f(z, t)

z′ − z
z̄′dz′ − 2f(z, t)C(z, t).(40)

Define the function Σ(z, t) as

Σ(z, t) = − 1

2πi

∮
∂D(t)

2f(z′, t) − 2f(z, t)

z′ − z
z̄′dz′.(41)

The singularity of the integrand in (41) is removable, and Σ(z, t) is therefore analytic
in D(t). Thus,

I(z, t) = Σ(z, t) − 2f(z, t)C(z, t),(42)

which, when substituted into (13), yields the following PDE for the Cauchy transform:

∂C

∂t
− 2f(z, t)

∂C

∂z
− 2

∂f(z, t)

∂z
C(z, t) +

∂Σ

∂z
(z, t) = R(z, t).(43)

This equation also governs the analytic continuation of C(z, t) inside D(t). But inside
D(t), (43) has the form of a first-order linear equation for C(z, t) with coefficients that
are known a priori to be analytic in D(t). Thus, provided they exist, solutions for
C(z, t) will have the same analytic structure inside D(t) as solutions of a first-order
linear PDE with analytic coefficients. Using the well-known theory of such equations,
it is deduced that the pole singularities are preserved and move on characteristics. In
this case,

−żj(t) − 2f(zj(t), t) = 0,(44)

and the result is demonstrated.
Remark. Note that the above result says nothing about any singularities of C(z, t)

at infinity. In the present application, the coefficient function f(z, t) is singular at
infinity (and, in the language of ODEs [13], is therefore a fixed singularity of (43)).
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Moreover, depending on the far-field flow, R(z, t) may also be singular at infinity. The
behavior of C(z, t) at z → ∞ must be examined by a local analysis of (13) in each
case. Such an analysis will be seen to be crucial in determining whether C(z, t) can
consistently preserve a rational function form under evolution, i.e., satisfy the closure
condition. When this is the case, the pole at infinity does not move into the finite
complex plane. These issues are discussed further in section 3.

Remark. The results of this section are closely related to the results of section 4.5
of Cummings, Howison, and King [10], where rather different arguments are used.

2.5. Circulation theorem and conserved quantities. In the context of the
viscous sintering problem, Crowdy [5] derived a circulation theorem which provides the
existence of conserved quantities associated with certain choices of initial conditions.
This theorem can be extended to the case of a bubble in an infinite flow.

Let the curve γj be a fixed closed curve surrounding the isolated pole singularity
zj(t) ∈ D(t). Because zj(t) moves at finite speed (see (39)), γj can always be chosen
so that it continues to enclose the (moving) singularity zj(t), at least for sufficiently
short times. Consider the circulation-type quantity

∮
γj

C(z, t)dz.(45)

Because γj is assumed fixed, we have

d

dt

∮
γj

C(z, t)dz =

∮
γj

∂C(z, t)

∂t
dz =

∮
γj

(
−∂I(z, t)

∂z
+ 2g′(z, t) + Ri(z, t)

)
dz.(46)

But Ri(z, t) is analytic everywhere inside γj , as is g′(z, t) if the flow has no singularities
in the finite plane. Use of Cauchy’s theorem then implies that

d

dt

∮
γj

C(z, t)dz = − [I(z, t)]γj
,(47)

where the square bracket denotes the change in I(z, t) around the contour γj . But,
by (33) and (34), while I(z, t) has a simple pole at zj(t), it is single-valued so that
the right-hand side of (47) vanishes. This implies that

∮
γj

C(z, t)dz = Aj(t), j = 1, . . . , N,(48)

are constants of the motion, i.e.,

Aj(t) = Aj(0).(49)

Note that in (48) we have used the fact that the simple pole of C(z, t) at zj(t) is
preserved in time.

The existence of the above conserved quantities has not been pointed out in any
previous studies of bubbles in ambient Stokes flows. It is, however, closely related
to a similar result that has been observed in the context of evolving viscous blobs
[5, 17, 6].
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3. Exact solutions. The advantage of considering the Cauchy transform C(z, t)
is that its evolution equation is particularly simple. In certain situations, it will be
seen that C(z, t) can retain a rational function form under evolution. In this case, the
corresponding solutions will be called exact in the sense that the evolution depends
on just a finite set of time-evolving parameters. As an example of the simplicity of
the evolution equations, suppose C(z, 0) is rational with a finite distribution of simple
pole singularities. Suppose too that it is known that C(z, t) preserves this functional
form under evolution. Then, if C(z, 0) has the form

C(z, 0) =
N∑
j=1

Aj(0)

z − zj(0)
,(50)

then, by the results above, C(z, t) has the form

C(z, t) =

N∑
j=1

Aj(0)

z − zj(t)
,(51)

where

żj(t) = −2f(zj(t), t), j = 1, . . . , N.(52)

With the singularities under control at all regular points of the evolution equation
(13), the question of whether C(z, t) can consistently preserve a given rational function
form must be determined by a local analysis of (13) at the fixed singularity at infinity.
This will be illustrated in the context of the examples considered in section 3.1.

Even supposing that C(z, t) indeed evolves as a rational function, it still remains
to reconstruct the corresponding time-evolving domain from knowledge of the Cauchy
transform. This can be done using conformal maps, but it is important to observe that
in the case of unbounded domains such as here, knowledge of the Cauchy transform
does not uniquely determine the unbounded domain. Rather, it determines it only up
to a real degree of freedom which can be associated with the freedom to specify the
bubble area. The appendix provides a discussion of this point in terms of the inverse
problem of 2-D potential theory.

None of the authors Antanovskii [2], Siegel [22], or Tanveer and Vasconcelos [23]
use the above formulation but instead make direct use of a conformal map formulation
in a parametric ζ-plane. It is instructive to retrieve the conformal mapping solutions of
[2, 22, 23] using the above perspective. In this way, certain advantages of the Cauchy
transform formulation will become apparent. In particular, we gain important insight
into the bubble area evolution in each case and see exactly when it is possible to
specify it externally.

We note that, in the process of retrieving the conformal mapping solutions of [2,
22, 23], the values of f(zj(t), t) are computed with the aid of the conformal map. One
can bypass the introduction of a conformal map and compute f from the kinematic
condition (10) by using an alternative representation of the boundary (e.g., algebraic
curves; see [8]). Although this may require the use of a boundary integral numerical
calculation, one still has the advantage of a finite/exact representation of the interface,
since the preserved rational function form of the Cauchy transform implies that the
shape can be described by a small finite number of parameters.



952 DARREN CROWDY AND MICHAEL SIEGEL

3.1. Exact solutions of Tanveer and Vasconcelos [23].

3.1.1. The Cauchy transform. Tanveer and Vasconcelos assume that the far-
field form of f(z, t) and g′(z, t) are of the form

f(z, t) ∼ f1z + O(1),(53)

g′(z, t) ∼ g1z + O(1).(54)

Specifically, in the notation of Tanveer and Vasconcelos [23],

f1 =
1

4

(
p∞(t)

µ
− iω0

)
(55)

and

g1 =
1

2
(α0 − iβ0) .(56)

p∞(t) and ω0 are the fluid pressure and vorticity in the far-field, respectively, while
α0 and β0 characterize the strain rates of a linear straining flow at infinity.

As an illustrative example, we take the first case considered by Tanveer and
Vasconcelos [23], that is, a bubble in a shear flow of the form

u = (Γy, 0).(57)

This corresponds to the far-field values α0 = 0 and β0 = −ω0 = Γ in the notation of
(55) and (56), or equivalently

f1 =
iΓ

4
, g1 = − iΓ

2
(58)

in the notation of (53) and (54).

Tanveer and Vasconcelos [23] show the existence of exact solutions that are poly-
nomial maps, i.e., of the form (1) with bi = 0. To retrieve these, let us seek solutions
in which C(z, t) has the rational function form

C(z, t) = A(t)z;(59)

that is, the only singularity of C(z, t) in the fluid region is a single simple pole singu-
larity at infinity. It is necessary to check that this is a consistent solution of (13). To
do this, we analyze (13) in the neighborhood of infinity and find that we require

∂

∂t
(A(t)z) +

∂

∂z
(−2f1z(A(t)z)) + o(z) = 2g1z + o(z).(60)

This is consistent, provided A(t) satisfies

Ȧ(t) − 4f1A(t) = 2g1,(61)

where this equation comes from equating coefficients of z in (60).



EVOLUTION OF A BUBBLE IN STOKES FLOW 953

3.1.2. Conformal mapping. We now consider the conformal maps for which
the corresponding Cauchy transform C(z, t) has the form (16). Consider, for example,
the mapping from the unit ζ-disc given by

z(ζ, t) =
a

ζ
+ bζ,(62)

where a and b are functions of time and where a can be assumed real (using a rotational
degree of freedom of the Riemann mapping theorem). Note that, on the unit ζ-circle,

z̄ = aζ +
b̄

ζ
.(63)

From (62) we have that

1

ζ
=

z

a
− b

a
ζ.(64)

Using (64) in (63) we obtain

z̄ =
b̄

a
z +

(
a− |b|2

a

)
ζ,(65)

which is valid on the unit ζ-circle. By comparison with (33) we make the identifications

C(z, t) =
b̄

a
z, Ci(z, t) = −

(
a− |b|2

a

)
ζ(z, t),(66)

where we have also used the fact that Ci(z, t) decays at infinity. This shows that all
conformal maps of the form (62) have corresponding Cauchy transforms of the form
(16) with

A =
b̄

a
.(67)

Note that a and b can be multiplied by any real constant (corresponding to changing
the area of the elliptical bubble) and the Cauchy transform (16) remains unchanged.
A degree of freedom is therefore available, and this is used up, following Tanveer and
Vasconcelos [23], by specifying the area of the bubble to be fixed in time, i.e.,

a2 − |b|2 = R2,(68)

where R is constant. (Alternatively, one can specify the bubble area to be an arbitrary
function of time, corresponding to the presence of a source or sink at infinity.) This
gives one equation relating a and b as derived by Tanveer and Vasconcelos [23]. The
second equation obtained by them is

d(ab)

dt
= −(2I0 + iΓ)ab + iΓa2,(69)

where I0 = I(0, t) and

I(ζ, t) =
1

4πi

∮
|ζ′|=1

dζ ′

ζ ′

[
ζ + ζ ′

ζ ′ − ζ

]
1

|zζ(ζ ′, t)|
.(70)
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This equation must, of course, be equivalent to (61). To see this, note that upon
applying the Poisson integral formula [1] to the kinematic condition it can be shown
that

zt(ζ, t) + 2f(z(ζ, t), t) = ζ

[
I(ζ, t) +

iω0

2

]
zζ(ζ, t)(71)

(see Tanveer and Vasconcelos [23]). Substituting the conformal map (62) into this
equation and equating powers of ζ−1 provides

ȧ + 2f1a = −a

(
I0 +

iω0

2

)
.(72)

Eliminating f1 in (61) using (72), as well as using (67) and (58), gives the required
(69).

3.2. Exact solutions of Antanovskii [2]. Antanovskii [2] assumes the far-field
asymptotic form of f(z, t) and g′(z, t) to be

f(z, t) ∼ f1z + O(1/z),(73)

g′(z, t) ∼ gmzm + O(1/z),(74)

where m ≥ 1 is some positive integer and f1 is some real time-dependent function
that is independent of z. This gives rise to a situation in which the far-field flow is
irrotational and given by an mth order straining flow.

Anticipating the form of the singularity in C(z, t) at infinity in order to satisfy
the closure condition, we seek solutions in which C(z, t) is an mth order polynomial,
i.e.,

C(z, t) = Amzm + Am−1z
m−1 + · · · + A1z.(75)

Analyzing the singularity of (13) at infinity gives the equations

Ȧm − 2(m + 1)f1Am = 2gm,

Ȧm−1 − 2mf1Am−1 = 0,

Ȧm−2 − 2(m− 1)f1Am−2 = 0,

. . .

Ȧ1 − 2f1A1 = 0.

(76)

First, it is immediately clear that if Am−1(0) = Am−2(0) = · · · = A1(0) = 0, then
Am−1(t) = Am−2(t) = · · · = A1(t) = 0. It therefore remains only to satisfy the
equation for Am, viz.,

Ȧm − 2(m + 1)f1Am = 2gm.(77)

3.2.1. Conformal mapping. Now consider the class of conformal maps given
by

z(ζ, t) =
a

ζ
+ bζm,(78)
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where a is again assumed to be real. On the unit ζ-circle we have

z(ζ−1, t) = aζ +
b̄

ζm
.(79)

But from (78),

1

ζ
=

z

a
− b

a
ζm,(80)

which, when substituted into (79), gives

S(z(ζ)) = z(ζ−1, t) = aζ + b̄

(
z

a
− b

a
ζm

)m

(81)

from which, by comparison with (33), we deduce that

C(z, t) =
b̄

am
zm.(82)

Thus, all maps of the form (78) yield Cauchy transforms of the form C(z, t) = Amzm

with

Am =
b̄

am
.(83)

Note again that b and a can be multiplied by a real number without changing C(z, t),
while the only equation to be satisfied is (77). Thus, the relevant evolution equations
for the two parameters a and b are (77) along with an area evolution equation which
may be arbitrarily specified. These can be shown to be equivalent to those given in
equation (37) of Antanovskii [2].

3.3. Exact solutions of Siegel [22].

3.3.1. The Cauchy transform. Siegel [22] assumes the far-field asymptotic
form of f(z, t) and g′(z, t) to be

f(z, t) ∼ f3z
3 + f1z + O(1/z),(84)

g′(z, t) ∼ g1z + O(1/z).(85)

f3 and g1 are externally specifiable and will be taken to be constant in time (g1 gives
a measure of an imposed irrotational straining flow at infinity, while f3 produces a
rotational far-field component). Such boundary conditions in which f(z) is a nonlinear
function of z in the far field will be referred to as nonlinear far field conditions. Siegel
[22] makes the choices

g1 = 1, f3 =
ε

2
.(86)

Antanovskii [3] derived exact steady solution for the bubble shape subject to the above
far-field conditions. The analysis of Siegel [22] essentially generalizes the results of
Antanovskii [3] to the case where the bubble evolves in a quasi-steady, time-dependent
manner.
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Suppose we seek solutions to (13) in which C(z, t) evolves as

C(z, t) =

N∑
j=1

Aj(t)

z − zj(t)
(87)

for all times. It is clear that

C(z, t) ∼ B(t)

z
as z → ∞,(88)

where

B(t) =

N∑
j=1

Aj(t).(89)

By the circulation theorem, all the quantities {Aj(t)} are constants of the motion.
This implies, by (89), that B(t) is also a constant of the motion. Moreover, all the
poles {zj(t)} move according to (52). The Cauchy transform is determined at each
instant by these equations.

As mentioned earlier, it is important to verify that the solution (87) is a consistent
solution of (13) at the fixed singularity at the point at infinity. To see this, note from
(36) that

Ci(z, t) ∼ − 1

2πi

(∮
∂D(t)

z̄′dz′

)
1

z
+ O(1/z2),(90)

while, from (37),

Ii(z, t) ∼ O
(

1

z

)
(91)

as z → ∞. But the area of the bubble (denoted A) is precisely

A =
1

2i

∮
∂D(t)

z̄′dz′.(92)

Therefore, using (33) and (88),

S(z) =
B(t) + A/π

z
+ O

(
1

z2

)
(93)

as z → ∞. Inside the fluid domain D(t), (13) takes the form

∂C(z, t)

∂t
+

∂

∂z
[−2f(z, t)S(z, t) + Ii(z, t)] = 2g′(z, t) + Ri(z, t).(94)

A local analysis of this equation as z → ∞ therefore implies that

∂

∂z

(
−2f3z

3

(
B

z
+

A/π

z

))
+ O(1/z) = 2g1z + O(1/z)(95)

so that, equating coefficients of the singularity at O(z), we have

−2(A/π + B)f3 = g1.(96)
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This is a necessary condition if the solution (87) is to be a consistent solution of (13).
It is crucial to note that if C(z, t) is determined at each instant, then, in contrast

to the previous examples of Tanveer and Vasconcelos [23] and Antanovskii [2], (96)
represents an additional constraint on the free boundary evolution. In this case, there
is no freedom to externally specify the bubble area evolution. Rather, it is determined
implicitly by the exact solution itself. Since A has been shown to be a constant of the
motion, (96) implies that, for solutions of the form (87), the area A of the bubble is
necessarily fixed in time if f3 and g1 are constant (independent of time), which has
been assumed to be the case, i.e.,

A = −π

(
B +

g1

2f3

)
.(97)

The initial area of the bubble therefore dictates the value of B.
In summary, solutions of (13) in which C(z, t) is rational with a finite set of

simple pole singularities (and for which f(z, t) and g′(z, t) have the far-field form (53)
and (54)) are admitted, and, in these solutions, the bubble area remains constant.
If we seek solutions in which the bubble area is not fixed in time (but varies, for
example, at some externally specified rate Q), the solutions will not be such that the
Cauchy transform has the far-field behavior (88) for all times t > 0. In that case, the
functional form of the Cauchy transform will not be of the proposed simple rational
character and will not lend itself to exact solutions.

3.3.2. Conformal maps. The corresponding conformal maps from a unit ζ-
disk to fluid domains whose Cauchy transforms have a finite distribution of simple
pole singularities with the far-field behavior (88) are given by rational functions of
the form

z(ζ, t) =
C

ζ

(∏N
j=1(ζ − ηj(t))∏N
j=1(ζ − ζj(t))

)
,(98)

where C can be assumed real (to use up the rotational degree of freedom in the
Riemann mapping theorem). It follows that

z(ζ−1, t) = Cζ

(∏N
j=1(1 − ζη̄j(t))∏N
j=1(1 − ζζ̄j(t))

)
.(99)

It is clear that because S(z, t) = z̄, this class of domains is such that the far-field
asymptotic form of C(z, t) is of the form in (88). It is also clear that

zj(t) = z(ζj , t)(100)

so that the N equations (39) can be viewed as providing evolution equations for
the parameters {ζj(t)|j = 1, . . . , N}. The N constants of motion derived from the
circulation theorem (by taking a contour γj around each distinct pole zj(t)) provide N
additional equations for the parameters {ηj(t)|j = 1, . . . , N}. Finally, the parameter
C is determined by condition (96). Equivalently, one could determine C by ensuring
that the bubble area is conserved under evolution.

Siegel [22] considers one of the above solutions in detail. This solution has a
mapping given by the special choice

z(ζ, t) =
1

ζ

γ0 + γ1ζ
2

1 − γ2ζ2
.(101)
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It is straightforward to see that this map corresponds to domains with the Cauchy
transform

C(z, t) =
E(t)

z − z0(t)
+

E(t)

z + z0(t)
,(102)

where

z0(t) = z(
√
γ2, t).(103)

In this case,

C(z, t) ∼ 2E(t)

z
as z → ∞.(104)

The relevant equations of motion for this solution are

ż0(t) = −2f(z0(t), t),(105)

E(t) = E(0),(106)

−
(
A
π

+ 2E

)
=

g1

2f3
,(107)

where the last equation is just (96). Equations (105) and (106) determine C(z, t) at
each instant, while (107) additionally constrains the bubble area to be fixed in time.
This additional constraint is absent in the solutions of [23] and [2].

The three equations obtained by Siegel [22] are

γ̇2 = −2γ2

[
I(
√
γ2, t) − ε

γ2
0

γ2

]
,(108)

γ1 =
γ2

εγ0
,(109)

γ0 =

[
2(1 + γ2

1)

c1 + (c21 − c2)1/2

]1/2

,(110)

where condition (110) derives from the fact that the bubble area is taken to be constant
and equal to π. c1 and c2 are defined as

c1 = 1 − εγ2
1

(
2(1 − ε) + εγ2

1

)
and c2 = 4ε2γ2

1(1 + γ2
1)

[
3 + ε(2 + ε)γ2

1

]
,(111)

while

I(ζ, t) =
1

2πi

∮
|ζ′|=1

dζ ′

ζ ′

[
ζ ′ + ζ

ζ ′ − ζ

]{
1

|zζ |
+ Re

[
εγ2

0

ζ2

]}
.(112)

We now indicate how (105)–(107) are equivalent to (108)–(110). First we use the fact,
as derived by Siegel [22], that

zt(ζ, t) + 2f(z(ζ, t), t) = ζzζ(ζ, t)

(
−εγ2

0

ζ2
+ I(ζ, t)

)
(113)
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to eliminate f(z0(t), t) from (105). This reproduces exactly (108). Next recall from
(93) that as z → ∞,

S(z) ∼
(

2E +
A
π

)
1

z
.(114)

But

S(z(ζ, t)) = z(ζ, t) = = ζ

(
γ0ζ

2 + γ1

ζ2 − γ2

)

∼ −γ1

γ2
ζ as ζ → 0

∼ −
(
γ1γ0

γ2

)
1

z
as z → ∞,

(115)

where we have used that fact that ζ ∼ γ0

z as z → ∞. Together, (114), (115), (86),
and (107) yield Siegel’s second equation (109). Finally, the equation for S(z(ζ, t), t)
in (115) also yields the following equation for E(t) in terms of the conformal mapping
parameters, viz.,

E(t) =
γ0γ2 + γ1

2
zζ(

√
γ2, t) =

γ0γ2 + γ1

2γ2(1 − γ2
2)2

(
γ1γ2 + γ1γ

3
2 − γ0 + 3γ0γ

2
2

)
.(116)

Using (116), (86), and the fact that A = π in (107) combine, after some further
algebra, to retrieve Siegel’s final equation (110).

Remark. The Cauchy transform formulation is crucial in proving that the bubble
area is conserved for all maps of the form (98). This is because the bubble area A
appears explicitly in the form of the far-field asymptotics of C(z, t). To establish
this general result using the direct conformal mapping approach of [23, 22] would be
exceedingly difficult.

Remark. If the conformal map z(ζ, t) of the form (98) has N poles, the Cauchy
transform formulation also immediately implies the existence of precisely N conserved
quantities, one associated with each of the N poles.

3.4. A final example. We now give an example to show that the previous result
is rather special and that, for general nonlinear flow conditions at infinity, while exact
solutions to the problem exist, it is not generally possible to externally specify the
bubble area evolution in these solutions.

A natural generalization of the far-field conditions considered in the previous three
subsections is

f(z, t) ∼ f3z
3 + f1z + O(z−1),(117)

g′(z, t) ∼ g3z
3 + g1z + O(z−1).(118)

These far-field conditions are again nonlinear and are exactly those considered by
Antanovskii [4] in his studies of the formation of cusped bubbles, although his analysis
is restricted to the derivation of classes of exact steady solutions. The special case
g3 = 0 reduces to the far-field conditions considered in Antanovskii [3] and Siegel [22]
(as well as in section 3.3). For this reason, one might expect the bubble area to again
be constant under evolution. However, this is not the case, as will now be shown.
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Suppose that we seek exact solutions in which C(z, t) has the rational function
form

C(z, t) = A0(t)z +

N∑
k=1

Ak(t)

z − zk(t)
(119)

for all times. As z → ∞,

C(z, t) ∼ A0(t)z +

(
N∑

k=1

Ak(t)

)
1

z
+ . . . ,(120)

and this far-field form is forced by (13), as will be shown. First, it is known immedi-
ately that the points {zk(t)|k = 1, 2, . . . , N} must satisfy

żk(t) = −2f(zk(t), t), k = 1, . . . , N,(121)

while the circulation theorem implies that

Ak(t) = Ak(0), k = 1, . . . , N.(122)

It remains to determine the evolution of A0(t), as well as to ensure that (119) is a
consistent solution of (13) at z → ∞. Analyzing (13) as z → ∞, at O(z3) we get

−8f3A0(t) = 2g3,(123)

which implies that A0(t) must also be constant. C(z, t) is now completely determined,
but we expect to be able to specify another degree of freedom associated with the
bubble area A. But at O(z), we get another equation having the form

−4 (f1A0 + f3A) = 2g1.(124)

Equation (124) is a further constraint on the solution and can be thought of as an
equation governing the bubble area A. It is clear from (124) that the bubble area is
not constant this time. Rather, how the bubble area evolves is governed by the exact
solution itself. To see this, recall that f1 (which is related to the far-field pressure
evaluated in the near field of the bubble) is a time-evolving quantity whose evolution
is governed by (113) and is not externally controllable.

Note that if g3 is taken equal to zero (so that the far-field conditions of Siegel
[22] are retrieved), then necessarily A0(t) = 0 (by (123)), and then A turns out to be
constant (by (124)).

4. Conclusion. We have introduced a Cauchy transform formulation of the
problem of Stokes flow for a single bubble and proven its equivalence to the usual
formulation of free surface Stokes flow. The new formulation has been used to de-
rive a very broad class of exact solutions (namely, the class for which the Cauchy
transform takes the form of a rational function), generalizing the set of solutions
which have heretofore appeared in the literature. Indeed, it is surmised that the class
of solutions discussed here is maximal, i.e., that it includes all cases for which the
evolution is reducible to a finite-dimensional system of ODEs. We use our formu-
lation to investigate when it is possible to externally specify the evolution of bub-
ble area. This issue is extremely difficult to address using other approaches. In
general, it is found that when the Goursat function f(z) has a nonlinear far-field
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behavior it is not possible to find exact solutions and specify the bubble area evo-
lution. Instead the bubble area in such cases is determined by the exact solution.
In the case of pure linear strain (so that g′(z) ∼ g1z as z → ∞) it happens that
the bubble area is constant, and this situation corresponds to a physically interesting
case. However, this occurrence is somewhat coincidental.

Concerning generalizations, it is possible to extend the present formulation to
the case of a more general compressible bubble with an externally specified equation
of state relating its internal pressure (say, pB(t)) to its area. Pozrikidis [16] has
considered such problems using numerical boundary integral methods, while Crowdy
[7] has generalized the solutions of Tanveer and Vasconcelos [23] to this case.

Appendix. Inverse problem of potential theory. In this appendix we
explain why, in the case of a simply connected unbounded domain, knowledge of
C(z, t) determines the domain D(t) up to a single real degree of freedom associated
with specification of the bubble area.

Consider a smooth family of bounded, time-evolving, simply connected planar
domains D(t) in some time interval t ∈ [0, T ). Define the harmonic moments of these
domains to be the integrals of a basis of all functions harmonic in D(t) at time t.
Suppose all the moments of D(t) for t ∈ [0, T ) are known. It is a well-known result of
the inverse problem of 2-D potential theory that the domains D(t) can be uniquely
reconstructed from knowledge of all these harmonic moments. Varchenko and Etingof
[24] discuss this result in detail. For a bounded domain, if the Cauchy transform is
defined as

C(z, t) =
1

π

∫ ∫
D(t)

dx′dy′

z′ − z
=

1

2πi

∮
∂D(t)

z̄′dz′

z′ − z
,(125)

then it is a generating function for the harmonic moments because, Laurent expanding
for large |z|,

C(z, t) =
∞∑

n=0

Mn

zn+1
,(126)

where

Mn =
1

π

∫ ∫
D(t)

z′
ndx′dy′

.(127)

The harmonic functions {
Re

[
zn

]
, Im

[
zn

]∣∣∣∣n = 0, 1, 2, . . .

}
(128)

span the space of functions harmonic in D(t). The real and imaginary parts of the
set of complex moments (127) generate all the harmonic moments of D(t).

Exactly the same result pertains to the case of unbounded domains D(t), except
that if the moments are defined in terms of area integrals over D(t), some of them
do not exist, owing to the unboundedness of the domain. This is the reason for our
choice of defining the Cauchy transform, from the outset, as the line integral

1

2πi

∮
∂D

z̄′dz′

z′ − z
.(129)
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If z ∈ Dc, the Cauchy transform defines an analytic function C(z, t), say. Assume Dc

contains the origin. Then C(z, t) has a Taylor expansion

C(z, t) =

∞∑
n=0

Mnz
n,(130)

where

Mn =
1

2πi

∮
∂D

z̄′dz′

z′n+1 .(131)

Suppose now that C(z, t) is known. This is equivalent to knowledge of the mo-
ments Mn, n = 0, 1, . . . , from which it is possible to infer the values of the harmonic
moments associated with the set of functions{

Re

[
1

zn+1

]
, Im

[
1

zn+1

]∣∣∣∣n = 0, 1, , . . .

}
.(132)

This is a subspace of codimension one in the space of functions harmonic in D(t)
because it excludes the constant function 1, which is also harmonic in D(t). Thus,
knowledge of C(z, t) is not quite enough to determine all harmonic moments—just
one more moment is needed. Generalizing the set (131), the “moment” corresponding
to the constant function 1 is

1

2πi

∮
∂D

z̄′dz′,(133)

which is proportional to the area of the bubble. Thus, in the case of an unbounded
simply connected domain D(t), the Cauchy transform C(z, t) determines the domain
up to a single real degree of freedom associated with the area of the complement of
D(t) (here, the area of the bubble).

Acknowledgments. The authors wish to thank B. Gustafsson and S. Tanveer
for useful discussions.

REFERENCES

[1] M. Ablowitz and A. S. Fokas, Complex Variables, Cambridge University Press, London,
1997.

[2] L. K. Antanovskii, Quasi-steady deformation of a two-dimensional bubble placed within a
potential viscous flow, Meccanica, 29 (1994), pp. 27–42.

[3] L. K. Antanovskii, Formation of a pointed drop in Taylor’s four-roller mill, J. Fluid Mech.,
327 (1996), pp. 325–341.

[4] L. K. Antanovskii, A plane inviscid incompressible bubble placed within a creeping viscous
flow: Formation of a cusped bubble, European J. Mech. B. Fluids, 13 (1994), pp. 491–509.

[5] D. Crowdy, On a class of geometry-driven free boundary problems, SIAM J. Appl. Math., 62
(2002), pp. 945–964.

[6] D. G. Crowdy and S. Tanveer, A theory of exact solutions for plane viscous blobs, J. Non-
linear Sci., 8 (1998), pp. 261–279.

[7] D. Crowdy, Compressible bubbles in Stokes flow, J. Fluid Mech., 476 (2003), pp. 345–356.
[8] D. Crowdy and J. Marshall, Constructing multiply connected quadrature domains, SIAM J.

Appl. Math., 64 (2004), pp. 1334–1359.
[9] L. J. Cummings and P. D. Howell, On the evolution of non-axisymmetric viscous fibres with

surface tension, inertia, and gravity, J. Fluid Mech., 389 (1999), pp. 361–389.
[10] L. J. Cummings, S. D. Howison, and J. R. King, Two-dimensional Stokes and Hele-Shaw

flows with free surfaces, European J. Appl. Math., 10 (1999), pp. 635–680.



EVOLUTION OF A BUBBLE IN STOKES FLOW 963

[11] P. J. Davis, The Schwarz Function and Its Applications, Carus Math. Monogr., The Mathe-
matical Association of America, Buffalo, NY, 1974.

[12] V. M. Entov, P. I. Etingof, and D. Ya. Kleinbock, On nonlinear interface dynamics in
Hele-Shaw flows, European J. Appl. Math., 6 (1995), pp. 399–420.

[13] E. Hille, Ordinary Differential Equations in the Complex Plane, Wiley-Interscience, New
York, 1976.

[14] S. D. Howison and S. Richardson, Cusp development in free boundaries, and two-
dimensional slow viscous flows, European J. Appl. Math., 6 (1995), pp. 441–454.

[15] S. G. Mikhlin, Integral Equations, Pergamon Press, New York, 1957.
[16] C. Pozrikidis, Expansion of a compressible bubble in Stokes flow, J. Fluid Mech., 442 (2001),

pp. 171–189.
[17] S. Richardson, Two-dimensional slow viscous flows with time-dependent free boundaries

driven by surface tension, European J. Appl. Math., 3 (1992), pp. 193–207.
[18] S. Richardson, Two-dimensional bubbles in slow viscous flow, J. Fluid Mech., 33 (1968),

pp. 476–493.
[19] S. Richardson, Two-dimensional bubbles in slow viscous flows. Part 2, J. Fluid Mech., 58

(1973), pp. 115–127.
[20] S. Richardson, Hele-Shaw flows with time-dependent free boundaries involving injection

through slits, Stud. Appl. Math., 87 (1992), pp. 175–194.
[21] S. Richardson, Some Hele-Shaw flows with time-dependent free boundaries, J. Fluid Mech.,

102 (1981), pp. 263–278.
[22] M. Siegel, Cusp formation for time-evolving bubbles in two-dimensional Stokes flow, J. Fluid

Mech., 412 (2000), pp. 227–257.
[23] S. Tanveer and G. L. Vasconcelos, Time-evolving bubbles in two-dimensional Stokes flow,

J. Fluid Mech., 301 (1995), pp. 325–344.
[24] A. Varchenko and P. I. Etingof, Why the Boundary of a Round Drop Becomes a Curve of

Order Four, Univ. Lecture Ser. 3, AMS, Providence, RI, 1992.



SIAM J. APPL. MATH. c© 2005 Society for Industrial and Applied Mathematics
Vol. 65, No. 3, pp. 964–982

DYNAMICS OF TWO-STRAIN INFLUENZA WITH ISOLATION
AND PARTIAL CROSS-IMMUNITY∗
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Abstract. The time evolution of the influenza A virus is linked to a nonfixed landscape driven
by interactions between hosts and competing influenza strains. Herd-immunity, cross-immunity, and
age-structure are among the factors that have been shown to support strain coexistence and/or
disease oscillations. In this study, we put two influenza strains under various levels of (interference)
competition. We establish that cross-immunity and host isolation lead to periodic epidemic outbreaks
(sustained oscillations) in this multistrain system. We compute the isolation reproductive number
for each strain (�i) independently, as well as for the full system (�q), and show that when �q < 1,
both strains die out. Subthreshold coexistence driven by cross-immunity is possible even when the
isolation reproductive number of one strain is below 1. Conditions that guarantee a winning type
or coexistence are established in general. Oscillatory coexistence is established via Hopf bifurcation
theory and confirmed via numerical simulations.

Key words. influenza, multiple strains, cross-immunity, isolation, stability, bifurcation, oscilla-
tions, coexistence
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1. Introduction. Several studies have focused on the identification of mech-
anisms capable of supporting multiple-strain coexistence for diseases that provide
permanent or temporary immunity [19, 18]. Although there is still limited under-
standing on the role of cross-immunity (form of interference competition) between
strains of a given virus, host variability (behavioral and immunological) is known to
play a key role in maintaining virus diversity. Influenza epidemics and pandemics are
closely linked to two types of mechanisms that maintain viral genetic diversity: anti-
genic “drift,” the driver of strain heterogeneity, and antigenic “shift,” the generator
of subtype variability [28].

In 1918, the “Spanish Flu” pandemic caused the largest number of flu-related
deaths worldwide in a single season [28]. More than 500,000 people died in the United
States with 20–50 millions deaths worldwide. The “Asian Flu,” a result of an antigenic
shift in the hemmaglutinin and neuraminidase surface proteins, was responsible for
about 70,000 deaths in the United States in 1969 [9]. The most recent and least lethal
“pandemic,” the “Hong Kong” pandemic, is attributed to the appearance of the H3N2
subtype [9].
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The main focus of this paper is on the identification of competitive outcomes
(mediated by cross-immunity) that result from the interactions between two strains
of influenza A in a population where sick individuals may be isolated. Single-strain
susceptible-infected-quarantined-recovered (SIQR) models with vital dynamics can
generate sustained oscillations [15, 20]. The introduction of a second strain increases
the competition for susceptibles, a process mediated by cross-immunity in our setting.
Will such competition preclude the possibility of sustained multistrain oscillations?
We show that coexistence of both strains in the oscillatory regime is not uncommon
and that oscillatory dynamics are possible for reasonable values of influenza parame-
ters [17, 11, 28].

Our paper is structured as follows. Section 2 introduces the general two-strain
model; section 3 carries out the local stability analysis of the disease-free state; sec-
tion 4 shows that periodic solutions can arise via a Hopf bifurcation; section 5 il-
lustrates our theoretical results; section 6 summarizes our findings and collects some
conclusions and thoughts.

2. Two-strain model. Theoretical work on two-strain models that incorporate
the effects of interference competition in the context of communicable diseases goes
back (at least) to the work of Dietz [13]. His work has been extended in the context of
influenza [5, 1, 6]. None of these extensions considered the role of isolation. The study
of mechanisms capable of generating sustained oscillations in single-strain epidemic
models has received some attention in the last decades [19, 18]. Feng [14] and Feng
and Thieme [15] showed that the introduction of an isolation class, in an otherwise
standard SIR epidemiological model, is enough to generate sustained oscillations in
single-strain models, but the region of parameter space where such oscillations are
possible is unrealistic. Castillo-Chavez et al. [5, 6] provide support for the hypothesis
that age-structure (age-dependent survival) and cross-immunity are enough to gen-
erate multistrain sustained oscillations in two-strain models without isolation. Here
we show that cross-immunity in a two-strain system with isolation classes generate
sustained oscillations within a region of parameter space that is consistent with the
“flu” [11, 29, 24]. Furthermore, we identify the dependence of these regions on cross-
immunity levels. The description of the two-strain model requires the division of the
population into ten different classes: susceptibles (S), infected with strain i (Ii, pri-
mary infection), isolated with strain i (Qi), recovered from strain i (Ri, as a result
of primary infection), infected with strain i (Vi, secondary infection), given that the
population had recovered from strains j �= i, and recovered from both strains (W ).
The population is assumed to mix randomly, except that the mixing is impacted by
the process of quarantine/isolation [14, 15, 20, 8]. Using the flow diagram in Figure 1,
we arrive at the model

dS

dt
= Λ −

2∑
i=1

βiS
(Ii + Vi)

A
− µS,

dIi
dt

= βiS
(Ii + Vi)

A
− (µ + γi + δi)Ii,

dQi

dt
= δiIi − (µ + αi)Qi,

dRi

dt
= γiIi + αiQi − βjσijRi

(Ij + Vj)

A
− µRi, j �= i,(1)
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dVi

dt
= βiσijRj

(Ii + Vi)

A
− (µ + γi)Vi, j �= i

dW

dt
=

2∑
i=1

γiVi − µW,

A = S + W +

2∑
i=1

(Ii + Vi + Ri),

where A denotes the population of nonisolated individuals and βiS(Ii+Vi)
A models the

rate at which susceptibles become infected with strain i. That is, the ith (i �= j)
incidence rate is assumed to be proportional to both the number of susceptibles and

the available proportion of i-infectious individuals, (Ii+Vi)
A . The parameter σij is a

measure of the cross-immunity provided by a prior infection with strain i to exposure
with strain j (i �= j). Data from epidemiological studies conducted in Houston and
Seattle [27, 17] generate rough measures of cross-immunity. From these studies it is
clear that σij ∈ [0, 1]. Model (1) includes the models in [5, 6]. The absence of the Q
classes in earlier work precludes the possibility of sustained oscillations (see [5, 6]).
Isolation classes are not introduced after the V -classes to simplify the analysis and
because often symptoms are less severe in these classes.

3. Disease invasion and stability. System (1) can support four equilibria.
Analysis of the local stability of the trivial equilibrium (absence of disease) helps
identify conditions under which the “flu” can invade. We assume (sections 3 and 4)

Fig. 1. Schematic diagram of disease dynamics when the host is exposed to two cocirculating
strains. Λ is the rate at which individuals are born into the population, βi denotes the transmission
coefficient for strain i, µ is the per capita mortality rate, δi is the per capita isolation rate for strain
i, γi denotes the per capita recovery rate from strain i, αi is the per capita rate at which individuals
leave the isolated class as a result of infection with strain i, and σij is the relative susceptibility
to strain j for an individual previously infected with and recovered from strain i (i �= j). σij = 0
corresponds to total cross-immunity, while σij = 1 indicates no cross-immunity.
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that σ12 = σ21 = σ (as it was done in [5, 6]). This approach strongly limits the
generality of our analysis, but the general case has turned out to be too difficult.
The case where |σ12 − σ21|= ε (a small positive number) is explored numerically.
Quantitative results do not seem to change when ε is small enough. Flu-related
mortality is low, and hence it is ignored. This is not a limiting factor over appropriate
time scales. From our model (time scale for which demographic factors can be ignored)

d

dt
N = Λ − µN,

where N = S + W +
∑2

i=1(Ii + Vi + Qi + Ri). Hence, N(t) → Λ
µ as t → ∞, and the

results in [7] allow us to assume, without loss of generality, that N(0) = Λ
µ . Hence,

we set

N(t) ≡ Λ

µ
≡ S + W +

2∑
i=1

(Ii + Vi + Qi + Ri) = A + Q for all t,

where Q = Q1 + Q2 and A = N −Q.
The isolation reproductive number �q, the average number of secondary infec-

tions generated by the simultaneous introduction of both strains in a fully susceptible
population, is a function of the independent capacity of each strain to invade. Hence,
�q = max{�1,�2}, where

�i =
βi

µ + γi + δi
.

Here, βi is the maximal effective transmission rate and (µ+ γi + δi)
−1 is the average

window of opportunity (effective infectious period) for transmission. It follows that
E0, the disease-free state, is locally asymptotically stable when �q < 1 and an unstable
(saddle) whenever �i > 1 for either i = 1 or i = 2 (for details see Appendix A).

4. Nontrivial equilibria and sustained oscillations. Hethcote and Levin’s
1989 survey of mathematical models [18], Feng [14], Feng and Thieme [15], Hethcote
[19], and the recent comprehensive literature review of Hethcote and Levin [18] pro-
vide a solid perspective on what is known about the mechanisms that are capable of
supporting sustained oscillations in epidemic models. Nonstructured two-strain SIR
models with cross-immunity appear to be incapable of supporting them [1], but the
addition of a third strain reverses the situation [26].

Here we focus on the role of isolation, a mechanism capable of generating sus-
tained oscillations even in a single-strain model. The “flu” may survive in three
states: either strain 1 or 2 survives or both strains coexist. Here, we carry only out
the analysis in the symmetric cross-immunity case (σ12 = σ21 = σ). We let U =
(S, I1, Q1, R1, V1, I2, Q2, R2, V2,W ) denote the state variables and focus on the analy-
sis of the stability of the boundary equilibria, namely E1 = (S̃, Ĩ1, Q̃1, R̃1, 0, 0, 0, 0, 0, 0).
Setting V1 = I2 = Q2 = R2 = V2 = W = 0 in (1) leads to the following relationships:

S̃

Ã
=

1

�1
,

Ĩ1

Ã
= µ(µ + α1)φ,

Q̃1

Ã
= µδ1φ,

R̃1

Ã
= (γ1(µ + α1) + α1δ1)φ,

(2)
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where

φ =
(1 − 1

�1
)

(µ + γ1)(µ + α1) + α1δ1
(3)

and

Ã =
1

µ(1 + µδ1φ)
.

E1 exists (entries are positive) and is unique if and only if �1 > 1. Letting A = N−Q

and S = A−
∑2

i=1(Ii + Vi + Ri) −W allows the elimination of the S equation. The
Ii equations become

dIi
dt

= βi

(
1 − W +

∑2
i=1(Ii + Ri + Vi)

A

)
(Ii + Vi) − (µ + γi + δi)Ii.

The Jacobian at E1, J̃ , is given by the 9 × 9 (without S) matrix

J̃ =

⎛
⎜⎜⎝

G1 ∗ ∗ ∗
0 −(µ + γ1) ∗ 0
0 0 G2 0
0 ∗ ∗ −µ

⎞
⎟⎟⎠,

where

G1 =

⎛
⎜⎝−β1

Ĩ1
Ã

−β1
Ĩ1
Ã

(1 − 1
�1

) −β1
Ĩ1
Ã

δ1 −(µ + α1) 0
γ1 α1 −µ

⎞
⎟⎠,

and

G2 =

⎛
⎜⎜⎜⎝

β2
S̃
Ã
− (µ + γ2 + δ2) 0 0 β2

S̃
Ã

δ2 −(µ + α2) 0 0

γ2 α2 −µ− β1σ
Ĩ1
Ã

0

β2σ
R̃1

Ã
0 0 β2σ

R̃1

Ã
− (µ + γ2)

⎞
⎟⎟⎟⎠.

“*” represents a nonzero block matrix.
G2 has two negative eigenvalues, plus the roots of the equation

λ2 − c1λ + c2 = 0,(4)

where

c1 = (µ + γ2 + δ2)

(
�2 −�1

�1

)
+ β2σ

R̃1

Ã
− (µ + γ2),

c2 = −(µ + γ2 + δ2)

[
β2σ

R̃1

Ã
+ (µ + γ2)

(
�2 −�1

�1

)]
.

(5)

Hence c1 < 0 and c2 > 0 guarantee the local asymptotic stability (l.a.s.) of E1.

c1 < 0 ⇐⇒ F1(�1,�2) := (µ + γ2 + δ2)

(
�2

�1
− 1 + σ�2

R̃1

Ã

)
− (µ + γ2) < 0,(6)
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c2 > 0 ⇐⇒ F2(�1,�2) := σ(µ + γ2 + δ2)�2
R̃1

Ã
+ (µ + γ2)

(
�2

�1
− 1

)
< 0,(7)

where R̃1/Ã is given in (2). In the case of full immunity (σ = 0), the conditions in
(6) and (7) hold if and only if �2 < �1. That is, when σ = 0, E1 has l.a.s., as long
as �1 > 1 and �1

�2
> 1 and E1 is unstable (σ = 0) when �2

�1
> 1. As cross-immunity

between strains diminishes (0 < σ ↑ 1), alternative conditions are needed to ensure
that (6) and (7) hold. To find these conditions we rewrite F1 in terms of F2,

F1(�1,�2) = F2(�1,�2) + δ2

(
�2

�1
− 1

)
− (µ + γ2),

and observe that F1 ≤ F2 when �2 < �1. Alternatively, the introduction of

f(�1) ≡
�1

1 + σ(�1 − 1)
(
1 + δ2

µ+γ2

)(
1 − µ(µ+α1)

(µ+γ1)(µ+α1)+α1δ1

)(8)

implies that F2 < 0 if and only if �2 < f(�1) (0 < f(�1) < �1). Therefore,
�2 < f(�1) implies that F1 ≤ F2 < 0. Hence, all eigenvalues of G2 have negative real
part when �2

f(�1)
< 1, and E1 is unstable when �2

f(�1)
> 1. Similarly, the use of

g(�2) ≡
�2

1 + σ(�2 − 1)
(
1 + δ1

µ+γ1

)(
1 − µ(µ+α2)

(µ+γ2)(µ+α2)+α2δ2

)(9)

implies that the eigenvalues corresponding to the system when strain 2 has become
established are all negative whenever �1 < g(�2). The boundary endemic equilibria
for strain 2 (E2) are stable when �1

g(�2)
< 1 and unstable when �1

g(�2)
> 1.

Conditions that guarantee “coexistence” equilibria are formulated in terms of the
(conditional) “invasion” reproductive numbers for strains 2 and 1 (�1

2 and �2
1). �1

2

is defined as the number of secondary infections generated by a “typical” strain-2-
infected individual in a population where strain 1 is endemic (E1). From conditions
(6) and (7) (which ensure the stability of E1) we find that

�1
2 =

β2

µ + γ2 + δ2

S̃

Ã
+

β2σ

µ + γ2

R̃1

Ã
.

Similarly, the (conditional) invasion reproductive number of strain 1 under the as-
sumption that strain 2 is endemic is given by

�2
1 =

β1

µ + γ1 + δ1

S̃

Ã
+

β1σ

µ + γ1

R̃2

Ã
.

The condition �2 < f(�1) is equivalent to the condition �1
2 < 1, while the condition

�1 < g(�2) is equivalent to the condition �2
1 < 1. �j

i (i, j = 1, 2 i �= j) is in fact the
result of two additive contributions: βi/(µ + γi + δi) gives the number of secondary
cases that a “typical” strain-i-infected individual will generate in the fully susceptible
proportion of the population S̃/Ã, while βiσ/(µ + γi) is the number of secondary
cases that a “typical” strain-i-infected individual will generate in the “cross-immune”
proportion of the susceptible population R̃i/Ã. Note that whenever �i > 1 and
�i

j < 1, the boundary equilibrium Ei is locally stable.
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4.1. Multiple and subthreshold coexistence. Both strains coexist if their
basic reproductive numbers are above 1 (see Figures 2(a), (b), (d)), but subthreshold
coexistence is possible (see Figure 2(c)). In order to see this (in system (1)) let
S/A = s, Ii/A = ii, Qi/A = qi, Ri/A = ri, Vi/A = vi, W/A = w, and n = N

A with
σ12 = σ21 = σ. The equilibrium conditions for the rescaled system are

β1s(i1 + v1) + β2s
�1

�2

i2
i1

(i1 + v1) + µs = µ(1 + η1i1 + η2i2),(10)

β1s(i1 + v1) = (µ + γ1 + δ1)i1,(11)

(i1 + v1)

(i2 + v2)
=

�2

�1

i1
i2
,(12)

β2σr1
�1

�2

i2
i1

(i1 + v1) + µr1 = (γ1 + κ1)i1,(13)

β1σr2(i1 + v1) = (µ + γ1)v1,(14)

β1σr2(i1 + v1) + µr2 = (γ2 + κ2)i2,(15)

β2σr1
�1

�2

i2
i1

(i1 + v1) + (µ + γ2)i2 = (µ + γ2)(i2 + v2),(16)

where

κi =
αiδi

µ + αi
,

ηi =
δi

µ + αi
.

Expressions (10) and (11) can be solved for s, that is,

s =
µ(1 + η1i1 + η2i2)

β1(i1 + v1) + β2(i2 + v2) + µ
=

(µ + γ1 + δ1)i1
β1(i1 + v1)

.(17)

From (17) it follows that

µβ1(i1 + v1)(1 + η1i1 + η2i2)

β1(i1 + v1) + β2(i2 + v2) + µ
= (µ + γ1 + δ1)i1.(18)

Equation (14) and its symmetric analogue are solved for r1 and r2. In fact,

r1 =
(µ + γ2)v2

β2σ(i2 + v2)

and

r2 =
(µ + γ1)v1

β1σ(i1 + v1)
.

From (13) and the relationship β2σ(i2 + v2)r1 = (µ + γ2)v2 we have that

(γ1 + κ1)i1 − (µ + γ2)v2 = µr1.

Using (12) and substituting the above expression for r1 helps rewrite (13) as

(γ1 + κ1)i1 − (µ + γ2)
�1i2(i1 + v1)

�2i1
+ (µ + γ2)i2 =

µ(µ + γ2)

β2σ
− µ(µ + γ2)i2

β2σ(i2 + v2)
.(19)
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Solving for (i2 + v2) in (13) and using (19) leads to

(γ1 + κ1)i1 − (µ + γ2)
�1i2(i1 + v1)

�2i1
+ (µ + γ2)i2 =

µ(µ + γ2)

β2σ

(
1 − �2i1

�1(i1 + v1)

)
.

(20)

In a similar manner, using r2 and the expression β1σr2(i1 + v1) = (µ+ γ1)v1 leads to
the reduced system

µβ1(1 + η1i1 + η2i2)(i1 + v1)

β1(i1 + v1) + β2�1(i1+v1)i2
�2i1

+ µ
= (µ + γ1 + δ1)i1,

(γ1 + κ1)i1 − (µ + γ2)i2

(
�1(i1 + v1)

�2i1
− 1

)
=

µ(µ + γ2)

β2σ

(
1 − �2i1

�1(i1 + v1)

)
,(21)

(γ2 + κ2)i2 − (µ + γ1)v1 =
µ(µ + γ1)v1

β1σ(i1 + v1)
.

From the first equation in (17) we get that

(i1 + v1) =
µ(µ + γ1 + δ1)i1

β1[µ(1 + η1i1 + η2i2) − i1(µ + γ1 + δ1) − i2(µ + γ2 + δ2)]
,

=
µ(µ + γ1 + δ1)i1
β1[�(i1, i2)]

,

(22)

where

�(i1, i2) = µ(1 + η1i1 + η2i2) − i1(µ + γ1 + δ1) − i2(µ + γ2 + δ2).

The substitution of (22) into the second equation in (21) and the use of its symmetric
analogue gives a system of equations (in terms of i1 and i2 only). The system is

(
�(i1, i2)

)2 (µ + γ2)�2

β2σ
+ �(i1, i2)

[
(γ1 + κ1)i1 + (µ + γ2)i2 −

µ(µ + γ2)

β2σ

]

−µ(µ + γ2)i2
�2

= 0,

(
�(i1, i2)

)2 (µ + γ1)�1

β1σ
+ �(i1, i2)

[
(γ2 + κ2)i2 + (µ + γ1)i1 −

µ(µ + γ1)

β1σ

]

−µ(µ + γ1)i1
�1

= 0.

(23)

Positive solutions of (23) are only candidates for coexistence equilibria, as we must
check that the corresponding values (s, qi, ri, vi, and w) are positive. Numerical
simulations show that such solutions exist in the ranges 0 ≤ i1 ≤ 1 and 0 ≤ i2 ≤ 1 for
parameter values that are reasonable for the “flu.” Figure 2(a) (�1 > 1 and �2 > 1)
shows one such intersection in the positive quadrant. Subthreshold coexistence equi-
librium is also possible for �1 < 1 and �2 > 1 (see Figure 2(c)). As we increase the
basic reproductive number of both strains and allow varying levels of cross-immunity
(σ = 0.5 and σ = 0.6), Figures 2(b) and 2(d) show that two intersections (in the
positive quadrant) are possible. That is, multiple coexistence equilibria exist (it was
verified that all classes are positive). This possibility is absent from prior influenza
models. For the parameter values in Table 1, only a single coexistence equilibrium is
biologically reasonable. Figures 2(a), (c) provide additional examples where coexis-
tence and subthreshold coexistence are possible.
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Fig. 2. Positive solutions of (23) are provided to illustrate the existence of multiple endemic
states and subthreshold coexistence (section 4.1). The horizontal axis is the fraction (i1 = I1/A) of
individuals infected with strain 1, and the vertical axis depicts the fraction (i2 = I2/A) of individuals
infected with strain 2. (a) �1 = 2,�2 = 1.99, and σ = 0.9. (b) �1 = 2,�2 = 1.99, and σ = 0.5. (c)
�1 = 0.75,�2 = 2.9, and σ = 0.9. (d) �1 = 2.83,�2 = 2.93, and σ = 0.6.

Table 1

The parameter values used for the numerical simulations are provided here. The initial condi-
tions are given by s(0) = 0.4, i1(0) = 0.199, r1(0) = r2(0) = 0.2, and i2(0) = q1(0) = q2 = w(0) = 0
(only one strain present initially) and s(0) = 0.4, i1(0) = 0.199, q1(0) = 0.1, r1(0) = r2(0) = 0.2,
i2(0) = 0.001, and q1(0) = q2(0) = w(0) = 0 (both strains present initially).

Parameters Definition Values

�i Number of secondary cases generated by a primary case infected (0.75, 4.5)
with strain i

σij Cross-immunity against strain j following an infection (0.008, 0.8)
with strain i

Λ Rate at which individuals are born into the population 0.00004
αi Rate at which individuals leave isolation (1/αi = days) (1, 15)
δi Rate of isolation with strain i, i = 1, 2 (1/δi = days) (1, 6)
γi Recovery rate from strain i, i = 1, 2 (1/γi = days) (5, 7)
βi Transmission coefficient for strain i, i = 1, 2 (0.4, 2.2)
µ Mortality rate 0.00004

4.2. Sustained oscillations. A detailed study of the nature of the eigenvalues
of matrix G1 makes use of the identity

β1
S̃

Ã
− (µ + γ1 + α1) = −β1

Ĩ1

Ã

and the fact that �1 does not depend on α1. The dependence of f on α1 is in the order
of µ, and this observation is used in the study of the characteristic equation associated
with G1 as we search for the possibility of sustained oscillations. The characteristic
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equation is

ω3 + a1ω
2 + a2ω + a3 = 0,(24)

where

a1 = 2µ + α1 + �1(µ + γ1 + δ1)µ(µ + α1)φ,

a2 = µ(µ + α1)

[
1 + �1(µ + γ1 + δ1)

(
2µ + α1 + γ1 + δ1

(
1 − 1

�1

))
φ

]
,

a3 =

[
µ2 + α1µ + δ1α1 + γ1µ + γ1α1 + δ1µ

(
1 − 1

�1

)]
�1(µ + γ1 + δ1)µ(µ + α1)φ.

(25)

Since a1, a2, and a3 are all positive (�1 > 1), then the cubic equation in (24) has
either three negative or one negative root and possibly two complex conjugate roots.
Differences in epidemiological and demographic time scales are used to tease out the
nature of the roots of (24). The average life expectancy (1/µ) is in the order of
decades, while the infective (1/δi or 1/γi) and isolation periods (1/αi) are just a few
days. That is, µ is much smaller than δi, γi, and αi. Following early approaches
[14, 15, 23], we carry out an asymptotic expansion on the coefficients of (24) using µ.
From (25), it is clear that ai are analytic functions of µ > −ε for some ε > 0. Hence,

a1 = α1 + (�∗
1 + 1)µ + O(µ2),

a2 =

[
(α1 + γ1)�∗

1 − γ1 +
δ1(�∗

1 − 1)2

�∗
1

]
µ + O(µ2),

a3 = α1(δ1 + γ1)(�∗
1 − 1)µ + O(µ2),

(26)

where �∗
1 denotes �1(µ) evaluated at µ = 0, that is, �∗

1 = �1(0). The continuous
dependence of the roots on µ is acknowledged by letting ωi = ωi(µ) (i = 1, 2, 3) denote
the roots of (24) (for a fixed value of µ). In the limiting case, µ = 0, a2 and a3 are
zero, while a1 = α1 (from (26)). The characteristic polynomial in this limiting case is
simply

ω3 + α1ω
2 = 0,

which has the roots ω1(0) = −α1 and ω2(0) = ω3(0) = 0. Hence, by continuity,
ω1(µ) = −α1 + O(µ) is a negative real root of (24) for small µ > 0. In order to use
arguments similar to those found in [14, 15, 23] or in Kato [23, II, §1, section 2], it is
assumed that the roots ω2(µ) and ω3(µ) have expansions of the form

ω(µ) =
∞∑
j=1

ξjν
j , ν = µ

1
2 .(27)

The formal substitution of (27) into (24) (neglecting higher-order terms in ν) yields[
ξ2
1α1 + α1(δ1 + γ1)(�∗

1 − 1)
]
ν2

+

[
ξ3
1 + 2ξ1ξ2α1 +

(
(γ1 + α1)�∗

1 − γ1 +
δ1(�∗

1 − 1)2

�∗
1

)
ξ1

]
ν3 + O(ν4) = 0.

Hence,

ξ2
1 = −(γ1 + δ1)(�∗

1 − 1) and ξ2 = − 1

2α1

(
ξ2
1 − γ1 + (γ1 + α1)�∗

1 +
δ1(�∗

1 − 1)2

�∗
1

)
.
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From the fact that �∗
1 > 1 we have that

ξ1 = ±i
√

(γ1 + δ1)
(
�∗

1 − 1
)

and ξ2 = − 1

2α1

(
α1�∗

1 + δ1

(
1

�∗
1

− 1

))
.(28)

That is, the three roots of (24) have expressions of the form

ω1(ν) = −α1 + O(ν2)(29)

and

ω2,3(ν) = ±i ((γ1 + δ1) (�∗
1 − 1))

1
2 ν − 1

2α1

(
α1�∗

1 + δ1

(
1

�∗
1

− 1

))
ν2 + O(ν3).

(30)

We select α1 as our implicit bifurcation parameter (1/α1 is the isolation period for
strain 1). We observe that α1 = α1(ν) is a function of ν that satisfies the equation
ξ2(α1(0)) = 0. Hence

α1(0) =
δ1
�∗

1

(
1 − 1

�∗
1

)
.

The use of functions ω2,3 = ω2,3(α1, ν) and H(α1, ν) = 1
ν2 R ω2,3(α1, ν) (where

Rω2,3(α1, ν) denotes the real part of the roots of (24) as given in (30)) imply that
H(α1(0), 0) = ξ2(α1(0)) = 0. The implicit function theorem guarantees the existence
of a critical function αc(ν) = δ1

�∗
1
(1− 1

�∗
1
) +O(ν), such that H(αc(ν), ν) = 0 for small

ν. Clearly, αc(ν) > 0, as long as �∗
1 > 1. Furthermore, since

∂H

∂α1
(0) = − 1

2δ1

�∗
1
3

(�∗
1 − 1)

< 0,

nonresonance holds [21], that is, as the frequency of strain 1 approaches that of strain 2
(or vice versa). Solutions remain bounded. The use of α1 as a bifurcation parameter
shows that the roots ω2,3 cross the imaginary axis from left to right whenever α1

crosses αc from right to left. That is, the crossing is transversal. Hence, a Hopf
bifurcation occurs near the critical point αc = δ1(�∗

1 − 1)/(�∗
1)

2. We collect these
results in the following theorem.

Theorem 1. There are two functions: f(�1) as defined in (8), and αc(µ) defined
for small µ > 0 by

αc(µ) =
δ1
�∗

1

(
1 − 1

�∗
1

)
+ O

(
µ

1
2

)
,

with the following properties: (i) The boundary endemic equilibrium E1 is locally
asymptotically stable if �2 < f(�1) and α1 < αc(µ), and unstable if �2 > f(�1) or
α1 > αc(µ). (ii) When �2 < f(�1), periodic solutions arise at α1 = αc(µ) via Hopf
bifurcation for small enough µ > 0. The period can be approximated by

T =
2π

|ω2,3|
≈ 2π

((γ1 + δ1)(�∗
1 − 1))

1
2 µ

1
2

or (using (2)) by

T ≈ 2π

(γ1 + δ1)
1
2

(
Î1
Â

) 1
2

µ
1
2

,
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where Î1/Â denotes β1Ĩ1/µÃ evaluated at µ = 0 and |ω2,3| refers to the imaginary
roots calculated in (30).

The latter expression for T allows one to compare the period of this model with
the quasi periods obtained from models which do not include an isolation class [5, 6].
Since we have focused on the symmetric case, an analogous result for the second
boundary equilibrium E2 can be stated immediately. That is, the boundary endemic
equilibrium E2 is locally asymptotically stable if �1 < g(�2) and α2 < αc(µ). It
becomes unstable if �1 > g(�2) or α2 > αc(µ). A summary of the stability results as
presented in Theorem 1 for strain 1 is obtained for strain 2 by replacing the parameter
indices 1’s with 2’s and replacing f(�1) with g(�2). Functions f(�1) and g(�2)
help in the characterization of the stability and coexistence regions for strains 1 and
2. Changes in the regions of stability for either a single or for both strains can be
illustrated as the coefficients of cross-immunity are varied. For instance, from (8) we
can compute the value of σ at which

f ′(�1) ≡
∂f(�1, σ)

∂�1

∣∣∣
σ∗
1

= 0,(31)

namely

σ∗
1 =

1(
1 + δ2

µ+γ2

)(
1 − µ(µ+α1)

(µ+γ1)(µ+α1)+α1δ1

) .
Hence, for all �1 > 1,

f ′(�1) > (<,=) 0, f(�1) > (<,=) 1 if σ < (>,=) σ∗
1 .

These properties are easily verified, since (from (8))

f(�1) =
�1

1 + σ
σ∗
1
(�1 − 1)

and f ′(�1) =
1 − σ

σ∗
1(

1 + σ
σ∗
1
(�1 − 1)

)2 .

From the facts that f(�1) < �1 and f(1) = 1 we see that Figure 3 captures the
properties of the curve �2 = f(�1). Similar curve “boundary” features can be studied
using threshold value σ∗

2 (interchanging the subscripts 1 and 2 in the expression of σ∗
1)

and the function �1 = g(�2) (also shown in Figure 3). The special case when both
strains are identical, σ∗

1 = σ∗
2 = σ∗, is implicit in Figure 3. �2 < f(�1) is a necessary

condition for the stability of strain 1 (either a stable boundary endemic equilibrium
E1 or the equilibrium associated with strain-1 oscillations). Hence, E1 is unstable
when �2 > f(�1). Similarly, E2 is unstable when �1 > g(�2). Hence, coexistence is
expected when �2 > f(�1) and �1 > g(�2).

Next, the cases σ∗
2 < σ < σ∗

1 and σ∗
1 < σ < σ∗

2 are considered. f(�1) and g(�2)
are increasing and decreasing functions of σ correspondingly for σ∗

2 < σ < σ∗
1 and

decreasing and increasing (respectively) for σ∗
1 < σ < σ∗

2 (Figure 4(b)). Hence, the
stability region for strain 1 (Figure 4(a), region I) may be significantly larger than that
of strain 2 (Figure 4(a), region II) for σ∗

2 < σ < σ∗
1 . For σ∗

1 < σ < σ∗
2 , the stability

region of strain 1 may be noticeably smaller than that of strain 2. The changes
in the relative sizes of these stability regions seem to cause strong cross-immunity
when it is conferred by strain i (σi ↓ 0) against an infection with strain j (largely
reduced susceptibility to alternative strain infections). The possibility that strain j
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Fig. 3. Bifurcation diagram in the (�1,�2)-plane. The curves �2 = f(�1) (for �1 > 1) and
�1 = g(�2) (for �2 > 1) divide the region R2

+ − {(�1,�2) | �1 < 1 and �2 < 1} into three
subregions: I, II, III. When the parameters are in region I (II), only strain 1 (strain 2) will be
maintained (a stable boundary equilibrium or sustained oscillations of a single strain). In region
III, both strains will be maintained (a stable boundary equilibrium or sustained oscillations of both
strains).

Fig. 4. Bifurcation diagram in the (�1,�2)-plane for the case when σ∗
1 �= σ∗

2 . The curves
�2 = f(�1) (for �1 > 1) and �1 = g(�2) (for �2 > 1) divide the region R2

+ − {(�1,�2) | �1 <
1 and �2 < 1} into three subregions: I, II, III. The meanings of these regions are the same as
those in Figure 3.
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Fig. 5. A1 and A2 are the regions used to approximate the areas pertaining to section III in
Figures 2(a)–(b). In order to approximate these areas we enclose regions A1 and A2 with a square
with dimensions s and corresponding area s2 (dashed region); s is chosen so that 1 + s = �1 (and
�2 ≈ �1) using the parameters in Table 1 and two values of σ∗ (see the text).

may become established under these conditions can be small. Likewise, weaker levels
of cross-immunity to strain j after an infection with strain i (σi ↑ 1) will support
relatively larger regions of stability for strain j.

The stability regions for strain 1 (I) and strain 2 (II) in the (�1,�2)-plane
(σ < σ∗

1 and σ > σ∗
2 , σ∗

1 = σ∗
2 = σ∗) are illustrated in Figures 3(a)–(b). We show that

as the levels of cross-immunity decrease, that is, as the values of σ get closer to 1 (from
Figure 3(a) to Figure 3(b)), the region of stability corresponding to each individual
strain is reduced significantly (regions I and II). Simultaneously, an increase in
the region of multiple strain coexistence (III) can be observed as cross-immunity
is weakened. It seems that as strains become antigenically distinct; that is, when
cross-immunity against each other is weak, coexistence is more likely. Strong levels
of cross-immunity (σ ↓ 0) support the survival of a single strain; that is, in this case
competition for susceptibles between strains is “fierce” (“competitive exclusion”). The
strain with the highest ability to invade the host (largest �q) is the most likely to
become established (driving the other strain to extinction [4]).

Using Figures 5(a)–(b), a rough estimate for the “probability” of multiple strain
coexistence is computed as a function of cross-immunity. The areas of both regions
A1 and A2 (previously depicted by region III) by delineating the regions of interest
with functions f(�1) and g(�2) are “approximately” computed. The area of A1 in
Figure 5(a) is enclosed by a square region with dimensions s, where 1+s=�1 and
�2 ≈ �1. Similarly, the area A2 in Figure 5(b) is estimated. The selected value of
σ∗ (σ∗ = 0.33) used corresponds to the one derived using the parameters provided in
Table 1. A value of σ = 0.0008 is used in Figure 5(a) and σ = 0.8 in Figure 5(b).
Letting A1 (σ = 0.0008) and A2 (σ = 0.8) in Figures 5(a)–(b) be the calculated areas
corresponding to region III, we find that the quotient A1/A2 is small (0.0055562).
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Fig. 6. Numerical integration of the model equations. The fraction of the infective individuals
(nonisolated) with strain 1 (I1/N) is shown for increasing periods of isolation. The length of the
isolation period has been chosen (from top to bottom) to be 3 days, 7 days, and 15 days. Cross-
immunity between strains is intermediate (σ = 0.5).

Hence, the coexistence of antigenically similar strains (sharing strong levels of cross-
immunity) seems less likely than when cross-immunity is weak.

5. Numerical results. In this section we explore the model equations numeri-
cally as the levels of cross-immunity and isolation are varied. In the first set of sim-
ulations, we study the symmetric case (σ12 = σ21 = σ). We explore the role of cross-
immunity and host isolation in supporting sustained oscillations for a single and/or
both strains where σ ∈ (0.01, 0.8) and 1

α is either 1 day, 3 days, or 15 days. In the sec-
ond set of simulations, we explore the case where σ12 �= σ21. Average life expectancy
is fixed at 70 years; infected individuals recover from infection in 5–7 days; individuals
are isolated for 1–15 days. The parameters used in simulations are listed in Table 1.

Case 1. σ12 = σ21 = σ. The robustness of multiple strain coexistence begins
from the assumption that both strains are present in the population (s(0) = 0.4,
i1(0) = 0.199, r1(0) = r2(0) = 0.2, i2(0) = 0.001, and q1(0) = q2(0) = w(0) = 0).
Simulations are conducted using varying levels of cross-immunity (σ = 0.01, 0.33,
0.5, and 0.8) and isolation periods (1 day, 3 days, and 15 days). Figure 6 shows
that for intermediate cross-immunity (σ = 0.5) the periods between outbreaks is
approximately 4 years with an amplitude ranging from 1.1 × 10−4 to 1.5 × 10−4.
Figure 7 shows that strong cross-immunity gives periods of approximately 3 years
and amplitude of 2 × 10−4. As the levels of cross-immunity range from intermediate
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Fig. 7. Numerical integration of the model equations. The fraction of the infective individuals
(nonisolated) with strain 1 (I1/N) is shown. The isolation period is fixed at 3 days, while cross-
immunity levels are varied (from top to bottom): 0.008 (strong), 0.4 (intermediate), and 0.8 (weak).

to weak, the periods become more irregular, and the amplitude ranges vary (4 × 10−5

to 4 × 10−4, σ = 0.4 and 1–5.5 × 10−4, σ = 0.8).
Case 2. σ12 �= σ21. Briefly, we study the effect of isolation for asymmetric cross-

immunity by allowing strains to become antigenically distinct with increasing ε (that
is, |σ12 − σ21| = ε) (see also [12]). We assume a 3-day isolation period. Figure 8
illustrates the interactions that arise between nonsymmetric strains as their differ-
ence in cross-immunity increases, ε ∈ (0.01, 0.03). The periods between oscillations
for strain 1 (solid) vary from 10–11 years with increasing ε and decreasing levels of
cross-immunity. Similarly, the periods between oscillations corresponding to strain 2
(dashed) vary from 10–13 years. The amplitude with highest peak for strain 1 (3.8×
10−4) is attained at ε = 0.02, whereas that of strain 2 is observed at ε = 0.02 and
ε = 0.03 (3 ×10−4). Figure 8 shows that for intermediate coupled strains (σij ≈ 0.33),
the system goes through cycles with approximate periods of 10–13 years, where each
cycle may contain minor outbreaks followed by a period with very low disease levels
(1–2 ×10−5).

6. Discussion. “Flu” epidemic patterns include yearly outbreaks (antigenic
drift), the explosive onset of outbreaks, the rapid termination of local epidemics (de-
spite an “abundance” of susceptible individuals), and potentially major pandemics
(antigenic shift). The continuous generation (most likely from random mutations
in the NS gene) of new “flu” strains (“minor” genetic changes) and the sudden
generation of subtypes (radical genetic changes) and their impact on the history of
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Fig. 8. Numerical integration of the model equations. The fraction of the infective individuals
(nonisolated) with strain 1 (solid) and strain 2 (dashed) is shown. Differences in cross-immunity
levels between strains 1 and 2 (σ12 − σ21) increase (from top to bottom): 0.01, 0.02, and 0.03. For
example, cross-immunity for strains 1 and 2 correspondingly are given by σ12 = 0.36 and σ21 = 0.33
(bottom panel).

acquired (age-dependent) immunity of host populations make the study of influenza
dynamics and its control challenging and fascinating [2, 16].

The focus of this article is on the time evolution of influenza A in a nonfixed
landscape driven by tight coevolutionary interactions (that is, interactions where the
fate of the host and the parasite are intimately connected; see [25]) between human
hosts and competing strains. The process is mediated by intervention (behavioral
changes) and cross-immunity. In other words, the nature of the invading landscape
(susceptible host) changes dynamically from behavioral changes (isolation, short time
scale) and past immunological experience (cross-immunity, long time scale).

The “partial” herd-immunity generated by past history of invasions on the host
population can have a huge impact on the quantitative dynamics of the “flu” at the
population level. The assumption that σ12 = σ21 = σ for i �= j naturally results
in a dynamic landscape that is not too different (in the oscillatory regime) than
the one observed on single-strain models with isolation [15, 20]. That is, a lack of
heterogeneity in cross-immunity results in a system “more or less” driven (in the
oscillatory regime) by the process of isolation. However, small variations in isola-
tion (Figure 6) leads to radically quantitatively distinct epidemics in the oscillatory
regime. This modeling framework (see also [5, 6]) can “asses” the impact of anti-
genically similar (|σij − σji| → 0) and antigenically distinct strains (|σij − σji| > ε).
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In all cases, sustained oscillations with periods that are consistent with influenza
epidemics/pandemics are possible [11, 28]. These results are consistent with those
obtained in single-strain models [14] (i.e., sustained oscillations are preserved), except
that the oscillations are now possible for “realistic” isolation periods. The introduction
of a second strain enhances the possibilities. Numerical simulations illustrate various
outcomes, including competitive exclusion, coexistence, and subthreshold coexistence.
The interepidemic periods range from 2 to 10–13 years, depending on the levels of
cross-immunity. Strong intermediate asymmetric cross-immunity leads to interepi-
demic periods in the range of 10–13 years. Symmetric cross-immunity reduces the
range to 1–3 years. The results of intermediate (symmetric) cross-immunity are con-
sistent with those found in [5, 6]. Documented evidence on the cocirculation of strains
belonging to the same subtype [11, 28] appears to be consistent with these results.

Our results show that multiple strain coexistence is highly likely for antigeni-
cally distinct (weak cross-immunity) strains and not for antigenically similar under
symmetric cross-immunity (“competitive exclusion” principle [4]). As the levels of
cross-immunity weaken, the likelihood of subthreshold coexistence (�j

i < 1) increases.
However, “full” understanding of the evolutionary implications that result from hu-
man host and influenza virus interactions may require the study of systems that incor-
porate additional mechanisms such as seasonality in transmission rates, age-structure,
individual differences in susceptibility or infectiousness, and the possibility of coin-
fections. Thacker [28] notes that the observed seasonality of influenza in temperate
zones may be the key to observed patterns of recurrent epidemics. Superinfection may
also be a mechanism worth consideration, even though studies in [22] show that it is
only moderately possible for young individuals to become infected with two different
strains in one “flu” season.

The recent flu epidemic [3] which has invaded all 50 states (2003–2004) and our
experiences with the recent SARS epidemic [10] are a source of concern. While iso-
lation and quarantine [8] seem effective [10], they can “destabilize” “flu” dynamics
(oscillations) and generate some level of uncertainty. The results in this paper suggest
the need to explore the long-term impact of current U.S. vaccination policies on the
levels of cross-immunity generated by herd-immunity in the case of the flu. Whether
or not they increase or reduce the likelihood of a future major outbreak is a question
worth considering.

Appendix A. The local stability of the disease-free state follows from the study
of the eigenvalues of the Jacobian matrix J of system (1) at E0. The 10×10 Jacobian
matrix J is partitioned after arranging the variables, that is, after rewriting system
(1) as dM/dt = F (M), where M = (S, I1, I2, Q1, Q2, R1, R2, V1, V2,W ). The corre-
sponding eigenvalues are given by λi = −µ for i = 1, 2, 3, 4; λi = βi − (µ+ γi + δi) for
i = 1, 2; λi = −(µ + αi) for i = 1, 2; λi = (µ + γi).
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Abstract. The paper studies the interaction of a periodic solid bristle structure with a fluid.
Such problems arise, for example, when modelling biotechnological devices operating in liquids or
when simulating epithelium surfaces of blood vessels. The fluid is described by the linearized Navier–
Stokes equation whereas the solid part is governed by equations of linear elasticity. The interface
conditions are accounted. A homogenized model of the structure is derived by employing the two-
scale convergence technique. The model describes a new material which possesses some interesting
properties.

Key words. homogenization, fluid-solid interface, biosensor, multi-layered structure
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1. Introduction. We study a mechanical system consisting of a fluid and a
rapidly oscillating elastic fine structure interacting with the fluid. The goal is to
obtain averaged equations which effectively describe the behavior of the system.

This investigation is motivated by modelling a surface acoustic wave sensor based
on the generation and detection of horizontally polarized shear waves (see [3]). Acous-
tic shear waves are excited through an alternate voltage applied to electrodes deposited
on a quartz crystal substrate. The waves are transmitted into a thin isotropic guiding
layer covered by a thin gold film that contacts a liquid containing a protein to be
detected. The protein adheres to a specific receptor (aptamer) placed on the surface
of the gold film. The arising mass loading causes a phase shift in the electric signal
to be measured by an electronic circuit.

One can impress the aptamer-protein layer as a periodic bristle or pin structure
on the top of the gold film contacting with the liquid (see Figure 1). The thickness of
the aptamer-protein layer is about 4 nm, and the number of bristles per surface unit
is enormous large. Therefore, the direct numerical modelling of such a structure using
fluid-solid interface conditions is impossible. Proper models can be derived using the
homogenization technique from [12], [11], [1], [7], [8], and [5] along with the strict
treatment of the solid-fluid interface (see, e.g., [6]).

Problems that are close to ours were studied in [13] and [2]. L. Baffico and
C. Conca [2] considered the same geometry but the equations differ from ours.
J. Sanchez-Hubert [13] investigated almost the same problem. She used techniques
based on the Laplace transformation whereas we apply another approach which makes
it possible to obtain an explicit representation of solutions to the cell equation, which
allows us to investigate the limiting equations and to develop numerical algorithms.

2. Mathematical model. The coupled mechanical system under consideration
is shown in Figure 1. The solid part consists of a substrate and pins located on its top.
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The pin structure is assumed to be periodic in the plane (x1, x2) and independent of x3.
The domain of the coupled system is denoted by Ω ⊂ R3. For simplicity, we suppose
that Ω is the cube {x ∈ R3 |xk ∈ (−1; +1), k = 1, 2, 3}. The domains occupied by
the fluid and elastic continua are denoted by Ω

F
and Ω

S
, respectively; the boundary

separating the continua by Γ. Thus, Ω = Ω
F
∪ Γ ∪ Ω

S
. Let (∂Ω)

F
= ∂Ω ∩ Ω

F
and

(∂Ω)
S

= ∂Ω ∩ Ω
S
. Then the sets Γ ∪ (∂Ω)

F
and Γ ∪ (∂Ω)

S
are the boundaries of the

domains Ω
F

and Ω
S
, respectively.

2.1. Governing equations. We assume that the fluid is weakly compressible,
which is physically correct because the operation frequency of the coupled structure
lies in the acoustic range and the displacements of the fluid particles are small. This is
a typical acoustic approximation which additionally utilizes linearized Navier–Stokes
equations (see [9]).

ΩS

ΩF

δ

Fig. 1. Coupled system: Ω = ΩF ∪ Γ ∪ ΩS

The solid part of the system will be described using the linear elasticity approach.
This linear setting is supplemented by the assumption that the domains Ω

F
and Ω

S

remain unchangeable. Therefore, the coupled mechanical system is described by the
following equations:

ρ
F
ut = −∇p + divPux + ρ

F
f in Ω

F
,(2.1)

γpt = −divu in Ω
F
,(2.2)

ρ
S
vtt = divGvx + ρ

S
f in Ω

S
.(2.3)

Let n be the normal vector to the fluid-solid interface Γ. The no-slip and stress
equilibrium conditions on Γ read

vt = u on Γ,(2.4)

Gvx · n =
(
− pI + Pux

)
· n on Γ.(2.5)

The boundary and initial conditions are prescribed:

u = 0 on (∂Ω)
F
,(2.6)

v = 0 on (∂Ω)
S
,(2.7)

u|t=0 = u0, p|t=0 = p0 in Ω
F
,(2.8)

v|t=0 = v0, vt|t=0 = v ′ 0 in Ω
S
.(2.9)
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Here, ρ
F

and ρ
S

are the constant densities of the fluid and of the solid parts, re-
spectively; u is the velocity field of the fluid, p is the pressure in the fluid, v is the
displacement field of the solid part, and f is an external force like the gravity. The
coefficient γ characterizes the compressibility of the fluid. The fourth-rank tensor
P = {Pijkl} is defined through the relation

Pux = λ I divu + 2µD(u).(2.10)

The unit tensor I has the components Iij = δij , where δij is the Kronecker sym-
bol. The strain velocity tensor D(u) has, as is usual, the components Dij(u) =
1/2 (∂ui/∂xj + ∂uj/∂xi) . The symbols λ and µ denote positive balk and dynamic
viscosity coefficients of the fluid, respectively. As is usual, the summation over re-
peating indices is assumed. The components Gijkl of the elastic stiffness tensor G
can be arbitrary up to base restrictions so that arbitrary anisotropic solids can be
considered.

The model (2.1)–(2.9) was investigated in [10] where it was supposed to use the
velocity instead of the displacement in (2.3). Following this approach, we introduce
the integral operator

Jtw =

∫ t

0

w(s)ds

that enables us to rewrite (2.3) in the form

ρ
S
ut = div

(
GJtux

)
+ divG0 + ρ

S
f ,(2.11)

where u = vt, G0 = Gv0
x in Ω

S
. Similarly, the pressure p can be expressed from (2.3)

as follows:

p = −γ−1divJtu + p0 in Ω
F
.(2.12)

Let χ be the characteristic function of the domain Ω
F
. Then (2.1), (2.2), and (2.3)

can be written in the whole domain Ω as one equation with discontinuous coefficients

ρut = div
(
M tux

)
+ divN 0 + ρf ,(2.13)

where

M t = χP +
(
χγ−1I ⊗ I + (1 − χ)G

)
Jt,

ρ = ρ
F
χ + ρ

S
(1 − χ), N 0 = −χp0I + (1 − χ)G0.

The interface condition (2.4) is equivalent to the “continuity” of u on Γ but the
condition (2.5) now assumes the form(

GJtux + G0
)
· n =

(
γ−1divJt uI − p0I + Pux

)
· n on Γ(2.14)

accounting (2.12). The boundary and initial data are

u = 0 on (∂Ω)
F
,(2.15)

u|t=0 = u0 in Ω,(2.16)
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where the fluid initial condition u0 is extended to Ω
S

by setting u0(x) = v ′ 0(x) for
x ∈ Ω

S
.

Remark 2.1. One can forget the initial distribution v0 of the displacement when
considering (2.13). It is sufficient to prescribe the initial velocity field u0 in Ω, the
initial stress G0 in Ω

S
(this replaces the information about v0), and initial pressure

p0 in Ω
F
. The functions G0 and p0 yield the function N 0 involved in (2.13).

Remark 2.2. For mechanical reasons, the tensors Pijkl and Gijkl have the follow-
ing properties:

Zijkl = Zijlk = Zklij = Zjikl, ZijklVijVkl � 0,

ZijklVijVkl = 0 if and only if Vkl + Vlk = 0 for all k, l = 1, 2, 3.

Here, Zijkl stands for Pijkl or Gijkl.

2.2. Refinement of the structure. Let us define the structure of the regions
Ω, Ω

F
, and Ω

S
more precisely. The pin structure (see Figure 1) is supposed to be

(x1, x2)-periodic. Without loss of generality, we assume that the periodicity cell is a
square with the side length equal to ε, where ε is a positive number. After scaling
with the factor 1/ε, the cell becomes the unit square Σ = [0, 1] × [0, 1]. Let Σ

S
be

the 1/ε-scaled projection of a solid pin to the (x1, x2)-plane. It is assumed to be a
smooth, simply connected domain in Σ such that its boundary ∂Σ

S
does not meet

∂Σ. Denote by Σ
F

the domain Σ \ Σ
S

(see Figure 2).

Fig. 2. Structural cell Σ = [0, 1] × [0, 1].

Let x̂ = (x1, x2) and χ̂(x̂) be the Σ-periodic extension of the characteristic func-
tion of the domain Σ

F
to all R2. Then the function χ introduced in the previous

subsection can be represented as follows:

χ(x) = χ(x̂, x3) =

⎧⎪⎨
⎪⎩

1, x3 > δ,

χ̂( x̂
ε ), 0 � x3 � δ,

0, x3 < 0.

(2.17)

Remember that δ is the thickness of the pin layer. If ε → 0, the pin structure becomes
finer in the (x1, x2)-plane, whereas its height remains constant. Thus, the problem
(2.13)–(2.16) depends in fact on ε. For this reason, we call it Problem Sε.

Definition 2.3. A function u is called a weak solution to Problem Sε if

u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω
F
)), Jtu ∈ L∞(0, T ;H1

0 (Ω))(2.18)
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and the integral identity∫ T

0

∫
Ω

(
− ρu · ϕt + M tux : ϕx + N 0 : ϕx − ρf · ϕ

)
dxdt =

∫
Ω

ρu0 · ϕ0dx(2.19)

holds for every smooth function ϕ such that ϕ|t=T = ϕ|∂Ω = 0.
In this definition and further, T is an arbitrary positive number; the colon denotes

the convolution of tensors so that U : V = UijVij for all second-rank tensors U and V;
and the notation f0 means f |t=0. Remark that the second inclusion of (2.18) prevents
jumps of u on Γ.

2.3. Solvability of Problem Sε. It is not difficult to prove existence of a weak
solution to Problem Sε. This question was investigated in [10, section 9.1], and the
following result was established.

Theorem 2.4. Let u0 ∈ L2(Ω), N 0 ∈ L2(Ω), and f ∈ L2([0, T ] × Ω). Then
there exists a unique weak solution to Problem Sε, and the following energy estimate
holds:

ess supt∈(0,T )

(
‖u(t)‖2

L2(Ω) + ‖D
(
Jtu

)
‖2
L2(Ω

S
)

)
+

∫ T

0

‖D(u(t))‖2
L2(Ω

F
) dt � C,

(2.20)

where C is a constant which depends on ‖u0‖L2(Ω), ‖N 0‖L2(Ω), and ‖f‖L2([0,T ]×Ω)

but does not depend on ε.
Corollary 2.5. Under the conditions of Theorem 2.4, there exists an indepen-

dent of ε constant C such that

ess supt∈(0,T )‖Jtu(t)‖H1(Ω) � C.(2.21)

Generally speaking, the estimates (2.20) and (2.21) are sufficient to fulfill the
homogenization of Problem Sε due to Proposition 3.9 which will be given below.
However, some technical difficulties must be overcome in this case. To avoid that, a
stronger estimate for u will be obtained under some compatibility conditions. The
next theorem states such a result.

Theorem 2.6. Let u0 ∈ H1(Ω), N 0 ∈ L2(Ω), f ,f t ∈ L2([0, T ] × Ω), and

div
(
χPu0

x + N 0
)
∈ L2(Ω).(2.22)

Then the weak solution to Problem Sε satisfies the estimate

ess supt∈(0,T )

(
‖ut(t)‖L2(Ω) + ‖ux(t)‖L2(Ω)

)
� C,(2.23)

where C is an independent of ε constant.
Proof. Let us introduce a function w as a solution of the problem

ρwt = div
(
M twx

)
+ div

(
χγ−1I div u0 + (1 − χ)Gu0

x

)
+ ρf t,

ρw|
t=0 = ρw0 = div

(
Pu0

x + N 0
)

+ ρf0,

w|
∂Ω

= 0.

The energy estimate for this problem appears as follows:

ess supt∈(0,T )

(
‖w(t)‖2

L2(Ω) + ‖D
(
Jtw

)
‖2
L2(Ω

S
)

)
+

∫ T

0

‖D(w(t))‖2
L2(Ω

F
) dt � C,

(2.24)
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which yields

ess supt∈(0,T )‖Jtw‖H1(Ω) � C.

The assertion of the theorem is an immediate consequence of the last estimates because
the function defined as

u(x, t) =

∫ t

0

w(x, s) ds + u0(x) = Jtw(x, t) + u0(x)

is the solution of Problem Sε, and ut = w.
According to the definition of u0, the requirement u0 ∈ H1(Ω) expresses the no-

slip condition on Γ at the initial time instant t = 0. The requirement (2.22) expresses
the stress equilibrium condition on Γ at t = 0. From the mechanical point of view,
such conditions hold for any time instant including the initial one. Therefore, the
requirements of the theorem are feasible.

3. Homogenization of the structure.

3.1. Two-scale convergence. Let us denote by uε the solution of Problem Sε.
In order to emphasize the dependence of χ on ε, we denote it by χε. Our goal is to
perform the passage to the limit in Problem Sε as ε → 0. To do this, we use the
two-scale convergence method introduced by G. Nguetseng and developed by other
mathematicians (see [12], [11], [1], [7]). Let us formulate the main results of this
approach adapted to our situation.

Theorem 3.7. Let wε be a bounded sequence in L2
(
[0, T ] × Ω

)
. There exists a

subsequence, still denoted by wε, and a function w(t,x, ξ̂) ∈ L2
(
[0, T ] × Ω × Σ

)
such

that

lim
ε→0

∫ T

0

∫
Ω

wε(t,x)φ

(
t,x,

x̂

ε

)
dx =

∫ T

0

∫
Ω

∫
Σ

w(t,x, ξ̂)φ(t,x, ξ̂) dξ̂dxdt

for every smooth function φ(t,x, ξ̂) which is Σ-periodic in ξ̂. Such a sequence wε is

said to be two-scale convergent to w(t,x, ξ̂).

Recall the notation x̂ = (x1, x2) and ξ̂ = (ξ1, ξ2).
Theorem 3.8. Let a sequence wε converge weakly to w in L2

(
0, T ;H1(Ω)

)
.

Then wε two-scale converges to w and there exists a function w(t,x, ξ̂) in L2
(
[0, T ]×

Ω;H1
#(Σ)/R

)
such that ∇wε two-scale converges to ∇xw(t,x)+∇ξw(t,x, ξ̂) up to a

subsequence.
Here H1

#(Σ) is the space of Σ–periodic functions which belong to the space H1(Σ).
Since all functions under consideration do not depend on ξ3, the notation ∇ξ =
(∂ξ1 , ∂ξ2 , 0)� is used below.

As a simple application of the theorems stated above, we formulate (without
proof) the following result concerning the convergence of solutions of Problem Sε.

Proposition 3.9. Let uε be the sequence of solutions to Problem Sε. Then there
exist a subsequence (still denoted by uε) and a function u(t,x) such that

1. uε two-scale converges to u, and uε → u weakly in L2
(
[0, T ] × Ω

)
;

2. Jtuε two-scale converges to Jtu, and Jtuε → Jtu in L2
(
[0, T ] × Ω

)
;

3. ∇Jtuε two-scale converges to ∇xJtu+∇ξζ, where ζ(t,x, ξ̂) is a function from
L2

(
[0, T ] × Ω;H1

#(Σ)/R
)
.
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3.2. Passage to the limit in Problem Sε. Let the initial data of Problem Sε

satisfy the conditions of Theorem 2.6. A solution uε of Problem Sε satisfies the
following integral identity,

(3.1)∫ T

0

∫
Ω

(
−ρεuε ·ϕt +M εtuεx : ϕx +N ε0 : ϕx−ρεf ·ϕ

)
dxdt =

∫
Ω

ρεu0 ·ϕ0dx,

where ρε, M εt, and N ε0 are defined as in (2.13) but with χ replaced by χε. Let us
take

ϕ(t,x) = φ(t,x) + εφ
(
t,x,

x̂

ε

)
,

where φ and φ are arbitrary functions that vanish for x ∈ ∂Ω and at t = T . The-
orem 3.8 enables the passage to the limit in (3.1) as ε → 0. The limiting equations
look as follows:

(3.2)

∫ T

0

∫
Ω

∫
Σ

(
− ρu · φt + M t(ux + uξ) : φx + N 0 : φx − ρf · φ

)
dξ̂ dxdt

=

∫
Ω

∫
Σ

ρu0 · φ0 dξ̂ dx,

∫
Σ

(
M t(ux + uξ) : φξ + N 0 : φξ

)
dξ̂ = 0 in L2

(
[0, T ] × Ω

)
.(3.3)

These equations hold for all functions φ ∈ H1([0, T ] × Ω) and φ ∈ H1
#(Σ) such that

φ vanish on ∂Ω and at t = T . The coefficients ρ, M t, and N 0 are defined as in (2.13)

with χ(x) replaced by χ(x, ξ̂). The function χ(x, ξ̂) is defined as in subsection 2.2:

χ(x, ξ̂) =

⎧⎪⎨
⎪⎩

1, x3 > δ,

χ̂(ξ̂), 0 � x3 � δ,

0, x3 < 0.

Equation (3.3) is called a cell equation.
Equations (3.2) and (3.3) are coupled through the auxiliary function u. The next

step consists of finding u from the cell equation (3.3) and substituting the obtained
expression into (3.2).

4. Explicit solving of the cell equation.

4.1. Operator form of the cell equation in a Hilbert space. It is appro-
priate to rewrite (3.3) as an equation in the Hilbert space H = H1

#(Σ)/R with the
inner product

〈u,v〉 =

∫
Σ

∂ui

∂ξj

∂vi
∂ξj

dξ̂.

The norm in H is denoted by ‖ · ‖. Let us define operators A and B as follows:

〈Au,v〉 =

∫
Σ

χPijkl
∂uk

∂ξl

∂vi
∂ξj

dξ̂, 〈Bu,v〉=
∫

Σ

(
χγ−1δijδkl+(1−χ)Gijkl

) ∂uk

∂ξl

∂vi
∂ξj

dξ̂
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for all functions u,v ∈ H. Due to the Riesz representation theorem, there exist n0,
akl, and bkl, k, l = 1, 2, 3, such that

〈n0,v〉 =

∫
Σ

N 0 : vξ dξ̂, 〈akl,v〉 =

∫
Σ

χPijkl
∂vi
∂ξj

dξ̂,

〈bkl,v〉 =

∫
Σ

(
χγ−1δijδkl + (1 − χ)Gijkl

) ∂vi
∂ξj

dξ̂

for all v ∈ H. Remark that A, B, a, b, and n0 do not depend on t and depend on the
variable x just in the same way as the function χ(x, ξ̂). So we can consider x and t
in (3.3) as parameters.

Now, the problem (3.3) transforms to the following equation in the space H:

Au + BJtu = g,(4.1)

where

g = −
(
akl + bklJt

) ∂uk

∂xl
− n0

and u(x, t) is from (3.2) and (3.3).
Since the operators A and B are trivial whenever x3 �∈ [0, δ], we consider (4.1)

for x3 ∈ [0, δ], which corresponds to the treatment of the pin layer. In this case, the
operators A and B are degenerated. Therefore, some difficulties appear when solving
(4.1).

The next section is devoted to the study of the data of (4.1) to prepare tools for
its explicit solving.

4.2. Properties of A, B, and g.
Proposition 4.10. The operator A has the following properties:
1. A is a bounded self-adjoint operator on H.
2. 〈Au,u〉 � 0 for all u ∈ H.
3. The null-space N(A) = {u ∈ H : u is constant in Σ

F
}, and N(A)⊥ ⊂ {u ∈

H : ∆u = 0 in Σ
S
}.

4. There exist positive constants c and C such that

c ‖u‖2 � 〈Au,u〉 � C ‖u‖2(4.2)

for all u ∈ N(A)⊥.
5. The range R(A) is closed in H, R(A) = N(A)⊥, and A−1 is defined and

bounded as an operator on R(A).
Proof. Assertions 1 and 2 are obvious (see Remark 2.2). The third assertion

consists of two parts. In order to prove the first one we have only to establish that

N(A) ⊂ {u ∈ H : u is constant on Σ
F
}

because the opposite inclusion is clearly true. Due to the positiveness of the operator
A, its null-space consists of functions u which satisfy the condition 〈Au,u〉 = 0.
Thus, u ∈ N(A) implies

〈Au,u〉 =

∫
Σ

χPijkl
∂uk

∂ξl

∂ui

∂ξj
dξ̂ = 0.
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Consequently, D(u) = 0 in Σ
F
, and, hence, u is constant in Σ

F
because of its peri-

odicity.

Let u ∈ N(A)⊥. By definition, this means that∫
Σ

∂uk

∂ξl

∂vk
∂ξl

dξ̂ =

∫
Σ

S

∂uk

∂ξl

∂vk
∂ξl

dξ̂ = 0

for any function v ∈ C∞(Σ) such that v is constant on Σ
F
. Consequently, u is

harmonic in Σ
S
, which proves the third assertion.

To validate assertion 3, we need only to prove the left inequality since the right
one is obvious. Due to the Korn inequality (see, e.g., [14]), there exists a positive
constant c1 such that ∫

Σ
F

|uξ|2 dξ̂ � c1〈Au,u〉

for every u ∈ H. If u ∈ N(A)⊥, then u is harmonic in Σ
S

and there exist positive
constants c2 and c3 such that

c2

∫
Σ
S

|uξ|2 dξ̂ � ‖u‖H1/2(∂Σ
S

) � c3

∫
Σ
F

|uξ|2 dξ̂.

That is, 〈Au,u〉 � c ‖u‖2 for some constant c.

When proving assertion 5, denote by A
R

the restriction of A to N(A)⊥. Due to
the estimate (4.2), R(A

R
) is closed in H. Since R(A) = R(A

R
), we conclude that

R(A) is also a closed subspace of H. This implies that N(A)⊥ = R(A) = R(A), and
(4.2) is true for u ∈ R(A). Thus, A−1 exists and is bounded if A is considered being
restricted to R(A). The proposition is proved.

Proposition 4.11. The operator B has the following properties:

1. B is a bounded self-adjoint operator on H.

2. 〈Bu,u〉 � 0 for all u ∈ H.

3. The null-space N(B) = {u ∈ H : D(u) = 0 in Σ
S

and div u = 0 in Σ
F
}, and

N(B)⊥ ⊂ {u ∈ H : ∆u = ∇q in Σ
F

for some q ∈ L2(Σ)}.
4. There exist positive constants c and C such that

c ‖u‖2 � 〈Bu,u〉 � C ‖u‖2(4.3)

for all u ∈ N(B)⊥.

5. The range R(B) is closed in H, R(B) = N(B)⊥, and B−1 is defined and bounded
as an operator on R(B).

Proof. The first two assertions are obvious. To prove the third one, note that

〈Bu,u〉 =

∫
Σ

(
χγ−1δijδkl + (1 − χ)Gijkl

) ∂ui

∂ξj

∂uk

∂ξl
dξ̂

= γ−1

∫
Σ
F

(divu)2 dξ̂ +

∫
Σ
S

Gijkl
∂ui

∂ξj

∂uk

∂ξl
dξ̂

for every u ∈ H. Therefore, 〈Bu,u〉 = 0 if and only if divu = 0 in Σ
F

and D(u) = 0
in Σ

S
.
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If u ∈ N(B)⊥, then the equalities

0 = 〈u,v〉 =

∫
Σ

uξvξ dξ̂ =

∫
Σ

D(u) : D(v) dξ̂ =

∫
Σ

F

D(u) : D(v) dξ̂(4.4)

hold for every v ∈ N(B). Let uk ∈ N(B)⊥ be a sequence of smooth functions that
converges to u in H. Such a sequence exists because C∞(Σ) is dense in N(B)⊥.
Relation (4.4) is also valid for all uk. If v is an arbitrary smooth function such that
div v = 0 and suppv ⊂ Σ

F
, then v ∈ N(B), and

0 =

∫
Σ

F

D(uk) : D(v) dξ̂ = −
∫

Σ
F

div
(
D(uk)

)
· v dξ̂.

Consequently, there exist functions q̃k ∈ L2(Σ) such that divD(uk) = ∇q̃k for all k.
Passing to the limit yields divD(u) = ∇q̃. That is, ∆u = ∇q, where q = q̃ − divu.
This proves the third assertion.

The right inequality of the fourth assertion is obvious. Let us prove the left
one. According to the classical theory of the Stokes equations (see [4, Chap. 4]), the
following estimate holds for all u ∈ N(B)⊥:∫

Σ
F

|uξ|2 dξ̂ � c1
(
‖div u‖2

L2(ΣF
) + ‖u

Γ
‖2
H1/2(∂Σ

S
)/R

)
,

where u
Γ

is the trace of u on ∂Σ
S
. On the other hand,

‖u
Γ
‖2
H1/2(∂Σ

S
)/R

� c2

∫
Σ

S

|uξ|2 dξ̂.

Thus, there exists a positive constant c3 such that

‖u‖2 � c3

(∫
Σ

S

|uξ|2 dξ̂ + ‖div u‖2
L2(ΣF

)

)
(4.5)

for every u ∈ N(B)⊥. In order to obtain (4.3), it is sufficient to prove that there
exists a positive constant c4 such that∫

Σ
S

|uξ|2 dξ̂ � c4〈Bu,u〉(4.6)

for u ∈ N(B)⊥. This can be done using standard contradiction arguments. As-
sume the converse, i.e., there exists a sequence un ∈ N(B)⊥, n ∈ N, such that∫
Σ

S
|un

ξ |2 dξ̂ = 1 and 〈Bun,un〉 → 0 as n → 0. The estimate (4.5) implies that the

sequence {un} is bounded in H too. Thus, there exists its subsequence (still denoted
by {un}) that converges weakly in H and H1(Σ

S
)/R but strongly in L2(Σ) to a func-

tion u. Note that u ∈ N(B)⊥ since N(B)⊥ is weakly closed in H. Using the Korn
inequality yields∫

Σ
S

|un
ξ − uξ|2 dξ̂ � C

(
〈B(un − u),un − u〉 + ‖un − u‖2

L2(Σ)

)
.

The passage to the limit in this inequality implies that 〈Bu,u〉 = 0 and un →
u in H. This means that u ∈ N(B)⊥ ∩ N(B) and u = 0 in H. On the other
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hand,
∫
Σ

S
|uξ|2 dξ̂ = limn→∞

∫
Σ

S
|un

ξ |2 dξ̂ = 1. This contradiction proves (4.6) and,

consequently, (4.3).
The proof of the fifth assertion is the same as for the operator A in Proposi-

tion 4.10.
Proposition 4.12. The following is true:

akl, bkl,n0 ∈ R(A) ∩R(B), k, l = 1, 2, 3.

Consequently, g ∈ R(A)∩R(B) for almost all t and x, where g is the right-hand side
of the cell equation (4.1).

Proof. Due to Propositions 4.10 and 4.11, w ∈ R(A) ∩ R(B) if and only if
〈w,v〉 = 0 for all v ∈ N(A) ∪ N(B). Let us verify this condition for akl. The
functions bkl and n0 can be treated in the same way. Let v be an arbitrary function
from N(A). That is, v is a constant in Σ

F
because of Proposition 4.10. Thus,

〈akl,v〉 =

∫
Σ
F

Pijkl
∂vi
∂ξj

dξ̂ = 0.

If v ∈ N(B) then D(v) = 0 in Σ
S

according to Proposition 4.11, and

〈akl,v〉 =

∫
Σ
F

Pijkl
∂vi
∂ξj

dξ̂ =

∫
Σ

Pijkl
∂vi
∂ξj

dξ̂ −
∫

Σ
S

Pijkl
∂vi
∂ξj

dξ̂

=

∫
Σ
S

PijklDij(v) dξ̂ = 0.

Here, we used the periodicity of v in Σ and the symmetry of the tensor P (see
Remark 2.2). This proves the proposition.

Proposition 4.13.

N(A) ∩N(B) = {0}.

Proof. If u ∈ N(A) ∩ N(B), then D(u) = 0 in Σ due to Propositions 4.10 and
4.11. That is, u is constant in Σ because of its periodicity. This means that u = 0 in
H.

The result of Proposition 4.13 implies that the operator λA + B is invertible for
every λ > 0. Besides that, it is not difficult to see that the operator (λA + B)−1 is
bounded in H: Let us introduce the following closed subspaces of H:

E
A

= (λA + B)−1R(A),

E
B

= (λA + B)−1R(B),

E = E
A
∩ E

B
= (λA + B)−1

(
R(A) ∩R(B)

)
.

Note that the spaces E, E
A
, and E

B
do not depend on λ. More precisely, if

Eλ
A

= (λA + B)−1R(A) then Eλ
A

= Eµ
A

for all λ > 0 and µ > 0. This follows from
simple arguments like those. If x ∈ Eλ

A
, then (λA + B)x ∈ R(A) and Bx ∈ R(A).

Consequently, (µA + B)x ∈ R(A) and x ∈ Eµ
A
. That is, Eλ

A
⊂ Eµ

A
. In the same way

we can obtain that Eµ
A
⊂ Eλ

A
.

Lemma 4.14. The operator A maps the space E
B

into R(B), and the operator B
maps the space E

A
into R(A).
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Proof. The first part is true due to the following implications:

x ∈ E
B

=⇒ (λA + B)x ∈ R(B) =⇒ Ax ∈ R(B).

The second part is being proved analogously.
Lemma 4.15. If X is a closed subspace of H then A(X) and B(X) are closed

in H.
Proof. Let us verify this assertion for the operator A by taking an arbitrary

sequence un ∈ A(X) which converges to a function u in H. There exists a corre-
sponding sequence vn ∈ R(A) ∩X such that un = A(vn). Due to Proposition 4.10,
the operator A−1 is bounded on R(A). This implies that the sequence {vn} con-
verges in H to a function v which is in X because X is closed. In the limit, we have
u = A(v). That is, u ∈ A(X), which proves the lemma.

Proposition 4.16.

BE
A

= AE
B

= R(A) ∩R(B).

That is, for every ψ ∈ R(A) ∩ R(B), there exist ψ
B

∈ E
B

and ψ
A
∈ E

A
such that

ψ = Aψ
B

= Bψ
A
.

Proof. Let us prove the first claim. Due to Lemma 4.14, BE
A
⊂ R(A) ∩ R(B).

Besides that, Lemma 4.15 implies that BE
A

is a closed subspace in H. Suppose that
BE

A
�= R(A) ∩ R(B). Then there exists x ∈ R(A) ∩ R(B) such that 〈x,y〉 = 0 for

every y ∈ BE
A
. That is, 〈x,B(λA + B)−1Az〉 = 0 for all z ∈ H, and

〈A(λA + B)−1Bx,z〉 = 0 for all z ∈ H.

Consequently, (λA + B)−1Bx ∈ N(A) and, hence, Bx ∈ (λA + B)N(A) = BN(A).
That is, there exists y ∈ N(A) such that Bx = By and, therefore, B(x−y) = 0. This
implies that w = x− y ∈ N(B). Thus, x = y + w, where y ∈ N(A), and w ∈ N(B).
That is, x ∈ N(A)⊕N(B). Consequently, x = 0 because

(
N(A)⊕N(B)

)
∩
(
R(A) ∩

R(B)
)

= {0}. The proposition is proved.
Let us introduce the restrictions A

E
and B

E
of the operators A and B to the

space E.
Theorem 4.17.

1. The operators A
E

and B
E

map E onto R(A) ∩R(B).
2. The operators A

E
, B

E
: E → R(A) ∩R(B) are one to one.

3. There exist bounded operators A−1
E

, B−1
E

: R(A) ∩R(B) → E.
Proof. Let us prove these assertions for the operator A

E
only. The operator B

E

can be treated in the same way.
1. Since E ⊂ E

B
, Proposition 4.16 and Lemma 4.15 imply that AE ⊂ R(A) ∩

R(B), and AE is a closed subspace in H. Suppose that AE �= R(A) ∩ R(B). This
means that there exists x ∈ R(A) ∩ R(B) such that 〈x,y〉 = 0 for every y ∈ AE.
That is,

〈(λA + B)−1Ax,z〉 = 〈x,A(λA + B)−1z〉 = 0

for all z ∈ R(A) ∩R(B). Thus, due to Proposition 4.16,

〈(λA + B)−1Ax,Bz〉 = 0 for all z ∈ E
A
.(4.7)

Since (λA+ B)−1Ax ∈ E
A
, we can take z = (λA+ B)−1Ax. Then the relation (4.7)

implies that (λA + B)−1Ax ∈ N(B), that is, Ax ∈ AN(B). Consequently (see the
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end of the proof of Proposition 4.16), x = 0, which proves the first assertion of the
theorem.

2. We have to prove that N(A) ∩ E = {0}. Let x ∈ E and Ax = 0. Then
Bx = (λA + B)x ∈ R(A) ∩R(B), that is, Bx ∈ R(A). But x ∈ N(A) = R(A)⊥ and,
consequently, 〈Bx,x〉 = 0. Since B is a positive operator, the last relation implies
that x ∈ N(B). Thus, x ∈ N(A) ∩N(B) = {0}, which proves the second assertion of
the theorem.

3. This assertion is the consequence of parts 1 and 2. The theorem is
proved.

4.3. Solving the cell equation. Now we are in position to find an explicit
representation of solutions to the cell equation (4.1). With a new unknown function
ζ = Jtu, the problem (4.1) assumes the form

Aζt + Bζ = g, ζ(0) = 0.(4.8)

As it follows from Theorem 4.17, the operator A
E

(A restricted to E) is invertible,
the operator A−1

E
B

E
bounded, and A−1

E
g ∈ E. Therefore, the problem

ζt + A−1
E

B
E
ζ = A−1

E
g, ζ(0) = 0(4.9)

is uniquely solvable on the subspace E, and the solution is of the form

ζ(t) =

∫ t

0

e−(t−s)A−1

E
B

EA−1
E

g(s) ds.(4.10)

Theorem 4.18. Equations (4.8) and (4.9) are equivalent.
Proof. Obviously, if ζ is a solution to (4.9), then ζ satisfies (4.8). If ζ is a solution

to (4.8), then the function η = e−λtζ solves the problem

Aηt + (λA + B)η = e−λtg, η(0) = 0.(4.11)

Since the operator λA + B is nondegenerate for any λ > 0, we can rewrite (4.11) as
follows:

(λA + B)−1Aηt + η = e−λt(λA + B)−1g, η(0) = 0.(4.12)

Due to Proposition 4.12, g ∈ R(A), and, hence η(t) must belong to E
A

for all t.
Therefore, ζ(t) ∈ E

A
for all t. On the other hand, (4.8) can be rewritten as follows:

(λA + B)ζt − Bζt + λBζ = λg.

That is,

ζt = (λA + B)−1B(ζt − λζ) + λ(λA + B)−1g.

Taking into account that ζ(t) and ζt(t) ∈ E
A

for all t, we establish, using Proposi-
tion 4.16, that ζt(t) ∈ E for all t. Since ζ(0) = 0, we conclude that ζ(t) ∈ E for all t.
Therefore, ζ is a solution of (4.9). The theorem is proved.

Thus, the unique solution of the problem (4.8) is given by (4.10) and the unique
solution u of the problem (4.1) reads as

u(t) = ζt(t) = A−1
E

g(t) −A−1
E

B
E

∫ t

0

e−(t−s)A−1

E
B

EA−1
E

g(s) ds.(4.13)
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5. Homogenized structure.

5.1. Limiting equations. Substitution of the expression for g into (4.13) gives

u(t) = −e−tA−1

E
B

EA−1
E

n0 −A−1
E

akl
∂uk(t)

∂xl
−
∫ t

0

mkl(t− s)
∂uk(s)

∂xl
ds,

(5.1)

Jtu(t) =
(
e−tA−1

E
B

E − I
)
B−1

E
n0 − B−1

E
bkl

∫ t

0

∂uk(s)

∂xl
ds−

∫ t

0

m̃kl(t− s)
∂uk(s)

∂xl
ds,

(5.2)

where

mkl(t) = −A−1
E

B
E
e−tA−1

E
B

E
(
A−1

E
akl − B−1

E
bkl

)
∈ E,

m̃kl(t) = e−tA−1

E
B

E
(
A−1

E
akl − B−1

E
bkl

)
∈ E.

The integration by parts and the formula

d

ds
e−(t−s)A−1

E
B

E = A−1
E

B
E
e−(t−s)A−1

E
B

E

are applied when deriving (5.1) and (5.2). Now we are in position to compute the
principal term ∫

Σ

M t
ijkl

∂uk

∂ξl
dξ̂ = 〈aij ,u〉 + 〈bij ,Jtu〉

appearing in the limiting (homogenized) equation (3.2). Utilizing (5.1) and (5.2) and
computing other terms in (3.2), we obtain the following limiting equation:

(5.3)

∫ T

0

∫
Ω

(
− ρθui

∂φi

∂t
+
(
θPijkl − αijkl

)∂uk

∂xl

∂φi

∂xj

+

∫ t

0

(
θγ−1δijδkl + (1 − θ)Gijkl − βijkl + ωijkl(t− s)

) ∂uk

∂xl
ds

∂φi

∂xj

)
dxdt

=

∫ T

0

∫
Ω

(
ρθfiφi −

(
νij − θp0δij + (1 − θ)G0

ij

) ∂φi

∂xj

)
dxdt +

∫
Ω

ρθu
0 · φ0 dx,

where

θ(x) =

∫
Σ

χdξ̂, ρθ = θρ
F

+ (1 − θ) ρ
S
,

νij = −〈aij , e
−tA−1

E
B
EA−1

E
n0〉 + 〈bij ,

(
e−tA−1

E
B
E − I

)
B−1

E
n0〉,

αijkl = 〈aij ,A−1
E

akl〉,
βijkl = 〈bij ,B−1

E
bkl〉,

ωijkl(t) = −〈aij ,mkl〉 − 〈bij , m̃kl〉.

Let us denote by P , G, and S0 the tensors with components
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P ijkl = θPijkl − αijkl, Gijkl = θγ−1δijδkl + (1 − θ)Gijkl − βijkl,

S0
ij = νij − θp0δij + (1 − θ)G0

ij .

Let us divide the domain Ω into three parts:

Ωf = {x ∈ Ω |x3 > δ}, Ωs = {x ∈ Ω |x3 < 0}, Ωh = {x ∈ Ω | 0 < x3 < δ}.

Let Γ+
δ be the boundary between Ωf and Ωh, Γ−

δ the boundary between Ωs and Ωh.
That is, Ω = Ωf ∪ Γ+

δ ∪ Ωh ∪ Γ−
δ ∪ Ωs. Note that θ(x) = 1 if x ∈ Ωf , θ(x) = 0 if

x ∈ Ωs, and θ is a constant from the interval (0, 1) for x ∈ Ωh. As for αijkl, βijkl, νij ,
and ωijkl, they are constants for x ∈ Ωh and equal to zero if x ∈ Ωf ∪Ωs, so that the
integral identity (5.3) delivers the following equations which should be understood in
the distributional sense:

ρ
F
ut − divPux − γ−1∇divJtu = −∇p0 + ρ

F
f , x ∈ Ωf ,

(5.4)

ρ
S
ut − divJtGux = div G0 + ρ

S
f , x ∈ Ωs,

(5.5)

ρθut − divPux − divJtGux − div

∫ t

0

ω(t− s)ux(s) ds + divS0 = ρθf , x ∈ Ωh.

(5.6)

The natural interfacial boundary conditions at Γ+
δ and Γ−

δ can be derived from the
integral identity (5.3). Equations (5.4) and (5.5) coincide with (2.1) and (2.11), re-
spectively. That is, the governing equations for the pure fractions do not change after
the homogenization, which have been expected. What is new is an integral-differential
equation (5.6) which cannot be reduced to a pure differential equation by differenti-
ating or by a substitution like w = Jtu. The operators involved in the equation have
to be investigated to confirm the parabolic type of its principal part.

5.2. Investigation of P and G. It is not difficult to verify that the ten-
sors P and G have the symmetry properties mentioned in Remark 2.2. Therefore,
P ijklZijZkl = 0 and GijklZijZkl = 0 for every skew symmetric matrix Z. The main
objective of this subsection is to prove the strong positiveness of the tensor P and the
nonnegativeness of G on the space of symmetric matrices. The null-space of G will
be also described.

Proposition 5.19. For every second-rank tensor Z, the following is valid:

P ijklZijZkl � 0, GijklZijZkl � 0.

Proof. Let us prove the assertion for P . Denote z = aijZij . Due to Proposi-
tion 4.12, z ∈ R(A)∩R(B) and, as it follows from Theorem 4.17, there exists a unique
y ∈ E such that A

E
y = z. This means that∫

Σ

χPijkl
∂yi
∂ξj

∂vk
∂ξl

dξ̂ = 〈z,v〉 =

∫
Σ

χPijklZij
∂vk
∂ξl

dξ̂(5.7)

for all v ∈ H. On the other hand, the definition yields

αijklZijZkl = 〈aijZij ,A−1
E

aklZkl〉 = 〈z,A−1
E

z〉 = 〈A
E
y,y〉.
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From the last relation and (5.7) with v = y, we obtain

(5.8)

P ijklZijZkl = θ PijklZijZkl − 〈A
E
y,y〉 =

∫
Σ

(
χPijklZijZkl − χPijkl

∂yi
∂ξj

∂yk
∂ξl

)
dξ̂

=

∫
Σ

χPijkl

(
Zij −

∂yi
∂ξj

)(
Zkl −

∂yk
∂ξl

)
dξ̂.

The right-hand side of the last relation is clearly positive and the required assertion
is proved for the tensor P . Positiveness of the tensor G can be verified in the same
way.

The next theorem states the strong positiveness of the tensor P .
Theorem 5.20. There exists a positive constant C such that

P ijklZijZkl � C |Z|2

for every symmetric second-rank tensor Z. Here, |Z|2 = ZijZij.
Proof. Assume that the assertion of the theorem is false. Then there exists a

sequence {Zn} such that |Zn| = 1 and P ijklZn
ijZn

kl → 0 as n → ∞. The sequence

{Zn} is compact in R3 × R3 and, therefore, it has a subsequence denoted again
by {Zn}, which converges to a matrix Z0 such that |Z0| = 1. This means that
the corresponding sequences zn and yn, defined as zn = aijZn

ij and yn = A−1
E

zn,

converge in H to z0 and y0, respectively. We use here the notations introduced in
the proof of the previous proposition. Thus, the relation

P ijklZ0
ijZ0

kl = θ PijklZ0
ijZ0

kl − 〈A
E
y0,y0〉 =

∫
Σ

χPijkl

(
Z0

ij −
∂y0

i

∂ξj

)(
Z0

kl −
∂y0

k

∂ξl

)
dξ̂ = 0.

holds due to (5.8). That is,

χPijkl

(
Z0

ij −
∂y0

i

∂ξj

)(
Z0

kl −
∂y0

k

∂ξl

)
= 0 in Σ,

and, consequently, D(y0) = Z0 in Σ
F
. This implies that D(y0 − Z0ξ) = 0 in Σ

F
.

Therefore, y0(ξ) is a linear function of ξ for ξ ∈ Σ
F
. The only linear function satisfying

the periodicity boundary conditions on ∂Σ is a constant, which implies that Z0 = 0.
This is impossible because |Z0| = 1. This contradiction proves the theorem.

Remark that the arguments like those in the proof of Theorem 5.20 do not lead to
a contradiction in the case of the tensor G. The next theorem shows that the tensor
G is degenerated and describes its null-space.

Theorem 5.21. The tensor G is degenerate, and GijklZijZkl = 0 for a symmet-
ric matrix Z if and only if Z11 + Z22 = 0 and Z33 = 0.

Proof. Let us denote z = bijZij . Due to Proposition 4.12 and Theorem 4.17,
z ∈ R(A) ∩R(B), and there exist unique elements yE ∈ E and yR ∈ R(B) such that

ByE = z, ByR = z.(5.9)

It follows that yN = yE − yR ∈ N(B). Besides that, B−1
E

ByE = yE . Therefore,

〈z,B−1
E

z〉 = 〈ByE ,yE 〉 = 〈ByR ,yR + yN 〉 = 〈ByR ,yR〉.
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The second equation in (5.9) implies that∫
Σ

Kijkl(χ)
∂yR

i

∂ξj

∂vk
∂ξl

dξ̂ =

∫
Σ

Kijkl(χ)Zij
∂vk
∂ξl

dξ̂,(5.10)

for all v ∈ H, where

Kijkl(χ) = χγ−1δijδkl + (1 − χ)Gijkl.

As a consequence of this equation, we find

GijklZijZkl = Kijkl(θ)ZijZkl − 〈z,B−1
E

z〉 = Kijkl(θ)ZijZkl − 〈ByR ,yR〉

=

∫
Σ

Kijkl(χ)
(
Zij −

∂yR
i

∂ξj

)(
Zkl −

∂yR

k

∂ξl

)
dξ̂

=

∫
Σ
F

γ−1(trZ − div yR)2 dξ̂ +

∫
Σ
S

Gijkl

(
Zij −Dij(yR)

)(
Zkl −Dkl(yR)

)
dξ̂.

Notice that (5.10) is the Euler–Lagrange equation for the functional

Fz(y) =

∫
Σ

Kijkl(χ)
(
Zij −

∂yi
∂ξj

)(
Zkl −

∂yk
∂ξl

)
dξ̂.

Due to Proposition 4.11 (assertion 4), this functional is strictly convex on R(B) and
yR is its unique minimizer there. That is,

GijklZijZkl = Fz(yR) = min
y∈R(B)

Fz(y).

Thus, GijklZijZkl = 0 if and only if there exists yR ∈ R(B) such that Fz(yR) =
0. It is not difficult to see that Fz(y) = Fz(y + w) for every w ∈ N(B). Since
R(B) ⊕N(B) = H, the existence of yR ∈ R(B) with Fz(yR) = 0 is equivalent to the
existence of a function y ∈ H which satisfies the condition Fz(y) = 0. Due to the
positiveness of the functional Fz, we can conclude that GijklZijZkl = 0 if and only if
there exists y ∈ H such that

div y = trZ as ξ̂ ∈ Σ
F
,(5.11)

D(y) = Z as ξ̂ ∈ Σ
S
.(5.12)

Suppose that both of the last conditions are satisfied. Since functions from H do
not depend on ξ3, (5.12) implies that Z33 = 0. Moreover, due to (5.12), div y = trZ
in Σ

S
. That is, div y = trZ in Σ. Integrating this equality over Σ we find that

trZ = 0 because y is periodic. Thus, we have proved the assertion of the theorem in
one direction (the necessity).

Let us suppose that Z11 + Z22 = 0 and Z33 = 0. In order to complete the proof
of the theorem, we have to prove that there exists a function y ∈ H satisfying (5.11)
and (5.12). Equation (5.12) is easy to solve. Namely, its solution appears as follows:

y(ξ) = Zξ + Qξ + y0, ξ̂ ∈ Σ
S
,

where Q is a skew-symmetric matrix and y0 is a constant which can be dropped
because functions from the space H are defined up to a constant. Let us denote T =
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Z +Q. Since functions from H do not depend on ξ3, we find that Ti3 = 0 (i = 1, 2, 3)

and y3 = T31ξ1 + T32ξ2 for ξ̂ ∈ Σ
S
. We extend y3 to the whole domain Σ in such a

way that it would be a periodic function (assuming equal values on the opposite edges
of Σ).

In order to determine y1 and y2 in Σ
F
, we have to solve the problem

∂y1

∂ξ1
+

∂y2

∂ξ2
= 0, ξ̂ ∈ Σ

F
,

y(ξ̂) = T ξ, ξ̂ ∈ ∂Σ
S
,

y1 and y2 are periodic in Σ.

This problem is clearly solvable, and the theorem is completely proved.
As one can see from (5.6), the tensor G describes elastic stresses in the homoge-

nized continuum. Theorem 5.21 says that the homogenized material has rather strange
properties. Namely, it does not resist to the deformation, if the first invariant and the
component (3,3) of the corresponding strain tensor are equal to zero. In other words,
such deformations do not produce any stresses. The described class of deformations
is sufficiently large. It contains all deformations which do not change volume. The
following assertion is a simple consequence of Theorem 5.21.

Corollary 5.22. If i �= j and k �= l, then Gijkl = 0.
This property of the tensor G yields an interesting conclusion about the passage to

the limit as θ → 0. If we set θ = 0 formally, the elastic structure will occupy the whole
layer Ωh. Therefore, it can seem that the limiting material must be the same as the
original elastic one so that limθ→0 G = G. Nevertheless, it is wrong in general because
the properties of the tensor G stated in Theorem 5.21 and in Corollary 5.22 do not
depend on θ. Thus, if, for instance, the tensor G is not degenerate or G1212 �= 0, then
limθ→0 G �= G. The physical reason is that the elastic structure consists of separate
bristles for each θ > 0, which differs from the bulk material corresponding to θ = 0.

6. Numerical procedures. The formulas for the coefficients P , G, and ω con-
tain the functions akl, bkl, n0, the operators A

E
, B

E
, and their inverse defined in

H = H1
#(Σ)/R. From the mathematical point of view, all these functions and oper-

ators are well defined and completely described. However, numerical implementation
of these formulas requires some effort. The computation of the functions akl, bkl, and
n0 is not difficult if one uses the finite element method. The situation with the oper-
ators A, B is not so trivial, because they must be restricted to the subspace E, which
creates additional problems when using finite elements. Below, we propose numerical
procedures that can be implemented using conventional finite element software.

6.1. Calculation of akl, bkl, and n0. Let us introduce functions σk ∈ H,
k = 1, 2, 3, as solutions of the following problems:∫

Σ

∂σk

∂ξi

∂v

∂ξi
dξ̂ =

∫
Σ

χ
∂v

∂ξk
dξ̂ for all v ∈ H.

These problems can be easily solved applying the finite element method. Note that
σ3 = 0 because functions from the space H do not depend on ξ3. It is not difficult to
see that

aikl = Pkli1σ1 + Pkli2σ2,

bikl = γ−1δklσi −Gkli1σ1 −Gkli2σ2,

ni
0 = −p0σi − G0

i1σ1 − G0
i2σ2
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for i, k, l ∈ {1, 2, 3}. Here, the superscript i denotes the components of the vectors
akl, bkl, and n0.

6.2. Calculation of A−1
E

and B−1
E

. The problem can be formulated as follows:
for every w ∈ R(A) ∩ R(B), find u,v ∈ E such that Au = w and Bv = w. It is
enough to solve this problem for the operator A. The operator B can be treated
similarly. Let us consider the equation

(A + εB) uε = w.(6.1)

As follows from Proposition 4.13, the operator A + εB is invertible in H for every
ε > 0. Thus, there exists a unique uε ∈ H that satisfies (6.1). Moreover, uε ∈ E
for every ε > 0 by definition of the subspace E. Equation (6.1) can be easily solved
numerically with finite elements. Let us show that uε is an approximation of a function
u ∈ E that satisfies the equation Au = w. Since uε ∈ E, we can rewrite (6.1) as
(A

E
+ εB

E
) uε = w. Consequently,

uε = A−1
E

(w − εB
E
uε).(6.2)

Due to Theorem 4.17, the operator A−1
E

: R(A) ∩ R(B) → E is bounded. Therefore,
there exists an independent of ε constant C such that

‖uε‖ � C(1 + ε‖uε‖).

This means that the sequence {uε}ε is weakly compact in H. That is, there exist
u ∈ H and a subsequence {uε}ε such that uε → u weakly in H as ε → 0. Since E
is weakly closed, u ∈ E. The passage to the limit in (6.1) yields the desired relation
Au = w. Moreover, the whole sequence {uε}ε converges to u in H. In reality,
uε − u = −εA−1

E
B

E
uε, which implies

‖uε − u‖ � Cε.(6.3)

Thus, the order of the approximation is obtained.

6.3. Calculation of e−tA−1

E
B

E A−1
E

B
E
. Problem: For every w ∈ E and all

t > 0, find u(t) = e−tA−1

E
B
EA−1

E
B

E
w. Let us consider the following equation:

ut + A−1
E

B
E
u = 0, u(0) = A−1

E
B

E
w.(6.4)

It is obvious that u(t) = e−tA−1

E
B
EA−1

E
B

E
w ∈ E is a unique solution of this equation

(see section 4.3). Let us construct an approximate solution to problem (6.4) using the
semidiscretization method. Fix t and introduce τ = t/N , N ∈ N. Define functions
un, n = 1, 2, . . . , N , as solutions of the following problem:

(A + τ B)un = Aun−1, u0 = A−1
E

B
E
w.(6.5)

That is,

un = (A + τ B)−1Aun−1.

Note that un ∈ E for all n ≥ 0 because u0 ∈ E and un−1 ∈ E implies un ∈ E for
any n > 0. Therefore, the operators A and B can be replaced by A

E
and B

E
in (6.5).
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To estimate uN − u(t) we prove first that there exists a constant C such that
‖un‖ � C for all n. Indeed,

un = u0 − τA−1
E

B
E

n∑
k=1

uk,

which implies due to the boundness of A−1
E

and B−1
E

(see Theorem 4.17), the existence
of a constant C such that

‖un‖ � ‖u0‖ + C τ

n∑
k=1

‖uk‖.

The Gronwall inequality now implies the required estimate. The boundness of ‖un‖
and (6.5) provide the following estimate:

‖un − un−1‖ � Cτ ‖A−1
E

B
E
‖‖un‖ � Cτ.(6.6)

Let us introduce two time interpolations of {un},

ûτ (s) = un

(
1 − n +

s

τ

)
+ un−1

(
n− s

τ

)
as s ∈ [(n− 1)τ, nτ ],

ūτ (s) = un as s ∈ ((n− 1)τ, nτ ].

Due to (6.6),

∫ t

0

‖ûτ (s) − ūτ (s)‖ ds =

N∑
n=1

‖un − un−1‖
∫ nτ

(n−1)τ

(
n− s

τ

)
ds

=
τ

2

N∑
n=1

‖un − un−1‖ � Cτ.

Moreover, we have

∂ûτ

∂t
+ A−1

E
B

E
ūτ = 0.

Therefore,

‖uN − u(t)‖ = ‖ûτ (t) − u(t)‖ � ‖A−1
E

B
E
‖
∫ t

0

‖ūτ (s) − u(s)‖ ds

� C

∫ t

0

(
‖ûτ (s) − u(s)‖ + ‖ûτ (s) − ūτ (s)‖

)
ds � C

(
τ +

∫ t

0

‖ûτ (s) − u(s)‖ ds
)
.

Finally, the Gronwall inequality yields

‖uN − u(t)‖ � Cτ.

6.4. Numerics. In this section we give some examples which demonstrate prop-
erties of the homogenized continuum for various values of θ. We consider the system
consisting of the water and an isotropic elastic material (polymer) with the following
properties:

Pux = λf I divu + 2µf D(u), Gux = λs I divu + 2µs D(u),

λf = 1.e−3, µf = 1.e−3,

λs = 2.777778e + 9, µs = 4.166667e + 9.



HOMOGENIZATION OF FLUID/ELASTIC INTERFACES 1003

Fig. 3. Structural cell Σ = [0, 1] × [0, 1].
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Fig. 4. Dependence of |P − P |/|P | (curve a) and |P |/|P | (curve b) on θ.

The constant which characterizes compressibility of the water is γ = 4.597696e − 10.
We take the structural cell of the form shown in Figure 3.

First, we investigate properties of the tensor P . The graphics in Figure 4 present

the dependence of |P − P |/|P | and |P |/|P | on θ, where |P | =
(∑

ijkl PijklPijkl

)1/2
.

As one can see, limθ→1 P = P and limθ→0 P = 0.

0.7

0.5
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0.1

0

0.9
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c

0.2 0.4 0.6 0.8 1 θ

Fig. 5. Dependence of |G−G|/|G| (curve a), |G−Q|/|G| (curve b), and |G− θR|/|G| (curve
c) on θ.

The dependence of the tensor G on θ is more complex. Let us introduce two
tensors R and Q having the following components:

Rijkl = γ−1δijδkl, Qijkl =

{
Gijkl if i = j and k = l,

0 otherwise.

The curves in Figure 5 show the dependence of |G−G|/|G|, |G− θR|/|G| and |G−
Q|/|G| on θ. One can see that G does not tend to G as θ → 0 (see curve a). This
fact was already noted in section 5.2 after Corollary 5.22. It is not surprising that
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Fig. 6. Graphics of the function |ω(t)|/|G| for various values of θ. The time unit is 1 second.

limθ→1 G �= 0. It can be explained by the presence of the tensor R in the definition
of G. Really, curve c in Figure 5 shows that limθ→1(G−R) = 0. Curve b shows that
limθ→0 G = Q. This means that, in the limit case as θ → 0 (the elastic continuum
occupies the whole domain Ωh), the tensor G can be obtained from the tensor G by
vanishing all of the “nondiagonal” components.

Thus, the limits of (5.6) as θ → 0 and θ → 1 look as follows:

ρ
S
ut − divJtQux − div

∫ t

0

ω(t− s)ux(s) ds = ρ
S
f , (θ → 0),(6.7)

ρ
F
ut − divPux − γ−1 ∇div u − div

∫ t

0

ω(t− s)ux(s) ds = ρ
F
f , (θ → 1).(6.8)

We take here the initial data being equal to zero.
In Figure 6, the graphs of the function |ω(t)|/|G| are presented for several values

of θ. The function |ω(t)| decreases very rapidly. In fact, |ω(t)|/|G| vanishes practically
at the time t ∼ 10−10 s. Thus, the memory term in (5.6) is very small and can be
dropped in applications, if high frequency oscillations are not present.

7. Conclusions. Homogenization of a fine elastic structure immersed in a vis-
cous weakly compressible fluid yields a continuum that possesses very interesting and
rather unexpected properties. Equation (5.6) describing the behavior of the resulting
continuum includes three basic terms. Two of them containing the tensors P and
G are related to stresses. The third integral-term represents a memory effect that
is responsible for viscoelastic properties of the resulting material. The presence of
such a memory is not surprising because similar results were already obtained by
other authors (see, for instance, [13]). More interesting from the mathematical and
mechanical viewpoints is the investigation of the above mentioned stress terms. The
term containing the tensor P describes a viscous damping and originates from the
fluid part of the structure. Theorem 5.20 states the strict positiveness of P , which
implies the ellipticity of the corresponding differential operator. The term containing
the tensor G represents elastic stresses. The tensor G is degenerate, its kernel is de-
scribed in Theorem 5.21. The theorem implies that volume conserving deformations
(shear deformations in particular) do not produce elastic stresses.

All of the coefficients involved in the homogenized equation are found in an explicit
form. Although expressions representing them are rather complex, the coefficients can
be computed numerically using the algorithms given in section 6. The numerical treat-
ment delivers another interesting properties of the homogenized model. It is stated
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numerically that the memory effect is very weak. The system “forgets” the current
history in a very short time. Therefore, the memory term can be dropped in most
of the applications. Another interesting question is the dependence of properties of
the homogenized continuum on the parameter θ which represents the volume fracture
of the fluid so that the pure fluid corresponds to θ = 1. As was expected, the ho-
mogenized equations coincide in the limit (θ → 1) with the ones being used for the
description of the original fluid. In the opposite limiting case (θ → 0) the homoge-
nized equations differ from the model of the original elastic continuum. In particular,
the limiting elastic continuum can be nonisotropic even though the original material
is isotropic. Thus, the limiting continuum inherits certain geometric properties of
the fine elastic structure even if the fluid vanishes and the solid occupies the whole
volume.
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MODELING CALCIUM DYNAMICS IN DENDRITIC SPINES∗
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Abstract. Dendritic spines are microstructures located on dendrites of neurons, where calcium
can be compartmentalized. They are usually the postsynaptic parts of synapses and may contain
anywhere from a few up to thousands of calcium ions at a time. Initiated by an action potential, a
back-propagating action potential, or a synaptic stimulation, calcium ions enter spines and are known
to bring about their fast contractions (twitching), which in turn affect calcium dynamics. In this
paper, we propose a coarse-grained reaction-diffusion (RD) model of a Langevin simulation of calcium
dynamics with twitching and relate the biochemical changes induced by calcium to structural changes
occurring at the spine level. The RD equations model the contraction of proteins as chemical events
and serve to describe how changes in spine structure affect calcium signaling. Calcium ions induce
contraction of actin-myosin-type proteins and produce a flow of the cytoplasmic fluid in the direction
of the dendritic shaft, thus speeding up the time course of calcium dynamics in the spine, relative
to pure diffusion. Experimental and simulation results reveal two time periods in spine calcium
dynamics. Simulations [D. Holcman, Z. Schuss, and E. Korkotian, Biophysical Journal, 87 (2004),
pp. 81–91] show that in the first period, calcium motion is mainly driven by the hydrodynamics,
while in the second period it is diffusion. The coarse-grained RD model also gives this result, and
the analysis reveals how the two time constants depend on spine geometry. The model’s prediction,
that there are not two time periods in the diffusion of inert molecules in the spine, has been verified
experimentally.
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1. Dendritic spines and their function. Dendritic spines are microstruc-
tures, about 1 µm across, made of a head and connected by a cylindrical neck to
the dendrite. Although discovered more than 100 years ago by Ramón y Cajal [1]
on dendrites of most neurons, including cortical pyramidal neurons and cerebellar
Purkinje cells [2], their function is still unclear. The current consensus is that the
main function of dendritic spines is to compartmentalize calcium [3]. Regulated by
synaptic activity, spines are constantly moving and changing shape [4]. The 100,000
to 300,000 spines on a single spiny neuron drastically increase the active surface of
a dendrite [5], [6], and more than 90% of excitatory synapses terminate on dendritic
spines. Spines are considered to be basic units of dendritic integration [7], [8], though
their role and function are still unclear. There is evidence that morphological changes
in spines are associated with synaptic plasticity [4], that is, with the structural and
biochemical changes in spines, dendrites, and neuronal synapses.
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A debate is still raging about the specific function of dendritic spines. In par-
ticular, two main views prevail [9], [10]. The first maintains that a dendritic spine
constitutes a privileged location for calcium restriction, and consequently, it is a place
where synaptic plasticity can be induced. Calcium in dendritic spines triggers changes,
such as long-term potentiation (LTP) and long-term depression (LTD) [11], which re-
sult in a permanent modification of the synaptic weight. Indeed, calcium dynamics,
defined as the rise and duration of concentration inside a dendritic spine, is believed
to be determinant for the nature of spine synaptic plasticity. These processes con-
stitute the implementation of some of the memory in the brain at the cellular and
subcellular levels. The second view maintains that by changing the shape of the spine,
the electrical characteristics of the spine change, thereby modulating the voltage and
the depolarization of the dendrite. This way the spines participate in the dendritic
computation process.

Recently, it has been observed [12] that after calcium ions flow in, a dendritic spine
can change shape in a few hundreds milliseconds. This fast change of shape decreases
the volume of the spine head. Spine motility was proposed by Blomberg, Cohen, and
Siekevitz [13] and the fast twitching movement of the spine was anticipated by Crick
in [14], where questions were asked about the rules “governing the change of shape
of the spine and, in particular, the neck of the spine” and also on “how these rules
are implemented in molecular terms.” Many models of calcium dynamics in dendritic
spines have been proposed in the literature [5], [7], [15], [16], [17], [18], [19]; however,
calcium dynamics was not considered in conjunction with Crick’s questions and with
the observations of [12].

When the spine shape is described by a spherical head connected to a cylindrical
neck, several classes of shapes can be distinguished, according to three independent
geometrical parameters (see Figure 1). According to this representation, the three
parameters are the radius of the head (R), the length of the neck (l), and its diameter
(d). There are at most eight possible classes of spines, according to the relative sizes
(large or small) of the three parameters. It is not clear yet what are the rules, if
any, of the distribution of the different classes in a given neuron. Spines may appear
isolated or in clusters on a dendrite [4]. The number of spines and their distribution
are regulated by neuronal activity, because increased activity tends to increase the
production of spines, whereas light deprivation tends to reduce the number of spines.
However, the details remain unclear.

Dendritic spines can change shape on various time scales. On the time scale
of minutes, synaptic stimulation can generate new spines. LTP experiments in the
dentate gyrus are correlated with a change in the diameter of the spine neck. A
single spine can split into two, and transitions between filopodia (spines with no
head) and the standard form have been observed experimentally [4]. Modulation
of sensory inputs, such as monocular deprivation in specific periods of development,
modulates spine motility [20], [21]. Spines are less motile in adult neurons than in
neurons of juvenile animals. Changes of shape on the time scale of minutes are due to
actin (de-)polymerization and can be induced by a variation in the concentration of
a neurotransmitter, such as glutamate [12], [23]. Dendritic spines have been observed
to move on a very short time scale. For example, vibrations along the spine axis,
which are independent of the calcium concentration, occur on the time scale of tens
of milliseconds [12].

Spine movements on the time scale of seconds have been observed directly by
recent imaging techniques, such as confocal microscopy or two-photon microscopy. It
was reported that spines are constantly changing shape [18], [24]. This motility is also
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Fig. 1. Schematic description of a dendritic spine. A dendritic spine is modelled as a spherical
head connected to the dendrite by a cylindrical neck. The surface of the head contains a postsynaptic
density, where various types of protein channels, such as the glutamate receptors NMDA and AMPA,
are anchored and conduct ions into the spine when opened. A spine contains signalling molecules,
such as calmodulin; cytoskeletal proteins, such as actin-myosin; and organelles, such as smooth
endoplasmic reticulum. Pumps are located on the side and channels at the top of the spine head.
Actin-myosin sites are represented schematically, attached to the actin network, so that a contraction
of a single protein affects the entire spine. (Figure reprinted from [D. Holcman, Z. Schuss, and E.
Korkotion, Calcium dynamics in dendritic spines and spine motility, Biophysical Journal, 87 (2004),
pp. 81–91] with permission.

an actin-dependent process. The postsynaptic current can be modified by affecting
the spine geometry, thus modulating the synapse. Changes in spine shape can then
affect the efficacy of calcium dynamics. Specifically, it was reported in [18] that
changing the spine neck affects the time course of calcium dynamics: High calcium
concentration is maintained for a shorter period of time when the neck is shorter. Thus
dendritic spines with shorter necks are less efficient in compartmentalizing calcium.
In summary, spines undergo a constant readjustment, which can be viewed as an
intrinsic spine property [20], and motility possibly contributes to synaptic plasticity.

It has recently been observed [12] that a dendritic spine can change shape quickly,
on the scale of a few hundreds of milliseconds, after calcium ions flow into the spine.
Transient calcium causes the spine to twitch (see [12]). This quick change of shape
consists in head contractions oriented on the average in the direction of the dendritic
shaft. This contraction can be induced by agonists, such as a neurotransmitter, or by
a back-propagating action potential.

Evidence of high concentration of actin and myosin in spines was reported in
[25], where proteins were observed to form clusters inside the spine head, near the
channels. These clusters are called the postsynaptic density (PSD). More uniform dis-
tributions of clusters of myosin molecules were also observed. As in muscle cells, high
concentrations of actin molecules indicate that rapid movement can be ascribed to the
contraction of these molecules, because blocking them prevents all shape fluctuations
[12].
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It is remarkable that the description of the diffusive motion of ions in spines can
be considered in the intermediate regime between continuum and discrete. Due to
its specific geometry, the dendritic spine can be studied as a separate unit from the
remaining part of the dendrite. Chemical reactions in the spine involve only a small
number of molecules (hundreds), which explains the relatively large fluctuations in
the reactions. These may lead to synaptic plasticity. This fact also reinforces the idea
that the spine has a major role in converting a random signal, carried by the motion
of ions or secondary messengers, into a more deterministic, less fluctuating, and more
stable variable, represented by the synaptic weight.

2. Introduction. Despite the rapid development of high-quality technology, to-
day’s biophysical analysis of calcium in dendritic spines is limited by the resolution
of the instruments. Thus models become useful tools for the analysis and prediction
of spine activity, based on the evidence of molecular chemical reactions.

2.1. Modeling the dendritic spine dynamics. We propose here an answer
to Crick’s question about the cause and effect of the twitching and its role in the
functioning of the spine as a conductor of calcium. Specifically, we attribute the
twitching motion to the contraction of actin-myosin-type proteins, denoted AM, when
they bind calcium, and include its effect on the dynamics of the calcium ions in the
spine. This is the first quantitative theoretical and mathematical treatment of the
twitching and its role in calcium dynamics in the spine. In [26] we constructed a
Langevin dynamics simulation of calcium dynamics in the spine, and here we propose
a continuum model of the same.

The calmodulin proteins (CaM) can bind up to four calcium ions to form the
complex CaMCa4. This complex starts other important chemical reactions, involving,
for example, calmodulin-protein kinase-II. This kinase plays a crucial role in LTP
induction [16]. When a sufficiently large number of CaMCa4 complexes are formed, it
produces LTP changes and/or induces dephosphorylation and (de-)polymerizations.
It can also affect certain biophysical properties of certain channels, such as N-methyl-
D-aspartale (NMDA) receptors. More generally, this type of reaction is known to
induce modifications in the spine shape and biophysical changes at various levels, such
as synaptic modifications, and changes in the number of channels (see [17]): When
channel subunits are modified, the selectivity and/or ionic conductivity is changed,
affecting the number of ions that enter the spine. When the number of receptors
increases, e.g., of AMPA receptors, the spine’s depolarization increases, resulting in
a higher probability of opening of NMDA receptors and thus increasing the total
number of calcium ions entering the spine.

We model the spine as a machine powered by the calcium it conducts, and we
describe here the induced movement. Proteins involved in the calcium conduction
process are found inside the dendritic spine. Their spatial distribution was reported
in [25]. As mentioned above, relevant proteins involved in spine motility include actin,
which has been shown in [12], [20], [24] to be directly involved in the biophysical
process underlying fast spine motility. We maintain here that AM sites are driving
the motility events. It was shown in [25] that dendritic spines contain a network of
myosin molecules. The spatial distribution of myosin molecule in the spine has been
observed to be uniform and to be sparse inside the PSD.

From a biological point of view, it is of primary interest to answer two related
questions about calcium dynamics in dendritic spines, after their channels open: (1)
How much calcium is there inside the spine? (2) How long does a given quantity of
calcium stay inside the spine? Obviously, the answers depend on the geometry of the
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cell. In this context, the aim of our model is to reproduce the time course of events,
such as calcium dynamics, which determine the transition between depression and
facilitation, or long- and short-term depression (see [28]). We propose that calcium
ions set the machine in motion by initiating the contraction of AM as they bind at
active sites [26]. We elucidate the cause and effect of twitching in the functioning of the
spine by adding up the local contractions of the separate calcium-saturated proteins
to achieve a global contraction effect. The contraction of the spine head induces a
flow field of the cytoplasmic fluid, which in turn pushes the ions, thus speeding up
their movement in the spine.

2.2. Biological consequences. We reported and discussed the biological con-
sequences of a Langevin simulation, designed at a molecular level, in our first paper
[26]. The purpose of the simulation was to investigate at a molecular level biochemi-
cal events induced by calcium and thus to explain structural changes occurring at the
spine level. The main biological conclusion of [26] concerns the quantification of the
effect of the hydrodynamical push on calcium dynamics in the spine. In particular,
we showed not only that the push effect is created by the calcium ions, but that the
push targets the same calcium ions towards the dendrite and in the direction of the
center of the spine, where the spine apparatus and other relevant proteins are located.
The flow due to the push does not allow the calcium ions to stay inside the spine head
and to return to the head once they are inside the neck. The drift increases the ef-
ficiency of calcium conduction from the synapse to the dendrite and speeds up the
calcium clearance of the spine. The simulations of [26] show that in the absence of the
drift effect, the proportion of calcium ions conducted to the dendrite is two to three
times smaller than in its presence. This led to the prediction that there are not two
time periods in the diffusion of inert dye molecules in the spine, as has been recently
verified experimentally [27].

We propose here a coarse-grained description of the coupling between changes in
spine structure and calcium dynamics. A set of nonlinear reaction-diffusion equations
is derived from the Langevin description. The analysis of the model reveals the time
scale of the hydrodynamical effect and leads to the calculation of the time constant
of the first concentration decay period. Consequently the push effect offers a possible
reinterpretation of the results of [19], about the double exponential decay of the cal-
cium concentration inside the spine. The first decay period was reported in [19] to be
the consequence of buffered calcium diffusion from spine to dendrite and the effect of
calcium pumps in the spine head. According to [19], the second period starts when
near equilibrium is achieved between the spine’s and the dendrite’s calcium concen-
trations. We show in this paper that the two time periods of calcium concentration
decay are recovered, under specific conditions, when the hydrodynamical push effect
is included. We observe that the decay, corresponding to a predominantly hydrody-
namical effect, starts immediately after the ions enter the spine head. This decay
is rapid and its duration is random. It ends when hardly any saturated contractive
molecules are left. The ionic motion in the second period is mainly pure diffusion and
pump extrusion. An analytic expression for the fast decay rate is derived from the
model in terms of the average hydrodynamical flow velocity. The main biological re-
sult of our model is that the rapid spine movement produces fast clearance of calcium
from the dendritic spine and directs calcium ions to a specific location between the
neck and the dendritic shaft, preventing the pumping out of the majority of ions. As
mentioned above, the model also predicts that there are not two time periods in the
diffusion of inert dye molecules in the spine, which means that diffusion alone cannot
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be responsible for the double exponential decay.

2.3. The need of a molecular approach. The models of calcium diffusion in
dendritic spines used, e.g., in [5], [6], [7], [15], [16], [17], [18], [19], [22] are based on
a phenomenological approach that uses the coupling between the diffusion equation
and the ambient chemical reactions. They are based on compartmentalization of the
spine into several subunits, where the calcium diffusion process is discretized, while
ordinary differential equations describe the chemical bonding of calcium to buffer
protein molecules.

In this paper, we present a mathematical model of calcium dynamics in den-
dritic spines, based on molecular-level considerations. Actually, we propose a unified
approach to modeling calcium dynamics inside microstructures, including dendritic
spines, that postulates Brownian motion of the calcium ions in the cell. The random-
ness of the ionic motion becomes significant when the number of ions in the cell is
small. At the molecular level, all phenomena, beginning with the motion of a single
ion and up to the dynamics of the entire ionic population, are stochastic processes.
These include the random walk of an ion, forming or breaking bonds with proteins by
an individual ion. On the entire calcium population level, they include the dynamics
of the number of bound proteins, which depends on the trajectory of each ion, and
the distribution of the protein molecules.

Our model begins with the description of the dynamics of individual calcium ions
in terms of a system of Langevin equations. The collective effect inside the spine of the
entire calcium population, due to the interaction between the calcium and the proteins,
is captured in our model by a nonlinear drift term that couples the hydrodynamical
flow field to the number of ions bound to certain proteins. This produces a new effect
that has to be included in the diffusion equation. The distribution of proteins inside
the cell becomes an important part of the model.

2.4. Biological simplifications of the model. We make several simplifica-
tions in constructing the model of the spine. Thus, we neglect other types of organelles
that are also involved in calcium dynamics: the spine apparatus, mitochondria, and
other types of proteins. We have included a low concentration (.5–1 µM) of binding
molecules such as calcineurin. However, at this concentration these molecules cannot
capture fully the role played by the buffer activity. The present model ignores the
effect of a large buffer regulation, but we keep in mind that it can affect the calcium
dynamics.

Furthermore, it is known that calcium stores in the spine release calcium ions
when prompted by external calcium ions, under specific conditions. We neglect this
effect here to avoid complicating our model. We also restrict the biochemical structure
of the spine by singling out the CaM, AM, calcineurin, and one type of calcium pump.
All these proteins constrain calcium flow in the dendritic spine by binding calcium ions
for random periods of time. The technical assumption in our model is that the AM
proteins contract at a fixed rate as long as they keep four calcium ions bound. Thus
contraction begins and ends at random times. Since we are interested in the dynamics
of calcium, when the ions are already inside the spine, we avoid the computation of
the transient time starting from the action potential and the opening of the voltage-
sensitive calcium channels.

The specific geometry of the spine needs to be considered in order to evaluate the
time evolution of calcium concentration in the spine. In the present simplified model,
the spine geometry has been described by three parameters: the length and diameter
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of the spine neck and the radius of the spine head (see Figure 1), smoothing out the
local irregularities of the boundary.

Another geometric feature is the distribution S0(x) of calcium-dependent molecules
that contract when they bind enough calcium. Two extreme possible distributions of
proteins have been considered in the simulation, reported in [26]: a uniform distribu-
tion inside the head or an accumulation at the PSD area and the simulations show
that the calcium dynamics depend on the distributions of the proteins. In reality,
a mixture of the two distributions is observed in [26], but we will ignore it in the
derivation of the decay rate.

3. A simplified physical model of the spine. The two main components of
the dendritic spine in our model are a spherical head and a cylindrical neck, which
connects it to the dendritic shaft. On top of the spine head, opposite the neck, there
are protein channels that conduct calcium into the spine head. These channels can
be of two types: NMDA channels (opened by the glutamate neurotransmitter) and
calcium channels, which are voltage sensitive. There are only 2–5 NMDA channels
open at a time. For the purpose of this model, we use only the location of these
channels as the initial positions for the ions. Our model concerns times after the
calcium ions have entered the spine head. A schematic figure of the spine is presented
in Figure 1. Active pumps are located on the lower half of the spine head. Their
role is to conduct calcium out of the spine head. Pumping is an active process that
requires energy, provided by the adenosine tri phosphate (ATP) molecules, whereas
when calcium enters through the channels, no extra molecular energy is needed. We
assume that there is only one ion at a time inside a pump and, due to the active
structure, it requires a certain time to be pumped out. This time can be assumed
random or deterministic. The latter case is valid when the exit time distribution
is concentrated around the mean value. In a coarse-grained continuum model the
pumping time is neglected, so the part of the boundary occupied by pumps becomes
an absorbing boundary.

The many organelles inside the spine head do not affect the nature of the random
motion of ions, mainly due to their large size relative to that of ions. They only
restrict the volume available for free diffusion of calcium. Neglecting their presence
effectively frees the interior of the spine head from obstacles to ionic movement. This
can be compensated for by decreasing the radius of the head. The incompressible
cytoplasmic fluid that fills out the spine and its flow are a part of our model.

3.1. A schematic model of spine twitching. Once calcium ions enter the
spine they reach AM binding sites by diffusion and can bind there. When four cal-
cium ions bind to a single AM protein, a local contraction of the protein occurs. All
the local contractions at a given time produce a global contraction and induce a hydro-
dynamical movement of the cytoplasmic fluid. Calcium ions can reach the dendritic
shaft through the spine neck and be totally absorbed there, or they can be pumped
out of the spine by active pumps. Our model allows us to calculate the fraction of
ions that are pumped out, relative to those that reach the dendrite. At a molecular
level, in a phenomenological approach, a contraction produced by AM occurs with a
characteristic time tc = 1 ms, say, and the length fluctuates about lc = 0.02 µm [2,
p. 681], depending only on the type of protein. In a homogenization approximation of
the spine head, the result of this local contraction produces a fixed average velocity
of the cytoplasmic fluid of the order vQ = lc/tc = 0.02 µm/ms.

Since it is known that there are only a few AM binding sites (less than a hun-
dred [25]), each binding event can modify the dynamics significantly. It is important
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therefore to keep track of the number of bound ions at any given time. Both the dis-
tribution of AM binding sites and the binding times are random. Consequently, the
twitching of the spine head is also random. This, in turn, implies that the evolution
of calcium concentration inside the spine is random. In a continuum description of
this process, only average motion is observed, so the random realizations that can be
observed in molecular simulations are smoothed out.

3.2. Final model simplifications. We simplify the model further by neglecting
the long range ion-ion electrostatic interactions, as well as the ion-protein interactions.
At a molecular level, when 500 calcium ions enter the dendritic spine, they create a
difference of potential of about 16 mV (compared to −70 mV of the cell potential),
so there are enough negative ions inside the spine to electrostatically neutralize the
calcium ions. Specifically, the cooperative effect of the ions creates dipoles that screen
the long-range interaction forces (r−2) to short-range interactions. The shield around
each ion is a basis for an approximation that neglects the electrostatic forces in order
to study the dynamics of calcium ions inside the spine. In this approximation the
trajectories of the calcium ions are independent. The ion-water interaction is sim-
plified into hydrodynamical drag and a zero mean fluctuating force that describes
the randomness of the water-ion collisions [29]. The ion-protein interaction near a
binding site, where a high electrical field targets the ions toward the active center of
a binding site, is represented by a short range parabolic potential well. This allows
us to include the backward binding reaction constant in the model. The effect of the
forward constant is discussed below.

Each time an ion nears an active neighborhood of a protein, we assume that the
electrostatic forces direct the ion so that a bond is formed with a given probability,
depending on the forward rate constant. The backward reaction rate is the reciprocal
of the mean time an ion stays bound. A binding site that holds an ion cannot bind
additional ions before the bound ion escapes. We say that a protein is saturated if
each of the four binding sites contains a calcium ion at the same time.

The chemical kinetics of the binding and unbinding of calcium to and from the
substrate proteins (CaM, AM, calcineurin) in the spine cannot be described by the
usual Arrhenius kinetics because of the small number of the reactant particles, the
large fluctuations in the number of bound ions, and the hydrodynamic effect on the
binding and unbinding reactions. We describe the forward and backward reactions
on a molecular level in section 5 and then coarse-grain the equations in section 6.
We consider in our model only two classes of binding proteins: one that includes
CaM and AM (that is, proteins that can bind 4 calcium ions) and a second that
includes calcineurin, which can bind only one calcium ion at a time. The simplified
model described above was used for a molecular simulation of calcium dynamics in a
dendritic spine in [26].

4. The mathematical model. The mathematical model of the simplified phys-
ical model of the dendritic spine has several components. First, the domain Ωt, avail-
able for the motion of an ion at time t, has quite a complicated geometry, due to the
presence of many obstacles, as mentioned in section 3, and it may change in time.
Actually, this change is one of the main phenomena captured by our model. Second,
when Ωt changes, a flow of the cytoplasmic fluid in the dendritic spine ensues, which
in turn gives rise to an hydrodynamical drag force on the ions inside the dendritic
spine. This drag is a frictional force proportional to the relative velocity between
the ions and the fluid. This force is not neglected in our simplified model. Third,
the mathematical expression of these assumptions is a Langevin model of the ionic



1014 D. HOLCMAN AND Z. SCHUSS

motion. That is, the motion is described by a system of identical uncoupled Langevin
equations driven by independent Brownian motions.

4.1. Mathematical simplifications. To simplify the analysis and simulation
of the spine, we make several drastic simplifications. The quality of the simplified
model is evaluated by its ability to capture the main phenomenology observed in
experiment and by its ability to predict the fluid flow and the time dependence of the
measured calcium concentration inside the dendritic spine.

The first simplification is that we consider the ions to be point charges, that is,
we neglect Lennard–Jones repulsion. The second simplification is that we neglect
electrostatic ion-ion interactions. This means that we can neglect all ionic species ex-
cept the calcium, whose concentration needs to be predicted. We replace electrostatic
interactions by interactions with a fixed mean field (that is, with a field not computed
from Poisson’s equation). Thus, we assume that the calcium ions move in an effective
electrostatic field created by their interactions with each other and with other ions
and by the permanent charge distribution on the CaM, calcineurin proteins, and AM
complex. The behavior of this potential is assumed, rather than computed. We also
neglect the change in the shape of the potential when a calcium ion binds to a protein
molecule. The third simplification is that we neglect the impenetrable obstacles to
the ionic motion posed by the presence of the proteins. Thus, we assume that the
ionic motion inside the dendritic spine is geometrically unrestricted. Therefore, the
domain Ωt is the interior of the dendritic spine.

4.2. The Langevin equations. For a dendritic spine containing N ions of
different species (e.g., Ca++, Na+, Cl−, and so on), xi(t) is the displacement vector
of the ith ion, mi is its mass, and zi is its valence. x̃ = (x1,x2, . . . ,xN ) is the
coordinate of the N ions in configuration space. We assume that a flow field V (x, t)
is given (see description below) and that ions interact with a fixed potential of the
charges on the proteins, U0(x), and with the variable potential of all other ions.
The variable potential consists of both the electrostatic ion-ion interaction potential,
Uii(x̃), and the potential of Lennard–Jones-type repulsions, ULJ(x̃) (that represents
the finite size of the ions). The force per unit mass on the ith ion is

F i(x̃) = −zie∇xi

[
U0(xi) + Uii(x̃)

]
−∇xi

ULJ(x̃).

The dynamics of the ith ion is given by the Langevin equation

ẍi + γi [ẋi − V (xi, t)] + F i(x̃) =
√

2εiγi ẇi,(4.1)

where e is the electronic charge. Here εi = kBT/mi, T is the temperature, kB is
the Boltzmann constant, γi = 6πaiηi is the dynamical viscosity (where ηi is the
viscosity coefficient per unit mass), and ai is the radius of the ion. The frictional
drag force, −γ [ẋi − V (xi, t)], is proportional to the relative velocity of the ion and
the cytoplasmic fluid. The accelerations ẇi represent the thermal fluctuations of the
fluid. The relation between the velocity diffusion constant and the friction coefficient,

Di =
kBT

miγi
,

is Einstein’s fluctuation-dissipation principle [30].
In the Smoluchowski limit of large damping [30], the Langevin equation (4.1)

reduces to

γi [ẋi − V (xi, t)] + F i(x̃) =
√

2εiγi ẇi.(4.2)
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In this paper, we neglect the ion-ion interactions; that is, we set ULJ(x̃) =
Uii(x̃) = 0 so that (4.2) becomes

γi [ẋi − V (xi, t)] + F (xi) =
√

2εiγi ẇi,(4.3)

where

F (xi) = −zie∇xiU0(xi).

Since we are interested in tracing only one species in the spine, namely, the
concentration of calcium, we assume that γi = γ

Ca
++ , mi = m

Ca
++ , zi = z = 2.

Under these assumptions, equations (4.3) are independent and identical, so that
their transition probability densities are identical. We denote the transition probabil-
ity density function (pdf) of each ion by p(x, t |x0, t0) so that the calcium concentra-
tion is

c(x, t) =

∫
Ωt

p(x, t |x0, t0)c0(x0) dx0,

where c0(x0) is the initial calcium density.

4.3. Reaction-diffusion description of the binding and unbinding reac-
tions. We derive a reaction-diffusion system of equations in a slightly more general
setting. We consider a single reactant M (e.g., calcium), whose density, cM (x, t), sat-
isfies the Nernst–Planck (or Smoluchowski) equation corresponding to the Langevin
dynamics (4.2) [30],

∂cM (x, t)

∂t
= −∇ · J(x, t),(4.4)

where the flux J(x, t) is defined as

J(x, t) =

[
V (x, t) − F (x, t)

γ

]
cM (x, t) −D∇cM (x, t).(4.5)

The immobile substrate protein S is represented in this model by the potential
U0(x, t) of the electrostatic force F (x, t). This force varies in time as reactant ions
bind to or unbind from the substrate, thus changing the net electrostatic charge on
the substrate. Instead of following the details of the binding and unbinding process
and the fluctuations in the force F (x, t), we coarse grain the Nernst–Planck equation
(4.4) by replacing it with reaction-diffusion equations.

To formulate our problem in terms of reaction-diffusion equations, we partition
the boundary of the domain Ω into three parts: the pumps and the bottom of the neck,
denoted ∂Ωa(t), which absorb calcium ions; the remaining surface of the head, denoted
ΣH(t); and the surface of the neck, denoted ∂ΩN , where the normal flux equals the
velocity of the boundary at each point. We introduce the variables S(j)(x, t), (0 ≤
j ≤ 4), that represent the number of proteins in a test volume about x that contains j
bound M ions at time t. Then the number of occupied binding sites on these proteins
is jS(j)(x, t), and the number of free binding sites on these proteins is (4−j)S(j)(x, t).
Obviously, at all times

4∑
j=0

S(j)(x, t) = S0(x),
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where S0(x) is the number of proteins in the volume element.
We assume that the forward and backward reaction rates, k1 and k−1, respectively,

are constant and independent of the densities (see discussion in section 8 below).
It follows that the reaction-diffusion equations for the number of free calcium ions,
M(x, t), and S(j)(x, t) are

∂M(x, t)

∂t
= −∇ · JM (x, t) − k1M(x, t)

4∑
j=0

(4 − j)S(j)(x, t)

+k−1

4∑
j=0

jS(j)(x, t),(4.6)

∂S(j)(x, t)

∂t
= k1M(x, t)

[
(5 − j)S(j−1)(x, t) − (4 − j)S(j)(x, t)

]

−k−1

[
jS(j)(x, t) − (j + 1)S(j+1)(x, t)

]
,(4.7)

where the flux is defined by

JM (x, t) = −D∇M(x, t) + V (x, t)M(x, t),(4.8)

and S(−1)(x, t) = S(5)(x, t) = 0. The initial conditions are

S(0)(x, 0) = S0(x), S(j)(x, 0) = 0 for 1 ≤ j ≤ 4.(4.9)

The system (4.6), (4.7) is a coarse-grained reaction-diffusion model of the transient
chemical reaction in Ω(t). Renormalizing the numbers of the different species per unit
test volume converts them into densities. Obviously, the forward rate constant k1 has
to be changed accordingly. The initial and boundary conditions for M(x, t) are the
initial reactant density, absorption at the absorbing boundary, and flux given by the
motion of the reflective boundary,

M(x, 0) = c0(x) for x ∈ Ω(t),

M(x, t) = 0 for x ∈ ∂Ωa(t),(4.10)

JM (x, t) · ν(x) = 0 for x ∈ ∂ΩN ,

∂M(x, t)

∂n(x)
= 0 for x ∈ ΣH(t).(4.11)

The boundary condition (4.11) means that the boundary flux JM (x, t) · ν(x) (see
(4.8)) is actually the flux of the particles carried by the moving boundary. Note
that V (x, t) · ν(x) = 0 on ∂ΩN . The geometrical effect of substrate distribution is
expressed in S0(x). There are no moving internal boundaries, because the support of
S(j)(x, t) at all times is that of S0(x).

4.4. Specification of the hydrodynamical flow. The flow of the incompress-
ible cytoplasmic fluid, as explained above, is due to the local contraction of the satu-
rated AM complexes. We assume that the flow field is derived from a potential φ(x, t)
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(see, e.g., [31]),

V (x, t) = ∇φ(x, t).(4.12)

The incompressibility condition, ∇·V (x, t) = 0, reduces to the Laplace equation in the
head ΩH(t) of the spine at time t. The surface of the head, Σ(t), is partitioned into the
surface ΣH(t) of the spine head that does include the surface common with the neck
and the cap ΣN (t) of the surface of the head inside the neck, Σ(t) = ΣH(t) ∪ ΣN (t).

The Laplace equation in ΩH(t) is

∆yφ(y, t) = 0 for y ∈ ΩH(t), t > 0 ,(4.13)

with the boundary conditions

∂φ(y, t)

∂n

∣∣∣∣
y∈ΣH(t)

= −V (t),
∂φ(y, t)

∂n

∣∣∣∣
y∈ΣN (t)

= F (V (t)),(4.14)

where V (t) is the average velocity induced by the deformation of the head (see (4.17)
below and the appendix), due to the sum of all the local contractions, and F (V (t))
is the induced field velocity at the top of the neck ΣN (t). The function F (V ) is
described in the appendix. The quantities V (t) and F (V (t)) are stochastic processes
that are proportional to the number of saturated proteins at any given time t.

The flow field can be expressed explicitly in terms of the functions V (t) and
F (V (t)) by Green’s function for the Neumann problem for Poisson’s equation in a
sphere (or a disk) through Stokes’s formula. Green’s function G(x,y, t) is the solution
(defined up to a constant) of the equation

−∆yG(x,y, t) = δ(x − y) − 1

|Ωt|
for x,y ∈ ΩH(t),

(4.15)

∂G(x,y, t)

∂ν(y)
= 0 for x ∈ ΩH(t), y ∈ Σ(t).

Multiplying (4.13) by G(x,y, t) and (4.15) by φ(y, t) and integrating with respect to
y over the domain, using Stokes’s theorem and the boundary condition (4.14), we get

φ(x, t) =

∫
y∈Σ(t)

∂φ(y, t)

∂n
G(x,y, t) dSy −

∫
y∈Σ(t)

∂G(x,y, t)

∂n
φ(y, t) dSy

+
1

VH

∫
ΩH(t)

φ(y, t)dy

=

∫
y∈Σ(t)

∂φ(y, t)

∂n
G(x,y, t) dSy +

1

VH

∫
ΩH(t)

φ(y, t)dy

= −
∫

ΣH(t)

V (t)G(x,y, t) dSy +

∫
ΣN (t)

F (V (t))G(x y, t)Sdy

+
1

VH

∫
ΩH(t)

φ(y, t)dy

= −V (t)

∫
ΣH(t)

G(x,y, t) dSy + F (V (t))

∫
ΣN (t)

G(x,y, t) dSy

+
1

VH

∫
ΩH(t)

φ(y, t)dy.
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The flow field is given by

∇φ(x, t) = −V (t)

∫
ΣH

∇xG(x,y) dSy + F (V (t))

∫
ΣN

∇xG(x,y) dSy.

In the neck, due to the symmetries and the uniform initial conditions, we simplify
the flow field by assuming its velocity is parallel to the axis of the neck. It is given by

∇φ(x, t) = V (x, t) = F (V (t))k,

where k is a unit vector along the axis of the neck.
In order to close the equations, we recall that the velocity of the boundary V (t)

is a function of the number of proteins

S(4)(t) =

∫
Ω

S(4)(x, t) dx(4.16)

that are saturated at time t. Thus

V (t) = vQS
(4)(t),

(4.17)

F (V (t)) = KvQS
(4)(t),

where vQ is a constant velocity, depending on the nature of the contractile protein,
and K is a constant that depends on the geometry of the spine and the dimension
(here 2 or 3). We note that, according to (4.17), as the number of saturated proteins
increases the hydrodynamical flow begins to dominate the diffusion.

5. The chemical kinetics of the binding and unbinding reactions. The

forward binding reaction of M to S, M + S
k1⇀ MS, is governed by a forward rate

constant k1, because the process of binding consists of an ion falling into a potential
well. The survival probability of a single ion inside the spine head, in the presence of
potential traps, decays exponentially fast, so that the rate constant for binding is the
exponential decay rate. If the binding process involves many ions, the binding rate is
the total absorption flux on the boundaries of the potential wells [32].

More precisely, the instantaneous binding rate is

k1(t) =

∮
∂ΩS(t)

J(x, t) · ν(x) dSx,(5.1)

where ∂ΩS(t) is the boundary of the free binding sites on the substrate at time t.
An approximation to k1(t) can be obtained by replacing the flux density J(x, t) ·
ν(x) with its instantaneous average over the entire boundary ∂ΩS(t). Then the local
instantaneous binding rate of calcium near x is

k1(t) = k1

4∑
j=0

(4 − j)S(j)(x, t),(5.2)

where k1 is the forward binding rate per ion per protein and S(j)(x, t) is the num-
ber of proteins with j attached calcium ions. When the radius of a potential well
with circular cross-section is Rp, the forward binding rate constant k1 is given by
Smoluchowski’s formula

k1 = 2πRpDM ,(5.3)
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where DM is the diffusion constant of M -ions [32], [33]. This determination is done
for a separate reaction, not necessarily in the domain Ω. The forward rate constant k1

is an input parameter into the model, e.g., from a molecular dynamics simulation or
from direct measurement in a separate chemical reaction [26]. Note that the forward
binding rate depends on the radius of the potential well, but not on its depth.

The backward binding rate, k−1, is the rate at which ions escape the potential
well. According to Kramers’s theory [30], [34] such a dissociation is due to thermal
activation of the ions inside the potential well, and its rate is given by the Arrhenius
law with a given activation energy. We recall that in Kramers’s theory of thermal
activation over a smooth (parabolic) potential barrier, the dissociation rate is one-half
the reciprocal of the mean first passage time (MFPT) of an ion, initially inside the
well, to its boundary [30], [34], [35]. This constant is also an input parameter. Given
k1, k−1, both the depth and the radius of a binding site can be selected by calibration
according to (5.3) and Kramers’s formulas. Explicit calculations are given in [36].

6. Simulation of calcium kinetics in dendritic spines. When channels
open, the maximal number of calcium ions that flow into the dendritic spine is of
the order of a few hundred [19], which is also the order of magnitude of the number of
calmodulin or myosin molecules inside the spine head. A Brownian simulation gives
a description of calcium dynamics over a wide range of parameters, starting with
only one ion in the spine and up to a number, where a continuum approximation is
valid. In such a simulation the number of bonds formed by each calcium ion can be
monitored over time. The number of bound proteins at a given time is a random
process, because the forward and backward binding processes occur at random times
and at random places. Consequently, the twitching movement of the dendritic spine
is a random process as well.

Simulations of our model give the probability that an ion forms a bond, given
the protein distribution. They also demonstrate the role of the drift in modifying the
recurrent bindings and unbindings of the Brownian particles to given proteins.

6.1. A Langevin (Brownian) dynamics simulation. The binding (unbind-
ing) of Ca++ ions to (from) a fixed substrate S (e.g., CaM, AM, etc.) can be described
in a Langevin simulation at various degrees of molecular resolution. The simplest way
is to describe the binding sites as appropriately calibrated potential wells and count
the number of occupied wells as a function of time. A trajectory that hits a free pump
on the boundary of the spine head or reaches the dendritic shaft at the bottom of the
spine neck is terminated there. The remaining part of the boundary is reflecting to
trajectories. This is essentially the simplified molecular dynamics simulation described
above. A coarse-grained description of the reaction of binding and unbinding of the
diffusing ions with the immobile substrate is given by the reaction-diffusion equations
(4.6)–(4.10). A numerical study of this system will be presented in a separate paper.

The results of a full Langevin simulation based on our simplified physical and
mathematical model are summarized below (see [26] for details). These results can
be used as benchmarks for the results of the coarse-grained model described above.

Figure 2 shows the results of a simulation with Ninit = 100, k−1 = KAM
back =

1 kHz, k1 = Kcal
back = 5 Hz/M, R = 0.5 µm, l = 0.2 µm, d/2 = µm, Npumps = 10, and

the protein molecules (about 50 of AM type and 10 of the other type) distributed in
the PSD.

Two types of decay can be discerned in the first graph of calcium concentration
vs. time in Figure 2: quick decay, starting at the beginning of the simulation and
ending at about 250 msec, is followed by a slower decay that continues to the end of
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Fig. 2. Dynamics of 100 calcium ions in dendritic spine. Time evolution of the concentration
and binding. First row, concentration vs. time (in µsec), from left to right: 1. [Ca2+] in the total
spine. 2. [Ca2+] in spine head. 3. Number of ions in the neck. Note that the neck contains only
one ion at a time. 4. Number of bound proteins (type 1, blue; type 2, green). Note the stochastic
nature of those curves. Second row, from left to right: 5. Number of saturated proteins of type 1 vs.
time. 6. Arrival times of ions at active pumps: the ions leave one at a time. 7. Number of bound
ions vs. time. 8. Number of active pumps vs. time. (Figure reprinted from [D. Holcman, Z. Schuss,
and E. Korkotion, Calcium dynamics in dendritic spines and spine motility, Biophysical Journal,
87 (2004), pp. 81–91] with permission.

the simulation. The first period is the decay curve of the saturation of type 1 proteins.
When a simulation starts with 100 ions, only 10 proteins get saturated; that is, only
about 40 ions are captured at the beginning and the number of saturated proteins
continues to decay in time. To have a rough idea of the effect of the hydrodynamical
push, we can approximate the push by its average of 2.5 proteins saturated for the
first 250 msec, where each protein contributes to the speed a total of 50 nm/msec.
The total speed of the push is 0.5µm/ms. The push speeds up the arrival of ions at
the lower part of the spine head, where the pumps are located, relative to arrivals by
pure diffusion. Since the sojourn time of ions in the pumps is chosen to be short, the
ions leave mainly through the head. At 500 msec into the simulation only about 20%
of initial ions are still in the spine. In this simulation the effect of the push is not
sufficiently strong to direct all the ions toward the neck. The 1:4 ratio of the efflux
through the pumps, compared to that through the dendrite, may be due to the large
number of fast pumps. These results are in agreement with the experimental results
of [19].

In Figure 3 the results of simulations with and without the hydrodynamical push
are shown: blue curves correspond to a simulation without the push effect, while
magenta curves correspond to simulations with it. The characteristic parameters of
the simulation are Ninit = 200, k−1 = KAM

back = 10 kHz, k1 = Kcal
back = 0.5 kHz/M,

R = 1µm, l = 0.3µm, and d/2 = 0.3µm. There are 4 pumps, 60 AM proteins,
and 10 calcineurin proteins [15]. Results similar to those predicted in Figure 3 were
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Fig. 3. Comparison of the time evolution for a postsynaptic distribution with and without push.
Blue curves correspond to a simulation without the push effect, while magenta curves correspond to
simulations with it. First row, concentration vs. time (in µsec). From left to right: 1. [Ca2+] in the
total spine. 2. [Ca2+] in spine head. 3. Number of ions in the neck. Note that the neck contains few
ions at a time. 4. Number of bound proteins (type 1, blue; type 2, magenta). Note the stochastic
nature of those curves. Second row, from left to right: 5. Number of saturated proteins of type 1 vs.
time. 6. Arrival times of ions at active pumps: the ions leave one at a time. 7. Number of bound
ions vs. time. 8. Number of active pumps vs. time. (Figure reprinted from [D. Holcman, Z. Schuss,
and E. Korkotion, Calcium dynamics in dendritic spines and spine motility, Biophysical Journal,
87 (2004), pp. 81–91] with permission.

obtained recently with calcium replaced by an inert dye that does not bind to proteins
[27].

7. An estimate of a decay rate. In the absence of the flow field V (x, t), the
decay of M(x, t) is governed by the first eigenvalue of the Laplace operator in the
head with the mixed reflecting and absorbing boundary conditions. In the presence of
V (x, t), the decay rate can be estimated as follows (see also [37] for another estimate
of the fast rate constant, using internal buffer kinetics).

Consider the dynamics

ẋ = v(t) +
√

2D ẇx,

ẏ =
√

2D ẇy, ż =
√

2D ẇz

in the neck, where wx, wy, and wz are independent Brownian motions. The solution
is

x(t) = x0 +

∫ t

0

v(s) ds +
√

2Dwx(t),

y = y0 +
√

2Dwy(t), z = z0 +
√

2Dwz(t).

This means that the solution to the Nernst–Planck equation (4.4) in the neck,

ct = D∆c− v(t)cx,
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is given by

c(x, y, z, t) =

∫ ∫
neck

∫
G(y, z, t | y0, z0)

× exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−

(
x− x0 −

∫ t

0

v(s) ds

)2

4Dt

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

f(x0, y0, z0) dx0 dy0 dz0,

where f(x0, y0, z0) is the initial ionic density in an infinite neck and G(y, z, t | y0, z0)
is Green’s function for the diffusion equation in the cross-section of the neck, with
reflecting boundary conditions.

We consider the initial decay law, when the decay is due primarily to the hy-
drodynamical effect, because it is faster than that due to diffusion. Suppose that
the ions are concentrated near a single point (x′

0, y
′
0, z

′
0); that is, f(x0, y0, z0) =

δ(x0 − x′
0, y0 − y′0, z0 − z′0). In the initial tenths of a second, the decay of the con-

centration in the neck is due to the large hydrodynamical effect. The velocity v(t) is
maximal when all proteins are saturated. We write

c(x, y, z, t) = G(y, z, t | y′0, z′0) exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−

(
x− x′

0 −
∫ t

0

v(s) ds

)2

2Dt

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

and (
x− x′

0 −
∫ t

0

v(s) ds

)2

2Dt
=

(x− x0)
2

2Dt
− (x− x0)

D
v̄(t) +

v̄2(t)

2D
t,(7.1)

where

v̄(t) =
1

t

∫ t

0

v(s) ds ≈ const ≡ v̄0.

Set

ud(x, y, z, t) = G(y, z, t | y′0, z′0) exp

{
− (x− x0)

2

4Dt

}

to represent the diffusion term. We can write in (7.1)

− (x− x0)v̄(t)

2D
≈ − (x− x0)v̄0

2D
,

so this term does not contribute to the time decay of the concentration c(x, y, z, t) in

the initial period. The last term in the exponent (7.1) is approximately
v̄2
0

4D t, so in
the limit of fast binding, which lasts a few hundreds of milliseconds, we can write

c(x, y, z, t) = Cud(x, y, z, t) exp

{
− v̄2

0

4D
t

}
.
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This gives the decay time

τ =
4D

v̄2
0

.(7.2)

The initial average velocity v̄0 can be estimated, if we assume that all proteins are
distributed along the surface of the head and are saturated at the same time. In this
case the membrane shrinks on the time scale of a single protein contraction time and
of length equal to the number of proteins, Np =

∫
Ω
S0(x) dx, times the contraction

length of a single protein. We consider two models of saturation. First, if the proteins
are located on the membrane, we can say that the lengths do not sum, but act in
parallel to contract the head. This yields a contraction length of order lc, the length
of contraction of one protein, independently of the number of proteins distributed on
the surface. Knowing the size of the myosin protein and the size of the head (e.g.,
radius of 1µm), the maximal number of proteins packed on the membrane surface is
1 mM(= 600 proteins).

Second, if there are different layers of contractile proteins, then all contractions
add together, if they occur simultaneously. In that case the length of the contraction
equals Nplc.

We have (see the appendix)

v̄0 = F̄ (V (0)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4πR2
0V̄0

|ΣN | in dimension 3,

2πR0V̄0

|ΣN | in dimension 2,

where V̄0 = vQNp is the average initial velocity of the surface of the spine head, as
given by (4.17) with S(4)(0) = Np (by assumption); R0 is the initial radius of the
spine head; and |ΣN | is the surface area of the cross-section of the neck.

The value vQ = 0.02µm/ms is given in [2], so that v̄0 = 0.1µm/ms; hence

v̄0 = F̄ (V (0)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.4πR2
0

|ΣN | in dimension 3,

0.2πR0

|ΣN | in dimension 2.

Now, (7.2) gives τ = 160 msec, which is comparable to the experimental result given
in [19].

This result can be obtained also from the following calculations. First, using
the assumption that each protein contributes additively to the total contraction in
the simulation of [26], we see that during the hydrodynamical push period about 5
contractile proteins are saturated on the average, so the average velocity of the head
is V̄0 = 0.02 × 5 = 0.1µ/ms. Second, if in our model all proteins are distributed
in a single layer and are instantaneously saturated, they produce a contraction of
0.02µm/sec. In this case, when the ratio of surface areas of the head and the neck
(|ΣH | + |ΣN |)/|ΣN | = 5, the average velocity of the head is v̄0.

8. Discussion and conclusions. We have introduced a Brownian dynamics
simulation of calcium dynamics in a dendritic spine and its coarse-grained continuum
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description by partial differential equations. The equations couple the hydrodynam-
ical flow, caused by spine motility, to the chemical reaction between the diffusing
calcium and the immobile substrate. We have identified the dominant molecular mech-
anism of the fast macroscopic twitching as the contraction of the calcium saturated
AM proteins. This contraction produces a hydrodynamical flow, which causes the fast
decay of calcium. The decay rate has been derived theoretically, and the reaction-
diffusion equations described here are the coarse-grained version of the Langevin sim-
ulation of [26]. They provide a mathematical description of the molecular events
during the fast motility of the spine.

The main goal of the coarse-graining is to capture the features of calcium dynamics
with a small number of equations, ideally with a single ordinary differential equation,
so that a comprehensive model of calcium dynamics in a spiny dendrite can be derived
and the effect of hundreds of thousands of spines can be integrated and coupled to an
action potential. In this context the dynamics of calcium can possibly be linked to
the induction of synaptic plasticity.

An important feature of the Langevin simulation is that the number of bonds per
protein, as a function of time, can be followed and compared to the initial calcium
concentration. The coarse-grained reaction-diffusion description of the Langevin sim-
ulation should be helpful in relating the threshold of initiation of synaptic plasticity,
such as LTP, to the initial calcium concentration.

One of the most significant results of this paper is the derivation of the decay
rate from the fast motility of the spine. This result should be compared to the cal-
cium extrusion rate in spines, as presented in [19]. The two very distinct decay rates
suggest that the fast extrusion period can also be due to the spine fast motility. This
phenomenon was ascribed in [19], [37] to the fast pumping of calcium ions into stores.
Indeed, in the present paper we have neglected calcium stores and high concentra-
tion of buffers, which may impose a decay rate faster than diffusion. An improved
model that includes a large number of buffers should reveal the precise contribution of
buffers to the calcium fast decay rate, as compared to the rate imposed by the spine
contraction. Such a model has to be based on the mechanism of interactions between
diffusing calcium and the buffers.

We conclude, on the basis of the present model and of the Langevin simulation
of [26], that one of the possible roles in calcium dynamics of the spine’s fast motility
is to increase significantly the fraction of ions that are directed toward the dendrite
and the organelles, compared to the ions that are pumped out.

Appendix. The velocities V (t) and F (V (t)). In this section, we compute
the velocity V (t) of the spine head surface, given by (4.17), and the velocity F (V (t)),
used in the boundary condition (4.14). While V (t) is given in (4.17), the velocity in
the neck, F (V (t)), has to be calculated.

To calculate the cytoplasmic fluid velocity F (V (t)) at the surface of the sphere
inside the neck, we make the following simplifying assumptions that lead to an explicit
expression for the velocity of the efflux. The entire fluid displaced by the contraction
of the spine head flows into the spine neck with a uniform velocity v(t) in a direction
normal to the sphere. We also assume that the neck is sufficiently narrow so that all
normals to the spherical surface inside the neck, ΣN , are parallel to the axis of the
neck.

Under these assumptions the volume displaced per unit time is 4πR2(t)V (t) in
dimension 3 and 2πR(t)V (t), where R(t) is the instantaneous radius of the head and
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Ṙ(t) = −V (t). The flux through ΣN is |ΣN |v(t); hence

v(t) = F (V (t)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4πR2(t)V (t)

|ΣN | in dimension 3,

2πR(t)V (t)

|ΣN | in dimension 2.
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EXPLOITING SYMMETRY IN FAN BEAM CT: OVERCOMING
THIRD GENERATION UNDERSAMPLING∗
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Abstract. A new reconstruction algorithm is presented for tomographic reconstruction from
fan beam data acquired with a quarter detector shift. This algorithm exploits the reflection property
of the divergent beam transform by representing the sample and reflected points as a discrete,
multichannel sample set. A doubling of the reconstruction resolution is achieved by increasing the
number of source locations without changing the detector sample density. The algorithm can be used
to reconstruct images from a third generation CT scanner at the maximum resolution consistent with
the frequency characteristics of the detector.

Key words. tomography, divergent beam transform, Radon transform, multichannel sampling
theorem
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1. Introduction. A CT scanner provides two-dimensional images of a cross
section of an object by measuring integrals of the object’s x-ray attenuation through
the cross section. The attenuation data can be modeled as giving the Radon transform
of x-ray attenuation. The Radon transform of a function f in R2 is

Rf(φ, p) =

∫
xΦ=p

f(x)dx,(1.1)

where Φ = (cosφ, sinφ)T ∈ S1 is normal to the line of integration and pΦ locates the
closest point to the origin on the line. The parameterization (φ, p) of lines in R2 is
called the parallel beam geometry, as fixing φ results in a family of parallel lines.

The divergent beam (or fan beam) parameterization for lines in R2 is appropriate
to use when modeling scanners in which the x-ray source moves on a circle (the source
circle) of radius r exterior to a circle (scan circle) of radius ρ containing the object
being imaged. The source angle β measures the position of the x-ray source with
respect to x axis. The fan angle α measures the detector position with respect to the
central ray of the fan, the ray from the source through the origin. By convention, α
is positive if, viewed from the source, the detector position is to the left of the central
ray. See Figure 1. The parallel beam and fan beam parameterizations are related by

p = r sinα, φ = β + α− π/2,(1.2)

where r is the radius of the source circle. The reparameterization gives rise to the
divergent beam transform

Df(β, α) = Rf(β + α− π/2, r sinα).(1.3)
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Fig. 1. The parallel beam and divergent beam parameterizations of lines in R2. The angles φ
and β are measured counterclockwise from the x axis, and α is measured counterclockwise from the
line connecting (r cosβ, r sinβ) to the origin.

In a real measurement system, only a finite set of data is available. The goal in
fan beam tomography is to reconstruct f within |x| ≤ ρ with as much resolution as
possible from discrete samples of Df .

In a third generation CT scanner, there is a detector bank which is physically
connected to an x-ray source located on the opposite side of the object being imaged.
The entire source-detector assembly is rotated around the object. At a discrete set
of positions, the detector apparatus reads out, and an entire fan of data is acquired.
In order to attain maximum use of the available photons, it is normal to have each
detector element abut its neighbors. While this geometry is efficient in collecting
all the available photons, it effectively bandlimits the measured signal. Were the
standard fan-beam sampling scheme and reconstruction algorithm (Algorithm 5.3 in
[13]) to be used to attain the resolution corresponding to the detector bandwidth,
the detector sample density needed would be twice that which is available. In other
words, the measurement would be undersampled by a factor of two. This so-called
third generation undersampling is explained in section 3.1.

In this paper, we present an algorithm which can be used with third generation
CT scanners to attain reconstructions at a resolution limited only by the bandwidth
of the detector elements.

The divergent beam transform has a twofold symmetry which can be exploited to
compensate for the third generation undersampling. Placing a detector bank off center
by one quarter of the width of a detector element breaks the acquisition symmetry,
effectively doubling the sample density. A similar detector shift was suggested for the
third generation problem in the parallel beam geometry by Cormack [2].

For the parallel beam geometry, the sample points obtained by introducing a
detector shift can be reorganized as a lattice with twice the density along the detector
direction. When a bandlimited function is sampled on a suitably dense lattice, its
integral can be replaced by a discrete sum without error. Applying this to continuous
inversion formulas is the foundation for both the standard and interlaced parallel
beam reconstruction algorithms (Algorithms 5.1 and 5.2 in [13]).

For the divergent beam geometry, the fortuitous realignment of the original and
reflected sample points into a single lattice does not occur, so the standard multidi-
mensional sampling theory cannot be applied. Instead, multichannel sampling theory
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[1, 16] in a lattice context [3, 6, 7, 8, 9] must be used. In this paper, it is shown
that the original and reflected sample points can be reorganized as a union of iden-
tical rectangular lattices. The samples on each rectangular lattice become a channel
of a multichannel lattice sample scheme. For appropriate scanner geometries, the
Parseval-like result of [9] for sampling on unions of lattices can be used to justify the
replacement of the continuous inversion integral by the discrete analog. This leads to
a new fan beam algorithm which can reconstruct at the maximum resolution consis-
tent with the detector-limited bandwidth. An alternate approach [6, 7] can also be
applied. However, that method is more complex than our method, as it requires the
multichannel lattice data to be interpolated to a sufficiently dense single lattice.

The remainder of this paper is organized as follows. In section 2.1, a brief review
of lattice sampling theory and multichannel sampling for lattices is presented. In sec-
tion 2.2, the sampling requirements for the divergent beam transform are reviewed.
The third generation detector model is described in section 3.1. It is shown how to
apply multichannel sampling theory in this context in section 3.2. The new diver-
gent beam reconstruction algorithm appears in section 3.2.2. Finally, a numerical
implementation which validates the algorithm is exhibited in section 4.

2. Sampling in tomography. In order to achieve a desired resolution in the
reconstructed image, the divergent beam transform must be sampled at an appropri-
ate density. A framework for studying reconstruction resolution in terms of spatial
frequency content was presented by Natterer in [10]. A function f is Ω-bandlimited
if its Fourier transform,

f̂(ξ) = (2π)−n/2

∫
Rn

f(x)e−ixξdx,(2.1)

satisfies f̂(ξ) = 0 for |ξ| > Ω. Such functions can represent details no smaller than
π/Ω. In practice, as the reconstruction region will have compact support, the func-
tions to be recovered cannot be bandlimited. As a result, one works with essentially
bandlimited functions. A function f on Rn is essentially Ω-bandlimited if f̂(ξ) is

small for ξ > Ω. More precisely, it is assumed that ε0(f,Ω) =
∫
|ξ|>Ω

|f̂(ξ)|dξ is negli-

gible. Refer to [10] for a thorough treatment of this notion in the context of sampling
theory.

The sample density needed to reconstruct a bandlimited function f can be de-
termined by examining the bandregion K = supp f̂ . Roughly speaking, a sampled
function has as its spectrum sums of translates of the spectrum of the unsampled
function. The translation distance is inversely proportional to the sample density.
To reconstruct accurately, it is necessary to ensure that translates of K are mutually
disjoint.

The Radon transform and divergent beam transforms possess symmetries in both
the Fourier domain and the sample domain. The essential support of the divergent
beam transform of a bandlimited function has the shape [11, 15] shown in Figure 2.
Selecting nonoverlapping translates parallel to the coordinate axes lead to the stan-
dard fan beam reconstruction algorithm (Algorithm 5.3 in [13]). Much of Fourier
space remains uncovered. A completely efficient tiling of Fourier space is possible
[11]. The corresponding sampling scheme requires a complex dynamic detector shift,
the periodicity of which depends on the ratio of the source and scan radii. This
acquisition is difficult to implement in hardware.
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Fig. 2. The solid region shows the essential support K when ρ/r = 1/3 of the Fourier transform
of the divergent beam transform of an essentially Ω-bandlimited function. K scales linearly with Ω
along each axis and is symmetric with respect to the origin. The coordinates of the upper and lower
right corners of K are, respectively, (rΩ, (ρ + r)Ω) and (rΩ, (ρ − r)Ω). In the leftmost figure, the
gray areas are translates of K parallel to the coordinate axes by the minimal distance required to
avoid overlaps. The corresponding sampling scheme is the standard fan beam sampling. In the
middle figure, the gray areas are translates of K which are optimally packed. The corresponding
sampling scheme is the efficient fan beam sampling. To acquire data for the efficient sampling
scheme requires a dynamic detector shift. In the rightmost figure, the gray areas are the translates
of K which correspond to sampling the divergent beam transform at points which are reflections of
the points in the standard sampling scheme. Since there is no overlap, this sample set can be used
to reconstruct at the same resolution as the standard fan beam sampling.

Alternatively, symmetry can be seen directly in the sample domain via the reflec-
tion property, which for the Radon transform reads

Rf(φ, p) = Rf(φ + π,−p),(2.2)

and for the divergent beam transform reads

Df(β, α) = Df(β + π + 2α,−α).(2.3)

That is, any sample can be used twice, once at the actual sample point and again
at the reflected point. By carefully choosing the sample points to avoid duplication
as the source is rotated through a full 2π on the source circle, the sample density is
effectively doubled, which, in principle, can compensate for undersampling. A shift
of a quarter detector width in the placement of the origin of the detector bank avoids
duplication and interlaces the reflected sample points as evenly as possible [12].

In order to directly apply the standard reconstruction algorithms, the original
and reflected sample points must line up on a suitable rectangular grid. This scenario
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occurs for the parallel beam geometry. In fact, it can be shown that the result of the
standard parallel beam reconstruction algorithm (Algorithm 5.1 in [13]) applied to a
2π scan (0 ≤ φ ≤ 2π) with a 1/4 detector shift is numerically identical to the result
when the same algorithm is applied to a π scan (0 ≤ φ ≤ π) with a 1/2 detector shift
with samples spaced at a (nonphysical) half detector width.

For the divergent beam geometry, the reflected sample points do not line up in
a rectangular grid. Although the sample positions will be regular in the coordinate
tracking detector position, the reflection geometry induces a shift in the coordinate
tracking the source position. This shift is periodic, with the periodicity depending on
the choice of sampling density. In this paper, a new divergent beam reconstruction al-
gorithm is constructed which properly accounts for these shifts. The key idea is that
the sampling pattern resulting from the union of the original and reflected sample
points can be viewed as a multichannel sample scheme for the divergent beam trans-
form. This construction answers the question posed in [12] about how to effectively
exploit the symmetry in the divergent beam transform.

2.1. Sampling on lattices. To analyze sampling in tomography [4, 6, 10, 11,
13], it is necessary to invoke the Petersen–Middleton sampling theory on lattices [17].
For the analysis of the divergent beam geometry, it is necessary to use an extension of
lattice sampling theory to a multichannel setting. This can be done with the theory
developed in [6, 7, 8], or, as in this paper, the theory developed in [9].

In this subsection, notation will be introduced, and the relevant results will be
quoted.

Given n linearly independent vectors wi ∈ Rn, denote by W the invertible matrix
with columns wi. The lattice LW is defined by

LW = {Wz | z ∈ Zn} = WZn.(2.4)

Although the lattice LW does not uniquely determine the generating matrix W ,
|detW | is independent of the choice of the generating matrix for the lattice.

The dual lattice L⊥
W is defined to be LW⊥ , where W⊥ = 2πW−T . Any nonsingular

n× n matrix M with integer entries defines a sublattice LP ⊆ LW , where P = WM .

If LP ⊆ LW , then L⊥
P ⊇ L⊥

W , and | detP
detW | = |detW⊥

detP⊥ | = |detM |.
A fundamental region of a lattice LP is a subset FP ⊆ Rn such that each x′ ∈ FP

uniquely defines an equivalence class x′ + LP ∈ Rn/LP , and every x ∈ Rn/LP can
be written as x = x′ + LP for some x′ ∈ FP . A fundamental region of LP can be
identified with Rn/LP . With [0, 1)n denoting the n-fold Cartesian product of [0, 1),
the set P [0, 1)n = {Px | x ∈ [0, 1)n} is the canonical example of a fundamental region
for the lattice LP . From [9, Theorem 1], we have the following.

Theorem 2.1. Let LP ⊆ LW . When Rn/LW is identified with W [0, 1)n, the set
Rn/LP can be identified with the direct sum Rn/LW ⊕ LW /LP .

Definition 2.2. A function f on Rn is said to be W -bandlimited with bandregion
K if f̂ = 0 outside some compact set K ∈ Rn, and (K◦ + ξ) ∩ (K◦ + ξ′) = ∅ for
ξ, ξ′ ∈ L⊥

W , and ξ �= ξ′. K◦ denotes the interior of K.
A square integrable, continuous, W -bandlimited function can be reconstructed

from its samples on LW . In particular, Parseval’s formula holds.
Theorem 2.3. Let f1, f2 ∈ L2(Rn) be W -bandlimited and continuous, both with

the same bandregion K. Then∫
Rn

f1(x)f2(x)dx = |detW |
∑

x∈LW

f1(x)f2(x).(2.5)
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Definition 2.4. A function on Rn is periodic with respect to the lattice LQ (or
alternatively Q-periodic) if, for all x ∈ LQ and y ∈ Rn, f(y + x) = f(y).

A Q-periodic function f can be sampled on a lattice LW if and only if LQ ⊆ LW .
The sample points can be treated as elements of LW /LQ. The Fourier and inverse
Fourier transforms in the periodic setting are

f̂(η) =
1

|detQ|

∫
Rn/LQ

f(x)e−ixηdx, η ∈ L⊥
Q,(2.6)

f(x) =
∑
η∈L⊥

Q

f̂(η)eixη.(2.7)

The definition of bandlimited functions in the periodic setting requires the use of the
discrete topology. In this case, one cannot ignore the boundary of K when considering
shifts.

Definition 2.5. Let LQ ⊆ LW , and f ∈ L2(R
n/LQ). f is W -bandlimited if

f̂ = 0 outside some compact set K ⊆ L⊥
Q, and (K + ξ) ∩ (K + ξ′) = ∅ for ξ, ξ′ ∈ L⊥

W ,
and ξ �= ξ′.

Parseval’s formula in the periodic setting is the following.
Theorem 2.6. Let f1, f2 ∈ L2(Rn/LQ) be W -bandlimited and continuous, both

with the same bandregion K. Then∫
L2(Rn/LQ)

f1(x)f2(x)dx = |detW |
∑

x∈LW /LQ

f1(x)f2(x).(2.8)

Let the lattice LP satisfy LQ ⊆ LP ⊆ LW , with r = | detP |
| detW | . Under suitable

conditions, a Q-periodic, W -bandlimited function with bandregion K can be recovered
from samples on LP /LQ of r filtered versions of f (channels) [7, 9]. Following [7],
when each channel gk is of the form gk = f∗δ(x−γk) for independent translations γk ∈
Rn/LQ, L2 inner products of two such functions can be computed using Theorem 2.6
after upsampling by interpolation from LP to LW . Alternatively, following [9], if
the lattice LP undersamples along one generator of LW , and if K is shift-convex
with respect to W⊥ and P⊥, a Parseval-like result will hold. The definitions for
shift-convexity and independent translations follow.

Let i ∈ Zn denote the multi-index i = (i1, . . . , in)T .
Definition 2.7. Let LQ ⊆ LP ⊆ LW . Suppose that K is the bandregion for a

W -bandlimited Q-periodic function, and that P = WM , where M is a diagonal matrix
with positive integer entries, M = diag(r1, . . . , rn). K is said to be shift-convex with
respect to W⊥ and P⊥ if K ∩ (K + P⊥i) = ∅ for all i such that −(r − 1) ≤ i ≤ r − 1
does not hold.

The idea of shift-convexity is to eliminate the pathological cases where a suitably
sampled function becomes undersampled when the sample density increases. W -
bandlimiting implies that shifts of K by nonzero elements of L⊥

W do not overlap K.
Roughly speaking, any additional shifts of the bandregion K by elements of L⊥

P do
not re-introduce overlap with K. For two examples, see section 3.2.3.

Now consider LQ ⊆ LP ⊆ LW . Fix K, the bandregion for a W -bandlimited
Q-periodic function. Since each coset ξ ∈ L⊥

Q/L
⊥
W intersects K in at most one point,

when K ∩ ξ �= ∅, the point of intersection is a canonical representative ξ′ ∈ L⊥
Q for

ξ = ξ′ + L⊥
W ∈ L⊥

Q/L
⊥
W . When K ∩ ξ is empty, the fixed representative ξ′ can be

chosen arbitrarily. As L⊥
P /L

⊥
W ⊆ L⊥

Q/L
⊥
W , the same construction provides a canonical

representative ζ ′ ∈ L⊥
P for each coset ζ = ζ ′ + L⊥

W ∈ L⊥
P /L

⊥
W .
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Definition 2.8. Let ζj, j = 0, . . . , r − 1, be the r distinct equivalence classes in
L⊥
P /L

⊥
W . Let ζ0 = L⊥

W , and ζ ′j be the canonical representative for ζj. The translations
γk ∈ Rn/LQ, k = 0, . . . , r − 1, are independent if the matrix H, with k, jth entry

Hk,j = e−iζ′
jγk , is invertible. Let λk,j denote the k, jth entry of H−T .

Since ζ ′j ∈ L⊥
P ⊆ L⊥

Q, Hk,j is independent of the representative chosen for γk ∈
Rn/LQ, and thus is well defined.

Theorem 2.9. Let f1, f2 ∈ L2(R
n/LQ) be W -bandlimited and continuous, both

with bandregion K, and with f1f2 real. Let LQ ⊆ LP ⊆ LW , with r equivalence classes
in L⊥

P /L
⊥
W . Moreover, suppose that K is shift-convex with respect to W⊥ and P⊥.

Let the r filters hr, k = 0, . . . , r− 1, implement independent translations γk ∈ Rn/LQ

such that λk0, k = 0, . . . , r − 1, are all real. Then,∫
Rn/LQ

f1(x)f2(x)dx = |detP |
r−1∑
k=0

λk0

∑
y∈LP /LQ

f1(y − γk)f2(y − γk).(2.9)

Proof. This is Theorem 10 in [9].
We remark that another method [6, 7] is available for computing the L2 inner

product of W -bandlimited functions from samples on LP . That method does not
require the restrictive hypotheses of shift-convexity, one generator subsampling, or the
reality conditions of Theorem 2.9. In that approach, the missing samples of f1 and f2

on LW needed for the application of Theorem 2.6 are obtained by interpolation. The
interpolation is accomplished with a generalized sampling expansion. On the other
hand, when Theorem 2.9 can be used, the computation is simpler and more direct, as
no interpolation is required.

2.2. Divergent beam geometry. In [11], the sampling criteria for a standard
fan beam reconstruction of an essentially Ω-bandlimited function were derived. The
divergent beam transform is periodic in both arguments, so for (k, a) ∈ Z × 2Z, the
Fourier transform of Df is

D̂f(k, a) =
1

4π2

∫ 2π

0

∫ π

0

Df(β, α)e−i(kβ+aα)dαdβ.(2.10)

Theorem 2.10. Let f ∈ S(R2) have support |x| ≤ ρ and be essentially Ω-

bandlimited. Then the essential support of D̂f(k, a) is the set

K =
{
(k, a) ∈ Z × 2Z

∣∣ |k − a| ≤ Ωr, |k|r ≤ |k − a|ρ
}
.(2.11)

An essentially Ω-bandlimited reconstruction of f from fan beam data is achieved
by converting the parallel beam reconstruction, equation (5.22) in [13], to fan beam
coordinates:

VΩ ∗ f(x) = r

∫ 2π

0

∫ π/2

−π/2

vΩ(xΦ − r sinα)Df(β, α) cosαdαdβ,(2.12)

where Φ is the unit vector associated with the angle φ = β + α − π/2, vΩ is an
Ω-bandlimited approximation to the ramp filter, and VΩ is the corresponding Ω-
bandlimited approximate δ function. That is, for a filter ψ̂(σ) which is supported on
|σ| ≤ 1, and which is approximately unity on its support,

V̂Ω(ξ) = (2π)−1ψ̂(|ξ|/Ω),

v̂Ω(σ) =
(2π)−3/2

2
|σ|ψ̂(σ/Ω).

(2.13)
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In order to accurately compute (2.12) by a discrete sum, Df must be suitably
sampled.

2.2.1. Standard divergent beam geometry. Sampling density criteria for
the standard fan beam reconstruction (Algorithm 5.3 in [13]) result when translates
of K parallel to the coordinate axes are packed as densely as possible. See Figure 2.
For

W =

(
∆β 0
0 ∆α

)
, ∆β ≤ r + ρ

r

π

ρΩ
, ∆α ≤ π

rΩ
,(2.14)

the translates of K by L⊥
W do not overlap [11, 15]. Since the lattice LW must be

a sublattice of 2πZ × πZ, when (2.14) holds with equality, both rΩ and r+ρ
2rρΩ are

required to be integral. The sample points are (βj , α	), with

βj = j∆β, α	 = (� + δ)∆α.(2.15)

The parameter δ is the detector shift. This parameter indicates the alignment of the
elements in the detector assembly with respect to the central ray. That is, the center
of each detector element will be shifted by δ∆α with respect to the lattice ∆αZ.
We remark that, as with the standard parallel beam sample lattice, the standard
fan beam sample lattice is sufficiently dense along the detector direction to allow the
inner integral in the reconstruction formula (2.12) to be replaced by a sum of discrete
samples. Also, the translations of K do not completely fill R2 so this sampling scheme
is not efficient.

2.2.2. Efficient geometry. An efficient sample scheme can be obtained by tiling
R2 with translations of K. Translates by L⊥

W will tile the plane if the lattice LW is
generated by

W =

⎛
⎝ ∆β

r − ρ

2r
∆β

0 ∆α

⎞
⎠ , ∆β =

2π

ρΩ
, ∆α =

π

rΩ
.(2.16)

See Figure 2. Here, both rΩ and ρΩ are required to be integral. To acquire data for
this efficient sampling, a dynamic detector shift is required. An implementation of
such an acquisition system presents many technical difficulties. See [11] for a detailed
treatment of the efficient geometry.

2.2.3. Reflected geometry. Another option for a fan-beam acquisition is to
use only the reflections of the sample points. This corresponds to choosing for W ,

W =

(
∆β 2∆α
0 −∆α

)
,(2.17)

with ∆β and ∆α the same as in (2.14). The translates of K by L⊥
W are shown in

Figure 2. When the original sample points are given by (2.15) and λ = ∆β/∆α, the
reflected samples (β′

j,	, α
′
	) are

β′
j,	 = (J/2 + j + 2(� + δ)/λ)∆β, α′

	 = −(� + δ)∆α,(2.18)

where J = 2π/∆β. Because LW must be 2π-periodic in β and π-periodic in α, λ is
rational, so the reflected geometry has an interpretation as a dynamic detector shift
with the periodicity determined by the denominator after 2/λ is reduced to lowest
terms. A reconstruction algorithm similar to that in section 3.2 can be given for this
geometry. However, as this algorithm will be significantly more time consuming than
the standard fan beam algorithm, there is no practical incentive to use it.
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Fig. 3. A model of the source-detector assembly is shown. All the photons arriving at an
interval of width ∆α between the ticks contribute to the measurement sample located at the center of
that interval. The central ray of the fan intersects the central interval of the detector at δ∆α from
the center of the interval.

3. The third generation problem and the quarter detector shift. For a
typical third generation CT scanner, the spacing between detector pixels is the limiting
factor determining the maximum attainable resolution in reconstructed images. That
is, the size of the smallest reconstructible detail, π/Ω, is determined by the detector
spacing, ∆α. This in turn determines the source sampling interval, ∆β, needed to
achieve the π/Ω resolution.

3.1. The detector model. The detector assembly for a third generation CT
scanner can be modeled as a contiguous collection of detector elements, each of width
∆α. See Figure 3. For simplicity, it is assumed that each detector element will respond
uniformly to all photons arriving within ∆α/2 of the element center. Other models
could be considered. Accordingly, the measured data D′f(β, α) is a convolution of Df
with the detector element response function (∆α)−1χ[−∆α/2,∆α/2], where χI denotes
the characteristic function for the interval I:

D′f(β, α) = (∆α)−1

∫ ∆α/2

−∆α/2

Df(β, α− t)dt = (∆α)−1Df ∗ χ[−∆α/2,∆α/2](β, α).

(3.1)

The Fourier transform of (∆α)−1χ[−∆α/2,∆α/2] is

χ̂[−∆α/2,∆α/2](ξ) = (2π)−1/2sinc(ξ∆α/2)/2.(3.2)

Ignoring the contribution from the side lobes of the sinc function allows the finite
width detector to be treated as a low-pass filter, effectively making the measured data
2π/∆α-bandlimited in the α direction. This hardware-determined bandwidth sets an
intrinsic resolution limit for reconstructions from data measured by this acquisition
system. On the other hand, a separation of ∆α between samples implies a maximum
sampling-determined bandwidth of π/∆α in the α direction, which by (2.14), implies
a maximum reconstruction resolution of π/Ω = r∆α, where Ω = π/(r∆α). As the
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bandwidth in the measured data is twice that which can be exploited by the standard
sample scheme, it is natural to ask whether it is possible to reconstruct at the doubled
resolution corresponding to the higher data bandwidth. Since this is a two-dimensional
reconstruction, doubling the resolution requires a fourfold increase in the number of
samples. In the source direction, β, a density doubling can be achieved by finer
sampling. An increase in the sample density in the detector direction will be achieved
by the judicious use of the reflected sample points.

As previously mentioned, for the parallel beam geometry, the reflected sample
points mesh well with the original sample points, resulting in a relatively straight
forward algorithm to reconstruct at the hardware-limited resolution. The divergent
beam geometry requires a more delicate analysis.

3.2. Symmetry in the divergent beam transform. Following the success
in the parallel beam context of using reflected sample points to reconstruct at the
hardware-limited resolution, it is natural to ask how to perform the analogous com-
putation for the divergent beam geometry. Unfortunately, with the divergent beam
transform and a 1/4 detector shift, the reflected sample points do not align in a
rectangular grid, so the straightforward application of the standard divergent beam
(Algorithm 5.3 in [13]) can only be viewed, at best, as an approximation. A recon-
struction at the hardware-limited resolution can be obtained if the combined original
and reflected sets are together viewed as samples on multiple channels for a suit-
ably chosen undersampled lattice. In the language of signal processing, the combined
lattices are a periodic, nonuniform sampling set. The undersampled lattice and the
number of channels needed depend on the ratio θ = ρ/r.

It is now assumed that D′f is available on the original lattice LO,

LO = {(βj , α	) | j ∈ Z, � ∈ Z} , βj = j∆β, α	 = (� + δ)∆α.(3.3)

Since LO must be a sublattice of 2πZ × πZ, both of

π

∆α
= n and

2π

∆β
= m,(3.4)

are integral.
Here ∆α is the detector pixel width and ∆β is the angular sampling interval

to be specified shortly. In practice, only j = 0, . . . ,m − 1 and � = −L, . . . , L for

L > sin−1 ρ/r
∆α are needed as D′f either is 0 or can be computed by periodicity from

the other points.
The resolution implied by the detector sample density is π/Ω, where

Ω ≤ π

r∆α
.(3.5)

The hardware-limited bandwidth of the data from the third generation detector is
2Ω. A reconstruction at the corresponding resolution will require that ∆β be chosen
appropriately. That is,

∆β ≤ r + ρ

rρ

π

2Ω
.(3.6)

The divergent beam reflection property (2.3) is applied to the sample lattice LO

with ∆α and ∆β given by (3.5) and (3.6), respectively. The reflected sample points
are

LR =
{
(β′

j,	, α
′
	) | j ∈ Z, � ∈ Z

}
,(3.7)
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where

β′
j,	 = π + j∆β + 2(� + δ)∆α, α′

	 = −(� + δ)∆α.(3.8)

If δ = 0, then β′
j,	 = π + j∆β + 2�∆α and α′

	 = −�∆α. Regardless of the possibly
increased sample density in the β direction, the α coordinates of the sample points
in LO match those of LR. As a result, the translates of K in the direction dual to α
still overlap, and the data remain insufficient to reconstruct at the higher resolution
π/(2Ω). The same occurs for δ = ±1/2.

Duplication is avoided and the α coordinates of the reflected points interlace
perfectly with the α coordinates of the original samples when δ = 1/4. With δ = 1/4,
(3.8) becomes

β′
j,	 = π + j∆β + (2� + 1/2)∆α, α′

	 = −(� + 1/4)∆α.(3.9)

From (3.4), ∆α = m
2n∆β and

β′
j,	 = π +

(
j +

(4� + 1)m

4n

)
∆β.(3.10)

The reflected sample set LR has a static shift in β of π + m
4n∆β in addition to a

dynamic shift of m∆β/n, which is periodic in �. This is illustrated in Figure 4.
To work with this sample set, the union of the original and the reflected sample

points is recast as a union of identical rectangular lattices, each shifted by a static
distance from the origin. The β separation between lattice points of these rectangular
lattices will be ∆β, and the α separation will be a multiple of ∆α. Each rectangular
lattice provides one channel of a multichannel sampling. Within this framework,
Theorem 2.9 can be applied to accurately compute (2.12) as a discrete sum of the
sampled divergent beam transform data.

3.2.1. Sample points as a union of rectangular lattices. In this subsection
we show that the original sample points together with the reflected points can be
reorganized as multiple shifted copies of a rectangular lattice. Thus, sampling on
LO ∪ LR defines a periodic, nonuniform sampling set.

Theorem 3.1. Let LO be the sample lattice arising from a quarter detector shift
with a source sampling at twice the standard density, and let LR be the corresponding
reflected lattice. Then, the union, LO ∪ LR, is a disjoint union of 2n′ translates of
the lattice LP ,

LP =

(
∆β 0
0 n′∆α

)
Z2,(3.11)

where n′ is the denominator when m/n is reduced to lowest terms.
Proof. The lattices LO and LR are given by (3.3), (3.4), (3.7), and (3.10).
Since LO must be a sublattice of 2πZ × πZ, both of

n =
π

∆α
≥ rΩ(3.12)

and

m =
2π

∆β
≥ 4rρΩ

r + ρ
(3.13)
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Fig. 4. For a divergent beam scanner with ρ/r = 1/3, the doilygram (the set of lines on which
line integrals are available), the standard sample lattice LO (upper right), and the reflected sample
lattice LR (lower right) are shown for a detector shift of δ = 0 (top) and δ = 1/4 (bottom). On the
lattices, the source position (β) is the horizontal coordinate and position along the detector (α) is
the vertical coordinate. The origin is marked with ×. The doilygram for δ = 1/4 appears denser
than δ = 0 because each point in the sample lattice corresponds to a unique line in the doilygram.
For δ = 0, some lines are generated by two points in the lattice. Samples of Df on any of the
lattices shown can be used to reconstruct an essentially Ω-bandlimited function from its divergent
beam transform. The lattices are shown for Ω = 8.

are integral. Let m/n be expressed in lowest terms as m′/n′. That is,

m′ =
m

gcd(m,n)
, n′ =

n

gcd(m,n)
.(3.14)

As � varies, a shift m′

n′ ∆β is induced in β′
j,	. This shift is a rational multiple of the

sample interval ∆β. From (3.10) and (3.14),

β′
j,	 = π + βj+m′

n′ (	+1/4),(3.15)
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and for any j1, j2, �1, �2,

β′
j1,	1 − β′

j2,	2 =

(
j1 − j2 +

(�1 − �2)m
′

n′

)
∆β,(3.16)

which is an integral multiple of ∆β if and only if �1 ≡ �2 mod n′. Hence, for each
�0 ∈ Z, the set L	0R = {(b′j,	, α′

	) | � ≡ �0 mod n′, j ∈ Z} is a shifted copy of the
rectangular lattice LP ,

L	0R =

(
π +

(
(	0+1/4)m′

n′

)
∆β

(−1/4 − �0)∆α

)
+ LP .(3.17)

In view of (3.16), a distinct lattice is obtained for each equivalence class in Z/(n′Z).
Therefore, the reflected sample set LR is the disjoint union of the distinct lattices,

LR =
⋃

[	0]∈Z/(n′Z)

L	0R.(3.18)

The original sample set LO can easily be represented as a disjoint union of n′ shifted
copies of the lattice LP ,

LO =
⋃

[	0]∈Z/(n′Z)

(
0

(�0 + 1/4)∆α

)
+ LP .(3.19)

Combining (3.18) and (3.19) completes the proof.
Three examples are shown in Figure 5.

3.2.2. The divergent beam multichannel sampling algorithm. Equation
(2.12) with Ω replaced by 2Ω is used to reconstruct a bandlimited approximation to
f from Divergent beam transform data. To properly compute the continuous integral
from discrete data, Theorem 2.9 must be applied.

First, the relevant lattices are identified. D′f is Q-periodic with

LQ = 2πZ × πZ, L⊥
Q = Z × 2Z.(3.20)

As D′f is essentially W -bandlimited with K as in (2.11) when Ω is replaced by 2Ω, a
reconstruction at the hardware-limited resolution is possible when samples of D′f are
available on LW /LQ, where, with m and n as in (3.12) and (3.13),

LW =

(
2π

m

)
Z ×

( π

2n

)
Z, L⊥

W = mZ × 4nZ.(3.21)

With βs = s∆β and α	 = �∆α, we make the identification

(3.22)

LW /LQ =

{
(βs, α	) | s = 0, . . . ,m− 1, � =

−n

2
,
−n + 1

2
, . . . ,

n− 2

2
,
n− 1

2

}
.
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(a)

(b)

(c)

Fig. 5. Lattices are shown for θ = 1/3, 1/5, 1/2, respectively. For each case, the original lattice
LO is shown by dots. For (a), n′ = 1. The reflected lattice LR is rectangular and is shown by
triangles. For both (b) and (c), LR is a union of n′ = 3 rectangular lattices, shown by the triangles,
+, and ×. For each case, the horizontal spacing of all the rectangular lattices is the same, and the
vertical spacing of the rectangular lattices making up LR is n′ times that of LO.

By Theorem 3.1, the original and reflected lattices together can be realized as a union
of 2n′ copies of the lattice LP ,

LP =

(
2π

m

)
Z ×

(
n′π

n

)
Z, L⊥

P = mZ ×
(

2n

n′

)
Z,(3.23)
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the kth copy of LP being shifted by γk. For k = 0, . . . , n′ − 1,

γk =

(
0

(k + 1/4)πn

)
, γk+n′ =

(
π + (k + 1/4) 2π

n
−(k + 1/4)πn

)
.(3.24)

For ζ ∈ L⊥
P /L

⊥
W , ζ = (u, 2v)T , with u ∈ mZ/mZ and 2v ∈ 2n

n′ Z/4nZ. To find a
representative ζ ′ = (u′, v′) for ζ, observe that if u′ = mt, with 0 �= t ∈ Z, then |u′| ≥
|t| 4πρΩr+ρ which implies (mt, v′) /∈ K. Hence, ζ ′ = (0, 2v′). Next, by (2.11), |2v′| < 2Ωr.

Any other representative for ζ is of the form ζ ′ = (0, 2v + 4nτ) with 0 �= τ ∈ Z.
However, |2v+4nτ | ≥ |4nτ |− |2v| > 4n− 2rΩ ≥ 2rΩ. Hence, ζ ′ = (0, 2v+4nτ) /∈ K.
Accordingly, we may take ζ ′ = (0, 2jn/n′) for j = −n′, . . . , n′ − 1. Note that the
symmetry of K allows an equivalent choice of j = −n′+1, . . . , n′, and that ζj ∩K = ∅
for either indexing scheme.

The samples of D′f on each γk + LP are samples of the measurement channel,
gk = hk ∗ f , where hk(x) = δ(x− γk). For η ∈ L⊥

Q/L
⊥
P , η = (u, 2v)T , with u ∈ Z/mZ

and 2v ∈ (2Z)/( 2n
n′ Z). The k, j element of H in Definition 2.8 is given by

Hk,j = e−iζ′
jγk = e−i(0,2jn/n′)γk .(3.25)

So, for k = 0, . . . , n′ − 1,

Hk,j = e−i(2jn/n′)(k+1/4)π/n = e−i(k+1/4)2πj/n′
,(3.26)

Hk+n′,j = ei(2jn/n
′)(k+1/4)π/n = ei(k+1/4)2πj/n′

.(3.27)

Since

n′−1∑
j=−n′

(H)k1,j(H)k2,j = 2n′δk1,k2
,(3.28)

H−T is explicitly computed as H−T = 1
2n′ H, and therefore, λk,0 = 1

2n′ , which is real.
To apply Theorem 2.9, the essential bandregion K, given by (2.11) with Ω replaced

by 2Ω, must be shift-convex with respect to W⊥ and P⊥. The discussion of the
circumstances under which K is shift-convex will be postponed to section 3.2.3. For
now, we proceed under the assumption that K is indeed shift-convex.

In the present setting, Theorem 2.9 reads

∫ 2π

0

∫ π/2

−π/2

f1(β, α)f2(β, α)dαdβ

=
2π2n′

mn

2n′−1∑
k=0

1

2n′

∑
(β,α)∈ (2π/m)Z

2πZ
× (n′/n)Z

πZ

f1((β, α) − γk)f2((β, α) − γk)

=
π2

mn

∑
(β,α)∈LO∪LR

2πZ×πZ

f1(β, α)f2(β, α).

(3.29)

Applying (3.29) to (2.12) with f1(β, α) = v2Ω(xΦ − r sinα) cosα and f2(β, α) =
Df(β, α) allows the recovery of the 2Ω bandlimited version of f by a discrete sum of
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samples of the hardware-limited D′f ,

V2Ω ∗ f(x) =
rπ2

mn

∑
(β,α)∈ (2π/m)Z

2πZ
× (n′/n)Z

πZ

v2Ω(xΦ − r sinα)D′f(β, α) cosα

=
rπ2

mn

m−1∑
s=0

n−1∑
	=−n

(
v2Ω(xΦs,	 − r sinα	)D

′f(βs, α	) cosα	

+ v2Ω(xΦ′
s,	 − r sinα′

	)D
′f(β′

s,	, α
′
	) cosα′

	

)

=
rπ2

mn

m−1∑
s=0

n−1∑
	=−n

(
v2Ω(xΦs,	 − r sinα	) cosα	

+ v2Ω(xΦ′
s,	 − r sinα′

	) cosα′
	

)
D′f(βs, α	),

(3.30)

where Φs,	 and Φ′
s,	 are the unit vectors associated with φs,	 = βs + α	 − π/2 and

φ′
s,	 = β′

s,	 + α′
	 − π/2, respectively.

The reconstruction exhibited in (3.30) has a computational complexity of O(Ω4).
Following [13], to develop an algorithm with a more tractable complexity of O(Ω3),
it is necessary to replace (2.12) by the approximation, valid when both |x|  r and
V2Ω(k) is close to zero for |k| near 2Ω [14],

V2Ω ∗ f(x) = r

∫ 2π

0

|b− x|−2

∫ π/2

−π/2

v2Ωr(sin(ν(b, x) − α)) cosαD′f(β, α) dαdβ.

(3.31)

Here, b = (r cosβ, r sinβ)T , b⊥ = (r cos(β + π/2), r sin(β + π/2))T , and

cos ν(b, x) =
(b− x)b

|b− x||b| , ν(b, x) � 0 whenxb⊥ � 0.(3.32)

By Theorem 2.9 and (3.29), the double integral can be computed as a discrete sum.
For |x| < ρ,

V2Ω ∗ f(x) =
rπ2

mn

m−1∑
s=0

|bs − x|−2
n−1∑
	=−n

v2Ωr(sin(ν(bs, x) − α	)) cosα	D
′f(βs, α	)

+
rπ2

mn

m−1∑
s=0

n−1∑
	=−n

|b′s,	 − x|−2v2Ωr(sin(ν(b′s,	, x) − α′
	)) cosα′

	D
′f(βs, α	)

= T1(x) + T2(x).

(3.33)

The first term on the right-hand side, T1, in (3.33) can be computed by adapting the
method to interpolate convolutions suggested in [5] to the divergent beam geometry.
As the inner sum is not sufficiently sampled to be a valid approximation to the cor-
responding integral, artifacts are introduced in the interpolation step. To avoid the
artifacts, instead of interpolation with a step size of ∆α, the interpolation is done
with a finer step size of ∆α/M for a sufficiently large M .

As written, the discrete convolution argument cannot be applied to the second
term T2 in (3.33) because b′s,	 depends on �. To restore a convolution structure, the
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sample points are reorganized as a union of n′ lattices as in (3.18). After a reindexing,
the discrete convolution argument can be applied to each lattice independently, and
T2 is obtained by summing the result,

T2(x) =
rπ2

mn

n′−1∑
k=0

m−1∑
s=0

n/n′−1∑
	=−n/n′

|b′s,n′	+k − x|−2v2Ωr(sin(ν(b′s,n′	+k, x) − α′
n′	+k))

× cosα′
n′	+kD

′f(βs, αn′	+k).

(3.34)

From (3.15), b′s,n′	+k = −bs+m′(	+(k+1/4)/n′) and

cos ν(b′s,n′	+k, x) =
(b′s,n′	+k − x)b′s,n′	+k

|b′s,n′	+k − x||b′s,n′	+k|

=
(bs+m′(	+(k+1/4)/n′) + x)bs+m′(	+(k+1/4)/n′)

|bs+m′(	+(k+1/4)/n′) + x||bs+m′(	+(k+1/4)/n′)|
= cos ν(bs+m′(	+(k+1/4)/n′),−x).

(3.35)

Also, the sign of ν(b′s,n′	+k, x) is the same as that of ν(bs+m′(	+(k+1/4)/n′),−x). Hence,

ν(b′s,n′	+k, x) = ν(bs+m′(	+(k+1/4)/n′),−x).(3.36)

Of course, it is understood that the arithmetic in the subscripts of βs and bs is in
R/mZ,

T2(x) =
rπ2

mn

n′−1∑
k=0

m−1∑
s=0

n/n′−1∑
	=−n/n′

|bs+m′(	+(k+1/4)/n′) + x|−2

× v2Ωr(sin(ν(bs+m′(	+(k+1/4)/n′),−x) − α′
n′	+k)) cosα′

n′	+kD
′f(βs, αn′	+k).

(3.37)

Reindex the sums over s and � as sums over t = s + m′� and �,

T2(x) =
rπ2

mn

n′−1∑
k=0

(
m−1∑
t=0

|bt+(k+1/4)m′/n′ + x|−2

×
n/n′−1∑
	=−n/n′

v2Ωr(sin(ν(bt+(k+1/4)m′/n′ ,−x) − α′
n′	+k))

× cosα′
n′	+kD

′f(βt−m′	, αn′	+k)

⎞
⎠ .

(3.38)

For each k, the innermost sum of (3.38) is a discrete convolution with separation n′∆α.
To achieve O(Ω3) computation, the convolution at ν(bt+(k+1/4)m′/n′ ,−x) is obtained
by interpolation from the convolution evaluated at a discrete set of values. As this
discrete convolution is 2n′ times undersampled with respect to the corresponding
continuous integral in α, Theorem 2.6 cannot be applied. To avoid the introduction
of artifacts, it is again necessary to compute the convolution on an extra fine grid.
Introduce a multiplier MR, and compute the convolution on a grid with a separation
of n′∆α/MR between grid points. The algorithm for reconstruction can now be
presented.
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Algorithm 3.2 (divergent beam reconstruction at hardware resolution).

1. Choose an integer multiplier MO. Typically, MO = 8 is large enough. For
s = 0, . . . ,m− 1 and � = −nMO, . . . , (n− 1)MO, compute the discrete convolutions

hO
s,	 =

n−1∑
µ=−n

v2Ωr(sin(α	/MO − αµ)) cosαµD
′f(βs, αµ).(3.39)

2. Choose an integer multiplier MR. Typically, MR = 8n′ should be large
enough. For k = 0, . . . , n′−1 and t = 0, . . . ,m− 1, compute the discrete convolutions
at � = −nMR, . . . , (n− 1)MR

hR
k,t,	 =

n/n′−1∑
µ=−n/n′

(
v2Ωr(sin(α	/MR − α′

n′µ+k)) cosαµD
′f(βt+m′µ, αn′µ+k)

)
.(3.40)

3. For each x at which the reconstruction is needed, evaluate the interpolated
discrete backprojection

fO(x) =
rπ2

mn

m−1∑
s=0

|bs − x|−2
(
(1 − ϑs)h

O
s,	s + ϑsh

O
s,	s+1

)
,(3.41)

where

τs =
MOνs(x)

∆α
, �s = �τs − 1/4�, ϑs = τs − (�s + 1/4).(3.42)

4. For each x at which the reconstruction is needed, and for each k = 0, . . . , n′−
1, evaluate the interpolated discrete backprojection

fR,k(x) =
rπ2

mn

m−1∑
t=0

|bt+(k+1/4)m′/n′ + x|−2
(
(1 − ϑt)h

R
k,t,	t + ϑth

R
k,t,	t+1

)
,(3.43)

where

τt =
MRν(bt+(k+1/4)m′/n′ ,−x)

∆α
, �t = �τt − 1/4�, ϑt = τt − (�t + 1/4).(3.44)

5. The approximation f2Ω(x) to V2Ω ∗ f(x) is given by

f2Ω(x) = fO(x) +

n′−1∑
k=0

fR,k(x).(3.45)

The errors in this approximation can arise from a number of sources.
1. The aliasing from the side lobes in the measurement system response function

was ignored. One way to reduce this effect is to custom design a detector to minimize
the size of the side lobes.

2. The divergent beam transform of a function is not bandlimited, but essen-
tially bandlimited. Reconstructing at a slightly reduced bandwidth from the optimal
bandwidth will reduce the aliasing due to the Fourier transform not truly vanishing
outside the nominal support region K. Estimates for this type of error are available.
See [6, 10], for example.
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3. In the derivation of (3.31), the correct kernel V2Ω|b−x| was replaced by the
kernel V2Ωr. This approximation will break down when x gets close to r. Thus, it is
necessary to keep ρ  r.

4. While Df(βs, α	) = Df(β′
s,	, α

′
	), it is not strictly true that D′f(βs, α	) =

D′f(β′
s,	, α

′
	) as the two are averaged over slightly different sets of lines. Incorporating

a source width into the model mitigates the effect of this approximation.
5. If either MO or MR is not large enough, the linear interpolation in step 3

or step 4 will effectively further bandlimit the reconstruction, causing artifacts in the
reconstructed image.

3.2.3. Shift-convexity of K. In order to apply Algorithm 3.2, the bandregion
K must be shift-convex with respect to W⊥ and P⊥. The shape of K is determined
by θ = ρ/r, and the scaling of K is determined by the product rΩ. From these
parameters, it is not immediately obvious whether K is shift-convex with respect to
the sampling lattices. In this section, it will be shown how to choose the parameters
m and n to guarantee shift-convexity of K, so Algorithm 3.2 can be applied to recover
f at the maximum resolution consistent with the detector hardware.

First, to illustrate the problem which can arise, consider equality in (3.12) and
(3.13) with the two examples θ = 1/2 and θ = 1/3. Shift-convexity with respect to
W⊥ and P⊥ requires that once K has been shifted by an element of L⊥

W , further
shifting away from the origin by elements of L⊥

P does not reintroduce overlap. The
smallest generators for L⊥

W consistent with (3.12) and (3.13) are w1 = (0, 4rΩ)T and
w2 = ( ρ

r+ρ4rΩ, 0)T . w2 has been chosen to be the minimal horizontal shift necessary

to ensure K ∩ (K + w2) = ∅. With equality in (3.12) and (3.13), m/n = 4ρ
r+ρ = 4θ

1+θ .

For θ = 1/2, m/n = 8/3, so n′ = 3. Hence, p1 = w1/6 = (0, 2rΩ/3)T . As illustrated
in Figure 6, further shifting of K +w2 by several multiples of p1 reintroduces overlap,
so K is not shift-convex. On the other hand, for θ = 1/3, m/n = 1, so n′ = 1.
Here, p1 = w1/2 = (0, 2rΩ). In this case, K + w2 + P1 interlaces with K, so no
overlap is introduced and K is shift-convex. As θ controls the shape of K, whether
this interlacing occurs depends on θ, and also on the size of the vertical shift p1, which
depends on n′.

From the above examples, it can be seen that absent an interlacing of the type
seen for θ = 1/3, vertical shifts of K + w2 by multiples of p1 can reintroduce over-
lap when the left side of a shifted K covers the upper right side of K. To avoid
such overlapping, two approaches are suggested. Each requires an oversampling in β,
the amount depending on θ. Oversampling is measured with respect to the optimal
sampling density, given by equality in (3.13).

Method 1. Extend w2 to be the smallest length such that all vertical translations
of K + w2 do not overlap K. That is, the inequality of (3.13) is replaced by

m =
2π

∆β
≥ 4ρΩ.(3.46)

By construction, K is automatically shift-convex, independently of any choice of m
and n consistent with (3.12) and (3.46). The shift-convexity comes at the expense of
an oversampling in β by a factor of 4ρΩ/ 4rρΩ

r+ρ = 1 + θ with respect to the optimal
sampling density.

Since the possibility that K may interlace with its shifts has not been utilized,
for some parameter values (such as θ = 1/3), shift-convexity can be achieved with a
sparser sampling than this method constructs.
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k

a

k

a

Fig. 6. The essential bandregion K for the divergent beam transform is shown along with some
of its translates. K is solid, K + w2 is outlined in black, and K + w2 + jp1 with j �= 0 is shown in
gray. The left figure was drawn with equality in (3.12) and (3.13) and with θ = 1/2. Here n′ = 3.
Although K ∩ (K + w2) = ∅, there is overlap between K and K + w2 + jp1 for j = 1, 2, 3. Hence K
is not shift-convex with respect to the corresponding W⊥ and P⊥. The right figure was drawn with
equality in (3.12) and (3.13) and with θ = 1/3. In this case n′ = 1, and both K ∩ (K +w2) = ∅ and
K ∩ (K + w2 + p1) = ∅. K is shift-convex with respect to the corresponding W⊥ and P⊥.

Method 2. The physical detector geometry determines r and ∆α. Accordingly, n
is fixed. Since maximizing reconstruction resolution is the objective, Ω is determined
by equality in (3.12). m ∈ Z can be chosen freely as long as the inequality of (3.13)
is satisfied and K is shift-convex.

Algorithm 3.2 is simplest, easiest to implement, and quickest when n′ = 1. In
what follows, it is shown how to choose m so that n′ = 1 simultaneously with K being
shift-convex.

When n′ = 1, L⊥
P undersamples by a factor of 2, so p1 = (0, 2rΩ)T . It is necessary

to select υ > 0 to locate the minimal shift w2 = (2υrΩ, 0)T such that both K ∩ (K +
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w2) = ∅ and K ∩ (K + w2 + p1) = ∅. The latter holds when either the upper
left corner of K + w2 + p1 is to the right of the line a = (1 + 1/θ)k, or the upper
right corner of K is to the left of the line connecting the center of K + w2 + p1 to
the upper left corner of K + w2 + p1. The coordinates of the upper left and right
corners of K are, respectively, (−2ρΩ, 2(r − ρ)Ω)T and (2ρΩ, 2(r + ρ)Ω)T , and the
coordinates of the center and upper left corners of K + w2 + p1 are, respectively,
(2υrΩ, 2rΩ)T and (2(υr − ρ)Ω, 2(2r − ρ)Ω)T . The first condition becomes (assuming

υ > 0), 2(2r−ρ)Ω
2(υr−ρ)Ω ≤ (1 + 1/θ), or equivalently, since K ∩ (K +w2) = ∅ implies υr > ρ,

υ ≥ 3θ

1 + θ
.(3.47)

The second condition is satisfied when (2ρΩ, 2(r + ρ)Ω)T is to the left of the line of
slope 1 − 1/θ through (2υrΩ, 2rΩ)T . That is, 2ρΩ

2(ρ−υr)Ω ≥ θ−1
θ , or equivalently,

υ ≥ θ

1 − θ
.(3.48)

Thus, for K to be shift-convex with n′ = 1, (3.13), (3.47), and (3.48) together require
m/n to be integral and

m ≥ 2rΩ max

(
2θ

1 + θ
,min

(
3θ

1 + θ
,

θ

1 − θ

))
.(3.49)

Inequality (3.49) can be expressed as

m ≥ n

⎧⎪⎪⎨
⎪⎪⎩

4θ
1+θ θ ∈ (0, 1/3],

2θ
1−θ θ ∈ (1/3, 1/2],

6θ
1+θ θ ∈ (1/2, 1).

(3.50)

For θ ≤ 1/3, 4θ
1+θ ≤ 1, so m = n satisfies both requirements, for an effective

oversampling in β of 1+θ
4θ . For θ ∈ (1/3, 1/2], 1 < 2θ

1−θ ≤ 2, so m = 2n = 2rΩ.

This gives an effective oversampling of 1+θ
2θ . For θ ∈ (1/2, 1), 2 < 6θ

1+θ < 3, so

m = 3n = 3rΩ. This gives an effective oversampling of 3(1+θ)
4θ .

Inequality (3.50) governs the additional sampling density beyond that of (3.13)
which is needed to avoid overlap. A component of the inefficiency (which, for small
θ, is unacceptably large) arises from the requirement that m/n be integral. Which of
the two methods is preferable can be ascertained by examining Figure 7 in which the
oversampling required for each method is plotted as a function of θ. The maximum
oversampling of 1.75 occurs for θ = 3/4. We note that for modern medical CT
scanners, typically θ ≤ 1/3, and θ ≤ 1/2 almost always.

No oversampling occurs when θ = 1/3. As θ increases beyond 1/3, the oversam-
pling jumps abruptly to 4/3 because (3.46) requires m = 2n when the right-hand side
is slightly larger than 1. In a configuration with θ slightly larger than 1/3, practi-
cally speaking, the relatively large ρ precludes visualization of the full 2Ω bandwidth.
Therefore, it is common practice to filter the acquired data to perform a reduced
resolution reconstruction. With Ω slightly reduced from the optimal value given by
(3.12), m = n can be used. This gain in reconstruction efficiency comes at the cost
of a slight loss in reconstruction resolution.
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Fig. 7. The left figure shows the oversampling required in the β direction to ensure the shift-
convexity of K is plotted against θ. The oversampling required for Methods 1 and 2 are shown in
black and gray, respectively. The right figure shows the oversampling required when the most efficient
method is selected.

Reduction of the reconstruction bandwidth Ω to reduce oversampling can be
interpreted as yet a third method available to guarantee shift-convexity. The specific
application requirements will determine what levels of oversampling versus resolution
reduction are acceptable.

We close this section by remarking that the increased source density from shift-
convexity induced oversampling impacts reconstruction time. The data from each
source point must be backprojected. Since the bulk of the processing time is in the
backprojection phase, computation time is increased by a factor matching that of the
oversampling. Future studies will assess the practical significance of this increased
execution time.

4. Numerical experiments. To validate the performance of the divergent
beam multichannel sampling algorithm, Algorithm 3.2, third generation projection
data from a simulated phantom was reconstructed both with Algorithm 3.2 and with
the standard algorithm (Algorithm 5.3 in [13]).

The phantom used was an off-center disk modeling water with two pins of bone.
This phantom, shown in Figure 8, was selected to test the recovery of details near the
edge of the scan circle, a region in which any lack of conformance to (3.6) will produce
artifacts. Also, in this region the approximation of (3.31) incurs the largest error. The
scan radius for the phantom is ρ = 20. The circle which modeled water had a radius
of 6.27208, was centered at (−9, 9), and had attenuation coefficient in CT numbers of
1000. The pins modeling bone had a radius of 0.2, attenuation coefficient 2000, and
were centered at (14.3313, 9) and (−9, 14.3313).

The simulated data from a third generation detector were generated with a source
radius of r = 60. Thus, ρ/r = 1/3, which, with equality in (3.12) and (3.13), implies
n′ = 1. Figure 5(a) shows the interlacing of the original and reflected lattices for
this geometry. The reconstruction bandwidth for the standard algorithm is Ω =
31.59 corresponding to a resolution of 0.1 in the reconstructed image. The simulated
hardware-limited bandwidth was 2Ω for an effective reconstruction resolution of 0.05.

Four reconstructions were performed, all using the cosine filter with a minor cor-
rection to reduce ringing. That is, ψ in (2.13) is taken to be ψ̂(σ) = χ[−1,1](σ) cosσπ/2.

In Figure 9, the reconstruction at bandwidth 2Ω using the divergent beam mul-
tichannel sampling algorithm with MO = MR = 8 is shown. The data set consisted
of 410 samples in α and 1884 samples in β. The top two images show the intermedi-
ate reconstructions fO and fR obtained by using only the original or reflected sample
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Fig. 8. The phantom used for numerical experiments is shown. The scan radius for the phantom
is ρ = 20. Data were collected using a source radius of r = 60. The larger circle modeling water has
radius 6.27208, is centered at (−9, 9) and has attenuation coefficient 1000. The pins modeling bone
have radius 0.2, attenuation 2000, and are centered at (14.3313, 9) and (−9, 14.3313). This phantom
was chosen to test the reconstruction algorithms’ ability to recover details near the edge of the scan
circle, a region in which any lack of conformance to (3.6) will produce artifacts. Also, in this region
the approximation of (3.31) incurs the largest error.

points. Observe that each of the intermediate images exhibits undersampling artifacts
which disappear in the final reconstructed image. The reconstructions in this figure
and the following one are all displayed with a window of 5 units centered on 1000.

A comparison between the divergent beam multichannel reconstruction and the
standard algorithm appears in Figure 10. In Figure 10(a), the 2Ω reconstruction from
the divergent beam multichannel sampling algorithm with 410 α samples and 1884 β
samples is copied from Figure 9.

Figure 10(b) shows the standard divergent beam reconstruction at bandwidth Ω
from 942 β samples and 410 α samples. It was sampled with the minimum density
sufficient for applying the standard divergent beam reconstruction at a bandwidth
of Ω. It shows a swirl artifact which is probably from a slight undersampling in β.
The reconstructed diameter of the two pins is significantly larger than that of the
phantom or that of the multichannel sampling reconstruction. This is due to the
lower bandwidth, and hence, inferior resolution.

Figure 10(c) shows the reconstruction obtained when the standard divergent beam
algorithm at bandwidth Ω is applied to the same data set used in generating Fig-
ure 10(a). This reconstruction is two-times oversampled in β and at the minimum
sample density in α. The oversampling in β clears the swirl artifact, but as this
reconstruction is still at bandwidth Ω, the smearing artifact does not improve.

Figure 10(d) shows the standard divergent beam algorithm applied at bandwidth
2Ω to data with 818 α and 1884 β samples. In this simulation the 818 α samples were
“acquired” with detector elements half the size of those in Figures 10(a), 10(c), and
10(d). This data set is at the minimal density for a 2Ω application of the standard
algorithm. As the bandwidth is 2Ω, the pins do not show the smearing artifact.

Comparing Figures 10(a) and 10(d), it can be seen that the multichannel algo-
rithm does effectively reconstruct at a 2Ω bandwidth.

Finally, it has been observed that the residual artifact between the pins is not
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(a)

(b)

Fig. 9. The reconstruction of the phantom from simulated third generation divergent beam
projection data is shown with a window of 5 CT units centered about 1000 (water). The divergent
beam multichannel sampling algorithm was applied with MO = MR = 8 to reconstruct at bandwidth
2Ω from 1884 β samples and 410 α samples. The upper left image shows the reconstruction fO using
data from the original lattice LO. The upper right image shows the reconstruction fR using data
from only the reflected lattice. Both fO and fR exhibit artifacts from the undersampling in α. The
bottom image is the final reconstruction obtained from the sum of fO and fR. The undersampling
artifacts disappear as this reconstruction is appropriately sampled.

a function of the reconstruction algorithm. It is an artifact of the fine sampling
incorporated into the third generation projection simulator. Increasing the fine sam-
pling reduces this artifact. Due to the smaller detector element, the data set for
Figure 10(d) has an effective fine sampling double that of the other data sets. As a
result, the amplitude of the artifact is reduced.

5. Conclusions. A multichannel sampling reconstruction algorithm has been
presented to reconstruct data from a third generation CT scanner at the resolution
limit of hardware detector. Initial reconstructions have validated the algorithm. Fur-
ther testing is underway to evaluate the speed and image quality of this algorithm.
It is expected that similar techniques can be applied to handle the flying focal spot
capability of some modern scanners.
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(a) (b)

(c) (d)

Fig. 10. Reconstructions of the phantom from simulated third generation divergent beam pro-
jection data are shown with a window of 5 CT units centered about 1000 (water). Each of the
reconstructions is centered on the region of interest in the phantom. In (a), the divergent beam
multichannel sampling algorithm was applied to reconstruct at bandwidth 2Ω from 1884 β samples
and 410 α samples. In (b), the standard divergent beam reconstruction was applied at bandwidth
Ω from 942 β samples and 410 α samples. It is sampled with the minimum density sufficient for
applying the standard divergent beam reconstruction at a bandwidth of Ω. In (c), the standard di-
vergent beam algorithm was applied to reconstruct at a bandwidth Ω from the same data set used for
(a). This reconstruction is two-times oversampled in β, but at the minimum sample density in α.
In (d) the standard divergent beam algorithm was applied at bandwidth 2Ω to 1884 β samples and
818 α samples. The detector element was half the size of the detector element for the other three
data sets.
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Abstract. Certain equations with integral constraints have as solutions time-periodic pulses of a
fieldlike unknown while a currentlike unknown oscillates periodically with time. A general asymptotic
theory of this phenomenon, the generalized Gunn effect, has been found recently. Here we extend
this theory to the case of nonlinearities having only one stable zero, which is the case for the usual
Gunn effect in n-GaAs. Our ideas are presented in the context of a simple scalar model where the
waves can be constructed analytically and explicit expressions for asymptotic approximations can be
found.
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piecewise linear model, Gunn effect
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1. Introduction. The Gunn effect is the periodic oscillation of the current in a
passive external circuit attached to a dc-voltage biased semiconductor whose electron
drift velocity has a single maximum as a function of the electric field (and therefore
the curve of electron velocity versus electric field has negative slope for field values
on a certain interval, a fact called negative differential mobility) [22, 25]. During each
period of the oscillation, a pulse of the electric field is created at the injecting contact,
moves through the semiconductor, and is annihilated at the receiving contact. While
originally observed in bulk n-GaAs samples, similar current oscillations, mediated by
pulse dynamics in dc-voltage biased semiconductors, have been found in many mate-
rials, several of which lack negative differential mobility [1]. Instead, other processes
(impact ionization at impurities [24], nonlinear capture coefficients [21], nonlinear re-
combination processes, etc.) may be responsible for a current vs. local electric field
characteristic curve displaying a local maximum followed by a region of negative slope
(negative differential conductivity).

Propagation of pulses occurs in many systems of interest in biology, physics,
and so on: morphogen pulses or spikes in activator-inhibitor reaction-diffusion sys-
tems modeling cell development or chemical reactors [16, 12, 13, 23], propagation of
nerve impulses along myelinated or unmyelinated fibers [18, 20, 17], pulse propaga-
tion through cardiac cells [18], calcium release waves in living cells [9], semiconductor
superlattices [8, 26], and oscillatory instabilities of the current in bulk semiconductors
with an N-shaped current-field characteristic [1, 22, 25]. These distributed systems
can be spatially discrete or continuous and can be described by a variety of model
equations. Sometimes a pulse is created from an appropriate initial condition and
reaches a stable shape, moving uniformly until it arrives at a boundary. Sometimes
understanding pulse dynamics is the key to describing a more complicated evolution
of the system. A good example is the Gunn effect in bulk semiconductors.
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Fig. 1. Self-sustained oscillations of the “current” J(t) (see inset, which shows one period of
J(t)) mediated by pulses of the “field” u(x, t), which are solutions of the model described in section 2.
The pulse profiles correspond to the times marked in the inset. Case (a): bistable source. Case (b):
source with a single stable zero.

While Gunn-like instabilities have been known for a long time, only recently have
pulse annihilation and creation at boundaries been studied by asymptotic methods
[14, 5, 6]. These theories treated the case in which the relevant nonlinear source
term has two stable zeros. Then there are stable wavefronts joining these two zeros,
and a moving pulse is a flat region of high field bounded by two wavefronts. The
pulse changes its size if its leading and trailing wavefronts move at different speeds.
Figure 1 shows the time-periodic oscillation of a “current” J(t) accompanied by the
repeated generation and motion of flat-top pulses of an “electric field” u(x, t), which
are solutions of model equations described in section 2. Figure 1(a) corresponds to
the case of a bistable nonlinear source. The asymptotic analysis of the Gunn effect
is based on the dynamics of such pulses [5]. However, the source term (velocity-
field characteristic curve) in very relevant materials, such as bulk n-GaAs [22], wide-
miniband GaAs/AlAs superlattices [11, 15], and semi-insulating GaAs [21], does not
have two stable zeros. Instead, the nonlinearity has a single stable zero, so the previous
theories, based on two moving wavefronts, are not valid. Figure 1(b) shows the self-
sustained oscillations corresponding to this case. Can we find an asymptotic theory of
pulse mediated oscillations in this case? The answer is yes, as we show in this paper.

To emphasize that our analysis applies to a class of models, we shall analyze a
simpler problem than that of the Gunn effect. We will study a nonlinear reaction-
diffusion-convection equation with an integral constraint [6] and a piecewise linear
source term. Then the pulses can be constructed analytically, their size can change
as they move, and explicit expressions for the asymptotic approximations can be
found. Such a construction was used by Rinzel and Keller for the FitzHugh–Nagumo
equation [20]. For Kroemer’s model, a piecewise linear electron velocity was used to
calculate the exact form and speed of a steadily propagating pulse [10].
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The outline of the paper is as follows. Section 2 presents our simplified model.
It also reviews the key ideas of previous asymptotic theories, valid for an N-shaped
nonlinearity with two stable zeros. Section 3 discusses the construction of stationary
solutions, and the kinematics of wave fronts, in the limit of long samples. When
the nonlinearity is piecewise linear, the pulses can be found analytically. Section 4
discusses the dynamics of a single pulse moving from the injecting to the receiving
boundary. We show that the pulse changes form and speed adiabatically, following
the instantaneous value of the current. In section 5, we complete our description
of the oscillations by explaining what happens when the pulse reaches the receiving
boundary and how a new pulse is created at the injecting boundary. Section 6 contains
our conclusions. The appendices are devoted to technical matters.

2. Simple scalar model. The model consists of a one-dimensional nonlinear
parabolic equation for u(x, t) (the “electric field”) with an unknown forcing term J(t)
(the “current”). There is also an integral constraint (the “voltage bias condition”),
as well as boundary and initial conditions,

∂u

∂t
+ K

∂u

∂x
=

∂2u

∂x2
+ J − g(u), 0 < x < L,(2.1)

1

L

∫ L

0

u(x, t) dx = φ,(2.2)

u(0, t) = ρ J(t), ρ > 0,
∂u

∂x
(L, t) = 0,(2.3)

u(x, 0) = f(x) ≥ 0, 0 < x < L.(2.4)

Here K, ρ, and φ are positive constants.
This model becomes the Kroemer model of the Gunn effect if the advection con-

stant K in (2.1) is replaced by g(u) [2, 3, 4, 14, 22, 25]. For the Kroemer model,
existence and uniqueness of solutions have been studied by Liang [19]. Furthermore,
linear stability of the stationary and moving pulse solutions has been analyzed in [3];
see also [22, 25]. A bifurcation analysis of the self-sustained oscillations due to pulse
dynamics near critical values of φ can be found in [4]. Asymptotic analyses of the
Gunn effect for the Kroemer model with a bistable g(u) can be found in [14, 5].

2.1. Bistable source g(u). The simplest case to consider is that of an N-shaped
nonlinearity g(u) (the “velocity-field characteristic”) for u ≥ 0, with a local maximum
gM = g(uM ), uM > 0, followed by a local minimum gm = g(um) > 0, um > uM . Then
J−g(u) may have up to three positive zeros for J > 0, namely, u1(J) < u2(J) < u3(J).
For large enough L and K, gM/uM < ρ < gm/um, and for φ in a certain subinterval
of (uM , u3(gM )), there are stable time periodic solutions of (2.1)–(2.3) of Gunn type.
As shown in Figure 1(a), while J(t) oscillates periodically, pulses of u(x, t) are created
at x = 0, move towards x = L, and disappear there.

The analysis of the model is simple in the asymptotic limit

0 < ε ≡ 1

L
� 1.(2.5)
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In this limit (2.1)–(2.2) may be written as

∂u

∂s
+ K

∂u

∂y
= ε

∂2u

∂y2
+

J − g(u)

ε
,(2.6)

∫ 1

0

u(y, s) dy = φ,(2.7)

where

y = εx, s = εt.(2.8)

Equation (2.6) is a parabolic equation with fast reaction and slow diffusion terms.
As ε → 0+, u(y, s) is typically a piecewise constant function taking on the order 1
values u1(J) or u3(J) in intervals of length y = O(1). The extrema of these intervals
are typically moving internal layers. These layers are important because they bound
pulses, and the self-sustained oscillation we want to describe is due to recycling and
motion of pulses at the boundaries. A pulse is a region where u is u3(J), separated by
moving wavefronts from two other regions where u is u1(J). There are two wavefronts
bounding the pulse. In the backfront, u increases from u1(J) to u3(J); this front moves
with a speed c+(J). The forefront moves at speed c−(J), and in it u decreases from
u3(J) to u1(J). Forefront and backfront are heteroclinic trajectories connecting the
two saddles (u1(J), 0) and (u3(J), 0) in an appropriate phase plane (u, du/dχ), where
χ = [y−Y (s)]/ε is a moving coordinate (χ = 0 at the wavefront and dY/ds = c±(J)).
The instantaneous value of J(s) is determined by using the integral condition (2.7).
Typically J obeys the simple equation

dJ

ds
= A(J) [n+c+(J) − n−c−(J)],(2.9)

where A(J) > 0 is a known function of J , and n+ and n− are the numbers of wave-
fronts with increasing and decreasing u profiles, respectively. For high-field domains,
n+ − n− = 0, 1 [6, 5]. The fixed points of (2.9) correspond to the equal area rule∫ u3

u1

[g(u) − c] du = 0(2.10)

if n+ = n−, or to possible plateaus in the shape of J(s) otherwise. Many questions
on the stability of the pulses and their evolution can be simply answered by analyzing
(2.9) and using the asymptotic procedure explained in [6, 5]. The description of pulse
creation and annihilation at the boundaries requires a finer analysis, as explained in
[6, 5].

2.2. Saturating source. If g(u) saturates, i.e., g(u) → constant as u → ∞, no
u3(J) exists and the previous construction is no longer possible. What is the correct
asymptotic description of a pulse in this case? Let us anticipate the answer here. As
Figure 1(b) shows, a pulse is a traveling wave whose profile has a single maximum,
and tends to u = u1(J) as x → ±∞. The pulse is bounded by a leading front
(forefront, moving at speed c−) and a trailing front (backfront, moving at speed c+).
Two parameters uniquely determine the pulse: its maximum height, um, and the
instantaneous value of J . Given um and J , we can find the wavefronts enclosing
the pulse by simple phase plane constructions. Consider the phase plane (u, du/dχ),
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χ = x − X(t), where X(t) is the instantaneous position of a wavefront and dX/dt
its speed. There is a unique speed c+ = c+(J, um) for which a separatrix issuing
from the saddle (u1(J), 0) on the upper half plane reaches the u axis at (um, 0). This
separatrix constitutes the backfront of the pulse, and a similar construction supplies
its forefront moving at speed c−(J, um). In general, c+ �= c−, which implies that our
pulse changes its size as it moves. How do we characterize the dynamics of pulses?

Suppose that there is a single pulse moving in the sample. We need to determine
the instantaneous values of J and um, for they characterize the pulse completely
. The pulse width, l, changes as dl/dt = c− − c+. On the other hand, l may be
determined by a line integral on the corresponding phase plane trajectories which
form the pulse. Then l = l(J, um). The dc bias condition yields a connection between
um and J , um = U(J). Then the pulse width is a function of J only, ϕ(J) = l(J, U(J)).
Therefore, since dl/ds = ϕ′(J) dJ/ds = c− − c+, we get

dJ

ds
=

c+(J, U(J)) − c−(J, U(J))

−ϕ′(J)
.(2.11)

Typically the fixed point of this equation, J = J∗, is such that c+ = c− is a globally
stable solution, so that J tends exponentially fast to J∗. The corresponding pulse
moves steadily without changing its size. This pulse is the homoclinic orbit in the
phase plane, usually given by an equal-area rule, and has been exhaustively studied
by previous authors. Notice that the present construction explains why this steadily
moving pulse is stable, thereby clarifying an old issue at the heart of the Gunn effect
[25, 2]. When the pulse reaches the receiving contact, a different stage of the Gunn
oscillation begins. This stage and others needed to fully describe the Gunn oscillation
will be explained later.

A subtle point follows. Due to the integral condition (2.2), the pulse height and

width (in the (y, s) scales) are O(ε−
1
2 ) � 1 and O(ε

1
2 ), respectively, while outside

the pulse, u = u1 = O(1) and J = O(1). Thus our leading order approximation for
u(y, s) is not uniformly of the same order in space. Successive approximations of a
single pulse lead to the following ansatz for u:

u(y, s; ε) ∼ u(0)(y, s; ε) + ε u(1)(y, s; ε).

Here each u(j)(y, s; ε) may be of different order in ε for different values of the space
and time variables. However, we shall impose that

u(1)

u(0)
= O(1)

uniformly in y and s as ε → 0+. This situation results in a changing (self-adjusting)
time scale for the evolution of J described by (2.11). See [7] for the description of a
similar situation in combustion theory.

3. Boundary layers and wavefronts. The model (2.1)–(2.4) was introduced
in order to argue that the asymptotics of the Gunn effect is universal within a class
of models [6]. The nonlinearity g(u) was originally N-shaped: it had three branches
for u > 0 (with a maximum at uM > 0 and a minimum at umin > uM such that
g(uM ) > g(umin) > 0, with g(u) → ∞ as u → ∞). In the present paper, we
shall assume that g(u) is a smooth function having a single maximum at uM > 0,
g(uM ) = gM > 0, such that g′(0) = β > 0, and limu→∞ g(u) = α ∈ (0, gM ). To



1058 L. L. BONILLA, M. KINDELAN, AND J. B. KELLER

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

u

g

J
c

J*

u = J φ

Fig. 2. The nonlinearity function g(u) (solid) and the curve corresponding to the boundary
conditions J = u/ρ (dashed). The parameter values are φ = 1.6, L = 200, K = 2.0, uM = 2.0,
β = 1.5, α = 1.0, ρ = 1.2.

obtain explicit analytic expressions, we shall use a piecewise linear version of g(u),

g(u) = βu θ(uM − u) + α θ(u− uM ),(3.1)

where θ(x) is the Heaviside unit step function. See Figure 2, where we have also shown
a typical straight line J = u/ρ which gives the value of u at the left boundary. Notice
that the straight line intersects g(u) at (uM , ρuM ), with α < ρuM < gM . We want to
find stable solutions (u(x, t), J(t)) of (2.1) and (2.2) under the boundary conditions
(2.3) and the initial condition (2.4) for appropriate positive values of the bias φ in the
asymptotic limit L → ∞.

3.1. Outer limit and boundary layers. If 0 < φ < uM , there is a single
stationary solution of (2.1)–(2.3) which is easily constructed. Let y = x/L ≡ εx,
0 < ε � 1. Introducing this scaling in (2.1) yields the leading order equation

J − g(u) = 0(3.2)

outside the boundary layers at y = 0, 1. For 0 < J < gM and 0 < y < 1, (3.2) has the
solutions u1(J) < u2(J). Of these we may choose u = u1(J), 0 < y < 1, as the outer
limit. Inserting it into (2.2), we find u1(J) + O(ε) = φ and then (3.2) yields

J = g(φ).(3.3)

For the piecewise linear g(u), J = β φ, and u1(J) = J/β.
The boundary layers at y = 0, 1 are solutions of the problems

∂2U

∂ξ2
∓K

∂U

∂ξ
+ J − g(U) = 0, 0 < ξ < ∞,(3.4)

U(0) = ρJ, U(∞) = u1(J).(3.5)

Here ξ = x = y/ε for the injecting boundary layer at y = 0, and ξ = L−x = (1−y)/ε
for the receiving boundary layer at y = 1. The minus (resp., plus) sign in (3.4)
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corresponds to the injecting (resp., receiving) boundary. Clearly, the shape of the
unique solution of (3.4) and (3.5) (for ξ = x) depends on whether J is smaller or larger
than J = Jc = uM/ρ. When 0 < J < Jc, the boundary layer profile monotonically
decreases from u = ρJ to u1 = J/β. For the piecewise linear g(u), we have

U(ξ) =
J

β
+

(
ρJ − J

β

)
exp

(
−
√
K2 + 4β ∓K

2
ξ

)
,(3.6)

∫ ∞

0

(U − u1) dξ =
2
(
ρJ − J

β

)
√
K2 + 4β ∓K

.(3.7)

However, if J > Jc, the boundary layer profile reaches a maximum before decreasing
to u1 = J/β. Numerical simulations show that in this case, the stationary solution
of the model becomes unstable to Gunn-type oscillations. Given (3.3), this occurs for
φ > u1(Jc).

3.2. Wavefronts.

3.2.1. Bistable source. Let us first review how to compute the wavefronts
when g(u) is N-shaped. Then (3.2) has three solutions u1(J) < u2(J) < u3(J) for
g(um) < J < g(uM ). As explained in [6], the building blocks of the Gunn-oscillation
asymptotics are wavefronts connecting u1(J) and u3(J). These wavefronts adjust
themselves instantaneously to the value of J , as this unknown evolves on a slower
time scale (see below). A wavefront centered at x = X±(t) is a monotone function of
χ = x−X±(t) such that

u(−∞; c+) = u1(J), u(+∞; c+) = u3(J) and

u(−∞; c−) = u3(J), u(+∞; c−) = u1(J).

For the simple model used here, there is a relation between the wavefronts u(χ; c+)
and u(χ; c−).

Theorem 1. Let u(χ; c±) be the wavefront satisfying

d2u

dχ2
− (K − c±)

du

dχ
+ J − g(u) = 0,(3.8)

u(−∞; c+) = u1(J), u(+∞; c+) = u3(J),(3.9)

u(−∞; c−) = u3(J), u(+∞; c−) = u1(J),(3.10)

where χ = x−X±(t) (X± is the position of the front at time t, determined by imposing
u(0) = u0. dX±/dt = c±). Then we have

u(χ; c−) = u(−χ; c+), c+ + c− = 2K.(3.11)

The proof is evident. This theorem shows that we only need to construct u(χ; c+)
and find c+ in order to have u(χ; c−) and c−.

3.2.2. Saturating source. Now let g(u) be a function with only two branches
such as (3.1). A wavefront is the only monotone trajectory connecting (u1(J), 0)
and a given point on the u axis (um, 0). There is again a symmetry result for these
wavefronts.
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Theorem 2. Let u(χ; c+) be the wavefront satisfying (3.8), ∂u/∂χ > 0 for
−∞ < χ ≡ x−X+(t) < χm, and

u(−∞; c+) = u1(J), u(0; c+) = u0,

u(χm; c+) = um,
∂u

∂χ
(χm; c+) = 0.(3.12)

Here dX+/dt = c+, and 2χm = l(J, um) > 0 is a function of J and um. Then the
wavefront satisfying (3.8), ∂u/∂χ < 0 for −χm < χ ≡ x−X−(t) < ∞, c− = dX−/dt,
and

u(−χm; c−) = um,
∂u

∂χ
(−χm; c−) = 0,

u(0; c−) = u0, u(+∞; c−) = u1(J),(3.13)

is such that (3.11) holds.
Again the proof is immediate.
Let us now choose a certain um = U(J) for each φ > uM so that the bias condition

(2.2) holds for a pulse made out of the following:
• a backfront u(χ; c+) at x = X+(t), χ = x−X+(t); and
• a forefront u(−χ; c+) at X− = X+ + 2χm.

Now χ = x−X−(t). The pulse u(χ; c+) can be constructed explicitly for the piecewise
linear g(u) of (3.1). If we choose u0 = uM , the solution of (3.8) and (3.9) which is
continuous and has a continuous first derivative at χ = 0 is

u(χ; c+) = u1(J) + [uM − u1(J)] eλ+χ, χ < 0,(3.14)

u(χ; c+) = uM +
J − α

K − c+
χ + B+

[
e(K−c+)χ − 1

]
, χ > 0.(3.15)

Here u1(J) = J/β, and

λ+ =
K − c+

2
+

√(
K − c+

2

)2

+ β,(3.16)

B+ =
1

K − c+

[
λ+[uM − u1(J)] − J − α

K − c+

]
,(3.17)

χm =
1

K − c+
ln

[
− J − α

(K − c+)2 B+

]

= − 1

K − c+
ln

[
1 − λ+(uM − u1)(K − c+)

J − α

]
,(3.18)

um = uM +
J − α

K − c+
χm + B+

[
e(K−c+)χm − 1

]
.(3.19)

If these expressions are inserted in the bias condition (2.2), c+, χm, and um may be
determined as functions of J for a fixed φ. Figures 3 and 4 show the phase planes
and the trajectories corresponding to u(χ; c+) and u(χ; c−), respectively, for a given
value of J = 1.3. Figure 5 shows χm and um as functions of J .

There are two important approximations to the wavefronts of Theorem 2, which
yield either approximately triangular pulses (c+ �= c−, um � 1) or the homoclinic
pulse (c+ = c− = K). These two limiting cases are described in detail in Appendix A.
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Fig. 3. Phase plane (u, du/dχ) and trajectory corresponding to u(χ; c+) for J = 1.3, c+ =
1.8359. Other parameter values are as in Figure 2.
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Fig. 4. Phase plane (u, du/dχ) and trajectory corresponding to u(χ; c−) for J = 1.3, c− =
2.1641. Other parameter values are as in Figure 2.

4. Pulse dynamics.

4.1. One pulse far from the boundaries. Let us consider a single pulse
moving far from the boundaries, as described in the previous section. Its height and
width are established by imposing the integral condition (2.2). The result will show
that the pulse is a tall and narrow moving layer which changes size as it moves.
At certain stages of the periodic Gunn oscillation (see below), the pulse height is

u = O(ε−
1
2 ) and its width is ∆y = O(ε

1
2 ), so that the pulse excess area (in y space

units) is O(1). The inner core of the pulse contributes an order 1 amount to the bias
whereas its exponential tails approaching u1(J) yield an O(ε) correction to its excess
area. Thus we suggest a decomposition of the solution u into an outer solution valid
outside the pulse and boundary layers, and inner solutions comprising the front(s)
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and boundary layers. In this section, we shall calculate the leading order term in each
asymptotic expansion explicitly. The first correction to these results can be found in
Appendix B.

4.1.1. Outer solution. The outer solution is

uouter = u(0)(y, s) + ε u(1)(y, s) + O(ε2),(4.1)

J = J (0)(s) + ε J (1)(s) + O(ε2).(4.2)

Here u(0) = O(1) yields an order 1 contribution to the integral condition (2.2), of the
same order as that provided by integration of the excess area of the pulse inner core.
ε u(1) yields an order ε contribution to (2.2), of the same order as that provided by
integration of the excess area of the pulse tails. Inserting this ansatz into (2.6), we
obtain

J (0) − g(u(0)) = 0,(4.3)

J (1) − g′(u(0))u(1) =
∂u(0)

∂s
+ K

∂u(0)

∂y
.(4.4)

Solving (4.3) and (4.4) yields

u(0) = u1(J
(0)) =

J (0)

β
,(4.5)

u(1) =
J (1) − 1

g′
1

dJ(0)

ds

g′1
=

1

β

(
J (1) − 1

β

dJ (0)

ds

)
.(4.6)

J (0) and J (1) will be found later from the integral constraint.

4.1.2. Two-term description of the pulse. The pulse described in the previ-
ous section may be considered a moving inner layer solution. Its height is much larger
than 1 and its width much smaller than 1 (the precise orders will be determined later).
We shall assume

uinner ∼ P (0)(y, s; ε) + ε P (1)(y, s; ε),(4.7)

where P (0) is the pulse solution of (3.8) described in Theorem 2:

P (0)(y, s; ε) = u(x−X+; c+) θ[χm − (x−X+)]

+u(X+ + 2χm − x; c+) θ[x−X+ − χm].(4.8)

P (0)(y, s; ε) and P (1)(y, s; ε) depend on ε in such a way that

P (1)(y, s; ε)

P (0)(y, s; ε)
= O(1) as ε → 0+

uniformly in y, s. The inner expansion (4.7) is chosen so that the pulse inner core in
P (0) yields an order 1 contribution to the bias condition, whereas its tails together
with the inner core of εP (1) yield an O(ε) contribution. The latter is of the same
order as the contribution of the outer solution, εu(1), to the bias.
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In (4.8), the location of the fronts and their velocities are

X+ ∼ X
(0)
+ (t) + εX

(1)
+ (t),

c+ ∼ c
(0)
+ + εc

(1)
+ ,(4.9)

and similarly for X− and c−. Inserting (4.2) and (4.7)–(4.9) in (2.1) and (3.9), we
obtain for the trailing front

∂2P (0)

∂χ2
− (K − c

(0)
± )

∂P (0)

∂χ
+ J (0) − g(P (0)) = 0,(4.10)

P (0)(−∞; c
(0)
+ ) = u(0) = u1, P (0)(0; c

(0)
+ ) = uM ,

P (0)(χm; c
(0)
+ ) = um,

∂P (0)

∂χ
(χm; c

(0)
+ ) = 0,(4.11)

whose solution is (4.8), and

∂2P (1)

∂χ2
− (K − c

(0)
± )

∂P (1)

∂χ
− g′(P (0))P (1) =

∂P (0)

∂s
− J (1) − c

(1)
±

∂P (0)

∂χ
,(4.12)

P (1)(−∞; c
(0)
+ ) = u(1),

∂P (1)

∂χ
(χm; c

(0)
+ ) = 0.(4.13)

The leading front of the pulse obeys similar expressions. The correction P (1) is cal-
culated in Appendix B, in which explicit formulas for piecewise linear g(u) are given.

4.2. General equation for J(0). Using Theorem 2, we can calculate the bias
condition for a single pulse moving far from the boundaries as

φ = u1(J
(0)) + 2ε

∫ χm

0

(P (0) − u1) dχ

+ 2ε

∫ 0

−∞
(P (0) − u1) dχ + ε

J (1) − g′1J
(0)
s

g′ 21

+ 2ε2
∫ χm

0

(
P (1) − J (1) − g′1J

(0)
s

g′ 21

)
dχ

+ ε

∫ ∞

0

[UL(ξ) − u1] dξ

+ ε

∫ ∞

0

[UR(ξ) − u1] dξ + O(ε2).(4.14)

Here the bias is the sum of the areas of the regions inside and outside the moving
pulse. The leading order contributions to these areas are the first two terms on the
right-hand side, which are of order 1. They are (i) the leading order contribution
of the outer solution and (ii) the leading order contribution of the inner core of the
pulse. The other terms are O(ε) and correspond to the following:

(i) the tails of the pulse to leading order,

2ε

∫ 0

−∞
(P (0) − u1) dχ =

2ε(uM − u1)

λ+
,

(ii) the second order contribution to the outer solution,
(iii) the second order contribution to the area of the inner core of the pulse,
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2ε2
∫ χm

0
P (1) dχ = O(ε) (we have ignored a much smaller term of order ε2χm),

(iv) the layer at the left boundary, (3.6) and (3.7):

ε

∫ ∞

0

(UL − u1) dξ =
2ε (ρ− β−1) J (0)√

K2 + 4β −K
.

The area of the injecting (left) boundary layer becomes of order 1 when a new pulse
is being shed; otherwise it is of order ε, as indicated above.

If the pulse is far from the boundaries, only the first two terms are of order 1,
and we have

φ = u1(J
(0)) + 2ε

⎡
⎣χm(uM − u1 −B+)

+
(J (0) − α)χ2

m

2(K − c
(0)
+ )

+
B+

(
e(K−c

(0)
+ )χm − 1

)
K − c

(0)
+

⎤
⎦ + O(ε)

= u1 + 2ε

[
χm(uM − u1 −B+) +

(J (0) − α)χ2
m

2(K − c
(0)
+ )

+
B+λ+(uM − u1)

J (0) − α

]
+ O(ε).(4.15)

Now we can proceed as sketched in section 2. Equation (3.18) allows us to obtain

c
(0)
+ as a function of J (0) and χm,

c
(0)
+ = Ξ(J (0), χm),(4.16)

for a fixed value of φ. Inserting this function in (4.15), we can determine χm as a
function of J (0). Then (3.19) yields um as a function of J (0). The results are certain
functions

χm =
ϕ(J (0))

2
, um = U(J (0))(4.17)

that have been depicted in Figure 5. Time differentiation of 2χm = ϕ(J (0))
yields (2.11)

dJ (0)

ds
= 2

c
(0)
+ (J (0), U(J (0))) −K

−ϕ′(J (0))
,(4.18)

which describes the time evolution of J (0). Provided that J (0)(0) > J∗, J (0) decreases

exponentially fast to J∗ such that c
(0)
+ = c

(0)
− = K. The pulse then moves at constant

J (0) = J∗ and speed K, and it is a homoclinic orbit of the phase plane (3.8) with
c = K, as shown in Figure 6.

Figure 7 compares the leading order asymptotic solution with the numerical so-
lution. The upper part shows the time evolution of J(t) and the lower part u(x, t) at
the times marked in the upper figure. Notice that initially J(t) decreases exponen-
tially fast to J∗. Consider an instant (point 6) at which the wave is fully developed
and far from the boundaries. We observe that the profile of the asymptotic solution
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Fig. 5. Half-width χm and maximum height um of the single pulse as a function of J for the
same parameter values as in Figures 2–4.

Fig. 6. Phase plane (u, du/dχ) and homoclinic orbit for J∗ = 1.13182, c = 2. Other parameter
values are as in Figure 2.

has a larger height and is slightly thinner than the numerical solution. Why? We
have neglected O(ε) terms (boundary layers, wave tails, etc.) when calculating the
integral condition with the leading order asymptotic solution. Then J (0)(t) is slightly
larger than the numerically calculated J(t). The asymptotic profile fully agrees with
the homoclinic solution described in Appendix A by (A.10), (A.11), and (A.12) (also
calculated excluding order ε effects).

The previous ideas are correct if we can show that J (0) evolves on a slow time
scale, say σ =

√
ε(t− t0) or τ = ε(t− t0). To see this we should analyze (4.15) and the

previous equations with a little more care. We shall show that there are two limiting
cases for which the pulse can be easily calculated and (2.11) explicitly obtained to
leading order:

• J (0) − J∗ = O(1), K − c
(0)
+ = O(1), and (J (0) − α)χm � 1. The limiting

pulse is a triangular wave formed by pieces of phase plane trajectories which
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Fig. 7. Upper: Time evolution of J. Times marked correspond to the following: (1) wave
reaches receiving contact, (2) J reaches Jc, (3) χm < χL, (4) wave completely exits, (5) J < Jc,
(6) fully developed wave. Lower: Profiles of u(x, t) at the times marked in the upper figure.

do not tend exponentially to infinity as χ → ±∞.

• (K − c
(0)
+ ) � (J (0) − α) � 1, χm � 1. The limiting pulse is the homoclinic

trajectory with c = K.

In the first case, J (0) evolves on the slow time scale σ =
√
ε(t − t0). In the second

case, the time over which J (0) varies appreciably is o(ε−1). One period of the Gunn
oscillation contains stages during which these limiting cases are good approximations
to (2.11). In fact the Gunn oscillation may be considered as transitions from one
limiting case to the other depending on the number of pulses existing at the time.
Then J (0) changes slowly with time, which justifies our wavefront constructions.

Appendix C analyzes the dynamics of pulses corresponding to the two limiting
cases of triangular and homoclinic pulses. At this point, we call attention to two
peculiar features of our results:

1. Our leading order approximation for the solution is of order one outside a
pulse, but it is much larger inside it: of order ε−

1
2 .

2. The proper time scale for the variation of J is ε
1
2 t if the pulse may be approxi-

mated by a triangular wave. It is slower as the pulse approaches a homoclinic
pulse. Both approximations are limits of the same equation, (2.11). Thus
this equation contains more than one asymptotic limit and its time scale is
changing as time changes.

5. Pulse dynamics near the boundaries. In the previous section, we de-
scribed the dynamics of a single pulse far from the boundaries. Basically the pulse
approaches the homoclinic pulse on a slow time scale: at each time on the scale t
the pulse follows adiabatically the instantaneous value of J . J changes on the scale
σ =

√
εt or even more slowly as described by (2.11), where ϕ is a function of J and ε
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(ϕ(J) is of order ε−
1
2 or larger). In this section we shall describe what occurs when

the pulse reaches the receiving boundary at x = L and beyond, until a period of the
Gunn oscillation is completed.

5.1. Pulse disappearing through the receiving boundary. Let us assume
that a single pulse has reached its asymptotic shape (J (0) = J∗) and advances with
speed K until its forefront reaches X− = L at time t1. Afterwards, it begins leaving
the sample. As time elapses the wave exits through the receiving boundary, and
therefore the area under the wave decreases. Since the total area has to satisfy the
bias condition, this loss of area has to be compensated by a corresponding increase
in u1 so that (2.2) still holds.

Let us denote by uL the value of the pulse inner solution P (0)(y, s) at the receiving

boundary. uL is obtained from (3.15) for u(x − X
(0)
− ; c

(0)
− ) = u(X

(0)
− − x; c

(0)
+ ) =

u(2χm−χ; c
(0)
+ ) when χ−2χm = L−X

(0)
− . The corresponding argument of u(X

(0)
− −x;

c
(0)
+ ) is χL = X

(0)
− − L > 0. When 0 < χL < χm, the bias condition (2.2) yields

φ = u1 + Φ(0)(J, c
(0)
+ , χm, χL) + εΦ(1)(J, c

(0)
+ , χm, χL, J

(1)) + O(ε2),(5.1)

Φ(0)(J, c
(0)
+ , χm, χL)

ε
= 2

∫ χm

0

[u(χ; c
(0)
+ ) − u1] dχ−

∫ χL

0

[u(χ; c
(0)
+ ) − u1] dχ

= (2χm − χL) (uM − u1 −B+) +
(J − α)

(K − c
(0)
+ )

(
χ2
m − χ2

L

2

)

+
B+

(
2e(K−c

(0)
+ )χm − e(K−c

(0)
+ )χL − 1

)
K − c

(0)
+

,(5.2)

Φ(1)(J, c
(0)
+ , χm, χL, J

(1)) =

∫ 0

−∞
(P (0) − u1) dχ +

J (1) − g′1J
(0)
s

g′ 21

+ 2ε

∫ χm

0

P (1) dχ− ε

∫ χL

0

P (1) dχ + ε

∫ ∞

0

[UL(ξ) − u1] dξ(5.3)

instead of (4.14). In this equation, Φ(0) and Φ(1) are of order 1 because the integrations
of P (0) and P (1) over the inner core of the pulse are of order ε−1. Equation (5.1) yields

φ = u1 + Φ(0)(J (0), c
(0)
+ , χm, χL),(5.4)

Φ(1)(J (0), c
(0)
+ , χL, χm, J (1)) = 0.(5.5)

We shall now find the evolution equation for J (0) by a procedure similar to that

used to find (4.18). The right-hand side of (5.4) depends on J (0), c
(0)
+ , χm, and χL.

χm is a function of J (0) and c
(0)
+ given by (3.18). As wavefront velocity c

(0)
+ , we shall

use the function of J (0) (for a fixed value of φ) that was determined at the end of
section 3. Then the right-hand side of (5.4) is a function of J (0) and χL only (for
fixed φ):

φ = B(J (0), χL) ≡ u1(J
(0)) + Φ(0)(J (0), c

(0)
+ (J (0)), χm(J (0), c

(0)
+ (J (0))), χL).(5.6)

χL can be explicitly calculated from

dχL

dt
= c

(0)
− = 2K − c

(0)
+ , χL(t1) = 0,(5.7)
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where c
(0)
+ is our known function of J (0). We can obtain a closed system of equations

for χL and J (0) by differentiating (5.6) with respect to time and then using (5.7). The
result is

∂B
∂J (0)

dJ (0)

dt
∼ ε (uL − u1) (2K − c

(0)
+ ).(5.8)

Here we have used that (5.2) and (5.6) imply ∂B/∂χL = −(uL − u1).
The time evolution of J (0) is found by solving this equation while the wave disap-

pears through the receiving contact. Having found the solution to leading order, (5.5)
yields the correction J (1). Numerical solution of (5.1)–(5.8) shows that J (0) increases
with time, as shown in the region between times 1 and 2 in Figure 7. Notice that this
increase agrees with the numerical solution of (2.1)–(2.4).

Depending on the bias φ, one of the following two events may happen first:
(i)J (0) reaches Jc, or
(ii)χL = χm.
In both cases the stage described by the previous equations ends. In case (i), a

new wave is created at x = 0, whereas in case (ii) (5.1) should be changed to

φ = u1 + Ψ(0)(J (0), c
(0)
+ , χL) + εΨ(1)(J (0), c

(0)
+ , χL, J

(1)) + O(ε2),(5.9)

Ψ(0)(J (0), c
(0)
+ , χL) = ε

∫ χL

0

[u(χ; c
(0)
+ ) − u1] dχ

= ε

⎡
⎣ (J (0) − α)χ2

L

2(K − c
(0)
+ )

+ χL(uM − u1 −B+) +
B+

(
e(K−c

(0)
+ )χL − 1

)
K − c

(0)
+

⎤
⎦ ,(5.10)

Ψ(1)(J, c
(0)
+ , χL, J

(1)) =

∫ 0

−∞
[u(χ; c

(0)
+ ) − u1] dχ +

J (1) − g′1J
(0)
s

g′ 21

+ ε

∫ χL

0

P (1) dχ + ε

∫ ∞

0

[UL(ξ) − u1] dξ,(5.11)

where now χL = L−X
(0)
+ > 0 and

dχL

dt
= −c

(0)
+ , χL(t2) = χm(t2).(5.12)

Here t2 is the time at which the maximum of the pulse reaches x = L (equivalently
χL = χm in the previous stage). Arguments similar to those used in the previous
stage lead to (

1

β
+

∂Ψ̃(0)

∂J (0)

)
dJ (0)

dt
∼ ε (uL − u1) c

(0)
+ ,(5.13)

where Ψ̃(0)(J (0), χL) = Ψ(0)(J (0), c
(0)
+ (J (0)), χL).

This stage lasts until J (0) reaches Jc and a new pulse is shed. If the bias is small
enough, the solution of these equations may be such that J (0) never reaches Jc and
it eventually decreases with time. In such case, the pulse exits and leaves a stable
stationary state in its wake after χL = 0. Notice that setting χL = χm = 0 in
(3.18) implies a front velocity (A.7). Thus the velocity of the disappearing wave-
front approaches that of the triangular wave, although the shapes of the respective
wavefronts may differ greatly. As in the previous stage, we find J (1) by solving the

equation Ψ(1)(J (0), c
(0)
+ , χL, J

(1)) = 0.
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5.2. Pulse shedding at the injecting boundary. If J(t) reaches Jc at t = t2,
the boundary layer becomes unstable and a new pulse starts being shed at the inject-
ing boundary. The boundary layer profile, U(x, t), solves the following semi-infinite
integrodifferential problem:

∂U

∂σ
+ K

∂U

∂x
− ∂2U

∂x2
+ g(U) = J(σ),(5.14)

U(0, σ) = ρ J,(5.15)

whose solution exhibits an explosion-type behavior and a rapid growth of the area
enclosed by the boundary layer which can no longer be neglected. This increase in
area is to be compared with the area released by the disappearing pulse at x = L.
Initially, the area released is larger, and this net area loss has to be compensated by
an equal increase in the area of the outer solution, so that J continues to increase,
although at a slower rate. After a short time, the growth of the boundary layer is
larger than the area released, so that J reaches a maximum and starts decreasing.

The structure of the injecting boundary layer when J > Jc is as follows:
1. u = u(x;J, Um) is quasi-stationary for 0 < x < Xm such that (3.4) holds with

u(0;J, Um) = ρJ , u(Xm;J, Um) = Um, with ∂u(Xm;J, Um)/∂x = 0. The
boundary layer solution is the trajectory of the phase plane corresponding to
(3.4) which leaves the vertical line u = ρJ at x = 0 and intersects the u axis
at u = Um. Notice that this trajectory is uniquely determined by giving J
and Um.

2. For x > Xm, the boundary layer is a wavefront of type u(χ; c−) moving at
speed C−. This speed and the forefront are uniquely determined by J and Um:
u = u(ξ;C+), ξ = Xn− − x, with C+ = 2K − C−, u(−∞;C+) = u1(J),
u(0;C+) = uM , u(ξm;C+) = Um, ∂u(ξm;C+)/∂ξ = 0.

The bias condition (including the injecting boundary layer) is

φ = u1 + Ψ̃(0)(J, χm, χL) + εA(0)(t) + O(ε),(5.16)

A(0) =

∫ ∞

0

[U(ξ) − U∞] dξ,(5.17)

provided that the maximum of the old pulse has left the sample. Time differentiation
of (5.16) yields (

1

β
+

∂Ψ̃(0)

∂J (0)

)
dJ (0)

dt
∼ −ε

dA(0)

dt
+ ε (uL − u1) c

(0)
+ .(5.18)

Equations (5.12), (5.16), and (5.18), together with (5.2), (5.10), and (4.17), constitute
a closed system of equations for the unknowns J , χL, and χm. During this stage,
J initially increases and then decreases until either it again reaches Jc or the old wave
completely disappears. In the latter case, the evolution of J(t) is still given by (5.18)
without the last term which represents the area lost by the disappearing wave. The
evolution during this stage can be observed between points 3 and 4 in Figure 7.

Also, Figure 8 shows in detail the evolution of the boundary layer profile from the
time that J > Jc. Initially, u grows at the injecting boundary because J increases.
Furthermore, the slope ∂u(0, t)/∂x increases and becomes positive at a certain time.
Then a wavelike structure is created. The leading front of this wave moves away from
the boundary while the backfront is attached to it. The wave continues its growth
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Fig. 8. Boundary layer profile evolution during the shedding stage.

until the time when J becomes again smaller than Jc. Then, the slope at the boundary
becomes negative, and the wave detaches and moves away from the boundary as a
solitary wave. At that time, the quasi-stationary part of the boundary layer which
joins x = 0 to the maximum at x = Xm becomes the backfront of a detached pulse.
Then, we again have the same equation, (2.11), describing the first stage, and a cycle
of the Gunn oscillation has been completed. The time evolution during this stage can
be observed in Figure 7 for times larger than t5.

6. Conclusions. In this paper we have asymptotically described one period of a
Gunn-type oscillation in a simple model. The nonlinearity of the model is such that at
most two constant solutions are possible for each value of J (the currentlike unknown).
The model consists of a parabolic equation for the fieldlike unknown, u(x, t), and an
integral constraint (bias condition) which determines J(t). Appropriate boundary
and initial conditions are imposed. The key new idea of our analysis is that a pulse
that changes shape as it advances may be constructed by fixing only two parameters:
J and the pulse maximum, um. If the pulse width is small compared to the sample
length, then L, J , and um change on a slow time scale. The trailing front of the
pulse is part of a separatrix joining a saddle point to (um, 0) with du/dχ > 0 on
the (u, du/dχ) phase plane. The initial and final points determine the backfront
speed c+ as a function of J and um. Similarly the forefront of a pulse is constructed
and its speed c− determined. Then equations for J and um are obtained by time-
differentiation of the bias condition and of the pulse width. The time derivative of the
latter is c− − c+ and J tends toward a fixed value corresponding to a rigidly moving
pulse with c− = c+. Other stages of a Gunn oscillation, including wave creation
and annihilation at the boundaries, are analyzed by similar methods. Our theory
compares well with direct numerical simulations.

We have found an asymptotic theory of the “Gunn effect” in a simple piecewise
linear model, whose main step is a construction of pulses and a derivation of an
equation for the “current.” An analysis of the stability of these solutions is an open
problem, although there is some work on this problem in the related Kroemer model
[3, 25]. That the profile of pulses can become oscillatory for appropriate parameter
values has been shown by Sun et al. for some reaction-diffusion models [23]. We expect
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that the present method yield results independent of the model equations within a
class thereof displaying the Gunn instability [6, 21, 22, 25, 26]. Studies of other
systems that can be understood by the dynamics of pulses are in progress.

Appendix A. Limiting cases.

A.1. Triangular pulses. The bias condition (2.2) determines the orders of mag-
nitude of χm and um in terms of the small parameter ε. Let us assume that (K− c+)
and (J − α) are O(1), whereas χm � 1. Then (3.17), (3.18), and (3.19) imply that

um = uM +
J − α

K − c+
χm − λ+(uM − u1)

K − c+

∼ J − α

K − c+
χm.(A.1)

The wavefront u(χ; c+) is given by (3.14) for χ < 0 and

u = um +
J − α

K − c+
(χ− χm) + B+

[
e(K−c+)χ − e(K−c+)χm

]
(A.2)

∼ J − α

K − c+
χ(A.3)

for χ > 0, where (A.1) has been used. The bias condition (2.2) then yields

φ− u1

ε
∼ J − α

K − c+
χ2
m,(A.4)

χm ∼

√
(φ− u1) (K − c+)

ε (J − α)
.(A.5)

These equations imply that χm and um are O(ε−
1
2 ), while the proper time scale over

which J varies is t = O(ε−
1
2 ).

We can obtain (A.1)–(A.5) directly from (3.8) and the bias condition. If χm � 1,
so is um. Then we shall select uniquely the wavefront solution of (3.8), u(χ; c+), so
that it satisfies u(−∞; c+) = u1(J) and does not grow exponentially as χ → +∞.
Similarly, u(χ; c−) = u(−χ; c+) does not grow exponentially as χ → −∞ and satisfies
u(+∞; c−) = u1(J). As in Theorem 1, we still have c+ + c− = 2K.

u(χ; c+) satisfies (3.14) and

u(χ; c+) = uM +
J − α

K − c+
χ if χ > 0.(A.6)

Continuity of du/dχ at χ = 0 directly yields(
uM − J

β

)
λ+ =

J − α

K − c+
,

which in turn implies

c+ = K − J − α√
β (uM − u1)

(
uM − α

β

) > 0.(A.7)
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Fig. 9. Velocities of the backfront, c+, and of the forefront, c−, as functions of J for φ = 1.6
and the same parameter values as in Figure 2. We have also shown the corresponding approximate
values c± obtained for the triangular pulse described in the text.

Figure 9 compares the actual values of c± with the approximation (A.7). Notice that
both lines are reasonably close for J sufficiently higher than J∗.

We can now form a pulse by joining the backfront u(χ; c+), χ = x − X+ < χm

to the forefront u(2χm − χ; c+). This pulse asymptotically approaches an isosceles
triangle of basis (X− −X+) = 2χm and height approximately given by

um = u(χm; c+) = u

(
X− −X+

2
; c+

)

∼ (J − α) (X− −X+)

2(K − c+)
.(A.8)

See Figure 10, which compares the triangular pulse to the real pulse and the homo-
clinic pulse for the same values of J and φ. Here we have used (A.6) and assumed
that χm (the location of the maximum, equal to the pulse half-width) is very large.
To be precise, we assume that (K − c+) = O(1) and that (J − α)χm � 1.

Notice that the way we have constructed u(χ; c+) is immediately applicable to a
general smooth nonlinearity g(u) of the same type. We have thus the following result.

Result. Let the characteristic curve g(u) be an odd function of u with a positive
local maximum after which it monotonically decays to a positive constant as u → +∞.
The approximate backfront u(χ; c+) is the unique solution of (3.8) which, for an
appropriate choice of the velocity c+, satisfies u(−∞; c+) = u1(J) and does not grow
exponentially as χ → +∞.

A.2. The homoclinic pulse. If c+ = c− = K, the pulse is a homoclinic orbit
of the phase plane (3.8),

∂2u

∂ζ2
+ J − g(u) = 0,(A.9)
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Fig. 10. Shape of the pulse for J = 1.3 and the parameter values of Figure 2. Also shown are
the corresponding triangular and homoclinic pulses.

with u(±∞) = u1(J) = J/β (see Figure 6). Here ζ ≡ x−X0, and X0 = (X+ +X−)/2
is the location of the maximum of the pulse, um. The solution is

u(ζ) =
J

β
+

(
uM − J

β

)
e−

√
β(|ζ|−ζ0)

for |ζ| > ζ0,(A.10)

u(ζ) = um − J − α

2
ζ2 for |ζ| < ζ0,(A.11)

um = uM +
J − α

2
ζ2
0 .(A.12)

ζ0 is determined by imposing continuity of du/dζ at ζ = ±ζ0:

ζ0 =

√
β
(
uM − J

β

)
J − α

.(A.13)

Now we may find J = J∗ from the bias condition. The result is

J∗ = α + β
3
4

√√√√√√2ε
(
uM − α

β

)3

3
(
φ− α

β

) + O(ε),(A.14)

ζ0 = β− 1
4

√√√√√ 3
(
φ− α

β

)
2ε

(
uM − α

β

) + O(1),(A.15)

um =
β

1
4

2

√
3

2ε

(
φ− α

β

) (
uM − α

β

)
+ O(1).(A.16)

Figure 11 compares J∗ to the approximation (A.14). Notice that a simple phase plane
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1.0 1.5 2.0 2.5
φ

1.05

1.15

1.25

J

Fig. 11. Value J = J∗ for the homoclinic pulse as a function of the bias φ. The dashed curve
corresponds to the approximation (A.14).

argument indicates that J∗ obeys the following equal-area rule:

J∗ =
1

um − u1

∫ um

u1

g(u) du,(A.17)

where um is given by (A.16). Figure 10 compares the actual pulse, the homoclinic
pulse with c = K and the triangular wave for the same values of J and φ.

Appendix B. Explicit calculation of P (1) and c
(1)
+ . First of all, P (1) =

P
(0)
χ ≡ ∂P (0)/∂χ is a solution of the homogeneous problem (4.12) (with zero right-

hand side) and (4.13). The solvability conditions for the nonhomogeneous problem
yield [

P (0)
χ P (1)

χ − P (0)
χχ P (1)

]
χ=χm

e−(K−c
(0)
+ )χm

=

∫ χm

−∞
P (0)
χ

[
P (0)
s − J (1) − c

(1)
+ P (0)

χ

]
e−(K−c

(0)
+ )χdχ,(B.1)

c
(1)
+ + c

(1)
− = 0.(B.2)

Let us define

P (1) ≡ p(χ; c
(0)
+ )

∂P (0)

∂χ
.(B.3)

Inserting (B.3) in (4.12), we obtain an equation which can be solved by two quadra-
tures. We find

∂p

∂χ
=

e(K−c
(0)
+ )χ

P
(0) 2
χ

∫ χ

−∞
e−(K−c

(0)
+ )χP (0)

χ

[
P (0)
s − J (1) − c

(1)
+ P (0)

χ

]
dχ.(B.4)

Here subscripts indicate partial derivatives with respect to the corresponding variable.
It is easy to check that this expression satisfies (B.1). Further integration yields
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(for χ < 0)

p =
(β J (1) − J

(0)
s ) e−λ+χ

β2λ+(uM − u1)
+

λ+sχ
2

2λ+

√
(K − c

(0)
+ )2 + 4β

− χ√
(K − c

(0)
+ )2 + 4β

⎡
⎣ J

(0)
s

βλ+(uM − u1)
+

λ+s

λ+

√
(K − c

(0)
+ )2 + 4β

+ c
(1)
+

⎤
⎦ + q,(B.5)

where q is a constant. For χ > 0, P
(0)
χχ = B+(K−c

(0)
+ )2e(K−c

(0)
+ )χ, and we can simplify

the expression for p by integrating by parts. The result is

p =
1

B+(K − c
(0)
+ )2P

(0)
χ

{
P (0)
χ

∫ χ

0

e−(K−c
(0)
+ )χ

[
P (0)
s − J (1) − c

(1)
+ P (0)

χ

]
dχ−

∫ χ

−∞
e−(K−c

(0)
+ )χ

P (0)
χ

[
P (0)
s − J (1) − c

(1)
+ P (0)

χ

]
dχ

}
+ Q.(B.6)

Continuity of p at χ = 0 yields

q = Q−
J (1) − J(0)

s

β + βI0

B+(K−c
(0)
+ )2

λ+β(uM − u1)
,(B.7)

where I0 is the following integral:

I0 ≡
∫ 0

−∞
e−(K−c

(0)
+ )χP (0)

χ

[
P (0)
s − J (1) − c

(1)
+ P (0)

χ

]
dχ

whose value can be computed as

I0 = I00 + I0J J (1) + I0c c
(1)
+ ,(B.8)

where

I00 =
λ2

+(uM − u1)√
(K − c

(0)
+ )2 + 4β

[
λ+J

(0)
s

β2
+

(uM − u1) c+s

(K − c
(0)
+ )2 + 4β

]
,

I0J = −
λ2

+(uM − u1)

β
,

I0c = −
λ2

+(uM − u1)
2√

(K − c
(0)
+ )2 + 4β

.

Continuity of P
(1)
χ at χ = 0 implies

P (0)
χ (0) [pχ(0+) − pχ(0−)] = −p(0)

[
P (0)
χχ (0+) − P (0)

χχ (0−)
]
.(B.9)
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The second argument c
(0)
+ has been omitted in all the functions in this formula. The

jump discontinuity of the second derivative P
(0)
χχ at χ = 0 implies that pχ also has a

jump discontinuity at χ = 0. Substituting (B.5) and (B.6) in (B.9), we obtain

QB+(K − c
(0)
+ )2 = qλ2

+(uM − u1) −
1√

(K − c
(0)
+ )2 + 4β

×

⎡
⎣J

(0)
s

β
+ (uM − u1)λ+c

(1)
+ +

λ+ s(uM − u1)√
(K − c

(0)
+ )2 + 4β

⎤
⎦.(B.10)

We can obtain Q from (B.7), (B.8), and (B.10). After some algebra, the result is

Q = Q0 + QJ J (1) + Qc c
(1)
+(B.11)

with

υ Q0 =
J

(0)
s

β

⎡
⎣ 1√

(K − c
(0)
+ )2 + 4β

− λ+

β

⎤
⎦

+
λ+ I00

B+(K − c
(0)
+ )2

−
λ+ (uM − u1) c

(0)
+ s

[(K − c
(0)
+ )2 + 4β]

3
2

,

υ QJ =
λ+ I0J

B+(K − c
(0)
+ )2

+
λ+

β
,

υ Qc =
λ+ I0c

B+(K − c
(0)
+ )2

+
λ+ (uM − u1)√
(K − c

(0)
+ )2 + 4β

,

υ = λ2
+ (uM − u1) − B+(K − c

(0)
+ )2.

The velocity correction c
(1)
+ can be obtained from the condition ∂P (1)/∂χ = 0 at

χ = χm. Thus

Q +
1

B+(K − c
(0)
+ )2

∫ χm

0

e−(K−c
(0)
+ )χP (0)

χ ×
[
P (0)
s − J (1) − c

(1)
+ P (0)

χ

]
dχ = 0.(B.12)

Inserting (B.11) in this equation, we get c
(1)
+ . After simplification, the result is

γ c
(1)
+ = c+0 + c+J J (1)

c(B.13)
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with

c+0 =
J

(0)
s

K − c
(0)
+

[
z1 +

z2

K − c
(0)
+

+ (χm + z2)

(
λ+

β
+

1

K − c
(0)
+

)]

+
c
(0)
+ s

(K − c
(0)
+ )2

⎡
⎣2(χm + z2)

⎛
⎝J (0) − α

K − c
(0)
+

− β(uM − u1)√
(K − c

(0)
+ )2 + 4β

⎞
⎠

+ (J (0) − α)

(
z1 +

z2

K − c
(0)
+

)
− B+

2
(K − c

(0)
+ )2χ2

m

⎤
⎦

−B+Q0(K − c
(0)
+ )2,

c+J = −z2 −B+QJ(K − c
(0)
+ )2,

γ =
J (0) − α

K − c
(0)
+

z2 −B+(K − c
(0)
+ )χm + B+Qc(K − c

(0)
+ )2,

z1 ≡
χm exp[(K − c

(0)
+ )χm]

(K − c
(0)
+ )

= −
χmB+(K − c

(0)
+ )

J (0) − α
,

z2 ≡
exp[(K − c

(0)
+ )χm] − 1

(K − c
(0)
+ )

= −λ+(uM − u1)

J (0) − α
.

Here we have used (3.16)–(3.18) to simplify the result. J (1) is found from the equation

0 = 2

∫ 0

−∞
(P (0) − u1) dχ +

J (1) − g′1J
(0)
s

g′ 21

+ 2ε

∫ χm

0

P (1) dχ +

∫ ∞

0

(UL(ξ) − u1) dξ +

∫ ∞

0

(UR(ξ) − u1) dξ(B.14)

after substitution of (4.14), (4.15), and (B.13).

Appendix C. Pulse dynamics: Limiting cases.

C.1. Triangular pulse. If the limiting pulse is triangular, the approximate
evolution equation for J may be obtained by time-differentiating (A.5) and using
(A.7):

dJ

dt
= −

√
εB(J) [K − c+(J)],(C.1)

B(J) =
4β(βuM − α)

1
4 (φ− u1)

1
2 (uM − u1)

5
4

2uM − φ− u1
.(C.2)

For typical values of the parameters such as those in Figure 2, B(J) > 0, so that J
tends to the solution of c+(J) = K. Triangular pulses are good approximations for
J sufficiently large, which means that the solution of (C.1) decreases towards J = α
according to (A.7). Of course, before this value can be reached, (C.1) ceases to be
valid and we revert to the general equation for J , (2.11), whose fixed point is J∗.
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C.2. Homoclinic pulse. Let us now assume that (K − c+) � (J − α) � 1,
whereas χm � 1. Then (3.17) and (3.18) imply that

χm ∼ λ+ (uM − u1)

J − α
+

λ2
+(uM − u1)

2(K − c+)

2(J − α)2
.(C.3)

Here λ+ ∼
√
β. Notice that (C.3) becomes (A.13) as (K − c+) → 0. We now insert

this approximation in (3.19) after (3.17) has been substituted. The result is

um ∼ uM +
λ2

+(uM − u1)
2

2(J − α)
∼ 1

2
(J − α)χ2

m.(C.4)

The bias condition (4.15) may now be approximated by using (C.3) and (C.4) to
obtain

φ− u1

ε
∼ 2β

3
2 (uM − u1)

3

3(J − α)2
.

Then

(J − α) ∼ β
3
4

√
2ε(uM − u1)3

3(φ− u1)
(C.5)

∼ β
3
4

√√√√√√2ε
(
uM − α

β

)3

3
(
φ− α

β

) .

Inserting (C.5) in (C.3) and (C.4), we obtain

χm ∼ β− 1
4

√
3(φ− u1)

2ε (uM − u1)
,(C.6)

um ∼ β
1
4

2

√
3

2ε
(φ− u1) (uM − u1).(C.7)

Equations (C.5)–(C.7) are the same as (A.14)–(A.16) for the homoclinic pulse.
As explained before, dχm/dt = (c− − c+)/2 = K − c+. Therefore, the derivative

of (C.6) with respect to time yields

dJ

dt
∼ −

√
8ε

3

β
5
4 (φ− u1)

1
2 (uM − u1)

3
2

uM − φ
(K − c+).(C.8)

This equation has the same form as (2.11), and shows that the unknown J(t) varies on
a slow time scale t = O(1/

√
ε(K − c+)). In the present limit, (K − c+) � (J − α) =

O(
√
ε), so that the corresponding time scale is slower than τ = εt.
A glance to (C.8) shows that J decreases exponentially fast to J∗ such that

c+ = c− = K. The resulting pulse is the homoclinic orbit of the phase plane (3.8)
with c = K described in the previous section.
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GENERALIZED AZIMUTHAL SHEAR DEFORMATIONS IN
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Abstract. In this article we study the azimuthal shear deformations in a compressible isotropic
elastic material. This class of deformations involves an azimuthal displacement as a function of
the radial and axial coordinates. The equilibrium equations are formulated in terms of the Cauchy–
Green strain tensors, which form an overdetermined system of partial differential equations for which
solutions do not exist in general. By means of a Legendre transformation, necessary and sufficient
conditions for the material to support this deformation are obtained explicitly, in the sense that every
solution to the azimuthal equilibrium equation will satisfy the remaining two equations. Additionally,
we show how these conditions are sufficient to support all currently known deformations that locally
reduce to simple shear. These conditions are then expressed both in terms of the invariants of the
Cauchy–Green strain and stretch tensors. Several classes of strain energy functions for which this
deformation can be supported are studied. For certain boundary conditions, exact solutions to the
equilibrium equations are obtained.

Key words. nonlinear elasticity, Legendre transforms, constitutive laws, azimuthal shear, quasi-
linear partial differential equations
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1. Introduction. It is well known [8] that the only deformations possible in
all isotropic compressible elastic materials are homogeneous. Therefore, the analysis
of nonhomogeneous deformations can only be accomplished if one concentrates on
specific classes of strain energy functions. A growing body of literature that addresses
these issues has been developed in recent years. The reader is referred to [12] for a
review and relevant references.

One important nonhomogeneous deformation that attracts our attention is the
generalized azimuthal shear deformation. Its perceived importance stems from the fact
that it presents an analogous (but more complicated) kinematic structure to that of
the antiplane shear deformation; hence, it may emerge as the impetus of developments
and analysis on issues such as loss of ellipticity, crack problems cavitation, and phase
transitions. The generalized azimuthal shear is an isochoric deformation of the form

r = R, θ = Θ + g(R,Z), z = Z,(1.1)

with (R,Θ, Z) and (r, θ, z) being the cylindrical polar coordinates in the unstressed
natural configuration and the deformed configuration, respectively. This deformation
(or its Z-independent specialization) may also appear under the names of circular
or rotational shear. The function g(R,Z) has to be determined by the equilibrium
equations and it depends on the form of strain energy function employed. This defor-
mation belongs to a class of isochoric deformations that locally reduce to simple shear;
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the other well-known deformations in this class are the helical shear deformation [3]
and the antiplane shear deformation [10, 17].

Research in this area was initiated by Knowles [17], in his study of antiplane
shear, who recognized that compressible materials can undergo isochoric deformations
(which locally reduce to simple shear) only if the strain energy function is consistent
with certain restrictive conditions.

A special case of the deformation under study is the pure azimuthal shear defor-
mation (g = g(R)), for which conditions on the strain energy function were derived
by Polignone and Horgan [20] and explicit necessary and sufficient conditions were
found by Beatty and Jiang [2]. More recently, Horgan and Saccomandi [13], gave a
detailed theoretical analysis and computed all mechanical quantities of interest for the
pure azimuthal shear deformation in the case of incompressible materials exhibiting
limiting chain extensibility.

A second special case of the deformation under consideration is the pure torsion
deformation (g = τZ), investigated by Beatty and Jiang [2], who also derived several
constitutive assumptions to support this special deformation. For the same problem,
explicit necessary and sufficient conditions on the strain energy function were derived
by Polignone and Horgan [18]. Throughout the present study appropriate comparisons
with the deformations of helical shear and antiplane shear will also be made.

Closed form and approximate solutions for special forms of the azimuthal dis-
placement g = g(R,Z), namely pure azimuthal shear and combined pure azimuthal
shear/pure torsion, were considered by Tao, Rajagopal, and Wineman [22]. They
considered a generalized power law neo-Hookean material in the framework of the
incompressible theory, without reference, however, to the locally simple shear char-
acter of the deformation as well as the need for discussion of necessary and sufficient
conditions on the form of the strain energy function.

In this paper we present the first result available in the literature for the de-
formation (1.1), in the context of the finite theory of elasticity. Section 2 describes
the kinematics, stress, and equilibrium associated with the deformation (1.1). The
equilibrium equations are expressed in terms of the Cauchy stress tensor σ. New uni-
versal relations are derived, and a discussion of uniqueness of solution and ellipticity
of the governing displacement equations is included. Section 3 describes the transfor-
mation method of the equilibrium equations from the reference configuration space
to the reference strain space. The equilibrium equations then are obtained in strain
space coordinates and their form is used in section 4 to derive necessary and sufficient
conditions for the strain energy function to admit the generalized azimuthal shear
deformation. In the same section, a straightforward comparison with results from the
current literature shows that the above conditions are clearly sufficient to support all
currently known isochoric deformations that locally reduce to simple shear, though
there might be others whose structure has not been examined yet. These results are
then utilized to obtain conditions in terms of the principal invariants of the Cauchy–
Green and stretch tensors, in a fashion similar to the discussion of helical shear in
[15]. These simple restrictions are then combined, first to determine classes of strain
energy functions for which generalized azimuthal shear deformations are possible and
second, in section 5, to obtain closed form solutions of g(R,Z) for particular members
of these classes. The solutions are subjected to some physically realistic boundary
conditions which give further insight into this newly studied deformation. Further,
the solutions are compared with the special forms of pure azimuthal shear and pure
torsion, analyzed in the literature recently, and some Riemann type similarity solu-
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tions are obtained that serve as a test for the validity of the necessary and sufficient
conditions we derived earlier. Finally, in this section the effect of torsion on the form
of the pure azimuthal displacement is examined for two members of the previously
determined energy classes and comparison with previous results of the pure azimuthal
shear deformation is made, in the spirit of the work by Tao, Rajagopal, and Wineman
[22]. Finally, in section 6 we close with some concluding remarks and compare further
the conditions on the strain energy for the generalized azimuthal shear problem with
its counterparts, e.g., the antiplane and helical shear deformations. Throughout this
article, the notation used closely follows the one adopted by Tsai and Fan [23].

2. Kinematics, strain energy, stress, and equilibrium. We consider a body
composed of a compressible, nonlinearly elastic material, occupying the following
cylindrical region in its natural (unstressed) configuration:

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L,(2.1)

where R,Θ, Z are the cylindrical coordinates associated with the reference configura-
tion denoted by Bo. The general azimuthal shear deformation is defined by

r = R, θ = Θ + g(R,Z), z = Z,(2.2)

where r, θ, z are the cylindrical coordinates of a material point in the current config-
uration denoted by B. In vector notation, the reference and current configurations of
the body are related through a mapping χ,

χ : Bo → B, such that x = χ(X),(2.3)

where x = rer + zez and X = RER + ZEZ are the position vectors of a particle
in the current and reference configurations, respectively, while er, ez,ER,EZ are
the corresponding radial and axial unit cylindrical polar vectors. The mapping χ is
assumed to be at least twice continuously differentiable. The deformation gradient
associated with the generalized azimuthal shear deformation (1.1) obtains the form

F = Q + eθ ⊗ (Rg,RER + Rg,ZEZ),(2.4)

where

Q = er ⊗ ER + eθ ⊗ EΘ + ez ⊗ EZ(2.5)

is a local rotation of angle g(R,Z) about Z-axis, mapping the cylindrical axes from
the referential basis {ER,EΘ,EZ} to the current basis {er, eθ, ez}. With the notation

ωr = Rg,R, ωz = Rg,Z ,(2.6)

we introduce the shear strain vectors, Ω and ω, associated with the reference and
current configurations, respectively, given by

Ω = ωrER + ωzEZ , ω = ωrer + ωzez = QΩ.(2.7)

It then follows that the deformation gradient can be written as

F = (I + eθ ⊗ ω)Q = Q(I + EΘ ⊗ Ω).(2.8)
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Clearly, the deformation is isochoric. It consists of the rotation Q followed by a simple
shear, with the amount of shear ω ≡ |ω|,

ω = (ω2
r + ω2

z)
1/2 = R(g2

,R + g2
,Z)1/2,(2.9)

along the eθ direction. Or equivalently, the deformation consists of a simple shear
of amount Ω ≡ |Ω|, along the direction of Eθ, followed by the rotation Q. Notice
that both representations correspond to the same amount of shear ω = Ω, with glide
planes normal to ω and Ω, respectively. The notation ω and Ω for the amount of
shear will be employed interchangeably when need arises.

For the generalized azimuthal deformation (2.2), the left Cauchy–Green strain
tensor B = FF T can be written in terms of the current basis {er, eθ, ez} as

B = I + ω ⊗ eθ + eθ ⊗ ω + ω2eθ ⊗ eθ.(2.10)

Its invariants are simply

I1 = I2 = I = ω2
r + ω2

z + 3 = ω2 + 3, I3 = 1.(2.11)

Assume the hyperelastic material is homogeneous and isotropic, so its strain en-
ergy function W can be expressed in terms of the invariants as

W = W̄ (I1, I2, I3).(2.12)

For compatibility with the infinitesimal theory, the strain energy function must satisfy
the following restrictions at I1 = I2 = 3 and I3 = 1,

W̄ (3, 3, 1) = 0, W̄1 + W̄2 = −(W̄2 + W̄3) =
µ

2
,(2.13)

W̄11 + 4W̄12 + 4W̄22 + 2W̄13 + 4W̄23 + W̄33 =
κ

4
+

µ

3
,(2.14)

where W̄i = ∂W̄/∂Ii and W̄ij = ∂2W̄/∂Ii∂Ij ; κ and µ are the bulk and shear moduli,
respectively.

For the generalized azimuthal deformation (2.2), the Cauchy stress tensor

σ = 2W̄1B + 2W̄2(I1B − B2) + 2W̄3I(2.15)

can obtain the alternative representation

σ = σ̂I + µ̂(ω ⊗ eθ + eθ ⊗ ω) + (µ̂− β̂)ω2eθ ⊗ eθ − β̂ω ⊗ ω,(2.16)

in terms of the material response functions

σ̂(ω) = 2[W̄1 + (I − 1)W̄2 + W3]
∣∣∣
I1=I2=I=3+ω2,I3=1

,(2.17)

µ̂(ω) = 2(W̄1 + W̄2)
∣∣∣
I1=I2=I=3+ω2,I3=1

,(2.18)

β̂(ω) = 2W̄2

∣∣∣
I1=I2=I=3+ω2,I3=1

(2.19)
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by use of relation (2.10). The components of the Cauchy stress in cylindrical coordi-
nates now take the form

σrr = σ̂ − β̂ω2
r , σθθ = σ̂ + (µ̂− β̂)ω2, σzz = σ̂ − β̂ω2

z(2.20)

and

σrθ = µ̂ωr, σzθ = µ̂ωz, σrz = −β̂ωrωz.(2.21)

It will be convenient in what follows to introduce the notation

Ŵ (ω) = W̄ (3 + ω2, 3 + ω2, 1).(2.22)

The material’s shear stress response τ̂(ω) with respect to simple shear is then given
by

τ̂(ω) = Ŵ ′(ω) = 2ω(W̄1 + W̄2)
∣∣∣
I1=I2=3+ω2,I3=1

.(2.23)

The response function µ̂ defined above is then the secant modulus with respect to
simple shear

µ̂ = τ̂(ω)/ω = Ŵ ′(ω)/ω.(2.24)

One can readily show that for the deformation at hand, τ̂ =
√

σ2
rθ + σ2

zθ = µ̂ω is the
resolved shear stress. Note that as ω → 0, the secant modulus recovers the shear
modulus of the infinitesimal theory, µ̂(0) = µ. Also note that, for consistency with
(2.13) and (2.14), Ŵ (ω) must satisfy

Ŵ (0) = 0, Ŵ ′(0) = 0, Ŵ ′′(0) = µ > 0.(2.25)

Further, we assume Ŵ satisfies the following condition:

Ŵ ′(ω) > 0 for ω > 0.(2.26)

This can be viewed as a specialization to simple shear of the Baker–Ericksen inequality.
We may also assume that Ŵ ′′(ω) > 0 so that τ̂ is a monotonic increasing function of
ω; hence increasing shear corresponds to increasing stress, although this restriction
can be relaxed if need be.

In view of (2.11) and (2.12), the stress components (2.20)–(2.21) depend on ω and
in turn depend on R and Z, and equivalently on r and z by (2.2). The equilibrium
equations divσ = 0 specialize to

∂σrr

∂r
+

∂σrz

∂z
+

1

r
(σrr − σθθ) = 0,(2.27)

∂σrθ

∂r
+

∂σθz

∂z
+

2

r
σrθ = 0,(2.28)

∂σrz

∂r
+

∂σzz

∂z
+

1

r
σrz = 0.(2.29)

Using the notation in (2.21), it can be shown that the azimuthal equation (2.28) can
be written as

∂

∂R

(
R3µ̂

(
R
√

g2
,R + g2

,Z

)
g,R

)
+

∂

∂Z

(
R3µ̂

(
R
√

g2
,R + g2

,Z

)
g,Z

)
= 0,(2.30)
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where we have recognized the fact that r = R and z = Z from (2.2). A more compact
expression takes the following form:

∇ · (R3µ̂(R|∇g|)∇g) = 0,(2.31)

where ∇ should be interpreted as the gradient operator in the two-dimensional (R,Z)–
space.

Throughout the rest of this article we will assume that the equation governing the
form of the azimuthal displacement is locally elliptic at a solution g at the reference
point X [7]. It is not difficult to show that this requirement is equivalent to the two
inequalities

Ŵ ′′(ω) > 0, Ŵ ′(ω)/ω > 0(2.32)

for all ω > 0, which we have already adopted. These two inequalities coincide with
those imposed by Knowles [17] for the antiplane shear problem to ensure the ellipticity
of the governing axial equation and the conditions imposed in [15] for the problem of
helical shear, to ensure uniqueness of solution for moderate values of the applied load-
ing. Furthermore, a concise expression adopted in [23], incorporating both relations
in (2.32), can be written in the form

µ̂(µ̂ω)′ > 0,(2.33)

where the prime signifies differentiation with respect to the shear ω.
It would be beneficial to consider the equations of equilibrium in an alternative

form for reference in the discussion of boundary value problems for the generalized
azimuthal shear problem in section 5. In terms of the nominal stress tensor S =
F −1σ, the equilibrium equations DivS = 0 obtain the form

∂SRr

∂R
+

∂SZr

∂Z
− g,RSRθ − g,ZSZθ +

1

R
(SRr − SΘθ) = 0,(2.34)

∂SRθ

∂R
+

∂SZθ

∂Z
+ g,RSRr + g,ZSZr +

1

R
(SRθ + SΘr) = 0,(2.35)

∂SRz

∂R
+

∂SZz

∂Z
+

1

R
SRz = 0,(2.36)

where the components of the nominal stress tensor S are given by

SRr = 2W̄1 + 2W̄2(2 + ω2
z) + 2W̄3, SRθ = 2ωr

(
W̄1 + W̄2

)
,(2.37)

SRz =SZr =−2ωzωrW̄2, SZθ = 2ωz

(
W̄1 + W̄2

)
,(2.38)

SΘr = −2(W̄2 + W̄3)ωr, SΘz = −2(W̄2 + W̄3)ωz,(2.39)

SΘθ = 2(I − 2)W̄1 + 2(I − 1)W̄2 + 2W̄3,(2.40)

SZz = 2W̄1 + 2(2 + ω2
r)W̄2 + 2W̄3,(2.41)

evaluated for I1 = I2 = I = 3+ω2
r +ω2

z = 3+ω2, I3 = 1. For nominal stress, we have
SRθ = µ̂ωr and SZθ = µ̂ωr. From (2.21) and (2.38), it is clear that σrθ = Srθ and
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σzθ = SZθ. It should be noted here that (2.34)–(2.36) can be recovered as a special
case of the more general form of the equilibrium equations (2.14a)–(2.14c) of reference
[21] associated with the more general form of the deformation field

r = r(R,Θ, Z), θ = θ(R,Θ, Z), z = z(R,Θ, Z).(2.42)

In [21] the authors emphasize the nominal stress (material) formulation of the equi-
librium equations in contrast to a Cauchy stress (spatial) formulation and describe
why the former representation is more advantageous in specific cases.

3. Transformation of the equations of equilibrium. In general, the equa-
tions of equilibrium (2.27)–(2.29) form an overdetermined system for the azimuthal
displacement g(R,Z). Specifically, for a suitable secant modulus, the azimuthal equa-
tion (2.30) determines a unique g. This solution does not always satisfy the other two
equations unless additional restrictions are imposed on the form of the strain energy
function W . When these conditions are met, every solution of the azimuthal equation
(2.28) will automatically satisfy the other two equations of equilibrium. Then, the
system (2.27)–(2.29) reduces to a single quasi-linear partial differential equation for
one unknown function g involving only a single constitutive function—the secant shear
modulus µ̂. This is exactly the motivation behind the consideration of such specialized
deformation classes: to have a single, well-behaved equation for the displacement. The
other two equilibrium equations can be ignored, since they are satisfied automatically.
Restrictions on the stored energy function always ensure this to be the case.

In what follows we follow the approach by Knowles [16] and Tsai and Fan [23]
and implement one-to-one and smooth mappings from the configuration space to a
region in the shear strain space. However, in contrast to the problem of antiplane
shear, here the basis vectors in the deformed configuration depend nonlinearly on the
reference coordinates R and Z, through their dependence on the unknown function
g(R,Z), and this nonlinearity carries over to their counterparts in the strain space.

Let So and S denote the reference and current strain spaces, respectively. We
introduce the reduced shear vectors, Γ ∈ So and γ ∈ S, associated with the reference
and current configurations, respectively, which are defined by

Γ = ∇Xg = g,RER + g,ZEZ = Ω/R,(3.1)

γ = ∇xg = g,Rer + g,Zez = ω/R = QΓ.(3.2)

Note that g will be considered as a scalar function of X ∈ Bo (the reference configu-
ration space) when associated with Γ, while it will be considered as a scalar function
of x ∈ B (the current configuration) when associated with γ. For simplicity, we use
the same notation for various functional representations of the same quantity unless
otherwise indicated, so that, for example, g(X) = g(x) = g(R,Z). We can consider
the two strain vectors as being related by a mapping ψ,

ψ : So → S, such that γ = ψ(Γ)(3.3)

and ψ(Γ) = QΓ. Comparing the mappings in (2.3) and (3.3) we notice that the
effect of using variables in the strain space has led to a linear relation γ = QΓ
between the vectors that define deformation in this space. We continue this analysis
by constructing a new spherical coordinate system in the shear strain space So with
coordinates (Γ,Φ,Θ) in the reference strain space whose radial unit vector points to
the direction of the reduced strain vector Γ. Therefore, we have

Γ = |Γ|, Φ = arctan
ωr

ωz
(3.4)
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and Θ is the same as in Bo. The associated unit vectors in So can be expressed in
terms of their cylindrical counterparts in Bo,

EΓ = sin ΦER + cos ΦEZ ,(3.5)

EΦ = cos ΦER + sin ΦEZ ,(3.6)

with the azimuthal unit vector EΘ the same as the one in the configuration space.
Therefore, in the discussion above we introduced a transformation from the reference
configuration space to the reference strain space, characterized by the mapping Ξ̂,

Ξ̂ : Bo → So such that Ξ̂(X) = Γ = ΓEΓ.(3.7)

The inverse mapping is denoted by X̂ : So,→ Bo so that

X̂(Ξ̂(X)) = X and Ξ̂(X̂(Γ)) = Γ.(3.8)

The maps defined above are summarized on the following diagram:

Bo

χ ��

ˆΞ
��

B

��
So

ˆX

��

ψ
�� S

.

The analysis above has prepared the grounds for the introduction of the Legendre
transformation of the function g : Bo → R, given by the conjugate function G : So →
R,

G(Γ,Φ) = X · Γ − g(R,Z).(3.9)

From this expression, the following connections can be derived:

RER + ZEZ = X = ∇ΓG = G,ΓEΓ +
1

Γ
G,ΦEΦ,(3.10)

and hence R and Z can be expressed in terms of Γ and Φ:

R = R(Γ,Φ) = sin ΦG,Γ +
1

Γ
cos ΦG,Φ,(3.11)

Z = Z(Γ,Φ) = cos ΦG,Γ − 1

Γ
sin ΦG,Φ.(3.12)

We denote the gradient of the mapping Ξ̂ in (3.7) by

H(X) = ∇X Ξ̂(X), ∀ X ∈ Bo.(3.13)

The assumption that the mapping be smoothly invertible requires that the Jacobian
det H �= 0; this is exactly the necessary and sufficient condition for the existence
of the Legendre transformation (3.9). It follows from (3.8) that the gradient of the
inverse mapping is

∇ΞX̂(Γ) = H−1(X) evaluated at X = X̂(Γ).(3.14)
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Using this mapping we can now calculate the components of the gradient of the vector
X in the reference strain basis as

H−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

G,ΓΓ

(
1

Γ
G,Φ

)
,Γ

0(
1

Γ
G,Φ

)
,Γ

1

Γ

(
1

Γ
G,ΦΦ + G,Γ

)
0

0 0
R(Γ,Φ)

Γ sin Φ

⎞
⎟⎟⎟⎟⎟⎟⎠

,(3.15)

where R(Γ,Φ) is given by (3.11). For the calculation of the equilibrium equations we

will also need the inverse of the gradient of X̂ given by

H =
1

D̄

⎛
⎜⎜⎜⎜⎜⎜⎝

1

Γ

(
1

Γ
G,ΦΦ + G,Γ

)
−
(

1

Γ
G,Φ

)
,Γ

0

−
(

1

Γ
G,Φ

)
,Γ

G,ΓΓ 0

0 0
Γ sin Φ

R(Γ,Φ)
D̄

⎞
⎟⎟⎟⎟⎟⎟⎠

,(3.16)

where D̄ = D̄(Γ,Φ) is the determinant of the upper-left two-by-two submatrix of
H−1, i.e.,

D̄(Γ,Φ) =
1

Γ
G,ΓΓ

( 1

Γ
G,ΦΦ + G,Γ

)
−
[( 1

Γ
G,Φ

)
,Γ

]2

.(3.17)

The nominal stress tensor in the strain space coordinates, S∗(Γ) = S(X̂(Γ)) can be
written as

S∗ = (σ̂ − β̂R2Γ2)EΓ ⊗ eγ + σ̂EΦ ⊗ eφ + (σ̂ − β̂R2Γ2)EΘ ⊗ eθ

+µ̂RΓEΓ ⊗ eθ + (µ̂− σ̂ + β̂R2Γ2)RΓEΘ ⊗ eγ ,(3.18)

where the response functions β̂, σ̂, and µ̂ are evaluated at ω = RΓ. The radial,
polar, and azimuthal components of the equilibrium equations, ∇Ξ[S∗] · H = 0, in
the current strain space, respectively, obtain the form

(σ̂ − β̂R2Γ2),ΓĒ − (σ̂ − β̂R2Γ2),ΦB̄ − β̂Γ2R2Ā− D̄µ̂Γ2R sin Φ = 0,(3.19)

(−σ̂,Γ + β̂R2Γ)ΓB̄ + Āσ̂,Φ + D̄(β̂ − µ̂)Γ2R cos Φ = 0,(3.20)

(µ̂RΓ),ΓĒ + µ̂RΓĀ− (µ̂RΓ),ΦB̄ + 2D̄µ̂Γ sin Φ = 0,(3.21)

where Ā, B̄, Ē, D̄ are functions of Γ,Φ defined as follows: Ā(Γ,Φ) = 1
ΓG,ΓΓ, B̄(Γ,Φ) =

1
Γ

(
1
ΓG,Φ

)
,Γ

, Ē(Γ,Φ) = 1
Γ

(
1
ΓG,ΦΦ + G,Γ

)
, and D̄ is defined in (3.17). In addition, use

has been made of Eulerian strain space quantities and their derivatives with respect
to Lagrangian strain space variables, which appear in the appendix. We now consider
the real amount of shear Ω = RΓ, where the upper case notation is kept throughout
this section to emphasize use of quantities in the reference configuration. Using this
notation, the equilibrium equations can be transformed into the following equivalent
set:

D̄Γ sin Φ
[
(σ̂ − β̂Ω2),Ω − µ̂Ω

]
− β̂Ω2Ā + ĒR[σ̂ − β̂Ω2],Ω = 0,(3.22)

D̄Γ cos Φ
[
σ̂,Ω + Ω(β̂ − µ̂)

]
+ RΓB̄[−σ̂,Ω + β̂Ω] = 0,(3.23)

D̄Γ sin Φ [(µ̂Ω),Ω + 2µ̂] + µ̂ΩĀ + ĒR[µ̂Ω],Ω = 0.(3.24)
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In the next section, we derive the necessary and sufficient conditions satisfied by
the constitutive functions µ̂, β̂, σ̂ such that the above system collapses into a single
equation. Materials that satisfy these conditions are referred to as being able to
support a state of generalized azimuthal shear.

4. Necessary and sufficient conditions for materials to support gen-
eralized azimuthal shear. In what follows we establish necessary and sufficient
conditions on the strain energy function of an isotropic material to support a state
of generalized azimuthal shear (1.1) in the sense that every solution to the azimuthal
equation of equilibrium will satisfy the remaining two equations. The derivation here
differs from those by Knowles [16] and Tsai and Fan [23] in that we do not seek to
satisfy a solution of a special form for the azimuthal equation, but we essentially look
at a superset of conditions whose combination will provide the required results. Our
main result in this section is as follows.

Theorem 4.1. A homogeneous, compressible isotropic hyperelastic material with
stored-energy function characterized by (2.12), can support a state of generalized az-

imuthal shear (1.1) if and only if the constitutive functions σ̂, β̂, and µ̂ characterized
by (2.17), (2.18), and (2.19) satisfy

σ̂,Ω = β̂Ω, β̂ =
µ̂

2
.(4.1)

Proof. To prove sufficiency, we first consider a material that satisfies conditions
(4.1). Then the polar component of the equilibrium equations (3.23) is automatically
satisfied. Also from the relations (4.1), it follows that

1

Ω
(σ̂ − β̂Ω2),Ω = −(β̂Ω),Ω = −1

2
(µ̂Ω),Ω and β̂Ω =

1

2
(µ̂Ω).(4.2)

It then follows that the radial equation (3.22) is equivalent to the azimuthal equation
(3.24). Thus, any solution to the azimuthal equation (3.24) satisfies (3.22) and (3.23).

To prove necessity, we consider the necessary and sufficient conditions derived
from the literature for pure torsion [18] and pure azimuthal shear [2], which, in our
notation, can be rewritten respectively in the form

σ̂,Ω = Ω(µ̂− β̂),(4.3)

σ̂,Ω = −1

2

(
Ω(µ̂− 4β̂) + Ω2(µ̂− 2β̂),Ω

)
.(4.4)

We now assume that a strain energy function supports a state of generalized azimuthal
shear (1.1); it follows that it will support both a state of pure torsion (and therefore
satisfy (4.3)) and a state of pure azimuthal shear (and therefore will satisfy (4.4)).
Combining the two expressions (4.3) and (4.4) we arrive at the equivalent system

3µ̂ + Ωµ̂,Ω = 6β̂ + 2Ωβ̂,Ω.(4.5)

Multiply both sides by Ω2 and integrate to find

β̂ =
1

2
µ̂,(4.6)

where the integration constant is taken to be zero for Ω → 0. Substitute from the
above into (4.3) to recover (4.1)1. This concludes the proof of necessity.
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4.1. Sufficient conditions on W to support deformations that locally
reduce to simple shear. We have already recorded the necessary and sufficient
conditions on the strain energy function to support a state of pure torsion in (4.3)
(cf. [18]) and a state of pure azimuthal shear in (4.4) (cf. [2, 20]). We augment
this set by the necessary and sufficient conditions to support a state of axisymmetric
antiplane shear [14, 19] and a state of antiplane shear [17], which, in our notation,
can be written, respectively, in the form

µ̂(σ̂,Ω − β̂Ω) = (µ̂β̂,Ω − β̂µ̂,Ω)Ω(4.7)

and

σ̂,Ω = β̂Ω, β̂ = bµ̂,(4.8)

where b is a constant. It is a straightforward task to deduce then that the conditions
(4.1) that support a state of generalized azimuthal shear are sufficient to support all
deformations above. Therefore, strain energy functions that satisfy conditions (4.1)
form a distinctive class of materials to which more attention is devoted in the following
two paragraphs.

4.2. Strain energies and necessary and sufficient conditions in terms
of I1, I2, I3. In terms of the principal invariants of the left (or right) Cauchy–Green
strain tensors the conditions (4.1) take the form

W̄1 = W̄2,(4.9)

W̄1 + 2I(W̄11 + W̄12) + 2W̄13 + 2W̄23 = 0(4.10)

for I1 = I2 = I, I3 = 1. The second of these conditions involve second derivatives of
the strain energy with respect to the principal invariants. However, it was shown in
[15] that the second of these conditions is equivalent to

4IW̄1 + 4W̄3 − W̄ = 0.(4.11)

In summary, the following two equations:

W̄1(I, I, 1) = W̄2(I, I, 1), 4IW̄1(I, I, 1) + 4W̄3(I, I, 1) − W̄ (I, I, 1) = 0(4.12)

constitute the necessary and sufficient conditions for the strain energy function to
admit a state of general azimuthal shear, in terms of the principal invariants of the
Cauchy–Green strain tensors.

We may now attempt to derive some possible forms of strain energy functions
that satisfy the conditions (4.12) and ideally support a generalized azimuthal shear
deformation (1.1). We begin by considering a strain energy function in the form

W̄ (I1, I2, I3) = f1(I1)h1(I3) + f2(I2)h2(I3) + h3(I3),(4.13)

where f1 and f2 are functions to be determined, while h1, h2, h3 have to be compatible
with (2.13) and (2.14). Without loss of generality we may set

h1(1) = h2(1) = 1.(4.14)
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It was shown in [15], that a strain energy function of the form (4.13) that satisfies the
necessary and sufficient conditions (4.12), necessarily has the form

W̄ (I1, I2, I3) =
3µ

4k3k
[
Ik1h1(I3) + Ik2h2(I3)

]
+ h3(I3)(4.15)

for k �= 0 and

W̄ (I1, I2, I3) =
3µ

4
[log I1h1(I3) + log I2h2(I3)] + h3(I3)(4.16)

for k = 0. A widely used constitutive assumption, being a special case of (4.15) for the
value of the constant k = 1, is the generalized Hadamard material [1, 14, 18, 19, 20].
Further discussion of this material in the context of the solution of boundary value
problems is included in section 5.

4.3. Strain energies and necessary and sufficient conditions in terms of
i1, i2, i3. In this subsection we recast the conditions (4.12) as equivalent conditions
in terms of the principal invariants of the stretch tensor U arising in the polar decom-
position F = RU of the deformation gradient. These are related to the invariants of
the left Cauchy–Green strain tensor through

I1 = i21 − 2i2, I2 = i22 − 2i1i3, I3 = i23(4.17)

and are expressed in terms of the principal stretches as

i1 = λ1 + λ2 + λ3, i2 = λ1λ2 + λ2λ3 + λ1λ3, i3 = λ1λ2λ3.(4.18)

Then, by using the notation W̃ (i1, i2, i3) to represent the strain energy when regarded
as a function of i1, i2, i3, it is straightforward to show that (4.12) are re-expressed as

W̃1(i, i, 1) = W̃2(i, i, 1), 2iW̃1(i, i, 1) + 2W̃3(i, i, 1) − W̃ (i, i, 1) = 0,(4.19)

where the subscripts denote partial derivatives with respect to i1, i2, i3 and we have
considered the first two principal directions to lie on the plane of shear. We consider
the strain energy function

W̃ (i1, i2, i3) = f(i1)h1(i3) + f(i2)h2(i3) + h3(i3),(4.20)

which is the counterpart of (4.13), so that (4.19)1 is satisfied provided h1(1) = h2(1).
We therefore set

h1(1) = h2(1) = 1.(4.21)

Equation (4.19)2 then leads to

W̃ (i1, i2, i3) =
3µ

k3k
[
ik1h1(i3) + ik2h2(i3)

]
+ h3(i3),(4.22)

where, in addition to (4.21),

h′
1(1) + h′

2(1) = 1 − k, h3(1) = −6µ

k
, h′

3(1) = −3µ

k
(4.23)

for all nonzero values of k, in a manner analogous to [15]. For k = 1, the strain energy
function has the form

W̃ (i1, i2, i3) = µ [i1h1(i3) + i2h2(i3)] + h3(i3).(4.24)

For the special case h′
1(i3) = h′

2(i3) ≡ 0 this energy function reduces to a (compress-
ible) Varga material that was introduced by Carroll [6] (cf. [12]).
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4.4. Strain energies and necessary and sufficient conditions in terms of
the principal stretches, λ1, λ2, λ3. Since the conditions (4.12) are also necessary
and sufficient to support a state of helical shear, they can be described in terms of
the principal stretches, with W = W (λ1, λ2, λ3), in the form

λW1 + λ−1W2 −W = 0, λW1 + λ−1W2 − 2W3 = 0,(4.25)

where subscripts denote differentiation with respect to the principal stretches and the
strain energy is evaluated at λ1 = λ, λ2 = λ−1, λ3 = 1. The reader is referred to [15]
for the details of this derivation. Furthermore, it was shown in [15] that the strain
energy function

W = f(I(α))h1(J) + f(I(−α))h2(J) + h3(J),(4.26)

with I(α) = λα +λ−α +1 and J = λ1 +λ2 +λ3, satisfies the conditions (4.25), for any
function f and α �= 0, subject to some conditions on the functions h1, h2, h3, which
for brevity are not included here.

5. Boundary value problems for generalized azimuthal shear deforma-
tions. In this section we intend to investigate specific solutions of the equilibrium
equations for materials undergoing generalized azimuthal deformations. To find the
general solutions to the equilibrium equations, we could have started, in principle,
from the equilibrium equations (3.22)–(3.24) in the strain space and calculated the
desired unknown displacement function. This would be lengthy though, if feasible
at all, since the transformed equilibrium equations are not linear as was the case for
the corresponding equations formulated in strain space coordinates for the antiplane
shear deformations [23]. Instead, we concentrate on the equilibrium equations in
their configuration space form (2.34)–(2.36). To this end, we substitute the first of
the necessary and sufficient conditions,

W̄1 = W̄2,(5.1)

into the equilibrium equations (2.34)–(2.36), which reduce to

∂

∂R

(
(ω2

z + 3)W̄1 + W̄3

)
+

∂

∂Z

(
−W̄1ωrωz

)
+

1

R

(
W̄1(ω

2
z − 2I + 6)

)
= 0,(5.2)

∂

∂R

(
ωrW̄1

)
+

∂

∂Z

(
W̄1ωz

)
+

2

R

(
ωrW̄1

)
= 0,(5.3)

∂

∂R

(
−W̄1ωrωz

)
+

∂

∂Z

(
(ω2

r + 3)W̄1 + W̄3

)
+

1

R

(
−W̄1ωzωr

)
= 0.(5.4)

After some lengthy but straightforward calculations, taking into account the identity
ωz,R − ωr,Z − ωz/R = 0 and relation (5.1), equations (5.2), (5.3), and (5.4) reduce to

W̄1 + 2I(W̄11 + W̄12) + 2W̄13 + 2W̄23 = 0(5.5)

and

∂

∂R

(
R2γrW̄1

)
+

∂

∂Z

(
R2γzW̄1

)
= 0.(5.6)
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The first of these relations corresponds to the second order necessary and sufficient
condition (4.10) required to support a state of generalized azimuthal shear which,
furthermore, is equivalent to its first order counterpart

4IW̄1 + 4W̄3 − W̄ = 0.(5.7)

Equation (5.6), which equivalently can be rewritten as

∇ ·
(
R3W̄1∇g

)
= 0,(5.8)

will provide the form of the azimuthal displacement g(R,Z) given a specific form of
the strain energy function W̄ (that satisfies the conditions (4.12)). Note that the
above discussion constitutes an alternative way to show that conditions (4.1) indeed
form a set of sufficient expressions a strain energy has to satisfy in order to support
a state of generalized azimuthal shear (1.1). For the strain energy (4.15) we obtain

Ŵ (ω) =
3µ

2k3k
(3 + ω2)k − 3µ

2k
,(5.9)

and hence

Ŵ ′(ω) =
µω

3k−1
(3 + ω2)k−1,(5.10)

from which the inequality (2.32)2 follows. It is then easy to show that (2.32)1 holds
for all γ ≥ 0 if and only if

k ≥ 1

2
.(5.11)

Henceforth, we consider only members of the class (4.15) for which (5.11) holds, and
we note that (4.16) is therefore ruled out.

Substitution of (4.15) into the governing equation (5.8) leads to a quasi-linear
PDE for g(R,Z) in general. A special form of (4.15) with k = 1, the (general)
Hadamard material, has been used widely in the literature [1, 11, 14, 18]. It is given
by the expression

W̄ (I1, I2, I3) =
µ

4
[I1h1(I3) + I2h2(I3)] + h3(I3),(5.12)

where

h3(1) = −3µ

2
, h′

3(1) = −3µ

8
,(5.13)

while (5.8) reduces to the following linear (and elliptic) equation:

g,RR + g,ZZ +
3

R
g,R = 0.(5.14)

The form of the solution will be determined by the boundary conditions. This
issue is dealt within the following paragraphs.
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5.1. Boundary value problems involving the general solutions.

5.1.1. Example 1. First, the inner surface of the tube at r = A is held fixed,
bonded on a rigid cylinder, while the outer surface at r = B is subjected to a given
azimuthal displacement ϕ(Z),

g(A,Z) = 0, g(B,Z) = ϕ(Z).(5.15)

Furthermore, we consider the following additional conditions on the boundary g(R, 0) =
g(R,L) = 0, ϕ(0) = ϕ(L) = 0. We seek separable solutions for the azimuthal dis-
placement of the form

g(R,Z) = f1(R)f2(Z).(5.16)

On substitution of this separable form into (5.14), the boundary conditions are satis-
fied given the separation constant is chosen to be positive as l2, i.e., the axial depen-
dence is taken to vary sinusoidally. With the transformation f1(R) = x−1y(x), x =
lR, the ODE involving the radial coordinate reduces to the modified Bessel equation
for y of order one. Since the configuration involves a tube of finite radius, both solu-
tions of this equation, the modified Bessel functions of the first kind (I1) and second
kind (K1) are involved. The final result for the l-mode of g(R,Z), gl is now given by

gl(R,Z) =
1

lR
[ClI1(lR) + DlK1(lR)] [Al cos lZ + Bl sin lZ] ,(5.17)

where Al, Bl, Cl, Dl are constants to be determined by the boundary conditions. Em-
ploying the boundary conditions (5.15), the azimuthal displacement can now be writ-
ten as

g(R,Z)=
∞∑

n=1

1

lnR
[I1(lnR)K1(lnA)−K1(lnR)I1(lnA)]Cn sin lnZ,(5.18)

where ln = πn/L, for some positive integer n, and

Cn =
2

LEn

∫ L

0

ϕ(Z) sin lnZdZ, n = 1, . . . ,∞,(5.19)

En =
1

lnB
[I1(lnB)K1(lnA) −K1(lnB)I1(lnA)] , n = 1, . . . ,∞.(5.20)

5.1.2. Example 2. The second set of boundary conditions involves our elastic
tube bonded between two concentric solid cylinders which do not rotate relative to
each other, the lower end of the elastic tube is kept undeformed. These conditions
are given by

g(A,Z) = 0, g(B,Z) = 0, g(R, 0) = 0.(5.21)

In order to maintain the deformation (1.1), an axial load is required on the end of the
tube together with a torsional couple, but these expressions will not be needed here.
Seeking separable solutions of the governing equation (5.14), the boundary conditions
are satisfied with a negative separation constant, −l2, i.e., the axial dependence is
taken to vary exponentially. With the same transformation as before, the ODE in-
volving the radial independent variable reduces to the Bessel equation of order one.
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Since the configuration here is that of a tube with a finite radius, both solutions of
this equation, the Bessel functions of the first kind (J1) and second kind (Y1) are
involved. The l-mode solution for this problem is now given by

gl(R,Z) =
1

lR
[ClJ1(lR) + DlY1(lR)]

[
Ale

lZ + Ble
−lZ

]
,(5.22)

where Al, Bl, Cl, Dl are constants to be determined by the boundary conditions. We
note that, for the boundary conditions (5.21), the permissible values of l are to be
determined by the Bessel equation as solutions of an eigenvalue problem. The solution
of the problem is now given by

g(R,Z) =

∞∑
n=1

1

lnR
[J1(lnR)Y1(lnA) − Y1(lnR)J1(lnA)] sinh lnZ,(5.23)

where the ln are the (positive) roots of the transcendental equation [5]

J1(lnA)Y1(lnB) = J1(lnB)Y1(lnA).(5.24)

5.2. Some further solutions for the generalized azimuthal displacement.
In this subsection it would be desirable to compare the form of the general deformation
component g = g(R,Z) with the special cases of pure azimuthal shear (g = g(R))
and pure torsion (g = τZ, τ = constant) that have been investigated in the current
literature without referring to any choice of boundary conditions. Furthermore, we
wish to derive some Riemann type similarity solutions to the governing differential
equation (5.14), whose simple form can be used to verify the validity of the necessary
and sufficient conditions (4.9) and (4.10). To this end, for the generalized Hadamard
material (5.12), we examine the following three cases.

(i) We seek an additively separable solution of (5.14) of the form

g(R,Z) = f1(R) + f2(Z).(5.25)

Substituting this relation into the governing differential equation (5.14), we obtain

g(R,Z) = −2C1

R2
+

lR2

8
− lZ2

2
+ C2Z,(5.26)

where C1, C2 are integration constants and l is a separation constant. We immediately
see that the first term on the left-hand side is a solution of the pure azimuthal shear
problem for a related material, obtained by Beatty and Jiang [2]. The last term on
the right-hand side of the same formula is a deformation known as pure torsion, where
C2 is the angle of twist per unit undeformed length. It was shown by Polignone and
Horgan [18] that pure torsion is supported for the general Hadamard materials. The
simultaneous dependence of the azimuthal displacement on the radial and axial co-
ordinate introduces the coupling constant l and generalizes the previously mentioned
individual deformations.

(ii) We seek a Riemann type similarity solution of the form

g(R,Z) = f(ξ), ξ = RnZm, n,m being integers.(5.27)

Substitution of this form into (5.14) leads to the values n = 2,m = −2 for the two
integer powers. Solving the corresponding ODE, the azimuthal displacement obtains
the form

g(R,Z) = C1

(√
ξ + 1

ξ
+ log

1 +
√
ξ + 1√
ξ

)
, ξ =

R2

Z2
,(5.28)
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where C1 is an integration constant. Therefore, if suitable boundary conditions can be
chosen, the displacement profile will remain constant on the cones R/Z = constant.

(iii) The paragraph above suggests the existence of solutions in the form

g(R,Z) = f(ζ), ζ = αR2 + βZ2, α, β are constants.(5.29)

Substitution into (5.14) leads to α = β = 1. The corresponding solution for the
azimuthal displacement is then given in the form

g(R,Z) = C1ζ
− 3

2 , ζ = R2 + Z2,(5.30)

where C1 is an integration constant. Again, if suitable boundary conditions can
be employed, the azimuthal profile remains constant along the spherical surfaces of
revolution R2 +Z2 = constant. The simple form of this solution can be used to verify
the validity of the necessary and sufficient conditions in a straightforward manner. It
should be noted here that Hill [9] has provided examples of similarity solutions to a
variety of deformations for incompressible elastic materials, a subject closely related
to the paragraphs (ii) and (iii) above.

5.3. The effect of torsion on the pure azimuthal shear. In this section we
consider the azimuthal displacement with the predetermined form

g(R,Z) = ρ(R) + τZ, τ = constant,(5.31)

which will account for the simultaneous azimuthal shearing and torsion and will enable
us to compare the unknown function ρ(R), with results from the pure azimuthal
deformation g = g(R) in [20, 2]. We start by noting that the strain invariants depend
only on R,

I = I1 = I2 = (Rρ′(R))2 + (Rτ)2 + 3;(5.32)

hence the azimuthal equilibrium equation (5.3) can be integrated once to

4R3ρ′(R)W̄1 = B2σ̄θ,(5.33)

where the constant σ̄θ is the value of the azimuthal shear stress σrθ on the outer
boundary of the cylinder R = B. Expression (5.33) is valid for both pure shear and
azimuthal shear combined with pure torsion. However, in the case of pure shear, the
strain invariants are given by

I = I1 = I2 = (Rρ′(R))2 + 3.(5.34)

We now consider the following special case of the material (4.15).
(i) k = 1. The strain energy function in this case is the generalized Hadamard

material (5.12). For the deformation of shear coupled with torsion (5.33) can be
integrated once to give

ρ(R) = −B2σ̄θ

2µ

1

R2
+ C,(5.35)

where C is an integration constant and we note that this solution can be obtained
directly from the results of the previous section with the value of the separation
constant set equal to zero. It can be shown that this is the solution of the pure
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azimuthal shear problem for the Hadamard material (5.12) in accordance with the
work of Beatty and Jiang [2]. As in the incompressible case [22] for the neo-Hookean
material, we deduce that torsion does not affect the shearing for the material under
study.

(ii) k = 1/2. In this case the strain energy function obtains the form

W̄ (I1, I2, I3) =

√
3µ

2

[√
I1h1(I3) +

√
I2h2(I3)

]
+ h3(I3),(5.36)

where

h3(1) = −3µ, h′
3(1) = −3µ

4
.(5.37)

Because of the inclusion of the square root of the first principal invariant, this model
is reminiscent of the recently introduced strain energy by Bischoff, Arruda, and Grosh
[4] for the accurate description of the nonlinear pressure-volume response of rubber-
like solids in hydrostatic compression. For shear with torsion substituting (5.36) into
(5.33) and considering the invariants (5.32), the function ρ(R) is given in terms of
elliptic function in principle. However, requiring the stress value σθ and the twist τ
to satisfy the relation

√
3µ

B2σ̄θ
=

τ2

3
,(5.38)

we obtain the following form for the azimuthal function:

ρ(R) = −
√

3 arcsin

(√
3

Rτ

)
+ C,(5.39)

where C is an integration constant and Rτ ≥
√

3.
For pure azimuthal shear, substituting (5.36) into (5.33) and taking into account

the invariants (5.34), we obtain the solution (ρp for pure azimuthal shear),

ρp(R) =

√
3

2
arcsin

(
B2σ̄θ√
3µR2

)
+ C.(5.40)

We notice that the different structure between (5.39) and (5.40) is due to the presence
of the pure torsion term and is quite profound even for the special case under consid-
eration. Similar conclusions were drawn in [22], for the power neo-Hookean material
and the value of the power n = 1/2.

6. Concluding remarks. In this article we derived a set of necessary and suf-
ficient conditions (4.1), a compressible and isotropic strain energy has to satisfy, in
order to support the generalized azimuthal deformation (1.1). This is a deformation
that locally reduces to simple shear. The same conditions remain sufficient for a strain
energy to support the special cases of pure azimuthal shear and pure torsion. How-
ever, a close examination of the current literature reveals that the same conditions
are also sufficient for a strain energy to support antiplane shear deformations [17], he-
lical shear deformations [15], and, of course, their special cases such as axisymmetric
antiplane shear. Therefore, if a strain energy function satisfies these conditions, the
material is able to support a large class of deformations that locally reduce to simple
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shear. It remains open whether such materials will support all isochoric deformations
that locally reduce to simple shear.

Appendix. Derivatives of Eulerian strain-space quantities. Derivatives
of the Eulerian strain-space coordinates and basis vectors in terms of Lagrangian
strain-space coordinates are as follows:

∂θ

∂Γ
= ΓG,ΓΓ ≡ Ã,

∂θ

∂Φ
= Γ2

(
1

Γ
GΦ

)
,Γ

≡ B̃,(A.1)

∂er

∂Γ
= Ãeθ,

∂er

∂Φ
= B̃eθ,(A.2)

∂eθ

∂Γ
= −Ãer,

∂eθ

∂Φ
= −B̃er,(A.3)

∂eγ

∂Γ
= sin ΦÃeθ,

∂eγ

∂Φ
= sin ΦB̃eθ + eφ,(A.4)

∂eφ

∂Γ
= cos ΦÃeθ,

∂eφ

∂Φ
= cos ΦB̃eθ − eγ .(A.5)
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MODELING OF WAVE RESONANCES IN LOW-CONTRAST
PHOTONIC CRYSTALS∗
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Abstract. Coupled-mode equations are derived from Maxwell equations for modeling of low-
contrast cubic-lattice photonic crystals in three spatial dimensions. Coupled-mode equations describe
resonantly interacting Bloch waves in stop bands of the photonic crystal. We study the linear
boundary-value problem for stationary transmission of four counter-propagating and two oblique
waves on the plane. Well-posedness of the boundary-value problem is proved by using the method
of separation of variables and generalized Fourier series. For applications in photonic optics, we
compute integral invariants for transmission, reflection, and diffraction of resonant waves.
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1. Introduction. Photonic band-gap crystals are periodic optical materials, the
spectrum of which consists of bands separated by band gaps [13]. Linear periodic
properties of the isotropic photonic crystals are modeled with the Maxwell equations

∇2E − n2

c2
∂2E

∂t2
= ∇(∇ · E), ∇ ·

(
n2E

)
= 0,(1.1)

where n = n(x) is the periodic refractive index, E = (Ex, Ey, Ez) is the electric field
vector, x = (x, y, z) is the physical space, t is the time variable, ∇ = (∂x, ∂y, ∂z) is the
gradient vector, and c is the speed of light. Components of the magnetic field vector
are eliminated from the Maxwell equations (1.1) [13].

The Maxwell equations (1.1) in one dimension can be simplified for a linearly
polarized light, such that E = (E, 0, 0), where E = E(z, t) and n = n(z). The scalar
component E(z, t) solves the wave equation with the periodic speed variations

∂2E

∂z2
− n2(z)

c2
∂2E

∂t2
= 0.(1.2)

If the refractive index n(z) is a periodic function with period z0, the linear spectrum
of the wave equation (1.2) reduces to the Mathieu equation for E(z, t) = ψ(z)e−iωt,
where ω is the eigenvalue and ψ(z) is the eigenfunction of the spectral problem

ψ′′ +
ω2

c2
n2(z)ψ = 0.(1.3)

According to the Floquet theory [12], solutions of the Mathieu equation (1.3) take the
form ψ(z) = Ψ(z)eik(ω)z, where Ψ(z + z0) = Ψ(z) and k = k(ω) is the propagation
constant. For a general class of periodic potentials n2(z), there exist infinitely many
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intervals of ω, called band gaps, where the propagation constant k(ω) is purely imagi-
nary and the Bloch function ψ(z) is unbounded in z. The band gaps are supported by
the low-contrast photonic crystal with the refractive index n(z) = n0 + εn1(z), where
n0 is constant and ε is small parameter.

The linear Maxwell equations (1.1) in two and three dimensions can also be re-
duced to a spectral problem for E(x, t) = ψ(x)e−iωt, where ω is the eigenvalue and
ψ(x) is the eigenvector. When n(x) is a periodic function in x, y, z with periods x0,
y0, z0, respectively, the eigenvector ψ(x) satisfies the Floquet theorem [12] and has
the form of the Bloch wave: ψ(x) = Ψ(x)ei(kxx+kyy+kzz), where Ψ(x) is periodic in
x, y, and z with periods x0, y0, and z0, and ω = ω(kx, ky, kz). No band gaps exist in
the linear spectrum for low-contrast photonic crystals. As a result, the bounded Bloch
functions ψ(x) may exist for any value of ω ∈ R. High-contrast photonic crystals may,
however, exhibit band gaps for some configurations of the refractive index n(x) [13].

Modeling of time-dependent responses of photonic crystals in three spatial di-
mensions can be computationally difficult in the framework of the Maxwell equations,
especially if the nonlinear and nonlocal dispersive terms are taken into account. A
more efficient method is based on reduction of Maxwell equations (1.1) to the coupled-
mode equations [23]. For instance, shock wave singularities may occur in the nonlinear
Maxwell equations but they do not occur in the nonlinear coupled-mode equations
[8]. Coupled-mode equations are typically derived in the first band gap of the Bragg
resonance between two counter-propagating waves in one spatial dimension [20, 21].
More complicated coupled-mode equations are considered for three-dimensional non-
linear photonic crystals [1, 2, 3, 6]. Recent reviews [4, 5] also include classification of
different resonances of Bloch waves in photonic crystals with quadratic nonlinearities.

In this paper, we classify wave resonances and coupled-mode equations for low-
contrast cubic-lattice photonic crystals in three spatial dimensions. Since low-contrast
crystals do not support band gaps beyond one dimension [12, 13], resonances are con-
sidered in stop bands of the linear spectrum [10]. Stop bands occur between resonant
counter-propagating waves, which could be coupled resonantly with other oblique
Bloch waves. The number of resonant Bloch waves depends on the geometric configu-
ration of the incident wave with respect to the cubic lattice. When the Maxwell equa-
tions are truncated with the perturbation series expansions, coupled-mode equations
for the lowest-order Bragg resonances are derived and studied in bounded domains,
subject to the radiation boundary conditions. The radiation boundary conditions
describe transmission of the incident Bloch waves which generate resonantly reflected
and diffracted Bloch waves in the photonic crystals.

We study here the linear coupled-mode equations for four counter-propagating
and two oblique Bloch waves on the plane. It is not a priori clear why the stationary
boundary-value problem with radiation boundary conditions is well posed, since it is
specified by non–self-adjoint operators on the bounded domains. We prove, however,
the well-posedness of the linear stationary problem by using separation of variables
and generalized Fourier series [24]. Eigenfunction expansions and convergence of
generalized Fourier series follow from the general theory [7]. As a result, we construct
explicit analytical expressions for stationary transmission, reflection, and diffraction
of resonant Bloch waves, which are used in modeling of the low-contrast photonic
crystals.

Other applications of optical photonic structures include nonlinear phenomena,
such as bistable stationary transmission and gap soliton propagation [6, 14, 15, 22].
Very little is known about the persistence of such phenomena in two and three spatial
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dimensions, especially given that no band gap exists in low-contrast three-dimensional
photonic structures. The coupled-mode equations can be generalized to include the
weakly nonlinear (cubic) terms and to extend the time-dependent problems to the
nonlinear coupled-mode equations [18, 19]. Well-posedness of the nonlinear stationary
problems is beyond the scope of this manuscript, which only presents solutions of the
linear stationary problems. Nevertheless, linear analysis opens the road to nonlinear
analysis of the corresponding boundary-value problems.

The paper is organized as follows. Classification of resonances in low-contrast
cubic-lattice crystals is given in section 2. Derivation of coupled-mode equations for
lowest-order resonances is described in section 3. The linear stationary boundary-
value problems for four counter-propagating and two oblique resonant Bloch waves
are analyzed in section 4. Section 5 concludes the paper. Appendix A gives deriva-
tion and explicit forms of the nonlinear coupled-mode equations with cubic (Kerr)
nonlinearities.

2. Classification of resonances. When the optical material is homogeneous,
such that n(x) = n0 is constant, the linear spectrum of the Maxwell equations (1.1)
is defined by the free transverse waves,

E(x, t) = eke
i(k·x−ωt),(2.1)

where ek is the polarization vector, k = (kx, ky, kz) is the wave vector, and ω = ω(k)
is the wave frequency. It follows from system (1.1) that

k · ek = 0, ω2 =
c2

n2
0

(k2
x + k2

y + k2
z).(2.2)

For each wave vector k there exist two independent polarizations e
(1)
k and e

(2)
k such

that e
(1)
k · e(2)

k = 0. This degeneracy in the polarization vector is neglected here by
the assumption that the incident wave is linearly polarized.

When the optical material is periodic such that n(x + x0) = n(x0), the linear
spectrum of the Maxwell equations (1.1) is defined by the Bloch waves:

E(x, t) = Ψ(x)ei(k·x−ωt),(2.3)

where Ψ(x+x0) = Ψ(x) is the periodic envelope, k = (kx, ky, kz) is the wave vector,
and ω = ω(k) is the wave frequency. Existence of the Bloch waves (2.3) for the
Maxwell equations (1.1) is proved in [12]. The geometric configuration of the photonic
crystal is defined by the fundamental (linearly independent) lattice vectors x1,2,3 and
fundamental reciprocal lattice vectors k1,2,3 such that ki · xj = 2πδi,j , where 1 ≤ i,
j ≤ 3 (see [10]). Therefore, the linear refractive index n(x) can be expanded into a
triple Fourier series:

n(x) = n0

∑
(n,m,l)∈Z3

αn,m,le
i(nk1+mk2+lk3)·x,(2.4)

where the factor n0 is included for convenience. If n0 is the mean value of n(x),
then α0,0,0 = 1. Let the wave vector k in the incident Bloch wave (2.3) be chosen as
k = kin. The incident wave vector kin is expanded in terms of the lattice vectors:

kin =
1

2
(pk1 + qk2 + rk3),(2.5)
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where (p, q, r) ∈ R3 are parameters. The Bloch wave (2.3) is represented by triple
Fourier series for Ψ(x), such that E(x, t) consists of an infinite superposition of free

transverse waves with the wave vectors k
(n,m,l)
out :

k
(n,m,l)
out = kin + nk1 + mk2 + lk3, (n,m, l) ∈ Z3.(2.6)

The wave vector k
(n,m,l)
out with a nonempty triple (n,m, l) is said to be resonant with

the wave vector kin if |k(n,m,l)
out | = |kin| such that |ω(k

(n,m,l)
out )| = |ω(kin)|.

We consider here a simple cubic crystal, where the fundamental lattice vectors
and reciprocal lattice vectors are all orthogonal [10]:

x1,2,3 = ae1,2,3, k1,2,3 = k0e1,2,3, k0 =
2π

a
,(2.7)

where e1,2,3 are unit vectors in R3. The coordinate axes (x, y, z) are oriented along
the axes of the simple cubic crystal, while the incident wave vector kin is directed
according to the spherical angles (θ, ϕ) as follows:

kin = k(sin θ cosϕ, sin θ sinϕ, cos θ), k ∈ R, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π,(2.8)

where k = |kin|. When θ = 0, the wave vector kin is perpendicular to the (x, y) crystal
plane. For the simple cubic crystal, the set of resonant Bloch waves is given by the
set of triples

S = {(n,m, l) ∈ Z3 : n(n + p) + m(m + q) + l(l + r) = 0},(2.9)

where

p =
2k

k0
sin θ cosϕ, q =

2k

k0
sin θ sinϕ, r =

2k

k0
cos θ.(2.10)

The set S always has a zero solution: (n,m, l) = (0, 0, 0). When (p, q, r) ∈ Z3 and
|p|+ |q|+ |r| �= 0, the set S has at least one nonzero solution: (n,m, l) = (−p,−q,−r).
The set S is also bounded, since (n,m, l) are integer solutions inside the sphere:

(
n +

p

2

)2

+
(
m +

q

2

)2

+
(
l +

r

2

)2

=

(
k

k0

)2

< ∞.(2.11)

When (p, q, r) ∈ Z3, resonant triples (n,m, l) can all be classified analytically. How-
ever, when (p, q, r) /∈ Z3, additional resonant triples may also exist. In solid state
physics [10], a geometric solution for the resonant triples (n,m, l) is constructed from

the condition that the vector G(n,m,l) = k
(n,m,l)
out − kin lies on the edge of sectors

of the reciprocal lattice. Here we review particular resonant sets S for integer and
noninteger values of (p, q, r).

2.1. A family of one-dimensional resonances. The one-dimensional Bragg
resonance occurs when the incident wave is coupled with the counter-propagating
reflected wave such that the set S has at least one nonzero solution: (n,m, l) =
(0, 0,−r), where r ∈ Z+. The values of p and q are not defined for the Bragg resonance
when n = m = 0. As a result, spherical angles θ and ϕ in the parametrization (2.8)
are arbitrary, while the wave number k satisfies the Bragg resonance condition [10]:

rk0 = 2k cos θ(2.12)
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such that rλ = 2a cos θ, where λ is the wavelength. The one-dimensional Bragg
resonance is generalized in three dimensions for p = q = 0 and r ∈ Z+, when the
geometric configuration for the Bragg resonance (2.12) is fixed at the specific value
θ = 0, and

kin =
π

a
(0, 0, r), k

(0,0,−r)
out =

π

a
(0, 0,−r).(2.13)

The incident wave is directed to the z-axis of the cubic lattice crystal, and the wave-
length is λ = 2a/r. The family of Bragg resonances with p = q = 0 and r ∈ Z+

may include not only the two counter-propagating waves (2.13) but also other Bloch
waves in three-dimensional photonic crystals. The lowest-order resonant sets S for
p = q = 0 and r ∈ Z+ are listed below:

r = 1 : S = {(0, 0, 0), (0, 0,−1)},
r = 2 : S = {(0, 0, 0), (1, 0,−1), (−1, 0,−1), (0, 1,−1), (0,−1,−1), (0, 0,−2)},
r = 3 : S = {(0, 0, 0), (1, 1,−1), (−1, 1,−1), (1,−1,−1), (−1,−1,−1),

(1, 1,−2), (−1, 1,−2), (1,−1,−2), (−1,−1,−2), (0, 0,−3)} .

The dimension of S depends on the total number of all possible integer solutions
for (n,m, l). The sets S for higher-order resonances with r ∈ Z+ can be found
algorithmically, with symbolic computing software.

2.2. A family of two-dimensional resonances. Two-dimensional Bragg reso-
nances occur when the incident wave vector kin is resonant to the counter-propagating

reflected wave vector k
(−p,−q,0)
out , as well as to two other diffracted wave vectors k

(0,−q,0)
out

and k
(−p,0,0)
out , where (p, q) ∈ Z2

+. The value of r is not defined for the two-dimensional
resonance, such that the angle θ in the parametrization (2.8) is arbitrary, while k and
ϕ satisfy the resonance conditions

ϕ = arctan

(
q

p

)
,

√
p2 + q2k0 = 2k sin θ.(2.14)

The two-dimensional Bragg resonances are generalized in three dimensions for (p, q) ∈
Z2

+ and r = 0, when the geometric configuration for the Bragg resonance (2.14) is
fixed at the specific value θ = π

2 , and

kin =
π

a
(p, q, 0), k

(−p,−q,0)
out =

π

a
(−p,−q, 0),

k
(0,−q,0)
out =

π

a
(p,−q, 0), k

(−p,0,0)
out =

π

a
(−p, q, 0).(2.15)

The incident wave kin is directed along the diagonal of the (px, qy)-cell of the cubic

lattice crystal, and the wavelength is λ = 2a/
√
p2 + q2.

The families of Bragg resonances with (p, q) ∈ Z2
+ and r = 0 may include not

only the four resonant waves (2.15) but also other Bloch waves in three-dimensional
photonic crystals. The lowest-order resonant sets S for (p, q) ∈ Z2

+ and r = 0 are
listed below:

p=1, q=1 : S = {(0, 0, 0), (−1, 0, 0), (0,−1, 0), (−1,−1, 0)},
p=2, q=1 : S = {(0, 0, 0), (0,−1, 0), (−1, 0, 1), (−1, 0,−1), (−1,−1, 1), (−1,−1,−1),

(−2, 0, 0), (−2,−1, 0)},
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p=2, q=2 : S = {(0, 0, 0), (0,−1, 1), (0,−1,−1), (0,−2, 0), (−1, 0, 1), (−1, 0,−1),

(−1,−2, 1), (−1,−2,−1), (−2, 0, 0), (−2,−1, 1), (−2,−1,−1),

(−2,−2, 0)} .

2.3. Two-dimensional resonances of oblique waves. The resonant set S
can be nonempty for (p, q, r) /∈ Z3, which correspond to oblique Bloch waves. For
instance, two oblique waves can be resonant on the (x, y)-plane if

kin =
π

a
(p, q, 0), k

(n,m,0)
out =

π

a
(p + 2n, q + 2m, 0),(2.16)

where (n,m) ∈ Z2 are arbitrary and (p, q) ∈ R2 are taken on the straight line:

np + mq = −(n2 + m2).(2.17)

Similarly, three oblique waves can be resonant on the (x, y)-plane if

kin =
π

a
(p, q, 0),

k
(n1,m1,0)
out =

π

a
(p + 2n1, q + 2m1, 0),

k
(n2,m2,0)
out =

π

a
(p + 2n2, q + 2m2, 0),(2.18)

where (n1,m1) ∈ Z2 and (n2,m2) ∈ Z2 are arbitrary subject to the constraint m1n2 �=
m2n1, while (p, q) take rational values

p =
m1(n

2
2 + m2

2) −m2(n
2
1 + m2

1)

m2n1 −m1n2
, q =

n1(n
2
2 + m2

2) − n2(n
2
1 + m2

1)

n2m1 − n1m2
.(2.19)

In the general case, two oblique waves (2.16) or three oblique waves (2.18) may have
resonances with other Bloch waves in three-dimensional photonic crystals.

2.4. A family of three-dimensional resonances. When (p, q, r) ∈ Z3
+, the

resonant sets S include eight coupled waves for fully three-dimensional Bragg reso-
nance:

kin =
π

a
(p, q, r), k

(−p,−q,−r)
out =

π

a
(−p,−q,−r),

k
(−p,0,0)
out =

π

a
(−p, q, r), k

(0,−q,0)
out =

π

a
(p,−q, r),

k
(0,0,−r)
out =

π

a
(p, q,−r), k

(−p,−q,0)
out =

π

a
(−p,−q, r),

k
(−p,0,−r)
out =

π

a
(−p, q,−r), k

(0,−q,−r)
out =

π

a
(p,−q,−r).(2.20)

The resonance condition for the three-dimensional Bragg resonance takes the form

ϕ = arctan

(
q

p

)
, θ = arctan

(√
p2 + q2

r

)
,

√
p2 + q2 + r2k0 = 2k.(2.21)

The incident wave kin is directed along the diagonal of the (px, qy, rz)-cell of the

cubic lattice crystal, and the wavelength is λ = 2a/
√
p2 + q2 + r2. The eight waves

(2.20) can be coupled with some other resonant waves such that dim(S) ≥ 8 for
(p, q, r) ∈ Z3

+. For instance, dim(S) = 8 for (p, q, r) = (1, 1, 1) and (p, q, r) = (2, 1, 1),
but dim(S) = 10 for (p, q, r) = (2, 2, 1) and dim(S) = 16 for (p, q, r) = (3, 2, 1).
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3. Derivation of coupled-mode equations. The dispersion surface ω = ω(k)
for the Bloch waves (2.3) in the periodic photonic crystal is defined by the profile
of the refractive index n(x). We shall consider the asymptotic approximation of the
dispersion surface ω = ω(k) in the limit when the photonic crystal is low-contrast,
such that the refractive index n(x) is given by

n(x) = n0 + εn1(x),(3.1)

where n0 is a constant and ε is small parameter. It is proved in [12] that the Bloch
waves (2.3) are smooth functions of ε, such that the asymptotic solution of the Maxwell
equations (1.1) as ε → 0 takes the form of the perturbation series expansions:

E(x, t) = E0(x, t) + εE1(x, t) + O(ε2).(3.2)

The leading-order term E0(x, t) consists of free transverse waves (2.1) with wave

vectors k
(n,m,l)
out , given by (2.6), such that the asymptotic form (3.2) represents the

Bloch wave (2.3) as ε �= 0.
Coupled-mode equations are derived by separating resonant free waves from

nonresonant free waves in the Bloch wave (2.3), where the resonant set S with
N = dim(S) < ∞ is defined by (2.9). Let E0(x, t) be a linear superposition of
N resonant waves with wave vectors kj at the same frequency ω:

E0(x, t) =

N∑
j=1

Aj(X, T )ekje
i(kjx−ωt), X =

εx

k
, T =

εt

ω
,(3.3)

where ω and kj are related by the same dispersion equation (2.2), Aj(X, T ) is the
envelope amplitude of the jth resonant wave (2.1), and (X, T ) are slow variables.
The slow variables represent a deformation of the dispersion surface ω = ω(kj) due to
the low-contrast periodic photonic crystal. The degeneracy in the polarization vector
is neglected by the assumption that the incident wave is linearly polarized with the
polarization vector ein = ekin . The triple Fourier series (2.4) for the cubic-lattice
crystal (2.7) is simplified as follows:

n1(x) = n0

∑
(n,m,l)∈Z3

αn,m,le
ik0(nx+my+lz),(3.4)

where α0,0,0 = 0. The Fourier coefficients αn,m,l satisfy the constraints

αn,m,l = ᾱ−n,−m,−l,(3.5)

due to the reality of n1(x);

αn,m,l = αm,n,l = αn,l,m = αl,m,n,(3.6)

due to the crystal isotropy in the directions of x, y, z-axes; and

α−n,m,l = αn,m,l, αn,−m,l = αn,m,l, αn,m,−l = αn,m,l,(3.7)

due to the crystal symmetry with respect to the origin (0, 0, 0). (The latter property
can be achieved by a simple shift of (x, y, z).) It follows from constraints (3.5) and
(3.7) that all coefficients αn,m,l for (n,m, l) ∈ Z3 are real-valued.
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It follows from (1.1), (3.1), and (3.2) that the first-order correction term E1(x, t)
solves the nonhomogeneous linear problem

∇2E1 −
n2

0

c2
∂2E1

∂t2
= 2

n2
0ω

c2
∂2E0

∂T∂t
− 2k (∇ · ∇X)E0

+
2n0n1(x)

c2
∂2E0

∂t2
+

2

n0
∇(∇n1 · E0),(3.8)

where ∇X = (∂X , ∂Y , ∂Z) and the second equation of (1.1) has been used. The right-
hand side of the nonhomogeneous equation (3.8) has resonant terms, which are parallel
to the free-wave resonant solutions of the homogeneous problem. The resonant terms
lead to the secular growth of E1(x, t) in t unless they are identically zero. The latter
conditions define the coupled-mode equations for amplitudes Aj(X, T ), j = 1, . . . , N,
in the general form

i

(
∂Aj

∂T
+

(
kj

k
· ∇X

)
Aj

)
+
∑
k �=j

α̂j,kAk = 0, j = 1, . . . , N,(3.9)

where the elements {α̂j,k}1≤j,k≤N are related to the Fourier coefficients of the resonant
waves {αn,m,l}(n,m,l)∈S . The explicit forms of the coupled-mode equations (3.9) are
given for two and four counter-propagating and two oblique resonant Bloch waves.

3.1. Coupled-mode equations for two counter-propagating waves. The
lowest-order Bragg resonance for two counter-propagating waves (2.13) occurs for
r = 1, when

k1 =
π

a
(0, 0, 1), k2 =

π

a
(0, 0,−1).(3.10)

Let A1 = A+(Z, T ) and A2 = A−(Z, T ) be the amplitudes of the right (forward) and
left (backward) propagating waves, respectively. The envelope amplitudes are not
modulated across the (X,Y )-plane, since the coupled-mode equations for A± are es-
sentially one-dimensional. The polarization vectors are chosen in the x-direction such
that ek1 = ek2 = (1, 0, 0) and E0 = (E0,x(z, Z, T )e−iωt, 0, 0). The nonhomogeneous
equation (3.8) at the x-component of the solution E1 at e−iωt takes the form

∇2E1,x + k2E1,x = −2ik2 ∂

∂T
E0,x − 2k

∂2

∂Z∂z
E0,x

− 2k2n1(x)

n0
E0,x +

2

n0

∂2n1(x)

∂x2
E0,x.(3.11)

By removing the resonant terms at e±ikz, the coupled-mode equations for amplitudes
A±(Z, T ) take the form

i

(
∂A+

∂T
+

∂A+

∂Z

)
+ αA− = 0,(3.12)

i

(
∂A−
∂T

− ∂A−
∂Z

)
+ αA+ = 0,(3.13)

where α = α0,0,1 = α0,0,−1. The coupled-mode equations (3.12)–(3.13) can be defined
on the interval 0 ≤ Z ≤ Lz for T ≥ 0, where the end points at Z = 0 and Z = Lz are
the left and right (x, y)-planes, which cut a slice of the photonic crystal. The linear
system (3.12)–(3.13) is reviewed in [23]. The nonlinear coupled-mode equations are
derived in [6, 22] and analyzed recently in [8, 14, 15].
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3.2. Coupled-mode equations for four counter-propagating waves. The
lowest-order resonance for four counter-propagating waves (2.15) occurs for p = q = 1,
when

k1 =
π

a
(1, 1, 0), k2 =

π

a
(1,−1, 0), k3 =

π

a
(−1, 1, 0), k4 =

π

a
(−1,−1, 0).(3.14)

Let A1 = A+(X,Y, T ) and A4 = A−(X,Y, T ) be the amplitudes of the counter-
propagating waves along the main diagonal of the (x, y) plane, while A2 = B+(X,Y, T )
and A3 = B−(X,Y, T ) are the amplitudes of the counter-propagating waves along the
antidiagonal of the (x, y)-plane. The envelope amplitudes are not modulated in the
Z-direction, since the coupled-mode equations for A± and B± are essentially two-
dimensional. The polarization vectors are chosen in the z-direction such that ekj =
(0, 0, 1), 1 ≤ j ≤ 4, and E0 = (0, 0, E0,z(x, y,X, Y, T )e−iωt). The nonhomogeneous
equation (3.8) at the z-component of the solution E1 at e−iωt takes the form

∇2E1,z + k2E1,z = −2ik2 ∂

∂T
E0,z − 2k

∂2

∂X∂x
E0,z − 2k

∂2

∂Y ∂y
E0,z

− 2k2n1(x)

n0
E0,z +

2

n0

∂2n1(x)

∂z2
E0,z.(3.15)

By removing the resonant terms at e
i√
2
(±kx±ky)

, the coupled-mode equations for
amplitudes A±(X,Y, T ) and B±(X,Y, T ) take the form

i

(
∂A+

∂T
+

∂A+

∂X
+

∂A+

∂Y

)
+ αA− + β (B+ + B−) = 0,(3.16)

i

(
∂A−
∂T

− ∂A−
∂X

− ∂A−
∂Y

)
+ αA+ + β (B+ + B−) = 0,(3.17)

i

(
∂B+

∂T
+

∂B+

∂X
− ∂B+

∂Y

)
+ β (A+ + A−) + αB− = 0,(3.18)

i

(
∂B−
∂T

− ∂B−
∂X

+
∂B−
∂Y

)
+ β (A+ + A−) + αB+ = 0,(3.19)

where α = α1,1,0 = α−1,−1,0 = α1,−1,0 = α−1,1,0 and β = α0,1,0 = α1,0,0 = α0,−1,0 =
α−1,0,0. The coupled-mode equations (3.16)–(3.19) can be defined in the domain
(X,Y ) ∈ D and T ≥ 0, where D is a domain on the (x, y)-plane of the photonic
crystal. The system has not been previously studied in literature, to the best of our
knowledge.

3.3. Coupled-mode equations for two oblique waves. Two oblique reso-
nant waves on the (x, y)-plane are defined by the resonant wave vectors (2.16) under
the constraint (2.17). Assuming that e1 = e2 = (0, 0, 1), the Maxwell equations can
be reduced to the same form (3.15), where the resonant terms are eliminated at the

wave vectors k1 = kin and k2 = k
(n,m,0)
out . The coupled-mode equations for amplitudes

A1,2(X,Y, T ) take the form

i

(
∂A1

∂T
+

p√
p2 + q2

∂A1

∂X
+

q√
p2 + q2

∂A1

∂Y

)
+ αA2 = 0,(3.20)

i

(
∂A2

∂T
+

p + 2n√
p2 + q2

∂A2

∂X
+

q + 2m√
p2 + q2

∂A2

∂Y

)
+ αA1 = 0,(3.21)
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where α = αn,m,0 = α−n,−m,0. Coupled-mode equations (3.20)–(3.21) for two oblique
waves cannot be reduced to the one-dimensional system (3.12)–(3.13), since the char-
acteristics in the system (3.20)–(3.21) are no longer parallel.

The coupled-mode equations for three oblique resonant waves (2.18) can be de-
rived similarly, subject to the resonance condition (2.19). Three characteristics along

the wave vectors k1 = kin, k2 = k
(n1,m1,0)
out , and k3 = k

(n2,m2,0)
out belong to the same

(X,Y )-plane. The stationary transmission problem for the three oblique waves is
hence a boundary-value problem on the (X,Y )-plane with three (linearly dependent)
characteristic coordinates. Oblique interaction of three oblique resonant Bloch waves
in a hexagonal crystal was considered numerically in [18].

4. Analysis of stationary transmission. The stationary transmission prob-
lem follows from separation of variables in the coupled-mode equations (3.9):

Aj(X, T ) = aj(X)e−iΩT , j = 1, . . . , N,(4.1)

where Ω is the detuning frequency. When the boundary-value problem for aj(X) is
well posed in a bounded domain, analytical solutions for the linear stationary coupled-
mode equations can be derived by using separation of variables and generalized Fourier
series [24]. Exploiting these analytical solutions, integral invariants of the stationary
transmission, reflection, and diffraction of the resonant Bloch waves can be computed
explicitly. We analyze here the stationary coupled-mode equations for two and four
counter-propagating and two oblique resonant Bloch waves.

4.1. Transmission of two counter-propagating waves. After separation of
variables (4.1), the linear coupled-mode equations (3.12)–(3.13) reduce to the following
ODE system:

i
da+

dZ
+ Ωa+ + αa− = 0,(4.2)

−i
da−
dZ

+ αa+ + Ωa− = 0.(4.3)

The problem (4.2)–(4.3) is defined on the interval 0 ≤ Z ≤ LZ . When the inci-
dent wave strikes the photonic crystal from the left, the linear system (4.2)–(4.3) is
completed by the boundary conditions

a+(0) = α+, a−(LZ) = 0,(4.4)

where α+ is the given amplitude of the incident wave at the left (x, y)-plane of the
crystal. The general solution of the ODE system (4.2)–(4.3) is given explicitly as
follows: (

a+

a−

)
= c+

(
α

Ω + iκ

)
eκZ + c−

(
α

Ω − iκ

)
e−κZ ,(4.5)

where c± ∈ C are arbitrary and κ ∈ C is the root of the determinant equation

κ =
√

α2 − Ω2.(4.6)

When κ = iK, K ∈ R, the linear dispersion relation Ω = Ω(K) follows from the
quadratic equation

Ω2 = α2 + K2.(4.7)
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The two branches of the dispersion relation (4.7) correspond to the two counter-
propagating resonant waves. Their resonance leads to the photonic stop band, which is
located in the interval |Ω| < |α|. Let Ω = 0 for simplicity; i.e., the detuning frequency
is fixed in the middle of the stop band. The unique solution of the boundary-value
problem (4.2)–(4.4) follows from the general solution (4.5):(

a+

a−

)
=

α+

coshαLZ

(
coshα(LZ − Z)

−i sinhα(LZ − Z)

)
.(4.8)

The transmittance T and reflectance R are defined from the other boundary values
of the solution (4.8),

T =

∣∣∣∣a+(LZ)

a+(0)

∣∣∣∣
2

=
1

cosh2 αLZ

, R =

∣∣∣∣a−(0)

a+(0)

∣∣∣∣
2

=
sinh2 αLZ

cosh2 αLZ

,(4.9)

such that the balance identity T + R = 1 is satisfied. The analytical solution (4.8)
for the two counter-propagating waves is well known [23] and is reproduced here for
comparison with the case of four counter-propagating and two oblique waves on the
plane.

4.2. Transmission of four counter-propagating waves. The stationary trans-
mission of four counter-propagating waves in the coupled-mode equations (3.16)–
(3.19) is studied in the characteristic coordinates (ξ, η):

ξ =
X + Y

2
, η =

X − Y

2
.(4.10)

After the separation of variables (4.1), the linear coupled-mode equations (3.16)–(3.19)
reduce to the PDE system

i
∂a+

∂ξ
+ Ωa+ + αa− + β (b+ + b−) = 0,(4.11)

−i
∂a−
∂ξ

+ αa+ + Ωa− + β (b+ + b−) = 0,(4.12)

i
∂b+
∂η

+ β (a+ + a−) + Ωb+ + αb− = 0,(4.13)

−i
∂b−
∂η

+ β (a+ + a−) + αb+ + Ωb− = 0.(4.14)

The problem (4.11)–(4.14) is defined in a bounded domain on the plane (ξ, η). We
consider the rectangle

D = {(ξ, η) : 0 ≤ ξ ≤ Lξ, 0 ≤ η ≤ Lη},(4.15)

which corresponds to a rectangle in physical coordinates (X,Y ), rotated at 45o in
characteristic coordinates (ξ, η). When the incident wave moves along the main di-
agonal in the (X,Y )-plane of the photonic crystal, the linear system (4.11)–(4.14) is
completed by the boundary conditions

a+(0, η) = α+(η), a−(Lξ, η) = 0, b+(ξ, 0) = 0, b−(ξ, Lη) = 0,(4.16)

where α+(η) is the given amplitude of the incident wave at the left boundary of the
crystal. The linear dispersion relation Ω = Ω(Kξ,Kη), where (Kξ,Kη) are Fourier
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wave numbers, follows from the determinant equation of the linear PDE system (4.11)–
(4.14).

Lemma 4.1. The linear dispersion relation Ω = Ω(Kξ,Kη) is defined by the roots
of D(Ω,Kξ,Kη), where

D(Ω,Kξ,Kη) = (Ω2 − α2 −K2
ξ )(Ω2 − α2 −K2

η) − 4β2(Ω − α)2.(4.17)

There exist real-valued roots of D(0,Kξ,Kη) = 0 for α2 ≤ 4β2, while no real-valued
roots exist for α2 > 4β2.

Proof. The determinant equation follows from the PDE system (4.11)–(4.14) for
the Fourier modes ei(Kξξ+Kηη) in the explicit form

D(Ω,Kξ,Kη) =

∣∣∣∣∣∣∣∣
Ω −Kξ α β β

α Ω + Kξ β β
β β Ω −Kη α
β β α Ω + Kη

∣∣∣∣∣∣∣∣
.(4.18)

Although the straightforward computations of D(Ω,Kξ,Kη) are involved technically,
it is easy to compute that

∂D

∂Ω
= 2Ω(Ω2 − α2 −K2

ξ ) + 2Ω(Ω2 − α2 −K2
η) − 8β2Ω + 8αβ2(4.19)

and

D(0,Kξ,Kη) = (α2 + K2
ξ )(α2 + K2

η) − 4α2β2.(4.20)

Integrating (4.19)–(4.20), we find that D(Ω,Kξ,Kη) is given by (4.17). When α2 >
4β2, the function D(0,Kξ,Kη) is positive definite on (Kξ,Kη) ∈ R2 such that no
real-valued roots (Kξ,Kη) exist for Ω = 0. When α2 ≤ 4β2, there exist two curves on
the (Kξ,Kη)-plane, which correspond to the real-valued roots of D(0,Kξ,Kη).

There are four surfaces of the dispersion relations Ω = Ω(Kξ,Kη), which cor-
respond to the four resonant counter-propagating Bloch waves. When α2 > 4β2,
the interaction of four resonant waves leads to a stop band near the zero detuning
frequency Ω = 0. When α2 ≤ 4β2, no stop bands occur in the interaction of the
four resonant waves. We consider solutions of the system (4.11)–(4.14) at Ω = 0.
By separating variables [24], we reduce the PDE problem to two ODE problems as
follows:

a+(ξ, η) = u+(ξ)wa(η), a−(ξ, η) = u−(ξ)wa(η),(4.21)

b+(ξ, η) = wb(ξ)v+(η), b−(ξ, η) = wb(ξ)v−(η),(4.22)

where

v+(η) + v−(η) = µwa(η), u+(ξ) + u−(ξ) = −λwb(ξ),(4.23)

parameters (λ, µ) are arbitrary, and vectors (u+, u−)T and (v+, v−)T solve the two
uncoupled ODE systems(

i∂ξ α
α −i∂ξ

)(
u+

u−

)
= βΓ−1

(
1 1
1 1

)(
u+

u−

)
(4.24)

and (
i∂η α
α −i∂η

)(
v+

v−

)
= βΓ

(
1 1
1 1

)(
v+

v−

)
,(4.25)
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where Γ = λ/µ. The boundary conditions for (4.24)–(4.25) follow from (4.16) as
follows:

u+(0) = 1, u−(Lξ) = 0(4.26)

and

v+(0) = v−(Lη) = 0.(4.27)

The homogeneous problem (4.25) and (4.27) defines the spectrum of Γ, while the
inhomogeneous problem (4.24) and (4.26) defines a particular solution (4.21)–(4.22).
The general solution of the problem (4.11)–(4.14) with the boundary values (4.16)
is thought to be a linear superposition of infinitely many particular solutions, if the
convergence and completeness of the decomposition formulas can be proved [24]. We
first give solutions of the two problems above and then consider the orthogonality and
completeness of the generalized Fourier series.

Lemma 4.2. All eigenvalues Γ of the homogeneous problem (4.25) and (4.27) are
given by nonzero roots of the characteristic equation

R =

{
k ∈ C :

(
k − α

k + α

)2

e−2ikLη = 1, Re(k) ≥ 0, k �= 0

}
(4.28)

such that

Γ =
α2 + k2

2αβ
.(4.29)

Let α > 0. Then the roots k ∈ R are all located in the first open quadrant of k ∈ C.
Moreover, all roots are simple, and there exist C > 0 and N ∈ Z+ such that only one
root k ∈ R is located in each rectangle:

D+
n =

{
k ∈ C :

π(4n− 1)

2Lη
< k <

π(4n + 1)

2Lη
, 0 < Im(k) < C

}
, n ≥ N,(4.30)

and

D−
n =

{
k ∈ C :

π(4n + 1)

2Lη
< k <

π(4n + 3)

2Lη
, 0 < Im(k) < C

}
, n ≥ N.(4.31)

Proof. The general solution of the ODE system (4.25) with the use of (4.29) is
found explicitly as follows:(

v+

v−

)
= ck

(
α− k
α + k

)
eikη + c−k

(
α + k
α− k

)
e−ikη.(4.32)

The coefficients ck and c−k satisfy the relations due to the boundary conditions (4.27):

ck
c−k

=
k + α

k − α
=

k − α

k + α
e−2ikLη ,(4.33)

from which the characteristic equation (4.28) for roots k ∈ C follows. The symmetric
roots k and (−k) correspond to the same Γ and v±(η). The root k = 0 corresponds
to the zero solution for v±(η). Therefore, the roots k = 0 and Re(k) < 0 are excluded
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from the definition of R. The characteristic equation (4.28) results in the modulus
equation

|k − α|
|k + α| = |eikLη |.

When α > 0, the left-hand side equals 1 at Re(k) = 0 and is smaller than 1 for
Re(k) > 0. The right-hand side equals 1 at Im(k) = 0 and is larger than 1 for
Im(k) < 0. Therefore, roots k ∈ R may occur only in the first open quadrant of
k ∈ C.

Let the roots k ∈ R be defined by the function f(k) = (k−α)2e−2ikLη−(k+α)2 =
0. Then,

f ′(k) = −2i(k + α)

(k − α)
[(k2 − α2)Lη + 2iα].(4.34)

Since the values of k2−α2 for k ∈ R are located in the upper half-plane of the complex
plane, f ′(k) �= 0 for α > 0 such that all roots of k ∈ R are simple.

The characteristic equation (4.28) splits into two sets of roots R+ and R− such
that R+ ∪R− = R, where

R± =

{
k ∈ C :

k − α

k + α
e−ikLη = ±1, Re(k) > 0

}
.(4.35)

We consider the set k ∈ R+ and rewrite it in the form f(k) + g(k) = 0, where

f(k) = eikLη − 1, g(k) =
2α

k + α
.

The function f(k) has a zero at

k = kn =
2πn

Lη
, n ≥ 1.

Let us consider the domain D̃+
n :

D̃+
n =

{
k ∈ C :

π(4n− 1)

2Lη
< k <

π(4n + 1)

2Lη
, −C < Im(k) < C

}
, n ≥ N,

for some large C > 0 and N ≥ 1, such that π(4n−1)
2Lη

> α. The domain D̃+
n surrounds

a simple zero of f(k) at k = kn such that |f(k)| > |g(k)| on the boundary of D̃+
n . By

Rouche’s theorem, the function f(k) + g(k) has the same number of zeros inside D̃+
n

as f(k) does, i.e., only one zero. Since the roots are located in the first open quadrant
of k ∈ C, the root in D̃+

n is located in D+
n . The same analysis applies to the second

set k ∈ R− in the domain D−
n .

Roots k ∈ R and (−k) ∈ R are shown in Figure 1 from the numerical solution
of the characteristic equation (4.28) for α = 1 and Lη = 20. In agreement with
Lemma 4.2, all roots k ∈ R are isolated points in the first open quadrant, which
accumulate to the real axis of k at infinity. The standard analysis of analytic functions
at infinity leads to the asymptotic formula for distribution of large roots k in the
domain |k| > k0 	 1:

k+
n =

2πn

Lη
+

iα

πn
+ O

(
1

n2

)
, k−n =

π(1 + 2n)

Lη
+

2iα

π(1 + 2n)
+ O

(
1

n2

)
,(4.36)
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Fig. 1. Roots k ∈ R and (−k) ∈ R of the characteristic equation (4.28) for α = 1 and
Lη = 20. Dark dots show roots of R+, and bright dots show roots of R−. The dotted curves show
the leading-order asymptotic approximation (4.36).

where n is a large positive integer. The leading order of the asymptotic approximation
(4.36) is also shown in Figure 1 by dotted curves. The two sets in (4.36) correspond to
the splitting k ∈ R± in (4.35). The eigenfunction v(η) = v+(η) + v−(η) is symmetric
(antisymmetric) with respect to η = Lη/2 for k ∈ R+ (k ∈ R−). Moreover, explicit
formulas for v(η) follow from (4.32) and (4.33):

k ∈ R+ : v(η) = c+ cos k

(
Lη

2
− η

)
,(4.37)

k ∈ R− : v(η) = c− sin k

(
Lη

2
− η

)
,(4.38)

where (c+, c−) are normalization constants. Asymptotic solutions (4.36) correspond
to two sets of eigenfunctions

{
cos(πnη̃), sin

(
π(2n + 1)η̃

2

)}
, η̃ =

2η

Lη
− 1,(4.39)

which solve the homogeneous Neumann problem on the normalized interval −1 ≤ η̃ ≤
1.

Lemma 4.3. Let Γ be an eigenvalue of the problem (4.25) and (4.27). There
exists a unique solution of the nonhomogeneous problem (4.24) and (4.26) for this Γ.
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Proof. A general solution of the ODE system (4.24) is found explicitly as follows:(
u+

u−

)
= dk

(
α2 + k2 − 2β2

λk(α
2 + k2) + 2β2

)
eiαλkη+d−k

(
α2 + k2 − 2β2

−λk(α
2 + k2) + 2β2

)
e−iαλkη,

(4.40)
where

λk =

√
4β2

α2 + k2
− 1.(4.41)

The relation (4.41) satisfies the determinant equation (4.17) such that D(0, αλk, k) =
0. Using the boundary conditions (4.26), coefficients dk and d−k are found uniquely,
under the constraint

u0 = λk(α
2 + k2) cosαλkLξ + 2iβ2 sinαλkLξ �= 0.(4.42)

We show that u0 �= 0. The equation u0 = 0 can be rewritten in the form

(λk − 1)2

(λk + 1)2
= e2iαλkLξ .(4.43)

By analysis of Lemma 4.2, it is clear that nonzero roots of the characteristic equation
(4.43) may exist only in the first and third open quadrants of λk ∈ C for α > 0, such
that the values of λ2

k + 1 are located in the upper half-plane of the complex plane.
The zero root λk = 0 is located on the real axis for λ2

k + 1. On the other hand, the
values of 4β2/(α2 + k2) for k ∈ R are located in the lower half-plane. Therefore, the
relation (4.41) leads to a contradiction, which proves that u0 �= 0.

Solutions of the nonhomogeneous problem (4.24) and (4.26) with the normaliza-
tion u+(0) = u0 �= 0 can be written explicitly by eliminating dk and d−k from the
implicit form (4.40):(

u+

u−

)
= λk(α

2 +k2)

(
1
0

)
cosαλk(Lξ−ξ)+ i

(
2β2

α2 + k2 − 2β2

)
sinαλk(Lξ−ξ).

(4.44)
When the representation (4.21) is used for α+(η) = a+(0, η), the function α+(η)
is expanded as a series of scalar eigenfunctions v(η) = v+(η) + v−(η), defined for
roots k ∈ R. This decomposition is possible only if the set of eigenfunctions v(η) is
orthogonal and complete.

Lemma 4.4. There exists a set of normalized and orthogonal eigenfunctions vj(η)
for distinct roots k = kj ∈ R, according to the inner product

∫ Lη

0

vi(η)vj(η)dη = δi,j .(4.45)

Proof. The set of adjoint eigenvectors to the problem (4.25) and (4.27) with re-
spect to the standard inner product in L2([0, Lη]) is given by the vectors (v̄−, v̄+)T .
As a result, the scalar eigenfunctions vj(η) for distinct roots k = kj satisfy the or-
thogonality relations (4.45) with i �= j. The scalar eigenfunction v(η) is found from
(4.32) and (4.33) in the explicit form

v(η) = c0(k cos kη + iα sin kη),(4.46)
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where c0 is a normalization constant. Integrating v2(η) on η ∈ [0, Lη], we confirm that
the eigenfunctions vj(η) can be normalized by the inner product (4.45) with i = j,
under the constraint

(k2 − α2)Lη + 2iα �= 0.(4.47)

Since the roots k ∈ R are all simple, such that f ′(k) �= 0 in (4.34), the constraint
(4.47) is met.

Proposition 4.5. Any continuously differentiable complex-valued function f(η)
on 0 ≤ η ≤ Lη is uniquely represented by the series of eigenfunctions

f(η) =
∑

all kj∈R
cjvj(η), cj =

∫ Lη

0

f(η)vj(η)dη,(4.48)

and the series converges to f(η) uniformly on 0 ≤ η ≤ Lη.
Proof. It follows from (4.25) and (4.27) that the scalar eigenfunction v(η) solves

the second-order boundary-value problem

v′′ + k2v = 0(4.49)

such that

iv′(0) + αv(0) = 0, −iv′(Lη) + αv(Lη) = 0.(4.50)

The Sommerfeld radiation boundary conditions (4.50) explain why the spectrum of
the formally self-adjoint operator (4.49) is complex-valued. The statement of the
proposition follows from the expansion theorem [7, p. 303], since the theorem’s con-
dition is satisfied: A2,4 = 1, where A2,4 is the determinant of the second and fourth
columns of the matrix A, associated with the boundary conditions

A =

(
α i 0 0
0 0 α −i

)
.

As a result, the Fourier series of asymptotic eigenfunctions (4.39) approximates the
series expansion (4.48) for large roots k = k±n uniformly on η ∈ [0, Lη]. The uniform
convergence of (4.48) follows from that of the Fourier series [24].

Using separation of variables and convergence of series of eigenfunctions, we sum-
marize the existence and uniqueness results on the generalized Fourier series solutions
of the linear boundary-value problem (4.11)–(4.14) and (4.16) with Ω = 0.

Proposition 4.6. Let the set {cj} be uniquely defined by the series (4.48) for
f(η) = α+(η). There exists a unique solution of the boundary-value problem (4.11)–
(4.14) and (4.16) with Ω = 0 in the domain (4.15):

a+(ξ, η) =
∑

all kj∈R
cj
u+j(ξ)

u+j(0)
(v+j(η) + v−j(η)),(4.51)

a−(ξ, η) =
∑

all kj∈R
cj
u−j(ξ)

u+j(0)
(v+j(η) + v−j(η)),(4.52)

b+(ξ, η) = −
∑

all kj∈R
cj
u+j(ξ) + u−j(ξ)

Γju+j(0)
v+j(η),(4.53)

b−(ξ, η) = −
∑

all kj∈R
cj
u+j(ξ) + u−j(ξ)

Γju+j(0)
v−j(η).(4.54)
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We illustrate the generalized Fourier series solutions (4.51)–(4.54) with two examples:
(i) a single term of the generalized Fourier series and (ii) a constant input function
α+(η) = α+. For both examples, we compute the integral invariants for the inci-
dent (Iin), transmitted (Iout), reflected (Iref), and diffracted (Idif) waves from their
definitions:

Iin =

∫ Lη

0

|a+(0, η)|2dη, Iout =

∫ Lη

0

|a+(Lξ, η)|2dη,(4.55)

Iref =

∫ Lη

0

|a−(0, η)|2dη, Idif =

∫ Lξ

0

(|b+(ξ, Lη)|2 + |b−(ξ, 0)|2)dξ.(4.56)

Let the transmittance T , reflectance R, and diffractance D be defined from the rela-
tions

T =
Iout

Iin
, R =

Iref

Iin
, D =

Idif

Iin
.(4.57)

The integral invariants satisfy the balance identity

R + T + D = 1,(4.58)

which follows from integration of the balance equation

∂

∂ξ
(|a+|2 − |a−|2) +

∂

∂η
(|b+|2 − |b−|2) = 0.(4.59)

First, we consider a single term of the Fourier series solutions (4.51)–(4.54). The
transmittance and reflectance for k ∈ R are found from (4.44) in the explicit form

Tk =

∣∣∣∣ λk(α
2 + k2)

λk(α2 + k2) cosαλkLξ + 2iβ2 sinαλkLξ

∣∣∣∣
2

,(4.60)

Rk =

∣∣∣∣ (α2 + k2 − 2β2) sinαλkLξ

λk(α2 + k2) cosαλkLξ + 2iβ2 sinαλkLξ

∣∣∣∣
2

,(4.61)

while the diffractance is found from the balance identity as Dk = 1− Tk −Rk. These
integral invariants of the stationary transmission for α = 1 and Lξ = Lη = 20 are
shown in Figure 2 for β = 0.25 and in Figure 3 for β = 0.75. In the first case, when
α2 > 4β2, there is a stop band at Ω = 0, such that all modes are fully reflected except
for small losses due to diffraction. In the second case, when α2 < 4β2, there is no
stop band at Ω = 0, such that transmittance and diffractance are large for smaller
values of |k| and become negligible for larger values of |k|.

Next, we consider a constant input function:

α+(η) = α+, η ∈ [0, Lη],(4.62)

when cj can be found from (4.48),

cj =
4iαα+

kj [L(k2
j − α2) + 2iα]

, kj ∈ R+,(4.63)

and cj = 0 for kj ∈ R−. The solution surfaces |a±(ξ, η)|2 and |b±(ξ, η)|2 in the domain
(4.15) are shown for α = 1, Lξ = Lη = 20, and α+ = 1 in Figure 4 for β = 0.25 and
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Fig. 2. Transmittance (Tk), reflectance (Rk), and diffractance (Dk) versus Re(k) for the roots
k ∈ R when α = 1, β = 0.25, and Lξ = Lη = 20.

in Figure 5 for β = 0.75. We can see from the figures that the boundary conditions
(4.16) are satisfied by the truncated generalized Fourier series (4.51)–(4.54) with only
30 first terms.

The Parseval identity cannot be applied to eigenfunctions vj(η), because the
inner product (4.45) is not the standard inner product in L2([0, Lη]). As a result,
the energy spectrum of Iout, Iref , and Idif cannot be decomposed into a superposition
of the squared amplitudes |cj |2. Nevertheless, the numerical values for T , R, and D
can be found from numerical integration of the solution surfaces (4.55)–(4.56). The
numerical values are

β = 0.25 : T ≈ 3 × 10−15, R ≈ 0.9853, D ≈ 0.0147,

β = 0.75 : T ≈ 0.7394, R ≈ 0.0133, D ≈ 0.2473,

such that T +R+D ≈ 1. When α2 > 4β2, there exists a stop band at Ω = 0, and the
incident wave is reflected from the photonic crystal with energy loss of 1.5% due to
diffraction. When α2 < 4β2, there is no stop band at Ω = 0, and the incident wave is
transmitted along the photonic crystal with energy loss of 26% due to reflection and
diffraction.

4.3. Transmission of two oblique waves. The stationary transmission of two
oblique waves in the coupled-mode equations (3.20)–(3.21) becomes diagonal in the
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Fig. 3. Transmittance (Tk), reflectance (Rk), and diffractance (Dk) versus Re(k) for the roots
k ∈ R when α = 1, β = 0.75, and Lξ = Lη = 20.

characteristic coordinates (ξ, η):

X =
pξ + (p + 2n)η√

p2 + q2
, Y =

qξ + (q + 2m)η√
p2 + q2

.(4.64)

After the separation of variables (4.1), the linear coupled-mode equations (3.20)–(3.21)
reduce to the PDE system

i
∂a1

∂ξ
+ Ωa1 + αa2 = 0,(4.65)

i
∂a2

∂η
+ αa1 + Ωa2 = 0.(4.66)

Coordinate axes (ξ, η) are parallel to the wave vectors k1 = kin and k2 = k
(n,m,0)
out ,

but they are no longer orthogonal. The problem (4.65)–(4.66) is defined in a bounded
domain on the plane (ξ, η). We consider the same rectangle D, defined by (4.15).
When the incident wave is illuminated in the direction of the wave vector k1 but not
in the direction of the wave vector k2, the linear system (4.65)–(4.66) is completed
by the boundary conditions

a1(0, η) = α1(η), a2(ξ, 0) = 0.(4.67)
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Fig. 4. Solution surfaces |a±|2(ξ, η) and |b±|2(ξ, η) on the domain (4.15) for α = 1, β = 0.25,
Lξ = Lη = 20, and α+ = 1.

The linear dispersion relation Ω = Ω(Kξ,Kη), where (Kξ,Kη) are Fourier wave num-
bers, is given explicitly as(

Ω − Kξ + Kη

2

)2

= α2 +

(
Kξ −Kη

2

)2

.(4.68)

Two surfaces of the dispersion relation (4.68) correspond to the two oblique resonant
waves. In a moving reference frame on the plane (ξ, η) there exists a stop band in the
dispersion relation (4.68). We consider solutions of the system (4.65)–(4.66) at Ω = 0
by using the Fourier transform

a1(ξ, η) =

∫ ∞

−∞
kc(k)eiα(k−1ξ+kη)dk,(4.69)

a2(ξ, η) =

∫ ∞

−∞
c(k)eiα(k−1ξ+kη)dk.(4.70)

It follows from the boundary conditions (4.67) that

kc(k) =
α

2π

∫ Lη

0

α1(η)e
−iαkηdη, k ∈ R,(4.71)

and

0 =

∫ ∞

−∞
c(k)eiαk

−1ξdk, 0 ≤ ξ ≤ Lξ.(4.72)



1122 DMITRI AGUEEV AND DMITRY PELINOVSKY

0

5

10

15

20

0
5

10
15

20
0

0.5

1

1.5

2

2.5

ξ

η

|a
+
|2

0
5

10
15

20

0
5

10
15

20
0

0.05

0.1

0.15

0.2

0.25

ξ
η

|a
−
|2

0
5

10
15

20

0
5

10
15

20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ξ
η

|b
+
|2

0
5

10
15

20

0
5

10
15

20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ξ
η

|b
−
|2

Fig. 5. Solution surfaces |a±|2(ξ, η) and |b±|2(ξ, η) on the domain (4.15) for α = 1, β = 0.75,
Lξ = Lη = 20, and α+ = 1.

Interchanging integrals, we reduce the constraint (4.72) to the form

0 =
α

2πi

∫ Lη

0

α1(η)

(∫ ∞

−∞

sinα(kη − k−1ξ)

k
dk

)
dη, 0 ≤ ξ ≤ Lξ.(4.73)

The inner integral is zero for ξ > 0 and η > 0, due to the table integral 3.871 on
p. 474 of [9]. Therefore, the constraint (4.72) is satisfied, and a unique solution of the
problem (4.65)–(4.67) exists in the form (4.69)–(4.71).

We illustrate the Fourier transform solution (4.69)–(4.70) with the constant input
function

α1(η) = α1, η ∈ [0, Lη],(4.74)

when c(k) can be found from (4.71):

c(k) =
α1

2πi

1 − e−iαkLη

k2
, k ∈ R.(4.75)

Evaluating Fourier integrals (4.69)–(4.70) with the help of the table integral 3.871 on
p. 474 of [9], we find the explicit solution of the stationary problem:

a1(ξ, η) = α1J0(2α
√
ξη), a2(ξ, η) =

iα1
√
η√

ξ
J1(2α

√
ξη),(4.76)
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Fig. 6. Solution surfaces |a1|2(ξ, η) and |a2|2(ξ, η) on the domain (4.15) for α = 1, Lξ = Lη =
10, and α1 = 1.

where J0,1(z) are Bessel functions [9]. Figure 6 shows the solution surfaces |a1(ξ, η)|2
and |a2(ξ, η)|2 in the domain (4.15) for α = 1, Lξ = Lη = 10, and α1 = 1. The inte-
gral invariants for the stationary transmission follow from integration of the balance
equation:

∂

∂ξ
|a1|2 +

∂

∂η
|a2|2 = 0.(4.77)



1124 DMITRI AGUEEV AND DMITRY PELINOVSKY

We define the incident (Iin), transmitted (Iout), and diffracted (Idif) intensities by

Iin =

∫ Lη

0

|a1(0, η)|2dη, Iout =

∫ Lη

0

|a1(Lξ, η)|2dη, Idif =

∫ Lξ

0

|a2(ξ, Lη)|2dξ.
(4.78)
The transmittance (T ) and diffractance (D) are defined by the same relations (4.57),
and the balance identity T + D = 1 follows from integration of the balance equation
(4.77). The numerical values for T and D are found from numerical integration of the
solution surfaces (4.78) as follows:

T ≈ 0.032, D ≈ 0.968,

such that T + D ≈ 1. These values show that the incident wave is diffracted to
the oblique resonance wave such that only 3.2% of the wave energy remains in the
transmitted wave.

4.4. General transmission problems. A general system of coupled-mode
equations (3.9) can be diagonalized in characteristic coordinates, similarly to the
case of four counter-propagating and two oblique resonant waves. The characteristic
coordinates are introduced from the set of resonant wave vectors as follows:

∂

∂ξj
=

kj,x

k

∂

∂X
+

kj,y

k

∂

∂Y
+

kj,z

k

∂

∂Z
, j = 1, . . . , N,(4.79)

such that the characteristic coordinate ξj extends in the direction of the wave vector
kj . The characteristic coordinates (ξ1, . . . , ξN ) ∈ RN are related to the physical
coordinates (X,Y, Z) ∈ R3 as follows:

X = X0 +

N∑
j=1

ξj
kj

k
,(4.80)

where X0 ∈ R3 is an arbitrary point. The boundary-value problem for the linear
stationary transmission with Ω = 0 can be rewritten in the form

i
∂aj
∂ξj

+
∑
k �=j

α̂j,kak = 0, j = 1, . . . , N.(4.81)

We consider the domain of definition in the cone (ξ1, . . . , ξN ) ∈ RN
+ , subject to the

Goursat boundary values

aj(ξ1, . . . , ξj−1, 0, ξj+1, . . . , ξN ) = αj(ξ1, . . . , ξj−1, ξj+1, . . . , ξN ), j = 1, . . . , N.
(4.82)
The Goursat boundary-value problem (4.81)–(4.82) can be rewritten as the Volterra
integral equations:

aj(ξj) = αj + i

∫ ξj

0

∑
k �=j

α̂j,kak(ξ
′
j)dξ

′
j .(4.83)

By the contraction mapping principle [11], there exists a unique solution of the
Volterra equations (4.83) in the cone (ξ1, . . . , ξN ) ∈ RN

+ , such that we have the fol-
lowing result.
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Theorem 4.7. Let D be a convex domain in R3, which is cut by the characteristic
coordinate projections ξj = 0, j = 1, . . . , N . There exists a unique solution aj =
aj(ξ1, . . . , ξN ), which corresponds to the boundary-value problem (4.81)–(4.82) and
depends smoothly on the boundary values αj, j = 1, . . . , N .

If N = rank(k1, . . . ,kN ), there exists only one domain D ⊂ RN , which corre-
sponds to the cone ξj ≥ 0, j = 1, . . . , N . The case of two oblique waves on the plane
(X,Y ) gives an example of this situation for N = 2. The Goursat problem (4.81)–
(4.82) is rewritten as the PDE problem (4.65)–(4.66) with the boundary values (4.67),
which is solved with the explicit Fourier transform solutions (4.69)–(4.71).

If N > rank(k1, . . . ,kN ), the characteristic coordinates (ξ1, . . . , ξN ) are linearly
dependent such that there exist multiple ways to choose a convex domain D ⊂ R3

that corresponds to the cone ξj ≥ 0, j = 1, . . . , N . The case of four counter-
propagating waves on the plane (X,Y ) gives an example of this situation for N = 4
and rank(k1, . . . ,kN ) = 2. In this case, we have chosen that ξ1 = ξ, ξ2 = η,
ξ3 = Lη − η, and ξ4 = Lξ − ξ, such that 0 ≤ ξ ≤ Lξ and 0 ≤ η ≤ Lη. As a result,
the Goursat problem (4.81)–(4.82) is rewritten as the PDE problem (4.11)–(4.14)
with the boundary values (4.16). Theorem 4.7 does not guarantee well-posedness of
(4.11)–(4.14), while explicit Fourier series solutions (4.51)–(4.54) do (see Proposition
4.6).

5. Summary and open problems. We have shown that the coupled-mode
equations can be used for analysis and modeling of resonant interaction of Bloch waves
in low-contrast cubic-lattice three-dimensional photonic crystals. The analytical so-
lutions for the linear stationary transmission problem are found by using separation
of variables and generalized Fourier series. We have proved that the linear stationary
boundary-value problem is well-posed in the context of four counter-propagating and
two oblique waves on the plane. We have also given general results on well-posedness
of the general linear stationary transmission problem.

It remains an open problem to prove well-posedness of the nonlinear stationary
boundary-value problem for small-norm and finite-norm solutions. Nonstationary
transmission problems are also of interest, and very few analytical results are avail-
able on local and global well-posedness of the nonstationary nonlinear coupled-mode
equations. Finally, numerical approximations of the stationary and nonstationary,
fully nonlinear coupled-mode equations can be constructed in bounded domains with
the method of orthogonal polynomials [17]. All these problems are beyond the scope
of the present work.

Appendix A. Nonlinear coupled-mode equations with cubic nonlin-
earities. Modeling of nonlinear photonic band-gap crystals with cubic (Kerr) non-
linearities is based on the Maxwell equations, where the polarization vector depends
nonlinearly on the electric field vector E (see [13]). When the nonlinearity terms are
small, nonlocal (dispersive) terms in the polarization vector can be neglected, and the
low-contrast weakly nonlinear photonic crystals can be modeled with the Maxwell
equations (1.1), where the refractive index n = n(x, |E|2) is decomposed into the
linear and nonlinear parts [23]:

n(x, |E|2) = n0 + εn1(x) + εn2(x)|E|2,(A.1)

where n0 is constant and ε is of small parameter. When the photonic crystal has
cubic-lattice structure, the periodic functions n1(x) and n2(x) are expanded into the
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triple Fourier series (3.4) and

n2(x) = n0

∑
(n,m,l)∈Z3

βn,m,le
ik0(nx+my+lz), βn,m,l = β̄−n,−m,−l,(A.2)

where the factor n0 is included for convenience. Derivation of the nonlinear coupled-
mode equations is based on rigorous methods of Lyapunov–Schmidt reductions [16].
Equivalently, the formal derivation can be recovered with perturbation series expan-
sions [19], which follows the formalism (3.2) and (3.3) outlined in section 3. The
first-order correction term E1(x, t) solves the nonhomogeneous problem (3.8) with
additional nonlinear terms:

∇2E1 −
n2

0

c2
∂2E1

∂t2
= 2

n2
0ω

c2
∂2E0

∂T∂t
− 2k (∇ · ∇X)E0

+
2n0n1(x)

c2
∂2E0

∂t2
+

2

n0
∇ (∇n1 · E0)

+
2n0n2(x)

c2
|E0|2

∂2E0

∂t2
+

2

n0
∇
(
∇n2|E0|2 · E0

)
.(A.3)

The cubic nonlinear terms generate N3 terms from the leading-order solution (3.3),
which all give resonant terms by means of the triple series (A.2). By removing the
resonant terms, the nonlinear coupled-mode equations for Aj(X, T ), j = 1, . . . , N, are
derived in the general form:

i

(
∂Aj

∂T
+

(
kj

k
· ∇X

)
Aj

)
+
∑
k �=j

α̂j,kAk +
∑

1≤k1,k2,k3≤N

β̂j,k1,k2,k3
Ak1Ak2Āk3 = 0,

(A.4)

where the elements {β̂j,k1,k2,k3
}1≤j,k1,k2,k3≤N are related to the Fourier coefficients

of the resonant waves {βn,m,l}(n,m,l)∈S . The explicit forms of the nonlinear coupled-
mode equations are given below for two and four counter-propagating and two oblique
resonant Bloch waves.

The nonlinear coupled-mode equations for two counter-propagating waves (3.10)
generalize the linear equations (3.12)–(3.13) as follows:

i

(
∂A+

∂T
+

∂A+

∂Z

)
+ αA− + β0,0,0(|A+|2 + 2|A−|2)A+

+ β0,0,1(2|A+|2 + |A−|2)A− + β0,0,−1A
2
+Ā− + β0,0,2Ā+A

2
− = 0,(A.5)

i

(
∂A−
∂T

− ∂A−
∂Z

)
+ αA+ + β0,0,0(2|A+|2 + |A−|2)A−

+ β0,0,−1(|A+|2 + 2|A−|2)A+ + β0,0,1Ā+A
2
− + β0,0,−2A

2
+Ā− = 0.(A.6)

The system (A.5)–(A.6) is reviewed in [8, 23] for β0,0,1 = β0,0,2 = 0 and analyzed
in [14, 15] for β0,0,1 �= 0 and β0,0,2 = 0. When β0,0,1, β0,0,2 �= 0, the system (3.12)–
(3.13) is the most general coupled-mode system for Bragg resonance of two counter-
propagating waves [6, 22].

The nonlinear coupled-mode equations for four counter-propagating waves (3.14)
generalize the linear equations (3.16)–(3.19) as follows:

i

(
∂A+

∂T
+

∂A+

∂X
+

∂A+

∂Y

)
+ αA− + β (B+ + B−) + F+(A+, A−, B+, B−) = 0,(A.7)
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i

(
∂A−
∂T

− ∂A−
∂X

− ∂A−
∂Y

)
+ αA+ + β (B+ + B−) + F−(A+, A−, B+, B−) = 0,(A.8)

i

(
∂B+

∂T
+

∂B+

∂X
− ∂B+

∂Y

)
+ β (A+ + A−) + αB− + G+(A+, A−, B+, B−) = 0,(A.9)

i

(
∂B−
∂T

− ∂B−
∂X

+
∂B−
∂Y

)
+ β (A+ + A−) + αB+ + G−(A+, A−, B+, B−) = 0,(A.10)

where the cubic nonlinear functions are given by

F+= β0,0,0((|A+|2 + 2|A−|2 + 2|B+|2 + 2|B−|2)A+ + 2Ā−B+B−)

+β0,−1,0(A
2
+B̄+ + 2A+Ā−B−) + β−1,0,0(A

2
+B̄− + 2A+Ā−B+)

+β1,1,0((2|A+|2 + |A−|2 + 2|B+|2 + 2|B−|2)A− + 2Ā+B+B−)

+β0,1,0((2|A+|2 + 2|A−|2 + |B+|2 + 2|B−|2)B+ + 2A+A−B̄−)

+β−1,1,0(2A+B+B̄− + Ā−B
2
+) + β1,−1,0(2A+B̄+B− + Ā−B

2
−)

+β1,0,0((2|A+|2 + 2|A−|2 + 2|B+|2 + |B−|2)B− + 2A+A−B̄+)

+β2,0,0(Ā+B
2
− + 2A−B̄+B−) + β2,1,0(2Ā+A−B− + A2

−B̄+)

+β1,2,0(A
2
−B̄− + 2Ā+A−B+) + β2,−1,0B̄+B

2
− + β−1,2,0B

2
+B̄−

+β0,2,0(Ā+B
2
+ + 2A−B+B̄−) + β−1,−1,0A

2
+Ā− + β2,2,0Ā+A

2
−,

F−= β−1,−1,0((|A+|2 + 2|A−|2 + 2|B+|2 + 2|B−|2)A+ + 2Ā−B+B−)

+β−1,−2,0(A
2
+B̄+ + 2A+Ā−B−) + β−2,−1,0(A

2
+B̄− + 2A+Ā−B+)

+β0,0,0((2|A+|2 + |A−|2 + 2|B+|2 + 2|B−|2)A− + 2Ā+B+B−)

+β−1,0,0((2|A+|2 + 2|A−|2 + |B+|2 + 2|B−|2)B+ + 2A+A−B̄−)

+β−2,0,0(2A+B+B̄− + Ā−B
2
+) + β0,−2,0(2A+B̄+B− + Ā−B

2
−)

+β0,−1,0((2|A+|2 + 2|A−|2 + 2|B+|2 + |B−|2)B− + 2A+A−B̄+)

+β1,−1,0(Ā+B
2
− + 2A−B̄+B−) + β1,0,0(2Ā+A−B− + A2

−B̄+)

+β0,1,0(A
2
−B̄− + 2Ā+A−B+) + β1,−2,0B̄+B

2
− + β−2,1,0B

2
+B̄−

+β−1,1,0(Ā+B
2
+ + 2A−B+B̄−) + β−2,−2,0A

2
+Ā− + β1,1,0Ā+A

2
−,

G+= β0,−1,0((|A+|2 + 2|A−|2 + 2|B+|2 + 2|B−|2)A+ + 2Ā−B+B−)

+β0,−2,0(A
2
+B̄+ + 2A+Ā−B−) + β−1,−1,0(A

2
+B̄− + 2A+Ā−B+)

+β1,0,0((2|A+|2 + |A−|2 + 2|B+|2 + 2|B−|2)A− + 2Ā+B+B−)

+β0,0,0((2|A+|2 + 2|A−|2 + |B+|2 + 2|B−|2)B+ + 2A+A−B̄−)

+β−1,0,0(2A+B+B̄− + Ā−B
2
+) + β1,−2,0(2A+B̄+B− + Ā−B

2
−)

+β1,−1,0((2|A+|2 + 2|A−|2 + 2|B+|2 + |B−|2)B− + 2A+A−B̄+)

+β2,−1,0(Ā+B
2
− + 2A−B̄+B−) + β2,0,0(2Ā+A−B− + A2

−B̄+)

+β1,1,0(A
2
−B̄− + 2Ā+A−B+) + β2,−2,0B̄+B

2
− + β−1,1,0B

2
+B̄−

+β0,1,0(Ā+B
2
+ + 2A−B+B̄−) + β−1,−2,0A

2
+Ā− + β2,1,0Ā+A

2
−,

G−= β−1,0,0((|A+|2 + 2|A−|2 + 2|B+|2 + 2|B−|2)A+ + 2Ā−B+B−)

+β−1,−1,0(A
2
+B̄+ + 2A+Ā−B−) + β−2,0,0(A

2
+B̄− + 2A+Ā−B+)

+β0,1,0((2|A+|2 + |A−|2 + 2|B+|2 + 2|B−|2)A− + 2Ā+B+B−)

+β−1,1,0((2|A+|2 + 2|A−|2 + |B+|2 + 2|B−|2)B+ + 2A+A−B̄−)

+β−2,1,0(2A+B+B̄− + Ā−B
2
+) + β0,−1,0(2A+B̄+B− + Ā−B

2
−)

+β0,0,0((2|A+|2 + 2|A−|2 + 2|B+|2 + |B−|2)B− + 2A+A−B̄+)
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+β1,0,0(Ā+B
2
− + 2A−B̄+B−) + β1,1,0(2Ā+A−B− + A2

−B̄+)

+β0,2,0(A
2
−B̄− + 2Ā+A−B+) + β1,−1,0B̄+B

2
− + β−2,2,0B

2
+B̄−

+β−1,2,0(Ā+B
2
+ + 2A−B+B̄−) + β−2,−1,0A

2
+Ā− + β1,2,0Ā+A

2
−.

The nonlinear coupled-mode equations for two oblique waves (2.16) generalize the
linear equations (3.20)–(3.21) as follows:

i

(
∂A1

∂T
+

p√
p2 + q2

∂A1

∂X
+

q√
p2 + q2

∂A1

∂Y

)
+ αA2 + β0,0,0(|A1|2 + 2|A2|2)A1

+β−n,−m,0(2|A1|2 + |A2|2)A2 + βn,m,0A
2
1Ā2 + β−2n,−2m,0Ā1A

2
2 = 0,(A.11)

i

(
∂A2

∂T
+

p + 2n√
p2 + q2

∂A2

∂X
+

q + 2m√
p2 + q2

∂A2

∂Y

)
+ αA1 + β0,0,0(2|A1|2 + |A2|2)A1

+βn,m,0(|A1|2 + 2|A2|2)A1 + β−n,−m,0Ā1A
2
2 + β2n,2m,0A

2
1Ā2 = 0.(A.12)

The system (A.11)–(A.12) and its generalization to three oblique resonant waves are
reviewed in [18, 19].
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POLYNOMIAL HAMILTONIAN SYSTEMS∗
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Abstract. We depart from an n-degree-of-freedom Hamiltonian formed by the sum of homoge-
neous polynomials in n coordinates and n momenta with arbitrary coefficients. By extending formally
an integral of the principal part of the system to the full Hamiltonian and truncating higher-order
terms, we obtain a simplified Hamiltonian. This “normalization” procedure can be used to extract
qualitative features of the departure system. In this paper we present the symbolic routines needed
to achieve the normalization. The power and generality of the algorithm are exhibited through two
examples.
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and simplification, monodromy, invariants
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1. Introduction. This work is devoted to the algorithmic implementation of the
theory developed in [25, 26, 27] dealing with “normalization” of polynomial Hamil-
tonian systems in n degrees of freedom (n DOFs). We are interested in the actual
construction of “normal form” Hamiltonians, as well as their associated changes of
coordinates and formal integrals. The motivation for this series of works is the wide
rank of applications of normal form theory in the last 30 years in various fields, such
as classical mechanics, astrodynamics, qualitative theory of ordinary differential equa-
tions, or molecular physics.

We consider Hamilton functions of the form

H(x; ε) =
∑
i≥0

εi

i!
Hi(x),(1.1)

where x = (x1, . . . , xn, X1, . . . , Xn) is a (2n)-dimensional vector in the coordinates
x1, . . . , xn and corresponding momenta X1, . . . , Xn. Moreover, each Hi is an arbitrary
homogeneous polynomial in x of degree i + p + 2 for some fixed integer p ≥ −1.
Note that with this choice of p we can deal with polynomial Hamiltonians starting at
degree one and therefore we do not restrict ourselves to local analysis around equilibria
points. Indeed if our starting Hamiltonian function is a polynomial our approach is
of global nature; however, if we are interested in the neighborhood of a critical point,
then p should be 0. Thus, we consider the most generic class of Hamiltonians in the
polynomial context.
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Our purpose is to simplify system (1.1) by introducing a constant of motion
independent of H, up to a certain degree. The tool for carrying out our normalizing
procedures are the well-known Lie transformations for canonical systems [6]. From
the practical point of view the normalization up to any order becomes a cumbersome
task due to two drawbacks principally. (1) The form of the principal term H0 dictates
the form acquired by the homological equation, which is the one needed to be solved
at each order to calculate the “normal form.” Thus, for certain types of H0 the
procedure should be stopped at a certain order and should not be extended up to any
order. (2) The computational trouble caused by the huge amount of terms in those
cases where the calculations are carried out to very high degrees or when the number
of DOFs is big, let us say, greater than four.

From our side we have adopted the compromise of building an algorithm being as
generic as possible, sacrificing on some occasions the possibility of writing an optimal
set of routines for some types of H0. The reason for this choice lies on the fact that
we intend to present a universal procedure. Thus, we have designed our algorithm by
following three criteria: (i) H0 can be any homogenous polynomial of degree p + 2
in x with real or complex coefficients, p ≥ −1 being an integer. Indeed, it is not
necessary to bring H0 to a prescribed form to resolve the corresponding homological
equations. (ii) The classical techniques of normal forms for Hamiltonians [20] (see
also the general case in [18, 3, 19, 22]) are enlarged, as we make use of the concept of
generalized normal forms [25, 26]. This allows us either to execute the usual approach
of normalization or to extend other integrals of H0 up to a certain order. (iii) Our
algorithm is based on the routines we have prepared with Mathematica, but it can
be programmed in other similar algebraic manipulators, such as Maple or Macsyma.

Poincaré [30] is considered a pioneer in the simplification of systems of differ-
ential equations, as he developed a method applicable to systems of not necessarily
Hamiltonian nature. Birkhoff [1] considered the Hamiltonian version thereafter. The
normalization of semisimple systems in equilibrium at the origin was carried out for
the planar case by Whittaker [34]. Moser [24] extended the work of Birkhoff to res-
onant Hamiltonians in 2n dimensions. Thereafter there appeared a generalization
by Meyer [20], who presented the general solution for a Hamiltonian system whose
corresponding matrix related to the linear part was semisimple. Normal forms for
nonsemisimple matrices have been studied by Meyer and Schmidt [23], Sokol’skij [32],
and van der Meer [18], for instance. Furthermore, Meyer [21] established the normal
form theorem for any type of equilibrium point in systems of ordinary differential
equations whose main part is linear. The Hamiltonian case appears in Meyer and
Hall [22].

In the classical theory of normal forms the dominant term H0 is a homogeneous
polynomial of degree two (so p = 0). Associated with it is a linear differential system
of equations. When the matrix defining the linear system has a nonnull semisimple
part, the normal form theorem for the general equilibrium [22] is the best choice for
reducing the number of degrees of freedom of the original system, provided that the
reduced system would not have a trivial flow. However, if the matrix is nilpotent or
if the reduced flow is trivial, we should resort to the extended normal form approach
proposed in [25, 26].

This article is divided into five sections. Section 2 revises the basic theory on
the subject of transformations bringing a system to a generalized normal form. In
section 3 we offer a detailed description of the routines included in our algorithms. In
section 4 we give two examples where the advantages of the exposed algorithm with
respect to other current theories are shown. The first example consists in a 1-DOF
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Hamiltonian vector field whose dominant part is a homogenous polynomial of degree
3. We show that under certain conditions on the coefficients of the Hamiltonian it is
possible to introduce a polynomial formal integral. This allows the reduction of the
system to another of 0 DOF. The motivation for the second example is the occurrence
of Hamiltonian–Hopf bifurcations and monodromy in a swing spring. Finally, in
section 5 we outline the conclusions of the paper.

2. Generalized normal forms and formal integrals. In this section we
broach the normalization of Hamiltonian systems through the construction of for-
mal integrals. First, we recall the normal form theorem [21, 22]. (See also the
previous contributions by van der Meer [18, 19], Cushman, Deprit, and Mosak [3],
and Churchill, Kummer, and Rod [2].) Thereafter we continue with the concept of
generalized normal forms.

2.1. Normal form theorem. Let us recall this standard result, which combines
results by van der Meer and Meyer.

Theorem 2.1. Let

H(x; ε) =
∑
i≥0

εi

i!
Hi(x)(2.1)

be a Hamilton function such that each Hi(x) is a homogeneous polynomial of degree
i + 2 in x ∈ R2n. It defines a differential system of n DOFs whose quadratic part is
H0(x) = 1

2 xt B x, where B is a symmetric (2n× 2n)-matrix. Let J be the standard
skew-symmetric matrix of order 2n

J =

(
0 In

−In 0

)

(In stands for the identity matrix of order n), and let A = J B be the matrix associated
with the linear system of differential equations defined by H0. Let x = X(y; ε) =
y + · · · be the symplectic change of coordinates that transforms H into its normal
form (up to an order L ≥ 1), the convergent Hamiltonian K(y) = K0(y) + K1(y) +
· · · + KL(y) + O(εL+1). Let A = S + N represent the Jordan decomposition of A
into its semisimple (S) plus nilpotent (N) parts. Then, the quadratic polynomial
IS(y) = IS(x) = − 1

2 xt J S x is an integral of H0, provided that S �= 0. Moreover, by
means of the normal form transformation, IS(y) becomes an integral (formal integral)
of K independent of it and the number of DOFs of the system related to K, after
truncation, is at most n− 1.

Proof. See the papers by van der Meer [19] and Meyer [21] and the book by Meyer
and Hall [22].

First, if we define Kt
0 = 1

2ytRy with R = JBJ = −JAt, when applying the
normal form theorem, Theorem 2.1, the terms Ki for i ≥ 1 are built so that they
satisfy {Ki,Kt

0} = 0. That is, the terms of the normal form are invariant under the
flow defined by exp(Ats). In this respect one can understand that the normal form
Hamiltonian is simpler than the original Hamiltonian.

As is well known, normal forms are in general divergent; see, for instance, [29].
Indeed the transformation proposed in Theorem 2.1 does not converge in general.
However, we can say that K is convergent as we are including the tail O(εL+1) in its
definition.

When S �= 0 one can build a formal integral of H up to a certain order of
approximation, as we shall detail later on. Therefore, the initial system is reduced by
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the calculation of a formal integral. Nevertheless, when S = 0 we cannot construct a
new formal integral by the application of the normal form theorem. In such a situation
we resort to another strategy to reduce the number of DOFs of H.

The number of DOFs defined by K is n − 1 at most. It is smaller when the
semisimple component of H0 is composed by the sum of semisimple terms such that
there is no resonance among all of them. In these situations the reduction procedure
could be too drastic in the sense that one would not obtain enough information from
the reduced system [28]. A way to overcome this problem would be to take another
integral of H0 to be extended to the whole system. This is the subject of the following
subsections.

2.2. Extension of an integral of the principal part to the full system.
We provide a result which can be used to enlarge the applicability of the normal form
theorem. We start with some useful definitions.

Definition 2.2. Given two scalar fields P and Q defined over an open domain
of R2n, the Poisson bracket of P and Q is given by the relation

{P,Q} =

n∑
i=1

(
∂P
∂xi

∂Q
∂Xi

− ∂P
∂Xi

∂Q
∂xi

)
.

Definition 2.3. Given two scalar fields P and Q, the Lie operator associated
with Q is given by means of the Poisson bracket LQ(P) = {P,Q}.

Theorem 2.4. Let the integers L ≥ 1 and p ≥ −1 be given. Let Hamilto-
nian (1.1) be given. Let {Pi}Li=0 be the sequence of the linear spaces of all homoge-
neous polynomials of degree i + p + 2 in x ∈ R2n. Let {Qi}Li=1 be the sequence
of some subsets of the sets Pi and let {Ri}Li=1 be the sequence of some linear spaces
of Ck-functions (k ≥ 0) for i = 1, . . . , L. Let G be a polynomial in Pj for some
j ∈ {0, . . . , L}. Let Ω ⊆ R2n be the common domain where the sequences {Pi}Li=0,
{Qi}Li=1, and {Ri}Li=1 are defined. Moreover, suppose that the following properties
are satisfied:

(i) Hi ∈ Pi, i = 0, 1, . . . , L;
(ii) {Pi,Rj} ⊆ Pi+j, i + j = 1, . . . , L;
(iii) for any D ∈ Pi, i = 1, . . . , L, there exist E ∈ Qi and F ∈ Ri such that

E = D + {H0, F} and {G, E} = 0.

Then, there exists a Ck-function

W(x; ε) =

L−1∑
i=0

εi

i!
Wi+1(x)

with Wi ∈ Ri, i = 1, . . . , L, such that the change of coordinates x = X(y; ε) is the
general solution of the initial value problem

dx

d ε
= J ∂W

∂x
(x; ε),

x(0) = y,

and transforms the convergent Hamiltonian (1.1) into the convergent Hamiltonian

K(y; ε) =
L∑

i=0

εi

i!
Ki(y) + O(εL+1)
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with Ki ∈ Qi, i = 1, . . . , L, such that each Ki is a polynomial in y of degree i+ p+ 2
with {Ki,G} = 0 for i = 1, . . . , L.

Additionally, if {H0,G} = 0, then G is an integral of K.
Proof. See [26].
The smoothness of the spaces Ri and of W depends on the possible appearance

of nonpolynomial terms at some order i. For instance, in the example of section 4.1,
W is C2, while in section 4.2 it is analytic.

As in the standard approach, the application of Theorem 2.4 does not produce
generally a convergent normal form Hamiltonian. Nevertheless, the reader should
notice that in the definition of K we are putting higher-order terms inside the error
O(εL+1).

The reader should notice that whenever G is an integral of H0, the effect of
constructing K, where Ki ∈ ker(LG) (i.e., the Poisson bracket {Ki,G} vanishes) for
i = 1, . . . , L, is to extend formally the integral of the unperturbed system, G, to the
whole Hamiltonian K after truncating it at order L.

We stress that the integral G of H0 must be chosen a priori and it can be other
than the part of H0 whose associated matrix is semisimple. This is the main differ-
ence with respect to the usual treatment of normal forms, although Theorem 2.4 can
be interpreted as a generalization of the standard approach. In fact, under further
hypotheses, if G corresponds to the semisimple part of H0, both normal form trans-
formations yield the same results; see the details in [26, 28]. Our way of computing
formal integrals extends the classical approaches of Whittaker [33, 34], Gustavson [13],
and Giorgilli [12] as we can obtain approximate integrals of polynomial Hamiltonians
in n DOFs, with H0 being any homogeneous (not necessarily quadratic) polynomial.

Theorem 2.4 can be applied to calculate formal integrals of polynomial Hamilto-
nians whose dominant parts are related to nilpotent matrices A. Furthermore, this
approach can be used to calculate different normalized Hamiltonians whose flows lie
on different reduced phase spaces. Thus, performing several reductions allows us to
analyze the original Hamiltonian from different points of view. The theorem also can
be applied to lower the number of DOFs by two or more units. Indeed, the number of
DOFs of the resulting Hamiltonian system depends on the type of integral introduced
through the reduction. Nevertheless, this needs a careful analysis based on Lie groups
and invariant theory; see [28] for details.

The drawback of this generalized method is that at each step i ≥ 1, Wi is not
necessarily a polynomial function, as is always the case with the application of the
normal form theorem. Indeed, the occurrence of polynomial generating functions in
a specific normal form computation can be known in advance by analyzing the di-
mensions of the kernels of various linear spaces of homogeneous polynomials. Thus,
depending on the choice of G, as well as on H0 and the type of terms in the pertur-
bation, W could be a polynomial of degree i + 2. (In this optimal case the linear
spaces Ri correspond to the spaces of homogeneous polynomials of degree i + 2 in
x ∈ R2n.) For more information, see [26, 28]. Nevertheless, in the design of the
algorithm we do not perform this algebraic analysis prior to the computation of the
normal form. Instead, we prefer to try first to solve the homological equation with a
homogeneous polynomial. When it is not possible we resort to finding the solution of
the usual partial differential equation (PDE). This will be a fundamental step in the
design of the algorithms presented in the next section.

2.3. Types of normalization according to H0. The cases where H0 is not a
quadratic polynomial cannot be treated by the normal form theorem and we have to
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resort to Theorem 2.4 for its reduction. The choice of the integral G to be extended
depends on each problem and can be, for instance, H0, as we will see in section 4.1.

If H0 is a quadratic homogeneous polynomial we perform the following classifica-
tion according to the type of the associated matrix A:

(a) semisimple case: A = S;
(b) semisimple plus nilpotent case: A = S + N , with S,N �= 0;
(c) nilpotent case: A = N .

In cases (a) and (b), as the semisimple part is not zero, both Theorem 2.1 and
Theorem 2.4 apply. Let us see when one should apply the first and when the second.

On the one hand, by applying the normal form theorem, IS (the semisimple part
of H0) becomes a formal integral of the reduced system. This would be equivalent to
choosing G = IS and applying Theorem 2.4. Nevertheless, the reduced Hamiltonians
in both cases may not be the same [26]. In this situation the application of the normal
form theorem would be preferable because the generating function is polynomial and
may not be polynomial with Theorem 2.4.

On the other hand, when the application of the normal form theorem leads to
K defining a system of 0 DOFs (n > 1), the reduction does not allow one to extract
information from the flow of the reduced system. Then, the application of the gen-
eralized normal form theorem by choosing G an integral of H0 different from IS is
recommended.

Moreover, in both situations, when one intends to obtain information about
the original system from different reduced Hamiltonians, one should resort to Theo-
rem 2.4, as the normal form theorem allows only one reduction.

In case (c), as the semisimple part is zero the application of the normal form
theorem does not lead to a reduction in the number of DOFs. Thus, for this purpose
we use the generalized method by taking G = H0, for instance. Obviously, other
integrals could be chosen depending on the system. Besides, if H0 = 0, we could even
select G among the integrals of Hk, provided that Hi = 0 for i = 0, . . . , k − 1, with
k ≥ 1.

Once we have made the choice of G the next step consists in performing the normal
form transformation, i.e., in calculating K and W up to order L of the process. This
is done through Lie transformations and will be treated algorithmically in section 3.

Next we calculate the direct and inverse changes of coordinates related to the
generalized normal form transformation. This is useful when going back to the original
Hamiltonian. For example, one can think of a qualitative study of a certain Hamilton
vector field based on the calculation of normal forms. In this situation it is usually
convenient to get the expressions in the original coordinates of the invariant objects
of the original system obtained from the ones in the normal form Hamiltonians.

Finally, it is possible to determine a formal integral of the Hamiltonian H using G,
that is, the function extended to become an integral of K, and the generating function
related to the normal form construction. Specifically, if G commutes with K, the result
of applying the inverse change of coordinates to G, which we denote by IG(x; ε), is
a formal symmetry of H, i.e., {H, IG} = O(εL+1). Note that if W is of polynomial
nature, IG is also a polynomial. However, when W contains nonpolynomial terms,
IG will be in general nonpolynomial.

The direct and inverse changes of coordinates will be explained in section 3.4 from
the point of view of the computations which are needed.

For a complete description of the methodology and some examples, see [25, 26, 27]
and references therein.
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3. The algorithms. This section shows the main features of the routines we
have developed so as to apply the reduction process to an arbitrary n-DOF polynomial
Hamiltonian of the type (1.1) up to a certain order of approximation. We used
Mathematica to write the routines, but other symbolic processors, such as Maple

or Macsyma, would be also adequate. We present the entire collection of routines
to give a full description of the normal form procedure for polynomial Hamiltonians,
emphasizing the main features of the implementation. In addition, our exposition
provides the computational cost of all steps and, to our knowledge, it is the first time
all these issues appear together in one paper.

3.1. Choice of the integral G. According to H0 and our purposes we start by
choosing the type of normal form we are going to calculate. If H0 is quadratic we im-
plement an auxiliary procedure to split this Hamilton function into its semisimple and
nilpotent parts. The so-called Jordan decomposition of the associated Hamiltonian
matrix A is the algebraic tool which provides us with this result.

Algorithm 1 (choice of the integral to be extended).

Input:

↪→ H0 and p: the main (or unperturbed) part of H and the degree of H0 minus two,
respectively;

↪→ n: number of DOFs of the system;
↪→ option ∈ {{no}, {yes,G}}: chance of either allowing the program to choose the

integral to be extended or the user to choose a formal integral G of H0, resp.
In case H0 is not quadratic the user should choose G;

↪→ ForceNFT: Boolean variable which indicates whether the user wants to apply the
normal form theorem.

Output:

←↩ IS , IN : decomposition of H0 into its semisimple and nilpotent parts, resp. (when
H0 is quadratic, otherwise both are taken to be zero);

←↩ G: integral of H0 to be extended to higher orders;
←↩ NFT: it takes the value True if the normal form theorem is going to be used or

False otherwise.
Code:

NFT = False;
If (p = 0) then

Compute the Jordan decomposition of the Hamiltonian matrix A associated
with H0, that is, A = S + N ;

Construct IS , IN from the preceding step;
If (ForceNFT = True) then

If (IS = 0) show the message “After the normalization, K will define
a system with the same number of DOFs as H”;

Calculate G as in the normal form theorem (G = Kt
0);

NFT = True;
Else

If (option = no) then
Compute G following the guidelines of section 2.3.

Else
Check if G is an integral of H0. When G does not commute with H0

(i.e., {G,H0} �= 0), a warning message is displayed saying that
no integral will be introduced through the transformation;

Else
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Set IS = IN = 0;
Define G as the second component of {yes,G}.

Remark 3.1. The algorithm allows the user to normalize Hamiltonians satisfying
Hi = 0, for i = 1, . . . , k − 1 and Hk �= 0; the input variable option brings such
possibility by means of giving it the value {yes,G} and introducing any homogeneous
polynomial which commutes with Hk as the second component, G.

3.2. Resolution of the homological equation. The construction of the trans-
formed Hamiltonian K is done order by order, i.e., one has to proceed in an ascendant
way from i = 1 to i = L so as to determine each Ki. For that, the homological
equation

LH0(Wi) + Ki = H̄i(3.1)

has to be solved, with the extra condition {Ki,G} = 0 for i = 1, . . . , L. Note that the
terms H̄i are the ones known from the previous orders through the Poisson bracket cal-
culations. The solution of (3.1) is the pair (Wi,Ki), where Wi denotes the generating
function at order i.

To actually solve (3.1) we split H̄i as H̄i = H̄∗
i + H̄#

i , where H̄∗
i ∈ ker(LG) and

H̄#
i = H̄i − H̄∗

i , for each i = 1, . . . , L. In this way, we choose Ki = H̄∗
i and Wi as a

solution of

LH0(Wi) = H̄#
i .(3.2)

When Theorem 2.4 is applied, for the general case nonpolynomial terms appear
in H̄i at a certain order i. To solve (3.1) these terms are always considered to be-

long to H̄#
i . Thus, in the program we introduce a simple algorithm to separate the

polynomial terms of H̄i from the nonpolynomial ones.
Algorithm 2 (splitting in polynomial and nonpolynomial terms).

Input:

↪→ Expr: a function in the coordinates and respective momenta;
↪→ n: number of DOFs of the system.
Output:

←↩ Pol and NoPol: Pol collects the polynomial terms of Expr while NoPol collects
the nonpolynomial ones.

Remark 3.2. (i) The only nonpolynomial terms are rational, logarithmic, arctan-
gent functions and combinations of them. They appear in the generating function at
a certain order as the solution of (3.2) and are propagated through the intermediate
Hamiltonians needed to proceed to higher orders (see also section 3.3).

(ii) Every symbolic processor has its own functions to distinguish between poly-
nomial and nonpolynomial terms. For example, Mathematica makes use of the
Boolean built-in function PolynomialQ which recognizes whether a single term is
polynomial in a given set of variables. Thus, the issue of splitting the polynomial
terms from the others becomes a simple matter.

Now, we describe the main algorithm of this section—the one for the resolution
of (3.1). We suppose that Algorithm 1 has been already applied.

Algorithm 3 (resolution of the homological equation).

Input:

↪→ i: step in the normalizing procedure;
↪→ H̄i: terms computed in order i− 1 through the Lie transformation;
↪→ G, NFT, and s: the latter denoting the degree of G;
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Output:

←↩ The pair (Ki,Wi): solution of (3.1);
←↩ resolved: it takes the value True if (3.1) has been solved successfully.
Code:

Split H̄i into its polynomial (Pol) and nonpolynomial (NoPol) components by making
use of Algorithm 2;

Redefine H̄i = Pol;
Define arb1, an arbitrary polynomial of degree i+ p+ 2 in x, and solve the equation

LG(arb1) = 0 in the coefficients of arb1; store the resulting conditions for
the coefficients of arb1 in a new variable called solp;

Define arb2, a homogeneous polynomial of degree i + 2 in x;
If (NoPol = 0) then

Try to solve {H0, arb2} + arb1 = H̄i in the coefficients of arb1 and arb2,
including the restrictions given by solp. The solution, if any, is stored
in sol = (arb1, arb2);

Else
sol = ∅;

If (sol �= ∅) then
Set (Ki,Wi) = sol and resolved = True;

Else
Define Ki as the terms of H̄i that are in ker(LG);
Try to solve the PDE {H0,Wi}+Ki = H̄i+NoPol in the unique unknown Wi.

We call the solution, if any, Dsol;
If (Dsol is computed properly) then

resolved = True;
Else

An error message telling that Wi cannot be obtained is displayed; in
addtion resolved = False and the algorithm is aborted.

Remark 3.3. (i) If the number of DOFs of our problem is n and we are at or-
der i, then the number of different coefficients of arb1 is

(
2n+i+p+1

i+p+2

)
. Besides, since

the degrees of G and arb1 are, respectively, s and i + p + 2, then LG(arb1) is a
homogeneous polynomial of degree i+p+s in x. Hence, the solution of LG(arb1) = 0
is obtained by matching the coefficients of arb1 so that the latter expression becomes
identically zero. Therefore, one needs to solve a system of

(
2n+i+p+1

i+p+2

)
linear homoge-

neous equations with
(
2n+s−1

s

)
unknowns. This system always has an infinite number

of nontrivial solutions provided that the number of unknowns is smaller than or equal
to the number of linear equations; this is satisfied whenever s ≤ i+p+2. The solution
is the one denoted by solp.

(ii) When NoPol = 0 we try to resolve the PDE: LH0
(arb2) = H̄i−arb1 for arb2

(once the conditions for arb1 are imposed) by matching the coefficients of arb2. Since
we try to get arb2 as a polynomial in x, H̄i and arb1 are homogeneous polynomials of
degree i+ p+ 2 and the degree of H0 is p+ 2, the degree of arb2 should be i+ 2, and
hence, the number of different coefficients for arb2 is

(
2n+i+1

i+2

)
. Now, the solution of

the PDE is achieved by solving a system of
(
2n+i+p+1

i+p+2

)
linear equations with

(
2n+i+1

i+2

)
unknowns. We store the solution on the variable sol. Unlike what occurs in Remark
3.3(i), this system does not always have a solution for arb2. In this case sol = ∅ (we

are taking ∅ as the empty subset) and the algorithm tries to solve LH0(Wi) = H̄i
#

as a PDE to determine Wi. For that we make use of the Mathematica function
DSolve. This second situation is worse than the first in terms of computational cost.
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Indeed, there are a few examples where even the command DSolve does not return
the desired result. In these cases, a suitable change of coordinates could sort out the
trouble.

(iii) If Wi admits a polynomial expression, that is, when sol �= ∅, the undeter-
mined coefficients of arb1 and arb2 are settled to zero, so as to avoid an increase of
unnecessary monomials in Ki and Wi.

(iv) During the process we express Ki in Cartesian coordinates. However, for
some systems, from a computational point of view, it is usually convenient to use an
adequate set of symplectic variables such that the homological equation presents a
“nicer” aspect, for example, spherical or complex variables. Sometimes it is better to
use a combination of them. See examples of this in [27].

(v) Every time Algorithm 3 is applied, a message showing us if the homological
equation is solved correctly at order i is displayed. Additionally, we are informed
whether the generating function is a polynomial.

(vi) Taking i = 0 at all steps and considering also that p = 0, the algorithm
computes versal deformations of linear Hamiltonian vector fields; see, for instance,
[11]. This feature is included in the next subsection.

(vii) A little algorithm to compute Poisson brackets should be added to Algo-
rithm 3. In Mathematica it is a simple matter to compute the Poisson bracket of
two scalar functions P,Q : Ω ⊆ R2n → R by using the built-in function for deriva-
tives D.

(viii) Tests to check if the algorithm works properly are introduced at several
steps in the procedure. For instance, when redefining H̄i as a polynomial we in-
troduce a line in the code to check if H̄i is in fact a homogeneous polynomial in
x = (x1, . . . , xn, X1, . . . , Xn). If it is not, the algorithm is aborted and an error
message is shown.

3.3. Lie–Deprit method. Once the order we want to reach in the transforma-
tion, say L, is fixed, we are ready to proceed to the construction of both K and W.
The way to obtain them is by going ascendantly order by order from i = 1 to i = L.
Notice that we need to calculate Ki for i = 1, . . . , L, such that

K(y; ε) =

L∑
i=0

εi

i!
Ki(y),

where each Ki is a polynomial in y of degree i+p+2 and {Ki,G} = 0 for i = 1, . . . , L.
Besides, we need to obtain

W(x; ε) =

L−1∑
i=0

εi

i!
Wi+1(x),

and at each order i we will make use of Algorithm 3 to get Ki and Wi. Indeed, the
advance from one order to the other is done through the recursion formula

Hj,k = Hj+1,k−1 +

j∑
�=0

(
j

�

)
{Hj−�,k−1,W�+1}(3.3)

for j ≥ 0 and k ≥ 1. Here it is assumed that Hi,0 = Hi and H0,i = Ki for all i ≥ 0.
At the end of the process one has computed the Hamiltonians Hj,k with 0 ≤ j ≤ L,
1 ≤ k ≤ L, and j + k ≤ L. Hence, the intermediate Hamiltonians form the so-called
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Lie–Deprit triangle. See Deprit [6] for the original version of the method and for
different applications [2, 22, 5, 26, 27, 10].

Algorithm 4 (Lie–Deprit method).

Input:

↪→ L: number of steps to be performed in the Lie–Deprit process;
↪→ n: number of DOFs of the vector field related to H;
↪→ H0, . . . ,HL: the first, second, . . . , L + 1th terms of the Hamiltonian H;
↪→ VDef: Boolean variable which offers the user the possibility of carrying out a

transformation within linear versal deformations.

Output:

←↩ (Ki,Wi): for i = 1, . . . , L.

Code:

If (VDef) then
Set the auxiliary variable daux = 0;

Else
Set daux = 1;

For d from 1 to L do
Define Hd,0 = aux1 = Hd;
Set gd = 0;
For j from d− 1 to 0 do

Compute Hj,d−j = aux1 = aux1 +

j∑
�=0

(
j

�

)
{Hj−�,d−j−1, g�+1};

(H0,d, aux2) = solution of applying Algorithm 3 to aux1 (with index i =
d · daux);

Set gd = −aux2;
Or

d = 1;
aux2 = H0,d − aux1;
For j from d− 1 to 1 do

Hd−j,j = Hd−j,j + aux2;
Set Ki = H0,i, for i = 0, . . . , L and Wi = gi for i = 1, . . . , L.

Remark 3.4. (i) The number of Poisson brackets needed to achieve the Lie–Deprit
method is

(
L+2

3

)
.

(ii) Since at each order i, according to Remark 3.2(i) and (ii), one must solve a
system of linear equations with

(
2n+s−1

s

)
variables plus another system with

(
2n+i+1

i+2

)
variables, after completing the entire process of the Lie transformation, one has solved
2L systems of linear equations. The total number of unknowns which have been
determined is

(
2n+L+1

L+2

)
+ L

(
2n+s−1

s

)
− (2n + 1) (n + 1).

3.4. The algorithm of the inverse for Lie transformations. Once the nor-
mal form transformation has been obtained, a further step consists in calculating the
explicit expressions of the changes of variables relating the original coordinates x with
the transformed y. In other words, if the direct change, called x = X(y; ε), is re-
sponsible for writing the “old” coordinates x in terms of the “new” y, we need to find
an expression for X. Equivalently, if the inverse change puts the new coordinates y
in terms of the old x and this change is denoted by y = Y (x; ε), we have to look for
an expression of Y .

For this purpose we have designed Algorithms 5 and 6. In particular, the corre-
sponding codes have been developed according to the algorithm of the inverse for Lie
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transformations due to Henrard [16]. The method proposed in that paper reduces the
amount of computations compared with the usual method for the direct and inverse
changes proposed by Deprit [6]. For example, in the Lie transformations utilized
in the analytical lunar theory [7, 8], the number of Poisson brackets evaluated was
reduced by a factor of three.

We give a brief description of Henrard’s method [16]. Notice that its purpose is a
bit wider than the matter of constructing the direct and inverse changes of coordinates.
For instance, we can use the method proposed by Henrard to write any function
expressed in terms of the variables x as a function of the variables y and vice versa,
provided only that we know the generating function W.

The coefficients of the transformed function

g(y; ε) =
∑
i≥0

εi

i!
gi(y),

corresponding to a certain smooth function

f(x; ε) =
∑
i≥0

εi

i!
fi(x),

under the inverse of the transformation generated by the smooth function

V(x; ε) =
∑
i≥0

εi

i!
Vi+1(x),

are computed recursively by the formula

gi =

i∑
j=0

(
i

j

)
fj,i−j .(3.4)

The intermediate terms fj,k are calculated taking into account that

f0,k = fk, fj,k = −
j∑

�=1

(
j − 1

�− 1

)
{fj−�,k,V�} for j > 0.

Now we can use the above to calculate the direct and inverse changes as follows.
Algorithm 5 (direct change).

Input:

↪→ L: number of steps of the transformation process;
↪→ n: number of DOFs of the system;
↪→ f0, . . . , fL: the first, second, . . . , L + 1th terms of a function f of x;
↪→ W1, . . . ,WL: the first, second, . . . , Lth terms of the generating function W.
Output:

←↩ g: the expression of f as a function of y up to an approximation of order O(εL+1).
Code:

Define g0 = g0,0 = f0;
For d from 0 to L− 1 do

For j from 1 to L− d do

gj,d = −
j∑

k=1

(
j − 1

k − 1

)
{gj−k,d,Wk};
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gd+1 = fd+1 −
d+1∑
�=1

(
d + 1

�

)
g�,d+1−�;

Compute g =

L∑
i=0

εi

i!
gi.

Remark 3.5. (i) For the direct change of coordinates we need to apply Algo-
rithm 5, replacing f0 by each component of x and putting fi = 0 for 1 ≤ i ≤ L.

(ii) To put a function g in terms of another function f one needs to calculate(
L+2

3

)
Poisson brackets.

The advantage of the algorithm of the inverse is that it can be used backward as
well as forward. More precisely, using (3.4) one can express the terms fi as functions
of the gj as follows:

fi = gi −
i∑

j=1

(
i

j

)
fj,i−j .(3.5)

Thus, we modify Algorithm 5 accordingly.
Algorithm 6 (inverse change).

Input:

↪→ L: the number of steps of the transformation process;
↪→ n: number of DOFs of the system;
↪→ g0, . . . , gL: the first, second, . . . , L + 1th terms of a function g of y;
↪→ W1, . . . ,WL: the first, second, . . . , Lth terms of the generating function W.
Output:

←↩ f : the expression of g as a function of x up to an approximation of order O(εL+1).
Code:

For d from 0 to L do
Define g0,d = gd;
If gd �= 0 then

For � from 1 to L− d do

g�,d = −
�∑

k=1

(
�− 1

k − 1

)
{g�−k,d,Wk};

Else
g�,d = 0 for � = 1, . . . , L− d;

fd =

d∑
�=0

(
d

�

)
g�,d−�;

Compute f =

L∑
i=0

εi

i!
fi.

Remark 3.6. (i) The inverse change of coordinates is obtained after application of
Algorithm 6 substituting g0 by each component of y and setting gi = 0 for 1 ≤ i ≤ L.

(ii) The first “if” command of Algorithm 6 is due to the advantageous fact that
each column of gi,d for i = 0, . . . , L − d is independent from the others and it is
computed recursively from the first to the last element. Hence, if the first element of
any column vanishes, the entire column vanishes as well. Thereby, in some particular
but typical situations, only some of these columns have to be computed. Consequently,
the number of operations is reduced drastically.

(iii) Given a Hamilton function H together with its normal form Hamiltonian
K and the generating function W constructed such that Ki commutes with G for
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i ∈ {0, . . . , L}, a formal integral of H can be built up with the use of Algorithm 6,
after replacing G by g0 and setting gi = 0 for 1 ≤ i ≤ L. Thus, the formal integral IG
will be the output function f .

(iv) The number of Poisson brackets used in the computation of a function g as a
function of f is

(
L+2

3

)
. However, if g is such that gi = 0 for 1 ≤ i ≤ L, as it occurs for

situations (i) and (iii), the number of Poisson brackets to be evaluated gets reduced
to

(
L+1

2

)
, due to the consideration explained in (ii).

4. Applications. This section displays the features of the algorithm exposed in
the preceding paragraphs through two examples.

4.1. Normalization of a Hamiltonian with null quadratic terms. First we
have chosen a polynomial Hamiltonian where the first nonnull term is a homogeneous
polynomial of degree 3.

In this application we assume that the vector x is two-dimensional, i.e., x =
(x,X); the lowercase x stands for the position, whereas the uppercase X refers to its
associated momentum.

We start by defining the Hamilton function through

H(x) =

∞∑
i=0

1

i!
Hi(x),(4.1)

where

H0(x) = x2X,

Hi(x) = x2
i+2∑
j=1

hi,j x
i+2−jXj−1, i = 1, . . . ,∞,

(4.2)

and hi,j ∈ R. Note that the vector field associated with H is a 1-DOF system. With
the notation introduced in section 2 we have that A = (0), that is, the square matrix
of order two whose entries are all zero. In this situation, it is clear that the normal
form theorem, Theorem 2.1, does not produce any change in H because the quadratic
part is zero. As a consequence, if we want to simplify (4.1) we need to change to the
setting of generalized normal forms.

Result 4.1. We select G(x) = H0(x) and apply Theorem 2.4 to Hamiltonian
(4.1). Note that s, the degree of G, is 3, whereas p = 1. Thus, each Hi is a homogenous
polynomial of degree i+3. For all i ≥ 1 the ith term of the generating function W(x)
of the transformation has the form Wi(x) = x pi+1 + x2 log |x| qi, with pi+1 and qi
homogeneous polynomials in x of degrees i + 1 and i, respectively. Furthermore, if
the new variables are called y = (y, Y ), the new Hamiltonian will be a polynomial K
composed of homogeneous polynomials Ki. More precisely, for all i ≥ 0 we have that
K3 i = h̄i (y

2 Y )i+1 (with h̄i a constant polynomial in the coefficients hi j), whereas
K3 i+1 = K3 i+2 = 0.

Proof. We make a single-induction process over i, the order of the Lie transfor-
mation. We have the following.

Step 1. First-order normalization. Applying the algorithms of section 3 at order
i = 1 we get

K1 = 0,

W1 =
x

3

(
h1,1 x2 − h1,3 X2

)
+ x2 log |x| h1,2 X.

This is straightforward, noting that the induction hypothesis is true for i = 1.
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Step 2. Higher-order terms. Suppose now that the assertion is true up to or-
der i − 1. Thus we have that Ki−1 will be zero when i − 1 does not divide 3 or
h̄(i−1)/3 (y2 Y )(i+2)/3 otherwise. Besides, Wi−1 = x pi+x2 log |x| qi−1 with pi and qi−1

homogeneous polynomials in x of degrees i and i − 1, respectively. In addition,
since Wi−1 satisfies the identity LH0(Wi−1) + Ki−1 = H̄i−1, we can put H̄i−1 =
x2 p̄i + x3 log |x| q̄i−1 with p̄i and q̄i−1 homogeneous polynomials in x of degrees i
and i − 1, respectively. Therefore, using the properties of the Poisson brackets we
know that all intermediate Hamiltonians Hj,k, with j + k = i − 1, are of the form

x2 p̄
(j,k)
i +x3 log |x| q̄(j,k)

i−1 for some polynomials p̄
(j,k)
i and q̄

(j,k)
i−1 of respective degrees i

and i− 1.

We need to conclude that it remains true at order i. Notice that now we have to
calculate the diagonal Hj,k for j + k = i starting at Hi−1,1 and ending at H0,i using
Algorithm 4. Specifically, we set Wi = 0 and compute

Hi−1,1 = Hi +

i−1∑
�=0

(
i− 1

�

)
{Hi−1−�,0,W�+1}.

Taking into account the forms of Wj for each j < i and of Hk for k ≤ i, it is
not hard to observe that all Poisson brackets {Hi−1−�,0,W�+1} produce terms like

x2 p̄
(�)
i+1+x3 log |x| q̄(�)

i with p̄
(�)
i+1 and q̄

(�)
i homogeneous polynomials of degrees i+1 and

i. Using the recurrence (3.3) we obtain that all Hamiltonians Hj,k with j + k = i are

written as x2 p̄
(j,k)
i+1 +x3 log |x| q̄(j,k)

i , where p̄
(j,k)
i+1 and q̄

(j,k)
i are polynomials of degrees

i + 1 and i; the same holds for H̄i. Thus we can write H̄i = x2 p̄i+1 + x3 log |x| q̄i.
Next we need to extract Ki from x2 p̄i+1 (expressing it first in terms of y). Note that
Ki must belong to ker(LG) and this kernel is spanned by integer powers of y2 Y ; thus
Ki is zero when i is not a multiple of 3 or Ki = h̄i/3 (y2 Y )(i+3)/3 otherwise. Finally
we solve the PDE LH0(Wi) = H̄i −Ki, but it is satisfied whenever Wi is of the form
demanded in the induction hypothesis. Therefore, all assertions turn out to be true
and Result 4.1 is obtained.

The generating function W(x) contains polynomial and logarithmic terms. How-
ever, it satisfies W(x) → 0 as x → 0. Besides, the normalization process will map
the coordinates x = (x,X) into the new coordinates y = (y, Y ) and vice versa. By
construction (using Algorithms 5 and 6) both maps are C2 in R2. Note also that W
is C∞ in R2 \ {x = 0} and therefore this treatment could be used to analyze a piece
of the phase space, excluding the ray x = 0, whenever the Hamiltonian H does not
come from an expansion around the origin of R2.

One should observe that when trying to solve the homological equation (3.1) at
any order i, the Hamiltonians Hi need to be of the type (4.2), as the corresponding
generating function can be obtained as Wi = pi + log |x| qi. This is requested to
overcome the problem of dropping significant terms when truncating the system at
order L ≥ 1.

Remark 4.1. It is clear that after the normalizing process, we arrive at a system
of 0 DOFs. We could extend this result for n-DOF Hamiltonians with n > 1 and
H0 = x2 X. Similar conclusions would be drawn and the method would lead to an
(n − 1)-DOF Hamiltonian vector field through C2-maps. Note in addition that a
formal integral of H can be calculated through Algorithm 6 using W and G.

4.2. The swing spring. Our aim is to show the occurrence of Hamiltonian–
Hopf bifurcations in the swing spring (also called elastic or spring pendulum) through
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the use of generalized normal forms and the algorithms developed in section 3. Fur-
thermore, we also will show that the dynamical system of the swing spring has mon-
odromy.

4.2.1. Description of the system. The spring pendulum is a mechanical
system that exemplifies the motion of a point particle attached to a spring under
a constant vertical gravitation field. The position of the particle is denoted by
r = (x1, x2, x3), whereas the velocity ṙ is the vector (X1, X2, X3). This dynami-
cal system is represented through the Hamilton function

H(x) =
1

2
(X2

1 + X2
2 + X2

3 ) + U(r),(4.3)

where the potential U is written as

U(r) = x3 +
1

2
ν2

(
1 − 1

ν2
−
√
x2

1 + x2
2 + x2

3

)2

.(4.4)

The parameter ν is related to the equilibrium and unstretched lengths of the spring,
respectively, l and l0, by ν =

√
l/(l − l0). Thus, ν > 1 since the frequency of the spring

oscillation is bigger than the frequency of the small amplitude pendulum oscillations,
that is, l ≥ l0.

The potential has an equilibrium point when the forces of gravity and the spring
balance. It corresponds to r0 = (0, 0,−1) and is linearly stable. We will carry out four
steps of the Lie–Deprit process so as to make a proper analysis that we will explain
later on. As a consequence, we expand the potential U(r) around (0, 0,−1) up to
terms of degree 6. Hence, we calculate the Hamiltonian approximated up to degree 6
with the equilibrium shifted to the origin

H(x) = H0 +

4∑
i=1

Hi(x),(4.5)

where

H0 =
1

2
(X2

1 + X2
2 + X2

3 ) +
1

2
(x2

1 + x2
2 + ν2x2

3)

and each Hi is a homogeneous polynomial in x of degree i+2 for i ∈ {1, . . . , 4}. Note
that x3 accounts for the displacement from −1. Note also that the coefficients of Hi

depend on ν. We could introduce a small parameter by stretching the coordinates
x = εx′ and scaling time. However, we prefer to set ε = 1 and use the theory of
section 2 and algorithms of section 3, proceeding straightforwardly.

We easily see that the system is a 1 : 1 : ν resonant Hamiltonian. The 1 : 1 : 2 case
has already been analyzed by Dullin, Giacobbe, and Cushman [9]. In our treatment,
we broach the nonresonant case; equivalently, we take ν ∈ R \Q together with ν > 1.

4.2.2. Integrable approximation. First, it is straightforward to note that the
system is symmetric with respect to the z-axis. Equivalently, Hamiltonian (4.5) is
invariant under the flow defined by the field associated with the third component
of the angular momentum L3 = x1X2 − x2X1. Therefore, the departure (i.e., the
original) Hamiltonian defines, in fact, a 2-DOF system.

The next step is the introduction of a new (formal) symmetry in the system to
achieve an integrable approximation. Now it should be clear that the application
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of the normal form theorem would lead to a 0-DOF Hamiltonian dynamical system.
The reason for this is the following. After the normalization procedure (i.e., after
applying Theorem 2.1 and truncating higher-order terms), one introduces in principle
one (formal) integral, which in this case, due to the semisimple character of H0, is
precisely H0. However the number of independent integrals introduced in the process
is two—I1 = (X2

1 + x2
1)/2 + (X2

2 + x2
2)/2 and I2 = (X2

3 + ν2 x2
3)/2—due to the

absence of resonant terms involving x3 and X3 with x1, x2, X1, or X2. Now, one
still has to take into account the occurrence of the (exact) integral L3 yielding three
independent integrals. As a result, the reduction process using invariant theory leads
to the so-called fully reduced normalized system, which is indeed a trivial integrable
Hamiltonian system. In this sense this normalization would be too drastic. Thence,
we have to make use of the generalized method for constructing normal forms as
stated in Theorem 2.4.

First reduction. We choose G(x) = ν2x2
3 + X2

3 . At this point, we make use of
Algorithms 3 and 4 presented in section 3 to compute the generalized normal form with
the aim of extending the integral G up to some degree. The normalized and truncated
Hamiltonian up to order 4 (that is, L = 4 and the polynomials are of degree 6) is
denoted by K, thus {K,G} = 0. The reason for going to order 6 is motivated by the
fact that odd orders give 0 and at order 2 the system has nonisolated equilibria and
thus is not structurally stable.

The reduction is regular. Moreover, the corresponding homological equations give
polynomial results in all orders i ∈ {1, . . . , 4}. Henceforth the generating function of
the transformation W is a polynomial of degree 6 and always would be a polynomial
if we would push the calculations up to any order. This is due to the nonresonant
situation existing between G and 1

2 (x2
1 + X2

1 ) + 1
2 (x2

2 + X2
2 ). An asymptotic integral

of H could be found by means of Algorithm 6 applied to G with the aid of W. The
result would be IG , a polynomial in x of degree 6 such that {H, IG} = p7(x), where
p7 is a polynomial whose lowest degree is 7.

The invariants associated with this reduction are

i1 = x1, i2 = X1, i3 = x2, i4 = X2, i5 = ν2x2
3 + X2

3 .

Then, we fix a value for the integral, i.e., we set G = i5 = j1 ≥ 0. Next, the
reduced phase space is the hyperplane i5 = j1 defined in the four-dimensional space
determined by i1, . . . , i4 that we call Pj1 . In this way the transformed Hamiltonian K
in that hyperplane can be expressed as K(i1, i2, i3, i4; j1).

Second reduction. As we have stressed previously, the system is axially symmetric
with the third component of the angular momentum L3 an integral of motion. Thus,
a second (and exact) reduction can be performed straightforwardly.

The invariants associated with this second reduction are

ϕ1 = i21 + i23 = x2
1 + x2

2, ϕ2 = i22 + i24 = X2
1 + X2

2 ,

ϕ3 = i1i2 + i3i4 = x1X1 + x2X2, ϕ4 = i1i4 − i2i3 = x1X2 − x2X1.

Again, we fix a value for the integral L3; i.e., we let ϕ4 = j2 for some con-
stant j2 ∈ R. Now, the twice-reduced phase space is the two-dimensional hyperbolic
paraboloid defined by

Vj2 = {ϕ ∈ R3 | Rj2(ϕ) = 0},
where Rj2(ϕ) = ϕ1ϕ2 − ϕ2

3 + j2
2 . Depending on the value of j2 there are two cases;

see Figure 4.1. If j2 �= 0, the reduction is regular, whereas if j2 = 0, the reduction is
singular with the origin of the frame 0, ϕ1, ϕ2, ϕ3 being a singular point.
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1
ϕ

2
ϕ3

ϕ

Case j2 �= 0 Case j2 = 0

Fig. 4.1. Twice-reduced phase space.

Then, putting the twice-reduced Hamiltonian as a function of these invariants,
we arrive at

Sν(ϕ1, ϕ2, ϕ3; j1, j2) =
1

768 ν6 (ν2 − 4)4 (64 − 148 ν2 + 9 ν4)

× [c1 ϕ
3
1 + c2 ϕ

3
2 + c3 ϕ1 ϕ

2
2 + c4 ϕ

2
1

+ c5 ϕ
2
2 + c6 ϕ1 ϕ2 + c7 ϕ1 + c8ϕ2 + c9],

(4.6)

where all the ci are polynomials in ν, j1, and j2 having integer coefficients. In the
remainder, we will denote this twice-reduced Hamilton function as Sν .

4.2.3. Hamiltonian–Hopf bifurcations at the origin. We have to look at
the points on the twice-reduced phase space Vj2 where the gradient ∇Sν is parallel
to the gradient ∇Rj2 to get the equilibria of the system defined by Sν . Equivalently,
this can be interpreted geometrically as seeking whether the level set {Sν(ϕ) = h} is
tangent to Vj2 , which always occurs at the singular point of Vj2 .

Now, we restrict ourselves to the singular case j2 = 0. In this situation the
reduced phase space is singular at the origin, which is always an equilibrium point of
this space. This singularity reflects the fact that the S1-action defined by the axial
symmetry is not free.

Next we study the stability of the origin, which we denote by ϕ0 (so, this equi-
librium point satisfies ϕi = 0 for i ∈ {1, 2, 3, 4}). We need to calculate the Pois-
son brackets of the ϕi. We do that with the aim of using the symplectic struc-
ture on the reduced phase space. The matrix containing all brackets appears in
Table 4.1.

Table 4.1

The Poisson bracket relations {ϕi, ϕj} for i, j = 1, . . . , 4.

{ , } ϕ1 ϕ2 ϕ3 ϕ4

ϕ1 0 4ϕ3 2ϕ1 0
ϕ2 −4ϕ3 0 −2ϕ2 0
ϕ3 −2ϕ1 2ϕ2 0 0
ϕ4 0 0 0 0

Now we can obtain the Hamiltonian vector field XSν associated with the Hamil-
tonian Sν(ϕ1, ϕ2, ϕ3; j1, j2) and, after that, we set j2 = 0 to analyze whether that
system undergoes a Hamiltonian–Hopf bifurcation.

The Hessian matrix obtained from its linearization evaluated at the origin turns
out to be
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DXSν
0
(ϕ0) =

⎛
⎜⎜⎝

0 0
λνj1

128 ν4 (ν2−4)3

0 0 −2 j1+(32+5 j1) ν
2−8 ν4

8 ν2 (ν2−4)
−2 j1+(32+5 j1) ν

2−8 ν4

4 ν2 (ν2−4)

λνj1

64 ν4 (ν2−4)3 0

⎞
⎟⎟⎠,

where we have defined

λνj1 = 128 ν4 (ν2 − 4)3 + 16 j1 ν
2 (ν2 − 4)2(−6 + 7 ν2 + 2 ν4)

+ j2
1 (−144 + 436 ν2 − 300 ν4 − 105 ν6 + 59 ν8).

The eigenvalues of DXSν
0
(ϕ0) vanish if and only if j1 takes the values

j11 = 8 ν2 (ν2−4)
5 ν2−2 ,

j12 = − 16 ν2 (ν2−4)3/2

√
ν2−4 (2 ν4+7 ν2−6)−

√
(ν2+2) (72−286 ν2+351 ν4−114 ν6+4 ν8)

,

j13 = − 16 ν2 (ν2−4)3/2

√
ν2−4 (2 ν4+7 ν2−6)+

√
(ν2+2) (72−286 ν2+351 ν4−114 ν6+4 ν8)

.

For irrational values of ν > 1, the denominators of j11 and j13 do not vanish, whereas
the denominator of j12 is zero provided that ν = 1.6635156185484876. (As the infinite-
precision expressions are very involved, we use floating-point arithmetic.) Thus, for
this particular value of ν, the values of j1 for which DXS1.66...(ϕ0) has three null
eigenvalues get reduced to j11 = 0.9513184442193461.

Now, if we vary j1 and make it pass through j11, j12, or j13, we find that the
origin changes its stability from elliptic to hyperbolic point or vice versa. In fact, one
of the eigenvalues of DXSν

0
(ϕ0) is always zero as the system is 1-DOF, and we are

using a three-dimensional frame with the constraint given through Rj2 . Besides, the
other two eigenvalues are either pure imaginary (elliptic point, also called center) or
real ones with different sign (hyperbolic point, also called saddle). More concretely,
depending on the value of the external parameter ν, we have three cases. We have

(1) for ν ∈ (1, 1.5117504938658013): elliptic;
(2) for ν ∈ (1.5117504938658013, 1.6635156185484876): hyperbolic if (j1 < j13 or

j1 > j12) and elliptic for j1 ∈ (j13, j12);
(3) for ν ∈ (1.6635156185484876, 2): elliptic for j1 < j13 and hyperbolic for

j1 > j13;
(4) for ν > 2: elliptic for j1 < j11 and hyperbolic for j1 > j11.
Recall that the origin ϕ0 is an isolated equilibrium point in all the cases since

we have pushed the calculations to degree 6. (At degree 4 the origin was not an
isolated critical point.) Note as well that the twice-reduced Hamiltonian is a family
of Hamiltonians depending on two parameters (ν and j1). However, ν is an external
parameter while j2 is an internal or distinguished one.

Next we perform a suitable change of coordinates so that Sν acts as a Morse
function on Vj2 . This is achieved through two successive changes of coordinates. We
define

σ1 : R3 → R3 : (ϕ1, ϕ2, ϕ3) �→ (ς1 + ς2, ς1 − ς2, ς3)

and

σ2 : R3 → R3 : (ς1, ς2, ς3) �→
(

1
4 (τ2

1 − τ2
2 ), 1

2 τ1τ2,
1
4 τ3

)
.
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By doing so we transform Rj2(ϕ) into Rj2(τ) = 1
16 (τ2

3 − τ4
1 − 2τ2

1 τ
2
2 − τ4

2 ) − j2
2 .

Consequently, R0(τ) = 1
16 (τ2

3 −τ4
1 −2τ2

1 τ
2
2 −τ4

2 )−j2
2 , and R0(τ) = 0 defines a parabolic

surface. Thus, through the changes σ1 and σ2 we have removed the singularity from
the twice-reduced phase space Vj2 .

As the next step we determine the 2-jet related to Sν
j2=0. It leads to the expression

S2-jet
j2=0(τ1, τ2)

= 2j1−(32+5j1)ν
2+8ν4

32ν2(ν2−4) τ2
2

+
128ν4(ν2−4)3+16j1ν

2(ν2−4)2(2ν4+7ν2−6)+j21(59ν8−105ν6−300ν4+436ν2−144)
512ν4(ν2−4)3 τ2

1 .

(4.7)

Note that the composition σ2 ◦ σ1 maps the origin ϕ0 to the origin τ0 in the new
variables.

The 2-jet plays the role of a Morse function. As a consequence, given a fixed value
of ν > 1, the analysis is carried out by replacing j1 by its value before the bifurcations,
after the bifurcations, and in the bifurcations value itself. From the expression (4.7)
it is easy to deduce that when ν and j1 are taken so that the stability at the origin is
of elliptic type, the 2-jet takes the form

S2-jet
j2=0(τ1, τ2) = a1 τ

2
1 + a2 τ

2
2 ,

while when we select ν and j1 such that the origin τ0 is of hyperbolic character, we
have

S2-jet
j2=0(τ1, τ2) = a1 τ

2
1 − a2 τ

2
2 ,

where a1, a2 are nonnull constants such that they satisfy a1 a2 > 0. Therefore, the
origin will be stable in the first case and unstable in the second. Besides, in the
bifurcation values, the 2-jet shows an unstable behavior of τ0.

The above paragraphs enable us to conclude that indeed a Hamiltonian–Hopf
bifurcation takes place whenever one of these situations occurs (see also the different
regions and bifurcation lines in Figure 4.2):

(1) for ν ∈ (1.5117504938658013, 1.6635156185484876) and j1 = j12,
(2) for ν ∈ (1.5117504938658013, 2) and j1 = j13,
(3) for ν > 2 and j1 = j11.
A very detailed description of Hamiltonian–Hopf bifurcations is available in [14].

4.2.4. Monodromy. We end our example with an analysis of the occurrence of
monodromy in the Liouville-integrable system (K,G, L3,R

6, ω), with ω = dx1∧dX1+
dx2 ∧ dX2 + dx3 ∧ dX3. Nontrivial monodromy describes the global twisting of a
family of invariant two-dimensional tori parameterized by a circle of regular values of
the energy-momentum map of a certain integrable system. Its presence is determined
by the existence of a singular fiber of the energy-momentum map, topologically a
torus with one or two pinched points. If an integrable system has monodromy, then
one cannot label the tori in a unique way by values of the actions [5]. To unveil the
monodromy feature of our departure Hamiltonian we start by studying the 2-DOF
integrable system (K(i1, i2, i3, i4; j1), L3, Pj1 , { , }), where K represents the normal
form Hamiltonian expressed in the invariants associated with the first reduction and
in Pj1 we take j1 > 0. We note that K and L3 commute, which is an essential
hypothesis for proving monodromy. In the case where we have a hyperbolic behavior
of the origin ϕ0, that is, whenever
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2

j1

υ

j

11

12

13

j

j

1.511 1.663

Fig. 4.2. The bifurcation lines in the plane defined by the external parameter ν and the internal
one j1 are shown. In the ν-axis we are taking into account only the irrational values. The origin of
the coordinates in the picture is the point (ν = 1.5117504938658013, j1 = 0).

(1) ν ∈ (1.5117504938658013, 1.6635156185484876) and j1 < j13 or j1 > j12,
(2) ν ∈ (1.6635156185484876, 2) and j1 > j13,
(3) ν > 2 and j1 > j11,

we see that the system satisfies the hypotheses of the monodromy theorem for Hamil-
tonian systems as stated in Matveev [17] and Zung [35]; see also a similar case in [5]
and the non-Hamiltonian situation in [4].

Looking at the energy momentum mapping

EMj1 : Pj1 ⊆ R4 → R2 : (i1, i2, i3, i4) �→ (Kj1(i1, i2, i3, i4), L3(i1, i2, i3, i4)),(4.8)

fixing values for the energy, h, and for the third component of the angular momentum,
j2, it is straightforward to observe that the fiber EM−1

j1
(h, j2) is compact and con-

nected by simply inverting EMj1 and putting the invariants ij in terms of j2 and h.
So at the critical value (j1/2, 0) of EMj1 we have a once-pinched 2-torus. Therefore,
applying the monodromy theorem, if Γ represents a closed curve around the critical
value (j1/2, 0) we have that the 2-torus bundle EMj1(Γ) has a monodromy linear
mapping whose matrix is (

1 1
0 1

)
.

This implies, following reasoning due to Rink [31], that the system defined through the
system (4.3) also has monodromy. The analysis of the Hamiltonian–Hopf bifurcations
in the original system could be done by reconstructing the flow near ϕ0, using the
direct change of coordinates, that is, by making use of Algorithm 5. The analysis of
monodromy for the spring pendulum when ν = 2 can be found in the work by Dullin,
Giacobbe, and Cushman [9].

5. Conclusions. We present a set of algorithms to deal with generalized normal
forms for polynomial Hamiltonians. Our initial Hamiltonian H is a Hamiltonian
vector field with n DOFs that can be written as a sum of homogeneous polynomial
Hamiltonians, Hi, starting at degree p + 2 (with p ≥ −1 a fixed integer) up to
a certain degree. The coefficients of the polynomials Hi are arbitrary and can be
real or complex. Given a polynomial G of degree s ≥ 1 our aim is to construct a
polynomial Hamiltonian K up to a certain degree L+ p+2 and a generating function
W (sometimes also a polynomial of degree L+p+2 and generically a smooth function
in some domain) such that the Poisson brackets {Ki,G} vanish for all i ∈ {1, . . . , L}.
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So, if H0 commutes with G, then G becomes an integral of K, after truncation of
higher-order terms.

One of our algorithms looks for a polynomial generating function when possible.
If at an order i there is not a solution of a certain linear system, it tries to solve a
PDE corresponding to the homological equation with the aim of determining a smooth
generating function Wi. We have included within our approach the case of the normal
form theorem, selecting G adequately to yield the same result.

The resolution of the homological equation is not optimal from the computational
point of view as the algorithm we use requires handling, at least, two systems of linear
equations. However, it can be applied to a large class of Hamilton functions in n DOFs.
Besides, one does not need to write the unperturbed part of the Hamiltonian, that is,
H0, in normal form. Moreover, the computation of the direct and inverse changes of
variables is optimized as much as possible since we use the algorithm of the inverse
introduced by Henrard [16].

We apply the theory of generalized normal forms together with the algorithms
developed in section 3 to deal with two applications that could not be studied with
the current techniques of the standard approaches based on normal forms.
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Abstract. We consider pulse and front solutions to a spatially discrete FitzHugh–Nagumo
equation that contains terms to represent both depolarization and hyperpolarization of the nerve
axon. We demonstrate a technique for deriving candidate solutions for the McKean nonlinearity
and present and apply solvability conditions necessary for existence. Our equation contains both
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1. Introduction. By considering an electrical circuit model with a complicated
nonlinear resistor, Hodgkin and Huxley (along with Katz) modeled the ionic conduc-
tances that generate the action potential of nerve fibers. To develop their model they
performed voltage and space clamping experiments on the giant axon of squids, axons
which were relatively easy to work with because of their size. The Hodgkin–Huxley
equations are a four-variable model which may be reduced to a two-variable model
(the FitzHugh–Nagumo (FH-N) ODE model) which preserves much of the dynamics
of the Hodgkin–Huxley system by considering fast and slow variables and slaving the
other variables. When considering a chain of electrical circuits, diffusion is added as
a means of propagation in the spatial variable, thus obtaining the FH-N PDE model.
Since the seminal work of Hodgkin, Huxley, and Katz, similar experiments have been
performed on nerve axons of vertebrates and its been discovered that, electrically,
nerve fibers behave as spatially discrete periodic structures in vertebrates. This is
due to the periodically spaced active channels (nodes of Ranvier) in the myelin in-
sulation (in the coating by Schwann cells or oligodendrocytes). Thus it is not only
appropriate but correct to model motor nerves in vertebrates with equations which
also have a spatially discrete periodic structure, to model with nonlinear differential-
difference equations (DDEs), in particular an FH-N DDE model.

Our contribution in this paper is to consider front and pulse solutions for a
FitzHugh–Nagumo system with both continuous and discrete diffusion, thus allowing
one to compare and contrast the dynamics generated by spatially continuous and spa-
tially discrete models of action potential propagation. By employing a piecewise linear
bistable nonlinearity we reduce the problem to a linear inhomogeneous equation, for
which candidate solutions can be derived using transform methods. The candidate
solutions are then shown to be consistent with our ansatz of a front or pulse solution,
a necessary condition for existence. We focus on one-front and one-pulse solutions
and prove their existence using two approaches: (1) we show that consistency of the
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infinite interval solution may be reduced to showing consistency on a finite interval,
and (2) we use the implicit function theorem, thus showing that consistency can be
obtained with a perturbation argument. Once we have derived the exact solutions
and verified their existence, we investigate the solution behavior as a function of the
problem parameters.

Mathematical models of the electrical behavior of axons often come from postu-
lating an equivalent electrical circuit model (leaky underwater cable theory) of the
excitable axonal membrane. Consider a single nerve fiber (axon) coated with a lipid
material called myelin with periodically spaced gaps (which are commonly call nodes).
Assuming the axial currents are constant, the intracellular, Ii, and the extracellular,
Ie, currents between two consecutive nodes are (by Ohm’s law)

LriIi,n = −(vi,n+1 − vi,n) and LreIe,n = −(ve,n+1 − ve,n),

where L is the length of the myelin sheath between the nodes, ri and re are the
intracellular and extracellular resistances per unit length of material, and vi,n and ve,n
are the intracellular and extracellular voltages in the nth node. Using Kirchoff’s laws,
one obtains

Ii,n−1 − Ii,n = Ie,n − Ie,n−1 = µp

(
C
∂vn
∂t

+ Iion,n

)
,

where the quantities in the parentheses are the capacitive current and the ionic current
flowing through the nth node from inside to outside, vn = vi,n − ve,n, µ is the length
of each node (here they will all be assumed to be the same), p is the perimeter length
of the axon (assumed to be constant), C is the capacitance, and Iion,n is the ionic
current at each node. The total transmembrane current at a node n is thus given by

p

(
C
∂vn
∂t

+ Iion,n

)
=

1

µL(re + ri)
(vn+1 − vn + vn−1 − vn).(1.1)

The change of variables τ = t/(CR) nondimensionalizes time (where R has units
Ω cm2) and (1.1) becomes

dvn
dτ

= ρ(vn+1 − 2vn + vn−1) −RIion,n,

where ρ = R/(µLp(ri + re)). We want the transmembrane ionic current at each node
to possess both a sodium and a potassium component (like an actual nerve we want
both a “front” and “back” to our traveling waves), thus we use the analytically simple
RIion,n = f(vn)+wn, where f(vn) represents the sodium ion current component and
wn represents the potassium ion current contribution, and we add the governing
equation

∂wn

∂t
= b(vn − rwn)

for our potassium recovery variable wn. Note that by setting b = 0, one can assume
that the behavior is dominated by the leading edge behavior and that recovery is so
slow that it can be treated as constant.

Related to our work on the discrete FitzHugh–Nagumo equation is the work of
Anderson and Sleeman [1] on the existence and stability of equilibrium solutions, the
work of Binczak, Eilbeck, and Scott [9] on ephaptic coupling in systems related to
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systems of discrete FitzHugh–Nagumo equations, the work of Tonnelier [38, 39, 40],
the work of Carpio and Bonilla [8], as well as the enlightening books of Keener and
Sneyd [28] and Scott [36]. Work on the discrete Nagumo equation includes the work
of Bell and Cosner [4], Keener [26, 27], and Zinner [44, 45] on existence, stability, and
propagation failure, and the work of Mallet-Paret [31, 32] establishing a Fredholm
theory for linear mixed type delay equations. Other works on discrete Nagumo type
equations include [3, 5, 6, 7, 11, 12, 13, 14, 19, 23, 24]. Notable work on the exis-
tence and stability on monotone traveling fronts for the Nagumo PDE include that
of Aronson and Weinberger [2] and Fife and McLeod [21] and the original work of
Nagumo, Arimoto, and Yoshizawa [34]. Existence and stability of fronts and pulses
for the FitzHugh–Nagumo PDE begins from the work of FitzHugh [22] (see also [34])
and includes the work on stability of Jones [25], Maginu [30], and Yanagida [43] (see
also [29]), the work on existence of Deng [10] and existence and stability results of
Evans [15, 16, 17, 18], Feroe [20], Wang [41, 42], Rinzel and Keller [35], and McK-
ean [33] for the piecewise linear nonlinearity considered here.

This paper is organized as follows. In section 2 we present the model equations
to be considered, including the nonlinearity, and derive traveling wave equations.
In section 3, using transform techniques, we derive the general form for candidate
front and pulse solutions. We consider one-front solutions in section 4 and show
similarities with monotone one-front solutions of Nagumo type equations. In sections
5 and 6, using the form of the candidate solutions found in section 3, we derive
conditions for the existence of one-pulse solutions. Two approaches are considered:
one is perturbative in that it shows under certain conditions the existence of one-pulse
solutions in a neighborhood of an existing one-pulse solution, while the other shows
the existence of a one-pulse solution more directly, but with assumptions that are
more difficult to verify. We present plots of the relationship between the driving force
and the speed of wave propagation, and we present waveforms obtained numerically,
in section 7.

2. Models. The continuous FitzHugh–Nagumo equations (the FH-N PDEs) can
be derived as above by considering a smooth spatial domain (or a spatial scale where
the local behavior appears homogenous) and thus allowing the spatial difference terms
to go zero. This gives the model{

vt = vxx − f(v) − w, x ∈ RN , t > 0,

wt = b(v − rw),
(2.1)

where b > 0 relates the time scales of the pulse front and the recovery, the pulse’s
tail, and r ≥ 0 indicates the strength of recovery.

In this paper we consider a differential-difference equation of FitzHugh–Nagumo
type which contains both the diffusion term derived by considering periodically nodes,
as in the introduction, and the diffusion term obtained by allowing the spatial domain
to be uniform. While this may not be a valid first principle derivation, it does allow
us to compare and contrast propagation of action potential in the two perspectives
(allowing for different length scale assumptions). The equations of interest are⎧⎪⎪⎨

⎪⎪⎩
v̇(η, t) =

N∑
i=1

diLiv(η, t) +

N∑
i=1

γi
∂2v

∂η2
i

(η, t) − f(v(η, t)) − w(η, t),

ẇ(η, t) = b[v(η, t) − rw(η, t)],

(2.2)

for
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• η ∈ RN , t ∈ R+, and ηi is the ith element of η,
• “ ˙ ” denotes differentiation with respect to t,
• di ≥ 0, γi ≥ 0, i = 1, . . . , N , b > 0, and r ≥ 0 are parameters,
• Liv(η, t) = v(η+ ei, t)−2v(η, t)+v(η− ei, t), where ei is the unit vector with

1 in the ith element, and
• in general, f is a function of “cubic” shape, but for our investigations, we

employ the piecewise linear f (as was done in [33, 35, 20, 41, 42, 19, 7, 12,
13, 38, 39, 40]),

f(v) ≡ v − h(v − a), where h(v − a) ≡

⎧⎪⎨
⎪⎩

0, v < a,

[0, 1], v = a,

1, v > a,

(2.3)

where a ∈ (0, 1) is a “detuning” parameter allowing for tuning the behavior
based on the behavior of the sodium channels.

While we have discussed only the derivation of the one-dimensional model of
propagation along a single nerve axon, the equations presented in (2.2) are three-
dimensional. This is simply a generalization we choose to explore and it may (or may
not) be used to gain insight into three-dimensional biological domains such as cardiac
tissue. We intend to study traveling waves (plane waves), and thus we now specify
a direction of propagation with the direction normal σ = {σ1, . . . , σN}T ∈ RN , with∑N

i=1 σ
2
i = 1, and apply the classic traveling wave ansatz φ(η · σ − ct) = v(η, t) and

ψ(η ·σ−ct) = w(η, t) to (2.2) to obtain the system of differential-difference equations:⎧⎪⎪⎨
⎪⎪⎩
−cφ′(ξ) =

N∑
i=1

di[φ(ξ + σi) − 2φ(ξ) + φ(ξ − σi)] + γφ′′(ξ) − f(φ(ξ)) − ψ(ξ),

−cψ′(ξ) = b[φ(ξ) − rψ(ξ)],

(2.4)

where γ :=
∑N

i=1 γiσ
2
i and c is the unknown wave speed.

3. Multiple pulse and front solutions. Although our interest in this paper is
in one-pulse and one-front solutions, in this section we construct candidate solutions
with any number of pulses or fronts, i.e., for m ∈ Z+ we construct

• m-pulse solutions where φ(−∞) = φ(+∞) = 0 and ψ(−∞) = ψ(+∞) = 0,
homoclinic connections between constant stable equilibrium solution 0 of
(2.4), and

• m-front solutions for r > 0 such that φ(−∞) = 0, φ(+∞) = r
1+r , and

ψ(−∞) = 0, ψ(+∞) = 1
1+r , heteroclinic connections between constant stable

equilibrium solutions of (2.4) for 0 < a < r
1+r .

Before we begin construction, using linear transforms, we now take a close look at
the piecewise linear nonlinearity f and its effects and a close look at the characteristic
equation of (2.4).

3.1. The nonlinearity. Because we intend to apply linear transforms to (2.4)
we rewrite the piecewise linear nonlinearity as

f(φ(ξ)) = φ(ξ) − h(φ(ξ) − a) = φ(ξ) −
n∑

k=0

(−1)kh(ξ − ξk),(3.1)

where the ξk are the unknown values of ξ, where φ = a, φ′ �= 0, n = 2m − 1 for
pulse solutions and n = 2m− 2 for front solutions. This implies that when finding an
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m-pulse solution, one also needs to seek the values ξ0 < ξ1 < · · · < ξ2m−1 such that
φ(ξk) = a for k = 0, 1, . . . , 2m− 1 with

• φ(ξ) < a for ξ < ξ0, for ξk < ξ < ξk+1 with k odd, and for ξ > ξ2m−1; and
• φ(ξ) > a for ξk < ξ < ξk+1 with k even.

Similarly, for an m-front solution one also needs to seek 0 = ξ0 < ξ1 < · · · < ξ2m−2

where φ(ξk) = a for k = 0, 1, . . . , 2m− 2 with
• φ(ξ) < a for ξ < ξ0 and for ξk < ξ < ξk+1 with k odd; and
• φ(ξ) > a for ξ > ξ2m−2 and for ξk < ξ < ξk+1 with k even.

Because the solutions we seek are translationally invariant we pin down the solution
by choosing ξ0 = 0.

Remark 3.1. Due to the set-valued nature of the nonlinearity (2.3) and the
corresponding Heaviside functions in (3.1) we have that from (2.4)

lim
ξ→ξk−

cφ′(ξ) + γφ′′(ξ) �= lim
ξ→ξk+

cφ′(ξ) + γφ′′(ξ)

and⎧⎪⎪⎨
⎪⎪⎩
−cφ′(ξk) − γφ′′(ξk) ∈

N∑
i=1

di(φ(ξk + σi) − 2φ(ξk) + φ(ξk − σi)) − f(φ(ξk)) − ψ(ξk),

−cψ′(ξk) = b(φ(ξk) − rψ(ξk))

for k = 0, 1, . . . , n.

3.2. The characteristic equation. We consider connecting orbits, homoclinic
and heteroclinic connections, between homogeneous equilibria. A central aspect is
the eigenstructure of the linearization about these equilibrium solutions. In contrast
with the case of continuous diffusion in which the characteristic equation is written
in terms of a polynomial, in the case of discrete diffusion the characteristic equation
is a transcendental equation with an infinite number of solutions. Three aspects are
especially important:

(i) that the equilibria are hyperbolic in the sense that there are not purely imag-
inary solutions to the characteristic equation;

(ii) that the dominant eigenvalues, those with smallest real part among those with
positive real part and those with largest real part among those with negative
real part, possess a gap (up to complex conjugates in the case of dominant
complex eigenvalue) in their real parts with respect to other eigenvalues; and

(iii) whether the dominant eigenvalues are real or a complex conjugate pair.
To study the characteristic equation of (2.4) we begin by linearizing around a constant
equilibrium solution such that f(φ) �= a to obtain the following linear differential
equation:⎧⎪⎪⎨

⎪⎪⎩
−cx′(ξ) =

N∑
i=1

di(x(ξ + σi) − 2x(ξ) + x(ξ − σi)) + γx′′(ξ) − x(ξ) − y(ξ),

−cy′(ξ) = b(x(ξ) − ry(ξ)).

On substituting x(ξ) = κ1 exp(λξ) and y(ξ) = κ2 exp(λξ) we obtain⎧⎪⎪⎨
⎪⎪⎩
−cλx(ξ) =

N∑
i=1

di(exp(λσi) − 2 + exp(−λσi))x(ξ) + γλ2x(ξ) − x(ξ) − y(ξ),

−cλy(ξ) = b(x(ξ) − ry(ξ)).

(3.2)
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zbr

p(z) − (1 − br)

2
√
b

0
−2

√
b

0

z0

−2
∑n

i=1 di(cosh(zσi/c) − 1) − γz2/c2

Fig. 3.1. On the left is a plot of the function p(z)−(1−br). To find the real roots of p(z) one only
needs to plot the constant valued function br−1. On the right is a plot of −2

∑n
i=1 di(cosh(zσi/c)−

1) − γz2/c2 when c is finite.

When br �= cλ the second equation of (3.2) is y(ξ) = bx(ξ)/(br − cλ), which on
substitution into the first equation of (3.2) yields the characteristic equation

∆(λ) := 1 − 2

n∑
i=1

di(cosh(λσi) − 1) − γλ2 +
b

(br − cλ)
− cλ = 0.(3.3)

Consider the change of variables z = λc and let |c| → ∞. Then we have

p(z) = 0, where p(z) ≡ lim
|c|→∞

∆(z/c) = 1 +
b

(br − z)
− z.

For the following it may be illustrative to refer to Figure 3.1. Thus p′(z) = b/(br−z)2−
1, which equals zero when z± = br ±

√
b, one value on each side of the vertical

asymptote z = br. The function p has a maximum of p(z+) = 1 − 2
√
b− br at z+ =

br+
√
b and a minimum of p(z−) = 1+2

√
b−br at z− = br−

√
b. Therefore, in the limit

as |c| → ∞, there are two positive real roots (greater than br) to the characteristic
equation ∆(z/c) if p(z+) > 0, i.e., if r < (1 − 2

√
b)/b, and two positive real roots

(less than br) in the limit if p(z−) < 0, i.e., if r > (1 + 2
√
b)/b. If (1 − 2

√
b)/b < r <

(1 + 2
√
b)/b, then the roots in the limit are complex.

For c finite, the characteristic equation ∆(z/c) = p(z) − 2
∑n

i=1 di(cosh(zσi/c) −
1) − γz2/c2 always has one negative real root. If the roots in the limit are complex
with positive real part, then for all finite c there will not be real positive roots to the
characteristic equation. We are interested in cases where the characteristic equation
does not admit purely imaginary or zero solutions. In this case the following lemma
provides justification for our calculations.

Lemma 3.1. Let (φ, ψ) be a solution of (2.3), (2.4) for some c �= 0. Then there
exists δ0 > 0 such that for some K > 0,

|φ(ξ)| ≤ Keδ0ξ, |ψ(ξ)| ≤ Keδ0ξ, for ξ ≤ 0.

Proof. The proof follows the proof of Lemma 4.1 of [7]; see also the proof of
Lemma 3.1 of [13] and the proof of Lemma 2.1 of [12].
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3.3. Construction of candidate solutions. We are now ready to construct
candidate solutions by employing the Fourier transform

φ̂δ(s) =

∫ +∞

−∞
e−isξφδ(ξ)dξ with φδ(ξ) = e−δξφ(ξ)

(and similarly for ψ) and δ > 0 is sufficiently small. Convergence of the integral is
guaranteed by Lemma 3.1, which implies that φδ(ξ) → 0 and ψδ(ξ) → 0 exponentially
fast, both as ξ → −∞ and ξ → +∞ for 0 < δ < δ0. Using (2.4) and (3.1) we have
that (φδ, ψδ) satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(−c− 2γδ)φ′
δ(ξ) =

N∑
i=1

di[e
δσiφδ(ξ + σi) − 2φδ(ξ) + e−δσiφδ(ξ − σi)] + γφ̈δ(ξ)

− (1 − cδ − γδ2)φδ(ξ) + e−δξ
n∑

k=0

(−1)kh(ξ − ξk) − ψδ(ξ),

−cψ′
δ(ξ) = bφδ(ξ) − [br − cδ]ψδ(ξ).

(3.4)

By applying the Fourier transform to (3.4) we obtain the following matrix equation:

M(s− iδ)

(
φ̂δ(ξ)

ψ̂δ(ξ)

)
=

1

is + δ

( ∑n
k=0(−1)ke−isξk

0

)
with M(s) :=

(
R(s) 1
−b B(s)

)
,

where

R(s) = −cis + A(s), A(s) = 1 + γs2 + 2

N∑
i=1

di(1 − cos(σis)), and B(s) = −cis + br.

(3.5)

The matrix function M(s) is invertible near the real axis. To see this note that
we have det(M(s)) = R(s)B(s) + b, and the imaginary part of the determinant is
bounded away from zero for s �= 0 near the real axis, while for s = 0 the real part of
the determinant is bounded away from zero since b > 0 and r ≥ 0.

Solving we obtain

φ̂δ(s) =
B(s− iδ)

(is + δ)[R(s− iδ)B(s− iδ) + b]

n∑
k=0

(−1)ke−isξk

and

ψ̂δ(s) =
b

(is + δ)[R(s− iδ)B(s− iδ) + b]

n∑
k=0

(−1)ke−isξk ,

and on applying the Fourier inversion theorem we obtain

φ(ξ) = eδξφδ(ξ) =
1

2π

∫ +∞

−∞
φ̂δ(s)e

(is+δ)ξds

=
1

2πi

∫ −iδ+∞

−iδ−∞

B(s)

s(R(s)B(s) + b)

n∑
k=0

(−1)keis(ξ−ξk)

=
1

2πi

(∫
Cδ

+

∫
Sδ

)
B(s)

s(R(s)B(s) + b)

n∑
k=0

(−1)keis(ξ−ξk)ds

(3.6)
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and

ψ(ξ) = eδξψδ(ξ) =
1

2πi

(∫
Cδ

+

∫
Sδ

)
b

s(R(s)B(s) + b)

n∑
k=0

(−1)keis(ξ−ξk)ds,(3.7)

where Cδ denotes the two half-lines (−∞,−δ] and [δ,∞), and Sδ is the half-circle
t → δeit for −π ≤ t ≤ 0. Upon simplification, and taking δ → 0 we next obtain

φ(ξ) =

(
1 + (−1)n

4

)(
r

1 + r

)
+

∫ ∞

0

W (s)

n∑
k=0

(−1)k sin(s(ξ − ξk))ds

+

∫ ∞

0

X(s)

n∑
k=0

(−1)k cos(s(ξ − ξk))ds and

ψ(ξ) =

(
1 + (−1)n

4

)(
1

1 + r

)
+

∫ ∞

0

Y (s)

n∑
k=0

(−1)k sin(s(ξ − ξk))ds

+

∫ ∞

0

Z(s)

n∑
k=0

(−1)k cos(s(ξ − ξk))ds,

(3.8)

where

W (s) =
1

π

[
b2r + C(s)A(s)

sD(s)

]
, X(s) =

c

π

[
−b + C(s)

D(s)

]
,(3.9)

Y (s) =
b

π

[
brA(s) + b− c2s2

sD(s)

]
, and Z(s) =

bc

π

[
A(s) + br

D(s)

]
,(3.10)

with C(s) := b2r2 + c2s2 and

D(s) := (R(s)B(s) + b)(R(−s)B(−s) + b) = c2s2(A(s) + br)2 + (brA(s) − c2s2 + b)2.

Remark 3.2. The construction of candidate solutions is also applicable to more
general diffusive operators. For example, consider for N = 1, the term (see also [3])∑N

i=1 di(v(η + ei, t) − 2v(η, t) + v(η − ei, t)) +
∑N

i=1 γi
∂2v
∂η2

i
(η, t) in (2.2) replaced by

d

⎛
⎝−2v(η, t) +

∞∑
j=1

αj{v(η + j, t) + v(η − j, t)}

⎞
⎠ + γ

∂2v

∂η2
i

(η, t),

∞∑
j=1

αj = 1.

The main change to the derivation is that A(s) in (3.5) becomes

A(s) = 1 + γs2 + 2d

∞∑
j=1

αj(1 − cos(js)).

4. Further discussion of one-front candidate solutions. The potential so-
lutions derived in (3.8)–(3.10) are one-front solutions when n = 0. Notice that to
satisfy the boundary conditions, the detuning parameter a must be restricted so that
a ∈ [0, r/(1 + r)]. From (3.8)–(3.10) we have the following symmetry property:

φ(ξ, c) =
r

1 + r
− φ(−ξ,−c) and ψ(ξ, c) =

1

1 + r
− ψ(−ξ,−c).(4.1)
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By (3.6) we have that |φ(ξ)| = O(eδξ) as ξ → −∞, so the boundary condition
φ(−∞) = 0 holds. By (4.1), φ(+∞) = r

1+r and the boundary conditions for ψ
are satisfied similarly using (3.7) and (4.1).

In certain limits the existence of one-front solutions is known. For instance, if
we let b = ε in (2.4), then in the limit as ε → 0, ψ(ξ) = ψ0, a constant, and we
can then consider the Nagumo equation with nonlinearity f̃(φ) = f(φ)−ψ0 provided
1 − a < ψ0 < a, in which case we seek a one-front solution such that φ(−∞) = ψ0

and φ(+∞) = 1+ψ0. In this case previous results (see, e.g., [7]) concerning one-front
solutions scaled so that φ̃(−∞) = 0 and φ̃(+∞) = 1 are applicable by considering a
fixed ψ0 and considering the correspondence φ(ξ) = φ̃(ξ) + ψ0.

Similarly, if we let r = 1/ε and let ε → 0, then ψ0 = 0 and results in [7] on
propagation failure, monotonicity of one-front solutions, and monotonicity of the (a, c)
relationship are directly applicable. Furthermore, we expect these behaviors to persist
in a neighborhood of the limiting parameter value.

4.1. Verification of candidate one-front solution. First, we have assumed
φ(0) = a, so by (3.8),

a =
1

2

(
r

1 + r

)
+

∫ ∞

0

X(s)ds.(4.2)

The candidate solution found in (3.8)–(3.10) is consistent with our ansatz of (3.1)
with n = 0 provided φ(ξ) > a for ξ > 0 and φ(ξ) < a for ξ < 0, where φ is defined
by (3.8) and a is defined in (4.2). Since the boundary conditions are satisfied, if the
roots of the corresponding characteristic equation (3.3) do not lie on the imaginary
axis, then for |ξ| large enough the solution φ in (3.8) is bounded away from a. Thus
it is enough to check φ(ξ) > a for ξ > 0 and φ(ξ) < a for ξ < 0 over a finite interval
of values ξ. Clearly, we expect to have one-front solutions for b ≈ 0 and for r large
enough.

5. Further discussion of one-pulse candidate solutions. The derivation in
section 3 relied on the assumption that there exists an m-pulse solution (or a front
solution). This allowed us to write the nonlinear term as a linear term and a sum of
Heaviside functions. In this section we give conditions under which these assumptions
may be verified for one-pulse solutions.

Existence of ξ1. Our assumption for one-pulse solutions was that φ(0) = a and
φ(ξ1) = a for some ξ1 > 0 and φ(ξ) < a for ξ < 0 and for ξ > ξ1 with φ(ξ) > a for
0 < ξ < ξ1. Using the form of the candidate solutions (3.8), (3.9), and (3.10), to have
φ(0) = φ(ξ1) = a, there must be ξ1 > 0 such that g(ξ1) = 0, where∫ ∞

0

X(s)(2 − 2 cos(sξ))ds =
2c

π

∫ ∞

0

−b + C(s)

D(s)
(1 − cos(sξ1))ds ≡

2c

π
g(ξ).

The existence of such a ξ1 > 0 that satisfies g(ξ1) = 0 for c �= 0 is a necessary condition
for the existence a one-pulse solution to (2.3) and (2.4). Let

Q(s) = −b + C(s),

so we can write

g(ξ1) =

∫ ∞

0

Q(s)

D(s)
(1 − cos(sξ1))ds.(5.1)
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Fig. 5.1. In this example, the shaded area K indicates values of (b, r) which satisfy the condi-
tions of Theorem 5.1. The dashed line is br2 = 1. N = γ = d1 = c = 1.

Remark 5.1. This same type of idea could be applied to verifying the existence of
general m-pulse solutions. However, in that case, the existence of a zero for a system
of 2m− 1 equations in 2m− 1 unknowns must be verified.

The idea behind the following theorem is to show that for ξ1 > 0 g is positive
for ξ1 small and g is negative for ξ1 large. It is motivated by the situation for the
spatially continuous problem (2.1) with the piecewise linear nonlinearity (2.3). In the
spatially continuous diffusion operator case, D(s) is proportional to s6 as s → ∞ so
that g, g′, and g′′ are defined by absolutely convergent integrals.

Theorem 5.1. There exists a positive zero of g defined in (5.1) for wave speed
c �= 0 provided br2 < 1, ∫ ∞

0

Q(s)

D(s)
ds < 0,(5.2)

and for all ν > 0 sufficiently small

−
∫ s∗

0

s2 Q(s)

D(s)
ds <

∫ ∞

s∗
s2 Q(s)

D(s) + νs6
ds,(5.3)

where s∗ =
√

b(1−br2)
c2 .

The shaded region of Figure 5.1 illustrates values of (b, r) which satisfy the con-
ditions of this theorem, for N = γ = d1 = c = 1. They were verified by comparison,
bounding D(s) with functions of the form c1s

6 + c2s
3 + c3.

Proof. We have D(s) > 0 for s ≥ 0 and since br2 < 1, Q(s∗) = 0, Q(s) < 0
for s < s∗, and Q(s) > 0 for s > s∗. We want to show that g(ξ1) > 0 for ξ1 > 0
sufficiently small and g(ξ1) < 0 for ξ1 > 0 sufficiently large.

To this end note that for any bounded continuous function κ defined for s ≥ 0,
for x > 0 ∫ ∞

0

κ(s) cos(sx)ds =

∫ ∞

0

1

x
κ(u/x) cos(u)du → 0 as x → ∞.

Thus, g(ξ1) < 0 for ξ1 > 0 sufficiently large follows from (5.2).
Next observe that g(0) = 0 and define

h(ξ1) =

∫ s∗

0

Q(s)

D(s)
(1 − cos(sξ1))ds +

∫ ∞

s∗

Q(s)

D(s) + νs6
(1 − cos(sξ1))ds.
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Then

h′(ξ1) =

∫ s∗

0

s
Q(s)

D(s)
sin(sξ1)ds +

∫ ∞

s∗
s

Q(s)

D(s) + νs6
sin(sξ1)ds,

and so h′(0) = 0. Similarly,

h′′(ξ1) =

∫ s∗

0

s2 Q(s)

D(s)
cos(sξ1)ds +

∫ ∞

s∗
s2 Q(s)

D(s) + νs6
cos(sξ1)ds,

and since for s ≥ s∗, Q(s) ≥ 0 and (D(s) + νs6)−1 < (D(s))−1, (5.3) implies that
g is increasing for ξ1 = 0, so that g(ξ1) > 0 for ξ1 > 0 sufficiently small. Thus,
since g is continuous and changes sign at least once, there exists a ξ1 > 0 such that
g(ξ1) = 0.

Corollary 5.1. There exists a positive zero of g defined in (5.1) for wave speed
c �= 0 provided br2 < 1 and either

(i) for d1 = · · · = dN = 0 and γ > 0, (5.2) holds and (5.3) holds with ν = 0, or
(ii) for dj ≥ 0, with at least one dj > 0, j = 1, . . . , N , and γ = 0, (5.2) holds.
Proof. When d1 = · · · = dN = 0 and γ > 0, then the integral on the right-hand

side of (5.3) is absolutely convergent with ν = 0. However, for dj ≥ 0, with at least
one dj > 0, and γ = 0, the right-hand side of (5.3) approaches +∞ as ν → 0, and so
in this case (5.3) is always satisfied.

6. Existence of solutions. An important aspect of employing the McKean
nonlinearity (2.3) is that (3.8)–(3.10) provide an explicit form (up to quadrature) for
candidate solutions. This explicit form is useful in determining {ξk}nk since for ξ0 = 0
and n ≥ 1, {ξk}nk satisfies the system of nonlinear equations

φ(0) − φ(ξk) = 0, k = 1, . . . , n,(6.1)

and in subsequently verifying

(−1)k(φ(0) − φ(ξ)) > 0, ξ ∈ (ξk−1, ξk), k = 0, . . . , n,(6.2)

where we have set ξ−1 = −∞ and ξn+1 = +∞. A necessary condition for (6.2) is that

(−1)k lim
ξ→ξk±

φ′(ξ) > 0,(6.3)

which for c > 0 involves only a one-sided limit since

(−1)k lim
ξ→ξk−

φ′(ξ) > (−1)k lim
ξ→ξk+

φ′(ξ).(6.4)

One needs only to determine if the inequalities (6.2) are satisfied outside a neighbor-
hood of {ξk}nk=1 if (6.3) holds.

The existence of {ξk}nk=0 is trivial for one-front solutions, n = 0, since we may
choose ξ0 = 0 by translation invariance, while for one-pulse solutions, n = 1, The-
orem 5.1 and Corollary 5.1 provide criteria for the existence of ξ1 > 0. In general
for n ≥ 2 establishing the existence of {ξk}nk such that (6.1) holds is more difficult
since this results in a nonlinear system of n ≥ 2 equations in n unknowns. In the
case of n ≥ 2 perturbation/continuation techniques are more promising. One-front
(n = 0) and one-pulse (n = 1) solutions provide building blocks for more general
n ≥ 2 solutions.

We are interested in connecting orbits between hyperbolic equilibria in which
there is gap between
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(1) the dominant solution(s) to the characteristic equation
(2) and the rest of the solutions to the characteristic equation.

The following lemmas show that for the characteristic equation (3.3) of (2.4) with
(2.3) with N = 1, d1 = d > 0, and γ = 0

• there are no purely imaginary solutions
• and if sinh((1 + 2d −

√
4d2 + c2)/c) �= −c/(2d), then all the solutions are

simple.

Lemma 6.1. Let λ1, λ2 denote two solutions to the characteristic equation (3.3).
Write λj = aj + ibj for j = 1, 2 and let c > 0 be given. If (br− ca1)

2 + (cbj)
2 > 0 for

j = 1, 2, then a1 = a2 implies b1 = ±b2.

Proof. We have that λj is a solution of the characteristic equation provided

(br − caj)Rj + cbjIj = 0, Rj = 1 − 2d(Re(cosh(λj)) − 1) − caj ,
where

−cbjRj + (br − caj)Ij = 0, Ij = −2d(Im(cosh(λj))) − cbj ,

for j = 1, 2. Thus, if a1 = a2 and (br− ca1)
2 + (cbj)

2 > 0, then Rj = 0 and Ij = 0 for
j = 1, 2, and so

1 − 2d(cos(bj) cosh(aj) − 1) − caj = 0, −2d sin(bj) sinh(aj) − cbj = 0(6.5)

for j = 1, 2. Using the first equation in (6.5), if a1 = a2, then cos(b1) = cos(b2), and
so sin(b1) = ± sin(b2). If sin(b1) = sin(b2), then the second equation in (6.5) implies
that c(b1 − b2) = 0, and if sin(b1) = − sin(b2), then the second equation in (6.5) gives
c(b1 + b2) = 0.

Lemma 6.2. If c > 0, b > 0, r ≥ 0, and d > 0, then any root λ = x+ iy of (3.3)
has x �= 0.

Proof. If we write ∆(λ) = 0 as N(λ) + b/(br− cλ) = 0, then r = 0 implies λ �= 0.
If r > 0 and λ = 0 is a solution, then N(0) + 1/r = 0, so 1− 2d(cos(0)− 1) + 1/r = 0,
which cannot occur for r > 0. If x = 0, but y �= 0, then by the argument in the proof
of Lemma 6.1, Re(N(λ)) = 0 and Im(N(λ)) = 0, so we have 1 + 2d− cos(y) = 0 and
−cy = 0, which cannot both be simultaneously satisfied.

Lemma 6.3. If for c > 0 and d > 0 one has sinh((1 + 2d −
√

4d2 + c2)/c) �=
−c/(2d), then there does not exist a double root to (3.3) for λ not purely imaginary.

Proof. If there is a double root, λ, then ∆(λ) = 0 and ∆′(λ) = 0. Write
∆(λ) as N(λ) + b/(br − cλ), so ∆′(λ) = N ′(λ) + cb/(br − cλ)2. Thus, ∆′(λ) =
N ′(λ) + c

bN
2(λ), so by the argument in the proof of Lemma 6.1, Re(N(λ)) = 0 and

Im(N(λ)) = 0, and if there is a double root, then ∆′(λ) = N ′(λ) = 0. Then for
λ = x+ iy, −2d cos(y) sinh(x)− c = 0 and −2d sin(y) cosh(x) = 0, we have sin(y) = 0,
and since Im(N(λ)) = 0, we have −2d sin(y) sinh(x) − cy = 0, so y = 0. Thus,
−2d sinh(x)− c = 0, which implies sinh(x) = −c/(2d) and cosh(x) =

√
4d2 + c2/(2d).

Hence, the only way for Re(N(λ)) = 0 is if x = (1 + 2d−
√

4d2 + c2)/c.

6.1. Existence of one-pulse solutions. Given existence of ξ1 > 0 such that
g(ξ1) = 0 for g in (5.1), we now turn our attention to showing existence of one-pulse
solutions. We proceed in two ways: in the first we assume the existence at a particular
value of the wave speed c and then show existence (under certain conditions) in a
neighborhood (Theorem 6.4); in the second we verify that φ(ξ) < a only when ξ < 0
and ξ > ξ1 (φ(ξ) > a for ξ ∈ (0, ξ1)) and then show that this condition can in certain
cases be reduced to checking on finite intervals (Theorems 6.5 and 6.6).
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Theorem 6.4. Suppose for fixed values of the parameters and (a, c) = (a∗, c∗)
with c∗ > 0 we have a one-pulse solution defined for ξ1 > 0 such that

for ξ ∈ (0, ξ1), φ(ξ) − φ(0) > 0, for ξ < 0 and ξ > ξ1, φ(ξ) − φ(0) < 0,(6.6)

lim
ξ→0±

φ′(ξ) > 0 and lim
ξ→ξ±1

φ′(ξ) < 0,(6.7)

and

0 <

∣∣∣∣
∫ ∞

0

sQ(s)

D(s)
sin(sξ1)ds

∣∣∣∣ < ∞.(6.8)

Then for all c in a neighborhood of c∗ there exist one-pulse solutions to (2.3),
(2.4).

Proof. We argue by the implicit function theorem. We need to show that ξ1
depends smoothly on c. This follows from (6.8) since by direct calculation

ξ′1(c) = −
∫∞
0

Q1(s)
D2(s) (1 − cos(sξ1))ds∫∞
0

sQ(s)
D(s) sin(sξ1)ds

,(6.9)

where Q1(s) = Qc(s)D(s)−Q(s)Dc(s) and Qc and Dc are the derivatives of Q and D
with respect to c, respectively. Now by the implicit function theorem, (6.6) and (6.7)
hold in a neighborhood of c∗ since the derived solution (3.8)–(3.10) and the one-sided
derivatives at ξ = 0 and ξ = ξ1 depend smoothly on ξ1 and c.

Inequalities (6.2), when satisfied over the entire real line, imply existence; see
Theorem 6.5. Lemmas 6.1–6.3 that show the hyperbolicity of the equilibria and the
gap condition are used to show that is sufficient to check these inequalities over a
certain finite interval; see Theorem 6.6.

Theorem 6.5. If g(ξ1) = 0 for ξ1 > 0 and

∫ ∞

0

W (s)[sin(s(ξ1 + δ)) − sin(sδ) − sin(sξ1)]ds <

∣∣∣∣
∫ ∞

0

X(s)[cos(s(ξ1 + δ)) − cos(sδ)]ds

∣∣∣∣,
(6.10)

if δ > 0,

−
∫ ∞

0

W (s)[sin(s(ξ1 + δ)) − sin(sδ) − sin(sξ1)]ds <

∫ ∞

0

X(s)[cos(s(ξ1 + δ)) − cos(sδ)]ds,

(6.11)

if −ξ1 < δ < 0, then there exists a one-pulse solution to (2.3), (2.4).
Proof. We assume there exists a positive zero, ξ1, of g. Then for this ξ1 > 0 we

have φ(0) = a and φ(ξ1) = a. We show that (6.10) implies that φ(ξ) < a for ξ < 0
and ξ > ξ1 and (6.11) implies φ(ξ) > a for 0 < ξ < ξ1. Recalling that g(ξ1) = 0
implies

∫∞
0

X(s)(1 − cos(sξ1)) ds = 0 along with the solution equalities (3.8)–(3.10),
(6.10) can be rewritten as

−φ(0) < −φ(−δ) and −φ(0) < −φ(δ + ξ1), δ > 0,

which implies φ(ξ) < a ≡ φ(0) for ξ < 0 and for ξ > ξ1. Similarly (6.11) can be
rewritten as

φ(0) < φ(δ + ξ1), −ξ1 < δ < 0,

which implies φ(ξ) > a ≡ φ(0) for 0 < ξ < ξ1.
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Theorem 6.6. Suppose for some value c > 0 and all other parameter values fixed
there exists ξ1 > 0 such that g(ξ1) = 0. Suppose that the characteristic equation (3.3)
has no solutions on the imaginary axis and order the solutions with positive real parts
by the real parts: Re(λ+

1 ) ≤ Re(λ+
2 ) ≤ Re(λ+

3 ) ≤ · · · and similarly for the solutions
with negative real parts as: Re(λ−

1 ) ≥ Re(λ+
2 ) ≥ Re(λ+

3 ) ≥ · · · . If λ+
1 = λ̄+

2 assume
ε+0 := Re(λ+

3 ) − Re(λ+
2 ) > 0. If λ+

1 �= λ̄+
2 assume ε+0 := Re(λ+

2 ) − Re(λ+
1 ) > 0.

Similarly, assume ε−0 > 0 for the solutions with negative real parts. Then there exist
T+ > 0 and T− < 0 such that (6.10) and (6.11) need only be checked on (0, T+) and
(0,−T−), respectively.

Proof. Consider (3.6) and observe that if λ ∈ C is a solution of the characteristic
equation (3.3), then −iλ is a zero of R(s) + b/B(s) in (3.6). First assume that
0 < ε+ < ε+0 and shift the contour in (3.6) from Im s = −δ to Im s = −(Re(λ+

1 )+ ε+).
Then there are two cases: λ+

1 = λ̄+
2 and λ+

1 �= λ̄+
2 . If λ+

1 = λ̄+
2 , then we obtain

φ(ξ) = − B(s){eisξ − eis(ξ−ξ1)}
s(R′(s)B(s) + R(s)B′(s))

∣∣∣∣
s=−iλ+

1

− B(s){eisξ − eis(ξ−ξ1)}
s(R′(s)B(s) + R(s)B′(s))

∣∣∣∣
s=−iλ+

2

+
1

2πi

∫ −i(Re(λ+
1 )+ε+)+∞

−i(Re(λ+
1 )+ε+)−∞

B(s){eisξ − eis(ξ−ξ1)}
s(R(s)B(s) + b)

ds

= C+{eλ
+
1 ξ − eλ

+
1 (ξ−ξ1)} + O(e(λ+

1 +ε+)ξ)

as ξ → −∞. Observe that

C+ = − B(s)

s(R′(s)B(s) + R(s)B′(s))

∣∣∣∣
s=−iλ+

1

− B(s)

s(R′(s)B(s) + R(s)B′(s))

∣∣∣∣
s=−iλ+

2

.

If λ+
1 �= λ̄+

2 (and λ+
1 , λ

+
2 real), then we obtain

φ(ξ) = − B(s){eisξ − eis(ξ−ξ1)}
s(R′(s)B(s) + R(s)B′(s))

∣∣∣∣
s=−iλ+

1

+
1

2πi

∫ −i(λ+
1 +ε+)+∞

−i(λ+
1 +ε+)−∞

B(s){eisξ − eis(ξ−ξ1)}
s(R(s)B(s) + b)

ds

= C+{eλ
+
1 ξ − eλ

+
1 (ξ−ξ1)} + O(e(λ+

1 +ε+)ξ)

as ξ → −∞, where C+ = − B(s)
s(R′(s)B(s)+R(s)B′(s)) |s=−iλ+

1
. Thus, there exists T− < 0

such that φ(ξ) < φ(0) =: a for ξ ≤ T−.
The argument for solutions to the characteristic equation (3.3) with negative real

parts is treated similarly by moving the contour up.

7. Numerical results. In this section we present numerical results obtained by
numerical integration of (3.8)–(3.10) and for one-pulse solutions by determining the
positive zeros of (5.1). We approximate the integrals using the adaptive Gaussian
quadrature code adapt of [37] after truncation to the interval [0, 106]. To find zeros
of g we use the combined secant/bisection code zero of [37]. We focus on one-front,
one-pulse, and two-pulse solutions, exhibit (a, c) curves, and waveforms of (3.8)–(3.10)
with both continuous and discrete diffusion.

7.1. (a, c) curves. In Figure 7.1 we plot (a, c) curves for one-front solutions
by approximating (4.2). We set N = d1 = d = 1 and γ = 0 and vary b and r.
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Fig. 7.1. Plot of (a, c) curves (moving from left to right) for (i) (d, γ, b, r) = (1, 0, 10−4, 1),
(ii) (d, γ, b, r) = (1, 0, 10−2, 1), (iii) (d, γ, b, r) = (1, 0, 1, 1), (iv) (d, γ, b, r) = (1, 0, 1, 101),
(v) (d, γ, b, r) = (1, 0, 1, 102), and (vi) (d, γ, b, r) = (1, 0, 0, 0), the discrete Nagumo equation.
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Fig. 7.2. Plot of (a, c) curves (moving from left to right) for (i) (d, γ, b, r) = (1, 0, 1, 0),
(ii) (d, γ, b, r) = (0.8, 0.2, 1, 0), (iii) (d, γ, b, r) = (0.4, 0.6, 1, 0), and (iv) (d, γ, b, r) = (0, 1, 1, 0).

Notice the nonuniqueness suggested for (b, r) = (10−2, 1) and (b, r) = (1, 1). The
curves limit to r/(r + 1) as c → ∞. In Figure 7.2 we plot (a, c) curves for one-pulse
solutions (these are actually (a, c) curves obtained when there exists ξ1 > 0 such
that g(ξ1) = 0) for various values of the parameters d, γ, b, r. The plot illustrates the
difference between the behavior with continuous and discrete diffusion. In the case of
continuous diffusion it is known that the fast waves, i.e., those above the tip on the
(a, c) curve, are stable (see [43, 30, 25, 29]), while the slow waves (those below the tip)
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Fig. 7.3. Plot of (a, c) curves (moving from left to right) for (i) (d, γ, b, r) = (1, 0, 1, 0),
(ii) (d, γ, b, r) = (1, 0, 10−1, 0), (iii) (d, γ, b, r) = (1, 0, 10−2, 0), (iv) (d, γ, b, r) = (1, 0, 10−3, 0), and
the limiting (a, c) curve obtained from the discrete Nagumo equation.

are unstable. In Figure 7.3 we highlight the dependence of the (a, c) relationship on
the parameter b > 0 and compare it with the limiting (a, c) curve obtained from the
discrete Nagumo equation, i.e., b = 0. Notice how the range of propagation failure in
the discrete Nagumo equation limits tip of the (a, c) curve. The range of propagation
failure limits the size of a for which there are one pulse solutions. Observe the larger
values of a that are possible when b is small and the larger values of a obtained for
the plot of the continuous (a, c) curve with γ = 1 as compared to the discrete for
d = 1. In Figure 7.4 we vary the parameter r > 0. We set b = 1 and then have the
requirement from Theorem 5.1 that r2 < 1. In the plot for r > 0 there is an upper
bound in c as well as a lower bound in c on the (a, c) curve.

7.2. Waveforms. In Figure 7.5 we plot one-front waveforms φ(ξ) and ψ(ξ) fixing
(d, c, γ) = (1, 1, 0) and varying (b, r). In Figure 7.6 we plot one-pulse waveforms φ(ξ)
and ψ(ξ) fixing (b, r) = (1, 0), setting (d, γ) = (1, 0), and varying the wavespeed c.
Refer to Figure 7.2 for the parameter values in the (a, c) curve. The plot for c = 0.6
does not satisfy our assumption of a one-pulse solution since it violates φ(ξ) < a for
ξ > ξ1. Note, however, that c = 0.6 is one of the smaller values of c obtained in
the (a, c) curve in Figure 7.2. In Figure 7.7 we plot waveforms φ(ξ) and ψ(ξ) fixing
(b, r) = (1, 0), setting (d, γ) = (0, 1), and varying the wavespeed c. The waveforms
for the continuous operator are smooth compared to the waveforms for the discrete
operator especially for small wavespeeds. The two-pulse solution in Figure 7.8 is
obtained by superimposing two identical one-pulse solutions, using the superimposed
one-pulse solutions as an initial guess and then applying Newton’s method. The one-
pulse solution is obtained from (d, γ, c, b, r) = (1, 0, 1, 1, 0) and the pulses are put at
a distance (in ξ) of 40 units apart. The value of a is slightly perturbed from the
value of a for the one-pulse as one might expect (see [41]). In Figure 7.9 we plot
the dependence of the parameter a on the distance between the pulses, ξ2 − ξ1, and
compare with the value of a obtained for the one-pulse solution.
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Fig. 7.4. Plot of (a, c) curves (moving from left to right) for (i) (d, γ, b, r) = (1, 0, 1, 0),
(ii) (d, γ, b, r) = (1, 0, 1, 1/16), (iii) (d, γ, b, r) = (1, 0, 1, 1/8), and (iv) (d, γ, b, r) = (1, 0, 1, 1/4).
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Fig. 7.5. Plot of one-front waveforms φ(ξ) and ψ(ξ) for fixed (d, c, γ) = (1, 1, 0), and (i)
(b, r) = (10−2, 1), (ii) (b, r) = (10−1, 1), and (iii) (b, r) = (1, 102).

7.3. Mixed continuous/discrete model. As an example of a model with con-
tinuous diffusion in one direction and discrete diffusion in the other coordinate direc-
tion we consider (2.2) with N = 2, d1 = d, d2 = 0, and γ1 = 0, γ2 = γ. Consider the
direction of propagation σ ∈ R2 such that ||σ||2 = 1, and apply the traveling wave
ansatz u(η, t) = φ(η · σ − ct) and w(η, t) = ψ(η · σ − ct) to obtain (see (2.4)){

−cφ′(ξ) = d(φ(ξ + σ1) − 2φ(ξ) + φ(ξ − σ1)) + γσ2
2φ

′′(ξ) − f(φ(ξ)) − ψ(ξ),

−cψ′(ξ) = b(φ(ξ) − rψ(ξ)).
(7.1)



1170 CHRISTOPHER E. ELMER AND ERIK S. VAN VLECK

-10 0  10 
-0.5

0

1
(i), c = 0.6

 -10 0 10
 -0.5

0

1
(ii), c = 1.0

 -10 0 10
 -0.5

0

1
(iii), c = 1.5

φ
ψ

φ
ψ

φ
ψ

ξ ξ ξ

Discrete

Fig. 7.6. Discrete. Plot of waveforms for fixed (b, r) = (1, 0), and (i) (d, γ, c) = (1, 0, 0.6),
(ii) (d, γ, c) = (1, 0, 1), (iii) (d, γ, c) = (1, 0, 1.5).
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Fig. 7.7. Continuous. Plot of waveforms for fixed (b, r) = (1, 0), and (i) (d, γ, c) = (0, 1, 0.6),
(ii) (d, γ, c) = (0, 1, 1), (iii) (d, γ, c) = (0, 1, 1.5).

If we rescale variables x = ξ/σ1 and c̃ = c/σ1, then (7.1) becomes{
−c̃φ′(x) = d(Lφ)(x) + gφ′′(x) − f(φ(x)) − ψ(x),

−c̃ψ′(x) = b(φ(x) − rψ(x)),
(7.2)

where g = γ
σ2
2

σ2
1

for σ1 �= 0 and (Lφ)(x) = φ(x + 1) − 2φ(x) + φ(x− 1).

In Figure 7.10 we set (d, γ, b, r) = (1, 1, 1, 0) and (d, γ, b, r) = (1, 0, 1, 0), set c = 1
and c = 2, let σ1 = cos(θ) and σ2 = sin(θ) for 0 ≤ θ ≤ 2π. The plot in Figure 7.10(i)
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Fig. 7.8. Plot of two-pulse waveforms for (d, c, γ, b, r) = (1, 1, 0, 1, 0) obtained as a perturbation
of a superposition of two identical one-pulse solutions.
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Fig. 7.9. Plot of computed a obtained for (d, c, γ, b, r) = (1, 1, 0, 1, 0) as a function the distance
between the two pulses, ξ2 − ξ1, and compared with the horizontal line, the computed a value for the
one-pulse solution.

is a polar plot of a versus θ for the mixed continuous/discrete model and what we
observed is that smaller values of a are obtained for σ1 ≈ 1 and compared with σ1 ≈ 0.
This may be compared with the lack of anisotropy for the continuous model in Figure
7.10(ii) and the four-fold symmetry for the discrete model in Figure 7.10(iii).
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Fig. 7.10. Polar plot of (θ, a(θ)) for (b, r) = (1, 0); see (7.2). In plot (i) (d, g) = (1, 1) with
c = 2 and c = 1 for the mixed continuous/discrete version of the equation, in plot (ii) (d, g) = (0, 1)
with c = 2 and c = 1 for the continuous version of the equation, and in plot (iii) (d, g) = (1, 0) with
c = 2 and c = 1 for the discrete version of the equation.

8. Conclusion. For a particular version of the FitzHugh–Nagumo equation (one
which includes both spatially discrete and spatially continuous diffusive operators)
with the McKean nonlinearity describing excitability, we have demonstrated how to
construct candidate traveling wave solutions and have given tools for verifying if they
are indeed solutions. This equation is meant to include models of action potential
propagation on several length scales, from the internodal scale to the scale where
a pulse becomes a spike. We begin by discussing the infinite number of eigenvalues
obtained from linearizing. Leading edge behavior is governed by real eigenvalues, pulse
trailing tails by complex ones (with nonzero real parts). Since solutions approach
fixed points exponentially as we approach either plus or minus infinity, we can and do
use the Fourier transform to derive candidate solutions. The one-front solutions (no
recovery) we find have appeared in the Nagumo equation literature and their existence
verification is relatively straightforward. The existence of pulse solutions, however,
is more difficult. We have related existence to the pulse’s relation to the “unstable
root” of the reaction term, i.e., φ = a, pointwise. At any point along the solution
the solution is either above, below, or crossing a. The series of lemmas and theorems
presented supply conditions, based on the derived candidate solutions, for verifying
that these conditions are true, i.e., that a one-pulse solution crosses a exactly twice.
Among the items that our numerical investigations of the solution behavior illustrate
are

• that for single fronts more than one solution can exist;
• that for single pulses there is a range of a values such that there exists at

least two distinct pairs of solution pulses;
• that the speed of front solutions can be seen as a bound for the speed of pulse

solutions;
• that the distance between multiple pulse shows a dependence on the param-

eter a;
• that the spatially discrete diffusion operator retards propagation when com-

pared to the spatially continuous diffusion operator.
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COMBUSTION STABILIZATION BY FORCED OSCILLATIONS IN A
DUCT∗

ABRAM DORFMAN†

Abstract. The feasibility of stabilizing premixed combustion by forced oscillation is analytically
demonstrated through the simulation of an active control input-output mechanism. The developed
model is used for analysis of the interactions between an autonomous oscillation in a duct, a loud-
speaker’s input, and the unsteady heat release. We assume that the autonomous oscillations (at
frequency ω0) exist in a duct containing a flame with a loudspeaker at the input. At t = 0, the
loudspeaker starts to generate oscillations at a different frequency ω. To find the resulting oscilla-
tions (the output), a mathematical technique is needed that takes into account (1) the pressure and
velocity fields in the duct when the loudspeaker starts; (2) the variable amplitudes of the resulting
oscillations, which depend on time and location; and (3) coupling of the fresh and burnt gas flows
at the flame. Such a technique differs significantly from that used by previous authors for studying
single oscillation/flame interactions. The mathematical development leads to an exact solution that
gives a stability criterion in the form of a system of two integro-differential equations. Analysis shows
that the stability domains of the time lag depend mainly on the flame location and the fresh/burnt
gases temperature ratio. Numerical results are obtained for a centrally located flame and for the
temperature ratio 1500 K/300 K.

Key words. combustion stability, perturbation, Laplace transform, integro-differential equa-
tions
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1. Introduction. Since the 1950s, when combustion instabilities caused numer-
ous failures during the development of rocket motors, considerable effort has been
spent on the investigation of this phenomenon. Since that time, a number of math-
ematical models have been developed to identify the mechanism of oscillations and
to find ways to reduce their magnitude or suppress them. Crocco and Cheng [1] first
studied this problem by using a simple (n-τ) model, where n is an interaction index
and τ is a time lag.

The idea behind the time lag τ is that there is always an interval between the time
of injection of the propellant and the time at which burning occurs. The interaction
index, n, describes the intensity of the coupling between unsteady heat release and
velocity fluctuations in the reaction zone. According to the Rayleigh criterion, this
coupling process is responsible for combustion instabilities. The interaction index is
usually taken as a constant of proportionality between the heat release and the velocity
oscillation. The governing equations for this model are obtained from simplified forms
of the conservation laws. As a version of the (n-τ) model will be used in this study,
more details are given in subsection 3.3.

Crocco and Cheng also provide reviews of other early works [1, 2, 3]. Overviews of
later results [4, 5, 6, 7], contemporary reviews [8, 9, 10, 11, 12, 13, 14, 15, 16], surveys
of advanced numerical methods [17, 18], and contemporary models of turbulent flame
dynamics [17, 19] are also available.
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The time lag model was intensively used for both developing physical under-
standing and correlating experimental data by Crocco and associates in the 1960s
[1, 2, 3, 4, 6]. Due to its simplicity, this approach is still of interest [9, 11, 20, 23, 24].
In particular, as described in a recent article [20], this model can be used for detailed
analysis of the basic processes responsible for instabilities in premixed combustion.
However, we note that this model is restricted to linear processes.

Later, Culick [10, 22] used the Galerkin method and presented the solution of the
relevant wave equation as a series of normal modes. This model describes the linear
and nonlinear behavior of the oscillations, but the heat release is still considered as
a linear process. Culick’s model was widely used for solving some basic problems of
combustion instabilities [10, 21, 22, 25, 26, 27, 28, 29], and recently it was applied
to model a closed-loop active control system with feedback. Two types of controller
were considered, with fixed parameters [28] and with variable ones, self-tuned to the
operating conditions [29]. The limitations of this model arise from the expansion in
normal modes, which is based on the assumption that the studied problems differ only
by a small amount from the unperturbed case. A second limitation of this approach
results from the necessary truncation of the series expansion.

The kinematic laminar combustion model [30] is constructed using fundamental
mechanistic principles. Poiseuille flow in a tube with a thin flame that moves at con-
stant velocity was considered. Analysis of the moving flame front leads to differential
equations for the flame surface area and for the unsteady heat release. These results
allow for the derivation of a model describing the oscillation/flame interaction in (n-
τ) terms. Using this model together with Culick’s technique, different applications,
including feedback control, have been addressed [31, 32, 33, 34, 35].

A second laminar model was developed by Merk [36]. To study combustion in-
stabilities, he employed transfer functions and an analogy to electrical circuits. The
developed theory was used to determine the stability domains for a duct with a thin
flame. The stability analysis showed that the value of the time lag is very important
because instability was found to occur in a certain interval of the time lag.

The basic ideas of this method have been applied in recent two papers [37, 38].
In the first one, in particular, a review of using transfer function to study premixed
flames is given. In the second work, authors employed this method to predict and
control instabilities in systems with inclined laminar flames. The studied system is
described by a network of transfer functions that simulate acoustic elements in a
combustor. To derive analytical expressions for the transfer functions, the transport
G-equation is used. Conical and V-flames are considered. It is shown that in both
cases, models containing one dimensionless parameter are a good approximation only
for low frequencies. The limitations of such a model (considered, for example, in [30])
are discussed in [37, 38]. At higher frequencies, the flame dynamics are controlled by
two independent parameters. Additional improvements could be achieved by taking
into account convective effects.

Although laminar models are not applicable to devices with turbulent motion,
they are important for developing a better understanding of the associated physics.
They may also be applied to more complex models by fitting parameters to experi-
mental data [39].

In contrast to Culick, Peracchio and Proscia [39] proposed a model that describes
the coupling of a linear oscillation with turbulent nonlinear heat release. They adapted
laminar model relations from [30]. By fitting model parameters to experimental data,
an expression for the heat release was obtained. The dependence of the heat release



COMBUSTION STABILIZATION 1177

on the fuel/air ratio was also taken into account. The linear acoustics were described
by Culick’s equation, and the stability analysis was performed using the Laplace
transform. On the basis on this model, the technique of identification of limit cycling
systems has been developed [40].

Lang et al. [23] proposed a model to study the feedback active control. They
used the (n-τ) approach and the solution of the wave equation for a duct with a thin
flame. Autonomous oscillations with constant amplitudes were considered. Satisfying
the boundary conditions leads to an expression for the stability criterion. Using this
criterion and the transfer function, the authors analyzed stability with and without
control. The results were compared with the authors’ experimental data. Gulati and
Mani [24] studied the effect of the equivalence ratio and the flow rate on the control
performance using the same approach.

In these two works, specific cases were considered for comparison with experi-
mental data. McManus, Poinsot, and Candel [9] applied the same model for a general
analytical investigation of feedback active control in a duct. Ignoring the temperature
jump across the flame, the authors analyze stability with and without control. As a
result, the stability domains of frequency can be computed for the two first harmonic
modes.

Two models with nonlinear heat release effects were proposed by Dowling. In
the first [41], the idea of saturated heat release is used. According to that idea,
a nonlinearity occurs when the linearly varying heat release becomes constant (i.e.,
saturates). In the second work [42], the Fliefil et al. [30] approach is extended to
turbulent combustion. Unlike the authors of study [39], who fitted the laminar model
parameters to the experimental data, Dowling applied the basic idea to a turbulent
flame. By using the same assumption of neglecting expansion across the flame front,
the relations are derived for the flame surface area and for the unsteady heat release.
In both studies, the acoustics are treated as linear and are modeled by the well-
known general solution of the wave equation. The solutions for the fresh and burnt
gases are conjugated at the flame. To perform this conjugation, the conservation
equations, written for the flame zone, and experimental data from [43] are employed.
Applications have been subsequently investigated [44, 45, 46].

The brief review presented here considered contemporary analytical methods of
modeling combustion instabilities and active control simulation. This part of the
extensive literature on combustion instabilities has been reviewed since these studies
are closely related to the subject of the current investigation. Experimental and
numerical results may be found in the reviews mentioned above.

The literature review has shown that different analytical approaches can be used
to study the interaction of oscillations and unsteady heat release, including the mech-
anism of this phenomenon. At the same time, the analytical models of active control
are based on the input-output approach, without considering the processes inside the
combustor.

In this article, we develop a model for simulating the active control input-output
mechanism. The model describes the interaction of an existing oscillation in the
combustor with a control input and with unsteady heat release. This case of the
interaction of two oscillations in the combustor, one already existing and the other
incoming, with unsteady heat release, is quite different from the well-known single
oscillation/heat release coupling problem.

The proposed model for studying this type of interaction is based on the solution
of the wave equation which takes into account the following facts: (1) There is a flow
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Fig. 1. Schematic diagram of the modeled combustor as a duct.

in the combustor when the control input enters. Therefore, the corresponding velocity
and pressure fields should be used as initial conditions. (2) The result of interaction
of the two different oscillations is complex, with unknown amplitude depending on
time and location. (3) The resulting oscillation should be found by the conjugation
of two wave equation solutions obtained separately for each part of combustor (i.e.,
the fresh and burnt gases). (4) While the wave equation is second order, there is only
one boundary condition in each part of the combustor divided by the flame. Hence,
two other conditions are needed.

For such additional conditions, we use two unknown variables defining, at the
flame, the amplitudes of the velocity on the upstream side, and of the pressure on
the downstream side. The corresponding mathematical technique leads to a system
of two integro-differential equations that determine these unknown functions. A more
detailed description of the model and mathematical technique is given in sections 3
and 4.

This system of two integro-differential equations can also be used to develop
a stability criterion. Using the stability analysis, the feasibility of stabilizing the
premixed combustion by forced oscillation is demonstrated in sections 5 and 6. The
ranges of the time lag providing stability are derived and are determined to depend
mainly on the flame location and burnt/fresh gases temperature ratio (section 5).

In this study, a combustor in the form of a duct with simple boundary condi-
tions is considered and the (n-τ) approach is used to compute the unsteady heat
release. In this case, the exact solution is obtained. The presented model of two oscil-
lations/heat release interaction and mathematical technique may be applied to more
complex combustor forms, boundary conditions, and unsteady heat release theories.

2. Problem formulation. The flame is located at x = l1 in a duct of length l
(Figure 1) with the loudspeaker at the input (x = 0). Assume that in such a duct,
when the loudspeaker is off, autonomous oscillations at frequency ω0 exist. At time
t = 0, the loudspeaker starts to generate oscillations at frequency ω �= ω0.

Our goals are (1) a stability analysis of the autonomous oscillations when the
loudspeaker is off; (2) computing the oscillation that results from the interaction of
those existing in the duct autonomously and those from the loudspeaker; and (3) a
stability analysis of the final flow and defining the combustion and forced oscillation
characteristics that stabilize or suppress initially unstable oscillations.
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Although this problem looks close to that of McManus, Poinsot, and Candel [9],
they differ in essence. In [9] the active control is considered using the transfer function
and the same simple waves with constant amplitudes as in the case without control.
In this study, we simulate the mechanism of input–output control considering the
interaction of two oscillations at different frequencies with unsteady heat release. The
result of this interaction is a complex oscillation with variable amplitudes. We obtain
this resulting oscillation by solving the wave equation with initial, boundary, and
conjugation conditions.

3. Model. According to our goals, the model is intended to solve the following
parts of the whole problem: (1) determining the pressure and velocity fields of the
autonomous regime and a stability analysis when the loudspeaker is off; (2) determin-
ing the pressure and velocity fields in the two parts of the duct when the loudspeaker
is on; (3) obtaining the resulting oscillation by conjugating the flows in the two parts
of the duct at the flame; and (4) a stability analysis when the loudspeaker is on.

3.1. Basic assumptions. The proposed model is based on the same assump-
tions as the Lang, Poinsot, and Candel [23] model and others of this type. They are as
follows [9, 23, 24]: (1) Flow in the combustor is a one-dimensional current of inviscid,
non-heat-conducting gas with constant properties. (2) The effect of the mean flow and
the mean heat transfer on the acoustic waves may be neglected, as well as the effect
of pressure drop and heat losses. (3) The acoustic oscillations are plane longitudinal
waves. (4) The flame is a thin sheet dividing the duct into two parts with fresh and
burnt gases (subscripts 1 and 2, Figure 1).

3.2. Governing equations. According to assumption 1, the flow in the com-
bustor is governed by one-dimensional conservation equations of mass, momentum,
and energy:

∂ρ

∂t
+

∂(ρu)

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0,

∂p

∂t
+ u

∂p

∂x
+ pκ

∂u

∂x
= (κ− 1) qV ,(3.1)

where ρ, p, u, x, t, qv, and κ are density, pressure, velocity, distance from loudspeaker,
time, heat generation per unit volume, and the ratio of specific heats. The parameters
in (3.1) are expanded into mean (p̄) and fluctuating (p′) components. Assuming that
the mean parts are uniform, neglecting density fluctuations, and using c2 = κp̄/ρ̄ for
the speed of sound, one gets linearized momentum and energy equations,

ρ̄
∂u′

∂t
+

∂p′

∂x
= 0,

∂p′

∂t
+ ρc2

∂u′

∂x
= (κ− 1) q′V .(3.2)

Outside of the flame zone, q′V = 0. In such a case, eliminating one of the variables
from (3.2) by differentiating leads to the two wave equations

∂2u

∂t2
− c2

∂2u

∂x2
= 0,

∂2p

∂t2
− c2

∂2p

∂x2
= 0,(3.3)

where the sign (′) is omitted because, in conformity with assumption 2, only fluctu-
ating components need to be considered.

Using the mean density, ρ̄, the length of the duct, l, and the speed of sound, c,
as scales, we introduce nondimensional variables

x =
x◦

l
, t =

t◦c

l
, u =

u◦

c
, p =

p◦

ρ̄c2
, qV =

q◦V l

ρ̄c3
, k =

ω◦l

c
.(3.4)
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Here ω and k are frequency and wave number, and the superscript ◦ is applied to dis-
tinguish dimensional from nondimensional variables. In the following, we use nondi-
mensional quantities, except scales, and in some cases where dimensional variables
are marked with sign (◦).

Since the duct is divided in two parts with fresh and burnt gases, there are
two values of the speed of sound and corresponding wave numbers. However, if we
neglect the slight temperature dependence of the specific heat ratio, we obtain the
relationship c2/c1 = (T ◦

2 /T
◦
1 )1/2 = ζ, where T ◦

1 and T ◦
2 are the temperatures of the

fresh and burnt gases. Then, setting for the burnt gases k2 = k, one gets k1 = kζ
for the fresh gases. Since we use the speed of sound c2 to obtain the dimensionless
wave number, the nondimensional time is also determined by this speed of sound.
With c1/c2 = (T ◦

1 /T
◦
2 )1/2, the pressure scales for the fresh and burnt gases are equal

(c21ρ̄1 = c22ρ̄2), because ρ̄1/ρ̄2 = T ◦
2 /T

◦
1 .

3.3. Boundary and conjugate conditions. Two boundary and two conjugate
conditions are applied. One boundary condition defines the source of the oscillations.
We suppose that the autonomous oscillations in the duct are caused by flame fluc-
tuations, while the forced oscillations are produced by the loudspeaker. Assuming
that both oscillations are harmonic, we have in the autonomous and forced cases,
respectively,

u1(l1, t) = α0 exp(−ik0t), u1(0, t) = α exp(−ikt),(3.5)

where l1 = l◦1/l is the flame location, α is amplitude, and subscript 0 denotes the
autonomous regime.

The second condition is as in [9, 23]: zero pressure fluctuation at the exhaust

p2(1, t) = 0,(3.6)

where the unit 1 indicates the nondimensional length of the duct.
Two conjugation conditions at the flame are adapted from [9, 23]. They are

derived on the basis of the (n-τ) model and have the form

p1(l1, t) = p2(l1, t),(3.7)

ζu2(l1, t) − u1(l1, t) = nu1(l1, t− τ).(3.8)

The first expression specifies the continuity of pressure across the flame. The second
one defines the velocity jump caused by the high temperature of the burnt gases.

Relation (3.8) is obtained from the energy equation in (3.1) [9, 23]. The derivation
starts by letting the flame zone width be ∆x◦. Then, the average value of the velocity
derivative in the flame is (u◦

2 − u◦
1)/∆x◦. The first two terms in the energy equation

in (3.1) define the material pressure derivative. Since the pressure does not change
across the flame, these two terms become zero in the flame zone. Omitting these
terms, using the formula for the speed of sound c2 = κp◦/ρ̄, and then introducing
the dimensionless variables defined in (3.4), one gets the average velocity jump in the
form ζu2 − u1 = (κ − 1)qV ∆x. Following Crooco and Cheng [1], the unsteady heat
release is expressed using the interaction index, n, and the velocity fluctuation at the
flame front, but with regard to time lag: (κ−1)qV ∆x = nu1(l1, t− τ). These last two
relations yield (3.8).

When the loudspeaker is off, the four boundary conditions (3.5)–(3.8) determine
the pressure and velocity amplitudes of autonomous oscillations in the duct. However,
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when the loudspeaker is on (i.e., when the interaction of two oscillations with different
frequencies occurs), these four conditions are insufficient.

It is known that the result of such interactions is a complex oscillation with time
and location dependent velocity and pressure amplitudes. As was mentioned above,
we determine this oscillation by solving the wave equation separately for each part of
the duct. To have two boundary conditions in each part, we introduce, in addition
to (3.5)–(3.8), two unknown functions, U(t) and P (t). They define the velocity and
pressure amplitudes on the upstream and downstream sides of the flame, respectively
(see Figure 1), such that

|u1(l1, t)|max = αU(t), |p2(l1, t)|max = αP (t).(3.9)

Conjugation of the solutions obtained for the two parts of the duct at the flame leads
to a system that determines the functions U(t) and P (t).

3.4. Initial conditions. When the loudspeaker starts, autonomous oscillations
with frequency ω0 exist in the combustor. Hence, the pressure and velocity related
to these oscillations at t = 0 are the initial conditions for solving the wave equation.
They are found using conditions (3.5)–(3.8) in the next section.

4. Mathematical development. This section contains three parts. In the first
part, the autonomous oscillations that exist when the loudspeaker is off are considered.
The two goals of this part are (1) to find the pressure and velocity distributions in
the duct when the loudspeaker starts—these are used as the initial conditions in
solving the wave equation for the resulting oscillations; and (2) stability analysis of
the autonomous regime—this information is needed to answer the main question: Are
there conditions under which loudspeaker oscillations stabilize or suppress initially
unstable autonomous oscillations?

The second part of this section includes solutions of the wave equations for the
two parts of the duct, which give the pressure and velocity fields before and after
the flame, in the fresh and burnt gases. The technique of conjugating these fields
at the flame is presented in the third part of this section. The conjugation gives the
final oscillation, i.e., the output of the interaction between the autonomous and forced
oscillations. Subsequently, in section 5, this result is used in a stability analysis to
determine if the final oscillations are stable.

4.1. Loudspeaker off. This problem is similar to that in the McManus, Poinsot,
and Candel study [9], but in contrast to their solution, we take into account the
temperature jump across the flame. We also assume that the flame fluctuations cause
a harmonic velocity oscillation, given by (3.5), at the flame instead of imposing the
condition u1(0, t) = 0 at the input.

In (3.5), α0 is an arbitrary complex amplitude. In study [9], the velocity oscillation
at the flame front is also harmonic, but with a specific amplitude, which corresponds to
the case of zero velocity at the inlet. At the same time, a specific velocity oscillation
at the inlet corresponds to (3.5) at the flame in this study. As will be shown in
subsection 4.1.1, such corresponding amplitudes at the flame in the first case and the
velocity at the inlet in the second one are

α0 = 1−exp(−2ik0l1ζ), u(0, t) = exp[−ik0(l1ζ+t)]−(1−α0) exp[ik0(l1ζ−t)].(4.1)

Thus, the boundary conditions in both cases are similar. However, in the case of a
closed inlet, it is natural to put zero velocity at x = 0, as well as the simple condition
(3.5) at the flame instead of condition (4.1) at the inlet in the case with arbitrary
amplitude α0.
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4.1.1. Pressure and velocity distributions. The oscillations in the duct are
considered as waves with constant amplitudes Ai and Bi, similar to those in [9, 23]:

A1 exp{ik0[ζ(x− l1) − t]} ±B1 exp{−ik0[ζ(x− l1) + t]},

A2 exp{ik0[ζ(x− l1) − t]} ±B2 exp{−ik0[ζ(x− l1) + t]}.
(4.2)

Here sums define the pressure, while differences give the velocity, k0 = ω◦
0 l/c2, and

t = t◦c2/l.
Substituting (4.2) in the boundary and conjugate conditions (3.5)–(3.8) yields

A1 −B1 = α0, A2 exp[ik0(1 − l1)] + B2 exp[−ik0(1 − l1)] = 0,

A1 + B1 = A2 + B2, ζ(A2 −B2) − (A1 −B1)[1 + n0 exp(ik0τ0)] = 0,
(4.3)

where 1− l1 is the duct length behind the flame. The parameters (τ0, n0) are different
from (τ, n) for the final oscillations since it is known that in general they depend on
the oscillation frequency and combustion characteristics.

Because α0 is arbitrary, it follows from (4.3) that one may set A1 = 1. Then the
first three equations in (4.3) determine the other amplitudes Ai and Bi. Using them
together with (4.2), one obtains the desired pressure and velocity distributions:

p10 = exp{ik0[ζ(x− l1) − t]} + (1 − α0) exp{−ik0[ζ(x− l1) + t]},

u10 = exp{ik0[ζ(x− l1) − t]} − (1 − α0) exp{−ik0[ζ(x− l1) + t]},

p20 =
2 − α0

1 − exp[−2ik0(1 − l1)]
{exp[−ik0(x− l1 + t)] − exp[ik0(x + l1 − t− 2)]},

u20 =
2 − α0

1 − exp[−2ik0(1 − l1)]
{− exp[−ik0(x− l1 + t)] − exp[ik0(x + l1 − t− 2)]}.

(4.4)
The expressions in (4.1) follow from the second equation of (4.4) if one puts u10(l1, t) =
0 (to obtain the first expression) and x = 0 (to obtain the second one).

4.1.2. Stability analysis. The last equation in (4.3) can be used to determine
α0. After substituting for the amplitudes Ai and Bi, this equation takes the form

ζ(2−α0){1+exp[−2ik0(1−l1)]}+α0{1−exp[−2ik0(1−l1)]}[1+n0 exp(iω0τ0)] = 0.(4.5)

This equation gives a generalized stability criterion for loudspeaker oscillations (3.5)
with arbitrary amplitude α0. The criterion obtained in [9, 23] with determinant may
also be derived from the last equation of (4.3). This criterion follows also from (4.5)
if one sets α0 = 1 − exp(−2ik0l1ζ), which corresponds to the case considered in [9].

Setting in (4.5) α0 = α0R + iα0I and k0 = k0R + ik0I and separating the result
into real and imaginary parts leads to

α0R =
2ζ{hC{1 + exp[2k0I(1 − l1) cosφ]} + hS sin 2φ exp[2k0I(1 − l1)]}

h2
C + h2

S

,

α0I =
2ζ{hS{1 + exp[2k0I(1 − l1) cosφ]} − hC sin 2φ exp[2k0I(1 − l1)]}

h2
C + h2

S

,

hC = f+
C exp[2k0I(1 − l1)] + f−

C , hS = f−
S exp[2k0I(1 − l1)] + f+

S ,

f+
S = n0 sinϑ0, f−

S = (ζ + 1) sin 2φ− n sin(ϑ0 − 2φ),

f+
C = (ζ + 1) cos 2φ + n cos(ϑ0 − 2φ), f−

C = (ζ − 1) − n0 cosϑ0.

(4.6)

Here φ = k0R(1− l1), ϑ0 = 2π(τ0/T0), and T0 is the autonomous oscillations period.
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The neutral curves are obtained from (4.6) by setting exp[2k0I(1 − l1)] = 1. To
specify the stability domains, derivatives of k0I with respect to α0R and α0I are
needed:

2(1 − l1)
∂k0I

∂α0R
=

(f+
C + f−

C )2 + (f+
S + f−

S )2

gC(f+
C + f−

C ) − gS(f+
S + f−

S )
,

2(1 − l1)
∂k0I

∂α0I
=

(f+
C + f−

C )2 + (f+
S + f−

S )2

gC(f+
S + f−

S ) + gS(f+
C + f−

C )
,

gC = 2ζ cos 2φ− α0Rf
+
C − α0If

−
S , gS = −2ζ sin 2φ + α0Rf

−
S − α0If

+
C .

(4.7)

As an example, in Figure 2 the neutral curves α0 = f(τ0/T0) and the correspond-
ing derivatives are given for the following data: n0 = 0.5, φ = k0R(1− l1) = 0.4π, ζ2 =
5. The derivative ∂k0I/∂α0I is negative throughout the curve α0 = f(τ0/T0), while
the other derivative, ∂k0I/∂α0R, is negative only in zone 3 (Figure 2(b)). Since on
the neutral curves k0I = 0, the sign of the derivative indicates the stability domain
location. It lies above the neutral curve for negative derivatives and below the neutral
curve for positive ones. Hence, in this case, the stability domains are located: outside
of the curves in zones 1 and 4, inside of the curves in zone 2, and above both of the
curves in zone 3. These regions are marked with hatching in Figure 2(a).

To determine the real and imaginary parts of α0 for a given value of τ0/T0, one
may choose from Figure 2(a) only α0R or α0I . The other should be found from the
equality which is derived by solving (4.6) for exp[2k0I(1 − l1)]:

exp[2k0I(1 − l1)] =
−2ζ + α0Rf

−
C + α0If

+
S

2ζ cos 2φ− α0Rf
+
C − α0If

−
S

=
α0Rf

+
S − α0If

−
C

2ζ sin 2φ− α0Rf
−
S + α0If

+
C

.(4.8)

For example, if for the unstable regime and τ0/T0 = 0.2 one takes α0R = 0.8 from
Figure 2(a), the equality (4.8) gives α0I = 0.87 and exp[2k0I(1 − l1)] = 1.2.

Thus, the analysis indicates that there are both stable and unstable autonomous
oscillation regimes. We will show that unstable autonomous oscillations can be sta-
bilized by the loudspeaker’s input if the time lag and forced oscillation frequency
correspond to specific domains. To show this, we start by determining the velocity
and pressure fields that arise as an output of the interaction between the autonomous
and loudspeaker oscillations.

4.2. Loudspeaker on. In this case the pressure and velocity fields are obtained
by solving the wave equations (3.3) for each portion of the duct. The method of
solution of such linear homogeneous equations with initial (4.4) and boundary ((3.5),
(3.6), and (3.9)) conditions is well known [47]. After converting the inhomogeneous
boundary condition (3.5) or (3.9) to a homogeneous one, the desired solution is pre-
sented as a sum of two others. One is a solution of the original equation (3.3) with a
given initial, but homogeneous boundary condition. The other satisfies the zero initial
and boundary conditions and an inhomogeneous equation that arises instead of the
inhomogeneous boundary condition. In this case, such inhomogeneous wave equations
contain the unknown functions U(t) or P (t) from the boundary conditions (3.9). Fi-
nally, this leads to a system of two integro-differential equations that determine these
functions.

4.2.1. Velocity and pressure in the front of the flame. To find the velocity
in the duct portion upstream of the flame, the first wave equation in (3.3) is solved. Let
the required solution have the same form as the loudspeaker oscillation (3.5), such that
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Fig. 2. Neutral curves and stability domains for autonomous oscillations in a duct. n0 =
0.5, φ = 0.4π, T 0

2 /T
0
1 = 5. (a) Neutral curves. (b) Derivatives of the neutral curves. (τ0/T0):

0.188 = the intersection of curves, 0.378 and 0.605 = changes of sign of the derivative ∂kI/∂α0R.

u1(x, t) = αF (x, t) exp(−ikt),(4.9)

with the unknown function F (x, t) defining the amplitude. The boundary condition
for this function at the input follows from (3.5), while at the flame it is defined by (3.9):

F (0, t) = 1, F (l1, t) = U(t).(4.10)
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Conditions (4.10) are transformed to homogeneous ones by the substitution

F (x, t) = Φ(x, t) − (x/l1)[1 − U(t)] + 1.(4.11)

After using (4.10) and (4.11), the wave equation (3.3) takes an inhomogeneous form
with the right-hand side containing the unknown function U(t) and its first two deriva-
tives. Replacing c1 for c for fresh gases in (3.3), we present this equation in the form

∂2Φ

∂t2
− 2ik

∂Φ

∂t
− k2Φ − 1

ζ2

∂2Φ

∂x2
=

x

l1
Z(t) + k2

(
1 − x

l1

)
,(4.12)

Z(t) = −∂2U

∂t2
+ 2ik

∂U

∂t
+ k2U, Φ(0, t) = Φ(l1, t) = 0.(4.13)

Since u10(x, 0), defined by (4.4), describes the velocity field in the combustor when
the loudspeaker starts, the initial conditions are found by comparing (4.4), (4.9), and
(4.11). Setting t = 0 in these expressions, one gets Φ(x, 0) after solving the equation
u10(x, 0) = u1(x, 0). Similarly, the derivative is found after differentiating (4.4), (4.9),
and (4.11):

Φ(x, 0) =
1

α
{exp[ik0ζ(x− l1)] − exp[−ik0ζ(x− l1)]}

+
α0

α
exp[−ik0ζ(x− l1)] +

x

l1

(
1 − α

α0

)
− 1,(4.14)

(
∂Φ

∂t

)
t=0

= i(k − k0)

[
Φ(x, 0) − x

l1
+ 1

]
.(4.15)

As indicated, the solution of (4.12) will be represented as a sum Φ = Φ(1) + Φ(2).
The solution of the homogeneous part of (4.12), Φ(1), satisfying the initial conditions
(4.14) and (4.15) is obtained by a separation of variables and using a Fourier series:

Φ(1) =

∞∑
m=1

l1ζ

2mπ
sin

mπx

l1

{
−E+1

[
δm1(k0 − γm1) −

2

mπ
(k − k0)

]

+E−1

[
δm1(k0 + γm1) −

2

mπ
(k − k0)

]}
,

+E±1 = exp[i(k ± γm1)t], γm1 =
mπ

l1ζ
,

δm1 =
2mπ

α[(mπ)2 − (k0l1ζ)2]
{[exp(−ik0l1ζ) − exp(ik0l1ζ)] + α0[(−1)m+1 + exp(ik0l1ζ)]}

− 2

mπ
[(−1)m+1(α0/α) + 1].

(4.16)

To get the solution of the inhomogeneous part of (4.12), Φ(2), meeting the homo-
geneous conditions (4.13), Duhamel’s principle is used [47]. The impulse function Φ∗
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is defined as a solution of the homogeneous equation (4.12) with conditions given at
t = η:

Φ∗|t=η = 0,
∂Φ∗

∂t
|t=η =

x

l1
Z(η) + k2

(
1 − x

l1

)
,(4.17)

where the derivative is equal to the right-hand side of (4.12). Then, according to
Duhamel’s principle, one gets the desired solution by integrating the impulse function

Φ(2) =

∫ t

0

Φ∗
(
x

l1
, t, η

)
dη

=

∞∑
m=1

l1ζ

(mπ)2
sin

mπx

l1

[
(−1)m+1i(E−1J−1 + E+1J+1) + k2

−
(

E−1

k − γm1
− E+1

(k + γm1)
− 2γm1

k2 − γ2
m1

)]
,

J±1 =

∫ t

0

Z(η)

E±1(η)
dη.

(4.18)

The sum of (4.16) and (4.18) determines the required solution of (4.12):

Φ(x, t) =
∞∑

m=1

l1ζ

(mπ)2
sin

mπx

l1
Ym1,

Ym1 = (−1)m+1i(E−1J−1 − E+1J+1)

+E−1

[
mπδm1

2 (k0 + γm1) − (k − k0) +
k2

k − γm1

]

−E+1

[
mπδm1

2
(k0 − γm1) − (k − k0) +

k2

k + γm1

]
− 2k2γm1

k2 − γ2
m1

.

(4.19)

This expression, together with (4.9) and (4.11), specifies the velocity field u1(x, t)
upstream of the flame. When the velocity is known, the pressure field is obtained by
integrating the first equation in (3.2) from 0 to x:

p1(x, t) = αl1ζ exp(−ikt)

{ ∞∑
m=1

l1ζ

(mπ)3

[
cos

mπx

l1
− 1

](
dYm1

dt
− ikYm1

)

− 1

2

(
x

l1

)2 (
dU

dt
− ikU

)

− ik
x

l1

(
x

2l1
− 1

)}
+ exp(−ikt)p10(0, 0).

(4.20)

It can be shown that when t = 0, (4.20) becomes the initial value p10(x, 0) defined by
(4.4).

4.2.2. Pressure and velocity behind the flame. The procedure of deter-
mining the pressure behind the flame is similar to that of the velocity computed in
section 4.2.1. The solution is presented in the same form as (4.9) with the unknown
function Fp(x, t) as

p2(x, t) = αFp(x, t) exp(−ikt).(4.21)
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To have a homogeneous boundary condition that satisfies (3.6) and (3.9), a transfor-
mation, analogous to (4.11), is applied:

Fp(x, t) =
1 − x

1 − l1
P (t) + Φp(x, t).(4.22)

Then one gets an equation similar to (4.12), but with a different right-hand side:

∂2Φp

∂t2
− 2ik

∂Φp

∂t
− k2Φp −

∂2Φp

∂x2
=

1 − x

1 − l1
Zp(t),(4.23)

Zp(t) = −d2P

dt
+ 2ik

dP

dt
+ k2P, Φp(l1, t) = Φp(1, t) = 0.(4.24)

The initial conditions are found by the same way as conditions (4.14) and (4.15).
Comparing (4.21) and (4.22) with p20(x, 0), given by (4.4), yields Φp(x, 0). The
derivative is found after differentiating (4.4), (4.21), and (4.22):

Φp(x, 0) =
2 − α0

α

{
1

1 − exp[−2ik0(1 − l1)]
{exp[−ik0(x− l1)]

− exp[−ik0(2 − x− l1)]} −
1 − x

1 − l1

}
,

(4.25)

(
∂Φp

∂t

)
t=0

= i(k − k0)Φp(x, 0).(4.26)

The solution of (4.23) satisfying the boundary condition (4.24) and the initial
conditions (4.25) and (4.26) is obtained in the same way as (4.19), giving

Φp(x, t) =

∞∑
m=1

1 − l1
(mπ)2

sin
mπ(1 − x)

1 − l1
Ym2,

Ym2 = (−1)m+1i(E−2J−2 − E+2J+2) −
mπδm2

2
[E−2(k0 + γm2) − E+2(k0 − γm2)],

E±2 = exp[i(kt± γm2)t], γm2 =
mπ

1 − l1
, J±2 =

∫ t

0

Zp(η)

E±2
dη,

δm2 = (−1)m+1

{
2mπ(2 − α0)

α{(mπ)2 − [k0(1 − l1)]2}
− 2{1 − exp[−2ik0(1 − l1)]}

mπ

}
.

(4.27)
Since the pressure is known, the velocity behind the flame is found by integrating

the second of equations (3.2) from 1 to x, giving

u2(x, t) = α(1 − l1) exp(−ikt)

{ ∞∑
m=1

1 − l1
(mπ)3

[
1 − cos

mπ(1 − x)

1 − l1

](
dYm2

dt
− ikYm2

)

+
1 − x

2(1 − l1)

(
dP

dt
− ikP

)}
+ exp(−ikt) u2(0, 0).

(4.28)
The unknown functions U(t) and P (t), present in (4.20), (4.28) and in integrals

J±1 (4.19) and J±2 (4.27), are found using the conjugation procedure described in
the next subsection. Then the velocity and pressure fields may be calculated in each
portion of the duct. These are determined upstream of the flame by (4.9), (4.11),
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(4.19), and (4.20) and downstream by (4.21), (4.22), (4.27), and (4.28). Data related
to the duct (l1), the autonomous (α0, k0) and loudspeaker (α, k) oscillations, the
fresh and burnt gases temperatures (T ◦

1 , T
◦
2 ), and parameters (n, τ) should be known

in order to perform the calculations.
In this study, we use the derived relations to estimate the characteristics of the

combustion and loudspeaker oscillations that provide stabilization of initially unstable
autonomous waves.

4.3. Conjugation of pressure and velocity at the flame. The conjugation
conditions (3.7) and (3.8) contain the values of the pressure and velocity at the flame.
To get these quantities for each part of the duct, we proceed as follows. Setting
x = l1 in (4.9), (4.11), (4.19), (4.20), (4.21), (4.22), (4.27), and (4.28), we substitute
the results in (3.7) and (3.8). Then, taking into account that F (l1, t) = U(t) and that
Fp(l1, t) = P (t), we get a system determining unknown functions U(t) and P (t):

∞∑
m=1,3,...

2l1ζ

(mπ)3

(
dYm1

dt
− ikYm1

)
+

1

2

[
dU

dt
− ik(U + 1)

]
+

1

l1ζ

[
P − p10(0, 0)

α

]
= 0,

∞∑
m=1,3,...

2(1 − l1)

(mπ)3

(
dYm2

dt
− ikYm2

)
+

1

2

(
dP

dt
− ikP

)

+
1

(1 − l1)

[
u20(0, 0)

α
− U + nU(t− τ) exp(ikτ)

ζ

]
= 0.

(4.29)
After using (4.19) and (4.27) for Ym1 and Ym2, and two relations based on Euler’s
formula, E+ +E− = 2 exp(ikt) cos(γmt) and E+ −E− = 2i exp(ikt) sin(γmt), the last
system takes the form of two integro-differential equations:

2 exp(ikt)

∫ t

ϑ

(
d2U

dt2
− 2ik

dU

dt
− k2U

)
exp(−ikη)

∞∑
m=1,3,...

2

(mπ)2
cos[γm1(t− η)] dη

− 1

2

(
dU

dt
− ikU

)
− 1

l1ζ
P = G(t),

G(t) = −
∞∑

m=1,3,...

4

(mπ)2

{
i exp(ikt) cos(γm1t)

[
mπδm1

2
k0 − (k − k0) +

k3

k2 − γ2
m1

]
− 1

2
ik

+ γm1 exp(ikt) sin(γm1t)

(
mπδm1

2
+

k2

k2 − γ2
m1

)
− ik3

k2 − γ2
m1

}
− 1

l1ζα
p10(0, 0),

(4.30)

2 exp(ikt)

∫ t

ϑ

(
d2P

dt2
− 2ik

dP

dt
− k2P

)
exp(−ikη)

∞∑
m=1,3,...

2

(mπ)2
cos[γm2(t− η)] dη

− 1

2

(
dP

dt
− ikP

)
+

1

ζ(1 − l1)
[U + nU(t− τ) exp(ikτ)] = Gp(t),

Gp(t) = −
∞∑

m=1,3,...

2

(mπ)2
exp(ikt)mπδm2[ik0 cos(γm2t) + γm2 sin(γm2t)] +

u20(0, 0)

α(1 − l1)
.

(4.31)

Here, the unknown functions U(t) and P (t) are placed on the left-hand sides, while
others that are considered as known form G(t) and Gp(t) on the right-hand sides.

The system (4.30), (4.31) has two forms, according to different parts of the com-
bustion process. There is no combustion during the first period, 0 ≤ t ≤ τ , after
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injection but before burning of the propellant. Hence, in this case, the interaction
index is zero (n = 0), and the lower limit ϑ of the integrals is the time when the
injection starts, ϑ = 0. For the second period, t ≥ τ , after the combustion starts,
n > 0, and the lower limit ϑ is equal to the time lag (ϑ = τ). For our purpose, we use
the second form of the system (4.30), (4.31) because our goal is to study the behavior
of the final oscillation as t → ∞.

5. Stability analysis. We perform a stability analysis on the system (4.30),
(4.31). We need find out whether the functions U(t) and P (t), defining the velocity
and pressure amplitudes, are bounded or grow infinitely as t → ∞. The new variables

V = U exp(−ikt), Vp = P exp(−ikt), H = G exp(−ikt), Hp = Gp exp(−ikt)(5.1)

reduce the expressions with unknown functions U(t) and P (t) and their two derivatives
to second derivatives of V and of Vp. Then the system (4.30), (4.31) simplifies to∫ t

τ

d2V

dt2

∞∑
m=1,3,...

4

(mπ)2
cos[γm1(t− η)] dη − 1

2

dV

dt
− Vp

l1ζ
= H(t),(5.2)

−
∫ t

τ

d2Vp

dt2

∞∑
m=1,3,...

4

(mπ)2
cos[γm2(t−η)] dη+

1

2

dVp

dt
− 1

ζ(1 − l1)
[V +nV (t−τ)] = Hp(t).

(5.3)

5.1. Laplace transform. The Laplace transform of the system (5.2), (5.3)
yields

[s2V (s)−sV (τ)−V ′(τ)]

∞∑
m=1,3,...

4

(mπ)2
s

s2 + γ2
m1

− 1

2
[sV (s)−V (τ)]−Vp(s)

l1ζ
= H(s),

(5.4)

−[s2Vp(s) − sVp(τ) − V ′
p(τ)]

∞∑
m=1,3,...

4

(mπ)2
s

s2 + γ2
m2

+
1

2
[sVp(s) − Vp(τ)]

− 1

ζ(1 − l1)
[V (s) + nV (s) exp(−sτ)] = Hp(s).

(5.5)

Solving (5.4) and (5.5) for V (s) and Vp(s), and writing V (s) as a fraction, one obtains

V (s) =
M(s)

N(s)
,(5.6)

N(s) =

[ ∞∑
m=1,3,...

4s3

(mπ)2(s2 + γ2
m1)

− s

2

][
−

∞∑
m=1,3,...

4s3

(mπ)2(s2 + γ2
m2)

+
s

2

]

− 1

ζ2l1(1 − l1)
[1 + n exp(−sτ)],

(5.7)

M(s) =

{
[sV (τ) + V ′(τ)]

∞∑
m=1,3,...

4s

(mπ)2(s2 + γ2
m1)

− 1

2
V (τ) + H(s)

}

×
[
−

∞∑
m=1,3,...

4s3

(mπ)2
× 1

s2 + γ2
m2

+
s

2

]

+
1

l1ζ

{
−[sVp(τ) + V ′

p(τ)]

∞∑
m=1,3,...

4s

(mπ)2(s2 + γ2
m2)

+
1

2
Vp(τ) + Hp(s)

}
,

(5.8)
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Vp(s) = l1ζ

{
V (s)

[ ∞∑
m=1,3,...

4s3

(mπ)2(s2 + γ2
m1)

− s

2

]
− [sV (τ) + V ′(τ)]

×
∞∑

m=1,3,...

4s

(mπ)2(s2 + γ2
m1)

+
1

2
V (τ) −H(s)

}
.

(5.9)

It is known [48, 49] that this system is stable if all roots of the equation N(s) = 0
are to the left of the imaginary axis in the complex s plane and if no roots on the
imaginary axis are repeated. Since the last term of N(s) contains the product sτ ,
we should consider the complex variable sτ instead of s. Multiplying the equation
N(s) = 0 by τ , setting sτ = σ + iψ, and dividing the resulting expression into real
and imaginary parts, we obtain the following two equations:(

−gX1R − hX1I +
σ

2

)(
−gX2R − hX2I +

σ

2

)

+

(
−gX1I + hX1R − ψ

2

)(
gX2I − hX2R +

ψ

2

)

+
θ2l1

(1 − l1)
[1 + n exp(−σ) cosψ] = 0,

X1R =

∞∑
m=1,3,...

4[σ2 − ψ2 + (mπθ)2]

(mπ)2{4σ2ψ2 + [σ2 − ψ2 + (mπθ)2]2} ,

g = σ3 − 3σψ2, X1I =

∞∑
m=1,3,...

8σψ

(mπ)2{4σ2ψ2 + [σ2 − ψ2 + (mπθ)2]2} ,(5.10)

(
−gX1R − hX1I +

σ

2

)(
gX2I − hX2R +

ψ

2

)

−
(
−gX1I + hX1R − ψ

2

)(
−gX2R − hX2I +

σ

2

)

− θ2l1
(1 − l1)

n exp(−σ) sinψ = 0,

X2R =

∞∑
m=1,3,...

4{σ2 − ψ2 + [mπl1θζ/(1 − l1)]
2}

(mπ)2{4σ2ψ2 + {σ2 − ψ2 + [mπl1θζ/(1 − l1)]2}2} ,

h = 3σ2ψ − ψ3, X2I =

∞∑
m=1,3,...

8σψ

(mπ)2{4σ2ψ2 + {σ2 − ψ2 + [mπl1θζ/(1 − l1)]2}2} ,

(5.11)

θ =
c1τ

◦

l◦1
.(5.12)

The characteristic system (5.10), (5.11) includes two unknowns, σ and ψ, and
four nondimensional parameters. They define the flame location, l1; the temperature
ratio, ζ2 = T ◦

2 /T
◦
1 ; the interaction index, n; and the dimensionless time lag, θ. For

each preset imaginary part, ±ψ, of the complex root, the characteristic system (5.10),
(5.11) allows for calculation of the real part, σ, of this root and one of four parameters
if three others are known. This makes it possible to investigate the effect of these four
parameters on stability. In this study, we investigate the effect of the nondimensional
time lag, θ.
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5.2. Stability domains (numerical results). The system (5.10), (5.11) does
not have any purely real or imaginary roots. It follows from the fact that in the only
meaningful case, n > 0, the first equation has no roots when ψ = 0, and the second
one has no roots when σ = 0. Hence, the system (5.10), (5.11) may have only complex
roots. In such a case, to determine the stability domains, one should estimate the
range of parameters that corresponds to complex roots with only negative real parts.

The numerical results were obtained for the case of a centrally located flame,
l1 = 1/2, and a temperature ratio ζ2 = 1500 K/300 K. Since l1 and ζ are given, the
real part of the complex root, σ, and the dimensionless time lag, θ, depend on the
interaction index, n, and the imaginary part, ±ψ. However, (5.10) and (5.11) cannot
be solved for either σ or θ. Therefore, we solve each equation for the interaction
index n and then compute it by both equations. Since l1 and ζ are given, each
equation determines n as a function of the dimensionless time lag θ and of the complex
root of the system σ ± iψ. Thus, in such a situation, the goal is to find, for each
preset magnitude of ±ψ, such values of θ and σ that provide identical results of
n given by (5.10) and (5.11). Estimates were found by trial and error and then
refined by iterations. Mathcad 8 Professional was utilized. The results obtained for
(ψ/π) = ±(10/18, 14/18, 17/18) are given in Figure 3.

From the analysis of system (5.10), (5.11) and numerical results, we see the fol-
lowing.

(1) In the case of no combustion, when n = 0, the dimensionless time lag θ = 0.
Starting from this point, the dimensionless time lag increases as n grows until n =
∼ (6 − 10). After that point, it changes slowly, approaching an asymptote (Figure
3(a)). The asymptotic property of the function θ(n) is a result of the condition
T ◦

2 /T
◦
1 = constant that we used in the calculation. The data corresponding to the

condition θ = constant and variable ζ (Figure 4), shows that the temperature of the
burnt gases increases as the interaction index grows.

(2) As the time lag increases, the corresponding absolute value |σ| increases as
well (Figure 3(b)). After reaching a maximum over the range of n = ∼ (3 − 4), |σ|
rapidly decreases, approaching zero as n → ∞. In this case, the product of the first
two expressions in (5.10) vanishes because σ = g = XI = 0. Then (5.10) takes the
form { ∞∑

m=1,3,...

4ψ3

(mπ)2[ψ2 − (mπθ)2]
− ψ

2

}

×
{ ∞∑

m=1,3,...

4ψ3

(mπ)2 − {ψ2 − [mπl1θζ/(1 − l1)]2}
− ψ

2

}

− θ2l1
(1 − l1)

= θ2n cosψ.

(5.13)

Since the right-hand side of this equation goes to infinity as n → ∞, this equation is
satisfied when the first sum in the left-hand side also approaches infinity. The first
value of (θ/ψ) when this occurs is 0.106103292 . . . . This value also satisfies (5.11)
because this equation contains the same sum. Thus, the asymptotic value of the
dimensionless time lag is

θa = 0.106103292 . . . ψ.(5.14)

(3) The calculation shows that in the domain of dimensionless time lag 0 < θ <
0.36 for all n > 0, the real parts, σ, of the complex roots are negative. Although



1192 ABRAM DORFMAN

(a)

(b)

Fig. 3. Nondimensional time lag (a) and real part of the complex roots of the characteristic
system (5.10), (5.11) (b) for resulting oscillations for the case of centrally located flame (l1 = 1/2)
and temperature ratio T 0

2 /T
0
1 = 5.
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Fig. 4. Temperature ratio and real part of the complex roots of the characteristic system
(5.10), (5.11) for resulting oscillations for the case of centrally located flame l1 = 1/2, θ = 0.2,
and ψ = (12/18)π.

these roots correspond to stability conditions, it is not sufficient to say that the final
oscillation is stable. Other roots in the obtained domains may not satisfy the stability
conditions. Since we know that the system (5.10), (5.11) does not have purely real or
imaginary roots, we need to show that this system does not have complex roots with
positive real parts, σ, in these domains. To do it, we use two forms of (5.11).

(a) According to Figure 3(a), for small n, the stability dimensionless time lag,
θ, is also small. For this case, we use the first nonzero term of the Taylor’s series
of (5.11),

2σψ

4σ2ψ2 + (σ2 + ψ2)2
+ n exp(−σ) sinψ = 0.(5.15)

It is clear that in the case of σ > 0 and ψ > 0 this equation does not have roots.
Hence, there are no complex roots with positive real parts for small n and θ.

(b) For not small n, the function θ(n) has an asymptotic character. Here, the
stability dimensionless time lag changes slowly so that the ratio θ/ψ remains almost
constant, varying from 0.08 to 0.12. Note that, according to (5.14), this ratio is
strongly constant as n → ∞.

In view of this fact, we transform the two first terms in (5.11) to variables

µ =
σ

ψ
, ν =

θ

ψ
.(5.16)
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After some algebra, σψ appears as a factor, and (5.11) may be presented in the form

σf(µ, ν) =
θ2l1n exp(−σ) sinψ

(1 − l1)ψ
,

f(µ, ν) =

(
−g∗X∗

1R − h∗X∗
1I +

1

2

)(
g∗X∗

2I − h∗X∗
2R +

1

2

)

−
(
−g∗X∗

1I + h∗X∗
1R − 1

2

)(
−g∗X∗

2R − h∗X∗
2I +

1

2

)
.

(5.17)

Here, ∗ denotes the terms in (5.11) transformed to the variables defined in (5.16).
Since (sinψ)/ψ is positive, the right-hand side of (5.17) is always positive. Since the
left-hand side of this equation is a product σf(µ, ν), the sign of σ coincides with that
of function f(µ, ν). Computations show that in the domain indicated above, ν =
0.08–0.12, this function is negative for all positive µ. Then there are also no complex
roots with positive real parts.

(4) Thus, the system (5.10), (5.11) has only complex roots with negative real
parts. Hence, the corresponding values of the dimensionless time lag, 0 < θ < 0.36,
given in Figure 3(a), determine the stability domain. Each of these θ defines, according
to (5.12), a dimensional time lag τ◦ = θ(l◦1/c1) that theoretically provides the linear
stability of the final oscillation in a duct with centrally located flame and temperature
ratio 1500 K/300 K. This is true regardless of the stability of autonomous oscillations
because no restrictions about this were used in the stability analysis. For other flame
locations and temperature ratios, the time lag stability domains may be found by the
same technique.

(5) In general, the nondimensional time lag depends on the flame location, the
ratio of the burnt/fresh gas temperatures, and the interaction index. However, nu-
merical results show that, except for relatively small n, the time lag depends only
slightly on the interaction index (Figure 3(a)). Then the stability domains of the
nondimensional time lag depend mainly on the flame location and the burnt/fresh
gases temperature ratio if n is not small.

(6) Knowing θ, possible frequencies of forced oscillation may be estimated. Taking
into account that the time lag usual is a fraction of the period of oscillation, one obtains

0 <
τ

T
< 1, 0 < ω◦ <

2πc1
l◦1θ

( τ

T

)
.(5.18)

The performed above analysis shows that the dimensionless time lag from the
stability domain 0 < θ < 0.36 (Figure 3(a)) and forced oscillation at frequency from
the range (5.18) theoretically provide the linear stability of the final oscillation in
a duct with centrally located flame and temperature ratio 1500 K/300 K no matter
that initial oscillations is not stable. For other flame locations and temperature ratios,
analogous stability analysis may be made by the same technique.

6. Asymptotic correlation as t → ∞ for pressure and velocity behind
flame. Since the problem is linear, to answer a question of stability means to find
out whether the parameters of the final oscillation are bounded or become infinite
as t → ∞. To do this, we calculate the pressure and velocity behind the flame as
t → ∞. The pressure behind the flame is obtained from (4.21), while the velocity is
easier to calculate by (3.8) and (4.9) than using (4.28). Considering relations (3.9)
and (5.1), we have Fp(l1, t) = P (t) = Vp(t) exp(ikt), F (l1, t) = U(t) = V (t) exp(ikt),
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and F (l1, t− τ) = U(t − τ) = V (t − τ) exp[ik(t − τ)]. Substituting these results into
(4.21) and (3.8), one gets, after using (4.8),

lim
t→∞

p2(l1, t) = α lim
t→∞

Vp(t),(6.1)

lim
t→∞

u2(l1, t) =
α

ζ
lim
t→∞

[V (t) + V (t− τ) exp(ikτ)].(6.2)

Thus, to find the parameters behind the flame as t → ∞, one needs the limits
of the functions V (t) and Vp(t). These may be determined by the inverse Laplace
transform of expression (5.6) and (5.9). A second way is possible, in particular, when
all roots of the denominator in (5.6) are to the left of the imaginary axis, which is
simpler because it gives the result without using the inverse transform.

Since it was shown above that these conditions are satisfied, we first find the
values of V (t) and Vp(t) as t → ∞ by computing limits of sV (s) and sVp(s) as s → 0
[49]. The denominator in (5.6) does not become zero as s → 0 because we have seen
that s = 0 is not a root of the equation N(s) = 0. At the same time, it is clear that
sM(s), according to (5.8), approaches zero as s → 0. Therefore, we have from (5.8)

lim
t→∞

V (t) = lim
s→0

sM(s)

= lim
s→0

{{
[sV (τ) + V ′(τ)]

∞∑
m=1,3,...

4s2

(mπ)2(s2 + γ2
m1)

− s

2
V (τ) + sH(s)

}

×
[
s

2
−

∞∑
m=1,3,...

4s3

(mπ2)(s2 + γ2
m1)

]

− 1

l1ζ

{
[sVp(τ) + V ′

p(τ)]

∞∑
m=1,3,...

4s2

(mπ2)(s2 + γ2
m2)

− s

2
Vp(τ) − sHp(s)

}}

= 0.
(6.3)
It follows from (5.9) that the other limit of interest also equals zero:

lim
t→∞

Vp(t) = lim
s→0

sVp(s)

= lim
s→0

l1ζ

{
sV (s)

[ ∞∑
m=1,3,...

4s3

(mπ)2(s2 + γ2
m1)

− s

2

]
− [sV (τ) + V ′(τ)]

×
∑

m=1,3,...

4s2

(mπ)2(s2 + γ2
m2)

+
s

2
V (τ) − sH(s)

}

= 0.

(6.4)

In evaluating these limits, two others, lim[sH(s)] = 0 and lim[sHp(s)] = 0, as s → 0,
are taken into account. They follow from (4.30), (4.31), and (5.1).

There are two types of oscillations in the t domain, which correspond to the
zero limit in the s domain. They are: a suppressed oscillation and a steady-state
one with zero mean value amplitude [49]. To clarify which oscillation is realized, we
take the inverse Laplace transform of (5.6). This is a tiresome procedure because
decomposition of the function V (s) leads to sum of about 30 fractions of the types

1

s2 + γ2
,

s

s2 + γ2
,

1

s + ik
,

1

s2 + 2µs + µ2 + v2
,

s

s2 + 2µs + µ2 + v2
.(6.5)



1196 ABRAM DORFMAN

The inverse transformation of these fractions yields the following expressions:

sin γt

γ
, cos γt, exp(−ikt),

exp(−µt) sin νt

ν
exp(−µt)

(
cos νt− µ

ν
sin νt

)
.(6.6)

Since the two last functions become zero as t → ∞, the result contains the three
others:

lim
t→∞

V (t) =

∞∑
m=1,3,...

∞∑
j=1,3,...

C1mj cos γm1t + D1mj sin γm1t + C2mj cos γm2t

+D2mj sin γm2t + C3mj exp(−ikt).

(6.7)

The coefficients Cmj and Dmj depend on several others (from 4 to 9), which arise
by decomposition of (5.6) into the fractions given in (6.5). These others depend on
γm1 = mπ/l1ζ, γm2 = mπ/(1 − l1), µ = σ/τ, v = ψ/τ , and k. Since the coefficients
Cmj and Dmj in the double-sums (6.7) are proportional to 1/m2, or to 1/j2, or to
their product, these sums converge. Hence, the function V (t) is bounded as t → ∞.
An analogous expression for Vp(t) is found by applying (5.9).

It is clear from (6.7) that the limit of the function V (t) as well as the limit of
the function Vp(t) (as it is analogous) describe steady-state oscillatory motion with
finite amplitudes and zero mean value for a period. Expressions (6.1) and (6.2) differ
from functions V (t) and Vp(t) only by factors α and (α/ζ), respectively. Hence, the
pressure and velocity behind the flame also perform steady-state oscillations with
finite amplitudes and zero mean values as t → ∞. Since the stability analysis was
performed without any restriction on the initial oscillation stability (see subsection
5.2), this result is true no matter if the initial oscillation is stable or unstable.

Thus, the asymptotic analysis proves that the pressure and velocity behind the
flame that form by interaction of initial and forced oscillations are bounded as t → ∞.
This issue confirms the stability analysis result: at the specific dimensionless time
lags from the stability domains (Figure 3(a)), the forced oscillations at corresponding
frequencies from the range (5.18) stabilize unstable initial autonomous oscillations in
a duct. Hence, the active control by forced oscillation theoretically provides linear
stability of combustion in the duct with initially unstable autonomous oscillations.

7. Conclusion. (1) A model and mathematical technique have been developed
to simulate the input-output mechanism in an active control system. In this case, an
existing oscillation in the combustor interacts with a control input and with a flame.
Such a model and mathematical technique significantly differ from well-known ones
for single oscillation/flame interactions.

(2) The model has been used to demonstrate the feasibility of stabilizing premixed
combustion by forced oscillation. It is assumed that the oscillations at frequency ω
generated by the loudspeaker are imposed on autonomous oscillations at frequency
ω0 in a duct.

(3) The problem of the interaction of two oscillations has been solved by conju-
gating wave equation solutions obtained separately for each portion of the duct. The
whole solution takes into account (a) the initial conditions, i.e., the velocity and pres-
sure fields existing in the combustor when the control input enters; (b) two boundary
conditions in the duct; (c) conditions to conjugate the flows of fresh and burnt gases
at the flame; (d) the fact that in each part of the duct only one boundary condition is
known, and, hence, two others are needed. Because of that, two unknown functions
are introduced which define the pressure and velocity amplitudes at the flame. The



COMBUSTION STABILIZATION 1197

stability analysis is reduced to a system of two integro-differential equations deter-
mining these functions.

(4) A stability analysis has been performed using the system of characteristic
equations (5.10), (5.11). Two general results are derived: (a) The characteristic
system does not have any purely real or imaginary roots, and (b) the nondimensional
time lag (5.12) depends on the flame location, burnt/fresh gases temperature ratio,
and interaction index.

(5) Numerical results and stability domains for the dimensionless time lag have
been obtained for a centrally located flame and a burnt/fresh gases temperature ratio
1500 K/300 K. It has been proved that the characteristic system (5.10), (5.11) has only
complex roots with negative real parts in the stability domains of the nondimensional
time lag 0 < θ < 0.36. Knowing the time lag and the limits of the ratio τ/T,
the corresponding range (5.18) of possible frequencies of forced oscillation has been
estimated.

(6) It has been shown that behind the flame in the duct, the resulting pressure and
velocity perform steady-state oscillations with finite amplitudes and zero mean values
as t → ∞. Thus, the forced oscillations at specific dimensionless time lags from
the stability domains and corresponding frequencies stabilize unstable autonomous
oscillations in the duct.

(7) The developed mathematical technique may be applied for different com-
bustion models, configurations, boundary and initial conditions. In the case of the
considered problem formulation for combustion in a duct, an exact solution has been
obtained.
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ω-HARMONIC FUNCTIONS AND INVERSE CONDUCTIVITY
PROBLEMS ON NETWORKS∗
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Abstract. In this paper, we discuss the inverse problem of identifying the connectivity and
the conductivity of the links between adjacent pair of nodes in a network, in terms of an input-
output map. To do this we deal with the weighted Laplacian ∆ω and an ω-harmonic function on the
graph, with its physical interpretation as a diffusion equation on the graph, which models an electric
network. After deriving the basic properties of ω-harmonic functions, we prove the solvability of
(direct) problems such as the Dirichlet and Neumann BVPs. Our main result is the global uniqueness
of the inverse conductivity problem for a network under a suitable monotonicity condition.
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Introduction. A network represents a way of interconnecting any pair of users
or nodes by means of some meaningful links. Thus, it is quite natural that its structure
can be represented, at least in a simplified form, by a connected graph whose vertices
represent nodes and whose edges represent their links.

The problem of discovering the detailed inner structure of the network from a col-
lection of boundary measurements can be seen as a type of inverse problem, analogous
to those arising in tomography. For example, problems of interest include checking
connectivity, tracking data traffic, performance of software or hardware, security, reli-
ability, and so on. In particular, when we have some problems on a part of the network
or when we are in need of finding such a part having problems, it is almost impossible
to investigate the whole network, since the network may be too vast and its structure
or connectivity too complicated. For this reason, the study of the inverse problem to
recover the whole network with partial data is becoming increasingly important for
practical applications.

From the graph theoretical point of view, problems involving graph identification
have been among the most important and famous open problems in graph theory [BH].
Most of the work on this subject has concentrated on spectral graph theory, on the
realization of graphs with given distances, and on the reconstruction of graphs from
vertex deleted subgraphs (see [B2], [B3], [Ch], [CY], [CGGS], [CO], [CL], [CvDGT],
[CvDS], and [HY]). Thus far, spectral theory has been one of the most significant tools
used in studying graphs, and it has led to noteworthy progress in the study of these
questions. But, as is well known, graphs are not in general completely characterized
by their spectra (see [CvDGT, p. 66]).
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In this paper another method of studying the graph identification problem will
be introduced—a discrete version of the inverse conductivity problem.

The original aim of the inverse conductivity problem was to identify the conduc-
tivity coefficient in continuous media from boundary measurements, such as Dirichlet
data, Neumann data, or their appropriate combinations.

The discrete or finite nature of graphs makes working on graphs basically easier
than investigating these problems in the continuous case. On the other hand, their
discrete nature also gives rise to several disadvantages. For example, solutions of the
Laplace equation (introduced in section 2) do not have the local uniqueness property,
nor is their uniqueness guaranteed by the Cauchy data, contrary to the continuous
case, where they are the most important mathematical tools used to study the inverse
conductivity problem and related problems.

The purpose of this paper is to give a discrete analogue of the inverse conductivity
problem as studied in a number of publications, such as [A], [Ca], [I], [IP], [KS], and
[SU]. To do this we introduce an elliptic operator on the graph, the ω-Laplacian ∆ω,
and interpret it as a diffusion equation on the graph modeled by the electric network.
Since little has been studied so far about partial differential equations on graphs, we
will establish several useful properties of ∆ω, which are essential to solve the inverse
problem.

The inverse problem we study is to identify the connectivity of the nodes and the
conductivity of the edges between each adjacent pair of nodes. The following global
uniqueness result for the inverse conductivity problem in a network is the main result
of this paper. We prove it in section 4.

Theorem. Let ω1 and ω2 be weights with ω1 ≤ ω2 on S × S and f1, f2 : S → R

be functions satisfying, for j = 1, 2,⎧⎪⎨
⎪⎩

∆ωjfj(x) = 0, x ∈ S,
∂f

∂ωj
n (z) = ψ(z), z ∈ ∂S,∫

S
fj dωj = K

for a given function ψ : ∂S → R with
∫
∂S

ψ = 0 and a given constant K > 0.
If we assume that

(i) ω1(z, y) = ω2(z, y) on ∂S ×
◦
∂S,

(ii) f1|∂S = f2|∂S ,
then we have

f1 = f2 on S

and

ω1 = ω2 on S × S.

The second conclusion ω1 = ω2 above is exactly what we want to have. In fact,
it shows not only whether or not each pair of nodes is connected by a link but also
how nice the link is.

Both the monotonicity condition ω1 ≤ω2 and the normalization condition
∫
S
fj dωj

= K will be shown to be necessary by means of counterexamples. In fact, even in the
continuous case, some form of monotonicity has also been considered (see [I], [Ca],
and [A]).

To paraphrase the previous discussion in terms of communications networks, there
are two clear ways such a network can be disrupted. One occurs when some nodes
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fail or “cease to exist,” in which case the structure of the network as a graph has
changed. The other occurs when traffic among some nodes becomes so large that
for practical purposes the network is also disrupted; this corresponds to the problem
we consider here. The traffic may become extremely slow, but the structure of the
underlying graph has not changed. This closely resembles the problem we consider
here. Besides, there are also indications that there are possible applications to fault-
testing in VLSI design and random walks with weighted transition probabilities. See
also [ClMM], [AJB1], and [AJB2].

We organized this paper as follows: First, we discuss calculus on graphs in sec-
tion 1, and in section 2 we introduce ω-harmonic functions on graphs and some good
properties of them, which are useful later and for further study. In fact, those prop-
erties are interesting by themselves in the authors’ opinion.

In section 3, we discuss the direct problems such as the Dirichlet BVP (DBVP)
and Neumann BVP (NBVP) and give a physical interpretation of ∆ω. Additional
useful properties of ω-harmonic functions will be introduced.

Finally, in section 4, we prove the global uniqueness result for the inverse problem
under the monotonicity condition. For its proof, we introduce a discrete version of
the Dirichlet principle, which is an essential tool for the proof of the main theorem.

After the authors completed this paper, Professor Gunter Uhlmann informed the
authors that Professor Morrow with his collaborators had published a series of papers
(see [CM1], [CM2], [MMC], [IM] and [MIC]) on the inverse problem for networks.
But their results were concentrated on the networks of special types such as circular
networks or integer lattices. Moreover, their approaches do not seem to work for the
networks of general type considered in this paper.

1. Calculus on weighted graphs. We shall begin with some definitions of
graph theoretic notions frequently used throughout this paper.

By a graph G = G(V,E) we mean a finite set V of vertices with a set E of
two-element subsets of V (whose elements are called edges). The set of vertices and
edges of a graph G are sometimes denoted by V (G) and E(G), or simply V and E,
respectively. As conventionally used, we denote by either x ∈ V or x ∈ G the fact
that x is a vertex in G.

A graph G is said to be simple if it has neither multiple edges nor loops, and G
is said to be connected if for every pair of vertices x and y there exists a sequence
(termed a path) of vertices x = x0, x1, x2, . . . , xn−1, xn = y such that xj−1 and xj are
connected by an edge (termed adjacent) for j = 1, 2, . . . , n.

A graph S = S(V ′, E′) is said to be a subgraph of G(V,E) if V ′ ⊂ V and E′ ⊂ E.
Then, we call G a host graph of S. If E′ consists of all the edges from E which connect
the vertices of V ′ in its host graph G, then S is called an induced subgraph. It is
noted that an induced subgraph of a connected host graph may not be connected.

A weighted (undirected) graph is a graph G(V,E) associated with a weight function
ω : V × V → [0,∞) satisfying

(i) ω(x, x) = 0, x ∈ V,
(ii) ω(x, y) = ω(y, x) if x ∼ y,
(iii) ω(x, y) = 0 if and only if {x, y} /∈ E.
Here, x ∼ y means that two vertices x and y are connected (adjacent) by an edge

in E. In this case, {x, y} denotes the edge connecting the vertices x and y.
In particular, a weight function ω satisfying

ω(x, y) = 1 if x ∼ y
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is called the standard weight on G. The physical meaning of the weight function will
be discussed later in section 3.

The degree dωx of a vertex x in a weighted graph G(V,E) with a weight ω is
defined to be

dωx :=
∑
y∈V

ω(x, y).

Throughout this paper, all the subgraphs in our concern are assumed to be in-
duced, simple, and connected subgraphs of a weighted graph. A function on a graph
is understood to be a function defined just on the set of vertices.

The integration of a function f : G → R on a graph G = G(V,E) is defined by∫
G

fdω

(
or simply

∫
G

f

)
:=

∑
x∈V

f(x)dωx.

We shall now define the directional derivative of a function f : G → R. For each
x and y ∈ V we define

Dω,yf(x) := [f(y) − f(x)]

√
ω(x, y)

dωx
.

The gradient ∇ω of function f is defined to be a vector

∇ωf(x) :=
(
Dω,yf(x)

)
y∈V

,

which is indexed by the vertices y ∈ V . Then it is easy to see that∫
G

|∇ωf(x)|2 =
∑
x∈V

|∇ωf(x)|2 dωx

=
∑
x∈V

∑
y∈V

|f(y) − f(x)|2 ω(x, y)

= 2
∑

{x,y}∈E

|f(y) − f(x)|2 ω(x, y).

This integral is called the energy of f on G.
For a subgraph S of a graph G = G(V,E), the (vertex) boundary ∂S of S is the

set of all vertices z ∈ V not in S but adjacent to some vertex in S, i.e.,

∂S := {z ∈ V − S|z ∼ y for some y ∈ S},

and the inner boundary
◦
∂S is defined by

◦
∂S:= {y ∈ S|y ∼ z for some z ∈ ∂S}.

Also, by S we denote a graph whose vertices and edges are in S and vertices in ∂S.
We note here that by definition the boundary ∂S does not contain edges.

The (outward) normal derivative ∂f
∂ωn (z) at z ∈ ∂S is defined to be

∂f

∂ωn
(z) :=

∑
y∈S

[f(z) − f(y)] · ω(z, y)

d′ωz
,

where d′ωz =
∑

y∈S ω(z, y).
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The ω-Laplacian ∆ω of a function f : G → R on a graph G is defined by

∆ωf(x) :=
∑
y∈V

[f(y) − f(x)] · ω(x, y)

dωx
, x ∈ V.(1.1)

For notation, notions, and conventions we refer the reader to [Ch] and [CvDS].
Remark 1.1.

(i) The discrete Laplacian on graphs can be found in several places, such as [Ch],
[CvDS], and [B1]. But the ω-Laplacian defined above is not exactly the same
as the one considered in those references. In fact, the definition used here
will give us an advantage of a more consistent treatment in section 2.

(ii) The first derivatives and gradient in a discrete sense have not been introduced
precisely so far in the literature, as far as the authors know. But the first
derivative Dω,y defined above may still be unsatisfactory in the sense that
Leibniz’s rule does not hold. In spite of this defect, it will be seen later
that it has the appropriate physical meaning and works very well with respect
to calculus on graphs.

In what follows, a function f defined on S may be understood as a function on
its host graph G such that f = 0 on G \ S if necessary.

Theorem 1.2. Let S be a subgraph of a host graph G. Then for any pair of
functions f : S → R and h : S → R we have

2

∫
S

h(−∆ωf) =

∫
S

∇ωh · ∇ωf.(1.2)

Proof. A direct use of the definitions mentioned above gives

2

∫
S

h(−∆ωf) = 2
∑
x∈S

h(x)[−∆ωf(x)]dωx

= −2
∑
x∈S

h(x)

⎧⎨
⎩

∑
y∈V (G)

[f(y) − f(x)]ω(x, y)

⎫⎬
⎭

= 2
∑
x∈S

∑
y∈S

h(x)[f(x) − f(y)]ω(x, y)

=
∑
x∈S

∑
y∈S

h(x)[f(x) − f(y)]ω(x, y) +
∑
x∈S

∑
y∈S

h(y)[f(y) − f(x)]ω(x, y)

=
∑
x∈S

∑
y∈S

{
[f(y) − f(x)]

√
ω(x, y)

}
·
{

[h(y) − h(x)]
√
ω(x, y)

}

=
∑
x∈S

{
∇ωf(x) · ∇ωh(x)

}
dωx

=

∫
S

∇ωf · ∇ωh.

The above theorem yields many useful formulas such as the graph version of the
Green theorem.

Corollary 1.3. Under the same hypotheses as above we have the following
identities:
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(i)

2

∫
S

f(−∆ωf) =

∫
S

|∇ωf |2 .

(ii) ∫
S

h∆ωf =

∫
S

f∆ωh.

(iii) (Green’s formula)∫
S

(f∆ωh− h∆ωf) =

∫
∂S

(
f
∂h

∂ωn
− h

∂f

∂ωn

)
.

Proof. (i) is trivial and (ii) can be easily obtained by the symmetry in (1.2). We
prove (iii). In view of (ii) we have

0 =

∫
S

[f∆ωh− h∆ωf ]

=

∫
S

[f∆ωh− h∆ωf ] +

∫
∂S

[f∆ωh− h∆ωf ].

Then, since S is the induced subgraph, it follows that ω(z, y) = 0 for all z and y ∈ ∂S
and∫
S

[f∆ωh− h∆ωf ] =

∫
∂S

[h∆ωf − f∆ωh]

=
∑
z∈∂S

[h(z)∆ωf(z) − f(z)∆ωh(z)]dωz

=
∑
z∈∂S

∑
y∈S

{
h(z)

[
f(y) − f(z)

]
ω(z, y) − f(z)]

[
h(y) − h(z)

]
ω(z, y)

}

=
∑
z∈∂S

[
h(z)

{
− ∂f

∂ωn

}
+ f(z)

∂h

∂ωn
(z)

]
dωz

=

∫
∂S

[
f
∂h

∂ωn
− h

∂f

∂ωn

]
.

In the continuous case, the following are well-known formulas:

∆(fg) = f∆g + 2∇f · ∇g + g∆f,∫
Ω

∇f · ∇g +

∫
Ω

f∆g =

∫
∂Ω

f
∂g

∂n
.

Here we introduce a discrete analogue of these formulas.
Theorem 1.4. Under the same hypotheses as in Theorem 1.2, the following

identities hold:
(i)

∆ω(fh) = f∆ωh + ∇ωf · ∇ωh + h∆ωf,

(ii) ∫
S

∇ωf · ∇ωh +

∫
S

[f∆ωh + h∆ωf ] =

∫
∂S

∂(fh)

∂ωn
.

Proof. (i) can be obtained by an elementary manipulation. Using now (i) and
Theorem 1.2, (iii) with h ≡ 1 we obtain (ii).
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2. ω-harmonic functions. In this section we will discuss the functional prop-
erties of functions which satisfy the equation

∆ωf(x) :=
∑
y∈S

[
f(y) − f(x)

]ω(x, y)

dωx
= 0.(2.1)

For a subgraph S with boundary ∂S 	= φ of a host graph G with a weight ω
we say that a function f : S → R is ω-harmonic on S if it satisfies (2.1) for all
x ∈ S, i.e.,

f(x) =
1

dωx

∑
y∈S

f(y)ω(x, y), x ∈ S.

This implies that the value of f at x is given by a weighted average of the values
of f at its neighboring vertices. From this point of view, we can clearly expect the
following result to be true.

Theorem 2.1 (minimum and maximum principle). Let S be a subgraph of a host
graph G with a weight ω and f : S → R be a function.

(i) If ∆ωf(x) ≥ 0, x ∈ S, and f has a maximum at a vertex in S, then f is
constant.

(ii) If ∆ωf(x) ≤ 0, x ∈ S, and f has a minimum at a vertex in S, then f is
constant.

(iii) If ∆ωf(x) = 0, x ∈ S, and f has either a minimum or maximum in S, then
f is constant.

(iv) If ∆ωf(x) = 0, x ∈ S, and f is constant on the boundary ∂S, then f is
constant.

Proof. (ii) can be done in a similar way as in (i). (iii) and (iv) are easily obtained
from (i) and (ii).

We prove (i). Assume that f has a maximum at a vertex x0 ∈ S. Then

f(x0) ≥ f(y), y ∈ S,(2.2)

and

f(x0) ≤
∑
y∈S

f(y)
ω(x0, y)

dωx0
.(2.3)

Suppose that there exists y0 ∈ S such that x0 ∼ y0 and f(x0) 	= f(y0), i.e., f(x0) >
f(y0) in view of (2.2). Then it follows from (2.3) that

f(x0) ≤
∑
y∈S
y �=y0

f(y)ω(x0, y)

dωx0
+

f(y0)ω(x0, y0)

dωx0

<
∑
y∈S
y �=y0

f(x0)ω(x0, y)

dωx0
+

f(x0)ω(x0, y0)

dωx0

= f(x0),

which implies that f(x0) = f(y) for all y ∈ S such that y ∼ x0. Now, for any x ∈ S,
there exists a path

x0 ∼ x1 ∼ x2 ∼ · · · ∼ xn−1 ∼ xn = x,
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since S is connected. By applying the same argument as above inductively we see
that f(x0) = f(x).

The following is an easy consequence of the above theorem.
Corollary 2.2. Under the same hypotheses as in Theorem 2.1, the following

statements are true:
(i) If ∆ωf ≥ 0 on S and f |∂S ≤ 0 (< 0), then f ≤ 0 (< 0) on S.
(ii) If ∆ωf ≤ 0 on S and f |∂S ≥ 0 (> 0), then f ≥ 0 (> 0) on S.
Corollary 2.3. (1) If two functions f and g on S satisfy

∆ωf = 0 and ∆ωg ≥ 0

on S, then g|∂S ≤ f |∂S implies g ≤ f on S.
(2) If a function f : S → R satisfies

∆ωf(x) = 0, x ∈ S,

and |f | has a maximum in S, then f is constant.
In the continuous case, it is well known that a local maximum principle holds for

a harmonic function in an open subset Ω ⊂ Rn. But it is not hard to see that the
local maximum principle is no longer true in general in our case. Moreover, the local
uniqueness principle does not hold in general. As a matter of fact, it is rather natural
to expect that such discrepancies are caused by the discrete nature of graphs.

A nonempty subset Γ of vertices of a subgraph S is said to be a surface in S if

Γ = ∂T for a subgraph T whose vertices belong to S. In this case, we denote by
◦
Γ

the inner boundary
◦
∂T . For each vertex z ∈ Γ and x ∈

◦
Γ we define

d′ωz :=
∑
y∈

◦
Γ

ω(y, z) (inward degree)

and

d′′ωx :=
∑
z∈Γ

ω(x, z) (outward degree).

In addition, for a function f on S we write∫
Γ

f(z)d′ωz =
∑
z∈Γ

f(z)d′ωz (inward integral)

and ∫
◦
Γ

f(x)d′′ωx =
∑
x∈

◦
Γ

f(x)d′′ωx (outward integral).

We use these notions to obtain the following interesting properties of ω-harmonic
functions.

Theorem 2.4. Let S be a subgraph of a host graph with weight ω and let f : S →
R. Then f is ω-harmonic on S, i.e., for all x ∈ S,

∆ωf(x) = 0,(2.4)
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if and only if for every surface Γ in S∫
Γ

f(z)d′ωz =

∫
◦
Γ

f(y)d′′ωy.(2.5)

Proof. Let x ∈ S and Γx = {y ∈ S|x ∼ y}. Then Γx is a surface in S and
◦
Γx= {x}.

Since dωx = d′′ωx on
◦
Γx and d′ωz = ω(x, z), (2.5) implies

f(x)dωx =
∑
z∈Γx

f(z)ω(x, z),

which implies (2.4) immediately
Assume now that (2.4) holds and let Γ be a surface in S such that Γ = ∂T for a

subgraph T ⊂ S. We use Green’s formula (Corollary 1.3, (iii)) to obtain

0 =

∫
T

∆ωf

=

∫
Γ

∂f

∂ωn

=
∑
z∈Γ

∂f

∂ωn
(z)d′ωz

=
∑
z∈Γ

∑
y∈

◦
Γ

[
f(z) − f(y)

]
ω(z, y).(2.6)

Then it follows that ∑
z∈Γ

∑
y∈

◦
Γ

f(z)ω(z, y) =
∑
z∈Γ

∑
y∈

◦
Γ

f(y)ω(z, y)

or, equivalently, ∑
z∈Γ

f(z)
[∑
y∈

◦
Γ

ω(z, y)
]

=
∑
y∈

◦
Γ

f(y)
[∑
z∈Γ

ω(z, y)
]
,

which yields (2.5).
In view of (2.6) we obtain the edge version of Theorem 2.4, the so-called dual

theorem, as follows.
Corollary 2.5. Under the same conditions as in Theorem 2.4, the formula (2.5)

is equivalent to ∑
{z,y}∈E(Γ,

◦
Γ)

[
f(z) − f(y)

]
ω(z, y) = 0,

where E(Γ,
◦
Γ) denotes the set of all edges joining a vertex in Γ and a vertex in

◦
Γ.

For two vertices x and y in a connected graph, the distance d(x, y) between x and
y is the number of edges in a shortest path joining x and y.

For a vertex x0 in a subgraph S we write

Γj(x0) :=
{
y ∈ S| d(x0, y) = j

}
, j = 0, 1, 2, . . . ,

which is called a neighborhood of x0 with radius j.
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Then the following is a variant of Theorem 2.4.
Corollary 2.6. Let S and f be the same as in Theorem 2.4. Then f is ω-

harmonic on S if and only if for every x0 ∈ S

∫
Γj(x0)

f(x)d′′ωx =

∫
Γj+1(x0)

f(x)d′ωx(2.7)

for each j with Γj(x0) ⊂ S.
Proof. Letting j = 0 in (2.7), we have the sufficiency. To prove the necessity,

consider an induced subgraph T whose vertices are exactly those of
⋃j

k=0 Γk(x0).
Then it is easy to see that

∂T = Γj+1(x0) and
◦
∂T⊂ Γj(x0).

But a vertex x in Γj(x0), which does not belong to
◦
∂T , does not make any contribu-

tion to the outer integral
∫
Γj(x0)

f(x)d′′ωx, since d′′ωx = 0. Hence, condition (2.5) in

Theorem 2.4 shows the condition is necessary.
The following is the dual version of the above corollary.
Corollary 2.7. Under the same conditions as in Corollary 2.6 the formula

(2.7) is equivalent to

∑
{x,y}∈E(Γj(x0),Γj+1(x0))

[
f(x) − f(y)

]
ω(x, y) = 0,

where E(Γj(x0),Γj+1(x0)) denotes the set of all edges joining a vertex in Γj(x0) and
a vertex in Γj+1(x0).

3. The Dirichlet and Neumann BVPs: Direct problems. In this section,
we discuss the direct problems such as the Dirichlet BVP (DBVP) and Neumann
BVP (NBVP) (cf. [Ch], [CY], [CO], [BCE1], and [BCE2]).

We start this section with a physical interpretation of the ω-Laplace and ω-Poisson
equations. Consider a host graph G with a weight ω and an (induced) subgraph S.
For a surface Γ in S with Γ = ∂T for some T ⊂ S and z ∈ Γ, the flux of energy
passing through z to its adjacent nodes in T is given by

−
∑
y∼z

[
f(z) − f(y)

]
· ω(z, y)

d′z
,(3.1)

where d′z =
∑

y∼z,y∈T ω(z, y) and f is a potential function in a diffusion field on a
network (for example, an electrostatic field, a thermal field, or an elastic membrane).
Here, the weight ω(z, y) plays the role of the conductivity of the diffusion along the
edge {z, y}. In fact, (3.1) is exactly − ∂f

∂ωn (z) on Γ by definition (see section 1), and
thus, by Green’s formula we have

∫
T

(−∆ωf) =

∫
Γ

(
− ∂f

∂ωn

)
,

which is the flow across Γ.
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On the other hand, assume that T gains (or loses) an amount of energy
∫
T
g,

where g is the energy density. Then we have∫
T

(−∆ωf) =

∫
T

g.

Therefore, since T is arbitrary, by taking T to be any single vertex x ∈ S we obtain
the vertex equation

−∆ωf(x) = g(x), x ∈ S.(3.2)

Thus, it is reasonable to say that the conductivity equation on a graph can be rep-
resented as in (3.2), where ω(x, y) corresponds to the edge conductivity on the edge
x, y.

Following the work of Fan Chung and her collaborators [Ch], [CY], and [CO], we
will discuss first (3.2) on a graph G = G(V,E) with a weight ω and no boundary. We
consider the matrix

∆ω(x, y) =

⎧⎨
⎩

−1 if x = y,
ω(x,y)
dωx if x ∼ y,

0 otherwise.

We can consider the function f as a N -dimensional vector, where N = |V | denotes
the number of vertices of the graph G. Thus, (3.2) can be understood as a matrix
linear equation. Let D denote the diagonal matrix with the (x, x)th entry having the
value dωx for each x and Lω = D1/2∆ωD

−1/2. Then (−Lω) is a nonnegative definite
symmetric matrix so that it has the eigenvalues

λ0 < λ1 ≤ λ2 ≤ · · · ≤ λN−1

and corresponding eigenfunctions

Φ0,Φ1,Φ2, . . . ,ΦN−1,(3.3)

which are orthonormal in the sense that for each pair of distinct i and j∑
x∈V

Φi(x) · Φj(x) = 0,

while, for all j, ∑
x∈V

|Φj(x)|2 = 1.

It is easy to show that (see [Ch]) λ0 = 0, λ1 > 0 and Φ0(x) =
√
dωx√

vol(G)
, x ∈ V ,

and vol(G) :=
∑

x∈V dωx.
In what follows, we occasionally use the notation 〈 , 〉X , defined by 〈f, g〉X =∑

x∈X f(x)g(x) for simplicity. Now we have the following solvability result for the
Poisson equation.

Theorem 3.1. Let G = G(V,E) be a graph with a weight ω and f : G → R be a
function. Then the equation

∆ωf(x) = g(x), x ∈ V,(3.4)
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has a solution if and only if
∫
G
g = 0. In this case, the solution is given by

f(x) = a0 + 〈Γω(x, ·), g〉V , x ∈ V,(3.5)

where a0 is an arbitrary constant and

Γω(x, y) =

N−1∑
j=1

(
− 1

λj

)
Φj(x)Φj(y)

√
dωy

dωx
, x, y ∈ V.(3.6)

Proof. Assume that
∫
G
g = 0. Then

〈D1/2g,Φ0〉 =
∑√

dωxg(x) ·
√
dωx√
volG

=
1√

volG

∫
G

g

= 0,

where D is the diagonal matrix whose xth diagonal entry is dωx.
Consider the orthogonal expansion

(
D1/2f

)
(x) =

N−1∑
j=0

ajΦj(x), x ∈ V,

where aj = 〈D1/2f,Φj〉, j = 0, 1, 2, . . . , N − 1. Then since LωD
1/2 = D1/2∆ω and

−λjaj = 〈D1/2f,LωΦj〉
= 〈LωD

1/2f,Φj〉
= 〈D1/2g,Φj〉,

we have

aj =

(
− 1

λj

)
〈D1/2g,Φj〉, j = 1, 2, . . . , N − 1,

and a0 is an arbitrary constant. Hence

√
dωxf(x) = a0

√
dωx√
volG

+

N−1∑
j=1

(
− 1

λj

)[∑
y∈V

g(y)Φj(y)
√
dωy

]
Φj(x).

This is equivalent to

f(x) =
a0√
volG

+

N−1∑
j=1

(
− 1

λj

)∑
y∈V

g(y)Φj(y)

√
dωy√
dωx

Φj(x),

which gives (3.5) with a different constant a0. Conversely, a simple computation
shows that

∆ω · Γω g(x) = g(x) +
1

volG

∫
G

g, x ∈ V,
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which implies that every function of the form (3.5) gives a solution to the equation
(3.4).

The proof of the converse is easy.
The matrix Γω in (3.6) is called the Green function of ∆ω. The following corollary

is a Liouville-type theorem for ω-harmonic functions.
Corollary 3.2. Under the same conditions as in Theorem 3.1, every solution

f of

∆ωf(x) = 0, x ∈ V,

is constant.
The following corollary describes all functions which are ω-harmonic except pos-

sibly on a given (singularity) set T .
Corollary 3.3. Under the same conditions as in Theorem 3.1, let T ⊂ V . Then

every solution to

∆ωf(x) = 0, x ∈ V \ T,

can be represented as

f(x) = a0 +
∑
y∈T

Γω(x, y)α(y), x ∈ V,(3.7)

where a0 is an arbitrary constant and

α(y) = ∆ωf(y), y ∈ T.

In particular, if T = {x0}, x0 ∈ V , then (3.7) can be written as

f(x) = a0 + α0Γω(x, x0), x ∈ V,

where α0 = ∆ωf(x0).
Let us now turn to BVPs and their eigenvalues. For a subgraph S of a host graph

G with a weight ω, the Dirichlet eigenvalues of −Lω = −D1/2∆ωD
−1/2 are defined

to be the eigenvalues

ν1 ≤ ν2 ≤ · · · ≤ νn

of the matrix −Lω,S , where Lω,S is a submatrix of Lω with rows and columns re-
stricted to those indexed by vertices in S and n = |S|. Let φ1, φ2, . . . , φn be the
linearly independent functions on S such that for each j = 1, 2, . . . , n,

Lω,Sφj(x) = (−νj)φj(x), x ∈ S, and φj |∂S = 0.

In fact, φ1, φ2, . . . , φn are the eigenfunctions corresponding to ν1 ≤ ν2 ≤ · · · ≤ νn and
can be assumed to be orthonormal in the same sense as above, namely, that for each
pair of distinct i and j ∑

x∈S

φi(x) · φj(x) = 0,

while, for all j, ∑
x∈S

|φj(x)|2 = 1.

As usual, the first eigenvalue ν1 > 0. (See, for instance, [Ch].)
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One can follow now the standard procedure to define Green functions γω,S as
follows:

γω,S(x, y) =

|S|∑
j=1

(
− 1

νj

)
φj(x)φj(y)

√
dωy√
dωx

, x, y ∈ S.(3.8)

Letting DS stand for the diagonal matrix whose xth entry is dωx for each x ∈ S

and setting ∆ω,S = D
−1/2
S Lω,SD

1/2
S , one can easily verify that

γω,S∆ω,S = ∆ω,Sγω,S = I(3.9)

and

∆ω,S(x, y) =

|S|∑
j=1

(−νj)φj(x)φj(y)

√
dωy√
dωx

, x, y ∈ S,(3.10)

where I denotes the |S|-dimensional identity matrix.
The DBVP was solved by Chung in [CY], when the graph has the standard weight.

(For the interested reader, despite some minor errata, the proof given there is correct.)
We prove now the solvability of the DBVP for graphs with arbitrary weights using a
different method.

Theorem 3.4. Let S be a subgraph of a host graph with a weight ω and σ : ∂S →
R be a given function. Then the unique solution f to the Dirichlet boundary value
problem (DBVP) {

∆ωf(x) = 0, x ∈ S,
f |∂S = σ

can be represented as

f(x) = −〈γω(x, ·), Bσ〉y∈S , x ∈ S,(3.11)

where

Bσ(y) =
∑
z∈∂S

σ(z)ω(y, z)

dωy
, y ∈ S.(3.12)

Proof. Let f be a solution of the DBVP. Then

0 =
∑
y∈S

γω,S(x, y)∆ωf(y)(3.13)

=

|S|∑
j=1

(
− 1

νj

)
φj(x)√
dωx

[∑
y∈S

φj(y)
√
dωy∆ωf(y)

]

=

|S|∑
j=1

(
− 1

νj

)
φj(x)√
dωx

[∫
S

(
D

−1/2
S φj

)
· ∆ωf

]

=

|S|∑
j=1

(
− 1

νj

)
φj(x)√
dωx

[ ∫
S

f · ∆ω

(
D

−1/2
S φj

)

+

∫
∂S

{(
D

−1/2
S φj

)
· ∂f

∂ωn
− f · ∂

∂ωn

(
D

−1/2
S φj

)}]
.
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Here, we have used Green’s formula from Corollary 1.3. On the other hand, one can
show that

∆ω

(
D

−1/2
S φj

)
(x) = (−νj)

(
D

−1/2
S φj

)
(x), x ∈ S,

since φj = 0 on ∂S. From this identity and orthonormality of φj we can conclude
that

|S|∑
j=1

(
− 1

νj

)
φj(x)√
dωx

[∫
S

f · ∆ω

(
D

−1/2
S φj

)]

=

|S|∑
j=1

φj(x)√
dωx

·

⎡
⎣∑
y∈S

f(y) · φj(y)√
dωy

· dωy

⎤
⎦

=
∑
y∈S

f(y)

⎡
⎣ |S|∑
j=1

φj(x)φj(y)

√
dωy

dωx

⎤
⎦

= f(x).

Hence, from the equality (3.13) and the fact that φj = 0 on ∂S, we have

f(x) =

|S|∑
j=1

(
− 1

νj

)
φj(x)√
dωx

∫
∂S

[
f · ∂

∂ωn

(
D

−1/2
S φj

)]

=

|S|∑
j=1

(
− 1

νj

)
φj(x)√
dωx

[∑
z∈∂S

f(z) · ∂

∂ωn

(
D

−1/2
S φj

)
(z) · dz

]

=

|S|∑
j=1

(
− 1

νj

)
φj(x)√
dωx

∑
z∈∂S

σ(z)dz

⎡
⎣∑
y∈S

{
φj(z)√
dωz

− φj(y)√
dωy

}
ω(z, y)

dωz

⎤
⎦

= −
|S|∑
j=1

(
− 1

νj

)
φj(x)√
dωx

∑
y∈S

φj(y)
√
dωy

(∑
z∈∂S

σ(z)ω(z, y)

dωy

)

= −
∑
y∈S

γω,S(x, y)Bσ(y)

= −〈γω,S(x, ·), Bσ〉S

for each x ∈ S. Moreover, a simple calculation shows that every function of the form
(3.11) gives a solution.

The desired uniqueness result now follows easily from Theorem 2.1.
Remark 3.5.

(i) The identity (3.11) can be rewritten as

f(x) =

|S|∑
j=1

1

νj

∑
y∈S

[∑
z∈∂S

σ(z)ω(y, z)

dωy

]
φj(y)φj(x)

√
dωy

dωx
, x ∈ S.

In fact, Bσ is a function on S depending only on the value of σ on ∂S and

Bσ(y) = 0 for y ∈ S\
◦
∂S. On the other hand, two different boundary

conditions σ1 and σ2 may give rise to the same solution whenever Bσ1
= Bσ2

.
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(ii) (3.11) can be understood as a matrix multiplication by

f = −γω,S ·Bσ on S(3.14)

or, equivalently,

∆ω,Sf = −Bσ on S(3.15)

in view of (3.8). The relation (3.15) enables us to identify uniquely the
boundary values from an ω-harmonic function f with ∆ωf = 0 on S.

Now we characterize the ω-harmonic functions with a set of singularities in a
subgraph with nonempty boundary.

Theorem 3.6. Let S be a subgraph of a graph with weight ω and T ⊂ S. Then
every f : S → C satisfying

∆ωf(x) = 0, x ∈ S \ T,

can be uniquely represented as

f(x) = h(x) +
∑
y∈T

γω,S(x, y)β(y), x ∈ S,(3.16)

where h is an ω-harmonic function on S satisfying h|∂S = f |∂S and β(y) = ∆ωf(y),
y ∈ T.

Proof. The uniqueness is easy, by Theorem 2.1. Now let β(y) := ∆ωf(y), y ∈ T.
Then we have

∆ωf(x) =

{
0, x ∈ S \ T,

β(x), x ∈ T.

Define, for x ∈ S,

f1(x) :=
∑
y∈T

γω,S(x, y)β(y)

and

h(x) := f(x) − f1(x).

Then h|∂S = f |∂S and, for each x ∈ S,

∆ωh(x) = ∆ωf(x) − ∆ω

⎡
⎣∑
y∈T

|S|∑
j=1

(
− 1

νj

φj(x)√
dωx

· φj(y)
√
dωy

)
β(y)

⎤
⎦

= ∆ωf(x) −
∑
y∈T

|S|∑
j=1

φj(x)√
dωx

·
[
φj(y)

√
dωyβ(y)

]

= ∆ωf(x) −
∑
y∈T

δ(x, y)β(y)

= 0,

which completes the proof.
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Remark 3.7.

(i) In particular, if T = {x0} , x0 ∈ S, then (3.16) can be written simply as

f(x) = h(x) + γω,S(x, x0)β(x0),

where β(x0) = ∆ωf(x0).
(ii) In fact, in view of (3.16) and Theorem 3.4, the solution to the nonhomoge-

neous DBVP {
∆ωf(x) = g(x), x ∈ S,

f |∂S = σ

can be represented by

f(x) = −〈γω,S(x, ·), Bσ〉S + 〈γω,S(x, ·), g〉S .

Now we will discuss the Neumann boundary value problem (NBVP). The solv-
ability of the NBVP and its proof have not been seen yet in any literature, at least
to the best of the authors’ knowledge.

First, we recall Green’s formula∫
S

∆ωf =

∫
∂S

∂f

∂ωn
.

Hence, if there exists a solution to{
∆ωf = g on S,

∂f
∂ωn = ψ on ∂S,

then by Green’s formula it is necessary that
∫
S
g =

∫
∂S

ψ.
Theorem 3.8. Let S be a subgraph of a host graph G with a weight ω and let

f : S → R, g : S → R, and ψ : ∂S → R be functions with
∫
∂S

ψ =
∫
S
g. Then the

solution to the NBVP {
∆ωf(x) = g(x), x ∈ S,

∂f
∂ωn (z) = ψ(z), z ∈ ∂S,

is given by

f(x) = a0 + 〈Γω(x, ·), g〉S − 〈Γω(x, ·), ψ〉∂S ,

where Γω is the Green function of ∆ω on the graph S as a new host graph of S and
a0 is an arbitrary constant.

Proof. We rewrite the NBVP as⎧⎨
⎩
∑

y∈S

[
f(y) − f(x)

]ω(x,y)
dωx = g(x), x ∈ S,∑

y∈S

[
f(y) − f(z)

]ω(y,z)
d′
ωz = −ψ(z), z ∈ ∂S.

(3.17)

To solve the system (3.17), consider S as a new host graph with the weight ω and
with no boundary. Then S is still a subgraph of S. (In fact, we should note here
that if we regard S as a subgraph of G, then its boundary ∂S may not be empty.)
Then, for each z ∈ ∂S, the inner degree d′ωz is equal to dωz in this new graph S, since
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the induced subgraph has no edges between the vertices on ∂S. Hence (3.17) can be
written as ⎧⎨

⎩
∑

y∈V0

[
f(y) − f(x)

]ω(x,y)
dωx = g(x), x ∈ S,∑

y∈V0

[
f(y) − f(z)

]ω(y,z)
d′
ωz = −ψ(z), z ∈ ∂S,

(3.18)

where V0 is the set of vertices in S. Hence (3.18) is equivalent to

∑
y∈V0

[
f(y) − f(x)

]ω(x, y)

dωx
= Ψ(x), x ∈ S,(3.19)

where

Ψ(x) =

{
g(x), x ∈ S,

−ψ(x), x ∈ ∂S.

Therefore, the NBVP is equivalent to

∆ωf(x) = Ψ(x), x ∈ S.

Thus, it follows from Theorem 3.1 that

f(x) = a0 + 〈Γω(x, ·),Ψ〉
= a0 +

∑
y∈V0

Γω(x, y)Ψ(y)

= a0 +
∑
y∈S

Γω(x, y)g(y) −
∑
z∈∂S

Γω(x, z)ψ(z)

= a0 + 〈Γω(x, ·), g〉S − 〈Γω(x, ·), ψ〉∂S ,

where a0 is an arbitrary constant. This completes the proof.
Remark 3.9. The solution to the NBVP is uniquely determined by the Neumann

data ψ on ∂S up to an additive constant. Thus, we get a unique solution if we
prescribe the value of f at some vertex in S or, for example, if we seek the solution f
with

∫
S
f = (a given constant).

4. Inverse problems. In the previous section, we have seen that for a function
ψ : ∂S → R with

∫
∂S

ψ = 0 the NBVP

(NBV P )

{
∆ωf(x) = 0, x ∈ S,

∂f
∂ωn (z) = ψ(z), z ∈ ∂S,

has a unique solution up to an additive constant. Therefore, the Dirichlet data f |∂S
is well defined up to an additive constant.

In this section, we will discuss the inverse conductivity problem on the network
(graph) S with nonempty boundary, which consists in recovering the conductivity
(connectivity or weight) ω of the graph by using the so-called input-output map, for
example, by using the Dirichlet data induced by the Neumann data (Neumann-to-
Dirichlet map), with one boundary measurement.

In order to deal with this inverse problem , we need at least to know or be given
the boundary data such as f(z), ∂f

∂ωn (z) for z ∈ ∂S and ω near the boundary. So it
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is natural to assume that f |∂S , ∂f
∂ωn |∂S , and ω|

∂S×
◦
∂S

are known (given or measured).

But even though we are given all these data on the boundary, we are not guaranteed,
in general, to be able to identify the conductivity ω uniquely. To illustrate this we
consider a graph S whose vertices are {1, 2, 3} and ∂S = {0, 4} as follows:

with the weight

ω(0, 1) = 1, ω(0, k) = 0 (k = 2, 3, 4),

and

ω(3, 4) = 1, ω(k, 4) = 0 (k = 0, 1, 2).

Let f : S → R be a function satisfying ∆ωf(k) = 0, k = 1, 2, 3. Assume that

f(0) = 0, f(1) = 1, f(3) = 3, f(4) = 4, f(2) = (unknown).

Thus, since
◦
∂S= {1, 3}, the boundary data f |∂S , ∂f

∂ωn |∂S and ω|
∂S×

◦
∂S

are known.

In fact,

∂f

∂ωn
(0) = f(0) − f(1) = −1,

∂f

∂ωn
(4) = f(4) − f(3) = 1.

The problem is to determine

ω(1, 2) = x, ω(2, 3) = y, ω(1, 3) = z, and f(2).

From ∆ωf(k) = 0, k = 1, 2, 3, we have

f(1) =
f(0) + xf(2) + zf(3)

1 + x + z
= 1,

f(2) =
xf(1) + yf(3)

x + y
,

f(3) =
zf(1) + yf(2) + f(4)

z + y + 1
= 3.

This system is equivalent to{
x(y − 1) + y(x− 1) + 2z(x + y) = 0,

f(2) = x+3y
x+y .

(4.1)

This system has infinitely many solutions. For instance, assume z = 0; that is, the
two vertices 1 and 3 are not adjacent. Then (4.1) is reduced to
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1
x + 1

y = 2,

f(2) = x+3y
x+y .

(4.2)

For example, (x, y, z) = (1, 1, 0) or (2, 2/3, 0) satisfy the first equation. In fact, it is
easy to see that there are infinitely many pairs (x, y) of nonnegative numbers satisfying
the first equation in (4.2) so that f(2) is undetermined as a result.

In view of the above example, in order to determine the weight ω uniquely we
need some more information other than f |∂S , ∂f

∂ωn |∂S , and ω|
∂S×

◦
∂S

. To motivate the

main theorem we impose in this example the additional constraints that

x ≥ 1, y ≥ 1, and z ≥ 0(4.3)

in (4.1). Then (4.1) yields a unique triple of solution x = 1, y = 1, z = 0, and
f(2) = 2.

As a matter of fact, even the inverse conductivity problem of the diffusion equation

P [a;u] :=

{
div[a(x)∇u(x)] = 0, x ∈ Ω,

u|∂Ω = σ
(4.4)

in a bounded open subset Ω ⊂ Rn has been studied under some additional constraints
besides Dirichlet and Neumann data (see [A], [BF], [Ca], [I], [IP], and [SU]). In
particular, in [A] and [I] it is shown that there is a global uniqueness result under the
condition that

(i) a1 = a2 near ∂Ω, and a1 ≤ a2 in Ω,

(ii) ∂u1

∂n = ∂u2

∂n on ∂Ω,

(iii)
∫
Ω
u1 =

∫
Ω
u2 = 0,

where P [aj ;uj ] = 0, j = 1, 2 in (4.4).
Now we are in a position to state the first main theorem of this paper.
Theorem 4.1. Let ω1 and ω2 be weights with ω1 ≤ ω2 on S × S and f1, f2 :

S → R be functions satisfying that⎧⎨
⎩

∆ωjfj(x) = 0, x ∈ S,

∂f
∂ωj

n (z) = ψ(z), z ∈ ∂S,

for a given function ψ : ∂S → R with
∫
∂S

ψ = 0 and j = 1, 2.
If we assume that

(i) ω1(z, y) = ω2(z, y) on ∂S ×
◦
∂S,

(ii) f1|∂S = f2|∂S,
then we have

(i) f1 = f2 on S,
(ii) ω1(x, y) = ω2(x, y) whenever f1(x) 	= f1(y), or f2(x) 	= f2(y).
To prove this result we adapt the method of energy functionals, extensively used

for theory of nonlinear partial differential equations. For functions σ : ∂S → R and
g : S → R we define a functional by

Iω[h] :=

∫
S

[
1

4
|∇ωh|2 − hg

]
(4.5)

for every function h in the set
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A :=
{
h : S → R| h|∂S = σ

}
,(4.6)

which is called the admissible set. In the continuous case, the well-known Dirichlet
principle states that the energy minimizer in the admissible set is a solution of the
DBVP. We derive here the discrete version of Dirichlet’s principle as follows.

Theorem 4.2 (Dirichlet’s principle). Assume that f : S → R is a solution to{
−∆ωf = g on S,

f |∂S = σ.
(4.7)

Then

Iω[f ] = min
h∈A

Iω[h].(4.8)

Conversely, if f ∈ A satisfies (4.8), then f is the solution of (4.7), and the only one.
Proof. Let h be a function in A. Then, making use of (1.2) in Theorem 1.2, we

have

0 =

∫
S

(−∆ωf − g)(f − h)

=

∫
S

[
(−∆ωf)(f − h) − g(f − h)

]
=

∫
S

[
1

2
∇ωf · ∇ω(f − h) − g(f − h)

]

=
1

2

∫
S

|∇ωf |2 −
1

2

∫
S

∇ωf · ∇ωh−
∫
S

g(f − h).

Hence∫
S

[
1

2
|∇ωf |2 − gf

]
=

∫
S

[
1

2
∇ωf · ∇ωh− gh

]

=
1

2

∑
x∈S

∑
y∈S

|
[
f(y) − f(x)

]
·
[
h(y) − h(x)

]
| · ω(x, y) −

∫
S

gh

≤ 1

2

∑
x∈S

∑
y∈S

[
f(y) − f(x)

]2
+
[
h(y) − h(x)

]2
2

· ω(x, y) −
∫
S

gh

=
1

4

∫
S

|∇ωf |2 +
1

4

∫
S

|∇ωh|2 −
∫
S

gh,

where we used the triangular inequality

|ab| ≤ a2 + b2

2
, a, b ∈ R.

Thus, it follows that ∫
S

[
1

4
|∇ωf |2 − gf

]
≤
∫
S

[
1

4
|∇ωh|2 − gh

]
,

which implies

Iω[f ] ≤ Iω[h], h ∈ A.
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Since f ∈ A, we have

min
h∈A

Iω[h] = Iω[f ].

Now we prove the converse. Let T be a subset of vertices in S and

χT (x) =

{
1, x ∈ T,
0 otherwise.

Then f + τχT ∈ A for each real number τ , since χT = 0 on ∂S. Define

i(τ) := Iω[f + τχT ], τ ∈ R.

Then

i(τ) =

∫
S

[
1

4
|∇ωf + τ∇ωχT |2 − (f + τχT )g

]

=
1

4

∫
S

|∇ωf |2 + 2τ∇ωf · ∇ωχT + τ2|∇ωχT |2 −
∫
S

(f + τχT )g.

Note that the scalar function i(τ) has a minimum at τ = 0 and thus di
dτ (0) = 0. That

is,

0 =
1

2

∫
S

∇ωf · ∇ωχT −
∫
S

χT · g

=

∫
S

[
χT (−∆ωf − g)

]
=
∑
x∈T

[
− ∆ωf(x) − g(x)

]
dωx.

In particular, taking T = {x} , x ∈ S, we obtain

−∆ωf(x) − g(x) = 0,

which is the required result. The uniqueness follows from Theorem 3.4.
Now we are ready to prove Theorem 4.1.
Proof of Theorem 4.1.
(i) Let σ : ∂S → R be the function defined by

σ(z) = f1(z) = f2(z), z ∈ ∂S,

using the hypothesis (ii). Define

Iω1 [h] :=
1

4

∫
S

|∇ω1h|2dω1

for every h in the admissible set

A =
{
h : S → R| h|∂S = σ

}
.

Then, by virtue of Theorem 1.2 we have

Iω1 [h] =
1

2

∫
S

h(−∆ω1h)dω1

=
1

2

∫
S

h(−∆ω1h)dω1 +
1

2

∫
∂S

h(−∆ω1h)dω1 .
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Moreover, by the coincidence of the Dirichlet and Neumann data we can see that the

boundary ∂S and the inner boundary
◦
∂S are well defined independently of the values

of the weights ω1, ω2 and, moreover, for z ∈ ∂S,

dω1
z =

∑
y∈

◦
∂S

ω1(z, y) =
∑
y∈

◦
∂S

ω2(z, y) = dω2
z,(4.9)

∆ω1f1(z) =
∑
y∈

◦
∂S

[
f1(y) − f1(z)

]ω1(z, y)

dω1z
(4.10)

=
∑
y∈

◦
∂S

[
f2(y) − f2(z)

]ω2(z, y)

dω2z

= ∆ω2
f2(z).

Then, it follows from the condition ω1 ≤ ω2 that

Iω1 [f1] =
1

2

∫
∂S

f1(−∆ω1f1)dω1

=
1

2

∫
∂S

f2(−∆ω2
f2)dω1

=
1

2

∫
S

f2(−∆ω2
f2)dω2

+
1

2

∫
∂S

f2(−∆ω2
f2)dω2

=
1

2

∫
S

f2(−∆ω2f2)dω2

=
1

4

∫
S

|∇ω2f2|2dω2

=
1

4

∑
x∈S

∑
y∈S

[
f2(x) − f2(y)

]2
ω2(x, y)

≥ 1

4

∑
x∈S

∑
y∈S

[
f2(x) − f2(y)

]2
ω1(x, y)

=
1

4

∫
S

|∇ω1f2|2dω1

= Iω1
[f2].

Using Dirichlet’s principle (Theorem 4.2), one sees that f1 = f2 on S.
(ii) In the proof of (i) we actually have proved that Iω1 [f1] = Iω1 [f2]. In other

words, taking f := f1 = f2 on S,∑
x∈S

∑
y∈S

[
f(x) − f(y)

]2
ω2(x, y) =

∑
x∈S

∑
y∈S

[
f(x) − f(y)

]2
ω1(x, y),

or, equivalently, ∑
x∈S

∑
y∈S

[
f(x) − f(y)

]2 · [ω2(x, y) − ω1(x, y)
]

= 0.
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Therefore, we have [
f(x) − f(y)

]2 · [ω2(x, y) − ω1(x, y)
]

= 0

for all x ∈ S and y ∈ S. This gives (ii).
Remark 4.3. In Theorem 4.1 above, if f := f1 = f2 is injective on S, then we

are able to get ω1 = ω2 on S × S. For example, if S is the path Pn on n vertices
with arbitrary weight ω, then it is not hard to see that every nonconstant ω-harmonic
function f on Pn is strictly monotonic and hence all the weights are identified. But,
in general, most graphs, even with the standard weight do not admit an injective
solution to the DBVP or NBVP. Therefore, it will be quite interesting to figure out a
pair of graphs and weights which admits an injective solution to the DBVP or NBVP.

To develop an idea to improve Theorem 4.1 we consider a graph S = {1, 2, 3, 4, 5,
6} with ∂S = {0, 7} as follows:

Suppose that ω1 is the standard weight and ω2 is the weight given by ω1 = ω2

except only ω2(3, 4) = k, k ≥ 1. Then ω1 ≤ ω2 throughout the graph S and ω1 = ω2

except on the edge {3, 4}. Now define a function f : S → R as

f(0) = a, f(1) = a− α, f(2) = a− 2α, f(3) = f(4) =
2a− 5α

2
,

f(5) = a− 3α, f(6) = a− 4α, f(7) = a− 5α,

where a and α are arbitrary real numbers. Then it is easy to verify that f satisfies
both the equations

∆ω1f(x) = 0 = ∆ω2f(x), x ∈ S.

Here, we note that f is uniquely determined by the Dirichlet data f(0) = a, f(7) = a
− 5α and the Neumann data

∂f

∂ωn
(0) = f(0) − f(1) = α,

∂f

∂ωn
(7) = f(7) − f(6) = −α,

and each value f(x) is determined regardless of the weight ω2(3, 4) = k. This implies
that we cannot identify the weight ω2(3, 4) = k even with all possible boundary data.
To derive a key idea to overcome this difficulty, we take a > 0 and α so that f(0) > 0
and f(7) > 0. By a direct calculation (or using Corollary 2.2) we see that

f(m) > 0, m = 0, 1, 2, . . . , 7.

Suppose that f satisfies the relation∫
S

fdω1 =

∫
S

fdω2 .(4.11)



1224 SOON-YEONG CHUNG AND CARLOS A. BERENSTEIN

Then, since∫
S

fdω1
= 2f(1) + 3f(2) + 3f(3) + 3f(4) + 3f(5) + 2f(6)

and ∫
S

fdω2 = 2f(1) + 3f(2) + (2 + k)f(3) + (2 + k)f(4) + 3f(5) + 2f(6),

it follows that

k
[
f(3) + f(4)

]
= f(3) + f(4),

which gives k = 1. Therefore, in order to identify the weight over all edges we need
to impose an additional condition such as (4.11).

Now we return to the general situation. We know that for a function ψ : ∂S → R

with
∫
∂S

ψ = 0 and j = 1, 2, the equation⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∆ωjhj(x) = 0, x ∈ S,

∂h
∂ωj

n (z) = ψ(z), z ∈ ∂S,∫
S
hj dωj

= 0

(4.12)

has a unique pair of solutions (h1, h2). Let

mj = min
z∈∂S

hj(z), j = 1, 2,(4.13)

and

m0 = max
j=1,2

|mj | · vol(S, ωj),(4.14)

where vol(S, ωj) =
∑

x∈S dωj
x.

Motivated by the above example, we refine Theorem 4.1 as follows.
Theorem 4.4. Let ω1 and ω2 be weights with ω1 ≤ ω2 on S × S and f1, f2 :

S → R be functions satisfying that for each j = 1, 2,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∆ωjfj(x) = 0, x ∈ S,

∂f
∂ωj

n (z) = ψ(z), z ∈ ∂S,∫
S
fj dωj = K

(4.15)

for a given function ψ : ∂S → R with
∫
∂S

ψ = 0 and a given constant K with K > m0.
(Here, m0 is the constant in (4.14).)

If we assume that

(i) ω1(z, y) = ω2(z, y) on ∂S ×
◦
∂S,

(ii) f1|∂S = f2|∂S,
then we have

f1 ≡ f2

and

ω1(x, y) = ω2(x, y)

for all x and y in S.
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Proof. We have already shown in Theorem 4.1 that f1 ≡ f2. Now, for each
j = 1, 2, we choose a constant Cj so that Cj · vol(S, ωj) = K. Then, it follows
that Cj > |mj | and hence hj(x) + Cj > 0, x ∈ S, by the maximum principle (or

Corollary 2.2). Moreover, the function h̃(x) := hj(x) + Cj satisfies (4.15). By the
uniqueness of the solution we have

fj(x) = h̃(x) = hj(x) + Cj > 0, x ∈ S.

Let f := f1 = f2 on S. Then it follows from the condition
∫
S
f1 dω1 = K =∫

S
f2 dω2 that

∑
x∈S

f(x)dω1(x) =
∑
x∈S

f(x)dω2
(x)

or, equivalently, ∑
x∈S

f(x)
[
dω2(x) − dω1(x)

]
= 0.

Since f(x) > 0 and dω1(x) ≥ dω1(x) for all x ∈ S, we have

0 = dω2(x) − dω1(x)

=
∑
y∈S

[
ω2(x, y) − ω2(x, y)

]
.

Since ω1(x, y) ≤ ω2(x, y), we obtain

ω1(x, y) = ω2(x, y)

for all x and y in S, as required.
Remark 4.5. In the above proof, the condition K > m0 was used only to guarantee

that fj(x) > 0, x ∈ S. Hence, if we replace this condition by f |∂S > 0, j = 1, 2, in
Theorem 4.4, we arrive at the same conclusion. Practically the positive solutions are
easily available by adjusting the boundary values.

As seen in the study of the inverse conductivity problem in the continuous case
(see, for instance, [A], [Ca], [I], [IP], [SU]), it would be worthwhile to prove the
uniqueness under a condition weaker than the monotonicity condition ω1 ≤ ω2 im-
posed above. Moreover, it would also be interesting to consider a stability theorem
for the same conductivity equation.

Acknowledgments. We take the opportunity to thank David Walnut and the
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DISTANCE FUNCTIONS AND GEODESICS
ON SUBMANIFOLDS OF Rd AND POINT CLOUDS∗
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Abstract. A theoretical and computational framework for computing intrinsic distance func-
tions and geodesics on submanifolds of Rd given by point clouds is introduced and developed in this
paper. The basic idea is that, as shown here, intrinsic distance functions and geodesics on general
co-dimension submanifolds of Rd can be accurately approximated by extrinsic Euclidean ones com-
puted inside a thin offset band surrounding the manifold. This permits the use of computationally
optimal algorithms for computing distance functions in Cartesian grids. We use these algorithms,
modified to deal with spaces with boundaries, and obtain a computationally optimal approach also
for the case of intrinsic distance functions on submanifolds of Rd. For point clouds, the offset band is
constructed without the need to explicitly find the underlying manifold, thereby computing intrinsic
distance functions and geodesics on point clouds while skipping the manifold reconstruction step.
The case of point clouds representing noisy samples of a submanifold of Euclidean space is studied
as well. All the underlying theoretical results are presented along with experimental examples for
diverse applications and comparisons to graph-based distance algorithms.

Key words. geodesic distance, point clouds, manifolds, high dimensions, eikonal equations,
random coverings, fast marching
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1. Introduction. One of the most popular sources of point clouds are three-
dimensional (3D) shape acquisition devices, such as laser range scanners, with appli-
cations in geoscience, art (e.g., archival study), medicine (e.g., prosthetics), manufac-
turing (from cars to clothes), and security (e.g., recognition), among other disciplines.
These scanners generally provide raw data in the form of (noisy) unorganized point
clouds representing surface samples, and often produce very large numbers of points
(tens of millions, for example, for the David model used in this paper). With the in-
creasing popularity and very broad applications of this source of data, it is natural and
important to work directly with such representations, without having to go through
the intermediate step of fitting a surface to each (a step that can add computational
complexity and introduce errors). See, for example, [11, 18, 20, 29, 33, 45, 46, 56, 58]
for a few recent works with this type of data. Note that point clouds can also be used
as primitives for visualization (e.g., [12, 33, 59]), as well as for editing [72].

Another important field where point clouds are found is in the representation of
high-dimensional manifolds by samples (see, for example, [36, 44, 67]). This type of
high-dimensional and general codimensional data appears in almost all disciplines,
from computational biology to image analysis and financial data. Due to the ex-
tremely high number of dimensions in this case, it is impossible to perform manifold
reconstruction, and the work needs to be done directly on the raw data, meaning the
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point cloud. Also in this area, large amounts of data are becoming available, from
neuroscience experiments with neural recording of millions of points to large image
and protein databases.

Note that in general a point cloud representation is codimension free, in contrast
with other popular representations such as triangular meshes. Some operations, such
as the union of point clouds acquired from multiple views, are much easier when per-
formed directly on the representations than when performed on the triangular meshes
obtained from them. This paper addresses one of the most fundamental operations
in the study and processing of submanifolds of Euclidean space, the computation of
intrinsic distance functions and geodesics. We show that these computations can be
made by working directly with the point cloud, without the need for reconstructing
the underlying manifold. Even if possible (for example, at low dimensions), the mesh-
ing operation is avoided, saving computations and improving accuracy. The distance
computation itself is performed in computationally optimal time. We present the
corresponding theoretical results, experimental examples, and basic comparisons to
mesh-based distance algorithms.1 The results are valid for general dimensions and
codimensions, and for (underlying) manifolds with or without boundary. These re-
sults include the analysis of noisy point clouds obtained from sampling the manifold.
We provide bounds on the accuracy of the computations that depend on the sampling
rate and pattern as well as on the noise, thereby addressing real manifold sampling
scenarios.

A number of key building blocks are part of the framework introduced here. The
first one is based on the fact that distance functions intrinsic to a given submanifold
of Rd can be accurately approximated by Euclidean distance functions computed in
a thin offset band that surrounds this manifold. This concept was first introduced in
[49], where convergence results were given for hypersurfaces (codimension one sub-
manifolds of Rd) without boundary. This result is reviewed in section 2. In this paper,
we first extend these results to general codimensions and deal with manifolds with or
without boundary in section 3. Interestingly, we also show that the approximation is
true not only for the intrinsic distance function but also for the intrinsic minimizing
geodesic.

The approximation of intrinsic distance functions (and geodesics) by extrinsic
Euclidean ones permits us to compute them using computationally optimal algorithms
in Cartesian grids (as long as the discretization operation is permitted, memorywise;2

see sections 7.1 and 8). These algorithms are based on the fact that the distance
function satisfies a Hamilton–Jacobi partial differential equation (see section 2), for
which consistent and fast algorithms have been developed in Cartesian grids [35, 62,
63, 69].3 (See [40] for extensions to triangular meshes, and [68] for other Hamilton–
Jacobi equations.) That is, due to these results, we can use computationally optimal
algorithms in Cartesian grids (with boundaries) also to compute distance functions,
and from them geodesics,4 intrinsic to a given manifold, and in a computationally

1Theoretical results on the accuracy of the technique for 3D mesh-based computationally optimal
distance computation proposed in [40] have not been reported to the best of our knowledge.

2This is of course just a limitation of a straightforward implementation that doesn’t avoid allo-
cating memory to empty grids and works in the embedding dimension, and not a limitation of the
theoretical and computational frameworks here developed.

3Tsitsiklis first described an optimal-control type of approach to solving the Hamilton–Jacobi
equation, while independently Sethian and Helmsen both developed techniques based on upwind
numerical schemes.

4Geodesics are the integral curves corresponding to the gradient directions of the intrinsic distance
function, and are obtained by back-propagating in this gradient direction from the target point to
the source point.
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optimal fashion. Note that, in contrast with the popular Dijkstra algorithm, these
numerical techniques are consistent; they converge to the true distance when the grid
is refined. Dijkstra’s algorithm suffers from digitization bias due to metrication error
when implemented on a grid (if no new graph edges are added to account for the new
diagonals in each successive level of refinement of the grid); see [52, 53].

Once these basic results are available, we can then move on and deal with point
clouds. The basic idea here is to construct the offset band directly from the point
cloud, without the intermediate step of manifold reconstruction.5 This is addressed in
section 4 and section 5 for noise-free points and manifold samples, and in section 6 for
points considered to be noisy samples of the manifold. In these cases, we explicitly
compute the probability that the constructed offset band contains the underlying
manifold. As we expect, this probability is a function of the number of point samples,
the noise level, the size of the offset, and the basic geometric characteristics of the
underlying manifold. This then covers the most realistic scenario, where the manifold
is randomly sampled and the samples contain noise, thereby providing bounds that
relate the error to the quality of the data. In the experimental section, section 7, we
present a number of important applications. These applications are given to show the
importance of this novel computational framework, and are by no means exhaustive.
The data used in these examples were obtained from real acquisition devices, following
laser scanning and photometric stereo. Concluding remarks are presented in section
8, where we also report the directions our research is taking.

To conclude this introduction, we should note that, to the best of our knowledge,
the only additional work explicitly addressing the computation of distance functions
and geodesics for point clouds is the one reported in [9, 67].6 The comparison of
performance in the presence of noise for our framework and the one proposed in
[9, 67] is deferred to Appendix A.7

2. Preliminary results and notation. In this section we briefly review the
main results in [49], where the idea of approximating intrinsic distances and geodesics
by extrinsic ones was first introduced.

2.1. Notation. First, we introduce some basic notation that will be used through-
out the article. For a compact and connected set Ω ∈ Rd, dΩ(·, ·) denotes the intrinsic
distance between any two points of Ω, measured by paths constrained to be in Ω. We
will also assume the convention that if A ⊂ Rd is compact, and x, y are not both in A,
then dA(x, y) = D for some constant D � maxx,y∈A dA(x, y). Given a k-dimensional
submanifold M of Rd, Ωh

M denotes the set {x ∈ Rd : d(M, x) ≤ h} (here the distance
d(·, ·) is the Euclidean one). This is basically an h-offset of M. To state that the
sequence of functions {fn(·)}n∈N uniformly converges to f(·) as n ↑ ∞, we frequently

write fn
n

⇒ f . For a given event E, P (E) stands for its probability of occurring. For
a random variable (R.V. from now on) X, its mean value is denoted by E (X). By

5Recent results such as those reported in [57] provide efficient techniques for constructing such
bands for point cloud data.

6In addition to studying the computation of distance functions on point clouds, [9, 67] address
the important combination of this with multidimensional scaling for manifold analysis. Prior work
on using geodesics and multidimensional scaling can be found in [61].

7While concluding this paper, we learned of a recent extension to Isomap reported in [31]. This
paper is also mesh-based, and follows the geodesics approach in Isomap with a novel neighbor-
hood/connectivity approach and a number of interesting theoretical results and novel dimensionality
estimation contributions. Further analysis of Isomap, as a dimensionality reduction technique, can
be found in [19].
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X ∼ U[A] we mean that the R.V. X is uniformly distributed in the set A. For a
function f : Ω → R and a subset A of Ω, f |A : A → R denotes the restriction of
f to A. For a smooth function f : Ω → R, Df , D2f , and D3f stand for the first,
second (Hessian matrix), and third differential, respectively, of f . Given a point x on
the complete manifold S, BS(x, r) will denote the (intrinsic) open ball of radius r > 0
centered at x, and B(y, r) will denote the Euclidean ball centered at y of radius r.
Finally, log x will denote the natural logarithm of x ∈ R+.

2.2. Prelude. In [49], we presented a new approach for the computation of
weighted intrinsic distance functions on hyper-surfaces. We proved convergence theo-
rems and addressed the fast, computationally optimal, computation of such approxi-
mations; see comments after Theorem 1 below. The key starting idea is that distance
functions satisfy the (intrinsic) Eikonal equation, a particular case of the general class
of Hamilton–Jacobi partial differential equations. Given p ∈ S (a hypersurface in Rd),
we want to compute dS(p, ·) : S → R+∪{0}, the intrinsic distance function from every
point on S to p. It is well known that the distance function dS(p, ·) satisfies, in the
viscosity sense (see [47]), the equation{

‖∇SdS(p, x)‖ = 1 ∀x ∈ S,
dS(p, p) = 0,

where ∇S is the intrinsic differentiation (gradient). Instead of solving this intrinsic
Eikonal equation on S, we solve the corresponding extrinsic one in the offset band Ωh

S:{ ‖∇xdΩh
S
(p, x)‖ = 1 ∀x ∈ Ωh

S;

dΩh
S
(p, p) = 0,

where dΩh
S
(p, ·) is the Euclidean distance and therefore now the differentiation is the

usual one.
Theorem 1 (see [49]). Let p and q be any two points on the smooth (orientable,

without boundary) hypersurface S; then
∣∣dS(p, q)−dΩh

S
(p, q)

∣∣ ≤ CS

√
h for small enough

h,8 where CS is a constant depending on the geometry of S.
This simplification of the intrinsic problem into an extrinsic one permits the use

of the computationally optimal algorithms mentioned in the introduction. This makes
computing intrinsic distances, and from them geodesics, as simple and computation-
ally efficient as computing them in Euclidean spaces. Moreover, as detailed in [49],
the approximation of the intrinsic distance dS by the extrinsic Euclidean one dΩh

S
is

never less accurate than the numerical error of these algorithms.
In [49], the result above was limited to hypersurfaces of Rd (codimension one

submanifolds of Rd) without boundary, and the theory was applied to implicit surfaces,
where computing the offset band is straightforward. It is the purpose of the present
work to extend Theorem 1 to deal with (1) submanifolds of Rd of any codimension and
possibly with boundary,9 (2) convergence of geodesic curves in addition to distance
functions, (3) submanifolds of Rd represented as point clouds and (4) random sampling
of submanifolds of Rd in the presence of noise. We should note that Theorem 1 holds
even when the metric is not the one inherited from Rd, obtaining weighted distance

8“Small enough h” means that h < 1/maxi κi(S), where κi(S) is the ith principal curvature of
S. This guarantees having smoothness in ∂Ωh

S ; see [49].
9We will later impose some convexity conditions on the boundary in order to get rate of conver-

gence estimates. However, the uniform convergence in itself doesn’t require other hypotheses beyond
smoothness.
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functions; see [49]. Although we will not present these new results in such generality,
this is a simple extension that will be reported elsewhere.

3. Submanifolds of Rd with boundary. We first extend Theorem 1 to more
general manifolds, and we deal not only with distance functions but also with geodesics.
The first extension is important for the learning of high-dimensional manifolds from
samples and for scanned open volumes. The extension to geodesics is important for
path planning on surfaces and for finding special curves such as crests and valleys;
see [8, 49].

First we need to recall some results that will be key ingredients in our proofs below.
All our results rest upon a certain degree of smoothness of geodesics in manifolds with
boundary. We use “shortest path” and “minimizing geodesic” interchangeably.

Theorem 2 (see [1]). Let M be a C3 Riemannian manifold with C1 boundary
∂M. Then any shortest path of ∂M is C1.

We will eventually need more regularity on the geodesics than simply C1. This
is achieved by requiring more regularity of the boundary.

Theorem 3 ([48]). Let U : Rd → R be a C3 function such that for some h ∈ R

(i) the interior of {x ∈ Rd|U(x) = h} is nonempty and there we have DU(x) �=
0.

(ii) the “obstacle” {x ∈ Rd|U(x) ≥ h} is compact.
Let p and q be any two points in the same connected component of {x ∈ Rd|U(x) ≤ h};
then the shortest (constrained) path joining both points is C1 and has Lipschitz first
derivative.

We now present the usual definition of length, as follows.
Definition 1. Let α : [a, b] → Rd be a curve, then we define its length L (α) as

L (α)
�
= sup

a=t0<···<tN=b

N−1∑
k=0

‖α(tk+1) − α(tk)‖.

Remark 1. Note that if α is Lipschitz with constant Lα, then L (α) =
∫ b
a
‖α̇(t)‖dt

and L (α) ≤ Lα (b− a).
Proposition 1. Let S be a smooth compact submanifold of Rd with boundary

∂S. Let x, y be any two points in S. Then dΩh
S
(x, y) converges pointwise as h ↓ 0.

Proof. Since Ωh
S ⊆ Ωh′

S if h′ ≥ h, we have that dΩh
S
(x, y) ≥ dΩh′

S
(x, y) Also, for any

h > 0, dΩh
S
(x, y) ≤ dS(x, y) ≤ diam(S) < +∞. Hence, the sequence {dΩh

S
(x, y)}h>0

(for fixed x and y over S) is bounded and nondecreasing, and therefore it converges
to the supremum of its range.

Theorem 4. Let S be a compact C2 submanifold of Rd with (possibly empty)
smooth boundary ∂S. Let x, y be any two points in S. Then we have

1. uniform convergence of the distances:

dΩh
S
|S×S(·, ·)

h↓0
⇒ dS(·, ·);

2. convergence of the geodesics: Let x and y be joined by a unique minimizing
geodesic γS : [0, 1] → S over S, and let γh : [0, 1] → Ωh

S be a Ωh
S-minimizing geodesic;

then

γh
h↓0
⇒ γS.
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Proof. Given our hypothesis on S, and according to [26], there exists H > 0 such
that ∂Ωh

S is C1,1 for all 0 < h ≤ H. Then Theorem 2 guarantees that for 0 < h ≤ H,
γh : [0, 1] → ΩH

S , the Ωh
S length-minimizing geodesic joining x and y is of class C1.

Since dΩh
S
(x, y) ≤ dS(x, y) ≤ diam(S) < +∞ for any h ∈ (0, H], we see that we

can admit our Ωh
S-geodesics to have Lipschitz constant L ≤ diam(S). Obviously, the

set ΩH
S is bounded, and then the family {γh}0<h≤H is bounded and equicontinuous.

Hence, by the Ascoli–Arzelá theorem, there exist a subsequence {γhk
}k∈N and a curve

γ0 ∈ C0([0, 1], S) such that maxt∈[0,1] ‖γhk
(t) − γ0(t)‖

hk↓0−→ 0.

Moreover, by writing |γ0(t)−γ0(t
′)| ≤ |γhk

(t)−γ0(t)|+ |γhk
(t′)−γ0(t

′)|+L|t− t′|
and using the (pointwise) convergence of γhk

towards γ0, we find that L is also a
Lipschitz constant for γ0. Then we have γ0 ∈ C0,1([0, 1], S).

Now, since γ0 lies on S but may not be a shortest path, we have that its (fi-
nite) length is greater than or equal to dS(x, y). We also have the trivial inequality
dS(x, y) ≥ dΩh

S
(x, y). Putting this all together, we obtain

L (γh) = dΩh
S
(x, y) ≤ dS(x, y) ≤ L (γ0) .

Therefore

lim sup
h↓0

L (γh) = lim sup
h↓0

dΩh
S
(x, y) ≤ dS(x, y) ≤ L (γ0) .

Note that L (γ0) = L (limhk↓0 γhk
) ≤ lim infhk↓0 L (γhk

). This is the semicontinuity
of length, an immediate consequence of its definition; see [41].

Since lim infhk↓0(·) ≤ lim suphk↓0(·) ≤ lim suph↓0(·), we see that lim suph↓0 dΩh
S
(x, y)

= lim suph↓0 L (γh) equals dS(x, y) for all x and y in S. From Proposition 1, we find
that in fact limh↓0 dΩh

S
(x, y) exists and equals dS(x, y). Then, we have that the func-

tion dΩh
S
|S×S(·, ·) satisfies the following:

(i) dΩh
S
|S×S : S × S → R ∪ {0} is continuous for each H > h > 0;

(ii) for each (x, y) ∈ S × S, {dΩh
S
|S×S (x, y)}h is nondecreasing;

(iii) dΩh
S
|S×S (·, ·) converges pointwise towards dS(·, ·), which is continuous.

Then by Dini’s uniform convergence theorem (see [6]) we can conclude that the con-
vergence is uniform.

We can also see that γ0 must be a minimizing geodesic of S since from the above
chain of equalities L (γ0) = dS(x, y). Then, if there was only one such curve joining x
with y, we would have uniform convergence (along any subsequence!) of γh towards
γ0.

10

Remark 2. In Theorem 4, the convergence (of distances) is uniform, but we will
have forfeited rate of convergence estimates unless we impose additional conditions on
∂S, as we do in Corollary 3. Note that the new setting is wider than the one considered
in Theorem 1 since the codimension of the underlying manifold is not necessarily 1.
This is very important for applications such as dimensionality reduction, where the
dimension of the underlying manifold is unknown beforehand.

Corollary 1. Let S and ∂S satisfy the hypotheses of Theorem 4. Let {Σi}i∈N be

a family of compact of sets in Rd such that S ⊆ Σi for all i ∈ N and dH(Σi, S)
i↑+∞−→ 0.

10This follows from the fact that uniform convergence of γh to γ0 is equivalent to the statement
that for any subsequence {γhi

} there exists a further subsubsequence {γhik
} uniformly converging

to γ0.
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Then,

dΣi
(·, ·) |S×S

i↑+∞
⇒ dS(·, ·),

where dH stands for the Hausdorff distance between sets.
We now present a uniform rate of convergence result for the distance in the band

in the case ∂S = ∅, and from this we deduce Corollary 3 below, which deals with the
case ∂S �= ∅. This result generalizes the one presented in [49] because it allows for
any codimension.

Theorem 5. Under the hypotheses of Theorem 4, with ∂S = ∅, we have that for
small enough h > 0,

max
(x,y)∈S×S

∣∣∣dΩh
S
|S×S(x, y) − dS(x, y)

∣∣∣ ≤ CS

√
h,(1)

where the constant CS does not depend on h. Also, we have the “relative” rate of
convergence bound

1 ≤ sup
x,y∈ S
x�=y

dS(x, y)

dΩh
S
(x, y)

≤ 1 + CS

√
h.(2)

Proof. This is a remake of our proof of the main theorem in [49]; therefore we
skip some technical details which can be found there. Throughout the proof we will
sometimes write dh instead of dΩh

S
for the sake of notational simplicity. We will denote

by k (≤ n− 1) the dimension of S.
Let γ0 be the arc length parametrized S-shortest path joining the points x, y ∈ S;

clearly, we have trace(γ0) ⊂ S. Let γh be the Ωh
S arc length parametrized shortest

path joining x and y, which, as we know from Theorem 4, uniformly converges toward
γ0. For a number H as in the proof of Theorem 4, we have γh ∈ C1,1([0, dh], S), and

also η : ΩH
S → R defined by η(x)

�
= 1

2d
2(x, S) is smooth; see Appendix B. We define

the projection operator ΠS : ΩH
S → S by ΠS(x) = x−Dη(x). We refer the reader to

Appendix B for properties of ΠS and η which we use below.
Now, dΩh

S
(x, y) = L (γh) ≤ dS(x, y) ≤ L (ΠS(γh)); then

dS(x, y) − dΩh
S
(x, y) ≤ |L (ΠS(γh)) − L (γh)|

≤
∫ dh

0

∥∥∥ ˙
ΠS(γh(t)) − γh(t)

∥∥∥ dt

=

∫ dh

0

∥∥∥ ˙
Dη(γh(t))

∥∥∥ dt

≤

√
dh

∫ dh

0

V̇ (t) · V̇ (t) dt (by Cauchy–Schwarz inequality)

≤

√
dh

∫ dh

0

V (t) · V̈ (t) dt (integrating by parts; see below),

where V (t)
�
= Dη(γh(t)) and V (0) = V (1) = 0; see Appendix B.

Also V̇ (t) = D2η(γh(t))γ̇(t), and since γ̇h is Lipschitz and η is smooth, V̈ (t) exists
almost everywhere and V̈ (t) = D3η(γh(t))[γ̇h(t), γ̇h(t)] + D2η(γh(t))γ̈(t) at points of
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existence. Then since D3ηDη = D2η(II −D2η) and D2ηDη = Dη (see Appendix B),

V · V̈ = D3η(γh)[Dη(γh), γ̇h, γ̇h] + D2η[γ̈h, Dη(γh)]

=
(
D2η(γh)

(
II −D2η(γh)

))
[γ̇h, γ̇h] + γ̈h ·Dη(γh).

The matrix Λ(t)
�
= D2η(γh(t))(II−D2η(γh(t))) filters out normal components and

has eigenvalues associated with the tangential bundle given by

λi(t) =
d(t)λi(0)

(1 + d(t)λi(0))
2 for 1 ≤ i ≤ k,

where we let d(t) = d(γh(t), S). Note that max1≤i≤k|λi(t)| can be bounded by d(t)
times a certain finite constant K ′ independent of h.

On the other hand, we can bound |γ̈h(t)| almost anywhere by a finite constant,
say K, which takes into account the maximal curvature of all the boundaries ∂Ωh

S,
0 < h < H, but does not depend on h.

Putting all this together, we find (recall that ‖Dη(x)‖ =
√

2η(x) = d(x, S); see
Appendix B)

(
dS(x, y) − dΩh

S
(x, y)

)2

≤ dh

∫ dh

0

Λ(t)[γ̇h, γ̇h]dt

+ dh

∫ dh

0

‖γ̈h‖ ‖Dη(γh)‖dt

≤ K ′ max
t∈[0,dh]

d(t) d2
h + K max

t∈[0,dh]
d(t)d2

h.

Now, remembering that dh stands for dΩh
S
(x, y), that trace(γh) ⊂ Ωh

S, and defining

C = K + K ′, we arrive with only a little simple additional work, at the relations (1)
or (2).

Remark 3. Note that, as the simple case of a circle in the plane shows, the rate
of convergence is at most C · h.

We immediately obtain the following corollary, which will be useful ahead.
Corollary 2. Let p ∈ S and r ≤ H; then B(p, r) ∩ S ⊆ BS(p, r(1 + CS

√
r)).

Proof. Let q ∈ B(p, r)∩ S; then by (2), dS(p, q) ≤ dΩr
S
(p, q)(1 +CS

√
r). However,

q ∈ B(p, r) ⊂ Ωr
S, and thus dΩh

S
(p, q) = ‖p− q‖ ≤ r, which completes the proof.

Definition 2. (see [21]) We say that the compact manifold S with boundary
∂S is strongly convex if for every pair of points x and y in S there exists a unique
minimizing geodesic joining them whose interior is contained in the interior of S.

Using basically the same procedure as in Theorem 5 with the convexity hypotheses
above, we can prove the following corollary, whose (sketched) proof is presented in
Appendix C.

Corollary 3. Under the hypotheses of Theorem 2, and assuming S to be strongly
convex, we have for small enough h > 0 the same conclusions of Theorem 5 (rate of
convergence).

Remark 4. Note that in case ∂S �= ∅ is not strongly convex, then obviously the
same statement of Corollary 3 remains valid for any strongly convex subset of S.

To conclude, in this section we extended the results in [49] to geodesics and dis-
tance functions in general codimension manifolds with or without (smooth) boundary,
thereby covering all possible manifolds in common shape, graphics, visualization, and
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learning applications.11 We are now ready to extend this to manifolds represented as
point clouds.

4. Distance functions on point clouds. We are now interested in making
computations on manifolds represented as point clouds, i.e., sampled manifolds. In
the case of this paper we will restrict ourselves to the computation of intrinsic dis-

tances.12 Let Pn
�
= {p1, . . . , pn} be a set of n different points sampled from the

compact submanifold S and define13

Ωh
Pn

�
=

n⋃
i=1

B(pi, h).

Let h and Pn be such that S ⊆ Ωh
Pn

. We then have (S ⊆)Ωh
Pn

⊆ Ωh
S. We now want to

consider dΩh
P
(p, q) for any pair of points p, q ∈ S and prove some kind of proximity to

the real distance dS(p, q). The argument carries over easily since

dΩh
S
(p, q) ≤ dΩh

Pn
(p, q) ≤ dS(p, q),

and hence

0 ≤ dS(p, q) − dΩh
Pn

(p, q) ≤ dS(p, q) − dΩh
S
(p, q),(3)

and the rightmost quantity can be bounded by CS h1/2 (see section 3) in the case that
∂S is either convex or void. In general, without hypotheses on ∂S other than some
degree of smoothness, we can also work out uniform convergence since by virtue of
Theorem 4 the upper bound in (3) uniformly converges to 0. The key condition is
S ⊂ ΩPh

n
, something that can obviously be coped with using the compactness of S.14

We can then state the following claim.
Theorem 6 (uniform convergence for point clouds). Let S be a compact smooth

submanifold of Rd possibly with boundary ∂S. Then the following hold:
1. General case: Given ε > 0, there exists hε > 0 such that for all 0 < h ≤ hε

one can find finite n(h) and a set of points Pn(h)(h) = {p1(h), . . . , pn(h)(h)} sampled
from S such that

max
p,q∈S

(
dS(p, q) − dΩh

Pn(h)(h)
(p, q)

)
≤ ε.

2. ∂S is either void or convex: For every sufficiently small h > 0 one can find
finite n(h) and a set of points Pn(h)(h) = {p1(h), . . . , pn(h)(h)} sampled from S such
that

max
p,q∈S

(
dS(p, q) − dΩh

Pn(h)(h)
(p, q)

)
≤ CS

√
h.

11Although in this paper we consider only manifolds with constant codimension, many of the
results are extendible to variable codimensions, and this will be reported elsewhere.

12Note that having the intrinsic distance allows us to compute basic intrinsic properties of the
manifold; see e.g., [13].

13The balls now used are defined with respect to the metric of Rd; they are not intrinsic.
14By compactness, given h > 0, we can find finite N(h) and points p1, p2, . . . , pN(h) ∈ S such that

S = ∪N(h)
i=1 BS(pi, h). But since for p ∈ S, BS(p, h) ⊂ B(p, h) ∩ S, we also get S ⊂ ∪N(h)

i=1 B(pi, h).
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In practice, one must worry about both the number of points and the radii of
the balls. Obviously, there is a tradeoff between both quantities. If we want to use
few points, in order to cover S with the balls we have to increase the value of the
radius. Clearly, there exists a value H such that for values of h smaller than H we do
not change the topology; see [3, 4, 5]. This implies that the number of points must
be larger than a certain lower bound. This result can be generalized to ellipsoids
which can be locally adapted to the geometry of the point cloud [15], or from minimal
spanning trees. Note that we are interested in the smallest possible offset of the point
cloud that covers S. Further comments on this are presented below and are also the
subject of current efforts to be reported elsewhere.

The practical significance of the previous Theorem is clear. Part 1 says that
in general, given a desired precision for the computation of the distance, we have a
maximum nonzero value for the radius of all the balls, below which we can always find
a finite number of points sampled from the manifold for which the “Ω-set” formed by
those points achieves the desired accuracy;15 that is, we can choose the radius at our
convenience within a certain range which depends on this level of accuracy. Part 2
says more, since it actually links ε to hε. It basically says that the radius of the balls
must be of the order of the square of the desired error.

5. Extension to random sampling of manifolds. In practice, we really do
not have too much control over the way in which points are sampled by the acquisition
device (e.g., scanner) or given by the learned sampled data. Therefore it is more
realistic to make a probabilistic model of the situation and then try to conveniently
estimate the probability of achieving a prescribed level of accuracy as a function of the
number of points and the radii of the balls. It will be interesting to see how geometric
quantities of S enter in those bounds we will establish. However, since the bounds
are based in local volume computations and all manifolds are locally Euclidean, those
curvature dependent quantities will be asymptotically negligible.

We now present a simple model for the current setting, while results for other
models can be developed from the derivations below. Here we assume that the points
in Pn are independently and identically sampled on the submanifold S with the uni-
form probability law;16 we will write this as pi ∼ U[S]. For simplicity of exposition,
we will restrict ourselves to the case when S has no boundary.17 Also, we deal only
with uniform independently and identically distributed (i.i.d.) sampling; results for
other sampling models, including those adapted to the manifold geometry, can be
easily obtained following the developments below and will be reported elsewhere.

We have to define the way in which we are going to measure accuracy. A possibility
for such a measure is (for each ε > 0)

P

(
max
p,q∈S

(
dS(p, q) − dΩh

Pn
(p, q)

)
> ε

)
.(4)

There is a potential problem with this way of testing accuracy, since we are
assuming that when we use the approximate distance, we will be evaluating it on S.
This might seem a bit awkward since we don’t exactly know all the surface but just

15We are considering the case when all the balls have the same radii.
16This means that for any subset A ⊆ S and any pi ∈ Pn, P (pi ∈ A) = µ(A)

µ(S)
, where µ (·) stands

for the measure (area/volume) of the set.
17In order to extend the results in this section to the case ∂S �= ∅, the same considerations

discussed in [9] remain valid in our case.
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some points on it. Moreover, a more natural and real-problem-motivated approach
would be to measure the discrepancy over Pn itself (see section 7 ahead), over part of
this set, or over another trial set of points Qm.

However, since for any set of points Qm ⊂ S we have that the following inclusion
of events,{

max
p,q∈Qm

(
dS(p, q) − dΩh

Pn
(p, q)

)
> ε

}
⊆
{

max
p,q∈S

(
dS(p, q) − dΩh

Pn
(p, q)

)
> ε

}
,

holds, bounding (4) suffices for dealing with any of the possibilities mentioned above.
Note that we are somehow considering dΩh

Pn
defined for all pairs of points in S × S,

even if it might happen that S∩Ωh
Pn

�= S. In any case we extend dΩh
Pn

to all Ωh
S ×ΩS

by a large constant, say k diam(S), k � 1.
Let us spell out a few definitions so as to avoid an overload of notation:

Eε
�
=

{
max
p,q∈S

(
dS(p, q) − dΩh

Pn
(p, q)

)
> ε

}
,(5)

Ih,n
�
=
{
S ⊆ Ωh

Pn

}
.(6)

Now, since Eε = (Eε ∩ Ih,n) ∪ (Eε ∩ Ich,n), using the union bound and then Bayes
rule, we have

P (Eε) ≤ P (Eε ∩ Ih,n) + P
(
Eε ∩ Ich,n

)
= P (Eε | Ih,n) P (Ih,n) + P

(
Eε | Ich,n

)
P
(
Ich,n
)

⇓

P (Eε) ≤ P (Eε | Ih,n) + P
(
Ich,n
)
.(7)

It is clear now that we must find a convenient lower bound for the second term in
the previous expression, the probability of covering all S with the union of balls. (The
first term will be dealt with using the convergence theorems presented in previous
sections.) For this we need a few lemmas.

Lemma 1. Let K be an upper bound for the sectional curvatures of S (diam(S) =
k) and x ∈ S be a fixed point. Then, under the hypotheses on Pn described above,

there exist a constant ωk > 0 and a function θS(·) with limh↓0
θS(h)
hk+1 = 0 such that for

small enough h > 0

P
({

x /∈ Ωh
Pn

∩ S
})

≤
(

1 − ωk h
k + θS(h)

µ (S)

)n

.(8)

Moreover, one can further expand the right-hand side of (8) as(
1 − ωkh

k(1 −Kckh
2) + φS(h)

µ (S)

)n

for some ck depending only on the dimension k of S and a function φS such that
φS(h)
hk+2 → 0 as h ↓ 0.
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Proof.

P
({

x /∈ Ωh
Pn

∩ S
})

= P

({
n⋂

i=1

{x /∈ B(pi, h) ∩ S}
})

(9)

= P

({
n⋂

i=1

{pi /∈ B(x, h) ∩ S}
})

(10)

=
n∏

i=1

P ({pi /∈ B(x, h) ∩ S})(11)

=
n∏

i=1

(1 − P ({pi ∈ B(x, h) ∩ S})) .(12)

Since BS(x, h) ⊆ B(x, h)∩S,18 then µ (S ∩B(x, h)) ≥ µ (BS(x, h)). On the other
hand, note that

P ({pi ∈ B(x, h) ∩ S}) =
µ (S ∩B(x, h))

µ (S)

≥ µ (BS(x, h))

µ (S)
.

Finally, as shown in Appendix D, one can lower bound µ (BS(x, h)) using infor-
mation on the curvatures of S, by means of the Bishop–Günther volume comparison
theorem. More precisely, we can write

µ (BS(x, h)) ≥ min
ζ∈S

µ (BS(ζ, h)) ≥ ωkh
k + θS(h),

where θS(h)
hq → 0 when h → 0 for q ≤ k + 1. Therefore, from (9) we obtain

P
({

x /∈ Ωh
Pn

∩ S
})

≤
(

1 − ωk h
k + θS(h)

µ (S)

)n

.

The last assertion follows from Proposition 3.
Remark 5. Note that we cannot, however, from (8), conclude that P(S � Ωh

Pn
) ≤(

1 − ωk hk+θS(h)
µ(S)

)n
. In order to upper bound P(S � Ωh

Pn
) we will first estimate

P(BS(x, δ) � Ωh
Pn

) for any x ∈ S and small δ > 0. Then we will use the compactness
of S by covering it with a finite δ-net consisting of N(S, δ) points, and conclude by
using the union bound. Yet another intermediate step will therefore be to estimate
the covering number N(S, δ).

Lemma 2. Under the hypotheses of the previous lemma, let δ ∈ (0, h); then

P
(
BS(x, δ) � Ωh

Pn

)
≤
(

1 − ωk (h− δ)k + θS(h− δ)

µ (S)

)n

.(13)

Proof. We find α and β such that {BS(q, δ) ⊆ Ωh
Pn

} ⊇ {q ∈ Ωαh+βδ
Pn

}. Note first

that for any x ∈ BS(q, δ), |x−q| ≤ dS(x, q) ≤ δ. Assume that the event {q ∈ Ωαh+βδ
Pn

}

18Consider z ∈ BS(x, h); then dS(x, z) ≤ h, but always d(x, z) ≤ dS(x, z), and thus d(x, z) ≤ h,
which implies z ∈ B(x, h) ∩ S.



GEODESIC DISTANCE ON POINT CLOUDS 1239

holds. Then for some pr ∈ Pn, q ∈ B(pr, αh + βδ); that is, |q − pr| ≤ αh + βδ. Now,
note that

|x− pr| ≤ |x− q| + |q − pr| ≤ αh + (β + 1)δ.

If we force the rightmost number to be h, we find that we must have (1+β)δ = (1−α)h,
and then αh+βδ = h−δ. Then we have found BS(q, δ) ⊆ B(pr, h−δ) ⊂ Ωh

Pn
. Hence

(using (8)), P(BS(q, δ) ⊆ Ωh
Pn

) ≥ P(q ∈ Ωh−δ
Pn

≥ 1 − (1 − ωk (h−δ)k+θS(h−δ)
µ(S) )n.

We also need the next lemma, whose proof is deferred to Appendix C.
Lemma 3 (bounding the covering number). Under the hypotheses of Lemma 2

and further assuming S to be compact, we have that for any small enough δ > 0 there
exists a δ-covering of S with cardinality

N(S, δ) ≤ µ (S)

ωk(δ/2)k + θS(δ/2)
.(14)

Proposition 2. Let the set of hypotheses sustaining all of the previous lemmas

hold. Let also ([0, 1) �)xh
�
= ωk(h/2)k+θS(h/2)

µ(S) , where ωk and θS are given as in the

proof of Lemma 1. Then

P
(
S � Ωh

Pn

)
≤ e−nxh

xh
.(15)

Proof. Consider a finite h
2 -net covering S given by Lemma 3, that is, S =⋃N(S,h2 )

i=1 BS(qi,
h
2 ); then

P
(
S � Ωh

Pn

)
= P

(⋃
x∈S

{x /∈ Ωh
Pn

}
)

= P

⎛
⎝N(S,h2 )⋃

i=1

⋃
x∈BS(qi,

h
2 )

{x /∈ Ωh
Pn

}

⎞
⎠

≤ N

(
S,

h

2

)
max

1≤i≤N(S,h2 )
P

⎛
⎝ ⋃

x∈BS(qi,
h
2 )

{x /∈ Ωh
Pn

}

⎞
⎠

= N

(
S,

h

2

)
max

1≤i≤N(S,h2 )
P

(
BS

(
qi,

h

2

)
� Ωh

Pn

)

= N

(
S,

h

2

) (
1 − min

1≤i≤N(S,h2 )
P

(
BS

(
qi,

h

2

)
⊆ Ωh

Pn

))
.

Using the lemmas above, we obtain

P
(
S � Ωh

Pn

)
≤ (1 − xh)n

xh
,

and we conclude by using the inequality 1 − x ≤ e−x, valid for x ≥ 0.
It is both interesting and useful to find a relation between n (the number of points

in the cloud), h (the radii of the balls), and k (the dimension of the manifold) which
guarantees limn↑+∞, h↓0 P(S � Ωh

Pn
) = 0. For this purpose we will use Proposition 2.
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Note that h > 0 will be small, and also, if we are attempting to approximate dS, h
should tend to 0.19

Remark 6. Note that for {am}m∈N, am ↓ 0, e−mam

am
goes to zero as m ↑ ∞ if am is

asymptotically greater than or equal to logm
m . Then, in order to have the right-hand

side of (15) tend to zero, we should have xh � logn
n , and the condition relating h, k,

and n should then be20

hk �
(
µ(S)

2k

ωk

)
log n

n
.(16)

Also, under this condition we can estimate the rate at which e−nxh

xh
approaches zero

as n ↑ ∞. For example, with xh � logn
n , e−nxh

xh
� 1

logn as n ↑ ∞. Note that, of course,
we can speed up the convergence towards zero by choosing slower variations of xhn

with n; for instance, with xhn � lognγ

n , γ ≥ 1, we have e−nxh

xh
� 1

γ(log n)nγ−1 as n ↑ ∞.

Bounds for P(S � Ωh
Pn

) similar to ours can be found in [27]. It can be seen that our
bounds are better than the ones reported in [27] for a certain range of k, the dimension
of S. We should point out that with our bounds we can obtain rates of convergence
comparable to the optimal ones. Let us elaborate on this: In the case of the unit
circle S1 it is known (see [66]) that

p1(n, h)
�
= 2ne−n h

π � P
(
S1 � Ωh

Pn

)
(17)

for n large and h
π � 1, whereas our bound is p2(n, h)

�
= e−nh/2π

h/2π � P(S1 � Ωh
Pn

).

Choose for p1, h
(1)
n = γ1π

log n
n

and for p2, h
(2)
n = γ2π

log n
n

. Plugging these expressions

into the formulas for p1 and p2, we find p1 = 2n1−γ1 and p2 = 2
γ2(log n)n

1− γ2
2 . Hence,

by letting (2 >)γ2 = 2γ1 (which is equivalent to
h(2)
n

h
(1)
n

= 2), we obtain p2 � p1.

The optimal bound (17) for the case of S1 is derived using direct knowledge of the
distribution of the minimal number of random arcs (of a certain fixed size) needed to
cover S1 completely. This distribution is unknown for all nontrivial cases [66, 34]. In

the case of the sphere S2, also in [66], a bound of the type P(S2 � Ωh
Pn

≤ CN2e−DNh2

)
is reported (for certain constants C and D); however, the proof seems to use properties
of symmetry of the sphere in a fundamental way. Other interesting bounds which
could be used in this situation are those in [38].

We should finally point out that the problem of covering a certain domain (usually
S1) with balls centered at random points sampled from this domain has been studied
by many authors [66, 27, 28, 37, 65, 39, 34] and even by Shannon in [64].

We have the following interesting corollary, whose proof can be found in Appendix
C.

Corollary 4. Let S be a smooth compact submanifold of Rd without boundary.
We have that if (16) holds, then for any ε > 0

lim
h,n

P
(
dH(S,Ωh

Pn
) > ε

)
= 0,

where dH is the Hausdorff distance between sets.

19For constant h > 0, by definition 0 < xh < 1, and then obviously e−nxh

xh
→ 0 as n ↑ ∞.

20This kind of condition is commonplace in the literature of random coverings; see, e.g., [25, 65, 22].
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We are now ready to state and prove the following convergence theorem.
Theorem 7. Let S be a k-dimensional smooth compact submanifold of Rd. Let

Pn = {p1, . . . , pn} ⊆ S be such that pi ∼ U[S] for 1 ≤ i ≤ n. Then if h = hn is such
that hn ↓ 0 and (16) holds as n ↑ ∞, we have that for any ε > 0,

P

(
max
p,q∈S

(
dS(p, q) − dΩh

Pn
(p, q)

)
> ε

)
n↑∞−→ 0.

Proof. We base our proof on (7). We first note that P (Eε | Ih,n) = 0 for n large
enough because, from considerations at the beginning of section 4, maxp,q∈S(dS(p, q)−
dΩhn

Pn

(p, q)) ≤ CS

√
hn whenever S ⊆ ΩPhn

n
holds. Let N = N(ε) ∈ N be such that

hn < ( ε
CS

)2 for all n ≥ N(ε). Then, for n ≥ N(ε), P (Eε) = P
(
Ich,n ≤ e

−nxhn

xhn

)
, and

since by assumption (16) holds, the right-hand side goes to 0 as n ↑ ∞.
Remark 7.

1. As can be gathered from the preceding proof, for fixed ε > 0 and large n ∈ N,

P

(
max
p,q∈S

(
dS(p, q) − dΩh

Pn
(p, q)

)
> ε

)

can be upper bounded by e
−nxhn

xhn
. For example, setting xhn = γ logn

n for γ ≥ 1 yields

(given n big enough)

P

(
max
p,q∈S

(
dS(p, q) − dΩh

Pn
(p, q)

)
> ε

)
≤ 1

γ nγ−1 log n
.

2. Then we see that by requiring
∑

n≥1
e
−nxhn

xhn
< ∞ and using the Borel–

Cantelli lemma, we obtain almost sure convergence, namely,

P

(
lim
n↑∞

max
p,q∈S

(
dS(p, q) − dΩh

Pn
(p, q)

)
= 0

)
= 1.

This can be guaranteed (for example) by setting xhn
= γ logn

n for γ > 2.
This concludes our study of distance functions on (noiseless) point clouds (sam-

pled manifolds). We now turn to the even more realistic scenario where the points
are considered to be noisy samples.

6. Noisy sampling of manifolds. We assume that we have some uncertainty
on the actual position of the surface, and we model this as if each point in the set of
sampled points is modified by a (not yet random) perturbation of magnitude smaller
than ∆. More explicitly, each pi is given as pi = p+ζ×v for some v ∈ Sd−1, some p in
S, and ∆ ≥ ζ ≥ 0. Then we can guarantee that the point p from which pi comes can be
found inside B(pi,∆)∩S. We are again interested in comparing dΩh

Pn
: Ωh

Pn
→ R+∪{0}

with dS : S → R+ ∪{0}, but now these functions have different domains; therefore we
must be careful in defining a meaningful way of relating them. If we consider

F∆
S

�
= {f | f : Ω∆

S → S, f(p) ∈ B(p,∆) ∩ S},

we can compare, for some f ∈ F∆
S and 1 ≤ i, j ≤ n, dΩh

Pn
(pi, pj) with dS(f(pi), f(pj)).

Note that as the perturbation’s magnitude goes to zero, F∆
S � f(p)

∆↓0−→ p, for p ∈ Ω∆
S .

The next step is to write max1≤i,j≤n ‖dhΩPn
(pi, pj) − dS(f(pi), f(pj))‖, the biggest
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error we have for our set of points. And finally, the next logical step is to look at the
worst possible choice for f :

LS(Pn; ∆, h)
�
= sup

f∈F∆
S

max
1≤i,j≤n

∣∣∣dS(f(pi), f(pj)) − dΩh
Pn

(pi, pj)
∣∣∣ .(18)

We start by presenting deterministic bounds for the expression in (18), and only
later will we be more (randomly) greedy and, in the spirit of Theorem 7, prove for
ε > 0 a result of the form (LS(Pn; ∆, h) will be a R.V.)

P (LS(Pn; ∆, h) > ε)
n↑∞−→ 0.

6.1. Deterministic setting. The idea is to prove that for some convenient
function f̂ ∈ F∆

S we can write

LS(Pn; ∆, h) ≤ max
1≤i,j≤n

∣∣∣dS(f̂(pi), f̂(pj)) − dΩh
Pn

(pi, pj)
∣∣∣+ λ(h,∆),

where 0 ≤ λ(x, y)
x,y↓0−→ 0. The natural candidate for f̂ is the orthogonal projection

onto S, ΠS : ΩH
S → S, whose properties are discussed in Appendix B. Then we see

that we can reduce everything to bounding maxp,q∈S ‖dS(p, q) − dΩh
Pn

(p, q)‖. This is

simple since if Pn ⊂ Ω∆
S , then Ωh

Pn
⊂ Ωh+∆

S , and dS ≥ dΩh
Pn

|S
≥ dΩh+∆

S |S
, and finally

from Theorem 5, ‖dS − dΩh
Pn

‖L∞(S) ≤ CS

√
h + ∆.

Let S ⊂ Ωh
Pn

, f ∈ F∆
S , and 1 ≤ i, j ≤ n. Then, after using the triangle inequality

a number of times, we can write the bound∣∣∣dS(f(pi), f(pj)) − dΩh
Pn

(pi, pj)
∣∣∣ ≤ 2 sup

f∈F∆
S

max
p∈Pn

dS(f(p),ΠS(p))

+ max
p,q∈S

∣∣∣dS(p, q) − dΩh
Pn

(p, q)
∣∣∣

+ max
p,q∈Pn

∣∣∣dΩh
Pn

(p, q) − dΩh
Pn

(ΠS(p),ΠS(q))
∣∣∣ .

The last term can be bounded by 2∆, the one in the middle has already been
discussed, and hence we are left with the first one. Using Corollary 2, we find that
since f(p) ∈ B(ΠS(p), 2∆) ∩ S, then in fact f(p) ∈ BS(ΠS(p), 2∆(1 + CS

√
∆)) and

dS(f(p),ΠS(p)) ≤ 2∆(1+CS

√
2
√

∆). Summing up, under the condition S ⊂ Ωh
Pn

, we
obtain the desired result,

LS(Pn; ∆, h) ≤ CS

√
h + ∆ + 2∆(2 +

√
2CS

√
∆).(19)

6.2. Random setting. Assume that {p1, . . . , pn} is a set of i.i.d. random points
such that each pi ∼ U[Ω∆

S ]. At this time, we want to estimate the probability of having
S ⊆ Ωh

Pn
. It is easy to see that as a first “reality compliant” condition one should

have that the noise level not be too big with respect to h. We will impose h ≥ ∆ for
simplicity’s sake, as can be understood from the convergence theorem below. Since
the techniques are similar to those used in the noise-free case, we will present its proof
in Appendix C.

Theorem 8. Let S be a k-dimensional smooth compact submanifold of Rd. Let
Pn = {p1, . . . , pn} be such that pi ∼ U[Ω∆

S ] for 1 ≤ i ≤ n . Then if h = hn, ∆ = ∆n
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Fig. 1. Intrinsic distance function for a point cloud. A point is selected in the head of the
David, and the intrinsic distance is computed following the framework introduced here. The point
cloud is colored according to the intrinsic distance to the selected point, going from bright red (far)
to dark blue (close). The offset band, given by the union of balls, is shown next to the distance
figure. Bottom: Same as before, with a geodesic curve between two selected points.

are such that ∆n ≤ hn and hn ↓ 0 and ∆k
n � logn

n as n ↑ ∞, we have that for any
ε > 0,

P (LS(Pn; ∆, h) > ε)
n↑∞−→ 0.

We have now concluded the analysis of the most general case for noisy sampling
of manifolds. Note that, although the results in this and in previous sections were
presented for Euclidean balls, they can easily be extended to more general covering
shapes (check Corollary 1 above), e.g., following [15, 36], or using minimal spanning
trees, or from the local directions of the data [56]. In addition, the recently developed
approach reported in [57] can be used for defining the offset band in an adaptive
fashion. This will improve the bounds reported here. Similarly, the results can be
extended to other sampling or noise models following the same techniques developed
here.

7. Implementation details and examples. We now present examples of dis-
tance matrices and geodesics for point clouds (Figure 1), use these computations to
find intrinsic Voronoi diagrams (Figure 2; see also [42, 43, 71]); and compare the re-
sults with those obtained with mesh-based techniques (Figure 3).21 We also present
examples in high dimensions and use, following and extending [24], our results to
compare manifolds given by point clouds. All these exercises are to exemplify the
importance of computing distance functions and geodesics on point clouds, and are
by no means exhaustive. The 3D data sets used come from real point cloud data
and have been obtained either from range scanners (David model) or via photometric
stereo techniques (man and woman).

21All the figures in this paper are in color. VRML files corresponding to these examples can be
found at http://mountains.ece.umn.edu/∼guille/pc.htm.
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Fig. 2. Voronoi diagram for point clouds. Four points (left) and two points (right) are selected
on the cloud, and the point cloud is divided (colored) according to the geodesic distance to these
four points. Note that this is a surface Voronoi, based on geodesics computed with our proposed
framework, not a Euclidean one.

The theoretical results presented in the previous sections show that the intrinsic
distance and geodesics can be approximated by the Euclidean ones computed in the
band defined (for example) by the union of balls centered at the points of the cloud.
The problem is then simplified to first computing this band (no need for mesh com-
putation, of course), and then using well-known computationally optimal techniques
to compute the distances and geodesics inside this band, exactly as done in [49] for
implicit surfaces (where the interested reader can also find explicit computational
timings and accuracy comparisons with mesh-based approaches). The band itself can
be computed in several ways, and for the examples below we have used constant radii.
Locally adaptive radii can be used, based, for example, on diameters obtained from
minimal spanning trees or on the recent work reported in [57]. Automatic and local
estimation of h defining Ωh

Pn
, which will improve the bounds reported here, was not

pursued in this paper and is the subject of current implementation efforts.

The software implementation of the algorithm is based on using the fast Euclidean
distance computation algorithms, usually referred to as fast marching algorithms [35,
62, 63, 69], twice. We omit the description of this algorithm since it is well known.
The starting point is defining a grid over which all the computations are performed.
This amounts to choosing ∆xi , the grid spacing in each direction i = 1, . . . , d, which
will determine the accuracy of the numerical implementation (the offset band includes
fewer than 10 grid points).22 In the first round we compute the band Ωh

Pn
= {x ∈

Rd : d(Pn, x) ≤ h} by specifying a value of zero for the function Ψ(x) = d(Pn, x) on
the points x ∈ Pn. Since in general these points will not be on the grid, we use a
simple multilinear interpolation procedure to specify the values on neighboring grid
points. The second use of the fast distance algorithm is also simply reduced to using
Ψ to define Ωh

Pn
by using the simple modification reported in [49]. The computation

of geodesics was done using a simple Runge–Kutta gradient descent procedure, much
in the way described in [49], with some obvious modifications.

22Adaptive grids inside the fixed or variable width offset band could be used as well; see, for
example, [30].
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Fig. 3. Examples of geodesic computations. This data is used to study the algorithm robustness
to noise, see Appendix A.

All the code and 3D visualization was developed in C++ using both Flujos (which
is written using Blitz++; see [7]) and VTK (see [70]). For matrix manipulation and
visualization of other results we used MATLAB. We are currently working on a more
advanced implementation of the proposed framework that permits us to work with
high-dimensional data without having the memory allocation problems that result
from blind and straightforward allocation of resources to empty and nonused grids.

7.1. High-dimensional data. In this section we present a simple example for
high-dimensional data. We embed a circle of radius 15 in R5, and use a grid of size
34×4×4×4×34 (with uniform spacing ∆x = 1) such that each of the sample points
is of the form pi = 15 (cos( 2πi

N ), 0, 0, 0, sin( 2πi
N )) + (17, 2, 2, 2, 17), for 1 ≤ i ≤ N .

We then use our approach to compute the (approximate) distance function dh in a
band in R5, and then the error eij = |dS(pi, pj) − dh(pi, pj)| for i, j ∈ {1, . . . , N}.
In our experiments we used h = 2.5 > ∆x

√
5.23 We randomly sampled 500 points

from the N = 1000 points used to construct the union of balls to build the 500× 500
error matrix ((eij)). We found maxij{eij} = 2.0275, that is, a 4.3% L∞-error. In
Figure 4 we show the histogram of all the (5002) entries of ((eij)). We should also
note that when following the dimensionality reduction approach in [67], with the
geodesic distance computation proposed here, the correct dimensionality of the circle
was obtained.

23For a discussion on how to make a preliminary estimation of the value of h, see [49].
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Fig. 4. Histogram for the error in the case of a circle embedded in R5.

In high dimensions, when the grid is too large, our current numerical implemen-
tation becomes unusable. The problem stems from the fact that we require too much
memory space, most of which is not really used, since the computations are con-
ducted only in a band around P ⊂ Rd. To be more precise, the memory requirements
of our current direct implementation, which uses a d-dimensional array to make the
computations, are � (maxi li)

d, whereas we really need a storage capacity of order
µk(S)hd−k, where li is the size of P’s bounding box along the ith direction, 1 ≤ i ≤ d,
and µk(S) is the measure of the k-dimensional manifold S (embedded in Rd). This
memory problem is to be addressed by a computation that is not based on discretizing
the whole band. (Note, of course, that the theoretical foundations presented in this
paper are independent of the particular implementation.) We are currently working
on addressing this specific issue.

7.2. Object recognition. The goal of this application is to use our framework
to compare manifolds given by point clouds. The comparison is done in an intrinsic
way, that is, isometrically (bending) invariant. This application is motivated by [24],
where they use geodesic distances (computed using a graph-based approach) to com-
pare 3D triangulated surfaces. In contrast with [24], we compare point clouds using
our framework (which is not only based in the original raw data, but also, as shown
in Appendix A, more robust to noise than mesh approaches such as those of [24] and
is valid in any dimensions), and use a different procedure/similarity metric between
the manifolds. The authors in [24] basically project into low-dimensional manifolds
and use eigenvalues and eigenvectors of a centralized matrix related to the distance
matrices (matrices which in each entry (i, j) have the value of the intrinsic distance
between (projected) points pi and pj of the cloud), which are clearly not sufficient to
distinguish nonisometric objects. (Nonisometric objects can have distance matrices
with the same eigenvalues.) A different study, based on direct comparisons of distance
matrices, is used here and detailed in Appendix E.
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Table 1

Information about the models used in our recognition experiments.

Dataset Number of points in the cloud (n) Grid size used

Bunny 15862 80 × 80 × 70
MAN2 26186 120 × 90 × 200
MAN3 26186 120 × 90 × 165
MAN5 26186 120 × 85 × 160

WOMAN2 29624 120 × 105 × 175
WOMAN3 29624 120 × 100 × 180

Our task then is to compare two manifolds in an intrinsic way; i.e., we want
to check whether they are isometric or not. We want to check this condition by
using point clouds representing each one of the manifolds. Let S1 and S2 be two

submanifolds of Rd and sample on each of them the two point clouds P
(1)
n ⊂ S1

and P
(2)
n ⊂ S2. Then, following our theory, we compute the corresponding distances

in the offset bands for these two sets of points, d
Ω

h1

P
(1)
n

and d
Ω

h2

P
(2)
n

, and for point

subsets {q(1)
1 , . . . , q

(1)
m } = Q

(1)
m ⊆ P

(1)
n , {q(2)

1 , . . . , q
(2)
m } = Q

(2)
m ⊆ P

(2)
n we compute the

corresponding m×m pairwise distance matrices (as defined above)

D1 =

((
d
Ω

h1

P
(1)
n

(q
(1)
i , q

(1)
j )

))
and D2 =

((
d
Ω

h2

P
(2)
n

(q
(2)
i , q

(2)
j )

))
.

Let PMm be the set of m×m permutation matrices and ‖·‖ a unitary transformation

invariant norm24 (fix the Frobenius norm: ‖A‖ =
√∑

i

∑
j a

2
ij). Then we define the

I-distance between (distance) matrices D1 and D2 as

dI(D1, D2)
�
= min

P∈PMm

‖D1 − PD2P
T ‖.

Clearly, if dI(D1, D2) = 0, then we have an isometry between the discrete metric sets

(Q
(1)
n , d

Ω
h1

P
(1)
n

) and (Q
(2)
n , d

Ω
h2

P
(2)
n

). This should allow us to establish a rough isometry

(see [14, section 4.4]) between S1 and S2 with interesting constants.
The exact details on how this metric is approximated and how the subsets of

points Q are selected is presented in Appendix E. For the experiments regarding
recognition of shapes we used the datasets listed in Table 1.

In Figure 5 we present the histogram of the error e(100)/100 for 20 different
100 × 100 distance matrices corresponding to the full Bunny model, with the 100
points chosen as in the “packing procedure” described in Appendix E, where the
exact definition of e(·) is also given (see (28)). We computed the mean of e(100)/100
over the 19 × 18 × · · · × 1 = 190 comparison experiments to be 0.4774 with standard
deviation 0.0189. This can be interpreted as indicating that when one considers a large
enough set of points, the information contained in the packing set is representative
of the metric information of the manifold, independently of the particular choice of
the packing set. This claim needs some further theoretical justification, which could
come if a result of the following fashion were proved:25

24‖AU‖ = ‖A‖ for any matrix A and any unitary matrix U .
25Note added in proof: After this paper was submitted for publication, we proved that a properly

modified version of the above claim holds in probability; see [50] for details.
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Fig. 5. Histogram showing the errors for different selections of point clouds on the bunny model.

Let S be a smooth compact k-dimensional submanifold of Rk such
that its Ricci curvature is bounded below by κ(n− 1) with κ ≤ 0. Let

Q
(r)
m ⊂ S, r = 1, 2, be such that dS(q

(r)
i , q

(r)
j ) ≥ ε and BS(Q

(r)
m , R)

covers S for some R > ε > 0. Then, with D1 and D2 defined as
before,

dI(D1, D2) ≤ 2mCS

√
h + C(R, ε,m),

where the exact form of C(R, ε,m) is to be determined, leading to an
optimal choice of m (the size of the subset).

Using the same procedure, described in Appendix E, to choose the sets Q
(i)
m , we

computed the errors (according to e(D1, D2)) for five artificial human models; three
of them are bendings of a man and two are bendings of a woman; see Figures 6 and 7.
Details on these models are also given in Table 1. The results of this cross-comparison
are presented in Table 2 below.

Table 2

Cross-comparisons for the human models using the error measure e(300)/300 normalized by the
maximum of the errors.

MODEL Man2 Man3 Man5 Woman2 Woman3

Man2 ∗ 0.0514 0.0570 0.4690 0.4853
Man3 ∗ ∗ 0.0206 0.4701 0.4859
Man5 ∗ ∗ ∗ 0.4702 0.4862

Woman2 ∗ ∗ ∗ ∗ 0.2639
Woman3 ∗ ∗ ∗ ∗ ∗

These examples show how our geodesic distance computation technique, when
complemented with the matrix metric in Appendix E, can be used to compare man-
ifolds given by point clouds, in a bending-invariant fashion and without explicit
manifold reconstruction. More exhaustive experimentation and additional theoretical
justification will be reported elsewhere.
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Fig. 6. MAN models. From top to bottom (two views of each model): MAN2, MAN3, and MAN5.

Fig. 7. WOMAN models. From left to right (two views of each model): WOMAN2 and
WOMAN3.

Before concluding, we should comment that, as frequently done in the litera-
ture, we could normalize the geodesic distances if scale invariance were also required.
Moreover, we could also consider in the distance matrix only nonzero entries for
local neighborhoods. In addition, the use of techniques for computing eigenvalues
and eigenvectors such as those in the work of Coifman and colleagues [17], on high-
dimensional geometric multiscale analysis should be explored.

8. Concluding remarks. In this paper, we have extended our previous work
[49] to deal with (smooth) submanifolds of Rd (of any codimension) and possibly with
boundary, and using these extensions, we have also shown how to compute intrinsic
distance functions on a generic manifold defined by a point cloud, without the in-
termediate step of manifold reconstruction. The basic idea is to use well-developed
computational algorithms for computing Euclidean distances in an offset band sur-
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rounding the manifold, to approximate the intrinsic distance. The underlying theo-
retical results were complemented by experimental illustrations.

As mentioned in the introduction, an alternative technique for computing geodesic
distances was introduced in [9, 67] (see also [31]). In contrast with our work, the effects
of noise were not addressed in [9, 31]. Moreover, as one can see from considerations in
Appendix A, our framework seems to be more robust to noise. We should note that
the memory requirements of the current way of implementing our framework are large,
and this needs to be addressed for very high dimensions (the framework is, of course,
still valid). In particular, we are interested in direct ways of computing distances
inside regions defined by union of balls, without the need to use the Hamilton–Jacobi
approach. Several classical computer science implementation tricks can be applied to
avoid this memory allocation problem, and this is part of our current implementation
efforts.

We are currently working on the use of this framework to create multiresolution
representations of point clouds (in collaboration with C. Moenning and N. Dyn; see
[55] and also [11, 18, 20, 58]), to further perform object recognition for larger libraries,
and to compute basic geometric characteristics of the underlying manifold—all this,
of course, without reconstructing the manifold. (See [54] for recent results on normal
computations for 2D and 3D noisy point clouds.) Some results in these directions are
reported in [50, 55]. Further applications of our framework for high-dimensional data
are also currently being addressed, beyond the preliminary (toy) results reported in
section 7. Of particular interest in this direction is the combination of this work with
the one developed by Coifman and colleagues and the recent one in [31].

Appendix A. Comparison with mesh-based strategies for distance cal-
culation in the presence of noise. We now make some very basic comparisons
between our approach to geodesic distance computations and those based on graph
approximations to the manifold, such as the one in Isomap [67, 31].26 (Comparisons
of the band framework with the one reported in [40] for 3D triangulated surfaces are
reported in [49].) The goal is to show that such graph-based techniques are more sen-
sitive to noise in the point cloud sample (and the error can even increase to infinity
with the increase in the number of points). This is expected, since the geodesic in
such techniques goes through the noisy samples, while in our approach, they just go
through the union of balls. We make our argument only for the 1D case, while the
high-dimensional cases can be similarly studied.

A.1. 1D theoretical case. Let us consider a rectilinear segment of length L
and n + 1 equispaced points p1, . . . , pn+1 in that segment. Consider the noisy points
qi = pi + ζin, where n is the normal to the segment and ζi 1 ≤ i ≤ n are independent
R.V. uniformly distributed in [−∆,∆]. Let l = L/n denote the distance between
adjacent pi’s. Let d∆

g denote the length of the polygonal path q1q2 . . . qn+1 and d0 = L.

Then obviously d∆
g ≥ d0 for any realization of the R.V.’s ζi. Let di = ‖pi − pi+1‖;

then by Pythagoras theorem di =
√

l2 + z2
i , where zi = ζi − ζi+1 are R.V.’s with

triangular density in [−2∆, 2∆].

Next we compute E (di) = 1
2∆

∫ 2∆

−2∆

√
l2 + z2(1 − |z|

2∆ ) dz. The result is

E (di) =
√
l2 + 4∆2 +

l2

2∆
log

(
2∆ +

√
l2 + 4∆2

l

)
− 1

6∆2

(
(l2 + 4∆2)3/2 − l3

)
.

26Isomap builds a mesh by locally connecting the (noisy) samples.
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Table 3

Results of simulations with the Swiss Roll dataset.

Noise power (n2
k) maxij |Dg,nk

ij −Dg,0
ij | k maxij |Dh,nk

ij −Dh,0
ij | h

0.0001 2.5222 7 0.5266 1.8
0.01 4.6409 7 0.9430 1.8
0.04 5.1737 7 1.2489 1.8
0.09 5.3292 7 1.4682 1.8
0.16 5.4651 7 1.7965 1.8

Now assuming ∆
l � 1, we find that up to first order E (di) � l + ∆ and

E
(
d∆
g − d0

)
� n∆.

From this we also get27

pg
�
= P
(
d∆
g − d0 > ε

)
� n∆

ε
.

On the other hand, for our approximation d∆
h , if the segment is contained in

the union of the balls centered at the sampling points, d∆
h = d0. The probability of

covering the segment by the band can be made arbitrarily close to 1 by increasing n.
More precisely, one can prove that if p stands for the value of the probability of not
covering the segment, then p ≤ k L

∆ (1 − k′ ∆L )n, for some positive constants k and k′.
Then we can write

ph
�
= P
(
d∆
h − d0 > ε

)
≤ k′′

ε

L

∆

(
1 − k′

∆

L

)n+1

.

The comparison is now easy. We see that in order to have pg vanish as n ↑ ∞, ∆

must go to zero faster than 1
n . However, we know that by requiring ∆ � log n

n � 1
n

we have ph ↓ 0 as n ↑ ∞. This means that the graph approximation of the distance
is more sensitive to noise than ours.28 This gives some evidence about why our
approach is more robust than popular mesh-based ones. Next we present results of
some simulations carried out in order to further verify our claim.

A.2. Simulations. In Table 3 we present results of simulations carried out for
the SwissRoll dataset [67]; see Figure 3. We used 10, 000 points to define the man-
ifold. We then generated 10, 000 noise vectors, each component being uniform with
power one and zero mean. Then we generated noisy datasets from the noiseless Swis-
sRoll dataset by adding the noise vector times a constant nk to each vector of the
noiseless initial dataset. We then chose 1000 corresponding points in each dataset
and computed the intrinsic pairwise distance approximation, obtaining the matrices
{(Dg,nk

ij )} and {(Dh,nk

ij )} for the graph-based and our approach, respectively, where
k = 1, 2, . . . , 5, i, j ∈ [1, 1000], and nk denotes the noise level. We then computed the

values of maxij |Dg,nk

ij − Dg,0
ij | and maxij |Dh,nk

ij − Dh,0
ij | for each k, where Dg,0

ij and

Dh,0
ij stand for noiseless intrinsic distance approximations. In Table 3, h indicates the

radii and k the size of the neighborhood for Isomap. The graph approximation shows

27Also, with similar arguments we can prove that maxζ1,...,ζn+1

(
d∆
g − d0

)
� 2n2∆2

L
.

28Another way of seeing this is by noting that, for a fixed noise level ∆, by increasing n we actually
worsen the graph approximation, whereas we are making our approximation better.
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less robustness to noise than our method, as was argued above. This is also true for
the sensitivity,29 where our approach outperforms the graph-based one by at least
one order of magnitude. Note that the sensitivity for our approach can be formally
studied from Theorem 3.

Appendix B. Properties of Euclidean distance functions. The references
for this section are [2, pp. 12–16], and [26].

Theorem 9 (see [2]). Let Γ ⊂ Rd be a compact, smooth manifold without bound-

ary. Then η(x)
�
= 1

2d
2(Γ, x) is smooth in a tubular neighborhood U of Γ. Also, in U

it satisfies ‖Dη‖2 = 2η.
Corollary 5. The projection operator Π : U → Γ, for a given x ∈ U , can be

written as Π(x) = x−Dη(x). Moreover, this operator is smooth.
Remark 8. Differentiation of the relation 〈Dη,Dη〉 = 2η gives us D2ηDη = Dη.

Differentiating once more, we also find D3ηDη = D2η.
Theorem 10 (see [2]). Let Γ and U be as in Theorem 9, and let y ∈ U and

x = y − Dη(x) ∈ Γ, k = dim(Γ). Then, denoting by λ1, . . . , λn the eigenvalues of
D2η(y),

λi(y) =

{
d(Γ,y)κi(x)

1+d(Γ,y)κi(x) if 1 ≤ i ≤ k,

1 if k < i ≤ n,

where κi(x) are the principal curvatures of Γ at x along Dd(Γ, y) ∈ NxΓ, where NxΓ
is the normal space to Γ at x.

Appendix C. Deferred proofs.
Proof of Corollary 3. We present only a sketch of the proof. Let M be an extension

of S such that S is still strongly convex in M, and let 0 < δ
�
= minx∈S minz∈M ‖x−z‖.

Then, B(x, α)∩B(z, β) = ∅ for all x ∈ S, z ∈ ∂M, and α, β < δ
3 . Hence, Ωα

S∩Ωβ
∂M = ∅

for α, β ≤ δ
3 .

For any x, y ∈ S consider γh the Ωh
M-minimizing geodesic, L (γh) = dΩh

M
(x, y).

By the convexity of S there exists a unique M-minimizing geodesic γ0 ⊂ S joining
x, y, and then, by Theorem 4, γh uniformly converges to γ0. In particular, for any
ε > 0 there exists hε > 0 such that γh ⊂ Ωε

γ0
for all h < hε. Choose ε ≤ δ

3 ; then

γh ⊂ Ωε
γ0

⊂ Ωε
S. Furthermore, if h ≤ δ

3 , then Ωε
γ0

∩ Ωh
M = ∅, and therefore γh does

not touch ∂Ωh
M ∩ ∂Ωh

∂M. Thus, γh is C1,1 for h ≤ δ
3 . Note that with this choice of h

we have Ωh
S∩M ⊂ int(M), and therefore we also have a smooth orthogonal projection

operator Π : Ωh
S → M.

Proceeding as in the first steps of the proof of Theorem 5, we have L (γh) =
dΩh

M
(x, y) ≤ dM(x, y) ≤ L (Π(γh)), since Π(γh) ⊂ M but may not be a minimizing

path. Then, using the convexity of S in M, dM(x, y) = dS(x, y), and therefore 0 ≤
dS(x, y)− dΩh

M
(x, y) ≤ |L (Πγh)−L (γh) |, which can be bounded by a constant times√

h just mimicking the proof of Theorem 5. We conclude by noting that Ωh
S ⊂ Ωh

M,
and hence dS(x, y) − dΩh

M
(x, y) ≥ dS(x, y) − dΩh

S
(x, y).

Proof of Lemma 3. We now estimate the covering number N(S, δ). The idea is
constructive, very simple, and of course standard. We consider the following procedure
(adopted from [9]): Let q1 be any point in S, and choose q2 ∈ S\BS(q1, δ). Then choose
q3 ∈ S\{BS(q1, δ) ∪ BS(q2, δ)}. Iterate this procedure until it is no longer possible

29Sensitivity is defined as
∣∣∣1 − distance for noisy points

distance for clean points

∣∣∣.
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to choose any point q ∈ S\{∪N(S,δ)
k=1 BS(qk, δ)}; in such a case S = ∪N(S,δ)

k=1 BS(qk, δ).
Note that BS(qk,

δ
2 ) ∩ BS(ql,

δ
2 ) = ∅ if k �= l, and therefore we can bound N(S, δ) ≤

µ(S)
minx∈S µ(BS(x,δ/2)) . Therefore, using the Bishop–Günther inequalities in the same

manner as in Lemma 1, we find (14).
Proof of Corollary 4. Note first that the random variable dH(S,Ωh

Pn
) is bounded

by max{diam (S) + h, h}. By definition of the Haussdorf distance, dH(S,Ωh
Pn

) =

max (supx∈S d(x,Ωh
P), supy∈Ωh

Pn
d(y, S)). Then, supx∈S d(x,Ωh

Pn
) ≤ diam (S) + h by

the triangle inequality, and supy∈Ωh
P
d(y, S) ≤ h, trivially.

Now, we can write E(dH(S,Ωh
Pn

)) = E(E(dH(S,Ωh
P)‖�[S⊆Ωh

P])), but the inner

expected value can be bounded by h when �[S⊆Ωh
Pn ] = 1, and by max{diam (S)+h, h}

when �[S⊆Ωh
P] = 0. Using Chebyshev’s inequality, we find

P
(
dH(S,Ωh

Pn
) > δ

)
≤ h

δ
P
(
{S ⊆ Ωh

P}
)

+
max{diam (S) + h, h}

δ

(
1 − P

(
{S ⊆ Ωh

P}
))

≤ h

δ
+

diam (S) + h

δ

(
1 − P

(
{S ⊆ Ωh

P}
))
,

a quantity that goes to zero for any fixed δ > 0 as h ↓ 0 and n ↑ ∞, provided that
(16) holds.

Proof of Theorem 8. Since the proof is almost identical to that of Theorem 7,
many steps will be skipped. Note that since S is compact, there exists an upper bound
K for all its sectional curvatures. This will allow us to use the volume comparison
theorems as before.

We can start from the adequate version of (7). We must bound both P({S ⊆ Ωh
Pn

}c)
and P(LS(Pn; ∆, h) > ε | {S ⊆ Ωh

Pn
}). The second term can be bounded in an identi-

cal way as its ∆ = 0 counterpart was, obtaining

P
(
LS(Pn; ∆, h) > ε | {S ⊆ Ωh

Pn
}
)
≤ CS

√
h + ∆ + 2∆(2 +

√
2CS

√
∆)

ε
,(20)

which vanishes as n ↑ ∞.
Now we upper bound P({S ⊆ Ωh

Pn
}c). Everything carries over in the same fashion

as in the proof of Lemma 1, except that now we must take into consideration that the
pi’s are not necessarily on S but inside Ω∆

S . Following the described steps, we obtain

P
({

x /∈ Ωh
Pn

∩ S
})

≤
(

1 −
µ
(
B(x, h) ∩ Ω∆

S

)
µ
(
Ω∆

S

)
)n

.(21)

Notice that, since we are working with h ≥ ∆, we have B(x,∆) ⊂ B(x, h) ∩ Ω∆
S

(see Figure 8), and we can rewrite the bound in (21) as

P
({

x /∈ Ωh
Pn

∩ S
})

≤
(

1 − µ (B(x,∆))

µ
(
Ω∆

S

)
)n

(22)

=

(
1 − µ (B(·,∆))

µ
(
Ω∆

S

)
)n

.(23)

We can bound this quantity using formulas akin to Weyl’s tube theorem. More
precisely, as explained in Appendix D, we can write

µ
(
Ω∆

S

)
= µ (S) v(d− k,∆) + ϕS(∆),
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∆

h

x

S

Fig. 8. B(x,∆) ⊂ B(x, h) ∩ Ω∆
S .

where ϕS(∆)
∆d−k+1 → 0 as ∆ → 0 and v(D,R) is the volume of the ball of radius R in

D-dimensional Euclidean space.
Now, for x ∈ S we must find a bound for P(BS(x, δ) � Ωh

Pn
), but as in the proof

of Lemma 2, P(BS(x, δ) � Ωh
Pn

) ≤ P(x /∈ Ωh−δ
Pn

∩ S), which can be bounded by (22).
Also the bound (14) for the covering number still works in this case, and thus we can

write P(S � Ωh
Pn

∩ S) ≤ (1−y∆)n

xh
, where y∆

�
= µ(B(·,∆))

µ(Ω∆
S )

. Also since h ≥ ∆, xh ≥ x∆,

then

P
(
S � Ωh

Pn

)
≤ (1 − y∆)n

x∆
.

But with ∆ small enough, y∆ � α∆k and x∆ � β∆k, and then Lemma 4 and the
hypotheses guarantee that P({S ⊂ Ωh

Pn
}c) → 0 as n ↑ ∞.

Appendix D. Basic differential geometry facts. In this section we collect
some facts that were used throughout the article, following [32].

D.1. Measure of a d-dimensional ball. Recall the definition of the Γ func-
tion:

Γ(α) =

∫ +∞

0

e−ttα−1dt.

Theorem 11. The volume of d-dimensional ball of radius r is given by

v(d, r)
�
= µ (B(·, r)) = ωdr

d,

where ωd = 2πd/2

dΓ(d/2) .

D.2. Bishop–Günther inequalities for the measure of a geodesic ball.
Theorem 12. Let S be a complete k-dimensional Riemannian manifold, assume

r to be smaller than the distance between m ∈ S and Cut(m, S) (cut locus of the
points m in S). Let KS be the sectional curvatures of S and γ a constant. Then if

V̂γ(r)
�
= 2πk/2

Γ(k/2)

∫ r
0

( sin(t
√
γ)√

γ

)k−1
dt, then

KS ≥ γ implies µ (BS(m, r)) ≤ V̂γ(r),(24)

KS ≤ γ implies µ (BS(m, r)) ≥ V̂γ(r).(25)
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Proposition 3. We have the following Taylor expansion for V̂γ(r), the volume
of a geodesic ball in a space of constant sectional curvature γ:

V̂γ(r) = ωkr
k

(
1 − r2 γ

6

k(k − 1)

k + 2

)
+ φ(r),

where φ(r)
rk+2 −→ 0 as r ↓ 0.

D.3. Weyl’s tube theorem.

Theorem 13. Let S be a k-dimensional manifold topologically embedded in Rd.
Assume that S is compact closure, and that every point in the tube T (S, r) = {x ∈
Rd such that, d(S, x) ≤ r} has a unique shortest geodesic connecting it with S; then
the volume µ (T (S, r)) of the tube is given by

µ (T (S, r)) = r

√
π

Γ(3/2)

[ d−1
2 ]∑

i=0

k2i(S)r2i

I(i)
,(26)

where I(i) = 1 ·3 ·5 · · · · ·(2i+1) and the numbers k2i depend on the curvature structure
of S. For our purposes we need know only that k0 = µ (S).

Corollary 6. The volume of the tube T (S, r) can be expanded as

µ (T (S, r)) = µ (S) v(d− k; r) + φS(r),

where φS(r)
rd−k

r↓0−→ 0

Appendix E. Details on object recognition. The ideal objective is to actu-
ally compute the I-distance between D1 and D2 as described in section 7.2; however,
this is a very hard problem since there are m! m × m permutation matrices. The
choice of m is subject to compromise: on one hand, we want it to be big enough so

as to capture the metric structure of Si with the information given by (Q
(i)
n , d

Ω
hi

P
(i)
n

);

on the other hand, we want to be able to actually make the computations involved
without too much processing cost. Therefore we should attempt to circumvent this
m! search space by exploiting some other information we might have.

One possibility for bypassing this difficulty is to try to upper bound the I-distance
by some difference between eigenvalues of the matrices. However, it turns out that
one can easily find two distance matrices which have positive I-distance (they are
not cogredient) but have the same spectra. Then an upper bound should take into
account also another term that measures our inability to really differentiate distance
functions by looking only at their eigenvalues. Of course this information must then
be contained in the eigenvectors.30

A way of dealing with this particular issue is working with the spectral fac-
torization of each of the matrices. Let D1 = QDQT and D2 = Q̂D̂Q̂T , where
Q and Q̂ are unitary matrices and D and D̂ are diagonal matrices whose entries
are the eigenvalues of D1 and D2, respectively. Note that we are not saying any-
thing about the order in which those eigenvalues are presented; for convenience, let

30Another idea, for example, is the following: We know that the searched-for isometry (if it
exists) must be a Lipschitz continuous map, and therefore it makes no sense to consider the huge set
of transformations spanned by PMm. We leave the exploitation of this idea for future work.
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D11 = |D11| > |D22| > · · · > |Dmm| and D̂11 = |D̂11| > |D̂22| > · · · > |D̂mm|.31 Then
with little effort we can write

min
P∈PMm

‖D1 − PD2P
T ‖ ≤ ‖(Q− PQ̂)D‖ + ‖(Q− PQ̂)D̂‖ + ‖D − D̂‖.(27)

Note that if W is any matrix and T is diagonal, then ‖WT‖2 =
∑

k ‖W(:,k)tkk‖2 =∑
k ‖W(:,k)‖2t2kk where W(:,k) is the kth column vector of W . Using this observation,

we note that the first two terms in (27) can be bounded as follows (let Q = (q1| . . . |qm),

and Q̂ = (q̂1| . . . |q̂m)):

‖(Q− PQ̂)D‖ + ‖(Q− PQ̂)D̂‖ =

√∑
k

D2
kk‖qk − P q̂k‖2 +

√∑
k

D̂2
kk‖qk − P q̂k‖2.

Now, using the trivial inequality
√
a+

√
b

2 ≤
√

a+b
2 for all a, b ≥ 0, we finally arrive

at the expression

min
P∈PMm

‖D1 − PD2P
T ‖ ≤

√√√√ m∑
k=1

(Dkk − D̂kk)2 +
√

2

√√√√ m∑
k=1

(D2
kk + D̂2

kk)‖qk − P q̂k‖2.

(28)
This inequality holds for any P ∈ PMm. It is important to note that in case D1

and D2 are cogredient, all their eigenvectors will also be related through that same
permutation; therefore this inequality is sharp.32

Note that in the second term of (28), the values of ‖qi − P q̂i‖ are weighted by

(D2
ii+D̂2

ii), so one can think that since ‖qi−P q̂i‖ ≤ 2, the most important terms of the

sum will be those for which (D2
ii + D̂2

ii) is large. This is not a rigorous consideration,
but gives some guidelines on how to compute an approximate bound when the sizes
of the distance matrices are prohibitively large.

In some situations, the choice of the subsampled set size m that guarantees a
good metric approximation in the sense discussed above might be too large, making
the computation of the full bound (28) onerous. But still a measure of similarity
must be provided which does not require the computation of all of the eigenvalues
and eigenvectors of each distance matrix. Therefore, in order to estimate dI(D1, D2),
we use the following idea: Instead of computing all the eigenvalues and eigenvectors of
the matrices D1 and D2, compute the N � m more important ones, where important
means, in the light of the expression for the bound, those with the largest moduli, at
least for the part of the bound involving eigenvectors. Then, for a (computationally)
reasonable N we define the approximate error bound (still letting P be any convenient
choice of a permutation matrix)

e(N)
�
=

√√√√ N∑
k=1

(Dkk − D̂kk)2 +
√

2

√√√√ N∑
k=1

(D2
kk + D̂2

kk)‖qk − P q̂k‖2.(29)

31We have used Frobenius theorem [51], which asserts that nonnegative matrices have a posi-
tive largest absolute value eigenvalue. Note that we have also assumed that there are no repeated
eigenvalues.

32Note that from (27) one can obtain dI(D1, D2) ≤ ‖D − D̂‖ + (‖D‖ + ‖D̂‖)‖QQ̂T − P‖; then
one further idea to be explored is how to best approximate a given unitary matrix by a permutation
matrix. This would not only allow us to obtain an explicit bound for the I-distance, but would also

provide us with a low metric distortion way of mapping S1 (P
(1)
n ) into S2 (P

(2)
n ), with applications

like texture mapping, brain warping, etc.
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Now, we fix the permutation P as follows: Let S be the permutation matrix such
that Sq1 is a column vector whose components are sorted from largest to smallest.
Do the same with q̂1 to obtain Ŝ; then compare Sq1 with Ŝq̂1, which amounts to com-
paring q1 with ST Ŝ; hence we let P = ST Ŝ. We could again use a more sophisticated
way of choosing P , but this one suffices for demonstration purposes and, of course,
achieves equality in (28) when both matrices are cogredient.

Another possibility is to directly compare the distance matrices according to the
expression ‖D1 − PD2P

T ‖, using a certain sensible choice for P . We first put both
matrices in a “canonical” order. Let (i1, j1) be one position on the matrix D1 with
the maximum value. We then order the rest of the points in the set according to their

distances to either q
(1)
i1

or q
(1)
i2

from smallest to largest.33 This induces an ordering
for the matrix D1, letting P1 be the underlying permutation matrix. We do the same
with D2 and obtain P2. Finally we let

eG(D1, D2)
�
= ‖D1 − PT

1 P2D2P
T
2 P1‖,

and note that obviously dI(D1, D2) ≤ eG(D1, D2) and that the inequality is sharp.

E.1. Choice of the point cloud subset Q(i). In general, the number of points
in the cloud is too big. This means that the actual computation of the distance
matrices, if done using all the points in the cloud, and subsequent eigenvalue and
eigenvector computations (if needed) become onerous. Therefore we need a procedure
which allows us to select a small cardinality subset Qm of Pn for which we will actually
compute the approximate distance matrix, but still using Pn to define the offset
Ωh

Pn
inside which the computations are performed. This subset Cr ⊂ Pn must be

“representative” of the geometry of the underlying manifold. One way of selecting
those points is by not allowing them to cluster inside any region of the manifold. This
can be accomplished in practice by using the “packing idea” in [24]: Given m < n,
choose the first point c1 ∈ Cm randomly, then proceed by always choosing a point as
far as possible from the set of points that have already been chosen. End the process
when m points have been chosen. This is the procedure used in the experiments.
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Abstract. In this paper a theoretical framework for the study of residual stresses in growing
tissues is presented using the theory of mixtures. Such a formulation must necessarily be a solid-
multiphase model, comprising at least one phase with solid characteristics, owing to the fundamental
role played by the incompatibility of strains in generating residual stresses. Since biological growth
involves mass exchange between cellular and extracellular phases, field equations are presented for
individual phases and for the mixture as a whole which incorporate this phenomenon. Appropri-
ate constitutive equations are then deduced from first principles, appealing to the second law of
thermodynamics.

The analysis shows that the distinguishing feature of multiphase models involving mass exchange
is the necessity to propose an additional constitutive postulate between the variables in the mass-
balance equation in order to close the model. In particular, the defining characteristic of a solid-
multiphase model which describes biological growth is a constitutive postulate which relates the
process of interphase mass exchange (cell proliferation/cell death) with the expansion or contraction
of the solid phase. Thus, the framework presented here represents a new class of mathematical
models which extends the concepts of poroelasticity to accommodate continuous volumetric growth.
A set of modelling equations is then proposed for the simplest case of a solid-multiphase model, being
a biphasic mixture of a linear-elastic solid and an inviscid fluid.
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equations, porous media
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1. Introduction. The evolution and spatial distribution of tissue stresses is of
fundamental importance in a number of physiological phenomena. The experimentally
observed phenomenon of vascular collapse in tumors, for example, which has been
attributed to the elevated tissue stresses resulting from confined proliferation of tumor
cells [5, 9], represents a significant barrier to the delivery of blood-borne therapeutic
drugs. Such stresses are residual in nature, arising in the tissue when it is free of
external loads, and result from the incompatibility of growth strains [21, 38, 40].

Fung [20] further notes the existence of residual stresses in living organs and
highlights the importance of such stresses to physiological functions, asserting that
“in a living organism, the function of its organs depends on the levels of their internal
stress and strain.”

Hence continuum models of growing tissues would provide a theoretical framework
for a wide range of studies in biology, ranging from tumor biology and anticancer
therapies [23, 38] to studies in embryology [7, 34], developmental biology, and plant
physiology [18], in addition to providing tools for prediction and analysis for a wide
range of projects in the rapidly growing field of tissue engineering [31].

Nevertheless, the underlying phenomenological determinants of residual stresses,
as well as their purpose and implications in both normal tissue development and
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various pathological conditions, are poorly understood since there is a paucity of
mathematical models to elucidate these phenomena.

Gatenby [22] explains that “recent research in tumour biology, particularly that
using new techniques from molecular biology, has produced information at an explo-
sive pace. Yet a conceptual framework within which all these new (and old) data can
be fitted is lacking.” Gatenby and Maini [23] add that “clinical oncologists and tumour
biologists possess virtually no comprehensive theoretical model to serve as a frame-
work for understanding, organizing and applying these data,” noting the necessity to
“(develop) mechanistic models that provide real insights into critical parameters that
control system dynamics.” Murray [32] concurs, arguing that “the goal is to develop
models which capture the essence of various interactions allowing their outcome to be
more fully understood.”

Indeed, while experimental approaches may attest to the existence of residual
stresses and provide information about their distribution in tissues, the underlying
mechanisms governing their genesis cannot be fully elucidated in the absence of math-
ematical modeling owing to the fundamental role played by the incompatibility of
growth strains in their formation [40]. Mathematical analysis provides the key to
identifying incompatible growth and represents a tool for investigating the roles of
a variety of phenomenological aspects of growing tissues—distribution of nutrients,
growth-related density changes, stress modulated cell-proliferation and apoptosis, ge-
ometric effects—in promoting incompatibilities and the associated residual stresses.

An important consideration in the mathematical modelling of tissue growth is the
choice between single-phase mechanics and mixture theory [2]. The former, which ap-
peals to an analogy with thermal expansion, incorporates a source term in the balance
of mass, with the phase or phases responsible for the mass source remaining implicit
to the model. While Skalak [39] claims that volumetric growth is analogous to thermal
expansion—an analogy which forms the basis of the tissue growth models by Shannon
and Rubinsky [38], Jones et al. [26], and Araujo and McElwain [4]—it does not con-
sider all the processes which determine the stresses induced during biological tissue
growth. Indeed, Araujo and McElwain [4] note that the single-constituent framework
does not take into account the net fluid movement associated with the growth process
and the Darcy-like drag terms in the equilibrium of forces—a consideration which
may be significant when the elastic (residual) stresses are small.

Multiphase models, on the other hand, which are based on mixture theory, clarify
the nature of any mass sources, and consider the role of interstitial fluid in the growth
process. While several fluid multiphase models of growing tissues have been proposed
recently [15, 16, 28], it is essential to recognize that these models provide no basis for
examining the genesis of residual stresses in tissues, which requires a consideration of
the tissue’s solid characteristics.

Hence, a theoretical framework which enables the growth process and the associ-
ated development of tissue stresses to be modeled naturally, without recourse to an
analogy with thermal expansion, is lacking.

This paper is the first in a series of papers which elaborate a mixture theory for
the genesis of residual stresses in growing soft tissues, based on field equations which
incorporate interphase mass exchange. This paper presents a general formulation for
deducing thermodynamically appropriate constitutive equations relevant to the study
of biological growth. In section 2, the field equations are presented, being adapted
from the classical field theories developed by Truesdell and Toupin [42] and the theory
of mixtures developed by Bowen [12] and manipulated into the forms most useful
to further exploration of the problem at hand. In sections 3 and 4, these classical
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theories are used as a guide to developing a particular form of the second axiom of
thermodynamics from which the relevant constitutive equations may be deduced most
readily, neglecting the influence of possible density changes associated with a change
of phase. Constitutive assumptions for a general mixture of n phases are then outlined
in section 5, following the pioneering work on constitutive modeling by Coleman and
Noll [17], Ehlers [19], and Bowen [12].

In sections 6 through 8, a simple two-phase mixture of an elastic solid and an
inviscid fluid is considered in detail. Since this solid-biphasic mixture must be able to
exhibit continuous volumetric expansion to model the process of biological growth and
an associated evolution of residual stresses, this paper stands alone in the mathemat-
ical literature pertaining to solid tumor growth, enucleating the very essence of the
closure problem relevant to continuous growth of a tissue with solid characteristics.
The solutions to these biphasic equations will be presented in the next paper in the
series.

1.1. Differentiation conventions and index of symbols. The following con-
ventions will be adopted throughout this paper.

If α̂i and αi are scalar and vector/tensor properties of the ith constituent, respec-
tively, then ∇α̂i and ∇.αi denote the gradient and the divergence, respectively, with
respect to spatial coordinates. (Note that in many references and texts in continuum
mechanics these symbols are used to denote partial differentiation with respect to the
reference configuration.) The symbols Gradα̂i and Divαi will denote the gradient
and divergence, respectively, with respect to the reference configuration.

In addition, the symbol Di

Dt denotes the material derivative following the motion

defined by vi, the velocity of the ith constituent. The symbol D
Dt , on the other hand,

represents the material derivative following the motion defined by vm, the velocity of
the mixture as a whole.

Table 1.1 gives a summary of the nomenclature adopted in this paper, along
with the equation in which each symbol first appears. Each quantity is given a more
complete description when it is first introduced in the text.

2. Constituent field equations. The balances of mass, linear momentum, an-
gular momentum, and energy for the ith constituent of an n-phase mixture are sum-
marized below. The equations incorporate a mass exchange term, so that the mass of
the ith constituent may increase (or decrease) at the expense of other constituents.
All constituents are equipresent at each spatial point.

2.1. Balance of mass. The balance of mass for the ith constituent, or phase,
of an n-phase mixture is given by

Di(φiρi)

Dt
+ (φiρi)∇ · vi = Γi,(2.1)

or, equivalently,

∂(φiρi)

∂t
+ ∇.(φiρivi) = Γi,(2.2)

where φi and ρi are the volume fraction and density, respectively, of the ith phase
and Γi is the mass supplied to the ith phase per unit time per unit mixture volume.
Truesdell and Toupin’s [42] rule for differentiating a determinant gives the identity

Di

Dt
(detFi) = (detFi)∇ · vi,
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Table 1.1

Symbols.

Equation of
Symbol Description first occurrence

φ Volume fraction (2.1)
ρ True density (2.1)
Γ Mass supply (2.1)
F Deformation Gradient (2.3)
v Velocity (2.1)
σ Partial Cauchy stress tensor (2.7)
σI Inner mixture stress tensor (2.16)
g Acceleration due to gravity (2.7)
π Phase interaction force (2.7)
w Diffusion velocity (2.11)
m Angular momentum supply (2.13)
L Velocity gradient (2.18)
u Internal energy (2.18)
q Heat flux (2.18)
r Heat production rate (2.18)
ε Phase interaction energy supply (2.18)
η Entropy (3.1)
θ Absolute temperature (3.1)
ψ Helmholtz free energy (3.4)
K Chemical potential tensor (3.5)
ζ Lagrangian multiplier (4.4)
X Reference coordinates (8.2)
x Spatial coordinates (8.9)

µ, λ Lamé constants (8.22)

which enables (2.1) to be expressed by

Di

Dt

(
φiρidetFi

)
= ΓidetFi,(2.3)

where Fi is the deformation gradient of the ith phase with respect to the reference
configuration. The volume fractions, φi, are subject to the constraint

n∑
i=1

φi = 1,(2.4)

which implies that the mixture is saturated.
The balance of mass for the mixture is expressed by

Dρm
Dt

+ ρm∇ · vm = 0,(2.5)

where ρm and vm are the density and velocity, respectively, of the mixture as a whole.
A comparison of (2.5) with the summation of (2.2) over all n phases allows the mixture
density, ρm, to be defined by

ρm =

n∑
i=1

φiρi,

and the mixture velocity, vm, to be defined by

vm =
1

ρm

n∑
i=1

(φiρivi),
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while yielding the following expression for the conservation of mass:

n∑
i=1

Γi = 0.(2.6)

2.2. Balance of linear momentum. The balance of linear momentum for the
ith phase of an n-phase mixture is given by

φiρi
Divi

Dt
= ∇ · σi + φiρig + πi,(2.7)

or, equivalently,

∂

∂t
(φiρivi) + ∇.(φiρivi ⊗ vi) = ∇ · σi + φiρig + πi + Γivi,(2.8)

where σi is the partial Cauchy stress tensor for the ith phase, g is the acceleration
due to gravity, and πi is the locally produced force per unit volume on the ith phase
due to its interactions with the other phases. The symbol ⊗ denotes the dyadic vector
product.

The balance of linear momentum for the mixture is expressed by

ρm
Dvm

Dt
= ∇ · σm + ρmg,(2.9)

where σm is the Cauchy stress tensor of the mixture as a whole. A comparison of
(2.9) with the summation of (2.8) enables the mixture stress tensor to be defined by

σm =
∑
i

(σi − φiρiwi ⊗ wi),(2.10)

where wi denotes the diffusion velocity defined by

wi = vi − vm(2.11)

and gives rise to the following expression for the conservation of linear momentum:

n∑
i=1

(πi + Γivi) = 0.(2.12)

2.3. Balance of angular momentum. The balance of angular momentum for
the ith phase of an n-phase mixture is given by

∂

∂t

(
φiρix × vi

)
+∇ ·

(
φiρi(x × vi) ⊗ vi

)
= ∇ · (x × σi) + x × (φiρig + πi + Γivi) + mi,

(2.13)

where mi is a vector representing the supply of angular momentum to the ith phase.
The symbol × denotes a cross product, in which the quantity

(x × σi)e = x × (σie)

for all vectors e (see Bowen [12]). Appealing to the balance of linear momentum
produces

Mi = σi − σT
i(2.14)
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from (2.13), where Mi is a skew-symmetric tensor arising from the angular momentum
supply vector, mi. Since the sum of the momentum supplies over all phases must
vanish, then

n∑
i=1

Mi = 0.(2.15)

Thus, the summation of (2.14) over all phases implies that the inner part of the
mixture stress tensor, which is defined by Truesdell and Toupin [42] as

σI =

n∑
i=1

σi,(2.16)

is symmetric. Noting that the quantity

n∑
i=1

φiρiwi ⊗ wi

must also be symmetric implies that the mixture stress tensor is symmetric. Note,
however, that the partial Cauchy stress tensors are symmetric if and only if mi = 0
(and hence Mi = 0), that is, for nonpolar materials. In this particular study, it is
assumed that the components of the growing tissue do behave as nonpolar materials,
so that mi = 0 and that

σi = σT
i .(2.17)

A more general theory would have to be developed to consider tissues comprising
micropolar fluids.

2.4. Balance of energy. The energy balance for the ith phase of an n-phase
mixture is given by

φiρi
Diui

Dt
= tr(Liσi) −∇ · qi + φiρiri + εi,(2.18)

or, equivalently,

∂

∂t
(φiρiui) + ∇ · (φiρiuivi) = tr(Liσi) −∇ · qi + φiρiri + εi + Γiui,(2.19)

where qi is a measure of the rate of heat flow across a unit area from the ith con-
stituent, ri is the rate of heat production per unit mass within the ith constituent,
εi is the energy supply per unit mass per unit time to the ith constituent due to
energy exchange between the constituents, ui is the internal energy per unit mass of
the ith constituent, and Li is the velocity gradient of the ith constituent with respect
to spatial coordinates.

Truesdell and Toupin [42] argue that for the overall conservation of energy in
the mixture, “the energy supplied by an excess internal energy rate, plus the energy
supplied by the work of the excess inertial forces against diffusion, plus the energy
supplied by the creation of mass, must add up to zero for the mixture.” This implies
the following expression for the conservation of energy:

n∑
i=1

[
εi + Γi

(
ui +

1

2
wi · wi

)
+ wi · πi

]
= 0,
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or, equivalently, by appealing to (2.12),

n∑
i=1

[
εi + Γi

(
ui +

1

2
vi · vi

)
+ vi · πi

]
= 0.(2.20)

3. The second law of thermodynamics. The second law of thermodynam-
ics, which may be expressed in the form of the Clausius–Duhem inequality, places
limitations on the admissible paths of thermodynamic processes, thereby placing re-
strictions on constitutive equations. The Clausius–Duhem inequality states that the
rate of entropy increase is greater than or equal to the entropy input rate.

Following Rajagopal and Tao [37], it is assumed that the second law of thermo-
dynamics holds for the mixture as a whole. In addition, a single, spatially uniform
temperature is assumed for all phases since growth involves exchanges of mass among
the phases and because the growth process itself is slow in comparison with the time
it would take for any possible temperature gradients to equilibrate. Indeed, it is un-
likely that stresses arising from a gradient of thermal expansion would be significant
in biological tissues. Therefore if ηi denotes the entropy per unit mass of the ith con-
stituent and θ denotes the absolute temperature of the mixture, then the inequality
may be expressed by

∑
i

[
Di

Dt
(φiρiηi) + φiρiηi∇.vi + ∇.

(qi

θ

)
− φiρiri

θ

]
≥ 0.(3.1)

The entropy inequality for the mixture is given by

ρm
Dηm
Dt

+
∑
i

∇.

(
hi

θ

)
−
∑
i

(
φiρiri

θ

)
≥ 0,(3.2)

where hi is an influx vector for the ith constituent—as yet unrelated to qi—and ηm
is the entropy density for the mixture defined by

ηm =
1

ρm

∑
i

φiρiηi.

Hence, reconciling (3.1) and (3.2) requires the constitutive postulate,

hi = qi + φiρiθηiwi.(3.3)

The second axiom of thermodynamics, as expressed by (3.1), may now be manipulated
further to obtain a form from which constitutive equations may be deduced readily.
To this end, the internal energies, ui, will be eliminated in favor of the Helmholtz free
energy densities, ψi, where

ψi = ui − θηi.(3.4)

Employing the Helmholtz free energy is particularly expedient when deducing con-
stitutive equations since it is the portion of the internal energy available for doing
mechanical work at constant temperature [30]. Further, the process of deducing con-
stitutive equations is facilitated by the introduction of the chemical potential for each
phase, which, for general mixtures, is given by the linear transformation

Ki = ψiI −
σi

φiρi
.
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The change of variables brought about by this transformation is common in the estab-
lished literature relating to thermodynamic theories of constitutive equations. (See
Bowen [11, 12] and Bowen and Wiese [14] for further details on the use of the chemical
potential tensor in the study of general mixtures.)

Now, incorporating the balance of mass (2.1) and the energy equation (2.18) and
introducing the variables ψi and Ki enable the second law of thermodynamics to be
expressed by the dissipation inequality

−tr

n∑
i=1

φiρiKi.Li − ρmηm
Dθ

Dt
−

n∑
i=1

DiΨi

Dt
−

n∑
i=1

vi.

(
πi +

Γi

2
vi

)
≥ 0,(3.5)

where

Ψi = φiρiψi(3.6)

represents the Helmholtz free energy of the ith constituent per unit mixture volume.
A full derivation of this inequality is given in the appendix.

4. The assumption of incompressibility. In the present paper it will be
assumed that each of the n phases is intrinsically incompressible, thereby placing an
added constraint on their motion and giving rise to an indeterminacy in the second
law of thermodynamics. The assumption of incompressibility is a common one in
mathematical models of biological tissues on account of the high water content of
the cells and interstitial fluid and the very low compressibility of other extracellular
constituents, such as the large macromolecules comprising the extracellular matrix [1].

The balance of mass for the ith phase may now be expressed by

∂φi

∂t
+ ∇.(φivi) =

Γi

ρi
,

the summation of which over the n phases gives

n∑
i=1

(∇φi.vi + φi∇.vi) =

n∑
i=1

Γi

ρi
� γ̂,(4.1)

employing the saturation constraint (2.4). At this point, the principle of material
frame-indifference (or objectivity) is considered, which requires that the response of
the material and its individual constituents (and hence its constitutive equations,
to be developed later from the present analysis) be independent of the observer [6].
Since relative velocities are objective, while individual velocities are not, (4.1) may
be expressed in terms of relative velocities by noting that

n∑
i=1

vi.∇φi =

n∑
i=1

(vi − v1).∇φi,

where one phase is nominated as the reference phase with the subscript 1. Assuming
that the densities of all phases are equal (so that ρi = ρm = ρ and γ̂ = 0) enables
(4.1) to reduce to

n∑
i=1

[
(vi − v1).∇φi + φitrLi

]
= 0.(4.2)
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From a mathematical standpoint, this assumption of equal phase densities allows the
model to isolate the growth-induced stresses arising from spatially nonuniform (in-
compatible) growth, without the potentially confounding effects of additional stresses
associated with density changes. In addition, the assumption of equal densities sim-
plifies the ensuing analysis considerably. Further, the argument may be justified from
a phenomenological point of view by noting that in a growing tissue, the growth
process itself arises from exchanges of mass among individual tissue constituents. In
particular, cells grow and proliferate by taking in interstitial fluid—water and pro-
teins (and other molecules contained in the interstitial fluid)—and relinquish these
substances on cell death. Thus, while different phases may exhibit fundamentally
different mechanical behavior, they are composed of similar substances.

Now, recognizing that

Li = F̀iF
−1
i

by the chain rule, where

F̀i =
DiFi

Dt
,

and that

n∑
i=1

vi.

(
πi +

Γi

2
vi

)
=

n∑
i=1

[
πi +

1

2
Γi(vi − v1)

]
.(vi − v1)(4.3)

now enables the second axiom of thermodynamics to be expressed in the form

−tr

n∑
i=1

F−1
i (φiρKi − φiζI)F̀i − ρηm

Dθ

Dt
−

n∑
i=1

DiΨi

Dt

−
n∑

i=1

[
πi +

1

2
Γi(vi − v1) − ζ∇φi

]
.(vi − v1) ≥ 0,(4.4)

where ζ is a Lagrangian multiplier.

5. Constitutive assumptions for a general n-phase mixture. As expressed
by Coleman and Noll in [17], “a material is defined by a constitutive assumption,
which is a restriction on the processes that are admissible in a body consisting of the
material.”

In discussing the various principles governing constitutive equations, Passman
and Nunziato [33] describe the principle of equipresence as “too general,” claiming
that it is “difficult to accept as a universal axiom appropriate to all mixture theories.”
(According to this principle, “all dependent variables depend on all independent vari-
ables, unless the entropy inequality requires otherwise” [25, 41].) They proceed to
explain that “in multiphase mixtures (where) the individual constituents are clearly
separated physically, . . . it is plausible to think of the mixture as being ideal, or phase
separated. For such mixtures the Principle of Equipresence can reasonably be re-
placed by the Principle of Phase Separation.” By this principle, the material-specific
dependent variables of a given phase (such as the stress and the Helmholtz free en-
ergy density) depend only on the independent variables of that phase. The interaction
variables (such as the momentum transfer term, πi) depend on all the independent
variables. (See Passman and Nunziato [33] for a more detailed discussion of these
principles.)
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Much of the classical work in this field has relied on the former, more general
principle. Thus, in predicating the current study on these classical, well-established
approaches, this paper appeals to this general principle in deducing thermodynami-
cally appropriate constitutive equations in spite of the fact that the individual phases
of biological tissues are clearly separated and distinct. Nevertheless, the simpler prin-
ciple of phase separation is used to advantage in subsequent analysis, allowing the
constitutive equations to be manipulated into useable forms.

Furthermore, Ehlers [19] emphasises the fact that “the general constitutive frame-
work must be based on the assumption of second-grade materials . . . , thus making use
of the most natural framework in constitutive modelling for multiphase media, addi-
tionally avoiding so-called ‘simple’ results.” Thus, following Bowen [12], Bowen and
Weise [14], and Ehlers [19], and noting from (4.2) that the constitutive assumptions
for Ki and πi must reflect an indeterminacy consistent with the entropy inequality,
the following general constitutive postulate is proposed:(

Ψi, ηi,

(
πi +

1

2
Γi(vi − v1) − ζ∇φi

)
, (φiρKi − φiζI),q

)

= f(θ,Fj , F̀j ,Gj , φj ,nj , (vj − v1)),(5.1)

where f is a smooth function, with the following quantities being defined for clarity:

Gj = GradFj

and

nj = ∇φj .

As discussed by Bowen in [10] and [12], (5.1) describes a mixture which allows for
the combined effects of elasticity, heat conduction, diffusion, viscosity, buoyancy, im-
miscibility, and variable volume fractions. As noted by Bowen in [13], “an immiscible
mixture is one where locally one can distinguish between mixture volumes and con-
stituent volumes (and therefore) a model of an immiscible mixture would necessarily
allow the volume fractions to effect the mixture response.” Having established a gen-
eral framework, then, it remains for a particular constitutive postulate to be chosen to
carry the analysis through to completion, to arrive at a full set of modeling equations.

6. A biphasic mechanical model of tissue growth. In this section, the
general constitutive assumption (5.1) is applied to a two-phase model comprising an
elastic solid (indicated by the subscript s) and an inviscid fluid (indicated by the
subscript f), being the simplest case of a solid-multiphase model. In this case, the
constitutive equations reduce to

(
Ψi, ηi,

(
πf +

1

2
Γf (vf − vs) − ζ∇φf

)
, (φiρKi − φiζI),q

)
= f(θ,Fs,Gs, (vf − vs))

(6.1)

with i = f, s. Since the effect of viscosity is not being considered in this simplified
model, the derivatives of the deformation gradients do not appear among the inde-
pendent variables in (6.1). The volume fractions and their gradients are also omitted
from the set of independent variables since the specific Helmholtz free energy, ψi, is to
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be considered independent of volume fraction, with the volume-averaged Helmholtz
free energy, Ψi, being related to volume fraction via (3.6). Note that in a two-phase
model, only one of the mass exchange terms, Γi, or volume fraction terms, φi, need
be considered since the constraints (2.4) and (2.6) give the corresponding terms for
the other phase. Further, since one of the phases is a solid and the other a fluid, the
volume fractions φs and φf = 1−φs will henceforth be referred to as the solidity and
the porosity, respectively.

Using (6.1) the total derivative of the Helmholtz free energy for the solid is given
by

DsΨs

Dt
=

(
∂Ψs

∂θ

)(
Dθ

Dt

)
+ tr

(
∂Ψs

∂Fs

)T

F̀s + C

(
∂Ψs

∂Gs

)
⊗ G̀s

+

(
∂Ψs

∂(vf − vs)

)
.

[
Df (vf − vs)

Dt
+ F̀fF

−1
f (vs − vf ) − F̀sF

−1
s (vs − vf )

]
,

while the total derivative of the Helmholtz free energy for the fluid is given by

DfΨf

Dt
=

(
∂Ψf

∂θ

)(
Dθ

Dt

)
+ tr

(
∂Ψf

∂Fs

)T [
F̀s + GsF

−1
s (vf − vs)

]

+ C

(
∂Ψf

∂Gs

)
⊗
[
G̀s + (GradGs)F

−1
s (vf − vs)

]

+

(
∂Ψf

∂(vf − vs)

)
.

[
Df (vf − vs)

Dt

]
.

Therefore the entropy inequality becomes

−tr
∑
i=f,s

F−1
i (φiρKi − φiζI) F̀i − ρηm

dθ

dt

−
(

πf +
1

2
Γf (vf − vs) − ζ∇φf

)
.(vf − vs) −

(
∂ΨI

∂θ

)
Dθ

Dt

− trF−1
s

(
Fs

(
∂ΨI

∂Fs

)T

− (vs − vf ) ⊗
(

∂Ψs

∂(vf − vs)

))
F̀s

− (vf − vs).

(
F−1T

s

(
∂Ψf

∂Fs
[Gs]

))

− C

(
∂ΨI

∂Gs

)
⊗ G̀s − (vf − vs).

(
F−1T

s

(
∂Ψf

∂Gs
[GradGs]

))

−
(

∂ΨI

∂(vf − vs)

)
.

[
Df (vf − vs)

Dt

]

− trF−1
f

(
(vs − vf ) ⊗

(
∂Ψs

∂(vf − vs)

))
F̀f ≥ 0,

where

ΨI =
∑
i=f,s

Ψi =
∑
i=f,s

φiρiψi

denotes the inner part of the mixture Helmholtz free energy. Here, the notation X[Y],
where X is a tensor of rank p and Y is a tensor of rank p+1, denotes a vector defined
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in component form by

X[Y] = Xk1k2...kpY
k1k2...kpqeq.

where eq are basis vectors. (See, for example, (1.10) in Bowen and Weise [14] or
(1.1.58) in Bowen [12].) Now rearranging the inequality produces

−trF−1
s

(
φρsKs − φsζI + Fs

(
∂ΨI

∂Fs

)T

− (vs − vf ) ⊗
(

∂Ψs

∂(vf − vs)

))
F̀s

− trF−1
f

(
φfρKf − φfζI + (vs − vf ) ⊗

(
∂Ψs

∂(vf − vs)

))
F̀f

−
(
ρηm +

∂ΨI

∂θ

)
Dθ

Dt
−
(
∂ΨI

∂g

)
.
Dg

Dt
− C

(
∂ΨI

∂Gs

)
⊗ G̀s

− (vf − vs).

(
F−1T

s

(
∂Ψf

∂Gs
[GradGs]

))
−
(

∂ΨI

∂(vf − vs)

)
.

[
Df (vf − vs)

Dt

]

−
[
πf +

1

2
Γf (vf − vs) − ζ∇φf + F−1T

s

(
∂Ψf

∂Fs
[Gs]

)]
.(vf − vs) ≥ 0.

Following Coleman and Noll’s argument [17],

θ, Fs, Gs and (vf − vs)

are held fixed while varying the quantities

Dθ

Dt
, F̀s, G̀s, GradGs and

Df (vf − vs)

Dt
.

This yields the following necessary and sufficient conditions:

φsρKs − φsζI + Fs

(
∂ΨI

∂Fs

)T

− (vs − vf ) ⊗
(

∂Ψs

∂(vf − vs)

)
= 0,(6.2)

φfρKf − φfζI + (vs − vf ) ⊗
(

∂Ψs

∂(vf − vs)

)
= 0,(6.3)

ρηm = −∂ΨI

∂θ
,

∂ΨI

∂Gs
= 0,

∑
i=f,s

(vi − vs).

(
F−1T

s

(
∂Ψf

∂Gs
[GradGs]

))
= 0,

∂ΨI

∂(vf − vs)
= 0,

and

−f .(vf − vs) ≥ 0,(6.4)

where

f = πf +
1

2
Γf (vf − vs) − ζ∇φf + F−1T

s

(
∂Ψf

∂Fs
[Gs]

)
.
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7. Development of linearized constitutive equations. In this section, the
constitutive equations (6.2), (6.3), and (6.4) deduced in the previous section will
be linearized about the thermodynamic equilibrium using the method discussed by
Bowen [12], in order to express the equations in useable forms.

Let ξ̂ denote the complete set of independent variables

ξ̂ = (Fs,Gs, (vf − vs)),

noting that there is no longer any dependence on temperature or temperature gradi-
ents. Let ξ̂0E denote the subset of these variables,

ξ̂0E = (Fs,Gs,0).

Let ξ̂0R denote the reference state about which the constitutive equations for f and
σs will be linearized,

ξ̂0R = (I,0,0).

At the state ξ̂0E , where vs = vf , the quantity

−f .(vf − vs) ≥ 0

is a minimum, such that ξ̂0E defines the thermodynamic equilibrium. Now in the
vicinity of the thermodynamic equilibrium,

φsρKs = φsζI − Fs

(
∂ΨI

∂Fs

)T

,

φfρKf = φfζI,

and

f = −κ(vs − vf ),

where κ is a constant, sometimes referred to as the diffusive drag coefficient. There-
fore,

σs = φsρψsI − φsζI + Fs

(
∂ΨI

∂Fs

)T

,(7.1)

σf = φfρψfI − φfζI,(7.2)

and

πf = −κ(vs − vf ) − 1

2
Γf (vs − vf ) + ζ∇φf − F−1T

s

(
∂Ψf

∂Fs
[Gs]

)
.(7.3)

Now, appealing to the principle of phase separation,

σs = (φsρψs − φsζ)I + ρFs

(
∂(φsψs + φfψf )

∂Fs

)T

= −φs(ζ − ρψs)I + ρFs

(
∂φs

∂Fs
ψs + φs

∂ψs

∂Fs
− ∂φs

∂Fs
ψf

)T

.
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Hence,

σs = −φs(ζ − ρψs)I + φsρFs

(
∂ψs

∂Fs

)T

+ ρ(ψs − ψf )Fs

(
∂φs

∂Fs

)T

.(7.4)

Similarly, for the momentum transfer terms, the principle of phase separation gives

πf = −κ(vf − vs) −
1

2
Γf (vf − vs) + ζ∇φf + F−1T

s

(
ρψf

(
∂φs

∂Fs

)
[Gs]

)
.(7.5)

8. Modeling biological growth: Mass exchanges, solid deformation, and
fluid flow. To reduce (7.4) to a usable form, an expression for ∂φs

∂Fs
must be deduced

from the balance of mass for the solid phase, which is given by

Ds

Dt
(ρφsdetFs) = ΓsdetFs.(8.1)

Thus, in general

ρφsdetFs =

∫ t

0

Γs(Xs, τ)detFs(Xs, τ)dτ � Θ̂s,(8.2)

where

Θ̂s = Θ̂s(Xs, t),

and Xs denotes the reference coordinates. Hence, using Jacobi’s identity [42],

∂(detFs)

∂Fs
= (detFs)F

−1T
s ,

the derivative of the solidity with respect to the solid deformation gradient is given
by

∂φs

∂Fs
= −φsF

−1T
s +

1

ρdetFs

∂Θ̂s

∂Fs
.(8.3)

Therefore, (7.4) becomes

σs = −φs(ζ − ρψs)I + φsρFs

(
∂ψs

∂Fs

)T

− φsρ(ψs − ψf ) +
(ψs − ψf )

detFs
Fs

(
∂Θ̂s

∂Fs

)T

.

(8.4)

Thus the constitutive equations are

σs = −φsP I + φsρFs

(
∂ψs

∂Fs

)T

+
(ψs − ψf )

detFs
Fs

(
∂Θ̂s

∂Fs

)T

(8.5)

and

σf = −φfP I,(8.6)

where

P = ζ − ρψf .(8.7)

In addition,

∂φs

∂Xs
=

∂φs

∂Fs

[
∂Fs

∂Xs

]
=

(
−φsF

−1T
s +

1

ρdetFs

∂Θ̂s

∂Fs

)
[Gs] .(8.8)
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Now

∇φs =
∂φs

∂xs
= F−1T

s

∂φs

∂Xs
,(8.9)

where xs denotes spatial coordinates. Hence

∇φs = F−1T
s

(
∂φs

∂Fs

)
[Gs] = F−1T

s

(
−φsF

−1T
s +

1

ρdetFs

∂Θ̂s

∂Fs

)
[Gs] .

Thus, (7.5) for the momentum transfer term for the fluid phase, πf , now becomes

πf = −κ(vf − vs) −
1

2
Γf (vf − vs) + ζ∇φf + ρψf∇φs

= P∇φf − κ(vf − vs) −
1

2
Γf (vf − vs).(8.10)

Noting the conservation of linear momentum,

πf + Γfvf + πs + Γsvs = 0

then gives the momentum transfer term for the solid phase, πs, being

πs = P∇φs + κ(vf − vs) −
1

2
Γf (vf − vs).(8.11)

In a detailed analysis of Darcy’s law for growing porous media, Preziosi and Farina [36]
have shown that the process of interphase mass exchange plays a negligible role in
momentum transfer. Thus, the final term in each of (8.10) and (8.11) may be neglected
in practice.

Returning to the constitutive equation for the stress in the solid (8.5), note
that the quantity Θ̂s depends on both the mass exchange term, Γs, and the solid
phase deformation, Fs. Clearly, then, manipulation of this equation into a useable
form requires a phenomenological assumption about the functional form of the mass
exchange term. Furthermore, the distinguishing feature of a mass-exchange model
which describes biological growth, as opposed to, say, models which describe solidifi-
cation/melting or some other phase change, is the fact that the mass-exchange term,
Γs, and the expansion/contraction of the solid matrix, detFs, are not independent.
Indeed, such is the very essence of the unique closure problem peculiar to the study of
biological growth, and it is a novel feature of the present work that such phenomeno-
logical aspects of growing tissues may be incorporated into the modeling framework.

Consider that the balance of mass for the solid phase may also be expressed in
the form

ρ
Dsφs

Dt
+ φsρ

1

detFs

Ds(detFs)

Dt
= Γs.(8.12)

Note that

ρ
Dsφs

Dt
=

Ds

Dt

(
ms

Vm

)
,

where ms is the mass of the solid phase in Vm, the volume of the mixture. Now

Ds

Dt

(
ms

Vm

)
=

Dsms

Dt

(
1

Vm

)
− φsρ

Vm

DsVm

Dt
.



1276 ROBYN P. ARAUJO AND D. L. SEAN MCELWAIN

Since

Dsms

Dt

(
1

Vm

)
= Γs,

the quantity

−φsρ

Vm

DsVm

Dt

reflects the time rate of change of the solidity which results from the flow of fluid into,
or out of, the deformed solid matrix. Now since

Γs =
Ds

Dt

(
ms

Vm

)
︸ ︷︷ ︸

total

−
(
−φsρ

Vm

DsVm

Dt

)
︸ ︷︷ ︸
flow/deformation

,

then

Ds(φsρ)

Dt︸ ︷︷ ︸
total

+φsρ
1

detFs

Ds(detFs)

Dt︸ ︷︷ ︸
flow/deformation

=
Ds

Dt

(
ms

Vm

)
︸ ︷︷ ︸

total

+

(
φsρ

Vm

DsVm

Dt

)
︸ ︷︷ ︸
flow/deformation

= Γs

describes the mass balance for the solid phase.
Therefore, since the solidity is regulated by two separate processes—mass ex-

change and solid matrix deformation/fluid flow—a further constitutive postulate is
required to relate any two of the three quantities φs, Γs, and detFs to decompose the
balance of mass into two independent equations.

Suppose, for example, that the mass exchange and solid matrix deformation are
related in such a way as to keep the volume fractions constant, reflecting a tissue
which tends to exhibit a “natural” ratio of cells to extracellular fluid. (Note that this
particular choice of constitutive postulate would be insufficient to model a growing
tumor tissue which contains regions of coagulative necrosis, since these regions consist
predominantly of fluid and cellular debris and are therefore characterized by signifi-
cantly higher proportions of fluid than the rest of the tissue.) In this case, the balance
of mass would be represented by

ρ
Dsφs

Dt
= 0(8.13)

and

ρφs
1

detFs

Ds(detFs)

Dt
= ρφs∇ · vs = Γs.(8.14)

Now that the constitutive postulate (8.14) has been proposed, the phenomenological
assumption for Γs is no longer required to be a function of detFs.

Assuming, for example, that Γs is proportional to the effective cell density, ρφs,
and to some regulating factor such as nutrient concentration, c, implies that

Γs = αρφsc,(8.15)

where α is a constant of proportionality and where the functional form for c will also be
determined by a phenomenological assumption (appealing to a diffusion model, say).
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Now (8.1) becomes

1

ρφsdetFs

Ds

Dt
(ρφsdetFs) = αc,

so that

ρφsdetFs = e
∫ t
0
αc(Xs,τ)dτ ,

which gives

∂φs

∂Fs
= −φsF

−1T
s .(8.16)

Now the constitutive equations reduce to

σs = −φsP I + φsρFs

(
∂ψs

∂Fs

)T

(8.17)

and

σf = −φfP I,(8.18)

with P being given by (8.7). Substitution of the new definition for ∂φs

∂Fs
into (8.8) and

(8.9) then produces (8.10) and (8.11), illustrating that the momentum equations are
unaffected by the simplified definition for ∂φs

∂Fs
.

8.1. Linear elasticity. If the solid phase is assumed to be elastically isotropic,
the Helmholtz free energy density is a function of the solid deformation gradient, Fs,
through the left Cauchy–Green strain tensor defined by Bs = FsF

T
s , so that

Fs

(
∂ψs

∂Fs

)T

= 2Bs
∂ψs

∂Bs
.(8.19)

To formulate a linearized constitutive equation, an approximate expression is required
for the right-hand side of (8.19) which is valid in the vicinity of the reference state

ξ̂0R. Departures from ξ̂0R may be measured by the quantity ε defined by

ε2 = trHsH
T
s + C (GradHs ⊗ GradHs) + (vf − vs) · (vf − vs),

where Hs = Fs − I is the displacement gradient of the solid phase. Thus, departure
from the reference state, ξ̂0R, is small when ε < 1.

Moreover,

Bs = I + 2Es + HsH
T
s

= I + 2Es + O(ε2),

where Es is the classical infinitesimal strain tensor defined by

Es =
1

2

(
Hs + HT

s

)
.(8.20)

Thus,

Fs

(
∂ψs

∂Fs

)T

=
∂ψs

∂Es
+ 2Es

(
∂ψs

∂Es
(ξ̂0R)

)
(8.21)
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in the linear theory. The Helmholtz free energy density for the solid phase, ψs, is now
to be expanded into a polynomial about ξ̂0R, including terms up to second order since
ψs must be differentiated to obtain the stress. Furthermore, since the Helmholtz free
energy is, by definition, the energy available to do mechanical work, it is a function
only of the component of the strain tensor associated with a stress response. Indeed,
the strain tensor Es may be decomposed into the contribution due to growth EG

s and
the contribution due to stress ES

s , i.e.,

Es = EG
s + ES

s .

Now,

ψs (Bs) = ψs (I) + σ0

(
trES

s

)
+

1

2
λ0

(
trES

s

)2
+ µ0tr

(
ES

s ES
s

)
+ O(ε3).(8.22)

Thus, substituting (8.22) into (8.21) yields

σs = −φsP I + λ
(
trES

s

)
I + 2µES

s ,

where

λ = λ(ρs, φs) = λ0

and

µ = µ(ρs, φs) = µ0 + σ0,

where σ0, the so-called prestress, will be assumed zero. Now, the portion of the strain
tensor due to growth may be expressed by

EG
s = gΩ,

where g is the increase in volume per unit volume of the solid matrix due to growth
(as yet unrelated to Γs), and

Ω �

⎡
⎣γ1 0 0

0 γ2 0
0 0 γ3

⎤
⎦(8.23)

defines the anisotropy tensor, where γ1, γ2, and γ3 are the anisotropic growth mul-
tipliers defined by Araujo and McElwain [4, 3] with γ1 + γ2 + γ3 = 1. Hence,
isotropic growth corresponds to γ1 = γ2 = γ3 = 1

3 . By allowing the tissue to grow
anisotropically in response to the prevailing stress field, so that the expansion oc-
curs preferentially in directions of least stress, the constitutive law is able to exhibit
stress-relaxation in the absence of viscous dissipation. The mathematical theory of
anisotropic growth has been developed by Araujo and McElwain [4, 3], while the
phenomenon has been demonstrated experimentally by Helmlinger et al. [24]. Thus,
in regularizing the elasticity by incorporating stress-relaxation into the growth com-
ponent of the constitutive equation rather than in the stress-response component,
anisotropic growth may be said to impart a pseudo-viscoelasticity to growing tissues.
Appropriate functional forms for the anisotropic growth multipliers will be considered
in the next paper in this series.
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Now the constitutive equation for the solid phase becomes

σs = −φsP I + λ (trEs − g) I + 2µ (Es − gΩ)

= −φsP I + λtrEsI + 2µEs − g (3λ + 2µ)Ω.(8.24)

Note that (8.24) was derived based on the two key assumptions of the intrinsic incom-
pressibility of the phases and constant volume fractions, which together imply that
λ → ∞. While this may generally be introduced to the model by initially permitting
compressibility and then allowing λ to tend to infinity in the solution of the boundary
value problem, a more convenient approach in this case is to make the strain tensor
the subject of the equation by noting that the trace of (8.24) is

trEs =
trσs + 3φsP

3λ + 2µ
+ g,

which gives

Es =
1

2µ
σs −

λ

2µ(3λ + 2µ)
(trσs + 3φsP )I + gΩ.(8.25)

Now, in the limit as λ → ∞, (8.25) becomes

Es =
1

2µ
σs −

(
trσs + 3φsP

6µ

)
I + gΩ.(8.26)

Note that while (8.26) represents a correct statement of the relationship between stress
and strain when growth occurs, it must be able to reflect the fact that growth is a
continuous process which creates movement. Thus, to accommodate the continuous
expansion of the solid matrix due to the growth process, (8.25) must be differentiated
with respect to time using an objective convected tensorial derivative such as the
corotational (Jaumann) derivative (see, for example, [8] or [27]). Thus, (8.26) becomes

DEs

Dt
=

1

2µ

Dσs

Dt
− 1

6µ

D
Dt

(trσs + 3φsP ) I +
Dg

Dt
Ω,

where the notation D
Dt denotes an appropriate convected derivative. Taking the trace

of this new equation now gives1

Dg

Dt
= ∇ · vs +

3φs

2µ

DP

Dt
,

which identifies the relationship between g and Γs via (8.14), being

Γs = φsρ
Dg

Dt
− 3φ2

sρ

2µ

DP

Dt
.(8.27)

This enables the constitutive equation to be expressed in the form

DEs

Dt
=

1

2µ

Dσs

Dt
− 1

6µ

D
Dt

(trσs + 3φsP ) I +

(
∇ · vs +

3φs

2µ

DP

Dt

)
Ω

1Strictly, the trace of the convected derivative of the infinitesimal strain tensor should be the
divergence of the velocity vector with respect to the reference coordinates, i.e., Div(vs) rather than
∇ · vs, based on the definition of the infinitesimal strain tensor given in (8.20). Nevertheless, if the
strains required to ensure compatibility are small, as appropriate to the use of linearized constitutive
equations, then Div(vs) and ∇ · vs may be used interchangeably here.
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or

DEs

Dt
= ∇ · vsΩ +

1

2µ

D
Dt

(
σs +

1

3
trσs

)
+

φs

2µ

DP

Dt
(3Ω − I) ,(8.28)

which reduces to

DEs

Dt
=

1

3
∇ · vsI +

1

2µ

D
Dt

(
σs +

1

3
trσs

)
(8.29)

in the special case of isotropic growth.

9. Summary of biphasic equations and comparison with single phase
equations. Table 9.1 gives a summary of the suite of equations for the biphasic
model of a growing tissue developed in this paper. Intriguingly, only the special case
of isotropic growth gives rise to a solid phase constitutive equation identical to that
used in single phase models, which consider growth as an analogy to thermal expan-
sion. Nevertheless, it is essential to recognize that this combination of elasticity and
isotropic growth does not incorporate the crucial aspect of stress-relaxation into the
constitutive law. Indeed Lubkin and Jackson [29] explain that “the fatal mathematical
combination of multiple phases, elasticity, and contractility renders the contractile-
poroelastic model ill-posed. . . . The elasticity must then be regularized by a viscous
term in order for solutions to exist.” Araujo and McElwain [4] have shown that the
elasticity may be regularized by considering anisotropic growth, thereby obviating the
necessity to appeal to more complicated viscoelastic principles in many situations.

Table 9.1

Comparison of biphasic equations with single phase equivalents.

Equation type Biphasic equations Single phase equation

Balance of mass φsρ∇ · vs = Γs ρ∇ · v = Γ

ρDsφs
Dt

= 0

∇ · (φsvs + φfvf ) = 0

Constitutive equations:

Isotropic growth DEs
Dt

= 1
3
∇ · vsI

DEs
Dt

= 1
3
∇ · vsI

+ 1
2µ

D
Dt

(
σs + 1

3
trσs

)
+ 1

2µ
D
Dt

(
σs + 1

3
trσs

)
σf = −φfP I

Anisotropic growth DEs
Dt

= ∇ · vsΩ
DEs
Dt

= ∇ · vsΩ

+ 1
2µ

D
Dt

(
σs + 1

3
trσs

)
+ 1

2µ
D
Dt

(
σs + 1

3
trσs

)
+φs

2µ
DP
Dt

(3Ω − I)

σf = −φfP I

Momentum equations2 ∇ · σs + κ(vf − vs) = 0 ∇ · σ = 0

φf∇P = −κ(vf − vs)

2Note that, in keeping with other published models of growing tissues [26, 36], inertial and body
forces, as well as mass-exchange effects, are neglected in the momentum equations presented here.
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10. Concluding remarks. In this paper, a theoretical framework for a solid-
multiphase model of a growing tissue has been presented which extends the concepts
of poroelasticity to accommodate continuous volumetric growth. Moreover, in incor-
porating a solid phase, the model provides a basis for the study of residual stresses,
which is of fundamental importance in a wide range of studies in biology, physiology,
and tissue engineering.

The general equations developed in sections 2 through 6 have been applied to
a two-phase model of an elastic solid and an inviscid fluid in sections 7 through 9.
The analysis points to a crucial phenomenological aspect of tissue growth, illustrating
that such a process must consist of a coordinated combination of the “swelling” of the
solid (cellular) phase due to the influx of extracellular fluid—which is, in essence,
the inverse of the consolidation concept of poroelasticity—and the exchange of mass
whereby extracellular fluid is incorporated into the cellular phase. This combination of
processes necessitates the inclusion of an additional constitutive postulate—in which
the mass-exchange term is related to the solid phase expansion—among the modeling
equations to close the model.

In the present paper, a particular constitutive postulate has been chosen which
reflects a tissue whose ratio of cells to extracellular fluid is constant throughout its
volume. The assumption of linear-elasticity and mechanical isotropy (cf. isotropic
growth) for the solid phase then enables simple constitutive equations between stress
and strain to be specified for both the solid and fluid phases. Solutions to these
biphasic equations will be presented in the next paper in this series.

This work may be extended in a number of ways. More complicated relation-
ships between interphase mass exchange and solid phase expansion may be proposed,
enabling the model to consider the formation of necrotic regions. Additionally, the
equations could be rederived by incorporating a dependence of the Helmholtz free
energy of the solid phase, Ψs, on both the solid deformation gradient, Fs, and its
convected derivative, F̀s (see sections 6 and 7 of the present paper) to produce a vis-
coelastic constitutive law (see, for example, Pioletti et al. [35]). This would enable the
elasticity of the solid phase to be regularized in situations where anisotropic growth
provides insufficient stress-relaxation [3].

Appendix. Development of the dissipation inequality. In this section, the
second axiom of thermodynamics as expressed by (3.1) will be manipulated further
to obtain a form from which constitutive equations may be deduced readily. Incorpo-
rating the balance of mass as expressed by (2.1) enables (3.1) to be expressed in the
form

n∑
i=1

1

θ

[
Γiηiθ + φiρiθ

diηi
dt

+ θ∇.
(qi

θ

)
− φiρiri

]
≥ 0.(A.1)

Further, incorporating the energy equation (2.18) enables (A.1) to be expressed in a
form which does not include the rate of heat production per unit mass within the ith
constituent, ri, explicitly, being

n∑
i=1

1

θ

[
Γiηiθ + φiρiθ

diηi
dt

+ θ∇.
(qi

θ

)
− φiρi

diui

dt
+ tr(Liσi) −∇.qi + εi

]
≥ 0.

Introducing the relation

ε̂i � εi + Γi

(
ui +

1

2
vi.vi

)
+ vi.πi
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now enables the inequality to be expressed in the form

n∑
i=1

[
φiρi

(
θ
diηi
dt

− diui

dt

)
+tr(Liσi) + ε̂i − Γi

(
ui +

1

2
vi.vi − ηiθ

)
−vi.πi

]
≥ 0.

The internal energies, ui, will be eliminated at this point in favor of the Helmholtz
free energy densities, ψi, where

ψi = ui − θηi.(A.2)

Hence, the inequality becomes

−
n∑

i=1

φiρi
diψi

dt
− ρmηm

dθ

dt
+ tr

n∑
i=1

(Liσi) −
n∑

i=1

Γi

(
ψi +

1

2
vi.vi

)
−

n∑
i=1

vi.πi ≥ 0.

At this stage, the chemical potential is introduced, being the linear transformation
defined by

Ki = ψiI −
σi

φiρi
;

see Bowen and Wiese [14], noting that in the present paper it is assumed that σi = σT
i

(see section 2.3). Therefore,

−
n∑

i=1

φiρi
diψi

dt
− ρmηm

dθ

dt
− tr

n∑
i=1

φiρiKi.Li + tr

n∑
i=1

φiρiψiLi

−
n∑

i=1

Γiψi −
n∑

i=1

vi.

(
πi +

Γi

2
vi

)
≥ 0,

which further reduces to

−tr
n∑

i=1

φiρiKi.Li − ρmηm
dθ

dt
−

n∑
i=1

di

dt
(φiρiψi) −

n∑
i=1

vi.

(
πi +

Γi

2
vi

)
≥ 0(A.3)

by appealing to the balance of mass. Some authors (see, for example, Bowen [12])
define the quantity

Ψi = φiρiψi

which represents the Helmholtz free energy of the ith constituent per unit mixture
volume. Rewriting (A.3) in terms of Ψi gives

−tr

n∑
i=1

φiρiKi.Li − ρmηm
dθ

dt
−

n∑
i=1

diΨi

dt
−

n∑
i=1

vi.

(
πi +

Γi

2
vi

)
≥ 0.(A.4)
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Abstract. This paper describes a solid state system in which a qubit is realized as the spin
of a single trapped electron in a quantum dot and read functionality is via an adjacent quantum
wire with a single or a small number of conductive states. Because of the limited design window
for this system, simulation is an important guide to an experimental search for successful designs.
We use a semianalytic approximation that is accurate enough to provide meaningful results and
computationally simple enough to allow high throughput, as needed for design and optimization. In
particular, we find designs that achieve double pinchoff (i.e., a single trapped electron in the dot and
a single conductive state in the wire). After relaxing the design requirements to allow for a small
number of conductive states in the wire, we find successful designs that are optimally robust, in the
sense that their success is unlikely to be affected by fabrication errors.

Key words. qubit, quantum dot, quantum computing, design, optimization
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1. Introduction. Quantum logic, based on manipulation and interaction of bi-
nary quantum states or “qubits,” has great potential for communication and compu-
tation. Quantum communication could offer absolute security [14] and transmission
rates beyond the Shannon limit [5]. Quantum computation could greatly accelerate
the solution of certain important problems, such as prime factorization [15], database
searching [6], and simulation of quantum systems [16]. This potential has motivated
a large effort to develop and implement quantum logic. Currently, the foremost prob-
lem for quantum communication and computation is the implementation of qubits
in a robust and scalable system, which will allow for error correction and control of
decoherence. Solid state implementations of a qubit, based on an electron or nuclear
spin confined to a quantum dot, have been proposed in [1, 8, 9, 10, 11, 12, 17, 18].

This paper is concerned with the design of a single qubit system in a solid state
implementation, as proposed in [3, 17], in which a qubit is represented as the spin
of a single electron confined in a quantum dot. A quantum wire is placed below
the quantum dot, so that the conductivity of the wire will depend sensitively on the
charge present in the dot. The wire can then be used to verify the presence of a single
electron in the quantum dot and, in the presence of a spin polarized electron reservoir,
to read out the spin of that electron. The latter can be accomplished in several ways,
for instance, by measuring tunneling times from the reservoir into the qubit. As the
spin singlet state has lower energy than the triplet states [4], we can arrange to make
tunneling into a triplet state energetically forbidden, and since the singlet state must
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be formed using two opposite spins, the tunneling time will then depend strongly on
the relative alignment of the qubit spin to the reservoir spin.

In our design, the quantum dot and wire are formed in two vertically stratified,
parallel semiconductor quantum wells and are defined electrostatically using litho-
graphically patterned gates on the surface of the semiconductor. Further description
of the geometry and electrostatics of this system are provided in section 2. An alterna-
tive design using a horizontal placement of quantum dots has been carried out in [18].

A successful qubit design requires a single electron in the quantum dot and a small
number of conduction states in the quantum wire. If there is only a single state in
the quantum wire, it can be used both as spin reservoir and charge sensor. Moreover,
the design should be robust with respect to fluctuations or errors in modeling and
fabrication. These are very stringent requirements that are difficult to satisfy, and
numerical simulation can serve as an important guide in the experimental search for
successful designs.

The principal goal of the present study is development of a semianalytic model
and its application to design and optimization for this quantum system. This re-
duced order model is based on a number of approximations that restrict its validity.
Comparison to full scale numerical simulations, however, indicate that its accuracy
is sufficient to provide meaningful results. Computational speed is the model’s great
virtue, enabling the high throughput that is required for design and optimization of
the quantum system.

There are three distinct aspects to simulation of this quantum system: construc-
tion of a mathematical model embodying the correct physics, development of an
effective numerical method for solving the model, and use of the numerical method to
search for a successful design. The semianalytic model and its use for design and op-
timization, as presented in this paper, address only the last of these. Related efforts,
which are beyond the scope of this paper, include a full-scale numerical method for
the Schrödinger–Poisson model [2] and simulations using nextnano3 [13] that include
more detailed physics.

Furthermore, design of this qubit system is an intermediate, but important step
toward the much more challenging goal of constructing a quantum device. A function-
ing quantum device using this qubit system must satisfy additional requirements, such
as preparation of initial data, coupling of qubits, measurement of the qubit state, con-
trol of decoherence, and error correction, that are not included in the present design
problem.

In section 2 we develop a Schrödinger–Poisson model for simulation of the electro-
static potential and the single electron wavefunction, and we formulate design goals
for performance of this system. A reduced order, semianalytic model is derived in
section 3 using square well or parabolic approximations for the electrostatic poten-
tial. In section 4 the accuracy and validity of this semianalytic model is assessed by
comparison to full scale numerical solution of the Schrödinger–Poisson model from
[2]. Successful designs with double pinchoff are found in section 5 through a random
search in parameter space. A measure of design robustness, in terms of the sensitivity
of the design to fabrication errors, is formulated in section 6. In section 7, an anal-
ysis is presented that greatly simplifies the computation of design robustness. Using
this simplified analysis, a search for designs that are optimally robust is described in
section 8. Finally, conclusions are presented in section 9.

2. Qubit design problem. This sections describes the solid state system and
the design goals for a qubit. This description includes one-, two-, and three-dimensional
versions of the system.
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2.1. Qubit system description. The layered semiconductor system consists of
a series of material layers, with layer i consisting of material mi and having thickness
dzi, in which z is a measure of the distance from the top planar surface, increasing
in the downward direction. In addition there are δ-doped layers of zero thickness at
the boundaries of some of the material layers, with a density σk of ions per area in
the kth δ-doped layer. Note that the charge density σ is the doping density times an
activation factor, so that it is less than the actual doping density. Volumetric doping,
including intrinsic doping, is neglected.

As an example that will be used in this study and is pictured in Figure 1, consider
a system that consists of the following layers, in order starting at z = 0:

• layer of material A of thickness dz1;
• δ-doped layer with charge density σ1;
• layer of material A of thickness dz2;
• layer of material B of thickness dz3, the layer containing the quantum dot;
• layer of material A of thickness dz4;
• layer of material B of thickness dz5, the layer containing the quantum wire;
• layer of material A of thickness dz6;
• δ-doped layer with charge density σ2;
• layer of material A of infinite thickness.

The geometry of these layers is one-dimensional; higher dimensionality is deter-
mined by the geometry of the gates. At the top of the material system, i.e., z = 0,
there are a series of gates Gm on which the electron potential energy φm is speci-
fied. Away from the gates, the energy is taken to be equal to a constant free surface
potential φ0.

In this study the following gate geometries and potentials are considered:
• gate Gg consisting of a circle r < Rg/2 for the three-dimensional geometry

or an interval |x| < Rg/2 for the two-dimensional geometry, on which the
potential energy is φg;

• two gates Gb±, in which Gb+ consists of points with x > Rb/2 and Gb−
consists of points with x < −Rb/2 in both the two-dimensional and three-
dimensional geometries, with potential φb on both gates;

• no gates for the one-dimensional geometry;
• potential energies φg = −Vg + φschottky and φb = −Vb + φschottky, where

φschottky is the Schottky barrier, and Vg and Vb are the voltages applied to
the gates.

In this description all distances are measured in nm, the doping densities are measured
in units of electrons cm−2, and the energy φ is in units of eV .

A drawing of the device structure, with parameters from an optimally robust
design as in (8.1), is shown in Figure 1. A schematic drawing of the gates, the
potentials in the quantum wells, and the electron densities is shown in Figure 2.
Positive potential energy (φb) on the planar side gates raises the potential on the
sides of both quantum wells. Negative potential energy (φg) on the circular, central
gates lowers the potential energy, primarily in the upper well. This leads to a localized
electron density (i.e., a quantum dot) in the upper well and an electron density along
a line (i.e., a quantum wire) in the lower quantum well.

The layer widths dzi and the charge densities σi are determined during the ma-
terial growth, and the gate sizes Ri are determined during the device fabrication.
These parameters cannot be changed after fabrication. Thus the parameters can
be divided into two sets: the vector of operation parameters vo = (φg, φb), which
can be varied during operation of the device, and the vector of design parameters
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Fig. 1. Schematic drawing of the device geometry. The depths of the material layers are dzi,
in which dz3 is the depth of the upper quantum well, which contains the quantum dot, and dz5 is
the depth of the lower quantum well, which contains the quantum wire. The charge densities in the
delta-doped layers are σi. The electrostatic potential of the central gate (a circle of diameter Rg in
a three-dimensional geometry) is φg, and the electrostatic potential of the two side gates (separated
by a distance Rb) is φb. In a two-dimensional geometry the central gate would be an infinite strip
parallel to the side gates.

vd = (dz1, dz2, dz3, dz4, dz5, dz6, Rg, Rb, σ1, σ2), which cannot be changed during op-
eration. A device design can be identified with a choice of the design vector vd.
These are chosen from a subset C of R10 that has been determined from some exter-
nal consideration, such as additional constraints or previous experience. These have
the form

dzi < dzi < dzi for 1 ≤ i ≤ 6,(2.1)

Rg < Rg < Rg,(2.2)

Rb < Rb < Rb,(2.3)

σi < σi < σi for 1 ≤ i ≤ 2,(2.4)

φ
g
< −φg < φg,(2.5)

φ
b
< φb < φb.(2.6)
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Fig. 2. Schematic drawing of the gates, the potential energies in the quantum wells, and the
electron densities in the dot and the wire.

In the design searches conducted below, a typical set of constraints was the fol-
lowing:

20 < dz1 < 40(nm),

20 < dz2 < 40(nm),

5 < dz3 < 10(nm),

dz4 = 16(nm),

5 < dz5 < 15(nm),

dz6 = 50(nm),(2.7)

50 < Rg < 100(nm),

50 < (Rb −Rg)/2 < 400(nm),

0 < σ1 < 4 × 1011(cm−2),

0 < σ2 < 4 × 1011(cm−2),

0.1 < −φg < 0.3(eV ),

0 < φb < 2.0(eV ).

The constraints on dz4 were chosen to allow electrons to tunnel between dot and wire
on a ms time scale; 16 nm is appropriate for the InP/InGaAs system. The lower
bounds on Rg and Rb are representative of what can be easily accomplished with
e-beam lithography. The upper bounds on σi are set to avoid hopping conduction
through the doping layers. The upper bound on φb and the lower bound on φg are set
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to avoid passing any current through the gates into the sample, which would disrupt
the qubit. The lower bound on φg is set to ensure formation of a quantum dot with
a bound electron state; at smaller voltages, the electron may not be bound, which
the central gate, the parabolic approximation in section 3 may fail to predict. The
remaining constraints are reasonable limits that were imposed to speed the design
search.

2.2. Schrödinger–Poisson model. The electrostatic potential Φ is assumed
to satisfy the Poisson equation

∇ · ε∇Φ = σ1δ1 + σ2δ2 − ρψ(2.8)

in which ε = kε0/e
2 is the scaled dielectric constant, δi is a δ-function on ith δ-

doped interface, and ρψ is the number density for electrons in the wire, which must
be determined self-consistently as described below. The function Φ is the potential
energy for an electron, measured in eV . For this equation the boundary conditions are
taken to be Dirichlet conditions (i.e., Φ prescribed) at the top, Neumann conditions
(i.e., ∂Φ/∂n = 0) at the bottom, and periodic conditions on the sides.

The electronic wave function for the unbound electron of lowest energy is assumed
to satisfy a single particle Schrödinger equation

−∇ ·
(

�2

2m
∇Ψ

)
= −(Φ + U)Ψ + λΨ(2.9)

in which e is the electron charge, m is the electron effective mass, U is the conduction
band offset relative to material A (InP in the examples below), λ is the energy level
(eigenvalue) in units of eV , and Ψ is wave function (eigenfunction).

As an example, for InP , InxGa1−xAs, and AlyIn1−yAs, with alloy fractions
x = 0.53 and y = 0.48, the material parameters are given in Table 1 and the relevant
physical constants are given in Table 2.

Table 1

Material parameters.

Parameter InP In0.53Ga0.48As Al0.48In0.52As Units
k 12.61 13.9 12.7 1
ε = kε0/e2 .697 .769 0.702 1/(eV nm)
m .079 .041 0.0733 m0

�2/2m .484 .94 0.522 eV/nm2

U 0 .224 0.25 eV

Table 2

Physical constants.

Constant Value Units

�2/2m0 .0382 eV/nm2

ε0 8.854 × 10−12 C2N−1m−2

ε0/e2 .0553 1/(eV nm)

For the solutions of interest in this study, the electrons are localized either in
a dot in the upper layer or along a wire in the lower layer. This implies that the
eigenfunctions for the Schrödinger equation (2.9) are each localized in either the dot
or the wire. The eigenvalues and eigenfunctions in the quantum dot are labeled
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λd
k, Ψd

k; those in the wire are labeled λw
k , Ψw

k . Also denote dλ = λ2 − λ1 as the
difference between the first two eigenvalues. The eigenfunctions are normalized so
that

∫
|Ψ|2dx = 1. The self-consistent charge density is ρψ =

∑
|Ψ|2, summed over

all λ < EF , in which the Fermi energy EF is set to 0.
To emphasize the dependence of the eigenvalues λ on the gate voltages φg and φb

and the design vector v, we shall sometimes write λ = λ(φg, φb, v).
Note that the eigenfunctions for the quantum dot are quite distinct from those

for the quantum wire. So computation of these eigenfunctions is equivalent to a
computation using two separate wave functions for the dot and wire, and so it correctly
represents the charge density in the wire and its affect on the dot. Interaction terms
between the dot and wire are omitted, because they are small. On the other hand,
tunneling effects between the dot and wire are important for detection of an electron
in the dot using the wire. These tunneling effects are beyond the scope of the current
model.

2.3. Design goals. The design goals for the quantum dot are to have a single
confined electron under the gate and no confined electron states away from the gate.
The design goals for the quantum wire are to have a small number k of conduction
states in the wire, with no additional states in the wire under the gate. Denote Ed

k

and Ew
k to be the energy for k electrons in the dot and for k conduction states in the

wire, respectively. Also denote Ed
k(0) and Ew

k (0) to be the same energies but with no
voltage on the central gate; i.e., φg = 0. An unbound electron will be localized if its
energy is less than the Fermi energy EF = 0. The design goals can thus be stated as

Ed
1 < 0 < Ed

2 ,(2.10)

0 < Ed
1 (0),(2.11)

Ew
k < 0 < Ew

k+1,(2.12)

Ew
k (0) < 0 < Ew

k+1(0).(2.13)

Since Ew
k < Ew

k (0), (2.12), and (2.13) can be recombined as

Ew
k (0) < 0 < Ew

k+1.(2.14)

As shown below, the energy level Ed
2 is smaller than Ed

1 (0) in the regime of interest,
so that (2.11) is redundant.

In the quantum dot, the energy for a single electron is the lowest eigenvalue,
so that Ed

1 = λd
1 and Ed

1 (0) = λd
1(0). For the energy of two electrons, there is an

interaction (Coulomb) correction Ed
2 = λd

2 + Ẽd
2 . In the wire, we identify a conduction

state, as an eigenfunction for the cross-section of the wire and neglect the interaction
among different conduction states. Thus Ew

k = λw2D
k and Ew

k (0) = λw2D
k (0), in which

λw2D
k and λw2D

k (0) are the two-dimensional eigenvalues and φg = 0 for λw2D
k (0).

Therefore the operation goals can be rewritten as

λd
1 < 0 < λd

2 + Ẽd
2 ,(2.15)

λw2D
1 (0) < 0 < λw2D

2 .(2.16)

The design goal is to find a device design vd, for which there is a choice of operation
parameters vo such that the operation goals (2.15) and (2.16) are satisfied. A second
design goal, that the operation goals are still met in the presence of growth and
fabrication uncertainties, is formulated in section 6.
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3. Semianalytic model. In this section we formulate a simplified semianalytic
model that represents an approximate solution of the Schrödinger–Poisson equation.
As described below, the potential Φ in each of the upper and lower quantum wells is
approximated as a parabola in the lateral directions x and y and a square well in the
depth direction z. Because the layered geometry is independent of x and y and the
gates have a reflection symmetry with respect to both x and y, the first derivatives
Φx and Φy are 0 on the centerline x = y = 0. Thus the lateral variation of the
potential near the either quantum dot and quantum wire is approximately given by
1
2 (x2Φxx + y2Φyy).

3.1. Approximations for electrostatics. For the potential Φ = Φ1D due to
modulationally doped layers but not including the effect of the gates, put the bottom
boundary condition at ∞, omit any self-consistent terms, and neglect the variation in
dielectric constant by using the value for material A throughout to obtain

Φ1D =

⎧⎨
⎩

φtop − ε−1
A (σ1 + σ2)z, 0 < z < z1,

φtop − ε−1
A (σ1z − σ2z1), z1 < z < z2,

φtop − ε−1
A (σ1z2 − σ2z1), z2 < z,

(3.1)

in which z1 = dz1 and z2 = dz1 + dz2 + dz3 + dz4 + dz5 + dz6 are the positions of the
δ-doped layers.

The potential Φ = Φ2D
L , due to a gate that is a strip (in three dimensions) (i.e.,

|x| < L/2, z = 0) with potential Φ = 1 on the gate and Φ = 0 away from gate, is

Φ2D
L (x, z) = π−1

(
arctan

(
x + L/2

z

)
− arctan

(
x− L/2

z

))
.(3.2)

On the central axis x = 0, the values of Φ and its second derivative are

Φ2D
L (x = 0, z) = 2π−1 arctan(L/2z),(3.3)

Φ2D
Lxx(x = 0, z) = −π−1z−2 2L/z

(1 + L2/4z2)2
.(3.4)

The potential Φ = Φ3D
d , due to a gate that is a circle (i.e., r = |(x, y)| < d/2)

with potential Φ = 1 on the gate and Φ = 0 away from gate, is

Φ3D
d (x) = Φ(r, z)

=
|z|
2π

∫ 2π

0

∫ d/2

0

|x − x′|−3r′dr′dθ′(3.5)

=
|z|
2π

∫ 2π

0

∫ d/2

0

(z2 + (r − r′ cos θ′)2 + r′2 sin2 θ′)2)−3/2r′dr′dθ′.

On the central axis r = 0, the values of Φ and its second derivative are

Φ3D
d (r = 0, z) = 1 − (1 + (d/2z)2)−1/2,(3.6)

Φ3D
drr(r = 0, z) = −3

2
|z|(d/2)2(z2 + (d/2)2)−5/2.(3.7)

Add these together to obtain the total potential as

Φ =

{
Φ1D + φb(1 − Φ2D

d ) + φgΦ
2D
L in two dimensions,

Φ1D + φb(1 − Φ2D
d ) + φgΦ

3D
L in three dimensions.

(3.8)
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The second derivatives of the total potential on the central axis are

Φxx =

{
−φbΦ

2D
dxx + φgΦ

2D
Lxx in two dimensions,

−φbΦ
2D
dxx + φgΦ

3D
Lrr in three dimensions,

(3.9)

Φyy =

{
0 in two dimensions,
φgΦ

3D
Lrr in three dimensions.

(3.10)

All the subsequent computations for the semianalytic model were performed using
MATLAB programs.

3.2. Approximations for Schrödinger. The approximation for the Schrödinger
eigenfunctions and eigenvalues relies on separation of variables: if m is constant and
Φ(x, y, z) = Φx(x) + Φy(y) + Φz(z), then

λ = λx + λy + λz,(3.11)

Ψ(x, y, z) = Ψx(x)Ψy(y)Ψz(z)(3.12)

in which

−(�2/2m)Ψx
xx = −ΦxΨx + λxΨx,(3.13)

−(�2/2m)Ψy
yy = −ΦyΨy + λyΨy,(3.14)

−(�2/2m)Ψz
zz = −ΦzΨz + λzΨz.(3.15)

Use separation of variables to find eigenvalues in a channel of width w and center
z. Neglect variation of Φ across the well and approximate the x-dependence for Φ2D

(i.e., for a gate that is a strip in three dimensions) or the (x, y)-dependence for Φ2D

(i.e., for a gate that is a circle in three dimensions) as parabolic with

Φ2D ≈ Φx
2D(x) = .5Φxx(x = 0, z) x2,(3.16)

Φ3D ≈ Φx
3D(x) + Φy

3D(y) = .5Φrr(r = 0, z)(x2 + y2).(3.17)

Both the two-dimensional and three-dimensional problems have been written as a sum
of one-dimensional parabolic potentials. The eigenvalue and eigenvalue spacing for a
one-dimensional parabolic potential Φ(x) = φbx

2 are

λp
1 = (Φxx�2/4m)1/2,(3.18)

dλp = 2λp
1.(3.19)

We denote λpx and λpy for the eigenvalues due to the parabolic potential in the x-
and y-directions, respectively, and dλpx and dλpy for the corresponding eigenvalue
spacing.

In the z-direction, the potential is approximately a square well, since

Φz(z) =

{
0 |z − z0| > L/2,
−U |z − z0| < L/2

(3.20)

in which U is the offset in wells, neglecting variation across the well. The eigenvalues
for this square well are solutions of

λsw = c1k
2
1 − U,(3.21)

k2
1(1 + (c1/c0) tan2(k1w/2)) = U/c1(3.22)
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in which c0 and c1 are the values of �2/2m outside the well and in the well, respectively;
i.e., c0 is the value for material A (InP) and c1 is the value for material B (InGaAs).

In summary, the eigenfunctions, lowest eigenvalue and eigenvalue spacing are

Ψ = Ψsw(z)Ψpx(x)Ψpy(y),(3.23)

λ = λsw + λpx + λpy,(3.24)

dλ =

{
dλpx in two dimensions,
min(dλpx, dλpy) in three dimensions.

(3.25)

In the simplest model, we also take the energy for two electrons to be the same as the
second eigenvalue in the quantum dot; i.e., set Ẽd

2 = 0 in (2.15).

3.3. Generalizations. Two generalizations of the semianalytic model of the
previous section are formulated here to include effects of Coulomb interactions and
self-consistent terms.

An approximation to the Coulomb correction Ẽd
2 for two electrons in the quantum

dot has been developed by Gyure [7]. He computed the energy for two electrons in
a one-dimensional parabolic potential using an iterative projection method, then fit
the result to the following simple formula:

Ed
2 = λd

1 + crdγ
κ
y(3.26)

in which rd = 0.00289 eV is the Rydberg energy, γy = λd
1, and the (dimensionless)

fitting parameters are c = 3.5213 and κ = 0.75654. The one-dimensional approxima-
tion was justified by two-dimensional calculations that showed the anisotropy of the
potential is large enough in most cases to ignore the smaller dimension. The error
induced is relatively small and decreases rapidly with anisotropy ratio.

The most significant self-consistent terms are the effect of the charge in the wire
on the potential in the dot. For a wire defined by a parabolic potential of width
ax and a square well of depth az, approximate the charge in the wire as being uni-
formly distributed over an ellipse with ax and az as the principal axes. Define elliptic
coordinates (u, v) in the (x, z) plane as

x = b cosh(u) cos(v),(3.27)

z = b sinh(u) sin(v)(3.28)

in which b =
√

a2
x − a2

z, so that the ellipse corresponds to u = ue = cosh−1(ax/b). As
an approximation to the potential for an elliptical charge, use

Φ̃ =

{
αu− γ for u > ue,
β(axx

2 + azz
2) − κ for u < ue.

(3.29)

In the limit u → ∞, u ≈ log(r/c), which implies that α = ρ̄/2π in which ρ̄ is the
total charge on the ellipse. At the top of the layered material, the correction Φ̃ should
vanish. Apply this at the value u0 = u(z = 0, x = 0) to get γ = u0ρ̄/2π. The total
charge in the wire ρ̄ is approximately given by

ρ̄ = π−1
√
dλw/c((2/3)N3/2 + N)(3.30)

in which c = �
2

2m and N = −λw
1 /dλ

w is the number of transverse eigenvalues that are
less than the Fermi energy. Formula (3.30) comes from the number of longitudinal
states below the Fermi energy for each transverse state. The potential corrections in
(3.29) are used to correct the eigenvalue λw

1 and eigenvalue spacing dλw, which are
then used in (3.30). These two equations are solved iteratively to determine ρ̄.
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Fig. 3. Comparison of potential Φ for a one-dimensional geometry from the full scale simulation
method (blue) and the semianalytic model (red), with no top gates, no Coulomb interactions, self-
consistent effects omitted, and no background doping, showing excellent agreement. Disagreement at
the top is due to use of a different material layer in the full-scale simulation that does not influence
the potential outside that layer and was not included in the semianalytic model.

4. Validation of semianalytic model. Validation of the semianalytic model is
performed by comparison to a full-scale numerical solution of the Schrödinger–Poisson
equations by Anderson [2]. Consider a system with design parameters

vd = (dz1, dz2, dz3, dz4, dz5, dz6, Rg, Rb, σ1, σ2)(4.1)

= (40.5, 37.1, 12.6, 10.6, 16, 50.7, 61, 219.5, 3.6 × 1011, 1.25 × 1011)

and with operation parameters vo = (φg, φb) = (0, 0.53). Figures 3, 4, and 5 show the
potential on the central line (through the center of the quantum dot) in one, two, and
three dimensions, respectively, with no Coulomb interactions, self-consistent effects
omitted, and no background doping. In one dimension there are no gates on the top
of the system, so that the potential Φ is a function of z only. In two dimensions the
central gate is an interval (i.e., a strip in three dimensions); while in three dimensions
the central gate is a circular dot. Figure 6 is the same as Figure 4, except that
self-consistent effects are included in both the full-scale numerical computation and
the semianalytic model. The first eigenvalue is shown for each of these problems in
Table 3, in meV .

These results show excellent agreement for the case with no Coulomb interactions
and no self-consistent effects. In this case the energy errors in the semianalytic method
are all within 6 meV of those for the full simulation. With self-consistent effects, the
agreement is still good, with energy errors of size 20 meV .
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Fig. 4. Same as Figure 3 except that the plot is for the potential Φ on the central axis x = 0
for a two-dimensional geometry.
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Fig. 5. Same as Figure 3 except that the plot is for the potential Φ on the central axis r = 0
for a three-dimensional geometry.
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Fig. 6. Same as Figure 4 but showing the full-scale simulation method with (green) and without
(blue) self-consistent terms and the semianalytic model with (black) and without (red) self-consistent
terms.

Table 3

Lowest eigenvalues λ1.

Dot energies (meV) Wire energies (meV)
simulation semianalytic simulation semianalytic

1D −144.1 −148.3 −195.9 −201.1
2D −33.8 −37.3 −58.8 −60.8
3D 22.5 16.6 9.88 7.1
2D SC 11.6 −4.7 −3.7 −23.3

5. Double pinchoff designs. The principal virtue of the semianalytic model is
that the eigenvalues in the design criteria (2.15) and (2.16) can be quickly computed,
enabling rapid throughput as required for a design study or optimization exercise. In
this section we describe a design that achieves the strictest design criterion (2.15) and
(2.16) with k = 1, i.e., double pinchoff with a single electron in the dot and a single
conductive state in the wire.

An example of a system achieving double pinchoff has design parameters

vd = (dz1, dz2, dz3, dz4, dz5, dz6, Rg, Rb, σ1, σ2)(5.1)

= (40, 94.3, 22.5, 30.3, 17.7, 50, 53.7, 876.7, 3.4 × 1011, 1.4 × 1011)

and operation parameters vo = (φg, φb) = (−0.16, 1.47). The eigenvalues for this
design are (λd

1, λ
d
2, λ

w
1 (0), λw

2 ) = (−0.67, 2.2,−0.92, 0.27) meV . This system was found
by a random search over the full space of possible design parameters and operation
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parameters. In a search involving 10 million trial designs, 7 successful designs were
found. This establishes existence (within the simulation) of a design meeting the
double pinchoff goal. In section 7, however, we show that these double pinchoff
designs are not robust with respect to fabrication errors.

6. Design robustness. When a prescribed design is implemented, the outcome
will differ from the prescription due to errors and uncertainties in growth and fabri-
cation, including variability in the layer thicknesses and gate sizes and variability in
charge density in delta-doped layers due to uncertainties in both the doping level and
the ionization fraction. Additional modeling uncertainties, such as uncertainties in
the correct boundary conditions at the top of the device and additional physics such
as self-consistent terms, are not accounted for in this analysis.

To find a design whose success is insensitive to the growth and fabrication un-
certainties, we formulate a measure of design robustness. Assume that the errors in
each of the various design parameters are independent and normally distributed and
define αk to be the standard deviation of the kth design parameter. Define a distance
function d between two design vectors v and w as

d(v, w) =

(
K∑

k=1

((vk − wk)/αk)
2

)1/2

,(6.1)

i.e., d(v, w) is a measure of the distance between v and w in standard deviations.
Next fix a design criterion by choosing the number K of allowed conduction states in
the wire, and define the robustness R of a successful design vs as the distance to the
nearest unsuccessful design vu, i.e.,

R(vs) = min
vu

d(vs, vu).(6.2)

The design robustness optimization problem is to find the most robust design within
the constraint set C from (2.1)–(2.6), i.e., vs is chosen to be the successful design that
achieves the following max-min:

max
vs∈C

R(vs) = max
vs∈C

min
vu∈C

d(vs, vu).(6.3)

As an example for standard deviation of the fabrication, we take standard devia-
tion of the growth processes (layer thicknesses) to be 3% (relative error), the standard
deviation of the fabrication (gate sizes) to be 10 nm (absolute error), and the standard
deviation of the charge density in the delta-doped layers to be 40% (relative error).

7. Analysis of failure modes. A direct random search for the design vs that
achieves the max-min in (6.3) would involve a double random search over two designs
vs and vu. This can be considerably improved by analysis of the failure modes, i.e.,
the closest failed designs vu for a given successful design vs. This analysis relies on
a linear approximation for the dependence of the eigenvalues λ in the design criteria
(2.15) and (2.16), as functions of the gate voltages φg and φb.

A successful design vs is one for which the four design inequalities in (2.15)
and (2.16) form a quadrilateral (or triangular) set that has a nonempty intersec-
tion with the rectangular constraint set defined by (2.5) and (2.6), in the operation
space (φg, φb). As the design parameter vector v is (smoothly) varied, the sides of
the quadrilateral (or triangle) will (smoothly) vary. The first unsuccessful design vu
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is reached when the intersection becomes just a point. This characterizes the design
vu that occurs in (6.3).

The intersection of the operation window (i.e., the quadrilateral or triangle defined
by (2.15) and (2.16)) and the constraint set (defined by (2.5) and (2.6)) can shrink
to a point in either of two ways: First, the operation window can shrink to a point
in the interior of the constraint set. Second, the operation window can move outside
the constraint set with one vertex on the boundary of the constraint set.

We draw the operation window with coordinates (−φg, φb), so that both coordi-
nates are positive. Denote the boundaries of the operation window as follows:

a = {(−φg, φb) : λd
1(φg, φb) = 0},(7.1)

b = {(−φg, φb) : λd
2(φg, φb) = 0},(7.2)

c = {(0, φb) : λw
1 (0, φb) = 0},(7.3)

d = {(−φg, φb) : λw
2 (φg, φb) = 0}.(7.4)

Also denote ac to be the point of intersection of the lines a and c if it exists, with
coordinates φg(ac) and φb(ac), and similarly for the other intersections. Also denote
0a to be the intersection of a with the line φg = 0. They have the following properties:

1. c is a horizontal line.
2. a, b, and d are lines with positive slope, with a and b steeper than d.
3. a and b cannot intersect (for −φg > 0) and a is to the left of b.
4. −φg(ac) < −φg(bc).
5. The operation window is nonempty if and only if −φg(ac) < −φg(cd).
6. ad is the leftmost and the lowest point of the operation window.

From these properties, it follows that a nonempty operation window can have two
possible configurations. If −φg(bc) < −φg(cd), it is a quadrilateral with vertices
ad, bd, bc, and ac, which is denoted as Type I. If −φg(bc) > −φg(cd), a nonempty
operation window is a triangle with vertices ad, cd, and ac, which is denoted as
Type II. These two possibilities are shown in Figure 7.
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Fig. 7. A schematic drawing of the operation windows in (−φg , φb). The four lines that
define the operation window are a, b, c, and d. The successful operation vectors are those in
quadrilateral region labeled Q for the configuration on the left or in the triangular region labeled T
for the configuration on the right.
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This information allows characterization of the failure modes:
A Collapse of the operation window can occur only as a transition from Type

II, in which the three vertices of the triangle meet as one point acd. Failure
mode A is characterized by existence of a triple intersection point acd, which
is denoted as point A.

B If the operation window leaves the constraint region through the upper bound-
ary, φb = φb, then the final point of intersection of the two regions is ad.
Failure mode B is characterized by existence of a triple intersection point ad
with φb = φb, which is denoted as point B.

C If the operation window leaves the constraint region through the right bound-
ary, −φg = φg, then the final point of intersection of the two regions is ad.
Failure mode C is characterized by existence of a triple intersection point ad
with −φg = φg, which is denoted as point C.

D If the operation window leaves the constraint region through the lower bound-
ary, denoted as failure mode D, then line c coincides with the lower constraint
φb = φ

b
.

E If the operation window leaves the constraint region through the left bound-
ary, −φg = φ

g
, then the final point of intersection of the two regions is bc in

Type I or cd in Type II. Failure mode E is characterized by existence of a
triple intersection point bc or cd with −φg = φ

g
, which is denoted as point E.

The three failure points A, B, and C, which are the ones that most frequently occur,
are illustrated in Figure 8
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Fig. 8. A schematic drawing of the failure modes in (−φg , φb), including the four lines a, b,
c, and d that define the operation window, and the constraining lines φb = φ̄b in the middle and
−φg = φ̄g in the right. In mode A (left), the operation window has collapsed to a point A in the
interior of the constraint set. In mode B (middle), the operation window intersects the constraint set
in only a single point B on the upper boundary. In mode C (right), the operation window intersects
the constraint set in only a single point C on the right boundary.

The distance from a successful design vs to one of the failure points A, B or C
can be estimated through a linear approximation. For point A, let (ΦA

g (v),ΦA
b (v))

solve

λd
1(Φ

A
g (v),ΦA

b (v), v) = 0,(7.5)

λw
1 (0,ΦA

b (v), v) = 0.(7.6)

Then to leading order, since λw
2 (ΦA

g (A),ΦA
b (A), A) = 0,

λw
2 (ΦA

g (v),ΦA
b (v), v) = λw

2 (ΦA
g (v),ΦA

b (v), v) − λw
2 (ΦA

g (A),ΦA
b (A), A)

= (v −A) · ∇vλ
w
2 (ΦA

g (v),ΦA
b (v), v).(7.7)
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At a minimum point, the design difference v − A is parallel to the gradient in (7.7),
so that

min |v −A| = |λw
2 (ΦA

g (v),ΦA
b (v), v)|/|∇vλ

w
2 (ΦA

g (v),ΦA
b (v), v)|.(7.8)

A similar analysis can be carried out for B and C. For B, ΦB
b (v) = φb and let

ΦB
g (v) solve

λd
1(Φ

B
g (v), φb, v) = 0.(7.9)

Then to leading order, since λw
2 (ΦB

g (B), φb, B) = 0, it follows that

min |v −B| = |λw
2 (ΦB

g (v), φb, v)|/|∇vλ
w
2 (ΦB

g (v), φb, v)|.(7.10)

For C, ΦC
g (v) = φg and let ΦC

b (v) solve

λd
1(φg,Φ

C
g (v), v) = 0.(7.11)

Then to leading order, since λw
2 (φg,Φ

C
g (C), C) = 0, it follows that

min |v − C| = |λw
2 (φg,Φ

C
g (v), v)|/|∇vλ

w
2 (φg,Φ

C
g (v), v)|.(7.12)

The robustness R and the design robustness optimization problem can now be
rephrased as

R(vs) = min{|v −A|, |v −B|, |v − C|},(7.13)

max
vs∈C

R(vs) = max
vs∈C

min{|v −A|, |v −B|, |v − C|}(7.14)

in which |v−A|, |v−B|, and |v−C| are defined by (7.8), (7.10), and (7.12). This has
the advantage over the formulation (6.3) that it requires only a single random search
for successful designs vs rather than a double random search for vs and vd. For each
vs, the min is found by evaluation of the three quantities |v−A|, |v−B| and |v−C|
from (7.8), (7.10), and (7.12).

For the design vdp that achieved double pinchoff, as described in section 5, the
design robustness distance (from (7.13)) is R(vdp) = 0.3, which corresponds to prob-
ability of about 0.2 of successful design. The search for a more robust design through
maximization of R(vs) as in (7.14) is described in section 8.

8. Design optimization. The search for a maximally robust design vs in (7.14)
can be accelerated by decomposition and some analysis. First select values for the
geometrical design parameters v′ = (dz1, dz2, dz3, dz4, dz5, dz6, Rg, Rb).

For a given choice of geometrical parameters v′, the possible values of the δ-doping
densities σ1 and σ2 can be determined using the linear dependence of the eigenvalues
λd

1 and λw
1 on σ1 and σ2, as well as on φg and φb. The operation window can be

characterized as having the point ac inside the constraint set. The two equations
(7.1) and (7.3) defining ac can be used to define a mapping between the operation
vector (φg, φb) and the density vector (σ1, σ2). Then the constraint set defined by
(2.5) and (2.6) can be mapped to a constraint set in the space of density vectors,
which may need to be cut off to accommodate the constraints (2.4). To simplify, we
choose a value of (φg, φb) that is approximately in the center of the resulting polygon.
This is illustrated in Figure 9.
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Following this procedure for K = 7, we have found designs with robustness values
of 2.5 or more. A typical result is

v = (dz1, dz2, dz3, dz4, dz5, dz6, Rg, Rb, σ1, σ2)(8.1)

= (47.25, 49.31, 8.24, 16, 23.62, 50, 50.38, 608.28, 3.78 × 1011, 2.45 × 1011).

The operation vector is (φg, φb) = (0.24, 1.91). The eigenvalues for this design are
(λd

1, λ
d
2, λ

w
1 (0), dλw) = (−0.559, 3.60,−33.0, 4.0). There are seven transverse states in

the wire and the robustness is 2.8, which corresponds to more than 99% probability
of a successful design. The resulting operation window is shown in Figure 10.

9. Conclusions. In this work, we have developed a mathematical model for an
electron spin qubit system, for the successful design of the system, and for optimiza-
tion of the design robustness. In addition, we have developed a simple semianalytic
model that is both sufficiently accurate to provide relevant results for the system and
sufficiently fast to allow for the high throughput required by design and optimization
studies. After some analysis to simplify the computation of design robustness, we
have performed a random search for designs that satisfy the design criteria and for
designs that are maximally robust.

From this search, we have found system designs that achieve double pinchoff, in
the sense that they have a single electron in the quantum dot and a single conduction
state in the quantum wire. These designs are not sufficiently robust to be practical,
having a design robustness of only about 0.3, in terms of standard deviation using a
current assessment of design uncertainties. By relaxing the design criterion to allow for
a small number (e.g., K = 7) of conduction states in the wire, we have found designs
that are more than 2.8 standard deviations from an unsuccessful design. Currently
these designs are being built and tested for their electronic properties.

Several conclusions can be drawn from the present study. First is the importance
of models at different levels of complexity. A full-scale model, as in [2], is needed to give
reliable values for the system properties and to provide validation for simpler models.
Simpler models that are less computationally intensive are also needed, however, to
enable design and optimization studies on a reasonable time scale. In addition, we
have been using nextnano3 [13], a computational physics software package, which
includes a much wider set of physics in order to check and validate the results from
full-scale numerical solver for the Schrödinger–Poisson equation [2]. Second is the
importance of analysis as a method for accelerating the random search that is often
required in a design and optimization study. In the present study, the search for an
optimally robust design was greatly aided by analysis of the failure modes for a design
(i.e., the closest unsuccessful designs to a given successful design) and elimination of
the charge variables using their special (linear) occurrence in the model.
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THE EFFECT OF DISPERSAL PATTERNS ON STREAM
POPULATIONS∗

FRITHJOF LUTSCHER† , ELIZAVETA PACHEPSKY‡ , AND MARK A. LEWIS§

Abstract. Individuals in streams are constantly subject to predominantly unidirectional flow.
The question of how these populations can persist in upper stream reaches is known as the “drift
paradox.” We employ a general mechanistic movement-model framework and derive dispersal kernels
for this situation. We derive thin- as well as fat-tailed kernels. We then introduce population
dynamics and analyze the resulting integrodifferential equation. In particular, we study how the
critical domain size and the invasion speed depend on the velocity of the stream flow. We give exact
conditions under which a population can persist in a finite domain in the presence of stream flow,
as well as conditions under which a population can spread against the direction of the flow. We find
a critical stream velocity above which a population cannot persist in an arbitrarily large domain.
At exactly the same stream velocity, the invasion speed against the flow becomes zero; for larger
velocities, the population retreats with the flow.

Key words. nonlocal dispersal, critical domain size, spread speed, drift paradox
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1. Introduction. Many organisms, ranging from river-dwelling flora and fauna
to gut-dwelling bacteria, live in environments with predominantly unidirectional flow.
As with simple chemostat residents [35], organisms that persist in the presence of
such unidirectional flow must resist being washed out by their moving surroundings.
The success of many organisms in maintaining a foothold, even at high flow rates, has
given rise to the so-called drift paradox of persistence in unidirectional flow [27, 28].

While possible solutions of the drift paradox have been discussed in the ecolog-
ical literature [27, 28, 41, 22], until recently the discussion has lacked quantitative
scrutiny in the form of models that can be used to predict the effect of environmental
variables on maintaining the population. Two recent papers have begun to remedy
this lack and have analyzed conditions for species persistence and population spread
into upstream environments, both analytically and numerically. The models used
there are PDE systems, such as a single compartment model with growth, advection,
and diffusion [36], or a two-compartment model with separate mobile and stationary
states corresponding to aquatic and benthic populations [32].

Flows in river systems are very complex and include, for example, up- and down-
river currents as well as turbulent long-distance movement of biota [1]. Although
systems of PDEs are the workhorse for spatial ecology models in continuous space [15],
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their application is limited as they depict the complex asymmetrical spatial flow in a
river through simple advection and diffusion.

Integrodifferential equations [16] are related to PDEs but encompass more gen-
eral movement patterns than diffusion and advection. In particular, the modeling
formalism can allow for a detailed description of the complicated dispersal that arises
through river flow. The added realism of integrodifferential models comes at a price:
much of the theory for PDEs on problems such as critical domain size for species
persistence [34] or population spread [18] has not yet been formulated for their in-
tegrodifferential cousins, but see [26] for invasion speeds. We develop some of the
theory needed for analysis in this paper.

In this paper we revisit the drift paradox, employing integrodifferential models
that allow us to include long-distance dispersal. We show how the long-distance dis-
persal changes previous washout predictions [32, 36]: populations can always persist
under high flow rates providing rare, long-distance dispersal events are sufficient to
allow maintenance of a foothold in the river. Our results contrast with those of
Lockwood, Hastings, and Botsford [24], where long-distance dispersal is discounted
as playing a role in determining population persistence. While our model and appli-
cation are new, we draw on theoretical ideas that have a distinguished history in the
theory of spatial ecology.

The critical domain size is a fundamental ecological quantity that gives the min-
imal size of a habitable area required for species survival. In turn, it provides an
important tool in reserve design and conservation [6, 8]. The first models for the criti-
cal domain size using diffusion equations date back to the 1950s [34, 17]. The analysis
has since been extended to cover more complex spatial domains [9], the influence of
advection [29, 32], and discrete-time integrodifference equations [20, 40, 25].

Another relevant ecological metric is the speed of spread, which is important in
a wide range of ecological applications. While some invasions are intended, such as
the introduction of biological control agents [4], others can be devastating for native
species being out-competed by invaders and for species diversity. The spread of dis-
eases is a worldwide problem and can be treated in the same modeling framework [26].

While the idea of having stationary and mobile compartments has recently been
used by numerous authors, for example, to model protein movement in a cell nu-
cleus [10], population dynamics with diffusive movement [23, 13], or wavelike move-
ment [14], the idea of coupling such models to asymmetric spatial flow dynamics via
advection and diffusion, as in [32], is a recent one (but see [5]).

We start our investigation by presenting a general framework to derive dispersal
kernels from mechanistic movement models, and we apply this framework to derive a
thin-tailed and a fat-tailed kernel. In section 3 we present the general integrodiffer-
ential model and develop the theoretical results on critical domain size and invasion
speeds. The following three sections contain the application of the general theory to
persistence and spread in streams. Three cases for dispersal kernels are considered:
thin-tailed (section 4), a weighted sum of thin-tailed kernels, accounting for short-
and long-distance dispersal (section 5), and, finally, fat-tailed (section 6).

2. Modeling dispersal. In this section, we use a mechanistic approach for in-
dividual movement to derive theoretical forms of dispersal kernels. A dispersal kernel
describes the probability that an individual moves from one location to another in
a certain time interval. Such dispersal kernels, also referred to as redistribution ker-
nels or seed shadows, have been measured for many organisms [30]. The mechanistic
approach taken here allows for explicit description of the movement process and be-
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havior. We assume that population dynamics happen on a much slower time scale
than individual movement and hence can be neglected while deriving the kernel. This
separation of time scales occurs frequently, and it is certainly true for stream insects,
where dispersal can occur over daily time scales, while significant growth typically
requires monthly or yearly time scales. The general theory presented here follows,
but significantly extends, the results in [30] and is applied to derive a thin-tailed and
a fat-tailed dispersal kernel as specific examples for analysis and further development
later in the paper.

We denote ω(t, x; y) as the probability density of the location of a mobile individ-
ual with initial location x = y. We assume that the individual moves for a random
length of time, T , after which it settles, and that the random variable T has a given
probability density p(t). The dispersal kernel is now defined as the probability density
of stopping points from given initial location, i.e.,

κ(x, y) =

∫ ∞

0

p(t)ω(t, x; y)dt.(2.1)

If ω(t, x; y) depends only on the signed distance from the starting point ξ = x−y rather
than the exact location, we simply write w(t, ξ) = ω(t, x; y) and k(ξ) = κ(x, y). Most
dispersal kernels in this paper are of this form. For an exception, see Appendix E.
When the individual moves by Brownian motion with diffusion coefficient D, the
function w(t, x) is the fundamental solution of the heat equation on the real line,

w(t, x) =
exp

(
−x2

4Dt

)
√

4πDt
.(2.2)

When drift at rate v is included with the Brownian motion, the function w(x, t) is
given by (2.2) with x replaced by x− vt.

However, if dispersing individuals can jump long distances in short time intervals,
the Brownian motion model may not be valid. For example, the Lévy flight model [11]
assumes that arbitrarily large jumps can occur over short time scales. The result is a
distribution of jump distances which has no variance. In this “anomalous diffusion”
case, a typical form for w is the Cauchy distribution

w(t, x) =
t

ρπ

[(
x

ρ

)2

+ t2

]−1

.(2.3)

The parameter ρ has dimension [space/time] and stands for an effective speed. Details
of how (2.3) can be derived from a random walk model for individuals are given in
Appendix A. As above, we introduce drift at rate v by replacing x with x− vt.

We now turn to modeling the stopping time T . The simplest possible assumption
is that all individuals disperse for the same, fixed, length of time t0. In this case

p(t) = δ(t− t0),(2.4)

so that (2.1) yields k(x) = w(x, t0). Thus, for a fixed dispersal time t0, the dispersal
kernel (2.1) is simply the Gaussian (2.2), possibly shifted if v �= 0, or the Cauchy
distribution (2.3), again possibly shifted if v �= 0, evaluated at time t0. In Figure 2.1,
we plot the shapes of these kernels.

A more general form of stopping times comes from defining α(t) as the settling or
failure rate [37], i.e., α(t) dt as the probability that the individual ends its movement
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Fig. 2.1. The plot on the left shows the thin-tailed Gaussian (dashed) and fat-tailed Cauchy
(solid) distribution as given in (2.2) and (2.3) for t0 = 1 with parameters D = 1 and ρ = 1,
respectively. The plot on the right shows the Laplace distribution (2.6) (dashed) and the fat-tailed
distribution (2.7) (solid). Parameters are as above and the settling rate is α = 1. Note that the
fat-tailed distribution has a singularity at the origin.

during [t, t + dt). The probability density for the stopping times of the individual,
also called the lifetime probability density, is then

p(t) = α(t) exp

(
−
∫ t

0

α(s) ds

)
.(2.5)

The argument of the exponential function is known as the hazard function [37].
For constant settling rate α, the dispersal kernel (2.1) is the Laplace transform of

the probability density ω with respect to time. In the case of Brownian motion (2.2),
the kernel (2.1) becomes the Laplace distribution [7],

k(ξ) =

√
α

4D
exp

(
−
√

α

D
|ξ|

)
.(2.6)

For constant settling rate α and the Cauchy redistribution function (2.3), the kernel
(2.1) becomes the fat-tailed kernel

k(ξ) = θ�{E1(iθξ) exp(iθξ)} /π
= −θ (cos(θξ) ci(θξ) + sin(θξ) si(θξ)) /π,(2.7)

where θ = α/ρ. The functions E1, ci, and si are the exponential, cosine, and sine
integrals, respectively,

E1(x) =

∫ ∞

1

exp(xz)

z
dz, ci(x) = −

∫ ∞

1

cos(xz)

z
dz, si(x) = −

∫ ∞

1

sin(xz)

z
dz.

(2.8)

The kernels given by (2.6) and (2.7) are plotted in Figure 2.1.
Adding drift into the last two scenarios does not simply shift the kernels (2.6) and

(2.7) as it did above but instead causes a different kind of asymmetry in dispersal, as
we show later. In section 4.1, we employ a somewhat simpler method to derive the
kernel for Brownian motion with drift. The case of Lévy flight with drift is done in
section 6.

In Appendix B we generalize the simple model of Brownian motion to the case of
two (and potentially more) dispersal modes. Individuals switch between these modes.
We show that corresponding dispersal kernels can be derived explicitly for constant
settling rate.
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3. The model equation, critical domain size, and spread speed. In this
section, we present the general model for a population subject to population dynamics
and spatial movement. It has the form of an integrodifferential equation, for which we
give alternative derivations. We then state the main assumptions and prove formulas
for the critical domain size and the spread speed of the population.

We consider a single population, which is described by its density u(t, x). Popula-
tion dynamics such as birth and death of individuals are summarized in the function
f(u). Then the dispersal time scale is small compared to the population dynamics time
scale; dispersal can be modeled by a position-jump process with jumping rate µ [31].
If an individual jumps, the dispersal kernel κ(x, y), as discussed in section 2, describes
the probability that the individual moves from some point y to x. Then the evolution
of the population density is governed by the following integrodifferential equation:

ut(t, x) = f(u(t, x)) − µu(t, x) + µ

∫
Ω

κ(x, y)u(t, y)dy.(3.1)

The domain of integration Ω will depend on the question we study. In the case of
the critical domain size, it will be a bounded interval; in the case of invasion speeds,
it will be the real line. Although the model formulation is valid in spatial domains
of any dimension, we will restrict ourselves to the one-dimensional case since the
applications below will be to systems with unidirectional flow. We assume that the
function f is a single-hump function, i.e., f(0) = f(ū) = 0, and f > 0 on (0, ū). To
prove Theorem 3.2, we will need more assumptions on f and k, which we state then.

There are several ways to derive (3.1). We present a novel approach emphasizing
the separation of time scales. Then we present the necessary theoretical results about
the critical domain size and invasion speeds.

3.1. Model derivations. Besides the derivation in [31], (3.1) is derived in the
ecological literature from a random walk process with variable move length [39]. Re-
action and movement are assumed to be on the same time scale [12]. Recently, a very
careful derivation of (3.1) has been presented where some scaling issues have been
avoided [16].

Here, we present an alternative derivation that respects and even relies on the
fact that movement often happens on a much faster time scale than population dy-
namics. We start by dividing the population into mobile and stationary classes, u
and v, respectively, and assume that birth and death processes affect only stationary
individuals. Stationary individuals start moving with rate µ, and mobile individuals
settle with rate σ. Then we obtain the system

ut = f(u) − µu + σv, vt = G[v] + µu− σv,(3.2)

where G is a differential operator describing movement, e.g., G = D∆ (diffusion)
or G = D∆ − V∇ (advection and diffusion). Recently, there has been increasing
interest in this or similar systems [5, 10, 13, 23, 32]. To apply the quasi steady-state
assumption that movement happens on a much faster time scale than population
dynamics, we introduce the scaling parameter ε = µ/σ and rescale v and G in (3.2)
to obtain

ut = f(u) − µu + µṽ, εṽt = G̃[ṽ] + µu− µṽ,(3.3)

where ˜ denotes the rescaled quantities. Under the quasi steady-state assumption
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ε → 0, the equation for ṽ gives the linear differential operator

µu =
(
µ− G̃

)
ṽ.(3.4)

System (3.2) becomes (3.1), with κ(x, y) denoting the Green’s function of (3.4), i.e.,

ṽ(x) =

∫
κ(x, y)u(y)dy.(3.5)

3.2. Critical domain size. As a first step in the analysis of (3.1), we now study
the critical domain size problem. We find that parameter space can be divided into
two parts, one that allows persistence independently of domain size and dispersal
kernel, and one in which persistence depends on these two factors. We assume that
there is no immigration into the domain. A population will persist if it grows at low
density; therefore, we study conditions such that the zero steady state is unstable.
The linearization of (3.1) on the interval [0, L] is given by

ut(t, x) = (r − 1)u(t, x) +

∫ L

0

κ(x, y)u(t, y)dy,(3.6)

where we have rescaled time by the rate of movement µ and abbreviated r = f ′(0)/µ
as the rescaled growth rate at low density. From (3.6), we immediately see that if
r > 1, then the zero steady state is unstable independently of the domain size and the
kind of movement individuals perform. On the other hand, if r < 1, then the stability
of the zero solution depends on the integral expression in (3.6). We assume that the
integral operator

I[φ](x) =

∫ L

0

κ(x, y)φ(y)dy(3.7)

has a unique simple dominant eigenvalue ν for an appropriate choice of function space.
In Appendix C, we discuss possible choices and show the following result.

Theorem 3.1. Assume that κ is independent of L. The unique simple dominant
eigenvalue ν of (3.7) is a strictly increasing function of the domain length L. Next,
assume f(0) = 0 and f ′(0) > 0. Then the zero steady-state solution of (3.1) is
unstable provided ν(L) > 1 − r.

The condition that κ be independent of L means that dispersing individuals do
not perceive domain boundaries or at least do not alter their movement behavior
there. For example, aquatic individuals in a river stretch without breaks (source,
mouth, waterfall), or in a no-fishing zone, or wind-dispersed seeds. In those cases,
the dispersal kernel derived on the infinite domain is simply cut off at the domain
boundaries [40]. If the movement behavior is altered at the boundary, then the kernel
will depend on L (see section E). Then the first statement of the theorem is shown by
showing that the smallest eigenvalue of the differential operator (3.4) is a decreasing
function of L. In general, this follows from standard arguments; however, in the special
case of zero-flux boundary conditions at both ends (i.e., no loss from the domain) this
eigenvalue is independent of L.

According to the theorem, the critical domain size is given by ν(L) = 1 − r. In
the original nonscaled parameters, the population can persist if

f ′(0) > µ(1 − ν).(3.8)
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Condition (3.8) is a refinement of the unconditional persistence in case r > 1, which
we found above. Its interpretation gives a possible explanation of the drift paradox
as follows. If the population growth rate at low density, f ′(0), exceeds the rate at
which individuals move, µ, then the population will always persist, independently of
the length of the domain and the kind of movement. In particular, the population
can persist in an environment with unidirectional flow. This conclusion was also
reached as one possible explanation of the drift paradox in [32]. If f ′(0) is smaller
than µ, then persistence depends on the term (1 − ν). As the leading eigenvalue, ν
asymptotically gives the fraction of individuals that remains in the domain during
dispersal, and consequently, (1 − ν) is the fraction of individuals leaving the domain
due to dispersal. Therefore, if the rate at which individuals move times the probability
that they leave the domain during dispersal exceeds the population growth rate, then
the population will go extinct. A similar switch from conditional to unconditional
persistence in a PDE system was found in [13] (without advection) and [32] (with
advection).

3.3. Spread speed. In the previous section, we analyzed population persistence
on a bounded domain. Here, we look at population spread into an unbounded, pre-
viously uninhabited domain. We first derive the minimal speed of a traveling wave
of the linearized system (3.6). We follow the usual line of argument, emphasizing
the direction in which the wave is moving [26]. In systems with unidirectional flow,
the spread in the direction of the drift will be faster than against the drift. This
asymmetry requires some modification in the definition of the asymptotic spreading
speed [3] for the nonlinear model. After we give the modified definition, we show
in Theorem 3.2 that the minimal traveling wavespeed and the asymptotic spreading
speed coincide.

To determine the wave speed of the linear system, we assume that the kernel is
of the form κ(x, y) = k(x− y) and change to traveling wave coordinates, z = x− ct,
where c is the speed of a traveling wave. Then (3.6) gives the following equation for
the profile ψ of a traveling wave:

−cψ′(z) = (r − 1)ψ(z) +

∫
k(z − w)ψ(w)dw.(3.9)

In this linear equation, we make the exponential ansatz ψ(z) = e−sz, with s > 0
(s < 0), such that asymptotically, ψ → 0 as z → ∞ (z → −∞). After canceling equal
terms on both sides, we get the characteristic equation

sc + 1 − r =

∫ ∞

−∞
k(w)eswdw =: M(s)(3.10)

for s �= 0, where M stands for the moment generating function of k. We will always
assume that advection points to the right. Therefore, waves with positive c travel in
the direction of advection, and waves with negative c travel against the advection.
From (3.10), which will be of use later, the minimal wave speeds are derived as in [26]
and given by

c+ = inf
s>0

r − 1 + M(s)

s
, c− = sup

s<0

r − 1 + M(s)

s
(3.11)

for waves with decreasing (c+) and increasing (c−) profile. Here, we assume that
the moment generating function exists at least for some interval containing zero. In
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section 6, we discuss the case of a kernel whose moment generating function does not
exist except at s = 0.

The representation (2.1) of the dispersal kernel for arbitrary settling rate (see
(2.5)) is particularly useful in connection with formula (3.11) because the moment
generating function of the Gaussian distribution is known. Since the moments of
k involve integration in the spatial variable only and since the stopping times are
independent of the spatial location, the moment generating function of k is given by

M(s) =

∫ ∞

0

p(t) exp(Dts2)dt.(3.12)

The concept of the asymptotic spreading speed (henceforth simply referred to
as spread speed) for the nonlinear equation was introduced by Aronson and Wein-
berger [3] and has since been explored in many publications; see [38]. To accommodate
for asymmetric spread, we define spread speeds c∗± by the condition

lim
t→∞

u(t, x + ct) =

{
ū, c∗− < c < c∗+,
0, c < c∗− or c > c∗+,

(3.13)

where ū > 0 is the positive zero of f , i.e., f(ū) = 0.
Theorem 3.2. Assume that f satisfies f(0) = 0 = f(ū) for some ū > 0,

f ′(0) > 0, and the subtangential condition f(u) ≤ f ′(0)u. Assume that the kernel
satisfies the technical conditions stated in Appendix D. Then the spread speeds of the
nonlinear equation (3.1) are given by (3.11), i.e., c∗± = c±.

The proof of this theorem in Appendix D uses the upper bound for the spread
speed from [26]. To show that the upper bound equals the lower bound, we construct
subsolutions of (3.11) adapting the proof in [2] for a simple epidemic model.

4. A model with unidirectional flow. We now apply the general model (3.1)
to study systems with unidirectional flow and the influence of the flow on the critical
domain size and the spread speed. The biological system motivating our study is a
population of aquatic insects in streams, and our results give possible explanations
of the drift paradox. At first, we derive an appropriate dispersal kernel. Then we
compute the critical domain size as well as the spread speeds with and against the flow
direction. We show that these two important ecological characteristics are related as
follows. The spread speed against the flow decreases as the advection increases until,
at some critical advection speed, there is no spread against the flow direction. On the
other hand, the critical domain size increases with the advection speed until, at some
critical advection speed, it becomes infinite, i.e., the population cannot persist in a
domain of any size. We show that the two critical advection speeds, indeed, coincide.

4.1. A dispersal kernel with advection. We derive a dispersal kernel that
represents the movement of aquatic insects in streams. The larvae of these insects
reside on the bottom of the stream, from where they periodically jump into the water
column, where they are subject to the flow. Our submodel for individual movement
consists of diffusion and advective flow, and we assume constant settling rate. We
think of advection as representing the drift velocity experienced by the larvae and
of diffusion as a first approximation to the variability in flow speed and direction.
Denoting z(t, x) as the density of moving individuals, we obtain the equation

zt = Dzxx − vzx − αz,(4.1)
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Fig. 4.1. The picture on the left shows the dispersal kernel (4.4) with D = 1, α = 1, and
v = 1, 2, 3 in decreasing height of the peak, solid lines. For comparison, the symmetric kernel for
v = 0 is plotted as the dashed line. The plot on the right gives the critical domain size as a function
of the advection as in (4.6). The parameters are D = 1, α = 1, and r = 0.5. The solid line is
the analytical expression (4.6), stars are numerical results computing the eigenvalue of the integral
operator (C.1), using Simpson’s rule on 1401 data points in the interval [0, 1].

where D is the diffusion constant, v is the advection velocity, and α is the settling rate.
Integrating (4.1) over 0 ≤ t ≤ ∞ and applying the initial condition z(0, x) = δ(x) as
well as (B.2), we observe that the dispersal kernel k satisfies

D

α
kxx − v

α
kx − k = −δ,(4.2)

i.e., k is the Green’s function from (3.2). The characteristic equation of (4.2) is
Da2 − va− α = 0 with solutions a1 > 0 and a2 < 0, given by

a1,2 =
v

2D
±
√

v2

4D2
+

α

D
.(4.3)

Using the asymptotic boundary conditions for x → ±∞ and the matching condition
at x = 0, we find that k is of the form

k(x) = A exp(a1x), x ≤ 0, and k(x) = A exp(a2x), x ≥ 0.(4.4)

The value of the constant A is determined by the condition
∫∞
−∞ k(x)dx = 1, which

leads to

A =
a1a2

a2 − a1
=

α√
D(v + 4α)

.(4.5)

Alternatively, this kernel can be expressed by substituting x → x − vt in (2.2), α =
const. in (2.5), and inserting the result in (2.1). In the special case v = 0, the Laplace
kernel (2.6) results. We plot the shape of k in Figure 4.1 for different values of v
while keeping D,α constant. In Appendix E, we contrast the kernel derived here for
an infinite domain with a kernel on a finite domain with mixed boundary conditions
of the same type as in [32, 36].

4.2. Critical domain size. From the previous section we know that the pop-
ulation persists unconditionally if r > 1. For r < 1, we have to find L such that
ν(L) = 1 − r; see (3.8). This can be calculated analytically. In Appendix F, we
convert the integral equation (C.1) into a differential equation, extending earlier work
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for symmetric kernels [20, 40], and obtain the following expression for L in terms of
the eigenvalue ν and the dispersal related constants a1,2 from (4.3):

L =
4 arctan

(√
4a1|a2|

ν(a1−a2)2
− 1

)−1

(a1 − a2)
√

4a1|a2|
ν(a1−a2)2

− 1
.(4.6)

Setting ν = 1 − r, we can hence determine the critical domain size, which we plot in
Figure 4.1 as a function of the advection speed v. As expected, the critical domain
size is an increasing function of advection speed. From the plot, it appears that v = 2
is the critical advection speed, above which the population cannot persist in a domain
of any length. In (4.6), L approaches infinity as the square root in the denominator
approaches zero. Hence, the critical advection speed is defined by

ν = 1 − r =
4 α
D

v2

D2 + 4 α
D

.(4.7)

For the set of parameters above, v = 2 is indeed the critical advection speed.

4.3. Spread speed. We use formulas (3.10) and (3.11) and Theorem 3.2 to
determine the speed of spread. The moment generating function for the generalized
Laplace kernel (4.4) is given by

M(s) =
a1a2

(a1 + s)(a2 + s)
, −a1 < s < −a2.(4.8)

In Figure 4.2, we plot the hyperbola M(s) with y-intercept M(0) = 1 for three different
values of the advection speed v. According to (3.10), we also plot straight lines with
slope c, the propagation speed, and y-intercept 1 − r < 1. As given in (3.11), we
plot these straight lines for minimal values of |c|, such that the straight line and the
hyperbola have a point in common, i.e., we plot the case that the line is tangent to
the hyperbola. The resulting slopes give the minimal wave speed.

We find exactly two tangent lines. One of them (dash-dot line) always has positive
slope, independent of the advection speed v ≥ 0. This slope is the spread speed c+
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in the direction of advection. It increases with advection. For the other tangent line,
we distinguish two cases. First note that the hyperbola is always positive since we
assume k to be nonnegative. If now r > 1, then the y-intercept of the straight line is
negative, and hence the (dashed) tangent line will always have negative slope. This
slope corresponds to c−, the spread speed against the advection. That means if r > 1,
then the population can always invade against the advection. If, on the other hand,
r < 1, then the tangent line has zero slope if the minimum of M(s) equals 1−r. If the
minimum is smaller than 1 − r, then also the dashed tangent line has positive slope.
Since the slope corresponds to c−, and since the minimum of M(s) is decreasing with
increasing advection, we find a switch in the population’s ability to invade against the
advection. For small values of v > 0, the population can invade against the advection;
for large values of v > 0, the population retreats with the advection.

To compute the critical advection velocity at which the switch happens, we com-
pute the minimum of M(s) as

M

(
−a1 + a2

2

)
= − 4a1a2

(a1 − a2)2
> 0.(4.9)

Therefore, the critical advection speed is given by

1 − r = − 4a1a2

(a1 − a2)2
or v2 = 4

r

1 − r
αD.(4.10)

After some rearranging, we find that (4.10) is exactly the same as (4.7). Hence, the
advection velocity above which a population cannot persist in a domain of arbitrary
length is exactly the same as the advection velocity at which the population stops
spreading upstream and starts retreating downstream. This connection between the
two ecologically important quantities critical domain size and invasion speed in sys-
tems with advection was first hinted at in [36] and then demonstrated in the context
of the PDE system (3.2) in [32].

4.4. Upstream settling probability. The probabilities that, after a dispersal
event, an individual settles down- or upstream from its initial location are given by

Pdown =

∫ ∞

0

k(x)dx =
a1

a1 + |a2|
, Pup = 1 − Pdown.(4.11)

For r < 1, we compute a critical upstream-settling probability, below which the
population cannot persist or spread against the advection. We insert the critical
advection velocity (4.10) into (4.3) and find

P ∗
down =

1 +
√
r

2
, P ∗

up =
1 −

√
r

2
(4.12)

as the critical downstream and upstream probabilities, respectively. This result is
surprising since the two quantities depend only on the population dynamics parameter
and not on the movement related parameters α and D. Here lies a chance to test
the predictions of the model without having to estimate α and D, provided we can
estimate Pup. Later in the paper (Figure 6.2), we plot the critical domain size as
a function of the downstream settling probability and compare it to the case of a
fat-tailed kernel.
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5. Two modes of dispersal. In the case without advection, it is known that
the shape of the tail of the dispersal kernel has virtually no influence on the critical
domain size [24]. On the other hand, the invasion speed for systems without advection
crucially depends on the shape of the tail of the dispersal kernel [19]. Even a tiny
fraction of long-distance dispersers can have a huge effect on the invasion speed. In
the dispersal model of diffusion and settling, longer dispersal distances result from
higher diffusion rate or lower settling rate. In the previous section, we showed that
in systems with advection, there is a close relationship between critical patch size,
critical advection velocity, and invasion speed. In this section, we explore how this
relationship depends on the shape of the tail of the kernel.

We assume that individuals have two different dispersal modes and choose be-
tween those with probabilities p and 1 − p, respectively. We assume that both dis-
persal modes can be described by the simple advection-diffusion-settling model (4.1),
but with possibly different parameters. Hence, the movement model is given by

z1,t = D1z1,xx − v1z1,x − α1z1,

z2,t = D2z2,xx − v2z2,x − α2z2

(5.1)

with initial conditions z1(0, x) = (1 − p)δ(x), z2(0, x) = pδ(x). Since there is no
interaction between the two different dispersal modes, the resulting kernel is simply
the weighted sum of the kernels associated with each mode, i.e.,

k = (1 − p)k1 + pk2,(5.2)

where k1,2 are given in (4.4) with the appropriate parameters. We are thinking of
the z2-compartment as the long-distance dispersers, i.e., we want k2 to have fatter
tails than k1, and we assume that p is small. All other parameters being equal, k2

will have fatter tails than k1 if either D2 > D1 or α2 < α1. The effect of varying
v1,2 depends on whether we are looking at the upstream or the downstream direction.
For simplicity and to compare the results of this section with those of the previous
section, we restrict ourselves to the case v1 = v2.

We first explore the case of varying D2 at equal settling rates α1 = α2. In
Figure 5.1 we plot the critical domain size as a function of the advection speed for
three different values of D2 and for fixed p = 0.1 We also plot the critical advection
speed at which the upstream spread is zero as a vertical line. We observe the following.
At low advection speeds, the critical domain size is indeed insensitive to changes in
D2; i.e., it does not depend strongly on the tail of the dispersal kernel. The critical
domain size increases with increasing D2, reflecting higher loss at higher diffusion
rates. At higher advection speeds, the picture is different. The critical domain size
does depend crucially on D2 and it decreases with increasing D2. Whereas increasing
D2 increases the loss from the domain downstream, it also increases the probability
that a few individuals move upstream. Summarizing in biological terms, at small
advection speeds it is important to keep many individuals in the domain; at large
advection speeds it is more important to have a few individuals dispersing against
the advection. The critical advection speed increases with increasing D2, which was
to be expected since the tails of k get fatter. The curves for the critical domain
size approach the straight lines for the critical advection speed for upstream spread,
and hence the critical advection speed for persistence and invasion agree, as in the
previous section.

Next, we vary the settling rate α2 at equal diffusion coefficients D1 = D2. The
results are plotted in Figure 5.1, which includes the critical domain size and the
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Fig. 5.1. Left: The critical domain size as a function of the advection speed with dispersal
kernel (5.2). The parameters are D1 = 1, α1 = α2 = 1, r = 0.5, p = 0.1. The varying parameter
is D2 = 1 (solid), D2 = 5 (dash-dot), and D2 = 10 (dashed). The vertical lines give the critical
advection speed for upstream invasion from formula (3.10). The values are v = 2, v = 2.7948,
v = 3.7114 for D2 = 1, D2 = 5, D2 = 10, respectively. Right: The critical domain size as a function
of the advection speed with dispersal kernel (5.2). The parameters are D1 = D2 = 1, α1 = 1,
r = 0.5, p = 0.1. The varying parameter is α2 = 0.1 (solid), α2 = 1 (dash-dot), and α2 = 10
(dashed). The vertical lines give the critical advection speed for upstream invasion from formula
(3.10). The values are v = 1.8321, v = 2, v = 2.1833 for α2 = 0.1, α2 = 1, α2 = 10, respectively.

critical advection speed for upstream spread just as in the previous plot. The two
most important observations are that the curves for different α2 do not intersect and
that the curve with the higher α2 is always the lower one. Hence, independently of
the strength of advection, higher settling rate always promotes species persistence and
ability to spread upstream. In view of our earlier considerations, this is a surprising
result, since decreasing α2 gives fatter tails of k, yet it reduces the critical advection
velocity instead of increasing it as above when we varied D2.

There are several ways to explain why increasing D2 and decreasing α2, which
both produce fatter tails of k2, have opposite effects on the domain length and the
invasion speed. Whereas settling rate and diffusion coefficient appear as a quotient in
formulas (2.6), (4.3), which determine the tail of the kernel, they appear as a product
in formula (4.10) for the critical velocity of upstream propagation. Increasing D2

in (4.3) decreases both a1, |a2| to zero, whereas decreasing α decreases |a2| to zero
and a1 to v/D. Therefore, increasing D2 makes the kernel more symmetric, whereas
decreasing α2 makes it less symmetric. This can also be seen by computing the
skewness of k from (4.4) as

−2
v(v2 + αD)

(v2 + 2αD)
√
v2 + 2αD

,(5.3)

which is a decreasing function in the product αD. In more biological terms, in systems
with advection, the probability of moving downstream is higher than the probability
of moving upstream. Increasing the diffusion rate increases the probability of moving
upstream, increasing the settling rate decreases it. Last, dimensional analysis gives the
same result. Characteristic length scales are

√
D/α for a system without advection

and v/α for a system without diffusion. The balance between up- and downstream
movement is hence given as√

D/α ∼ v/α or αD ∼ v2.(5.4)

6. Dispersal by extremes. In this last section, we explore the ideas from the
previous paragraphs in the context of a dispersal kernel whose tails are not expo-
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Fig. 6.1. The fat-tailed kernel from (6.1) with parameters µ = 1, α = 0.5 for different values
of advection velocity v.
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Fig. 6.2. On the left, the critical domain length for the fat-tailed kernel (6.1) is plotted as a
function of the advection velocity. The parameters are ρ = 1, r = 1, α = 1. On the right, the critical
domain length is given as a function of the upstream settling probability. The solid line represents
the fat-tailed kernel (6.1) with parameters ρ = 1, r = 1, α = 1. The dashed and dash-dot line are
for the exponential kernel (4.4) with parameters are α = 1, r = 0.5. The dashed line corresponds to
D = 1, the dash-dot line to D = 4.

nentially bounded. Such kernels are also known as fat-tailed kernels and describe
a situation where long-distance dispersal events are not rare. Different phenomena,
such as accelerating invasions, have been shown to occur in that case [19]. We follow
the ideas from section 2 to incorporate unidirectional flow in such kernels. Then we
numerically investigate how the critical domain size depends on the strength of the
flow.

As described in section 2, we compute the appropriate fat-tailed kernel by in-
tegrating the Cauchy distribution (2.3) with x replaced by x − vt, multiplied with
the probability of stopping times (2.5) according to (2.1). This integration yields the
asymmetric fat-tailed dispersal kernel

k(x) =
α

(µ2 + v2)π
�
(

(µ + vi)E1

(
−α(v − µi)x

µ2 + v2

)
exp

(
−α(v − µi)x

µ2 + v2

))
.(6.1)

In Figure 6.1 we plot this kernel for various values of v. The critical domain length
for the fat-tailed kernel (6.1) is plotted as a function of advection speed in Figure 6.2.
As expected, it increases with advection speed but it seems to remain finite even for
large v. To compare the results for the fat-tailed kernel here with the results from
the asymmetric exponential kernel from section 4, we plot the critical domain length
in both cases as a function of the probability of settling upstream from the point of
release; see section 4.4. If the advection speed is zero, then the probability of settling
upstream from the point of release is 0.5. As the advection speed increases, the prob-
ability of settling upstream decreases. In the limit as the advection speed approaches
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infinity, the upstream probability goes to zero. From the plot in Figure 6.2 we make
two observations. The fat-tailed kernel (6.1) produces finite critical domain lengths
for smaller upstream probabilities than the exponential kernel; i.e., the population can
persist for larger advection speeds. Second, the critical upstream probability for the
exponential kernel as computed in (4.12) is independent of the dispersal parameters
D and α and depends only on the population growth rate r.

7. Discussion. In this work, we consider integrodifferential models that incor-
porate population dynamics and individual movement described by dispersal kernels.
Extending previous work [30, 32], we consider not only kernels arising from simple
random walks but also including (1) unidirectional flow, producing asymmetric ker-
nels, and (2) long-distance jumps (Lévy flight motion), producing fat-tailed kernels.
These derivations contribute to the effort to incorporate mechanistic descriptions of
individual movement into population models in order to understand the impact of
details of individual movement on population dynamics under different conditions.

We obtain general criteria for persistence of a population by deriving the critical
domain size for integrodifferential equations. We also extend existing work on the rate
of spread [26] and prove that the linear conjecture holds for these systems. Further,
we show that in systems with advection there exists a critical advection speed that
links population persistence and spread as follows. At a critical advection speed, the
population can no longer persist on any finite domain (i.e., the critical domain size is
infinite). This critical advection speed is the same as the one that causes upstream
propagation to stall (i.e., the upstream propagation speed is 0). We show this result
analytically for the modified Laplace kernel and numerically for other kernels; for
related results in a PDE model, see [32].

It has been shown that in systems without advection the shape of tails of the
dispersal kernel have little effect on persistence [24] but may be a major determinant of
the spread rate of a population [19]. Our results show that in systems with advection,
the shape of the tails of kernels influences both. With fat-tailed kernels, a population
is able to both persist and spread upstream in conditions with higher flow speed.

Whereas the current model gave us valuable insight in dispersal in stream pop-
ulations and possible explanations for the drift paradox, we plan to continue these
investigations using more realistic biological models. The techniques in this paper will
be extended to cover, e.g., resource dynamics and predator-prey interaction. Most
important, we plan to model a population of larvae and adult stage where adults
emerge from the stream and fly upstream to deposit eggs. This mechanism is the
most commonly quoted biological hypothesis to solve the drift paradox. Finally, as
we are dealing with low population numbers, we intend to compare the results of these
deterministic models here to stochastic simulations.

Appendix A. Derivation of the Cauchy distribution for individuals un-
dergoing a random walk. The derivation we use follows [11]. Let Y be a random
variable, assuming its values on the integer lattice and describing the number of space
steps that an individual jumps each time step. The probability that the individual
jumps k steps to the right (Pr(Y = k) = pk) is defined to be

pk =

{
1 − 2m

π if k = 0,
m

π|k|(|k|+1) if k > 0.
(A.1)

The parameter m, restricted to 0 < m < π/2, describes the likelihood of dispersing.
It is straightforward to show that the pk sum to one. We produce a random walk on
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the grid of spacing h with h > 0 by letting the walker start at point 0 at instant 0
and defining the location of the individual after n time steps to be

Xn = hY1 + hY2 + · · · + hYn,(A.2)

where Yn are independent, identically distributed random variables, all having the
same distribution as Y . We relate space steps h and time steps τ by the speed s,
so h = sτ . At time t = nτ = nh/s we have h = ts/n, so that the spreading time
associated with distance Xn is to

Xn

ρ
=

t

mn
(Y1 + Y2 + · · · + Yn) ,(A.3)

where ρ = ms is a speed of spreading. The distribution of the right-hand side of (A.3)
converges to the distribution of normalized Cauchy distribution

1

π

t

x2 + t2
(A.4)

in the limit as n approaches infinity [11]. Thus Xn approaches (2.3) in the same limit.
For any given fixed time t and speed s the limit n approaches infinity is equivalent to
the space step h approaching zero.

Appendix B. Dispersal kernels for multiple dispersal modes. In extend-
ing the simple diffusion model for individual movement, we assume that individuals
have two different modes of dispersal and that they can switch between these modes.
We show how the dispersal kernel can be computed explicitly for constant rates and
that the kernel is exponentially bounded. The description for individual movement is
given by

z1,t = D1z1,xx − v1z1,x − µz1 + σz2 − α1z1,

z2,t = D2z2,xx − v2z2,x − µz2 + σz1 − α2z2.
(B.1)

The parameters Dj , vj , and αj are the diffusion rates, the advection speeds, and the
settling rates for the different stages. The parameters µ and σ are switching rates
between the stages. Initially, there is a certain fraction of the population in each
stage, i.e., z1(0, x) = pδ(x), and z2(0, x) = (1−p)δ(x). The density of stopping points
from the respective stages is given by

kj(x) =

∫ ∞

0

αjzj(t, x)(B.2)

for j = 1, 2, and hence the kernel is given by k(x) = k1(x) + k2(x).
The case α1 = σ = 0 can be interpreted as two successive modes of dispersal. In

the case without advection, this has been treated by [30]. If we consider only move-
ment, not settling (α1,2 = 0), then we can study the shape of the spatial distribution
of z1 and z2 as it evolves in time. For systems like (B.1) but without advection,
Skalski and Gilliam [33] have constructed an explicit solution and computed asymp-
totic speeds of spread for a linear model.

From (B.1) we deduce that k1, k2 satisfy the system

−pα1δ = D1k
(2)
1 − v1k

(1)
1 − (µ + α1)k1 + σ

α1

α2
k2,

−(1 − p)α2δ = D2k
(2)
2 − v2k

(1)
2 − (σ + α2)k2 + µ

α2

α1
k1,

(B.3)
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where k
(l)
j denotes the lth derivative of kj . Restriction to the interval (0,∞) and

repeated differentiation and substitution of (B.3) yields a fourth-order equation for
k1 as follows:

D1k
(4)
1 −

(
v1 + v2

D1

D2

)
k

(3)
1 −

(
µ + α1 −

v1v2D1(σ + α2)

D2

)
k

(2)
1

+
v1(σ + α2) + v2(σ + α1)

D2
k

(1)
1 +

(σ + α2)(µ + α2) − µσ

D2
k1 = 0.

(B.4)

This is a linear equation with constant coefficients; therefore the solution is readily
determined and is exponentially bounded. The coefficients are determined by the
usual conditions, i.e., the kernel has to integrate to unity, it has to be continuous at
zero, and the jump conditions at zero have to be satisfied.

Appendix C. Proof of Theorem 3.1. The exponential ansatz u(t, x) =
exp(λt)φ(x) in the linearization (3.6) leads to the eigenvalue problem

νφ(x) = I[φ](x) =

∫ L

0

k(x, y)φ(y)dy(C.1)

with ν = λ + 1 − r. The solution u of (3.6) will grow if λ > 0 and decay if λ < 0.
Hence, the critical value is given by λ = 0 or ν = 1 − r.

We now show that the dominant eigenvalue ν∗ is a monotone increasing function
of domain length. For two domain lengths L2 > L1, we denote Ij as the linear operator
given by (C.1) with L replaced by Lj , j = 1, 2. We denote ν1,2 as the corresponding
dominant eigenvalues and φ1,2 as corresponding (positive) eigenfunctions. Then I2 ≥
I1 and hence ν2 ≥ ν1. We show that the inequality is in fact strict. We write

I2φ2 = I1φ2 +

∫ L2

L1

k(x, y)φ2(y)dy.

Since φ2 > 0, the last term is positive and hence there is an ε > 0 such that

f : =

∫ L2

L1

k(x, y)φ2(y)dy > εφ1.

Then the equation ν2ψ = I1ψ+f has no solution for ν2 ≤ ν1 [21]. But φ2 is a solution
and hence necessarily ν2 > ν1.

If the dispersal kernel is continuous, then the resulting integral operator on
L2[0, L] is completely continuous and, for positive kernel, has a unique simple domi-
nant eigenvalue [21]. Therefore, our assumptions are valid for all kernels in sections 4
and 5. In fact, the condition that the kernel be continuous can be weakened by saying
that the kernel to the power 1 + q, q ≥ 1, has to be integrable on [0, L]2 [21]. Numer-
ically, the fat-tailed kernel (2.7) can be bounded by x−0.4, which is square integrable,
and hence the assumption holds. This is an area of future research.

Appendix D. Proof of Theorem 3.2. By scaling time, we may assume µ = 1 in
equation (3.1). It was shown in [26] that c− ≤ c∗− and c∗+ ≤ c+. To show the reversed
inequalities, we follow Aronson’s proof [2] and show that for all c ∈ (c−, c+) there is
a subsolution of (3.1) which expands at speed c. Due to a comparison principle, the
true solution has to expand at speed at least c.
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We make the following technical requirements on the kernel k [2]. We assume
k ≥ 0 and supp(k) = R. We assume that the moment generating function M(s)
exists for s ∈ (ŝ−, ŝ+) with ŝ− < 0, ŝ+ > 0. We assume furthermore that the function

Aλ(s) = [(M(s) + λ)/s], s �= 0,(D.1)

has exactly one minimum at s̄+ ∈ (0, ŝ+) and one maximum at s̄− ∈ (ŝ−, 0). In
addition, Aλ(s) is increasing on (ŝ−, s̄−)∪ (s̄+, ŝ+) and decreasing on (s̄−, 0)∪ (0, s̄+).
Finally, we assume that the function x �→ exp(sx)k(x) is decreasing for large enough
x. Note that with this notation, c± = Aλ(s̄±) with λ = f ′(0) − 1.

We first switch to a moving coordinate frame and show a comparison principle for
the resulting integrodifferential operator. The function W (t, ξ) = u(t, ξ + ct) satisfies

Wt = cWξ + f(W ) −W +

∫
k(ξ − η)W (t, η)dη =: Qc[W ], W (0, ξ) = u(0, ξ).

(D.2)

Lemma D.1 (comparison). Let V,W be bounded and continuously differentiable
functions which satisfy, on R+ × R,

Vt −Qc[V ] ≥ Wt −Qc[W ],(D.3)

and V (0, ξ) > W (0, ξ) on R. Then V > W on (0,∞) × R.
Proof. Let V,W be given. The difference Z = V −W satisfies

Zt − cZξ ≥ h(t, ξ)Z + k ∗ Z, Z(0, ·) > 0,(D.4)

where h is some bounded function, given by the mean value theorem. Suppose there
is a first time t0 such that Z > 0 on [0, t0) × R, and Z(t0, ξ0) = 0 for some ξ0. By
assumption, the convolution term in (D.4) is nonnegative on [0, t0] × R. Therefore,
along the characteristic lines ξ + ct, Z is bounded below by the solution of the dif-
ferential equation ζ̇ = hζ, ζ(0, ξ) = Z(0, ξ) > 0. Since ζ remains positive, Z has to
remain positive.

In the following, we will use Lemma D.1 with nonstrict inequalities, i.e., V (0, ξ) ≥
W (0, ξ) implies V ≥ W provided V satisfies a well-posed initial value problem, and
still refer to that as Lemma D.1. The idea is the same as in [2]. Let Vε, ε > 0, be the
solution of a well-posed initial value problem with initial value Vε(0, ξ) = V (0, ξ) + ε.
Then by the above Vε > W , and in the limit ε → 0, we have V ≥ W .

Lemma D.2 (subsolution). Let c ∈ (c−, c+) be given. Then there exists a function
V0(ξ), which is positive on (0, π/γ), such that Qc[εV0] ≥ 0 and

Qc[εV0] > 0 on (0, π/γ)(D.5)

for all sufficiently small ε, γ > 0.
Before we prove Lemma D.2, we demonstrate how the subsolution and repeated

use of the comparison principle are employed to prove the theorem. Suppose that
W (0, ξ) and c ∈ (c−, c+) are given and W (t, ξ) satisfies (D.2). We need to show that
W (t, ξ) → ū as t → ∞ for all ξ ∈ R. At first, Lemma D.2 ensures the existence of
V0(ξ), which is positive on (0, π/γ) for small enough γ > 0. We apply the comparison
principle to εV0 and V, defined as the solution to

Vt = Qc[V ], V (0, ξ) = εV0(ξ),(D.6)
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to see that V (t, ξ) ≥ εV0(ξ) for all t > 0. Next, the comparison principle is applied to
V (t, ξ) and Ṽ (t, ξ) = V (t+h, ξ) for any fixed h > 0. As a result, Ṽ ≥ V and therefore
V (t, ξ) is a nondecreasing function in t for each fixed ξ. On comparing V (t, ξ) with
the constant ū, we get that V is bounded by ū, and therefore V (t, ξ) → q(ξ) for each
ξ. Following Aronson [2], one can actually show that q(ξ) ≡ ū.

Finally, for T sufficiently large, there is a bound m > 0 such that W (T, ξ) ≥ m > 0
on (0, π/γ). We choose ε > 0 such that εV0 < m. We now apply the comparison
principle to W (t, ξ) and the solution V (t − T, ξ) of Vt = Qc[V ], V (T, ξ) = εV0(ξ), to
obtain that W (t, ξ) ≥ V (t− T, ξ). This completes the proof.

We now prove Lemma D.2. We first look at the linear equation

Wt = Lc[W ] : = cWξ + λW + k ∗W,(D.7)

where ∗ denotes the convolution. For s ∈ (s̄−, s̄+)\{0}, we define

V̂0(ξ) = e−sξ sin γξ.(D.8)

After a little bit of algebra, we find that Lc[V̂0](ξ) is given by[
−cs + λ +

∫
esηk(η) cos(γη)dη

]
V̂0 +

[
cγ −

∫
esηk(η) sin(γη)dη

]
e−sξ cos γξ.

Therefore, Lc[V̂0] > 0 on (0, π/γ) if the following two conditions are satisfied:

c <
1

s

[
λ +

∫
esηk(η) cos(γη)dη

]
=: Aλ(s, γ), s > 0,(D.9)

c > Aλ(s, γ), s < 0,(D.10)

c =
1

γ

[∫
esηk(η) sin(γη)dη

]
=: B(s, γ).(D.11)

We first establish some properties of the functions Aλ and B. As γ → 0, we have
uniform convergence on compact subsets of (s̄−, s̄+)\{0} of

Aλ(s, γ) → Aλ(s), B(s, γ) → B(s) : =

∫
ηesηk(η)dη.

The function B(s) is increasing. Differentiation gives A′
λ(s) = (B(s) − Aλ(s))/s.

Hence, due to the assumptions on Aλ, we furthermore see that B < Aλ on (0, s̄+),
B > Aλ on (s̄−, 0), and B(s̄±) = Aλ(s̄±). Note that B(0) is the average dispersal
distance, and since B is an increasing function, c− < B(0) < c+; i.e., the interval
(c−, c+) is never empty.

We now return to the construction of V̂0; i.e., we show that conditions (D.9)–
(D.11) can be satisfied simultaneously. Without loss of generality, we may assume
c > B(0), and hence we restrict ourselves to s > 0. First, we can choose λ < f ′(0)−1
such that c < Aλ(s̄+). Then we can choose s0, s1, δ, γ > 0, such that

B(s0) + δ < c < B(s1) − δ and |B(s, γ) −B(s)| < δ.

By continuity, there is a value s(γ) such that B(s(γ), γ) = c for all sufficiently small
γ. Obviously, we can choose γ small enough such that Aλ(s(γ), γ) > c. Hence, the
two conditions (D.9), (D.11) can be satisfied simultaneously.
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By the same argument as [2], one can show that the modified function

V0(ξ) = V̂0(ξ), ξ ∈ [0, π/γ], V0(ξ) = 0, ξ > π/γ,(D.12)

also satisfies Lc[V0] > 0 on (0, π/γ).
As a last step, we have to show that for small enough ε > 0 we have Qc[εV0] > 0

on that same interval. Note that λ < f ′(0) − 1 implies that λε < f(ε) − ε for small
enough ε > 0. Hence, we have Qc[εV0] > Lc[εV0] > 0, on (0, π/γ), which completes
the proof.

Appendix E. The advection diffusion kernel for bounded domains.
Movement is modeled by (4.1) on the interval [−L/2, L/2] with initial condition
z(0, x) = δ(x− y). The boundary conditions are(

zx − v

D
z
)

(t,−L/2) = 0, z(t, L/2) = 0.(E.1)

We interpret these conditions as a stream where individuals cannot enter or leave at
the upstream end and are washed out at the downstream end [36]. We nondimension-
alize (4.1) by setting X = x/L, T = αt, Z = Lz, which gives

ZT =
1

L̃2
ZXX − ṽZ − Z, Z(T, 1/2) = 0 = (ZX − L̃2ṽZ)(T,−1/2),(E.2)

where L̃2 = αL/D and ṽ = v/(αL). For convenience, we write the variables t, x
in lower case letters again. We want to find the nondimensional kernel given by
κ(x, y) =

∫∞
0

αZ(t, x)dt. The function W (t, x) = exp(−L2vx/2)Z(t, x) satisfies

Wt =
1

L2
Wxx − βW,(E.3)

where β = 1 + v2L2

4 . Separating variables W (t, x) = T (t)X(x), we get the two
independent equations T ′ = −(λ2 + β)T and X ′′ = −λ2L2X for some λ2 > 0. The
boundary conditions applied to the equations for X result in the defining condition

λ = −vL

2
tan(λL).(E.4)

We denote its infinitely many (symmetric) nonzero solutions by λn, n = 1, 2, . . . . The
corresponding family of orthogonal solutions is given by

φn(x) = − tan(λnL/2) cos(λnLx) + sin(λnLx)(E.5)

with norm

‖φn‖2
2 =

1

2
(1 + tan2(λnL/2)).

The solution of (E.3) can hence be written as an infinite sum where each term is of
the form cne

−(λn+β)tφn(x). To find expressions for the coefficients cn we approximate
the delta distribution by the top hat function,

δm(x− y) =

{
2m, |x− y| ≤ 1/m,
0, else.
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Fig. E.1. The kernel with advection, no-flux boundary conditions at the left end, zero boundary
conditions at the right end, release point in the middle, for v = 0.2 (top curve), v = 1 (middle), and
v = 5 (bottom).

Expanding the approximate initial condition

δm(x− y)e−
vL2

2 x =
∑

cnφn(x)

and using the intermediate value theorem gives

cn =
e−

vL2

2 yφn(y)

‖φn‖2
2

.

Hence, the nondimensionalized kernel is given by

k(x, y) = e−
vL2

2 (y−x)
∑
n

1

λ2
n + 1 + v2L2

4

2

1 + tan2(λnL
2 )

S(x)S(y),(E.6)

where S(x) = (sin(λnLx)− tan(λnL/2) cos(λnLx)). In Figure E.1 we plot this kernel
for three different advection speeds.

Appendix F. Exact derivation of the critical domain length. We deter-
mine the critical domain length for the kernel (4.4) by computing the eigenvalue of
the corresponding integral operator (C.1), extending earlier work [20, 40]. Scaling the
space variable by L gives

νφ(x) =

∫ 1

0

κ̃(x, y)φ(y)dy,(F.1)

where κ̃ is defined as κ with aj , A replaced by bj = Laj , B = LA. Differentiating
(F.1) gives

νφ′(x) = b2νφ(x) + (b1 − b2)

∫ 1

x

Beb1(x−y)φ(y)dy.(F.2)

Differentiating again, we obtain

νφ′′(x) = (b2 − b1)Bφ(x) + b22νφ(x) + (b21 − b22)

∫ 1

x

Beb1(x−y)φ(y)dy.(F.3)

Substituting (F.2) into (F.3), we get the regular Sturm–Liouville problem

φ′′(x) = −b1|b2|
(

1

ν
− 1

)
φ(x) + (b1 + b2)φ

′(x), φ′(0) = b1φ(0), φ′(1) = b2φ(1).

(F.4)
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We apply the transformation ψ(x) = exp(− b1+b2
2 x)φ(x) to (F.4) and substitute the

original parameters back to obtain

ψ′′ = −L2 (a1 − a2)
2

4

(
4a1|a2|

ν(a1 − a2)2
− 1

)
ψ,(F.5)

together with the boundary conditions

ψ′(0) = L
a1 − a2

2
ψ(0) and ψ′(1) = −L

a1 − a2

2
ψ(1).(F.6)

Equations (F.5) and (F.6) constitute a Sturm–Liouville problem, which one can solve
for L as a function of ν [40], and the solution is given by formula (4.6).
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A MATHEMATICAL STUDY OF THE HEMATOPOIESIS PROCESS
WITH APPLICATIONS TO CHRONIC MYELOGENOUS LEUKEMIA∗
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Abstract. This paper is devoted to the analysis of a mathematical model of blood cell production
in the bone marrow (hematopoiesis). The model is a system of two age-structured partial differential
equations. Integrating these equations over the age, we obtain a system of two nonlinear differential
equations with distributed time delay corresponding to the cell cycle duration. This system describes
the evolution of the total cell populations. By constructing a Lyapunov functional, it is shown that
the trivial equilibrium is globally asymptotically stable if it is the only equilibrium. It is also shown
that the nontrivial equilibrium, the most biologically meaningful one, can become unstable via a Hopf
bifurcation. Numerical simulations are carried out to illustrate the analytical results. The study may
be helpful in understanding the connection between the relatively short cell cycle durations and the
relatively long periods of peripheral cell oscillations in some periodic hematological diseases.

Key words. blood cells, hematopoiesis, differential equations, distributed delay, asymptotic
stability, Lyapunov functional, Hopf bifurcation
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1. Introduction. Cellular population models have been investigated intensively
since the 1960s (see, for example, Trucco [33, 34], Nooney [25], Rubinow [28], and
Rubinow and Lebowitz [29]) and still interest a lot of researchers. This interest is
greatly motivated, on one hand, by medical applications and, on the other hand, by
the biological phenomena (such as oscillations, bifurcations, traveling waves, or chaos)
observed in these models and, generally speaking, in the living world (Mackey and
Glass [19], Mackey and Milton [20]).

Hematopoiesis is the process by which primitive stem cells proliferate and differ-
entiate to produce mature blood cells. It is driven by highly coordinated patterns of
gene expression under the influence of growth factors and hormones. The regulation
of hematopoiesis is about the formation of blood cell elements in the body. White
and red blood cells and platelets are produced in the bone marrow, from where they
enter the blood stream. The principal factor stimulating red blood cell production is
a hormone produced in the kidney, called erythropoietin. About 90% of the erythro-
poietin is secreted by renal tubular epithelial cells when blood is unable to deliver
sufficient oxygen. A decrease in the level of oxygen in the blood leads to a release of a
substance, which in turn causes an increase in the release of the blood elements from
the marrow. There is feedback from the blood to the bone marrow. Abnormalities
in the feedback are considered as major suspects in causing periodic hematological
diseases, such as autoimmune hemolytic anemia (Bélair, Mackey, and Mahaffy [4] and
Mahaffy, Bélair, and Mackey [23]), cyclical neutropenia (Haurie, Dale, and Mackey
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[14]), and chronic myelogenous leukemia (Fowler and Mackey [12] and Pujo-Menjouet,
Bernard, and Mackey [26]).

Cell biologists classify stem cells as proliferating cells and resting cells (also called
G0-cells) (see Mackey [16, 17]). Proliferating cells are committed to undergo mitosis
a certain time after their entrance into the proliferating phase. Mackey supposed
that this time of cytokinesis is constant, that is, it is the same for all cells. Most of
committed stem cells are in the proliferating phase. The G0-phase, whose existence
is known due to the works of Burns and Tannock [8], is a quiescent stage in the
cellular development. However, it is usually believed that 95% of pluripotent stem
cells are in the resting phase. Resting cells can exit randomly to either enter into
the proliferating phase or be irremediably lost. Proliferating cells can also be lost by
apoptosis (programmed cell death).

The model of Mackey [16] has been numerically studied by Mackey and Rey [21]
and Crabb, Losson, and Mackey [9]. Computer simulations showed strange behaviors
of the stem cell population, such as oscillations and bifurcations. Recently, Pujo-
Menjouet and Mackey [27] proved the existence of a Hopf bifurcation which causes
periodic chronic myelogenous leukemia and showed the great dependence of the model
on the parameters.

In this paper, based on the model of Mackey [16], we propose a more general
model of hematopoiesis. We take into account the fact that a cell cycle has two
phases, that is, stem cells in process are either in a resting phase or actively prolifer-
ating. However, we do not suppose that all cells divide at the same age, because this
hypothesis is not biologically reasonable. For example, it is believed that pluripotent
stem cells divide faster than committed stem cells, which are more mature cells. There
is strong evidence (see Bradford et al. [7]) that indicate that the age of cytokinesis
τ is distributed on an interval [τ , τ ] with τ ≥ 0. Hence, we shall assume that τ is
distributed with a density f supported on an interval [τ , τ ] with 0 ≤ τ < τ < +∞.
The resulting model is a system of two differential equations with distributed delay. A
simpler model, dealing with the pluripotent stem cell population behavior, has been
studied by Adimy, Crauste, and Ruan [1].

Some results about stability of differential equations with distributed delay can be
mentioned. In [6], Boese studied the stability of a differential equation with gamma-
distributed delay. Gamma distributions have the property to simplify the nature of
the delay and this situation is close to the one with discrete delay. Anderson [2, 3]
showed stability results linked to the different moments (especially the expectation
and the variance) of the distribution. Kuang [15] also obtained general stability results
for systems of delay differential equations. More recently, sufficient conditions for the
stability of delay differential equations with distributed delay have been obtained by
Bernard, Bélair, and Mackey [5]. They used some properties of the distribution to
prove these results. However, in all these works, the authors focused on sufficient
conditions for the stability, there is no necessary condition in these studies, and these
results are not applicable directly to the model considered in this paper.

This paper is organized as follows. In section 2, we present the model and estab-
lish boundedness properties of the solutions. In section 3, we study the asymptotic
stability of the equilibria. We give conditions for the trivial equilibrium to be glob-
ally asymptotically stable in section 3.1 and investigate the stability of the nontrivial
equilibrium in section 3.2. In section 4, we show that a local Hopf bifurcation occurs
in our model. In section 5, numerical simulations are performed to demonstrate that
our results can be used to explain the long period oscillations observed in chronic
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myelogenous leukemia.

2. The hematopoiesis process: Presentation of the model. Denote by
r(t, a) and p(t, a) the population densities of resting an proliferating cells, respectively,
which have spent a time a ≥ 0 in their phase at time t ≥ 0. Resting cells can either
be lost randomly at a rate δ ≥ 0, which takes into account the cellular differentiation,
or enter into the proliferating phase at a rate β. Proliferating cells can be lost by
apoptosis (a programmed cell death) at a rate γ ≥ 0 and, at mitosis, cells with age a
divide in two daughter cells (which immediately enter the G0-phase) with a rate g(a).

The function g : [0, τ) → R+ satisfies g(a) = 0 if a < τ with 0 ≤ τ < τ < +∞.

Moreover, it is assumed to be piecewise continuous such that
∫ τ

τ
g(a)da = +∞. The

later assumption describes the fact that cells which did not die have to divide before
they reach the maximal age τ .

The nature of the trigger signal for introduction in the proliferating phase is not
clear. However, the work of Sachs [30] shows that we can reasonably think that it
strongly depends on the entire resting cell population, that is, β = β(x(t)), with

x(t) =

∫ +∞

0

r(t, a)da, t ≥ 0.

The function β is supposed to be continuous and positive. Furthermore, from a reason-
able biological point of view, we assume that β is decreasing with limx→+∞ β(x) = 0.
This describes the fact that the rate of reentry into the proliferating compartment is
a decreasing function of the G0-phase population.

Usually, it is believed that the function β is a monotone decreasing Hill function
(see Mackey [16]), given by

β(x) = β0
θn

θn + xn
, x ≥ 0,(2.1)

with β0 > 0, θ ≥ 0, and n > 0. β0 is the maximal rate of reentry in the proliferating
phase, θ is the number of resting cells at which β has its maximum rate of change
with respect to the resting phase population, and n describes the sensitivity of the
reintroduction rate with changes in the population.

The above parameters values are usually chosen (see Mackey [16]) to be

δ = 0.05 day−1, γ = 0.2 day−1, β0 = 1.77 day−1, and n = 3.(2.2)

Although a usual value of θ is θ = 1.62 × 108 cells/kg, it can be normalized without
loss of generality when one makes a qualitative analysis of the population.

Then r(t, a) and p(t, a) satisfy the system of partial differential equations

∂r

∂t
+

∂r

∂a
= −

(
δ + β(x(t))

)
r, a > 0, t > 0,(2.3)

∂p

∂t
+

∂p

∂a
= −

(
γ + g(a)

)
p, 0 < a < τ, t > 0,(2.4)

with

r(0, a) = ν(a), a ≥ 0, p(0, a) = Γ(a), a ∈ [0, τ ].
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The functions ν = ν(a) and Γ = Γ(a) give the population densities of cells which have
spent a time a in the resting and proliferating phase, respectively, at time t = 0, that
is, the initial populations of cells with age a in each phase.

The boundary conditions of system (2.3)–(2.4), which describe the cellular flux
between the two phases, are given by

⎧⎪⎪⎨
⎪⎪⎩

r(t, 0) = 2

∫ τ

τ

g(τ)p(t, τ)dτ,

p(t, 0) = β(x(t))x(t).

Moreover, we suppose that lima→+∞ r(t, a) = 0 and lima→τ p(t, a) = 0.

Let y(t) denote the total population density of proliferating cells at time t; then

y(t) =

∫ τ

0

p(t, a)da, t ≥ 0.

Thus, integrating (2.3) and (2.4) with respect to the age variable, we obtain

dx

dt
= −

(
δ + β(x(t))

)
x(t) + 2

∫ τ

τ

g(τ)p(t, τ)dτ,(2.5)

dy

dt
= −γy(t) + β(x(t))x(t) −

∫ τ

τ

g(τ)p(t, τ)dτ.(2.6)

We define a function G by

G(t, a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g(a) exp

(
−
∫ a

a−t

g(s)ds

)
if t < a,

g(a) exp

(
−
∫ a

0

g(s)ds

)
if a < t.

Set

f(τ) := g(τ) exp

(
−
∫ τ

0

g(s)ds

)
, τ > 0.

One can check that f is a density function, supported on [τ , τ ], and f represents the

density of division of proliferating cells. In particular,
∫ τ

τ
f(τ)dτ = 1.

Using the method of characteristics to determine p(t, a), we deduce, from (2.5)–
(2.6), that the process of hematopoiesis is described by the following system:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= −

(
δ + β(x(t))

)
x(t)

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2e−γt

∫ τ

τ

G(t, τ)Γ(τ − t)dτ, 0 ≤ t ≤ τ ,

2

∫ t

τ

e−γτf(τ)β(x(t− τ))x(t− τ)dτ

+ 2e−γt

∫ τ

t

G(t, τ)Γ(τ − t)dτ, τ ≤ t ≤ τ ,

2

∫ τ

τ

e−γτf(τ)β(x(t− τ))x(t− τ)dτ, τ ≤ t,

dy

dt
= −γy(t) + β(x(t))x(t)

−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−γt

∫ τ

τ

G(t, τ)Γ(τ − t)dτ, 0 ≤ t ≤ τ ,

∫ t

τ

e−γτf(τ)β(x(t− τ))x(t− τ)dτ

+ e−γt

∫ τ

t

G(t, τ)Γ(τ − t)dτ, τ ≤ t ≤ τ ,

∫ τ

τ

e−γτf(τ)β(x(t− τ))x(t− τ)dτ, τ ≤ t.

(2.7)

One can give a direct biological explanation of system (2.7).
In the equation for the resting cells x(t), the first term in the right-hand side

accounts for G0-cell loss due to either mortality and cellular differentiation (δ) or
introduction in the proliferating phase (β). The second term represents a cellular
gain due to the movement of proliferating cells one generation earlier. It requires
some explanation. First, we recall that all cells divide according to the density f ,
supported on [τ , τ ]. We shall call, in the following, new proliferating cells, the resting
cells introduced in the proliferating phase at the considered time t. When t ≤ τ , no
new proliferating cell is mature enough to divide, because cells cannot divide before
they have spent time τ in the proliferating phase. Therefore, the cellular gain can
proceed only from cells initially in the proliferating phase. When t ∈ [τ , τ ], the cellular
increase is obtained by division of new proliferating cells and by division of the initial
population. Finally, when t ≥ τ , all initial proliferating cells have divided or died,
and the cellular gain is obtained by division of new proliferating cells introduced one
generation earlier. The factor 2 always accounts for the division of each cell into two
daughter cells at mitosis. The term e−γt, with t ∈ [0, τ ], describes the attenuation of
the population, in the proliferating phase, due to apoptosis.

In the equation for the proliferating cells y(t), the first term in the right-hand
side accounts for cellular loss by apoptosis and the second term is for cellular entry
from the G0-phase. The last term accounts for the flux of proliferating cells to the
resting compartment.

We set μ :=
∫∞
0

ν(a)da. Then, initially, the populations in the two phases are
given by

x(0) = μ and y(0) =

∫ τ

0

Γ(a)da.
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At this point, one can make a remark. Since resting cells are introduced in the
proliferating phase with a rate β, then Γ(0), which represents the population of cells
introduced at time t = 0 in the cycle, must satisfy

Γ(0) = β(μ)μ.

Taking into account the inevitable loss of proliferating cells by apoptosis and by
division, we suppose that Γ(a) is given by

Γ(a) =

⎧⎪⎨
⎪⎩

e−γaβ(μ)μ if a ∈ [0, τ),

e−γa exp

(
−
∫ a

τ

g(s)ds

)
β(μ)μ if a ∈ [τ , τ).

(2.8)

This simply describes that Γ satisfies (2.4) (see Webb [35, p. 8]). With (2.8) and
integrating by parts, the initial conditions of system (2.7) become

x(0) = μ, y(0) = β(μ)μ

∫ τ

τ

f(τ)

(
1 − e−γτ

γ

)
dτ.(2.9)

When γ = 0, we have

y(0) = β(μ)μ

∫ τ

τ

τf(τ)dτ.

Assume that the function x �→ xβ(x) is Lipschitz continuous. It is immediate to
show by steps that, for all μ ≥ 0, the system (2.7) under condition (2.9) has a unique
nonnegative continuous solution (x(t), y(t)) defined on [0,+∞).

One can notice that problem (2.7) reduces to a system of two delay differential
equations, with initial conditions solutions of a system of ordinary differential equa-
tions. On [0, τ ], the first equation for x(t) in system (2.7) reduces to the ordinary
differential equation

⎧⎨
⎩

dϕ̃

dt
= −

(
δ + β(ϕ̃(t))

)
ϕ̃(t) + 2β(μ)μ

∫ τ

τ

e−γτf(τ)dτ, 0 ≤ t ≤ τ ,

ϕ̃(0) = μ,

(2.10)

and, on [τ , τ ], the second equation reduces to the nonautonomous delay differential
equation

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dϕ

dt
= −

(
δ + β(ϕ(t))

)
ϕ(t) + 2β(μ)μ

∫ τ

t

e−γτf(τ)dτ

+ 2

∫ t

τ

e−γτf(τ)β(ϕ(t− τ))ϕ(t− τ)dτ, t ∈ [τ , τ ],

ϕ(t) = ϕ̃(t), t ∈ [0, τ ],

(2.11)

where ϕ̃(t) is the unique solution of (2.10) for the initial condition μ.

In the same way, the solution y(t) of the second equation in (2.7), denoted ψ(t), is
given in terms of the unique solution ϕ̃(t) of (2.10), associated with μ, and the unique
solution ϕ(t) of (2.11), for t ∈ [0, τ ].
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Then, system (2.7) can be written as an autonomous system of delay differential
equations, for t ≥ τ ,

dx

dt
= −

(
δ + β(x(t))

)
x(t) + 2

∫ τ

τ

e−γτf(τ)β(x(t− τ))x(t− τ)dτ,(2.12a)

dy

dt
= −γy(t) + β(x(t))x(t) −

∫ τ

τ

e−γτf(τ)β(x(t− τ))x(t− τ)dτ,(2.12b)

with, for t ∈ [0, τ ],

x(t) = ϕ(t), y(t) = ψ(t).(2.13)

The solutions of (2.12b) are given explicitly by

y(t) =

∫ τ

τ

f(τ)

(∫ t

t−τ

e−γ(t−s)β(x(s))x(s) ds

)
dτ for t ≥ τ .(2.14)

One can notice that y(t) no longer depends on the initial population Γ(a) after one
generation, that is, when t ≥ τ . This can be explained as follows. Cells initially in
the proliferating phase have divided or died after one generation; hence, new cells in
the proliferating phase can come only from resting cells x(t).

On the other hand, one may have already noticed that the solutions of (2.12a)
do not depend on the solutions of (2.12b), whereas the converse is not true. The
expression of y(t) in (2.14) gives more precise information on the influence of the
behavior of x(t) on the stability of the solutions y(t). These results are proved in the
following lemma.

Lemma 2.1. Let (x(t), y(t)) be a solution of (2.12). If limt→+∞ x(t) exists and
equals C ≥ 0, then

lim
t→+∞

y(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β(C)C

∫ τ

τ

f(τ)

(
1 − e−γτ

γ

)
dτ if γ > 0,

β(C)C

∫ τ

τ

τf(τ)dτ if γ = 0.

(2.15)

If x(t) is P -periodic, then y(t) is also P -periodic.
Proof. By using (2.14), we obtain that

y(t) =

∫ τ

τ

f(τ)

(∫ τ

0

e−γsβ(x(t− s))x(t− s) ds

)
dτ for t ≥ τ .(2.16)

Hence,

lim
t→+∞

y(t) = β(C)C

∫ τ

τ

f(τ)

(∫ τ

0

e−γs ds

)
dτ,

and (2.15) follows immediately.
When x(t) is P -periodic, then using (2.16) it is obvious to see that y(t) is also

periodic with the same period.
Lemma 2.1 shows the influence of (2.12a) on the stability of the entire system,

since the stability of solutions of (2.12a) leads to stability of the solutions of (2.12b).
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Before studying the stability of (2.12a), we prove a boundedness result for the
solutions of this equation. The proof is based on the one given by Mackey and
Rudnicki [22] for a differential equation with a discrete delay.

Proposition 2.2. Assume that δ > 0. Then the solutions of (2.12a) are
bounded.

Proof. Assume that δ > 0 and 2(
∫ τ

τ
e−γτf(τ)dτ)β(0) ≥ δ. Since β is decreasing

and limx→+∞ β(x) = 0, there exists a unique x0 ≥ 0 such that

2

(∫ τ

τ

e−γτf(τ)dτ

)
β(x0) = δ

and

2

(∫ τ

τ

e−γτf(τ)dτ

)
β(x) ≤ δ for x ≥ x0.(2.17)

If 2(
∫ τ

τ
e−γτf(τ)dτ)β(0) < δ, then (2.17) holds with x0 = 0. Set

x1 := 2

(∫ τ

τ

e−γτf(τ)dτ

)
β(0)x0

δ
≥ 0.

One can check that

2

(∫ τ

τ

e−γτf(τ)dτ

)
max

0≤y≤x

(
β(y)y

)
≤ δx for x ≥ x1.(2.18)

Indeed, let y ∈ [0, x). If y ≤ x0, then

2

(∫ τ

τ

e−γτf(τ)dτ

)
β(y)y ≤ 2

(∫ τ

τ

e−γτf(τ)dτ

)
β(0)x0 = δx1 ≤ δx,

and, if y > x0, then

2

(∫ τ

τ

e−γτf(τ)dτ

)
β(y)y ≤ δy ≤ δx.

Hence, (2.18) holds.
Assume, by contradiction, that lim supt→+∞ x(t) = +∞, where x(t) is a solution

of (2.12a). Then, there exists t0 > τ such that

x(t) ≤ x(t0) for t ∈ [t0 − τ , t0] and x(t0) > x1.

With (2.18), we obtain that

2

∫ τ

τ

e−γτf(τ)β(x(t0 − τ))x(t0 − τ)dτ ≤ δx(t0).

This yields, with (2.12a), that

dx

dt
(t0) ≤ −β(x(t0))

)
x(t0) < 0,
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which gives a contradiction. Hence, lim supt→+∞ x(t) < +∞.
When δ = 0, the solutions of (2.12a) may not be bounded. We show, in the next

proposition, that these solutions may explode under some conditions. However, one
can notice, using (2.16), that the solutions of (2.12b) may still be stable in this case.

Proposition 2.3. Assume that δ = 0 and∫ τ

τ

e−γτf(τ)dτ >
1

2
.(2.19)

In addition, assume that there exists x ≥ 0 such that the function x �→ xβ(x) is
decreasing for x ≥ x. If μ ≥ x, then the unique solution x(t) of (2.12a) satisfies

lim
t→+∞

x(t) = +∞.

Proof. One can notice that, if limt→+∞ x(t) = C exists, then (2.12a) leads to(
2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(C)C = 0.

It follows that C = 0.
Let μ ≥ x be given. Consider the equation

ϕ̃′(t) = 2β(μ)μ

∫ τ

τ

e−γτf(τ)dτ − β(ϕ̃(t))ϕ̃(t) for 0 ≤ t ≤ τ(2.20)

with ϕ̃(0) = μ. Since the function x �→ xβ(x) is decreasing for x ≥ x, it is immediate
that every solution ϕ̃(t) of (2.20) satisfies, for t ∈ [0, τ ],

ϕ̃′(t) ≥
(

2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(μ)μ > 0.

Consider now the problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ′(t) = −β(ϕ(t))ϕ(t) + 2β(μ)μ

∫ τ

t

e−γτf(τ)dτ

+ 2

∫ t

τ

e−γτf(τ)β(ϕ(t− τ))ϕ(t− τ)dτ, t ∈ [τ , τ ],

ϕ(t) = ϕ̃(t), t ∈ [0, τ ],

(2.21)

where ϕ̃(t) is the unique solution of (2.20) for the initial condition μ. Then,

ϕ′(τ) ≥
(

2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(μ)μ > 0.

So, there exists ε > 0 such that τ + ε ≤ τ and ϕ′(t) > 0 for t ∈ [τ , τ + ε). Since
μ ≤ ϕ(τ) ≤ ϕ(τ) ≤ ϕ(τ + ε), for τ ∈ [τ , τ + ε], we have

ϕ′(τ + ε) ≥
(

2

∫ τ

τ+ε

e−γτf(τ)dτ − 1

)
β(ϕ(τ + ε))ϕ(τ + ε)

+ 2

(∫ τ+ε

τ

e−γτf(τ)dτ

)
β(ϕ(τ + ε))ϕ(τ + ε)

≥
(

2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(ϕ(τ + ε))ϕ(τ + ε).
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Condition (2.19) leads to ϕ′(τ + ε) > 0. Using a similar argument, we obtain that

ϕ′(t) > 0 for t ∈ [τ , τ ].

To conclude, consider the delay differential equation

x′(t) = 2

∫ τ

τ

e−γτf(τ)β(x(t− τ))x(t− τ)dτ − β(x(t))x(t)(2.22)

with an initial condition given on [τ , τ ] by the solution ϕ(t) of (2.21). Using the same
reasoning as in the previous cases, we obtain that

x′(τ) > 0.

We thus deduce that

x′(t) > 0 for t ≥ 0.

This completes the proof.
The assumption on the function x �→ xβ(x) in Proposition 2.3 is satisfied for ex-

ample when β is given by (2.1), with n > 1. In this case, we can take x = θ/(n− 1)1/n.
We now turn our attention to the stability of (2.12). Problem (2.12) has at most

two equilibria. The first, E0 = (0, 0), always exists: it corresponds to the extinction
of the population. The second describes the expected equilibrium of the population;
it is a nontrivial equilibrium E∗ = (x∗, y∗), where x∗ is the unique solution of

(
2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(x∗) = δ(2.23)

and, from (2.7) and (2.9),

y∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β(x∗)x∗
∫ τ

τ

f(τ)

(
1 − e−γτ

γ

)
dτ if γ > 0,

δx∗
∫ τ

τ

τf(τ)dτ, if γ = 0.

(2.24)

Since β is a positive decreasing function and limx→+∞ β(x) = 0, then the equilibrium
E∗ exists if and only if

0 < δ <

(
2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(0).(2.25)

We shall study in section 3 the stability of the two equilibria E0 and E∗. From
Lemma 2.1, we only need to focus on the behavior of the equilibria of (2.12a), that
is, x ≡ 0 and x ≡ x∗, to obtain information on the behavior of the entire population.

3. Asymptotic stability. We first show that E0 is globally asymptotically sta-
ble when it is the only equilibrium and that it becomes unstable when the nontrivial
equilibrium E∗ appears: a transcritical bifurcation occurs then. In a second part, we
determine conditions for the nontrivial equilibrium E∗ to be asymptotically stable.
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3.1. Stability of the trivial equilibrium. In the next theorem, we give a
necessary and sufficient condition for the trivial equilibrium of (2.12a) to be globally
asymptotically stable using a Lyapunov functional. For a definition of and information
about Lyapunov functionals for delay differential equations, see [13].

Theorem 3.1. The trivial equilibrium of the system (2.12) is globally asymptot-
ically stable if (

2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(0) < δ(3.1)

and unstable if

δ <

(
2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(0).(3.2)

Proof. We first assume that (3.1) holds. Denote by C+ the set of continuous
nonnegative functions on [0, τ ] and define the mapping J : C+ → [0,+∞) by

J(ϕ) = B(ϕ(τ)) +

∫ τ

τ

e−γτf(τ)

(∫ τ

τ−τ

(
β
(
ϕ(θ)

)
ϕ(θ)

)2

dθ

)
dτ

for all ϕ ∈ C+, where

B(x) =

∫ x

0

β(s)s ds for all x ≥ 0.

We set (see [13])

J̇(ϕ) = lim sup
t→0+

J(xϕ
t ) − J(ϕ)

t
for ϕ ∈ C+,

where xϕ is the unique solution of (2.12a) associated with the initial condition ϕ ∈ C+

and xϕ
t (θ) = xϕ(t + θ) for θ ∈ [0, τ ]. Then,

J̇(ϕ) =
dϕ

dt
(τ)β

(
ϕ(τ)

)
ϕ(τ)

+

∫ τ

τ

e−γτf(τ)((β
(
ϕ(τ)

)
ϕ(τ))2 − (β

(
ϕ(τ − τ)

)
ϕ(τ − τ))2)dτ.

(3.3)

Using (2.12a), we have

dϕ

dt
(τ) = −

(
δ + β

(
ϕ(τ)

))
ϕ(τ) + 2

∫ τ

τ

e−γτf(τ)β
(
ϕ(τ − τ)

)
ϕ(τ − τ)dτ.

Therefore, (3.3) becomes

J̇(ϕ) = −
(
δ + β

(
ϕ(τ)

))
β
(
ϕ(τ)

)
ϕ2(τ) +

∫ τ

τ

e−γτf(τ)

[(
β
(
ϕ(τ)

)
ϕ(τ)

)2

+ 2β
(
ϕ(τ)

)
ϕ(τ)β

(
ϕ(τ − τ)

)
ϕ(τ − τ) −

(
β
(
ϕ(τ − τ)

)
ϕ(τ − τ)

)2
]
dτ

= −
(
δ + β

(
ϕ(τ)

))
β
(
ϕ(τ)

)
ϕ2(τ) + 2

(
β
(
ϕ(τ)

)
ϕ(τ)

)2
∫ τ

τ

e−γτf(τ)dτ

−
∫ τ

τ

e−γτf(τ)
[
β
(
ϕ(τ)

)
ϕ(τ) − β

(
ϕ(τ − τ)

)
ϕ(τ − τ)

]2
dτ.
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Hence,

J̇(ϕ) ≤ −u(ϕ(τ)),

where the function u is defined, for x ≥ 0, by

u(x) = r(x)β(x)x2(3.4)

with

r(x) = δ −
(

2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(x).

Since β is decreasing, r is a monotone function. Moreover, (3.1) leads to r(0) > 0,
and limx→∞ r(x) = δ ≥ 0. Therefore, r is positive on [0,+∞).

Consequently, the function u defined by (3.4) is nonnegative on [0,+∞) and
u(x) = 0 if and only if x = 0. We deduce that every solution of (2.12a), with ϕ ∈ C+,
tends to zero as t tends to +∞.

We suppose now that (3.2) holds. The linearization of (2.12a) around x ≡ 0 leads
to the characteristic equation

Δ0(λ) := λ + δ + β(0) − 2β(0)

∫ τ

τ

e−(λ+γ)τf(τ)dτ = 0.(3.5)

We consider Δ0 as a real function. Since

dΔ0

dλ
= 1 + 2β(0)

∫ τ

τ

τe−(λ+γ)τf(τ)dτ > 0,

it follows that Δ0 is an increasing function. Moreover, (3.5) yields

lim
λ→−∞

Δ0(λ) = −∞, lim
λ→+∞

Δ0(λ) = +∞,

and (3.2) implies that

Δ0(0) = δ −
(

2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(0) < 0.

Hence, Δ0(λ) has a unique real root which is positive. Consequently, (3.5) has at
least one characteristic root with positive real part. Therefore, the equilibrium x ≡ 0
of (2.12a) is not stable. This completes the proof.

The inequality (3.1) is satisfied when δ or γ (the mortality rates) is large or when
β(0) is small. Biologically, these conditions correspond to a population which cannot
survive, because the mortality rates are too large or, simply, because not enough cells
are introduced in the proliferating phase and, then, the population renewal is not
supplied.

Remark 1. One can notice that when∫ τ

τ

e−γτf(τ)dτ <
1

2
,
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the trivial equilibrium E0 is the only equilibrium of (2.12) and is globally asymptoti-
cally stable. When ∫ τ

τ

e−γτf(τ)dτ =
1

2
,

then E0 is globally asymptotically stable if δ > 0. When the equality(
2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(0) = δ

holds, one can check that λ = 0 is a characteristic root of (3.5) and all other charac-
teristic roots have negative real parts. Hence, we cannot conclude on the stability or
instability of the trivial equilibrium E0 of (2.12) without further analysis. However,
this is not the subject of this paper.

3.2. Stability of the nontrivial equilibrium. We concentrate, in this section,
on the equilibrium E∗ = (x∗, y∗) defined by (2.23)–(2.24). Hence, throughout this
section, we assume that (2.25) holds, that is,

0 < δ <

(
2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β(0).

Since δ > 0 and β(0) > 0, (2.25) implies, in particular, that∫ τ

τ

e−γτf(τ)dτ >
1

2
.(3.6)

From Lemma 2.1, we only need to focus on the stability of the nontrivial equilibrium
x ≡ x∗ of (2.12a). To that aim, we linearize (2.12a) around x∗. Denote by β∗ ∈ R

the quantity

β∗ :=
d

dx

(
xβ(x)

)∣∣∣
x=x∗

= β(x∗) + x∗β′(x∗)(3.7)

and set u(t) = x(t) − x∗. The linearization of (2.12a) is given by

du

dt
= −(δ + β∗)u(t) + 2β∗

∫ τ

τ

e−γτf(τ)u(t− τ)dτ.

Then, the characteristic equation is

Δ(λ) := λ + δ + β∗ − 2β∗
∫ τ

τ

e−(λ+γ)τf(τ)dτ = 0.(3.8)

One can notice that the function x �→ xβ(x) is usually not monotone. For ex-
ample, if β is given by (2.1) with n > 1, the function x �→ xβ(x) is increasing for
x ≤ θ/(n− 1)1/n and decreasing for x > θ/(n− 1)1/n. In this case, β∗ is nonnegative
when x∗ is close to zero and negative when x∗ is large enough.

The following theorem deals with the asymptotic stability of E∗.
Theorem 3.2. Assume that (2.25) holds. If

β∗ ≥ − δ

2

∫ τ

τ

e−γτf(τ)dτ + 1

,(3.9)

then E∗ is locally asymptotically stable.



HEMATOPOIESIS MODEL 1341

Proof. We first prove that the equilibrium x ≡ x∗ is locally asymptotically stable
when β∗ ≥ 0. We consider the mapping Δ(λ), given by (3.8), as a real function of λ.
Then Δ(λ) is continuously differentiable on R and its first derivative is given by

dΔ

dλ
= 1 + 2β∗

∫ τ

τ

τe−(λ+γ)τf(τ)dτ > 0.(3.10)

Hence, Δ(λ) is an increasing function of λ satisfying

lim
λ→−∞

Δ(λ) = −∞ and lim
λ→+∞

Δ(λ) = +∞.

Then, there exists a unique λ0 ∈ R such that Δ(λ0) = 0. Moreover, since

Δ(0) = δ −
(

2

∫ τ

τ

e−γτf(τ)dτ − 1

)
β∗,

we deduce, by using (2.23), (3.6), and (3.7), that

Δ(0) = −
(

2

∫ τ

τ

e−γτf(τ)dτ − 1

)
x∗β′(x∗) > 0.

Consequently, λ0 < 0.
Let λ = μ + iω be a characteristic root of (3.8) such that μ > λ0. Considering

the real part of (3.8), we obtain that

μ = −(δ + β∗) + 2β∗
∫ τ

τ

e−(μ+γ)τf(τ) cos(ωτ)dτ.(3.11)

Using (3.8), with λ = λ0, together with (3.11), we then obtain

μ− λ0 = 2β∗
∫ τ

τ

e−γτf(τ)
[
e−μτ cos(ωτ) − e−λ0τ

]
dτ.

However,

e−μτ cos(ωτ) − e−λ0τ < 0

for all τ ∈ [τ , τ ]. So we obtain that μ− λ0 < 0, which leads to a contradiction. This
implies that all characteristic roots of (3.8) have negative real part and the equilibrium
x ≡ x∗ of (2.12a) is locally asymptotically stable.

Now, assume that β∗ < 0 and

β∗ > − δ

2

∫ τ

τ

e−γτf(τ)dτ + 1

.(3.12)

Let λ = μ + iω be a characteristic root of (3.8) such that μ > 0. Since

∫ τ

τ

e−γτf(τ)
(
e−μτ cos(ωτ) + 1

)
dτ ≥ 0,
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we have

2β∗
∫ τ

τ

e−(μ+γ)τf(τ) cos(ωτ)dτ ≤ −2β∗
∫ τ

τ

e−γτf(τ)dτ.

So, (3.11) and (3.12) lead to

μ ≤ −(δ + β∗) − 2β∗
∫ τ

τ

e−γτf(τ)dτ < 0,

a contradiction. Therefore, μ ≤ 0.
Suppose now that (3.8) has a purely imaginary characteristic root iω, with ω ∈ R.

Then, (3.11) leads to ∫ τ

τ

e−γτf(τ) cos(ωτ)dτ =
δ + β∗

2β∗ .

However, ∣∣∣∣
∫ τ

τ

e−γτf(τ) cos(ωτ)dτ

∣∣∣∣ ≤
∫ τ

τ

e−γτf(τ)dτ

and (3.12) yields

δ + β∗

2β∗ < −
∫ τ

τ

e−γτf(τ)dτ.

Hence, (3.8) has no purely imaginary root. Consequently, all characteristic roots of
(3.8) have negative real part and the nontrivial equilibrium x ≡ x∗ of (2.12a) is locally
asymptotically stable.

Finally, assume that

β∗ = − δ

2

∫ τ

τ

e−γτf(τ)dτ + 1

.(3.13)

Consider a characteristic root λ = μ + iω of (3.8), which reduces, with (3.13), to

λ− 2β∗
∫ τ

τ

e−γτf(τ)(1 + e−λτ )dτ = 0.(3.14)

Suppose, by contradiction, that μ > 0. By considering the real part of (3.14), we have

μ = 2β∗
∫ τ

τ

e−γτf(τ)(1 + e−μτ cos(ωτ))dτ < 0.

We obtain a contradiction; therefore μ ≤ 0. If we suppose now that μ = 0, then we
easily obtain that

cos(ωτ) = −1 for all τ ∈ [τ , τ ],

which is impossible. It follows that all characteristic roots of (3.8) have negative real
parts when (3.13) holds and the equilibrium x ≡ x∗ is locally asymptotically stable.
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Fig. 3.1. The solutions x(t) (solid curve) and y(t) (dashed curve) of system (2.12) are drawn
for values of the parameters β0, δ, and γ given by (2.2), n = 2.42, τ = 0, and τ = 7 days. In this
case, the nontrivial equilibrium E∗ is locally asymptotically stable, although the solutions oscillate
transiently.

From Lemma 2.1, we conclude that E∗ is locally asymptotically stable when (3.9)
holds.

The asymptotic stability of E∗ is shown in Figure 3.1. Values of the parameters
are given by (2.2), except n = 2.42, τ = 0 and τ = 7 days. The function f is defined
by

f(τ) =

⎧⎨
⎩

1

τ − τ
if τ ∈ [τ , τ ],

0 otherwise.
(3.15)

The MATLAB solver for delay differential equations, dde23 [32], is used to obtain
Figure 3.1, as well as illustrations in sections 4 and 5.

When (3.9) does not hold, we have necessarily β∗ < 0. In this case, we cannot
obtain the stability of E∗ for all values of β∗. In fact, in the next section we are
going to show that the equilibrium E∗ can be destabilized, in this case, via a Hopf
bifurcation.

4. Hopf bifurcation and periodic solutions. In this section, we show that
the equilibrium x ≡ x∗ of (2.12a) can become unstable when (3.9) does not hold
anymore. Throughout this section, we assume that

τ = 0

and (2.25) holds, that is,

0 < δ <

(
2

∫ τ

0

e−γτf(τ)dτ − 1

)
β(0).
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From Proposition 2.2, the solutions of (2.12a) are bounded. Consequently, instability
in (2.12a) occurs only via oscillatory solutions.

We assume that

β∗ < − δ

2

∫ τ

0

e−γτf(τ)dτ + 1

:= δ̃.(4.1)

Otherwise, the nontrivial equilibrium x ≡ x∗ of (2.12a) is locally asymptotically stable
(see Theorem 3.2).

If instability occurs for a particular value β∗ < δ̃, a characteristic root of (3.8)
must intersect the imaginary axis. Hence, we look for purely imaginary characteristic
roots iω, ω ∈ R, of (3.8). If iω is a characteristic root of (3.8), then ω is a solution of
the system {

δ + β∗(1 − 2C(ω)) = 0,
ω + 2β∗S(ω) = 0,

(4.2)

where

C(ω) :=

∫ τ

0

e−γτf(τ) cos(ωτ)dτ and S(ω) :=

∫ τ

0

e−γτf(τ) sin(ωτ)dτ.

One can notice that ω = 0 is not a solution of (4.2). Otherwise,

δ =

(
2

∫ τ

0

e−γτf(τ)dτ − 1

)
β∗ < 0,

which gives a contradiction. Moreover, if ω is a solution of (4.2), then −iω is also a
characteristic root. Thus, we look only for positive solutions ω.

Lemma 4.1. Assume that the function τ �→ e−γτf(τ) is decreasing. Then, for

each δ such that (2.25) is satisfied, (4.2) has at least one solution (β∗
c , ωc) with β∗

c < δ̃
and ωc > 0. It follows that (3.8) has at least one pair of purely imaginary roots ±iωc

for β∗ = β∗
c . Moreover, ±iωc are simple characteristic roots of (3.8). Consider the

branch of characteristic roots λ(−β∗) such that λ(−β∗
c ) = iωc. Then

dRe(λ)

d(−β∗)

∣∣∣∣
β∗=β∗

c

> 0 if and only if − δ

(
S(ωc)

ωc

)′
> C ′(ωc).(4.3)

Proof. First, we show by induction that S(ω) > 0 for ω > 0. It is clear that
S(ω) > 0 if ωτ ∈ (0, π]. Suppose that ωτ ∈ (π, 2π]. Then

S(ω) =
1

ω

∫ ωτ

0

e−γ τ
ω f
( τ
ω

)
sin(τ)dτ

=
1

ω

∫ π

0

e−γ τ
ω f
( τ
ω

)
sin(τ)dτ +

1

ω

∫ ωτ

π

e−γ τ
ω f
( τ
ω

)
sin(τ)dτ.

Since f is supported on the interval [0, τ ], it follows that

∫ 2π

ωτ

e−γ τ
ω f
( τ
ω

)
sin(τ)dτ = 0.
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So, we obtain

S(ω) =
1

ω

∫ π

0

e−γ τ
ω f
( τ
ω

)
sin(τ)dτ +

1

ω

∫ 2π

π

e−γ τ
ω f
( τ
ω

)
sin(τ)dτ

=
1

ω

∫ π

0

(
e−γ τ

ω f
( τ
ω

)
− e−γ τ+π

ω f
(τ + π

ω

))
sin(τ)dτ.

Since the function τ �→ e−γτf(τ) is decreasing, we finally get S(ω) > 0. Using a
similar argument for ωτ ∈ (kπ, (k+1)π], with k ∈ N, k ≥ 2, we deduce that S(ω) > 0
for all ω > 0.

Consider the equation

g(ω) :=
ω
(
1 − 2C(ω)

)
2S(ω)

= δ, ω > 0.(4.4)

The function g is continuous with

lim
ω→0

g(ω) =
1 − 2C(0)

2

∫ τ

0

τe−γτf(τ)dτ

< 0(4.5)

because (2.25) leads to 1 − 2C(0) < 0. Moreover, the Riemann–Lebesgue lemma
implies that

lim
ω→+∞

C(ω) = lim
ω→+∞

S(ω) = 0.

This yields

lim
ω→+∞

g(ω) = +∞.

We conclude that there exists a solution ωc > 0 of (4.4). Since S(ωc) > 0 and
g(ωc) = δ > 0, we obtain 1 − 2C(ωc) > 0. Set

β∗
c = − δ

1 − 2C(ωc)
< 0.(4.6)

Since |C(ωc)| < C(0), it follows that

β∗
c < − δ

2C(0) + 1
= δ̃.

One can check that (β∗
c , ωc) is a solution of (4.2). It follows that ±iωc are characteristic

roots of (3.8) for β∗ = β∗
c .

Define a branch of characteristic roots λ(−β∗) of (3.8) such that λ(−β∗
c ) = iωc.

We use the parameter −β∗ because β∗ < δ̃ < 0.
Using (3.8), we obtain[

1 + 2β∗
∫ τ

0

τe−(λ+γ)τf(τ)dτ

]
dλ

d(−β∗)
= 1 − 2

∫ τ

0

e−(λ+γ)τf(τ)dτ.(4.7)

If we assume, by contradiction, that iωc is not a simple root of (3.8), then (4.7) leads
to

C(ωc) =
1

2
and S(ωc) = 0.
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Since S(ωc) > 0, we obtain a contradiction. Thus, iωc is a simple root of (3.8).
Moreover, using (4.7), we have

(
dλ

d(−β∗)

)−1

=

1 + 2β∗
∫ τ

0

τe−(λ+γ)τf(τ)dτ

1 − 2

∫ τ

0

e−(λ+γ)τf(τ)dτ

.

Since λ is a characteristic root of (3.8), we also have

1 − 2

∫ τ

0

e−(λ+γ)τf(τ)dτ = −λ + δ

β∗ .

So, we deduce

(
dλ

d(−β∗)

)−1

= −β∗
1 + 2β∗

∫ τ

0

τe−(λ+γ)τf(τ)dτ

λ + δ
.

Then,

sign

{
dRe(λ)

d(−β∗)

}∣∣∣∣
β∗=β∗

c

= sign

{
Re

(
dλ

d(−β∗)

)−1}∣∣∣∣
β∗=β∗

c

= sign

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Re

⎛
⎜⎜⎜⎝−β∗

1 + 2β∗
∫ τ

0

τe−(λ+γ)τf(τ)dτ

λ + δ

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∣∣∣∣∣∣∣∣∣
β∗=β∗

c

= sign

{
− β∗

c

δ(1 + 2β∗
cS

′(ωc)) + 2β∗
cωcC

′(ωc)

δ2 + ω2
c

}

= sign

{
δ(1 + 2β∗

cS
′(ωc)) + 2β∗

cωcC
′(ωc)

}
.

From (4.6) and the fact that 1 − 2C(ωc) > 0, this leads to

sign

{
dRe(λ)

d(−β∗)

}∣∣∣∣
β∗=β∗

c

= sign

{
1 − 2C(ωc) − 2δS′(ωc) − 2ωcC

′(ωc)

}

= sign

{
2ωc

(
− C ′(ωc) − δ

(
S(ωc)

ωc

)′)}

= sign

{
− C ′(ωc) − δ

(
S(ωc)

ωc

)′}
.

This concludes the proof.
Remark 2. Consider the function g defined by (4.4) and denote by α the quantity

α :=

(
2

∫ τ

0

e−γτf(τ)dτ − 1

)
β(0).

Define the sets

Ω := {ω > 0; 0 < g(ω) < α and g′(ω) = 0} and Λ := g(Ω).
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One can notice that Λ is finite (or empty). If δ ∈ (0, α) \ Λ, then

dRe(λ)

d(−β∗)

∣∣∣∣
β∗=β∗

c

	= 0.

Indeed, we have

g′(ω) = − ω

S(ω)

(
g(ω)

(
S(ω)

ω

)′
+ C ′(ω)

)
, ω > 0.

Since δ /∈ Λ, we have g′(ωc) 	= 0. Moreover, g(ωc) = δ. Thus

C ′(ωc) 	= −δ

(
S(ωc)

ωc

)′
.

We conclude by using (4.3).
Lemma 4.1, together with Remark 2, allows us to state and prove the following

theorem.
Theorem 4.2. Assume that the function τ �→ e−γτf(τ) is decreasing. Then, for

each δ /∈ Λ satisfying (2.25), there exists β∗
c < δ̃ such that the equilibrium x ≡ x∗

is locally asymptotically stable when β∗
c < β∗ ≤ δ̃ and a Hopf bifurcation occurs at

x ≡ x∗ when β∗ = β∗
c .

Proof. First, recall that x ≡ x∗ is locally asymptotically stable when β∗ = δ̃ (see
Theorem 3.2). We recall that, from the properties of the function g, (4.4) has a finite
number of solutions (see Lemma 4.1). We set

β∗
c = − δ

1 − 2C(ω∗
c )

,

where ω∗
c is the smaller positive real such that

C(ω∗
c ) = min{C(ω); ω is a solution of (4.4)}.

Then, β∗
c is the maximum value of β∗ (as defined in Lemma 4.1) which gives a solution

of (4.2). From Lemma 4.1, (3.8) has no purely imaginary roots while β∗
c < β∗ ≤ δ̃.

Consequently, Rouché’s theorem [10, p. 248] leads to the local asymptotic stability of
x ≡ x∗.

When β∗ = β∗
c , (3.8) has a pair of purely imaginary roots ±iωc, ωc > 0 (see

Lemma 4.1). Moreover, since δ /∈ Λ, Remark 2 implies that

dRe(λ)

d(−β∗)

∣∣∣∣
β∗=β∗

c

	= 0.

Assume, by contradiction, that

dRe(λ)

d(−β∗)
< 0

for β∗ > β∗
c , β∗ close to β∗

c . Then there exists a characteristic root λ(−β∗) such that
Reλ(−β∗) > 0. This contradicts the fact that x ≡ x∗ is locally asymptotically stable
when β∗ > β∗

c . Thus, we obtain

dRe(λ)

d(−β∗)

∣∣∣∣
β∗=β∗

c

> 0.

This implies the existence of a Hopf bifurcation at x ≡ x∗ for β∗ = β∗
c .
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With the values of δ, γ and β0 given by (2.2), and τ = 7 days, (2.12) has periodic
solutions for β∗

c = −0.3881 with a period about 33 days. This value of β∗
c corresponds

to n = 2.53 (see Figures 4.1 and 4.2). The function f is given by (3.15).
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Fig. 4.1. The solutions of system (2.12), x(t) (solid curve) and y(t) (dashed curve), are drawn
when the Hopf bifurcation occurs. This corresponds to n = 2.53 with the other parameters given by
(2.2) and τ = 7 days. Periodic solutions appear with period of the oscillations about 33 days.
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Fig. 4.2. For the values used in Figure 4.1, the solutions are shown in the (x, y)-plane: the
trajectories reach a limit cycle, surrounding the equilibrium.
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The bifurcation parameter was chosen to be β∗ in this study, and the values of β∗

depend strongly on the sensitivity n of the function β(x), since all other parameters are
fixed by (2.25). In this model, the sensitivity n plays a crucial role in the appearance
of periodic solutions. Pujo-Menjouet and Mackey [27] already noticed the influence
of this parameter on system (2.12) when the delay is constant (or equivalently, when
f is a Dirac measure). The sensitivity n describes the way the rate of introduction
in the proliferating phase reacts to changes in the resting phase population produced
by external stimuli: a release of erythropoietin, for example, or the action of some
growth factors.

Of course, the influence of other parameters (like mortality rates δ and γ, or the
minimum and maximum delays τ and τ) on the appearance of periodic solutions could
be studied. However, since periodic hematological diseases—defined and described in
section 5—are supposed to be due to hormonal control destabilization (see [11]), then
the parameter n, among other parameters, seems to be appropriate to identify causes
leading to periodic solutions in (2.12).

5. Discussion. Among the wide range of diseases affecting blood cells, peri-
odic hematological diseases (Haurie, Dale, and Mackey [14]) are of main importance
because of their intrinsic nature. These diseases are characterized by significant oscil-
lations in the number of circulating cells, with periods ranging from weeks (19 to 21
days for cyclical neutropenia [14]) to months (30 to 100 days for chronic myelogenous
leukemia [14]) and amplitudes varying from normal to low levels or normal to high
levels, depending on the cells types [14]. Because of their dynamic character, peri-
odic hematological diseases offer an opportunity to understand some of the regulating
processes involved in the production of hematopoietic cells, which are still not well
understood.

Some periodic hematological diseases involve only one type of blood cells, for
example, red blood cells in periodic autoimmune hemolytic anemia (Bélair, Mackey,
and Mahaffy [4]) or platelets in cyclical thrombocytopenia (Santillan et al. [31]).
In these cases, periods of the oscillations are usually between two and four times
the bone marrow production delay. However, other periodic hematological diseases,
such as cyclical neutropenia (Haurie, Dale, and Mackey [14]) or chronic myelogenous
leukemia (Fortin and Mackey [11]), show oscillations in all of the circulating blood
cells, i.e., white cells, red blood cells, and platelets. These diseases involve oscillations
with quite long periods (on the order of weeks to months). A destabilization of the
pluripotential stem cell population (from which all of the mature blood cells types are
derived) seems to be at the origin of these diseases.

We focus, in particular, on chronic myelogenous leukemia (CML), a cancer of the
white cells, resulting from the malignant transformation of a single pluripotential stem
cell in the bone marrow (Pujo-Menjouet, Bernard, and Mackey [26]). As described in
Morley, Baikie, and Galton [24], oscillations can be observed in patients with CML,
with the same period for white cells, red blood cells and platelets. This is called
periodic chronic myelogenous leukemia (PCML). The period of the oscillations in
PCML ranges from 30 to 100 days [14], [11] depending on patients. The difference
between these periods and the average pluripotential cell cycle duration (between 1
and 4 days, as observed in mice [18]) is still not well understood.

Recently, to understand the dynamics of periodic chronic myelogenous leukemia,
Pujo-Menjouet, Bernard, and Mackey [26] considered a model for the regulation of
stem cell dynamics and investigated the influence of parameters in this stem cell
model on the oscillations period when the model becomes unstable and starts to
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Fig. 5.1. Solutions x(t) (solid curve) and y(t) (dashed curve) of system (2.12) oscillate with
periods close to 45 days; the parameters are the same as in Figure 4.1, with n = 3. The amplitudes
of the oscillations range from low values to normal values.

oscillate. In this paper, taking into account the fact that a cell cycle has two phases,
that is, stem cells in process are either in a resting phase or actively proliferating,
and assuming that cells divide at different ages, we proposed a system of differential
equations with distributed delay to model the dynamics of hematopoietic stem cells.
By constructing a Lyapunov functional, we gave conditions for the trivial equilibrium
to be globally asymptotically stable. Local stability and Hopf bifurcation of the
nontrivial equilibrium were studied, the existence of a Hopf bifurcation leading to the
appearance of periodic solutions in this model, with a period around 30 days at the
bifurcation.

Numerical simulations show that periodic solutions occur after the bifurcation,
with periods increasing as the bifurcation parameter (the sensitivity n) increases.
In Figure 5.1, solutions oscillate around the equilibrium values with periods around
45 days. Moreover, amplitudes of the oscillations range from low values to normal
values. The sensitivity is equal to n = 3; that is, the parameters are given by (2.2).
This corresponds to values given by Mackey [16], values for which abnormal behavior
(periodic) is usually observed in all circulating blood cells types.

When n continues to increase, longer oscillations periods are observed with ampli-
tudes varying from low values to high values (see Figure 5.2). This situation charac-
terizes periodic chronic myelogenous leukemia, with periods in the order of 2 months
(70 days).

Moreover, the oscillations observed in Figures 5.1 and 5.2 look very much like
relaxation oscillations. Experimental data from patients with PCML suggest that the
shape of oscillations is of a relaxation oscillator type [11, 14]. Furthermore, Fowler
and Mackey [12] showed that a model for hematopoiesis with a discrete delay may
also exhibit relaxation oscillations. Therefore, it seems that not only periods and
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Fig. 5.2. Solutions x(t) (solid curve) and y(t) (dashed curve) of system (2.12) oscillate with
periods close to 70 days; the parameters are the same as in Figure 4.1, with n = 4. The amplitudes
of the oscillations range from low values to high values.

amplitudes of the oscillations correspond to the ones observed in PCML but also the
shape of the oscillations.

Numerical simulations demonstrated that long period oscillations in the circulat-
ing cells are possible in our model even with short duration cell cycles. Thus, we
are able to characterize some hematological diseases, especially those that exhibit a
periodic behavior of all the circulating blood cells.

Acknowledgments. We are grateful to the two anonymous referees for their
helpful comments and suggestions.

REFERENCES

[1] M. Adimy, F. Crauste, and S. Ruan, Stability and Hopf bifurcation in a mathematical model
of pluripotent stem cell dynamics, Nonlinear Anal. Real World Appl., to appear.

[2] R. F. V. Anderson, Geometric and probabilistic stability criteria for delay systems, Math.
Biosci., 105 (1991), pp. 81–96.

[3] R. F. V. Anderson, Intrinsic parameters and stability of differential-delay equations, J. Math.
Anal. Appl., 163 (1992), pp. 184–199.

[4] J. Bélair, M. C. Mackey, and J. M. Mahaffy, Age-structured and two-delay models for
erythropoiesis, Math. Biosci., 128 (1995), pp. 317–346.

[5] S. Bernard, J. Belair, and M. C. Mackey, Sufficient conditions for stability of linear dif-
ferential equations with distributed delay, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), pp.
233–256.

[6] F. G. Boese, The stability chart for the linearized Cushing equation with a discrete delay and
Gamma-distributed delays, J. Math. Anal. Appl., 140 (1989), pp. 510–536.

[7] G. Bradford, B. Williams, R. Rossi, and I. Bertoncello, Quiescence, cycling, and
turnover in the primitive haematopoietic stem cell compartment, Exper. Hematol., 25
(1997), pp. 445–453.

[8] F. J. Burns and I. F. Tannock, On the existence of a G0 phase in the cell cycle, Cell. Tissue
Kinet., 19 (1970), pp. 321–334.



1352 MOSTAFA ADIMY, FABIEN CRAUSTE, AND SHIGUI RUAN

[9] R. Crabb, J. Losson, and M. C. Mackey, Dependence on initial conditions in non local
PDE’s and hereditary dynamical systems, in Proc. Internat. Conf. Nonlinear Anal. 4, de
Gruyter, Berlin, 1996, pp. 3125–3136.
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Abstract. The propagation of sound is considered in a potential cylindrical vortex, with super-
imposed axial flow, by means of explicit analytical solutions. The sound waves are sinusoidal in time
and in the axial and azimuthal directions; the convected wave equation leads to a radial dependence
specified by an ordinary second-order differential equation, with two singularities, at the origin and
at infinity. Both singularities are irregular, implying that the acoustic fields have an essential singu-
larity. In the neighborhood of the vortex axis, the essential singularity of the acoustic field is specified
by an exponential of the integrated Doppler shift; using the latter as a factor, the acoustic fields are
specified by asymptotic expansions in ascending powers of the radius. In the neighborhood of the
point at infinity, where the tangential mean flow velocity vanishes, the leading terms are outward
or inward propagating cylindrical waves; these factors multiply asymptotic expansions in descending
powers of the radius. The two pairs of solutions, around the vortex axis and the point at infinity,
are valid in all space or overlapping regions, as far as the asymptotic expansions can be calculated.
The case of an annular nozzle, with uniform axial flow, and potential swirl is used as an example;
the eigenvalues are obtained for rigid wall boundary conditions and the corresponding eigenfunctions
are plotted.
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AMS subject classifications. 76Q05, 35C20, 33A70, 41A60, 34A20

DOI. 10.1137/S0036139903427076

1. Introduction. The propagation of sound in swirling flows [9, 7, 8, 12, 5] is
relevant to the acoustics of turbomachinery and has important engineering applica-
tions in propulsion and power generation, e.g., jet engines and power turbines. The
best known case is the rigid body rotation, for which the angular velocity is constant.
It is of some interest to consider less simple cases, e.g., with radially varying angular
velocity, of which the potential vortex is the only case, for which an acoustic potential
exists, satisfying the convected wave equation [10, 1, 2]. The present paper concerns
the exact solution of the convected wave equation in a cylindrical duct in the presence
of a uniform axial flow with a superimposed potential vortex.

A vortex has a core where the tangential velocity remains finite, e.g., it should
be sufficient to match the present solution to a small core with rigid body rotation.
Taking the limit of zero core radius leads to a vortex with an algebraic singularity
for the mean flow velocity and an essential singularity for the acoustic field. The
latter singularity specifies the leading term of the acoustic field, viz., a Doppler factor
on the vortex axis; at infinity, where the mean flow velocity vanishes, the leading
term is a cylindrical wave. In both cases, viz., the solution around the vortex axis or
the solution at infinity, the exact solution beyond the leading term is an asymptotic
expansion; since the vortex is unstable, its perturbation could not be expected to
lead to a convergent series. The summation of the asymptotic expansion is accurate
for low azimuthal orders, and it shows that the leading terms dominate the acoustic
fields.
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The acoustic wave equation in cylindrical coordinates in a potential vortex is
harmonic in time and in the circumferential and axial coordinates and thus leads
to a linear ordinary differential equation in the radial direction (section 2.1), which
has two irregular singularities. The singularity on the vortex axis can be represented
by a Doppler effect associated with the mean flow velocity (section 2.2); once this
factor is inserted the exact solution can be obtained as an ascending power series
(section 2). The mean flow velocity tends to uniform at infinity, and thus the limit of
the cylindrical wave specifies the singularity there (section 3.1); inserting this factor
leads to an asymptotic expansion for the acoustic field at large radius (section 3).
The combination of the two solutions specifies the acoustics of nozzles with axial
flow and swirl (section 3.2), including the eigenvalues (section 4.1) and the radial
eigenfunctions (section 4.2). These are discussed for several axial and tangential
Mach numbers, dimensionless frequencies, and circumferential wavenumbers.

2. Acoustic fields in the neighborhood of the vortex axis. The convected
wave equation, which describes sound propagation in a potential vortex (appendix),
has an irregular singularity on the vortex axis (section 2.1), because the mean flow
velocity is infinite there. This corresponds to an essential singularity for the acoustic
potential, which is specified by the integrated Doppler shift (section 2.2); using this
singularity as a factor, a pair of linearly independent solutions is obtained as a power
series of the radius.

2.1. Convected wave equation for a vortex flow. The acoustic potential Φ
satisfies the convected wave equation{

c−2
(
∂/∂t +

−→
V · ∇

)2

−∇2

}
Φ (−→x , t) = 0(2.1)

in a nonuniform, incompressible flow for which the sound speed c is constant. A
cylindrical vortex corresponds to a potential flow if the circulation per unit length Γ
is a constant, corresponding to the tangential velocity,

Vθ = Γ/(2πr) = γ/r,(2.2a)

γ ≡ Γ/2π,(2.2b)

where γ is the circulation per radian. If a uniform axial velocity U is added, the mean
flow velocity

−→
V = U−→ez + (γ/r)−→eθ(2.3)

is still potential, and the convected wave equation (2.1) becomes

{c−2[∂/∂t + U ∂/∂z + (γ/r2)∂/∂θ]2 − r−1 (∂/∂r) r (∂/∂r)

− r−2∂2/∂θ2 − ∂2/∂z2}Φ(r, θ, z, t) = 0
(2.4)

in cylindrical coordinates.
Since the mean flow is steady and the velocity depends only on r, it is convenient

to use Fourier decompositions in t, θ, z, i.e., the acoustic potential is represented

Φ(r, θ, z, t) =
+∞∑

m=−∞
eimθ

∫∫ +∞

−∞
dωdk ei(kz−ωt)Ψ(r;m, k, ω)(2.5)
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by (i) a Fourier series in the azimuthal direction θ, with integral wavenumber m;
(ii) a Fourier integral in time t, with frequency ω; (iii) a Fourier integral in the
axial direction z, with a continuous wavenumber k spectrum for an infinite vortex
(or a Fourier series with wavenumber 2πl/L for a vortex of length L, with l integer).
Substitution of (2.5) into (2.3) leads to an ordinary differential equation for the radial
r dependence of the acoustic potential spectrum

r2Ψ′′ + rΨ′ +
{[

(ω − k U)
2
/c2 − k2

]
r2 − 2mγ (ω − k U) /c2 −m2 + (mγ/cr)

2
}

Ψ = 0,

(2.6)

where appear the transverse wavenumber (2.7a)

K2 ≡ (ω − k U)
2
/c2 − k2,(2.7a)

q2 ≡ m2 + 2mγ (ω − k U) /c2(2.7b)

and the azimuthal constant (2.7b). The differential equation

r2Ψ′′ + rΨ′ +
[
K2r2 − q2 + (mγ/c)

2
/r2

]
Ψ = 0(2.8)

is similar to a Bessel equation, except for the last term in the square brackets, which
involves the circulation.

Introducing the dimensionless variable incorporating the transverse wavenumber,

s ≡ Kr,(2.9a)

Ψ(r;m, k, ω) ≡ F (s),(2.9b)

leads to the differential equation

s2F ′′ + sF ′ +
(
s2 − q2 + a2/s2

)
F = 0,(2.10)

similar to the Bessel equation of order q, apart from the term involving the constant:

a ≡ mγK/c.(2.11)

This constant vanishes (a = 0) in the absence of the vortex γ = 0, in which case
q = m in (2.7b) is the azimuthal wavenumber, and the acoustic potential which is
finite on axis is specified by a Bessel function:

γ = 0 : F (s) = Jm(s) = Jm(K r).(2.12)

The other solution is a Neumann function Ym(s) ∼ log s which has a logarithmic
singularity on the axis. These two solutions apply in the absence of a vortex γ = 0,
i.e., for a = 0, when the origin s = 0 is a regular singularity of the differential
equation, i.e., the case of cylindrical waves. They also apply in the presence of the
vortex γ �= 0, but only to the axisymmetric mode [9] m = 0, since then a = 0 in (2.11).
For nonaxisymmetric modes m ≥ 1, and in the presence of the vortex γ �= 0, then
a �= 0 in (2.11), and the differential equation (2.10) has an irregular singularity at the
origin s = 0, implying that the solution has an essential singularity. This corresponds
to a singular phase for the acoustic field on the vortex axis, which is specified by the
integrated Doppler shift, as shown next.
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2.2. Singular Doppler shift on the vortex axis. The Doppler shift of a
sound wave of wave vector

−→
K in a mean flow of velocity

−→
V is given by an integral

along the ray path dl, viz.,

φ =

∫ [(−→
K.

−→
V
)/

c
]
dl = (m/c)

∫
Vθdr = mγ/cr = mγK/c s = a/s,(2.13)

where the mean velocity is tangential (2.2a), and thus multiplies the azimuthal wave-
number m, and (2.9a), (2.11) were used. Thus the acoustic potential should be of the
form

F (s) = eΩ(s)G(s),(2.14)

where Ω(s) = i φ = ia/s is the singular phase term, corresponding to the essential
singularity in the solution, and G(s) should be an ascending power series. Note that
the differential equation (2.10) will not have an ascending power series solution, unless
the factor eΩ(s) is inserted. A solution of the type (2.14) is called a normal integral [6],
and it will be shown next that a solution of this type exists, with essential singularity
eΩ(s) specified Ω(s) = i φ by the integrated Doppler shift (2.13). To prove this, (2.14)
is substituted in the differential equation (2.10), leading to

s2 G′′ + s [1 + 2Ω′s]G′ +
[
s2

(
Ω′′ + Ω′2) + sΩ′ + s2 − q2 + a2/s2

]
G = 0.(2.15)

The origin s = 0 will be a regular singularity, and G(s) will have solution as an
ascending power series of Frobenius–Fuchs type if the coefficients in square brackets
are analytic at s = 0,

X1 ≡ 2 Ω′ s = O(1) = s2(Ω′2 + Ω′′) + sΩ′ + a2/s2 ≡ X2.(2.16)

Thus, if Ω(s) can be found such that both X1 and X2 in (2.16) are analytic functions
of s at s = 0, then s = 0 is a regular singularity of (2.15), and G(s) is an ascending
power series, which substituted in (2.14) specifies the normal integral as solution of
(2.10).

It turns out that it is not necessary to make both X1 and X2 analytical at s = 0,
but it is sufficient to choose Ω(s) so as to eliminate the most singular term, viz., the
double pole a2/s2, by taking this to cancel with s2 Ω′2, viz.,

Ω′(s) = ±i a/s2;(2.17)

this implies

Ω(s) = ∓i a/s(2.18)

that, as predicted before, the integrated Doppler shift (2.13) appears in the normal
integral (2.14) in the form

F±(s) = e∓i a/s G±(s),(2.19)

where G±(s) satisfies the differential equation

s2 G′′
± + s(1 ± 2i a/s)G′

± + (s2 − q2 ∓ i a/s)G± = 0,(2.20)

obtained by substituting (2.18) in (2.15).
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The origin s = 0 would be a regular singularity of (2.20) if the coefficients in
parentheses were analytic at s = 0, in which case two ascending Frobenius–Fuchs
power series would exist for each of G+and G−. In fact both coefficients in parentheses
in (2.20) have simple poles, but this is an improvement over the double pole in the
coefficient in parentheses in (2.10). The latter has no solutions in power series, as
could be found by trying the Frobenius–Fuchs method. In contrast, substituting a
Frobenius–Fuchs series

G±(s) =

∞∑
J=0

g±j sj+σ±(2.21)

in (2.20), it will be shown that one solution exists; it could not have two, so it could
have none or one, and the latter is the case. This follows from the recurrence formula
for the coefficients,[

(j + σ±)
2 − q2

]
g±j + g±j−2 = ∓i a (2j + 2σ± + 1) g±j+1,(2.22)

which could be identical to that for Bessel functions in the absence of the vortex
a = 0, and otherwise a �= 0 is triple instead of double. Setting j = −1 leads to the
indicial equation

j = −1 : (2σ± − 1)g±0 = 0,(2.23)

which has one root, corresponding to

σ± = 1/2 :
[
(j + 1/2)

2 − q2
]
g±j + g±j−2 = ∓2i a (j + 1) g±j+1,(2.24)

as recurrence relation for the coefficients. Thus (2.24), (2.21) specify one solution
for each of the two differential equations (2.20), yielding in total the two linearly
independent solutions (2.19) needed for the second-order differential equation (2.10).

The two Frobenius–Fuchs series (2.21),

g±0 ≡ 1 : G±(s) =

∞∑
j=0

g±j sj+1/2,(2.25)

multiplied (2.19) by the Doppler shift (2.13) specify the normal integrals

F±(s) = e∓i a/ss1/2
∞∑
j=0

g±j sj ,(2.26)

corresponding to the acoustic potentials

Ψ±(r;m, k, ω) = e∓imγ/c r
∞∑
j=0

g±j (Kr)j+1/2,(2.27)

which are linearly independent. The total acoustic potential is a linear combination

r < ∞ : Ψ(r;m, k, ω) = A+Ψ+(r;m, k, ω) + A−Ψ−(r;m, k, ω),(2.28)

where the arbitrary constants of integration A± incorporate the coefficients g±0 , which
can thus be set to unity in (2.25). The two arbitrary constants of integration A±
are determined by two conditions, i.e., (i) the acoustic potential at a given radius
Ψ(r0;m, k, ω); (ii) a radiation condition at infinity r = ∞. Since the solution (2.28)
holds only for finite r, to apply the radiation condition, the solution of (2.10) around
the point at infinity must be obtained.
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3. Asymptotic acoustic fields and radiation condition. Besides the ori-
gin, the other singularity of the convected wave equation in a potential vortex is the
point at infinity; the latter is also an irregular singularity of the differential equation,
implying an essential singularity for the acoustic field, which is simply a cylindrical
wave, since the mean flow velocity vanishes at infinity. Using the asymptotic cylin-
drical wave as a factor, two solutions of the convected wave equation are obtained as
descending power series of the radius (section 3.1). Since these solutions represent
inward and outward propagating waves, they allow the application of the Sommer-
feld radiation condition. The pair of asymptotic solutions (section 3.1) overlaps with
the pair of solutions around the vortex axis (section 3.2), allowing the application of
boundary conditions for a potential vortex plus axial flow in a cylindrical or annular
nozzle (section 3.2).

3.1. Sound radiation in a cylindrical vortex flow. The point at infinity
s = ∞ is mapped to the origin ζ = 0 using the inversion as a change variable,

ζ = 1/s,(3.1a)

F (s) = H(ζ),(3.1b)

which transforms the differential equation (2.10) to

ζ2H ′′ + ζH ′ + (1/ζ2 − q2 + a2ζ2)H = 0.(3.2)

It is clear from the double pole in the coefficient in parentheses that the origin ζ = 0
is an irregular singularity of the differential equation (3.2), and thus the point at
infinity s = ∞ or r = ∞ is an irregular singularity of (2.10) or (2.8). In this case
the search for a solution as a normal integral is facilitated by noting that the vortex
does not produce a mean flow at infinity, i.e., a in (3.2) does not affect the singularity
at ζ = 0. This means that the acoustic potential at infinity consists of cylindrical
waves propagating inward and outward, implying solutions of the form exp(±iKr) =
exp(±is) = exp(±i/ζ); this specifies the essential singularity in the normal integral,

H±(ζ) = e±i/ζJ±(ζ),(3.3)

which substituted in (3.2) leads to

ζ2J ′′
± + (ζ ∓ 2i)J ′

± +
(
i/ζ − q2 + a2ζ2

)
J± = 0.(3.4)

Note that although the origin ζ = 0 is not a regular singularity of the differential
equation (3.4), because there is a simple pole in the second coefficient in parentheses,
this is better than the double pole in the coefficient in parentheses in (3.2).

It can be checked by substituting a Frobenius–Fuchs series in (3.2) that no solution
in ascending power series exists. Substituting in (3.4) a Frobenius–Fuchs series,

J±(ζ) =

∞∑
l=0

j±l ζl+ϑ± ,(3.5)

leads to the recurrence formula for the coefficients[
(l + ϑ±)

2 − q2
]
j±l ∓ (2l + 2ϑ± + 1) i j±l+1 + a2j±l−2 = 0(3.6)
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and indicial equation

l = −1 : (2ϑ± − 1) j±0 = 0,(3.7)

which has one root:

ϑ± = 1/2 :
[
(l + 1/2)

2 − q2
]
j±l ∓ 2(l + 1)i j±l+1 + a2j±l−2 = 0.(3.8)

This specifies (3.8), (3.5) one solution for each of the differential equations (3.4), and
thus in total two solutions (3.3) for the differential equation (3.2). These solutions
represent inward and outward propagating waves at infinity and thus allow the appli-
cation of a radiation condition. By matching the solutions around the point at infinity
with the solutions around the origin (2.27), other types of boundary conditions may
be applied, e.g., for a vortex in a cylindrical duct.

Before proceeding to consider several kinds of boundary conditions, it is conve-
nient to make explicit the two solutions at infinity, corresponding to outward and
inward propagating waves. The power series (3.5),

j±0 ≡ 1 : J±(ζ) =

∞∑
l=0

j±l ζl+1/2,(3.9)

multiplied by the phase term (3.3),

H±(ζ) = e±i/ζ
∞∑
l=0

j±l ζl+1/2,(3.10)

specify the acoustic potential around (3.1a), (3.1b) the point-at-infinity,

F±(s) = e±is
∞∑
l=0

j±l s−l−1/2,(3.11)

which corresponds,

Ψ±(r;m, k, ω) = e±iKr
∞∑
l=0

j±l (Kr)−l−1/2,(3.12)

to, respectively, outward Ψ+ and inward Ψ− propagating waves.

3.2. Application to nozzles with axial flow and swirl. The total acoustic
potential is a linear combination of the two,

r > 0 : Ψ(r;m, k, ω) = B+Ψ+(r;m, k, ω) + B−Ψ−(r;m, k, ω),(3.13)

where the arbitrary constants of integration B± incorporate the coefficient j±0 , which
may be set to unity (3.9). The outward Ψ+ and inward Ψ− propagating acoustic
potentials for all distances except for duct axis r > 0 are a linear combination of
the acoustic potential Ψ± valid (2.27) at all finite distances r < ∞, in the region of
overlap,

0 < r < ∞ : Ψ±(r;m, k, ω) = D±
+Ψ+(r;m, k, ω) + D±

−Ψ−(r;m, k, ω),(3.14)
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where the constants D±
± can be determined at any point. The radiation condition,

specifying outward propagating waves Ψ+ at infinity, requires selecting the first term
of the right-hand side of (3.13), viz.,

r > 0 : Ψ(r;m, k, ω) = B+Ψ+(r;m, k, ω),(3.15a)

r < ∞ : Ψ(r;m, k, ω) = B+[D+
+Ψ+(r;m, k, ω) + D+

−Ψ−(r;m, k, ω)].(3.15b)

The remaining constant of integration is determined,

0 < r0 < ∞ : Ψ(r0;m, k, ω) = B+Ψ+(r0;m, k, ω),(3.16)

from the wave field at a given position. All these results concern acoustic propagation
in an unbounded cylindrical vortex with axial flow.

It is also possible to confine the vortex into a cylindrical duct of radius R. In
this case the problem concerns the acoustic modes in a cylindrical duct, with (2.3)
uniform axial flow and a vortex on its axis with constant circulation Γ per unit length.
The two solutions (2.27) around the duct vortex axis cover the whole duct. They are
complex conjugates, as can be seen from (2.27), (2.24),

Ψ∗
+ = Ψ− : Ψn(r;m, k, ω) = ARe

⎧⎨
⎩e∓imγ/c r

∞∑
j=0

g±j (Kr)j+1/2

⎫⎬
⎭ ,(3.17)

and thus a real acoustic potential is obtained by taking the real part of either of them,
which is equivalent to choosing A+ = A− = 2A in (2.28). The eigenfrequencies are
given by (2.7a), viz.,

ωn = KU + c
√
K2 + K2

n,(3.18)

in terms of the radial wavenumbers Kn, which also specify the eigenfunctions (3.17).
The wavenumbers Kn are determined by a boundary condition at the duct wall r = R.
The simplest is a rigid wall boundary condition

0 = ∂Ψ/∂r|r=R = Re
{
e

imγ
cR (KR)−1/2K F (K)

}
,(3.19)

where

F0

∞∏
n=0

(K −Kn) ≡ F (K) ≡
∞∑
j=0

gj(KR)j(j + 1/2 − imγ/cR);(3.20)

thus the roots of (3.20) specify the eigenvalues Kn for the transverse wavenumber,
substitution in (3.18) specifies the eigenfrequencies, and substitution in (3.17) specifies
the eigenfunctions.

For an axial vortex and a uniform mean flow confined in an annular duct, the
acoustic potential is a linear combination of the two solutions at infinity,

ri < r < re : Ψn(r;m, k, ω) = B+Ψ+
n (r;m, k, ω) + B−Ψ−

n (r;m, k, ω),(3.21)

which cover the annular duct between inner radius ri and outer radius re. In this case
the problem concerns acoustic modes in an annular duct with potential swirling flow
with eigenfunctions

Ψ±
n (r;m, k, ω) = e±iKnr

∞∑
l=0

j±l (Knr)
−l−1/2,(3.22)
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and radial eigenvalues Kn related to axial eigenvalues kn in a dispersion relation,

K2
n = (ω − k U)

2
/c2 − k2

n,(3.23)

where n represents the integer radial modal number.
The wavenumbers Kn are determined from the two rigid wall conditions

∂Ψ/∂r|r=ri = 0, ∂Ψ/∂r|r=re = 0,(3.24)

leading to ∣∣∣∣ Ψ+′
n (ri;m, kn, ω) Ψ−′

n (ri;m, kn, ω)

Ψ+′
n (re;m, kn, ω) Ψ−′

n (re;m, kn, ω)

∣∣∣∣ = 0.(3.25)

4. Application to the acoustics of an annular nozzle with a potential
swirl. The preceding results can be used to calculate the eigenvalues (section 4.1)
and eigenfunctions (section 4.2) for sound in an annular nozzle containing an axially
uniform mean flow, on which is superimposed a potential vortex swirl.

4.1. Effect of axial and swirling flow on radial wavenumbers. As an
application an annular duct with inner radius ri = 4 and outer radius re = 6 is
considered. The dimensionless frequency � = ωrm/c is introduced, where rm =
(ri + re)/2 is the mean radius. The calculations were performed for a dimensionless
frequency � = 2.5, an axial Mach number Mz = 0.3, and a tangential Mach number
Mθ = 0.5 specified at the mean radius rm. The axial wavenumbers kn as given by
(3.23), (3.25) are represented in Figure 1 for the lowest integral wavenumber m =
1,−1. As m increases so does a in (2.11), and the asymptotic expansion (3.12), (3.13)
deteriorates in accuracy. For the first circumferential mode |m| = 1 rotating in the
same direction as the swirl of the mean flow m = +1, the axial wavenumbers are
complex conjugate pairs,

kn = αn ± i βn, exp(i kn z) = exp(i αn z) exp(∓βnz),(4.1)

with a small positive real part αn almost independent of n representing propagation;
in this case m = +1 of corotation the imaginary part increases with n, corresponding
to a decay +iβn or instability −iβn. In the case m = −1 of counterrotation, the
first eigenvalue is real and of negative sign representing a wave of constant amplitude,
propagating in the negative z-direction; the higher-order modes n = 2, 3, 4 are again
complex conjugate pairs, with imaginary parts increasing with n, implying spatial
decay or instability, as in the case of corotation. Also as in the case of corotation
the real part αn is almost independent of n = 2, 3, . . . , but in contrast it has small
negative (instead of positive) values αn < 0, implying propagation against the axial
mean flow, in the negative z-direction. The larger propagation speed of corotating
relative to counterrotating modes corresponds to the fast and slow acoustic-vortical
modes in the axisymmetric case [9].

To each eigenvalue kn, specified by a root of (3.25), corresponds an eigenfunc-
tion (3.21) with zero radial derivative at the wall. Each eigenfunction is a linear
combination of inward and outward propagating waves (3.22) with amplitudes B±.
Since the rigid wall boundary conditions (3.24) only determine the ratios of ampli-
tudes B+/B−, the choice B+ = 1 is made for the plots in Figures 2 to 5. Each wave
consists (3.12) of a sinusoidal radial oscillation multiplying an asymptotic expansion
(3.9). Note that if the point at infinity were a regular singularity, the solution would
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be a series expansion, whose convergence is assured by the Fuchs theorem. Since, in
the present case, the point at infinity is an irregular singularity, the Fuchs theorem
does not apply, and the Frobenius–Fuchs method leads to an asymptotic expansion
(3.9), whose convergence or accuracy is not assured a priori. The asymptotic expan-
sion was summed as long as the terms decreased; it was truncated when the sum of
the absolute value of the last 10 terms did not exceed 10−7. This criterion is quite
demanding and is similar to that used for convergent series [3]. In the cases where
this criterion was not met, the asymptotic expansion was summed up to the smallest
term; if this term was less than 10−2 of the sum, the result was deemed acceptable.
Otherwise, the result was discarded. Our choice of the inner and outer radius, mean
flow, and swirl Mach numbers and dimensionless frequency coincides with [7, 8], whose
authors have considered the same problem numerically; we have chosen to represent
in Figure 1 the modes for m = ±1 and increasing n = 1, 2, 3, 4, . . .; [7, 8] do not plot
the waveforms in this case. For some of their other choices of dimensionless frequency
and Mach number our asymptotic expansions do not meet the acceptance criteria.
Thus an extensive comparison is not possible. The vortex flow vθ = γ/r is unstable
[11, 4], and therefore it could be expected that the solutions of the wave equation be
asymptotic expansions rather than convergent series.

4.2. Radial eigenfunctions for acoustic modes in an annular nozzle. The
eigenfunctions are plotted in Figures 2 and 3 for three radial modes. Mode n = 1 was
excluded from Figure 2 plots by the accuracy criterion. All the eigenmodes in Figures
2 and 3 have zero slopes at the rigid walls; the number of zeros of the amplitude
(left-hand side) increases with the order n, and the phases change sign at the zeros.
In cases of both corotation (Figure 2) and counterrotation (Figure 3) the nth mode
has n − 1 zeros. The zeros in the eigenfunctions (3.22) are due to the sinusoidal
factor with unit amplitude, because the asymptotic expansions (3.9) are slowly varying
monotonic functions in all cases shown in Figures 4 and 5. The asymptotic expansions
for outward J+ and inward J− propagation in the case of corotation are shown in
Figure 4: (i) in the case of outward propagation J+ there is a decreasing amplitude
for n = 2, 3, 4, and a phase of opposite sign (positive) for n = 2, 4 and n = 3 (negative);
(ii) in the case of inward propagation J− there is a small amplitude and phase, the
latter being negative only for n = 3. In the case of counterrotation (Figure 5) the
outward propagating asymptotic expansion J+ has larger amplitude than the inward
propagating asymptotic expansion J− for n = 2, 3, with the exception of n = 1, when
the amplitudes of J± are comparable. The phases are small and positive in all cases
except for n = 2, 3 in outward propagation, when they are negative.

The phase corrections introduced by the asymptotic expansions (3.9) in the wave-
forms (3.22) are small relative to the sinusoidal factor; since the latter has unit mod-
ulus, the amplitude is determined by the modulos of the asymptotic expansions (3.9),
which are dominant and all-important in this respect. The original eigenfunctions Ψn

in (3.22) are plotted in Figures 2 and 3 as sets of six panels (|Ψn| right-hand side,
arg(Ψn) left-hand side) for integral wavenumber m = 1,−1. Removing the exponen-
tial leading term from the eigenfunctions Ψ±

n in (3.22) leaves the reduced eigenfunc-
tions J± specified by the power series (3.8), (3.9) which are plotted in Figures 4 and
5 using the same reference values. Having shown how the eigenvalues and eigenfunc-
tions can be obtained for the radial acoustic modes in an annular nozzle with uniform
axial flow and potential vortex swirl, the main features of the method, the results are
now reviewed and discussed.
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Fig. 1. Axial eigenvalues for integral wavenumber m = 1 (top), m = −1 (bottom).

5. Discussion. The problem considered is that of superposition of a line source
of sound and a potential flow due to a coincident line vortex. It is well known that a
line acoustic source generates a cylindrical wave, whose amplitude would be infinite on
the axis; in reality dissipation limits the amplitude near the axis, but the singularity
still determines the asymptotic decay of the amplitude of the cylindrical wave at large
distances, like the inverse square root 1/

√
r of radial distance r. Likewise, a potential

vortex would lead to an infinite velocity on the axis, which is excluded by matching
a vortex core, e.g., in rigid body rotation; however the singularity on the vortex axis
determines the asymptotic decay of the tangential velocity, at large distance from the
vortex core, as the inverse of the radius 1/r. The coincidence of a line-source sound
and a line-vortex leads to an essential singularity because there are infinite phase
oscillations near the axis, and thus the nondissipative solution is valid only in an
annulus, whose inner radius is not too small. Despite this the nature of the essential
singularities of the wave field, both at the origin and at infinity, still affects the acoustic
field at all finite radial distances. The acoustic field can thus be represented at all
finite radial distances, either by a linear combination of a pair of solutions Ψ± around
the origin r = 0 or by a pair of solutions Ψ± around the point at infinity r = ∞.
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Since the wave equation is a differential equation of the second order, it can have
only two linearly independent solutions; thus either function in the pair (Ψ−,Ψ+)
and (Ψ−,Ψ+) is a linear combination of the other pair, e.g., Ψ− = C−

−Ψ− + C+
−Ψ+.

The constant coefficients C−
− , C+

− can be determined by matching the solutions at
any two points in their common region of validity. Thus the consideration of the two
essential singularities at the origin and infinity allows an exact analytical solution
to be obtained, as an alternative to the numerical methods in the literature. The
identification of the nature of the singularity is not a purely mathematical problem
and is, in fact, guided by physical considerations: (i) the singularity at the origin is
due to the integrated Doppler shift associated with the mean flow velocity; (ii) since
at large distance the mean flow velocity is small the acoustic field must tend to a
cylindrical wave. These simple considerations are used to obtain the exact analytical
solutions of the problem of acoustic propagation in a potential vortex flow.

Appendix. Deduction of the convected wave equation for sound in a
vortex with constant circulation. Consider a mean flow consisting of a uniform
axial velocity U and a rotation with angular velocity Ω(r), so that the mean flow
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velocity is specified in cylindrical coordinates by

Vr = 0,(A.1a)

Vz = U,(A.1b)

Vθ = rΩ(r).(A.1c)

The curl of the velocity or vorticity of the mean flow

∇∧−→
V = −→ez

1

r

∂

∂r
(rVθ) = −→ez

1

r

d

dr

[
r2Ω(r)

]
(A.2)

lies in the axial direction and vanishes only if the angular velocity varies like the
inverse square of the radius (A.3a),

∇∧−→
V = 0 : Ω(r) ∼ r−2,(A.3a)

Vθ ∼ r−1,(A.3b)

which implies that the tangential velocity varies inversely with radius (A.3b), and
thus the circulation Γ or γ is constant (2.2a), (2.2b). Note that from (A.1a), (A.1b),
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(A.1c) it follows that ∇.
−→
V = 0 for arbitrary uniform axial velocity U and angular

velocity Ω(r), so that the mean flow is incompressible; it will be shown that in this
case the propagation of sound is specified by the convected wave equation provided
that the angular velocity Ω ∼ r−2 corresponds to a potential vortex of any strength
γ or Γ in (2.2a), (2.2b).

For a homentropic, inviscid flow, the linearized vorticity equation reads

∂ (∇∧−→v ) /∂t−∇ ∧
[−→
V ∧ (∇∧−→v )

]
−∇ ∧

[
−→v ∧

(
∇∧−→

V
)]

= 0,(A.4)

where −→v is the perturbation velocity. If the mean flow is irrotational,

∇∧−→
V = 0 : ∂ (∇∧−→v ) /∂t + ∇∧

[−→
V ∧ (∇∧−→v )

]
= 0,(A.5)

a solution is that the velocity perturbation is irrotational (A.6),

∇∧−→v = 0 ⇒ −→v = ∇Φ,(A.6)

and thus an acoustic potential exists in nondissipative conditions. Since both mean
flow velocity and velocity perturbation are irrotational, the Bernoulli equation for an
incompressible or compressible fluid reads (A.7a)

p = −ρ
dΦ

dt
,(A.7a)

d/dt ≡ ∂/∂t +
−→
V · ∇,(A.7b)
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Fig. 5. Power series outward J+ and inward J− for integral wavenumber m = −1. Radial
mode n = 1 (top), n = 2 (middle), n = 3 (bottom).

where p is the pressure perturbation, ρ is the constant mean flow density, and the
linearized material derivative (A.7b) involves only the mean flow velocity.

The linearized equation of continuity is

dρ′/dt + ρ∇ · −→v = 0,(A.8)

where the density perturbation is related to the pressure perturbation by the adiabatic
condition,

dp/dt = c2dρ′/dt,(A.9)

where the sound speed is constant for an incompressible mean flow. Substitution of
(A.9) in (A.8) yields

c−2dp/dt + ρ∇ · −→v = 0.(A.10)

Substitution of (A.6), (A.7a) leads to the convected wave equation for the acoustic
potential,

c−2d2Φ/dt2 −∇2Φ = 0,(A.11)

in agreement with (2.3).
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The swirl in the mean flow causes a centrifugal force, compensated by a radial
pressure gradient,

dp0/dr = ρ [Vθ (r)]
2
/r = ργ2/r3;(A.12)

thus the pressure in the mean flow is given by

p0(r) = p∞ + ργ2/(2r2),(A.13)

where p∞ is the pressure at infinity. Denoting by γ the ratio of specific heats, since
the mass density is constant, the sound speed

[c (r)]
2

= γp(r)/ρ = c2∞ + γγ2/(2r2)(A.14)

is approximately constant, and equal to the sound speed at infinity, if

c2∞ ≡ γp∞/ρ = [c (r)]
2

: r2  γγ2/(2c2∞).(A.15)

Thus the solution of the wave equation in the text, which assumed constant sound
speed, is valid only at some distance from the axis. The singularity of the wave equa-
tion at the origin, although outside the physical region of interest, remains important,
because it affects the wave field for finite radius, beyond (A.15).

Acknowledgment. The authors are grateful for the comments of the two refer-
ees, which helped improve the paper.
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Abstract. This article provides a framework to regularize operator equations of the first kind
where the underlying operator is linear and continuous between distribution spaces, the dual spaces
of smooth functions. To regularize such a problem, the authors extend Louis’ method of approximate
inverse from Hilbert spaces to distribution spaces. The idea is to approximate the exact solution in
the weak topology by a smooth function, where the smooth function is generated by a mollifier. The
resulting regularization scheme consists of the evaluation of the given data at so-called reconstruction
kernels which solve the dual operator equation with the mollifier as right-hand side. A nontrivial
example of such an operator is given by the spherical Radon transform which maps a function to
its mean values over spheres centered on a line or plane. This transform is one of the mathematical
models in sonar and radar. After establishing the theory of the approximate inverse for distributions,
we apply it to the spherical Radon transform. The article also contains numerical results.
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1. Introduction. We apply the method of approximate inverse to the problem
of reconstructing a function from integrals over spheres. Applications of this mathe-
matical problem include sonar when the source and detector are at the same point [15],
thermoacoustic tomography for cancer detection [14], seismic testing [23], and radar.
The article [5] provides an excellent introduction to synthetic aperture radar and the
relation between spherical integrals and radar and sonar.

The approximate inverse was originally developed by Louis as a general method
to regularize ill-posed operators on Hilbert spaces [17]. It has been applied to integral
equations of the first kind [18] and tomography [27, 28]. However, the inversion
formula for our problem is valid not on Hilbert spaces but on distributions. Therefore,
we will generalize the approximate inverse to the setting of distributions. It is hoped
this generalization will be useful for other inverse problems for which the ambient
spaces are not Hilbert spaces.

In seismology or sonar the acoustic wave equation is

n2(x)utt = Δu + δ(t)δ(x− a0), where a0 ∈ A,

and A is a small section of the surface of the earth. After linearization, the determi-
nation of n2(x) from back-scattered data is equivalent to recovering n2 from integrals
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over spheres with centers on A [15]. Knowing n2 or at least an approximation to n2

can show boundaries of objects in the water. This linearized model is reasonable
from a practical standpoint when the speed of sound in the ambient water is fairly
constant. This would occur in water of depth less than 100 feet with fairly constant
temperature [3]. Since the speed of sound is constant in shallow water with constant
temperature, a pulse travels from a point source, a, making a spherical wavefront.
The sound that is reflected back to the source at time t gives the amount reflected
back from the sphere centered at a and radius t/2 times the speed of sound (assuming
no multiple reflections). See [12] for practical information about sonar.

The mathematical problem can be described as trying to recover a function by its
integrals over all spheres centered on a given line (in R2), plane (in R3), or hyperplane
(in Rn).

We first discuss the inversion methods that have been implemented numerically
and then the pure mathematical results behind them. Denisjuk has an inversion
method based on a transformation that changes the spherical transform into a limited
data line transform [9]. He has implemented his method with good results. Klein [13]
has developed and numerically tested a promising inversion method based on the
ideas of Andersson discussed below. Beltukov proposed a numerical inversion method
using a discrete SVD for the sonar transform [4]. He showed that the singular values
are fairly flat and then drop off precipitously, which reflects the ill-posedness of the
problem.

Our numerical reconstructions are given in section 6 and they show the potential
of our method.

Many authors have proven injectivity and inversion methods for this transform.
Courant and Hilbert [7, p. 699] proved injectivity for functions that are even about the
hyperplane. Fawcett [10] and Andersson [2] provide inversion formulas in Rn. Norton
provides an inversion method for the circular transform if the center set is a circle
in the plane [22] and if the center set is a line [21], and [23] gives three-dimensional
results. Ranges and inversion formulas on a subspace of Schwartz functions are given
in [20].

Finch, Patch, and Rakesh [11] develop an explicit inversion formula for recovering
a function from spherical integrals when the center set is the boundary of a bounded,
connected, open set in Rn. Ramm proves injectivity and inversion theorems in [26].
Fairly general uniqueness theorems are given in [1].

Louis and Quinto [19] develop the microlocal analysis of the transform when A is
a real-analytic surface (e.g., an open subset of a hyperplane), and they prove the local
transform is injective under fairly general hypotheses. They characterize singularities
(jumps, etc.) of the object that are stably visible from the data. Palamodov [24]
and Denisjuk [8] continue this microlocal analysis when S is a hyperplane, providing
instability results, inversion methods, and range theorems. Beltukov has proven an
inversion method for the transform on hyperbolic space.

Section 2 contains the extension of the method of approximate inverse to distribu-
tion spaces. In particular, we define what we mean by a mollifier in the distributional
sense. In section 3, we apply this concept to the inverse problem of inverting the
spherical Radon transform. Section 4 deals with the design of a mollifier for this
problem. The computation of the corresponding reconstruction kernel is outlined
in section 5. Section 6 provides a couple of numerical tests using synthetic Radon
data, and the proof that our functions satisfy the conditions to be mollifiers is in the
appendix.
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2. Approximate inverse in distribution spaces. In this section we extend
the method of approximate inverse as introduced by Louis and Maass [18] and Louis
[16, 17] to distribution spaces.

To this end let Ω1 ⊂ Kn, Ω2 ⊂ Km be open sets, K = R or K = C, and
V ⊂ C∞(Ω1), W ⊂ C∞(Ω2) be subspaces which are closed in their own topology.
We denote the dual spaces (continuous linear functionals) for V and W by V ′, W ′,
respectively. Furthermore we assume A : V ′ → W ′ to be a linear mapping which is
one-to-one. The inverse problem under consideration is as follows. Given a g ∈ W ′

lying in the range A(V ′) of A, find f ∈ V ′ such that

Af = g.(2.1)

The concept of approximate inverse involves so called mollifiers. The aim is to
calculate convolutions of them with the sought solution f rather than to calculate
f itself. To extend this concept to distribution spaces V ′,W ′ we first define what we
mean by a mollifier.

Definition 2.1. For γ > 0 let eγ(·, y) ∈ V ′′ for all y ∈ Ω1 such that

〈ϕ, eγ(·, y)〉V ′×V ′′ ∈ V ′ for all ϕ ∈ V ′.(2.2)

We call eγ a mollifier if and only if

〈〈ϕ, eγ(·, y)〉V ′×V ′′ , β〉V ′×V → 〈ϕ, β〉V ′×V(2.3)

as γ → 0 for all β ∈ V .
Let V1 ⊂ V ′ and let V2 ⊂ V . Then, eγ is a (V1, V2)-mollifier if and only if (2.2)

holds for all ϕ ∈ V1 and (2.3) holds for all ϕ ∈ V1 and β ∈ V2.
In Definition 2.1 we denote the double dual of V by V ′′, and 〈·, ·〉V ′×V , 〈·, ·〉V ′×V ′′

are the corresponding dual pairings.
If eγ is a mollifier in the sense of Definition 2.3, then for f ∈ V ′,

fγ(y) := 〈f, eγ(·, y)〉V ′×V ′′ , y ∈ Ω1,(2.4)

is a distribution in V ′ which converges to f in the (weak) topology of V ′. Because
V ⊂ V ′′, eγ can be chosen from V . Thus, fγ is a kind of smooth version of f . If eγ is
a (V1, V2)-mollifier, then (2.4) holds for all f ∈ V1 and convergence holds when tested
against all β ∈ V2.

To obtain fγ from Af we consider the adjoint operator of A. Since A : V ′ → W ′ is
linear, continuous, and one-to-one, it has a linear and continuous adjoint A∗ : W ′′ →
V ′′ with dense range. Suppose that for each y ∈ Ω1 we have an element Ψγ(y) ∈ W ′′

satisfying

A∗Ψγ(y) = eγ(·, y).(2.5)

Then, fγ can be expressed as

fγ(y) = 〈f, eγ(·, y)〉V ′×V ′′ = 〈f,A∗Ψγ(y)〉V ′×V ′′

= 〈Af,Ψγ(y)〉W ′×W ′′ = 〈g,Ψγ(y)〉W ′×W ′′ ,

where g = Af are the given data. The mapping Sγ : W ′ → V ′ defined by

Sγg = 〈g,Ψγ(y)〉W ′×W ′′(2.6)

is called the approximate inverse of A; the element Ψγ(y) is the reconstruction kernel
corresponding to eγ . Thus, the approximate inverse consists of evaluations of dual
pairings of the given data g and the reconstruction kernels Ψγ(y).
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Three main features of the approximate inverse are as follows:
• The reconstruction kernels Ψγ(y) can be precomputed before the measure-

ment process starts.
• Equation (2.5) is independent of the data g and hence not influenced by noise.
• Invariance properties of A∗ help to improve the efficiency of the method, if

(2.5) has to be solved only for one single y ∈ Ω1. We will demonstrate this
in section 3.

Remark 2.2. In general, it does not follow that choosing a mollifier eγ from V
results in a reconstruction kernel Ψγ(y) ∈ W . The key is that (2.5) must have a
solution in W . If A∗(W ) ∩ V is dense in V , then this is more likely. This density
condition will happen if the adjoint A∗ maps W to V ⊂ V ′′.

In practical situations we have only finitely many measurement data available
rather than a distribution g. For this reason investigating the semidiscrete operator
equation

ANf = gN ,(2.7)

where AN = ΦN A, gN = ΦNg ∈ KN , may fit better to that situation. Here, the
observation operator ΦN ∈ W ′′ can be, e.g., point evaluations, if A(V ′) consists of
continuous, not necessarily integrable, functions. But following the outlines of Rieder
and Schuster [27, 28] we formulate the approximate inverse of (2.7) by

Sγ,NgN (y) = 〈gN , GN ΦNΨγ(y)〉KN ,(2.8)

where Ψγ(y) is a reconstruction kernel for (2.1) and GN ∈ KN×N is a matrix con-
taining the weights of a numerical integration rule which is applied to get the discrete
version (2.8) of the dual pairing 〈·, ·〉W ′×W ′′ . Thus, we continue in this article to focus
on the continuous problem.

Remark 2.3. Compared to the concept of approximate inverse in Hilbert spaces
as established by Louis [16], Definition 2.1 applies to more general spaces and requires
less restrictive assumptions on an element eγ to be a mollifier. The L2-theory requires
convergence of fγ(y) = 〈f, eγ(·, y)〉 → f(y) in L2 as γ → 0, but this distributional
setup requires only weak convergence. We should point out that our theory is meant
for distribution spaces and does not directly subsume the L2- or Hs-theory since these
Hilbert spaces are not closed subspaces of distribution spaces, the topologies are too
different, and their standard duals are not their duals as distribution spaces. It should
also be pointed out that this generalization to distributions is necessary for the spherical
transform since the transform does not map L2 into L2 and the inversion formula we
use applies to distributions.

3. Approximate inverse meets the spherical Radon transform. In this
section we apply the method of approximate inverse established in section 2 to the
spherical Radon transform. We use the mathematical setup of Andersson’s article [2]
and formulate some of his main results first.

We start with some notation. Throughout the paper a scalar product 〈·, ·〉 or
norm ‖ · ‖ without subscript always means the Euclidean scalar product or norm,
respectively. We denote the space of all rapidly decreasing, smooth functions by
S(Rn) and give this space the usual seminorms [29, section 7.3]. This topology turns
S(Rn) into a Fréchet space. The Fourier transform F : S(Rn) → S(Rn) and its inverse
are given by

Ff(ξ) = f̂(ξ) =

∫
Rn

f(x) e−ı 〈ξ,x〉 dx, F−1f(x) = (2π)−n

∫
Rn

f(ξ) eı 〈x,ξ〉 dξ.
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The dual space S ′(Rn) of S(Rn) is called the set of tempered distributions. Each
distribution ϕ ∈ S ′(Rn) is of finite order [29] and can be written as the derivative of
a continuous function of polynomial growth [6].

The Fourier transform gives isomorphisms on S(Rn) and on S ′(Rn). Finally, we

often write a vector x ∈ Rn+1 in the form x = (x′, xn+1)
�, where x′ = (x1, . . . , xn)� ∈

Rn contains the first n components of x and xn+1 is the last component. We will drop
the 	 when this correspondence is clear.

The spherical Radon transform R assigns a function f ∈ S(Rn+1) its mean values
over all spheres centered about (z, 0) ∈ Rn+1, z ∈ Rn with radius r ≥ 0:

Rf(z, r) =
1

ωn

∫
Sn

f(z + r ξ, r η) dSn(ξ, η) = g(z, r).(3.1)

Here, ωn is the area of the n-dimensional sphere Sn = {(ξ, η) ∈ Rn+1 : ξ ∈ Rn,
η ∈ R, ‖ξ‖2 + η2 = 1} and dSn is the surface measure on Sn.

Obviously Rf = 0 holds true for every f ∈ S(Rn+1) that is odd in the last variable:
f(x′,−xn+1) = −f(x′, xn+1). Courant and Hilbert [7] proved that the kernel of R
consists exactly of all such functions. This suggests restricting R to the subspace of
even functions in the last variable,

Se := Se(R
n+1) = {f ∈ S(Rn+1) : f(x′,−xn+1) = f(x′, xn+1)}.

Unfortunately, even if f ∈ Se(R
n+1), the image Rf does not have to be in

L2(Rn+1). In fact, if f is the characteristic function of a circle, then Rf has infi-
nite support and does not decrease at infinity. Furthermore, one can show (e.g., using
ideas in [19, 24]) that R−1 is not continuous in any range of Sobolev norms, at least
with data for bounded centers or radii (see Remark 2.3).

Identifying the radius r in (3.1) with the norm ‖w‖ of a vector w ∈ Rn+1, we
introduce the following subspace of S(R2n+1):

Sr := Sr(R
n × Rn+1)

= {f ∈ S(R2n+1) : f(z, w) = f̌(z, ‖w‖) for a function f̌ ∈ Se(R
n+1)}.

Thus, Sr(R
n × Rn+1) consists of the functions in S(R2n+1) which are radially

symmetric in the last n+ 1 variables. We will often view functions in Sr(R
n ×Rn+1)

as functions on Rn × R where we write f(z, r) = f(z, w) with r = ‖w‖, but when we
take the Fourier transform, it will be the Fourier transform on R2n+1.

As mentioned before, we cannot expect that Rf ∈ Sr(R
n × Rn+1) even when

f ∈ Se(R
n+1). But it is easy to show that Rf ∈ S ′

r(R
n × Rn+1), the dual space of

Sr(R
n × Rn+1). By a density argument we may extend R to domain Se(R

n+1)′. The
following theorem summarizes some properties of R considered as mapping between
S ′

e and S ′
r. The proofs are in [2] or [13].

Theorem 3.1 (see [2, Theorem 2.1 and Proposition 2.2]). The spherical Radon
transform R : S ′

e → S ′
r is a linear, continuous operator which is one-to-one and has

range

R(S ′
e) = S ′

r,cone :=
{
g ∈ S ′

r : supp ĝ ⊂ {(σ, ρ) ∈ Rn × [0,∞) : ρ ≥ ‖σ‖}
}
⊂ S ′

r.(3.2)

If the Fourier transform of f ∈ S ′
e is equal to an integrable function f̂(σ, ω), then the

inversion formula

f̂(σ, ω) = cn |ω| (‖σ‖2 + ω2)(n−1)/2 ĝ(σ,
√

‖σ‖2 + ω2)(3.3)

is valid with cn = ωn/(2 (2π)n) and g = Rf .
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The adjoint operator R∗ : Sr → Se has dense range and is given by

R∗g(x′, xn+1) =

∫
Rn

g

(
z,
√

‖z − x′‖2 + x2
n+1

)
dz;(3.4)

its Fourier transform is

F R∗g(σ, ρ) = ĝ(σ,
√

‖σ‖2 + ρ2).(3.5)

Note that the right-hand side of (3.3) is the Fourier transform of the function g in
R2n+1 that is radial in the last n + 1 variables. The reason to consider R as a map
into S ′

r(R
n×Rn+1) rather than S ′

e(R
n+1) is that the relationship between the Fourier

transform and spherical transform is easier in these spaces. The constant cn in (3.3)
differs from the corresponding constant in Andersson’s article by a factor of (2π)−n.
This inaccuracy was found by Klein [13].

In order to apply the approximate inverse (section 2) to solve the inverse problem
of finding a distribution f ∈ S ′

e satisfying

Rf = g(3.6)

for a given g ∈ S ′
r in the range of R, we identify V = Se, W = Sr, and A = R. Note

that due to Theorem 3.1, R∗ maps Sr into Se and we have the situation mentioned in
Remark 2.2 and may choose a mollifier eγ(·, y) ∈ Se for every y ∈ Rn+1. Once having
a mollifier eγ at hand, the following extension lemma, whose proof also can be found
in [2], helps us to find a solution of the equation

R∗Ψγ(y) = eγ(·, y),(3.7)

which is our reconstruction kernel; see (2.5).
Lemma 3.2 (see [2, Extension Lemma 2.4 and Corollary 2.5]). There exists a

continuous linear mapping E : Se → Sr such that

R∗ E = idSe .(3.8)

For ρ ≥ ‖σ‖ the mapping E satisfies

F Ef(σ, ρ) = f̂(σ,
√

ρ2 − ‖σ‖2).(3.9)

If eγ(·, y) ∈ Se is a mollifier in the sense of Definition 2.1, then the reconstruction
kernel Ψγ(y) belonging to eγ is given by

Ψγ(y) = Eeγ(·, y).(3.10)

With the help of (3.8) we easily see that Ψγ(y) from (3.10) is a solution of (3.7).
From (3.5), it is clear that any continuous E that satisfies (3.9) will satisfy (3.8).

We will choose E so that for a mollifier eγ(·, y) in Se, Eeγ(·, y) is in Sr.
So far we know how to get the reconstruction kernel once we have chosen a

mollifier. Theorem 4.1 will provide general criteria that will allow us to construct
mollifiers, and with the help of Lemma 3.2 we know how to find a corresponding
solution of (3.7). But it would be very time-consuming if we had to solve (3.7) for all
reconstruction points y. To this end we prove an invariance property of R∗, Lemma 3.3,
which allows us to solve (3.7) only once and to generate all reconstruction kernels by
applying the invariance to that one solution.



REGULARIZATION IN DISTRIBUTION SPACES 1375

For a given M > 1, we denote

HM = HM (Rn+1) = {y = (y′, yn+1) ∈ Rn+1 : 1/M < |yn+1|},

HM,M = HM,M (Rn+1) = {y = (y′, yn+1) ∈ Rn+1 : 1/M < |yn+1| < M}.(3.11)

Furthermore, if U ⊂ Rn+1 is open, we define

Se(U) = {f ∈ Se(R
n+1) : supp f ⊂ U},

S ′
e(U) = {f ∈ S ′

e(R
n+1) : supp f ⊂ U},

E ′
e(U) = {f ∈ S ′

e(R
n+1) : supp f ⊂ U is compact}.

Note that, in general, S ′
e(U) is a proper subspace of the dual space of Se(U).

We define mappings Sy
e : Se → Se and Sy

r : Sr → Sr by

Sy
ef(x) =

{
|yn+1|−n−1 f

(
x′−y′

|yn+1| ,
xn+1

|yn+1|

)
, y ∈ HM (Rn+1),

0, y /∈ HM (Rn+1),
(3.12)

Sy
r g(z, r) =

{
|yn+1|−2n−1 g

(
z−y′

|yn+1| ,
r

|yn+1|

)
, y ∈ HM (Rn+1),

0, y /∈ HM (Rn+1).
(3.13)

Because Sy
e and Sy

r are compositions of dilations and translations, they are linear
and continuous mappings on Se and Sr, respectively. Moreover, both operators inter-
twine with the adjoint R∗. It is also clear that Sy

ef and Sy
r g can be discontinuous in y

for yn+1 = ±1/M .
Lemma 3.3. Let Sy

e : Se → Se and Sy
r : Sr → Sr be defined as in (3.12) and

(3.13), respectively. Then,

Sy
e R∗ = R∗ Sy

r .(3.14)

Proof. Let y ∈ HM (Rn+1). Using representation (3.4) together with the defini-
tions (3.12) and (3.13) gives

R∗Sy
r g(x

′, xn+1) = |yn+1|−2n−1

∫
Rn

g

(
z − y′

|yn+1|
, |yn+1|−1

√
‖z − x′‖2 + x2

n+1

)
dz

= |yn+1|−n−1

∫
Rn

g

(
z,
√

‖z − |yn+1|−1 (x′ − y′)‖2 + |yn+1|−2 x2
n+1

)
dz

= Sy
e R∗g(x′, xn+1)

for all g ∈ Sr. For y /∈ HM (Rn+1) assertion (3.14) follows immediately, since both
sides are equal to zero.

Lemma 3.3 tells us that under certain conditions we may restrict ourselves to
solving (3.7) only for one single y ∈ Rn+1.

Corollary 3.4. For each γ > 0 let ēγ ∈ Se(R
n+1) and eγ(·, y) ∈ Se be defined

by Sy
e :

eγ(x, y) = Sy
e ēγ(x).(3.15)

Assume eγ is a mollifier. Then, we get all corresponding reconstruction kernels by
solving

R∗Ψ̄γ = ēγ(3.16)
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and setting

Ψγ(y) = Ψγ(y; z, r) = Sy
r Ψ̄γ(z, r).(3.17)

If eγ is an (E ′
e(HM,M ),Se(HM,M ))-mollifier, then

Sγ Rf := 〈Rf,Ψγ〉S′
r×Sr

→ f

for f ∈ E ′
e(HM,M ). This means that

〈〈Rf,Ψγ〉S′
r×Sr , β〉E′

e(HM,M )×Se(HM,M ) → 〈f, β〉E′
e(HM,M )×Se(HM,M )

for all β ∈ Se(HM,M ).

We will construct a general class of ēγ in section 4 and show that the resulting eγ
satisfy the definition. We now prove the corollary.

Proof. Taking into account (3.17) and (3.14), statement (3.16) is a consequence
of

eγ(x, y) = Sy
e ēγ(x) = Sy

e R∗Ψ̄γ(x) = R∗ Sy
r Ψ̄γ(x) = R∗{Ψγ(y)}(x).

Considering (3.8) a solution of (3.16) is given by Ψ̄γ = Eēγ .

Remark 3.5. Putting

fγ(y) = 〈f,Sy
e ēγ〉S′

e×Se

it becomes clear from (3.12) that supp fγ ⊂ HM (Rn+1). Thus, using the invariance Sy
e

to generate mollifiers, we can only recover objects f ∈ S ′
e with support in HM (Rn+1).

But this is not a restriction in applications, e.g., in sonar or radar, since the support of
any object to be reconstructed is always a positive distance from the line yn+1 = 0. For
technical reasons, our mollifiers satisfy the convergence assumption (2.3) for bounded
|yn+1|, so we will reconstruct fγ only on HM or HM,M . This is not a serious prac-
tical restriction since M can be chosen arbitrarily large. Therefore, we will construct
(E ′

e(HM,M ),Se(HM,M ))-mollifiers.

To use the method of approximate inverse for inverting R, we

• choose a mollifier eγ fulfilling the conditions of Theorem 4.1 defined by Sy
e :

eγ(x, y) = Sy
e ēγ(x) and calculate Ψ̄γ = Eēγ ;

• compute the approximate inverse of R as

Sγg(y) = 〈g,Sy
r Ψ̄γ〉S′

r×Sr
,(3.18)

where g = Rf are the given data.

Considering (3.9), we have only an explicit representation for F Eēγ when ρ ≥ ‖σ‖.
We want to obtain Ψ̄γ rather than its Fourier transform because a discrete Fourier
transform would extend the data, which are given in applications only on a bounded
domain, periodically and could cause large artifacts. Furthermore even in the two-
dimensional case (n = 1) we would have to compute a three-dimensional Fourier
transform of the data. Therefore, we need an explicit representation of F Eēγ for all
ρ ≥ 0 and σ ∈ Rn. (Andersson uses an extension method from Stein [30] which is
fairly arbitrary and not explicit for calculations.) We will present an idea in section 4
that will circumvent these difficulties.
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4. Design of a mollifier for R. Due to Corollary 3.4 we let the mollifier eγ be
defined eγ(x, y) = Sy

e ēγ(x) as in (3.12).
Since we will need the Fourier transform of ēγ to compute the reconstruction

kernel (see (3.9)) it is appropriate to choose ēγ as a tensor product

ēγ(x) = e1
γ(x′) ⊗ e2

γ(xn+1),(4.1)

where e1
γ ∈ S(Rn), e2

γ ∈ S(R), e2
γ even. Defining eγ(x, y) as in (3.15), (4.1) it is

obvious that eγ(·, y) ∈ Se(R
n+1) for all y ∈ Rn+1.

In view of (3.9) and Theorem 4.1 below we want eγ and ēγ to have the following
properties:

1.
∫

Rn e1
γ(z) dz = 1 =

∫
R
e2
γ(t) dt.

2. Fe1
γ is easy to calculate.

3. Fe2
γ(
√
ξ) has a nice extension for ξ < 0.

By “nice” in 3, we mean that the extension is explicitly known since we do not
want to apply an extension lemma [30] like Andersson did it in his article [2]. More-
over we need an explicit expression for that extension to calculate the corresponding
reconstruction kernel.

Now we get more explicit with our choices for e1
γ and e2

γ . We define

e1
γ(x′) = γ−n e1(x′/γ) for e1(x′) ∈ S(Rn),

∫
Rn

e1(z) dz = 1.(4.2)

We have to be careful with respect to the choice of e2
γ . Let F ∈ Se(R) have mean

value 1. To guarantee the mollifier property, because of the dilation by yn+1 in Sy
e

(see (3.12) and (3.15)), we define

e2
γ(q) =

1

2 γ

{
F

(
q + 1

γ

)
+ F

(
q − 1

γ

)}
for F ∈ Se(R),

∫
R

F (t) dt = 1.(4.3)

We will show that property 3 is fulfilled when we define F as in (4.5) below.
The following key theorem asserts that these properties guarantee eγ is a mollifier.

The proof will be given in the appendix.
Theorem 4.1. Let M > 1 and let functions e1

γ and e2
γ be given by (4.2) and

(4.3). Then, eγ defined by (3.15) and (4.1) is an (E ′
e(HM,M ),Se(HM,M ))-mollifier.

We will now construct specific functions e1
γ and e2

γ that we will use in our algo-
rithm. We define

e1
γ(x′) = γ−ne1(x′/γ), e1(x′) = (2π)−n/2 exp(−‖x′‖2/2), x′ ∈ Rn,(4.4)

which obviously is a function in S(Rn) with mean value 1, since
∫

Rn e1
γ(x′) dx′ =

ê1
γ(0) = 1.

We have to be more careful in the choice of e2
γ . The desirable extension property 3

for e2
γ is fulfilled if there exists a function g ∈ S(R) satisfying

Fe2
γ(
√
ξ) = g(ξ2).(4.5)

The function

F (q) := 2F−1{exp(−|ξ|4)}(2 q)(4.6)

satisfies (4.5) with g(ξ) = exp(−|ξ|2). So, F is an even function in S(R) with mean
value equal to 1. We define e2

γ using (4.3) and the specific function (4.6).
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Remark 4.2. Since the inverse Fourier transform of exp(−|ξ|4) does not decrease
as rapidly as exp(−|ξ|2) near ξ = 0, we introduced the dilation factor 2 in (4.6) to
make the decay behavior the same in both variables (see also Figure 1).

Corollary 4.3. Let M > 1. The function eγ = e1
γ ⊗ e2

γ defined using (4.4) and
(4.3) with F defined by (4.6) satisfies the assumptions of Theorem 4.1 and therefore
is an (E ′

e(HM,M ),Se(HM,M ))-mollifier.
Proof. All we need to do is observe that our specific e1 and F satisfy

∫
Rn e1(z) dz =

1 =
∫

R
F (t) dt and that eγ is constructed according to Theorem 4.1.

Figure 1 displays ēγ in the case of n = 1, γ = 0.06. It has its peak in (0, 1).
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Fig. 1. Plot of eγ(x1, x2) in the two-dimensional case (n = 1) for γ = 0.06 (left picture). On
the right-hand side is the graph of e1γ (bottom) and e2γ (top). The width of the peak is about 0.5
units in each case (note the different scales), which is achieved by the dilation in (4.6).

5. Computation of the reconstruction kernel Ψ̄γ . Throughout this section
we assume ēγ to be given as in (4.1), (4.2), (4.3), (4.4), and (4.6) and eγ(x, y) =
Sy

e ēγ(x). Our aim is to compute Ψ̄γ = Eēγ .
From Lemma 3.2 we know that

FΨ̄γ(σ, ρ) = F Eēγ = Fēγ(σ,
√
ρ2 − ‖σ‖2) if ρ ≥ ‖σ‖,(5.1)

where ρ ≥ 0, σ ∈ Rn. Thus, we have to compute the Fourier transform of ēγ at first.
Lemma 5.1. We have that

Fēγ(σ, ρ) = ê1
γ(σ) ê2

γ(ρ) = cos(ρ) e−γ2 ‖σ‖2/2 e−γ4 ρ4/16,(5.2)

where σ ∈ Rn, ρ ∈ R.
Proof. The proof follows from a straightforward calculation using the definition

of ēγ .
So far by Lemma 5.1 we have the representation

FΨ̄γ(σ, ρ) = cos(
√

ρ2 − ‖σ‖2) e−γ2 ‖σ‖2/2 e−γ4 (ρ2−‖σ‖2)2/16) if ρ ≥ ‖σ‖.(5.3)

To get Ψ̄γ for all ρ ≥ 0 and σ ∈ Rn, we have to find an extension of cos
√
ξ for ξ < 0

that turns (5.3) into a function in Sr. The natural extension involves cosh
√
−ξ for

ξ < 0. As noted in section 3, we can extend Ψ̄γ arbitrarily, and for computational
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Fig. 2. The reconstruction kernel Ψ̄γ given as in (5.6) for γ = 0.06 and n = 1. The integrals
have been computed using numerical integration.

reasons, we will cut this function off away from ξ = 0. Let χ ∈ C∞(R) be zero on
(−∞,−1] and 1 on [0,∞) and let

G(ξ) =

{
cos

√
ξ, ξ ≥ 0,

χ(ξ) cosh(
√
|ξ|), ξ < 0.

(5.4)

The Fourier transform FΨ̄γ is given by

FΨ̄γ(σ, ρ) = G(ρ2 − ‖σ‖2) e−γ2 ‖σ‖2/2 e−γ4 (ρ2−‖σ‖2)2/16(5.5)

and we get Ψ̄γ by applying the inverse Fourier transform.
Lemma 5.2. Let ēγ be given as in (4.1), (4.2), (4.3), (4.4), and (4.6). Then, a

solution of R∗Ψ̄γ = ēγ is represented by

Ψ̄γ(z, r) = 2n (2π)−
3
2 n− 1

2

∫
Rn

+

∫ ∞

0

{
G(ρ2 − ‖σ‖2) e−γ2 ( ‖σ‖2

2 + γ2

16 (ρ2−‖σ‖2)2)

· ρ(n+1)/2 J(n−1)/2(ρ r) cos(〈σ, z〉)
}
dρ dσ.(5.6)

Here, Rn
+ = {x = (x1, . . . , xn)� ∈ Rn : xj ≥ 0}, Jν is the Bessel function of first kind

of order ν, and G is given as in (5.4).
Proof. The proof follows by a simple application of an inverse Fourier transform

of dimension 2n+ 1 to (5.5) in which one uses Lemma 5.1, spherical coordinates, and
the identity ∫

Sn

eı ρ r 〈ω,θ〉 dω = (2π)(n+1)/2 (ρ r)(1−n)/2 J(n−1)/2(ρ r),

which can be found, e.g., in [10].
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Figure 2 displays a picture of Ψ̄γ for γ = 0.06 and n = 1 corresponding to the
two-dimensional case. The integrals in (5.6) have been computed using numerical
integration, where the integrals were cut off when the absolute value of the integrand
was less then 10−12. The reconstruction kernel in Figure 2 belongs to the mollifier
shown in Figure 1 and has its absolute maximum point in (0, 1), just as the mollifier ēγ .

6. Implementation and numerical results. We now have all the ingredients
to implement the approximate inverse for the spherical Radon transform. We present
results for the two-dimensional case (n = 1). The reconstruction kernel Ψ̄γ (5.6)
belonging to the mollifier (4.1), (4.2), (4.3) has the representation

Ψ̄γ(z, r) =
2

(2π)2

{∫ ∞

0

∫ ∞

0

τ J0(
√
τ2 + σ2 r) cos τ e−γ2 (σ2

2 + γ2 τ4

16 ) cos(σ z) dτ dσ

(6.1)

+

∫ ∞

0

∫ σ

0

τ J0(
√
σ2 − τ2 r)χ(−τ2) cosh τ e−γ2 (σ2

2 + γ2 τ4

16 ) cos(σ z) dτ dσ

}
,

where we used the substitutions ρ =
√
τ2 + σ2 and ρ =

√
σ2 − τ2, respectively.

Throughout this section we suppose that f has compact support in HM,M (R2)
for a certain M > 1. The method of approximate inverse used to solve the problem
Rf = g for n = 1 has the form SγRf(y) = 〈Rf,Sy

r Ψ̄γ〉S′
r×Sr .

We now adjust the algorithm to practical situations where only finitely many data
on a bounded domain are available. Assume that equally spaced centers zk ∈ [λ,Λ],
λ < Λ, k = 0, . . . , P , and equally spaced radii rm ∈ [0, R], R > 0, m = 0, . . . , Q,
are given, so we have N = (P + 1) (Q + 1) spherical averages of f at hand. More
explicitly, instead of Rf itself we have only the vector φN Rf ∈ RN as data, where
φN : C(R × [0,∞)) → RN are the point evaluations

(φNv)k,m = v(zk, rm), 0 ≤ k ≤ P, 0 ≤ m ≤ Q.

Remark 6.1. The observation operator φN , which contains all information
about the measurement geometry, is well defined only if the function to be evalu-
ated is continuous. Since Rf ∈ S ′

r we have to postulate that Rf is a continuous, but
not necessarily integrable, function in order to apply φN properly. Thus, we assume
Rf ∈ C(R × [0,∞)) which is not a large restriction since R smooths of order n/2 in
Sobolev scales.

To recover f from φNRf we apply the trapezoidal sum corresponding to the nodes
{zk}, {rm} and obtain

Sγ,N φN Rf(y) = 〈φN Rf,QN φN Sy
r Ψ̄γ〉RN

=
2π

|y2|3
hz hr

P∑
k=0

Q∑
m=0

rm Ψ̄γ

(
zk − y1

|y2|
,
rm
|y2|

)
Rf(zk, rm)(6.2)

for y ∈ HM (R2), QN = hz hr IN,N (compare (2.8)).
Formula (6.2) was applied to get the reconstructions in Figures 3 and 4.
As mentioned in section 5 we compute Ψ̄γ by applying numerical integration to

(6.1) choosing convenient integration boundaries. Moreover we determine Ψ̄γ(z, r) on
the square [0, 15]2 on an equidistant mesh grid consisting of 128 × 128 grid points.
Since the kernel is rapidly decreasing, the absolute value of Ψ̄γ outside the square
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[0, 15]2 is rather small, so we can extend the kernel by 0 there. Using the symmetry
Ψ̄γ(z, r) = Ψ̄γ(−z, r) and linear interpolation we get Ψ̄γ(z, r) for every z ∈ R, r ≥ 0.

To check the performance of the above algorithm we implemented it to reconstruct
several objects. All reconstructions were computed for (y1, y2) ∈ [0, 7] × [1, 8] using
an equidistant mesh grid with 64 × 64 grid points. The objects are assumed to have
their support in H1(R2). The data are given on equally spaced points with λ = −36,
Λ = 36, P = 384, R = 50, and Q = 256. Note that in all pictures the y2-axis is the
horizontal one, whereas the y1-axis (the sonar sources, circle centers) is the vertical
one.

First, we recovered the characteristic function of a circle centered at (4, 4) with
radius 1 and density 2. Figure 3 shows the original circle as well as the approximate
inverse Sγ,NφN Rf . We used the reconstruction kernel (6.1) with γ = 0.06 which was
precomputed for (z, r) ∈ [0, 15]2 using 128 × 128 equally distributed grid points.
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Fig. 3. Reconstruction of the characteristic function of a circle (left) and original object func-
tion (right), γ = 0.06.
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Fig. 4. Reconstruction of two circles f1 and f2 (left) and original object function (right),
γ = 0.06.

Second, we applied the algorithm to the sum of the function in Figure 3 and the
characteristic function of a disk centered at (2, 3) and of radius 1. The reconstruction
as well as the original object can be seen in Figure 4; the parameters are the same as
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in Figure 3.
These tests show that the method of approximate inverse works fine, and the

reconstructions are comparable to those in [9]. Some blurring in the reconstructions
is probably caused by the numerical calculation of the reconstruction kernel and trun-
cation error. However, some ill-posedness is inherent in the problem.

Remark 6.2. Some of the fuzzy reconstruction boundaries in Figures 3 and 4
are intrinsic to the problem. As shown in [19, 24], the object boundaries that are most
difficult to reconstruct are those not tangent to circles in the data set. This means that
horizontal boundaries in Figures 3 and 4 will be intrinsically hardest to reconstruct
since the set of circle centers is the vertical axis. Since more-or-less vertical boundaries
are tangent to spheres in the data set, the microlocal analysis predicts they will be
easiest to reconstruct. This is analogous to limited angle X-ray tomography in which
some boundaries are “invisible” in the data [25].

7. Conclusions. In this paper we extended the method of approximate inverse,
a regularization scheme for operators between Hilbert spaces, to distribution spaces.
We applied the method to the inversion problem of the spherical Radon transform
which appears in sonar as well as in radar. This algorithm allows one to solve inverse
problems for linear operators which are not bounded mappings between Hilbert or
Banach spaces.

We presented a representation for a reconstruction kernel Ψ̄γ in arbitrary dimen-
sions (5.6). Unfortunately, in the three-dimensional case (n = 2) numerical integration
to get Ψ̄γ is too time consuming and we are working on other ways to get the recon-
struction kernel. In this case a modified inversion formula presented by Klein [13]
might be useful. This inversion formula could also be helpful to obtain an analytic
expression for the reconstruction kernel Ψ̄γ , which would also increase the accuracy of
the reconstructed solution. This and stability and error analysis (as for Hilbert space
in [27]) will be part of future research.

Appendix A. Proof of Theorem 4.1. Let M > 1. We recall the general
construction of eγ given in section 4. Let eγ(x, y) = Sy

eeγ(x), where

ēγ(x) = e1
γ(x′) ⊗ e2

γ(xn+1),(A.1)

e1
γ(x′) = γ−ne1(x′/γ),

∫
Rn

e1(x′) dx′ = 1, e1 ∈ S(Rn),(A.2)

e2
γ(q) =

1

2 γ

{
F

(
q + 1

γ

)
+ F

(
q − 1

γ

)}
for F ∈ Se(R),

∫
R

F (t) dt = 1.(A.3)

We will use several steps to show that eγ is an (E ′
e(HM,M ),Se(HM,M ))-mollifier.

First, we will prove (2.2) using Lemma A.1. Then, we will prove a distributional
Fubini’s theorem, Lemma A.2, and finally, we will prove the convergence result (2.3)
which concludes the proof of Theorem 4.1.

Lemma A.1. Let γ > 0 be fixed, eγ be defined by (A.1)–(A.3), and ϕ ∈ S ′
e(R

n+1).
Then, the function 〈ϕ, eγ(·, y)〉S′

e×Se
is a continuous function of polynomial growth for

y ∈ HM and is 0 for y /∈ HM . Therefore 〈ϕ, eγ(·, y)〉S′
e(R

n+1)×Se(Rn+1) ∈ S ′
e(R

n+1).
Proof. First, using the definition of eγ , one proves the map y �→ eγ(·, y) is a

continuous map from HM to Se(R
n+1). Therefore, 〈ϕ, eγ(·, y)〉S′

e×Se is continuous for
y ∈ HM and is 0 if not.

We simplify the problem by reducing the calculation to integrals of functions.
By [6] there exists a multi-index α ∈ Nn+1

0 and a continuous function Pϕ of polynomial
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growth such that

ϕ = DαPϕ,(A.4)

where α = (α′, αn+1) and Dα = ∂α1
x1

· · · ∂αn+1
xn+1 .

For y ∈ HM , we obtain

ϕγ(y) := 〈ϕ, eγ(·, y)〉S′
e×Se

= (−1)|α|
∫

Rn+1

Pϕ(x)Dα
x eγ(x, y) dx

(A.5)

=
1

2(−γ |yn+1|)|α|
∫

Rn

∫
R

[
Pϕ(γ |yn+1| z′ + y′, γ |yn+1| zn+1 + |yn+1|)

+ Pϕ(γ |yn+1| z′ + y′, γ |yn+1| zn+1 − |yn+1|)
]
Dα′

e1(z′)Dαn+1F (zn+1) dzn+1 dz
′,

where we used the substitutions z′ = (x′ − y′)/(γ |yn+1|) and zn+1 = (xn+1/|yn+1| ±
1)/γ, as well as the symmetry of F . Since Pϕ is polynomially increasing, there exists
a constant Cϕ > 0 and a κ > 0 such that

|Pϕ(x)| ≤ Cϕ (1 + ‖x‖2)κ as ‖x‖ → ∞, x ∈ Rn+1.(A.6)

Using (A.6) and some simple estimates, we show∣∣∣Pϕ

(
γ |yn+1| z′ + y′, γ |yn+1| zn+1 ± |yn+1|

)∣∣∣ ≤ Cϕ 2κ (1 + γ2 |yn+1|2 ‖z‖2)κ (1 + ‖y‖2)κ.

This allows us to estimate (A.5) as

|ϕγ(y)| ≤ Cϕ 2κ qγ (γ |yn+1|)−|α| (1 + ‖y‖2)κ, y ∈ HM ,

with qγ :=
∫

Rn

∫
R
(1+γ2 |yn+1|2 ‖z‖2)κ Dα′

e1(z′)Dαn+1F (zn+1) dzn+1 dz
′ < ∞, which

finishes the proof.
Our next task is to prove a distributional Fubini’s theorem that will allow us to

examine the pairing 〈eγ(x, ·), β〉 to show the convergence result (2.3) in Definition 2.1.
Lemma A.2 (distributional Fubini’s theorem). Let γ > 0 be fixed and eγ be

defined by (A.1)–(A.3). Further assume that ϕ ∈ S ′
e(R

n+1) and β ∈ Se(HM ). Then,

〈〈ϕ, eγ(·, y)〉S′
e(R

n+1)×Se(Rn+1), β〉S′
e(R

n+1)×Se(HM )(A.7)

= 〈ϕ, 〈eγ(x, ·), β〉S′
e(R

n+1)×Se(HM )〉S′
e(R

n+1)×Se(Rn+1).

Furthermore,

βγ(x) := 〈eγ(x, ·), β〉S′
e(R

n+1)×Se(HM ) ∈ Se(R
n+1) .(A.8)

Note that here, βγ is a function of x, and in section 2, fγ is a function of y.
Proof. We reduce this to a Fubini theorem for functions. Since ϕ = DαPϕ for a

function Pϕ with polynomial growth by (A.4), we can again use (A.5) to write

〈ϕγ , β〉S′
e(R

n+1)×Se(HM ) =

∫
HM

∫
Rn

∫
R

Iγϕ(y′, yn+1, x
′, xn+1) dxn+1 dx

′ dyn+1 dy
′,

(A.9)
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where

Iγϕ(y′, yn+1, x
′, xn+1) :=

(−1)|α|

2
(γ |yn+1|)−n−1−|α| β(y′, yn+1)Pϕ(x′, xn+1)

· (Dα′
e1)

(
x′ − y′

γ |yn+1|

){
(Dαn+1F )

(
xn+1 − |yn+1|

γ |yn+1|

)
+ (Dαn+1F )

(
xn+1 + |yn+1|

γ |yn+1|

)}
.

Using (A.6), y ∈ HM , the fact that F , β, and e1 are in Se, and some basic inequalities
(e.g., (1+‖a−b‖2)−q ≤ 2q (1+‖b‖2)q (1+‖a‖2)−q, a, b ∈ Rn, q ∈ N), we may estimate

|Iγϕ(y′, yn+1, x
′, xn+1)| ≤ (Cϕ/2) (1 + ‖x‖2)κ (γ/M)−n−1−|α| |β(y′, yn+1)|

·
(

1 +
‖x′ − y′‖2

γ2 y2
n+1

)−q1
{(

1 +
(xn+1 − |yn+1|)2

γ2 y2
n+1

)−q2

+

(
1 +

(xn+1 + |yn+1|)2
γ2 y2

n+1

)−q2
}

≤ Cϕ

2

(1 + ‖x‖2)κ

(1 + ‖y‖2)q3

( γ

M

)−n−1−|α| (1 + ‖y′‖2)q1

(1 + ‖x′‖2)q1
(1 + |yn+1|2)q2
(1 + |xn+1|2)q2

[2(1 + γ2 y2
n+1)]

q1+q2

for arbitrary q1, q2, q3 ∈ N.
We see for sufficiently large q1, q2, q3 that the integrand in (A.9) is bounded by

an integrable function in (x, y) ∈ Rn+1 ×HM .
This allows us to switch the order of integration in (A.9). Since the integral in

this switched version is smooth with uniformly integrable derivatives in y ∈ HM for
x in any compact set, we can pull the Dα out of the inner integral. Finally, we use
the definition of derivative on S ′

e to prove (A.7).
To show (A.8), we let α ∈ Nn+1

0 be an arbitrary multi-index. We will prove that
Dαβγ decreases rapidly. We bring the Dα inside the integral for βγ and use estimates
as above, and we find a constant c̃γ > 0 such that

|Dαβγ(y)| ≤ c̃γ (1 + ‖y′‖2)−q1 (1 + y2
n+1)

−q2 , (y′, yn+1) ∈ Rn+1,

for arbitrary numbers q1, q2 ∈ N since β ∈ Se(HM ) and γ is fixed. Now, using similar
arguments as for the bound on |Iγϕ|, we prove assertion (A.8).

The final key is the following important convergence result.
Lemma A.3. Let eγ be defined by (A.1)–(A.3). Let β ∈ Se(HM,M ) and α ∈ Nn+1

0

be a multi-index. Assume that βγ is defined by (A.8). Then, Dαβγ → Dαβ(x)
pointwise in HM,M , and Dαβγ is uniformly bounded in (x, γ) ∈ HM,M × (0, 1).

Proof. We first use the symmetry of F to write

βγ(x) =

∫
HM,M

1

(γ |yn+1|)n+1
e1

(
x′ − y′

γ |yn+1|

)
F

((
xn+1

yn+1
− 1

)/
γ

)
β(y) dyn+1 dy

′.

(A.10)

We assume (x, y) ∈ HM,M ×HM,M and then we use the change of variables

z′ = (x′ − y′)/(|yn+1|γ), zn+1 =

(
xn+1

yn+1
− 1

)/
γ,(A.11)

and we have the following simple but important estimate:

1

M2
<

1

M |xn+1|
<

1

|γzn+1 + 1| <
M

|xn+1|
< M2.(A.12)
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Then, the integral in (A.10) becomes

βγ(x) =

∫
Rn

∫
1/|γzn+1+1|<M2

e1(z′)F (zn+1)(A.13)

· β
(
x′ − γ|xn+1|

|γzn+1 + 1|z
′,

xn+1

γzn+1 + 1

)
1

|γzn+1 + 1|dz
′dzn+1,

where the limits of integration in (A.13) are determined because 1/M < |yn+1| < M
and suppβ ⊂ Rn × [1/M,M ].

In order to subtract β(x) within the integral (A.13), we define an auxiliary func-
tion that simplifies the calculation,

bγ(x) = β(x)

∫
1/|γzn+1+1|<M2

e1(z′)F (zn+1)
1

|γzn+1 + 1| dzn+1.

We must calculate Dα[βγ − bγ ] and show this difference goes to zero as γ → 0. To do
this, we take the derivative inside the integral:

Dα[βγ(x) − bγ(x)] =

∫
Rn

∫
1/|γzn+1+1|<M2

e1(z′)F (zn+1)

·Dα
x

{
β

(
x′ − γ|xn+1|

|γzn+1 + 1|z
′,

xn+1

γzn+1 + 1

)
− β(x)

}
1

|γzn+1 + 1| dz
′ dzn+1.(A.14)

To show that (A.14) converges to zero, we must do two things:
1. We need to show for each x ∈ HM,M that the integrand in (A.14) is bounded

by an integrable function uniformly in γ ∈ (0, 1).
2. We need to show Dαβγ is bounded by an integrable function, uniformly in

γ ∈ (0, 1).
To show 1, we need to examine the derived integrand. The Dα′

x′ terms are evalu-
ated on β in both terms of (A.14) and they do not cause a problem, so we will evaluate
them first. This gives an expression

Dα
x

{
β

(
x′ − γ |xn+1|

|γ zn+1 + 1| z
′,

xn+1

γ zn+1 + 1

)
− β(x)

}

= Dαn+1
xn+1

(Dα′

x′ β)

(
x′ − γ |xn+1|

|γ zn+1 + 1| z
′,

xn+1

γzn+1 + 1

)
−Dα

xβ(x).(A.15)

However, because xn+1 appears in both coordinates of the first β in (A.15), some
of the derivatives in D

αn+1
xn+1 fall on the first coordinate. We will let δ′ = (δ1, . . . , δn)

denote a multi-index in Nn
0 . An explicit calculation shows that the integrand in (A.14)

can be written for xn+1 > 1/M > 0 as a sum of terms in which some derivatives in
xn+1 fall on the first coordinates of β and then the term in which all derivatives fall
on the last coordinate, the integrand in (A.14) becomes

e1(z′)F (zn+1)

|γ zn+1 + 1|

[ ∑
0<|δ′|≤αn+1

(
γ|δ′| (−z)δ

′

|γ zn+1 + 1||δ′| (γ zn+1 + 1)αn+1−|δ′|

(A.16)

·
(
∂αn+1−|δ′|
xn+1

Dδ′+α′

x′ β
)(

x′ − γ |xn+1|
|γ zn+1 + 1|z

′,
xn+1

γ zn+1 + 1

))

+

{
(γ zn+1 + 1)−αn+1 (Dαβ)

(
x′ − γ |xn+1|

|γ zn+1 + 1|z
′,

xn+1

γ zn+1 + 1

)
−Dαβ(x)

}]
.
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A similar formula is obtained for xn+1 < −1/M < 0.

Because 1/|γzn+1 + 1| ≤ M2, it can be seen from (A.16) that the integrand of
(A.14) can be bounded by an integrable function uniformly in γ ∈ (0, 1). Hence, an
application of Lebesgue’s dominated convergence theorem shows Dα(βγ − bγ) → 0
pointwise for x ∈ HM,M . This is valid for two reasons: the sum in (A.16) is a factor
of γ times a bounded function, and the difference in braces goes to zero as γ → 0.
Since (bγ − β) → 0 in Se(HM,M ) we thus have Dα(βγ − β) → 0 pointwise in HM,M .

A similar boundedness argument shows that Dαβγ is bounded by an integrable
function uniformly in γ ∈ (0, 1).

At last, we finish the proof of Theorem 4.1. Recall that in the statement of
this theorem, ϕ has compact support in HM,M and ϕ = DαPϕ for a function Pϕ

of polynomial growth (A.4). Thus, there are compactly supported functions ψ1(x
′)

and ψ2(xn+1) such that ψ2 is one on [−M,−1/M ] ∪ [1/M,M ] and supported in
[−2M,−1/2M ] ∪ [1/2M, 2M ] and ψ(x) = ψ1(x

′)ψ2(xn+1) is one on a neighborhood
of suppϕ. Then, ϕ = ψDαPϕ.

By Lemma A.2,

〈ϕγ , β〉S′
e(R

n+1)×Se(HM,M ) = 〈ϕ, βγ〉S′
e(HM,M )×Se(Rn+1)

= (−1)|α|
∫
HM,M

Pϕ(x)Dα
{
ψ(x)βγ(x)

}
dx.(A.17)

By the product rule for derivatives and the convergence result Lemma A.3, we
see that the derivative in (A.17) converges pointwise on any compact set in x, and
it is uniformly bounded. Therefore, we can use Lebesgue’s dominated convergence
theorem again to finish the proof of Theorem 4.1.
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Abstract. Seismic data are commonly modeled by a high-frequency single scattering approxi-
mation. This amounts to a linearization in the medium coefficient about a smooth background. The
discontinuities are contained in the medium perturbation. The high-frequency part of the wavefield in
the background medium is described by a geometrical optics representation. It can also be described
by a one-way wave equation. Based on this we derive a downward continuation operator for seismic
data. This operator solves a pseudodifferential evolution equation in depth, the so-called double-
square-root equation. We consider the modeling operator based on this equation. If the rays in the
background that are associated with the reflections due to the perturbation are nowhere horizontal,
the singular part of the data is described by the solution to an inhomogeneous double-square-root
equation.
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1. Introduction. In reflection seismology one places point sources and point re-
ceivers on the earth’s surface. The source generates acoustic waves in the subsurface,
which are reflected where the medium properties vary discontinuously. In seismic
imaging, one tries to reconstruct the properties of the subsurface from the reflected
waves that are observed. There are various approaches to seismic imaging, each based
on a different mathematical model for seismic reflection data with underlying assump-
tions. In general, seismic scattering and inverse scattering have been formulated in
the form of a linearized inverse problem for the medium coefficient in the acoustic
wave equation. The linearization is around a smoothly varying background, called
the velocity model, which is a priori also unknown.

In this paper and a companion paper [24] we study a method of seismic imaging
introduced by Clayton [6] and Claerbout [5]. The key concept in this method is the
construction of data of fictitious experiments carried out in the subsurface, at in-
creasing depths, from data observed at the earth’s surface. These so-called downward
continued data are then used for imaging the medium contrast as well as for a reflec-
tion tomographic procedure to estimate the smoothly varying background (known as
migration velocity analysis). The downward continuation approach to seismic imaging
has received much attention in the geophysical research literature, and it is currently
widely used in practice in various approximations [3, 19, 16].

The downward continuation of data is derived from the factorization of the wave
equation into two one-way wave equations. This factorization is closely connected to
the notion of wave splitting [28]. One-way wave equations, in various approximations,
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have been extensively used in applications other than seismics: for integrated optics
(see, e.g., [12]) and for underwater acoustics (see, e.g., [25, 7]).

There are basically two categories of seismic imaging methods. One category is
associated with the evolution of waves and data in time; the other is associated with
the evolution in depth (or another principal spatial direction). The first category
contains approaches known under the collective names of Kirchhoff migration [4] or
generalized Radon transform inversion, and reverse-time migration [21]; the second
category comprises the downward continuation approach. There are great compu-
tational advantages of the downward continuation approach to seismic imaging over
the Kirchhoff approaches. There are fundamental, theoretical advantages as well,
in particular with a view to the problem of estimating the smoothly varying back-
ground. These are analyzed in a separate paper [24]. For the Kirchhoff approach to
seismic imaging there is a solid mathematical theory, which treats seismic imaging
as an inverse problem and shows that singularities can be reconstructed [2, 20]. For
the downward continuation approach much research has gone into the development of
numerical one-way wave equations, but little is known from an analysis point of view.
For a constant coefficient background, the downward continuation method was cast
into an inverse problem in [1]. For the case of variable coefficients, which of course is
the case of interest in practice, there has been no such theory.

The purpose of this paper is to develop a mathematical theory for modeling
seismic reflection data in the downward continuation approach. As was done in the
analysis of Kirchhoff methods, we make use of techniques and concepts from microlocal
analysis, such as wave front set, denoted by WF(·), and Fourier integral operators;
see, e.g., [10] for background information on these concepts. We introduce the main
concepts and operators involved in the method. We then study the double-square-
root modeling operator. This modeling operator and its properties will be the point
of departure for the development of an inverse scattering theory [24].

In our notation we will distinguish the vertical coordinate z ∈ R from the hori-
zontal coordinates x ∈ Rn−1 and write (z, x) ∈ Rn. In these coordinates the scalar
acoustic wave equation with wave speed function c0(z, x) is given by

Pu = f, P = c0(z, x)−2∂2
t − ∂2

z −
n−1∑
j=1

∂2
xj
,(1.1)

where u = u(z, x, t) is the acoustic pressure. The equation is considered for t in a
time interval ]0, T [, together with an initial condition u(·, ·, 0) = 0. The solution to
(1.1) can be written as

u(z, x, t) =

∫ t

0

∫
G(z, x, t− t0, z0, x0)f(z0, x0, t0) dz0dx0dt0,(1.2)

where G is the Green’s function of (1.1). The source f can be a distribution.
To model the scattering of waves, we adopt the linearized scattering or Born

approximation. The linearization is in the wavespeed, around a smooth (C∞) back-
ground c0; for the full wavespeed function we write c = c0 + δc. The perturbation δc
may contain singularities. The perturbation in G at the acquisition surface z = 0 is
given by (see, e.g., [2])

δG(0, r, t, 0, s) =

∫
R+×Rn−1

∫ t

0

G(0, r, t− t0, z0, x0) 2c−3
0 (z0, x0)δc(z0, x0)(1.3)

× ∂2
t0G(z0, x0, t0, 0, s) dt0dz0dx0,
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where both s, r ∈ Rn−1. We assume that the acquisition manifold Y , which contains
the set of values of (s, r, t) used in the acquisition, is a bounded open subset of R2n−2×
R+. The modeled data are then a function of (s, r, t) ∈ Y given by (1.3). We define
the Born modeling map F through (1.3) as the map from δc to δG evaluated at z = 0.
Since Y is bounded and the waves propagate with finite speed we may assume that
δc is supported in a bounded open subset X of R+ × Rn−1. Furthermore, we assume
that X ∩ {z = 0} = ∅. Naturally, (1.3) is, in general, not a complete model for raw
data measured in seismic experiments. It models data that are the input for imaging
and inversion and have undergone some processing.

We summarize some results in the literature about the modeling map, F . The
solution operator (1.2) is such that singularities in the solution propagate along bichar-
acteristics. Denote by p(z, x, ζ, ξ, τ) = −c(z, x)−2τ2 + ζ2 + ‖ξ‖2 the principal symbol
of P . Propagating singularities are in the characteristic set, given by the points
(z, x, t, ζ, ξ, τ) ∈ T ∗Rn+1 with

p(z, x, ζ, ξ, τ) = −c(z, x)−2τ2 + ζ2 + ‖ξ‖2 = 0.(1.4)

The bicharacteristics are the solution curves of a Hamilton system with Hamiltonian
given by p,

d(z, x, t)

dλ
=

∂p

∂(ζ, ξ, τ)
,

d(ζ, ξ, τ)

dλ
= − ∂p

∂(z, x, t)
.(1.5)

Assuming that τ �= 0, the time t is strictly increasing or decreasing with λ and can
be used as parameter for the solution curve. To parameterize points on the solution
curves, we use the initial position (z0, x0), the take-off direction α ∈ Sn−1, the fre-
quency τ , which together define the initial cotangent vector (ζ0, ξ0) = −τc(z0, x0)

−1α,
and the time t (instead of λ). Points on the solution curves will be denoted by

η(t, z0, x0, α, τ) = (ηz(t, z0, x0, α, τ), ηx(t, z0, x0, α, τ), t,(1.6)

ηζ(t, z0, x0, α, τ), ηξ(t, z0, x0, α, τ), τ).

The variable τ is invariant along the Hamilton flow. We take t = 0 as the initial value
for t (note that (1.5) are time translation invariant).

To ensure that δG defines a continuous map from E ′(X) to D′(Rn × Rn×]0, T [)
and that the restriction of δG to Y is a Fourier integral operator we make the following
assumption on c0.

Assumption 1. There are no rays from (0, s) to (0, r) with travel time t such
that (s, r, t) ∈ Y . For all ray pairs connecting (0, r) via some (z, x) ∈ X to (0, s) with
total time t such that (s, r, t) ∈ Y , the rays intersect the plane z = 0 transversally at
r and s.

We also assume that rays from such a point (z, x) ∈ X intersect the surface z = 0
only once, because all reflections must come from the region z > 0 (the subsurface).
The first part of the assumption excludes direct rays, or a pair of incident and reflected
rays with scattering angle π. The second part of the assumption excludes rays grazing
the plane z = 0. Concerning the second part, strictly only caustics grazing the plane
z = 0 have to be excluded. In practice the wave speed near the surface is much
lower than in the interior of the earth, and waves from the interior arrive under small
angles with the vertical. So from a geophysical point of view one is only interested
in incoming rays that intersect the measurement surface transversally. We have the
following theorem. (See [10] for a general reference on Fourier integral operators.)
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Theorem 1.1 (see [20, 17]). With Assumption 1 the map F is a Fourier integral
operator E ′(X) → D′(Y ) of order (n− 1)/4 with canonical relation

(1.7){
(ηx(ts, z, x, β, τ), ηx(tr, z, x, α, τ), ts + tr, ηξ(ts, z, x, β, τ), ηξ(tr, z, x, α, τ), τ ; z, x, ζ, ξ)|
ts, tr > 0, ηz(ts, z, x, β, τ) = ηz(tr, z, x, α, τ) = 0, (ζ, ξ) = −τc0(z, x)−1(α + β),

(z, x, α, β, τ) ∈ subset of X × (Sn−1)2 × R\0
}
⊂ T ∗R2n−1

(s,r,t) × T ∗Rn
(z,x).

In this paper, we express F in terms of a depth-continuation operator, and we
study the properties of this operator. The main contributions of this paper are the
following:

(i) We define an upward continuation operator H(z, z0) using the solution op-
erators to one-way wave equations. Its adjoint will be the downward continuation
operator. Intuitively this operator maps data from a fictitious experiment carried out
at depth z0 to data from an experiment carried out at depth z, z < z0. Subject to
Assumption 2 in the main text—stating, essentially, that the rays in the background
that are associated with the reflections are nowhere tangent to horizontal—we prove
that the data Fδc are given by

∫∞
0

(. . . )H(0, z)(. . . )g(z, ·, ·, ·) dz, where the dots are
pseudodifferential factors specified below and g = g(z, s, r, t) is given by mapping
c−3
0 δc to a function E2E1(c

−3
0 δc) of (z, s, r, t) using the maps

(1.8)

E1 : D′(Rn) → D′(R2n−1) : (c−3
0 δc)(z, x) 	→ h(z, x̄, x) = δ(x− x̄)(c−3

0 δc)(z, x̄+x
2 ),

E2 : D′(R2n−1) → D′(R2n) : h(z, x̄, x) 	→ δ(t)h(z, x̄, x)

(Theorem 5.1).
(ii) We show that the operator H(z, z0) solves the initial value problem for a first-

order pseudodifferential evolution equation in depth, known as the double-square-root
(DSR) equation. The data can be identified with the solution to an inhomogeneous
DSR equation, with inhomogeneous term g (section 3). The computation of the map
from g to data and the computation of its adjoint can be done by marching in depth
using the DSR equation. This is the basis of DSR modeling and imaging methods in
geophysics.

(iii) The modeling operator can be written as the composition of a Fourier integral
operator representing depth-to-time conversion, with a locally invertible canonical
relation (Theorem 4.2) and the operator E1.

It should be mentioned that our Assumption 2 can be quite restrictive. However,
the limited aperture of seismic acquisition yields a natural cutoff so that, in general,
a large part of the observed data can be modeled with the approach presented in this
paper.

In general, the downward continuation approach results in a more complete com-
putation of the wave propagation and diffraction in the modeling of seismic reflection
data than the one based on the geometrical optics approximation underlying the
Kirchhoff approach. Fast algorithms have been designed to solve the DSR equation;
as compared with numerical algorithms solving the full wave equation, the advantage
of using the DSR equation becomes significant in space dimension 3 (and higher).

The outline of the paper is as follows. In section 2 we discuss one-way acoustic
equations. In section 3 we use these to define the upward/downward continuation
operator H, and we describe some of its properties. Section 4 contains our result on
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depth-to-time conversion. In section 5 we show that the data can be modeled using
the downward continuation method. The last section is about the relation between
our assumption and the Bolker condition that occurs in the inversion.

2. Directional decomposition, single-square-root equations. Singulari-
ties of solutions to the wave equation, which propagate with velocity with nonzero
vertical (z) component, are described by a first-order pseudodifferential evolution
equation in z. This follows from a well-known factorization argument; see, e.g., [26].
In [22] the approximation of solutions to the wave equation by solutions to an evolu-
tion equation in z is discussed. Such an equation is called a one-way wave equation
or single-square-root (SSR) equation. We summarize the structure and properties
of this one-way wave equation that we need for the upward/downward continuation
approach to seismic data processing.

To determine whether the velocity vector at some point of a ray (cf. (1.5)) is close
to horizontal, we use the angle with the vertical, defined to be in [0, π/2] and given

by tan(θ) = ‖ξ‖
|ζ| . We recall that the propagating singularities are microlocally in the

characteristic set given by (1.4). Given a point (z, x, ξ, τ) with ‖ξ‖ < c(z, x)−1|τ |,
there are two solutions ζ to (1.4), given by ζ = ±b, where b = b(z, x, ξ, τ) is defined
by

b(z, x, ξ, τ) = −τ
√
c(z, x)−2 − τ−2ξ2.(2.1)

The sign is chosen such that ζ = ±b corresponds to propagation with ±dz
dt > 0. There

is also an angle associated with (z, x, ξ, τ) given by the solution θ ∈ [0, π/2] of the
equation

sin(θ) = c(z, x)‖τ−1ξ‖.(2.2)

When this angle is smaller than π/2 along a ray segment, then the vertical velocity dz
dt

does not change sign, and the ray segment can be parameterized by z. The maximal
z-interval such that arcsin(c(z, x)‖τ−1ξ‖) < θ for given θ along the bicharacteristic
determined by the initial values (z, x,±b, ξ, τ) will be denoted by

]zmin,±, zmax,±[=]zmin,±(z, x, ξ, τ, θ), zmax,±(z, x, ξ, τ, θ)[;(2.3)

see also Figure 1. Furthermore, we define a set

Iθ = {(z, x, t, ζ, ξ, τ) | arcsin(c(z, x)‖τ−1ξ‖) < θ, |ζ| < C|τ |},(2.4)

where C is some constant that is everywhere larger than c(z, x)−1.

The SSR equation. To obtain a one-way wave equation, the wave equation is
written as the following first-order system in z:

∂

∂z

(
u
∂u
∂z

)
=

(
0 1

−A(z, x,Dx, Dt) 0

)(
u
∂u
∂z

)
+

(
0
f

)
,(2.5)

where Dx = −i ∂
∂x , Dz = −i ∂

∂z , and A(z, x,Dx, Dt) = c0(z, x)−2D2
t − D2

x. Then
the system is transformed by using a family of matrix pseudodifferential operators
Q(z) = Q(z, x,Dx, Dt) with(

u+

u−

)
= Q(z)

(
u
∂u
∂z

)
,

(
f+

f−

)
= Q(z)

(
0
f

)
.(2.6)
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zmin zmax

1τ ξarcsin(c(z,x)||  -     ||)

z

θ

0

Fig. 1. Definition of zmin,± and zmax,±, which give the maximal interval where
arcsin(c(z, x)‖τ−1ξ‖) is in the interval [0, θ]. Here, (z, x, ξ, τ) lies on a bicharacteristic.

The functions (u+, u−) satisfy a pseudodifferential system of equations. Let θ2 < π/2
be a given angle. (In the next subsection we need another angle, θ1, with 0 < θ1 <
θ2 < π/2, hence the subscript 2.) With suitably chosen Q it is shown in [22] that the
system that results from applying the transformation (2.6) to (2.5) is diagonal on Iθ2 .
It then follows that (2.5) is equivalent to two equations of the form(

∂

∂z
− iB±(z, x,Dx, Dt)

)
u± = f±,(2.7)

microlocally on Iθ2 . These are called the one-way wave or SSR equations. The princi-
pal part of B± is equal to ±b, while its subprincipal part depends on the normalization
of Q(z). We choose the normalization such that B± are self-adjoint and Q satisfies

Q(z, x, ξ, τ) = 1
2

(
a1/4 −i sgn(τ)a−1/4

a1/4 i sgn(τ)a−1/4

)
+ order

(
− 1

2 − 3
2

− 1
2 − 3

2

)
,

Q(z, x, ξ, τ)−1 =

(
a−1/4 a−1/4

i sgn(τ)a1/4 −i sgn(τ)a1/4

)
+ order

(
− 3

2 − 3
2

− 1
2 − 1

2

)(2.8)

with a = a(z, x, ξ, τ) = c0(z, x)−2τ2 − ξ2.
It appears that only two components of Q(z) and Q(z)−1 are needed in the anal-

ysis. To clarify this, we first observe that multiplication by i sgn(τ) in the frequency
domain corresponds to the application of a Hilbert transform with respect to the time
variable, which we denote by H. Next, we use the relation between Q(z)∗ and Q(z)−1,(

1 0
0 −1

)
Q(z)−1∗ = 2Q(z)

(
0 −H
H 0

)
,

shown to hold microlocally in [22, (59)]. (This relation also appears in [8, (II.49)].)
We let

Q+ = Q+(z, x,Dx, Dt) = 2Q1,2H, Q− = Q−(z, x,Dx, Dt) = −2Q2,2H,

where we choose a convenient normalization such that both Q± have principal symbol
a1/4. It follows with these definitions that

u = Q∗
+u+ + Q∗

−u−,(2.9)

f± = ∓ 1
2HQ±f.(2.10)
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The above procedure does not prescribe the symbol of the operator B− for
arcsin(c(z, x)‖τ−1ξ‖) > θ2. We will assume that B− is a first-order family of pseu-
dodifferential operators with real homogeneous principal symbol. This implies that
the evolution problem (2.7) has well-defined solutions satisfying energy estimates.

Propagation of singularities and introduction of a microlocal cutoff.
Here, we discuss how the wave field is approximated by solutions of (2.7). This ap-
proximation is valid microlocally on part of the cotangent bundle T ∗Rn+1

(z,x,t). We

consider the approximation of upward traveling waves using the equation for u−,
where we assume that there are only upward traveling singularities at depth z0, hence
u+(z0, ·) ∈ C∞. The treatment of downward traveling waves using the equation for
u+ is analogous.

Consider the initial value problem for P0,−
def
= ∂z − iB−,

P0,−u− = 0, z < z0, Q∗
−u−(z0, ·) = u(z0, ·).(2.11)

Let J−(z0, θ) be defined by

J−(z0, θ) = {(z, x, t, ζ, ξ, τ) ∈ Iθ | τ−1ζ > 0 and zmax,−(z, x, ξ, τ, θ) ≥ z0}.(2.12)

The solutions to (2.11) agree with the solutions to the original wave equation mi-
crolocally on the set J−(z0, θ2) in the following way. Suppose that WF(u) ∩ {z =
z0, τ

−1ζ < 0} = ∅ (i.e., at depth z0 all singularities are propagating in the − di-
rection), and let u− be a solution to (2.11); then it follows from the propagation of
regularity/propagation of singularities result that

u ≡ Q∗
−u−(2.13)

microlocally on the set J−(z0, θ2) [22]. Here, we say that u ≡ v microlocally on a set
Γ ⊂ T ∗Rn if WF(u− v) ∩ Γ = ∅.

The solutions to (2.11) have propagating singularities, also in the part of the phase
space where arcsin(c(z, x)‖τ−1ξ‖) ≥ θ2, but there the singularities of the solution
are in general incorrect in the sense that they do not correspond to solutions of the
original wave equation. For such singularities we introduce a pseudodifferential cutoff.
Let θ1 be given with 0 < θ1 < θ2. We assume we have a pseudodifferential cutoff
ψ1 = ψ1(z, z0, x,Dx, Dt) with symbol satisfying

ψ1(z, z0, x, ξ, τ) ∼ 1 on J−(z0, θ1),(2.14)

ψ1(z, z0, x, ξ, τ) ∈ S∞ outside J−(z0, θ2), if z − z0 > δ > 0.(2.15)

Then we have

ψ1u ≡ ψ1Q
∗
−u−.(2.16)

We reformulate this result in terms of the solution operators, the propagators.
By G0,−(z, z0) we will denote the solution operator to the evolution problem (2.11),
defined to map u−(z0, ·) to u−(z, ·). We assume that the full one-way propagator is
then given by

G−(z, z0) = ψ1(z, z0)G0,−(z, z0).(2.17)
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Here, we let z < z0. This can also be written as a pseudodifferential cutoff applied
prior to G0,−. We denote this different cutoff also by ψ1 but with the order of z, z0

interchanged, so that

G−(z, z0) = G0,−(z, z0)ψ1(z0, z).(2.18)

In this paper this is all we need to know about the pseudodifferential cutoff ψ1.
But it raises the question of an explicit recipe for computing ψ1: Can it, for example,
be computed with a modified evolution equation in depth? This is indeed the case.
It was established in [22, 23] that such a pseudodifferential cutoff can be generated
by adding a dissipative term to P0,−. Instead of P0,− one considers the operator

P− = ∂z − iB±(z, x,Dx, Dt) − C(z, x,Dx, Dt)(2.19)

with C a first-order pseudodifferential operator with homogeneous, nonnegative real
principal symbol, satisfying certain conditions. The operator ψ1(z, z0) is then a (z, z0)-
family of pseudodifferential operators with symbol in S0

ρ,1−ρ(R
n ×Rn), such that the

derivatives ∂j+kψ1

∂zj
0∂

k
z

are in S
(j+k)(1−ρ)
ρ,1−ρ (Rn×Rn) for z �= z0, where ρ can be any number

satisfying 1
2 < ρ < 1 (see [23]). For the theory of such operators, see, e.g., [27, 14].

Let the elements (z, x, t, ζ, ξ, τ) of the wave front set of f be such that τ−1ζ > 0
(corresponding to propagation direction ∂z

∂t < 0). Consider u− defined by

u−(z, ·) =

∫ ∞

z

G−(z, z0)

(
1

2
HQ−(z0)

)
f(z0, ·) dz0,(2.20)

assuming also that f = 0 on a neighborhood of the plane given by z. We have that
Q∗

−u−(z, ·) ≡ u(z, ·), where u is the solution to (1.1) with f replaced by (ψ1(z0, z) −
Q−1

− [Q−, ψ1(z0, z)])f . Here the square brackets denote a commutator.
We use the notation γ(z, z0, x0, t0, ξ0, τ) for the bicharacteristic of P0,− parame-

terized by z. In components we write them as (note that they are time translation
invariant)

γ(z, z0, x0, t0, ξ0, τ) = (z, γx(z, z0, x0, ξ0, τ), γt(z, z0, x0, ξ0, τ) + t0,(2.21)

− b(z, γx, γξ, τ), γξ(z, z0, x0, ξ0, τ), τ).

Properties of G−. The operator G−(z, z0) is a Fourier integral operator with
canonical relation

{(γx, t0 + γt, γξ, τ ;x0, t0, ξ0, τ)} ⊂ T ∗Rn × T ∗Rn,(2.22)

where γx = γx(z, z0, x0, ξ0, τ) and the same for γt, γξ as in (2.21).
The operators B± are self-adjoint. It follows that G0,−(z, z0) is unitary. But then

G−(z, z0)
∗G−(z, z0) = ψ1(z0, z)

∗ψ1(z0, z),(2.23)

and G−(z, z0)
∗G−(z, z0) is one microlocally where ψ1(z0, z) is one.

Numerical methods for one-way wave propagation are described, e.g., in [9] and
[13] and in the references given in those papers.

3. Downward/upward continuation and the DSR equation. In this sec-
tion we construct the data downward/upward continuation operator, and we establish
some of its properties.
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Data model. In preparation of the downward/upward continuation approach to
seismic data modeling, we rewrite (1.3) in the form

δG(0, r, t, 0, s) =

∫
Rn−1×R+

∫
Rn−1

∫ t

−∞

∫
R+

G(0, r, t− t0, z, x)(3.1)

× 2∂2
t0R(z, x, x̄, t0 − t̄0)

×G(z, x̄, t̄0, 0, s) dt̄0 dt0 dx̄dxdz,

where

R(z, x, x̄, t0) = δ(t0)δ(x− x̄)

(
δc

c30

)(
z,

x̄ + x

2

)
(3.2)

so that

R = E2E1c
−3
0 δc(3.3)

with the definitions in (1.8). Changing variables of integration, i.e., t0 	→ t′0 = t0 − t̄0,
(3.1) can be written in the form of an integral operator acting on the distribution R,

δG(0, r, t, 0, s) =

∫
R+

{∫
R

∫
Rn−1

∫
Rn−1

(∫
R+

G(0, r, t− t′0 − t̄0, z, x)(3.4)

×G(z, x̄, t̄0, 0, s) dt̄0

)

× 2∂2
t′0
R(z, x, x̄, t′0) dx̄dxdt′0

}
dz,

in between the braces, the contributions of which are integrated over depth z.
Using the reciprocity relation of the time-convolution type for the Green’s func-

tion, we arrive at the integral representation

δG(0, r, t, 0, s) =

∫
R+

{∫
Rn−1

∫
Rn−1

∫
R

(∫ t−t0

0

G(0, r, t− t0 − t̄0, z, x)(3.5)

×G(0, s, t̄0, z, x̄) dt̄0

)

× 2∂2
t0R(z, x, x̄, t0) dx̄dxdt0

}
dz.

Upon substituting (3.3) into this representation we obtain a mapping δc(z, x) →
δG(0, r, t, 0, s) as encountered in Theorem 1.1. The associated operator kernel appears
to propagate singularities from two different scattering points, x̄ and x, at each depth
z, to the surface at z = 0.

To arrive at an upward continuation formulation of data modeling, the idea is to
substitute in (3.5) for the Green’s functions their upward propagating constituents.
Thus we replace these Green’s functions in accordance with (2.9), (2.10), using only
the u− constituent. So, for the Green’s functions G(z, x, t − t0, z0, x0) in (3.5) we
substitute the kernel of the operator

1

2
HQ∗

−(z, x,Dx, Dt)G−(z, z0)Q−(z0, x0, Dx0 , Dt0),(3.6)
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viewed as a function of (z, x, t, z0, x0, t0). Naturally, a time convolution of two one-
way Green’s functions appears. This is the motivation of the definition, by its kernel,
of an operator H(z, z0), z < z0 on functions of (s, r, t),

(H(z, z0))(s, r, t, s0, r0, t0)(3.7)

=

∫
R

(G−(z, z0))(s, t− t0 − t̄0, s0)(G−(z, z0))(r, t̄0, r0) dt̄0.

Here (G−(z, z0))(r, t̄0, r0, 0) denotes the distribution kernel of G−(z, z0), and (H(z, z0))
(s, r, t, s0, r0, t0) denotes the distribution kernel of H(z, z0).

As an alternative formulation, we can write the operator H(z, z0) as the compo-
sition of two operators obtained by a tensor product. We recall that if ψ1, ψ2 are two
operators with kernels Kψ1

(x, x̄), Kψ2(y, ȳ), then their tensor product ψ1 ⊗ ψ2 has
kernel given by the product Kψ1(x, x̄)Kψ2(y, ȳ) and maps functions of (x̄, ȳ) to func-
tions of (x, y). We denote the identity operator acting on functions of s by Ids and
similarly for Idr. If ψ is an operator acting in the (x, t) variables, then we will write
ψs, ψr for the operator acting in the (s, t) variables or the (r, t) variables, respectively.
Then we can also write (3.7) as

H(z, z0) = (Ids ⊗G−,r(z, z0)) ◦ (G−,s(z, z0) ⊗ Idr).(3.8)

Since the tensor product of two operators is a well-defined operator, this shows that
H(z, z0) is well defined. If ψ is an operator on functions of (x, t), then we will often
simply write ψs instead of ψs ⊗ Idr. The map H(z, z0), z < z0, is the upward
continuation operator.

If ψ1 and ψ2 are operators on functions of (x, t) and are time translation invariant,
then ψ1,s and ψ2,r commute, which can be derived by writing out the distribution
kernel of the compositions. The factors G−,s and G−,r can be written as compositions
ψ1,sG0,−,s, G0,−,sψ1,s (and similarly for r) using (2.17), (2.18). It follows that the
operator H can be written as a composition ψ2(z, z0)H0(z, z0), where H0 is given by
(3.7) with G− replaced by G−,0 and ψ2(z, z0) = ψ1,s(z, z0)ψ1,r(z, z0). The operator
ψ2(z, z0) is pseudodifferential with symbol

ψ2(z, z0, s, r, σ, ρ, τ) = ψ1(z, z0, s, σ, τ)ψ1(z, z0, r, ρ, τ).(3.9)

We can also write H(z, z0) = H0(z, z0)ψ2(z0, z) with ψ2 defined by (3.9) as well, but
with z, z0 interchanged.

Replacing both source and receiver Green’s functions, the result is the replacement
of the integral in the parentheses of (3.5) by − 1

4Q
∗
−,s(0)Q∗

−,r(0)H(0, z)Q−,s(z)Q−,r(z),
where we denote Q−,s(z) = Q−(z, s,Ds, Dt), and similarly for Q−,r(z). Therefore,
we define the DSR modeling operator as

FDδc = Q∗
−,s(0)Q∗

−,r(0)

∫ Z

0

H(0, z)Q−,s(z)Q−,r(z)
1
2D

2
t (E2E1c

−3
0 δc)(z, ·, ·, ·)dz,

(3.10)

where Z is some large number such that supp(δc) is contained in ]0, Z[×Rn−1.
In Theorem 5.1 we will show that, in general, FD differs from F by a pseudodif-

ferential cutoff and that under a certain assumption FD models the singular part of
the data. We first derive some important properties of H.



1398 CHRISTIAAN C. STOLK AND MAARTEN V. DE HOOP

The DSR equation. It follows from differentiating expression (3.8) for H with
respect to z, using the fact that B−(z, r,Dr, Dt) and G−,s(z, z0) commute, that the
operator H0(z, z0) is a solution operator for the Cauchy initial value problem for the
so-called DSR equation, given by(

∂

∂z
− iB−(z, s,Ds, Dt) − iB−(z, r,Dr, Dt)

)
u = 0.(3.11)

Using Duhamel’s principle (cf. (1.2)), it follows that

u(z, s, r, t) =

∫ Z

z

(H(z, z0)g(z0, ·, ·, ·))(s, r, t) dz0(3.12)

solves the inhomogeneous DSR equation,

(3.13)(
∂

∂z
− iB−(z, s,Ds, Dt) − iB−(z, r,Dr, Dt) − C(z, s,Ds, Dt) − C(z, r,Dr, Dt)

)
u

= g(z, s, r, t), 0 ≤ z < Z,

with zero initial condition, u(Z, s, r, t) = 0. It follows from (3.10) that FDδc is given by
Q∗

−,s(0)Q∗
−,r(0) acting on the solution u at z = 0 of an inhomogeneous DSR equation

with

g = Q−,s(z)Q−,r(z)
1
2D

2
tR(3.14)

and Z such that δc is supported in 0 < δ < z < Z as before.
The bicharacteristics associated with (3.13) are, in the notation of (2.21), given

by

(3.15) Γ(z, z0; s0, r0, t0, σ0, ρ0, τ) = (γx(z, z0, s0, σ0, τ), γx(z, z0, r0, ρ0, τ), t0

+ γt(z, z0, s0, σ0, τ) + γt(z, z0, r0, ρ0, τ), γξ(z, z0, s0, σ0, τ), γξ(z, z0, r0, ρ0, τ), τ).

They are defined on the intersection of the maximal intervals associated with
source ray coordinates (z, s, σ, τ) and receiver ray coordinates (z, r, ρ, τ); let θ be
given as in the previous section. The intersection will be denoted by ]Zmin, Zmax[=
]Zmin(z, s, r, σ, ρ, τ, θ), Zmax(z, s, r, σ, ρ, τ, θ)[, where we have

Zmin(z, s, r, σ, ρ, τ, θ) = max(zmin,−(z, s, σ, τ, θ), zmin,−(z, r, ρ, τ, θ)),(3.16)

Zmax(z, s, r, σ, ρ, τ, θ) = min(zmax,−(z, s, σ, τ, θ), zmax,−(z, r, ρ, τ, θ)).(3.17)

Let g(z, s, r, t) be supported in the set 0 < δ < z < Z. As mentioned, the map
g 	→ u given by (3.12) maps g to the solution of the inhomogeneous DSR equation
(3.13) at z = 0. Motivated by (3.10), we define an operator L by modifying (3.12)
with pseudodifferential factors Q−,s, Q−,r and setting z = 0 as follows:

Lg = Q∗
−,s(0)Q∗

−,r(0)

∫ Z

0

H(0, z)Q−,s(z)Q−,r(z)g(z, ·, ·, ·) dz.(3.18)

Our next result states that H and L are Fourier integral operators and gives a
representation of the kernel of H as an oscillatory integral. Consider the following set:

{(Γ(0, z, s, r, t, σ, ρ, τ); z, s, r, t,−b(z, s, σ, τ) − b(z, r, ρ, τ), σ, ρ, τ) |(3.19)

(s, r, t, σ, ρ, τ) ∈ T ∗R2n−1
(s,r,t), 0 > Zmin(z, s, r, t, σ, ρ, τ, θ2)}.
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As will be clear from the proof below, this set is a canonical relation. Let y0 =
(s0, r0, t0), η0 = (σ0, ρ0, τ). A convenient choice of phase function for the canonical
relation is described by Maslov and Fedoriuk [18]. They state that one can always
use a subset of the cotangent vector components as phase variables. There is always
a set of local coordinates for the canonical relation of the form

(z, y0I , η0J , s, r, t),(3.20)

where I ∪ J is a partition of {1, . . . , 2n− 1}. It follows from Theorem 4.21 in Maslov
and Fedoriuk [18] that there is a function S = S(z, y0I , η0J , s, r, t), such that locally
the canonical relation (3.19) is given by

y0J = − ∂S

∂η0J
, ζ =

∂S

∂z
,(3.21)

η0I =
∂S

∂y0I
, (σ, ρ, τ) = − ∂S

∂(s, r, t)
.(3.22)

Here we take into account the fact that we have a canonical relation, which introduces
a minus sign for (σ, ρ, τ).

Lemma 3.1. H(z, z0) is a Fourier integral operator with canonical relation

(3.23) {(Γ(z, z0, s, r, t, σ, ρ, τ); s, r, t, σ, ρ, τ) |
(s, r, t, σ, ρ, τ) ∈ T ∗R2n−1

(s,r,t)\0, z0 > Zmin(z, s, r, t, σ, ρ, τ, θ2)}.

The operator L is a Fourier integral operator with canonical relation (3.19). The
kernel of H(0, z) admits microlocally an oscillatory integral representation with phase
variables η0J , given by

(3.24) (H(0, z))(s0, r0, t0, s, r, t)

= (2π)−(2n−1+|I|)/2
∫

A(z, y0, η0J , s, r, t) exp[i(S(z, y0I , η0J , s, r, t)+〈η0J , y0J〉)] dη0J

such that the principal part a of the amplitude A satisfies

|a(z, y0, η0J , s, r, t)| =

∣∣∣∣ ∂(σ, ρ, τ)

∂(y0I , η0J)

∣∣∣∣
1/2

(3.25)

with

(σ(z, y0I , η0J , s, r, t), ρ(z, y0I , η0J , s, r, t), τ(z, y0I , η0J , s, r, t))(3.26)

= − ∂S

∂(s, r, t)
(z, y0I , η0J , s, r, t)

in accordance with (3.22).

Proof. The operators G−,s(z, z0) and G−,r(z, z0) are Fourier integral operators as
noted at the end of section 2 (subject to the substitution of x by s or r, respectively).
We consider G−,s(z, z0). Locally there are Maslov phase functions for its canonical
relation (cf. (2.22)), similar to the one described above, here with phase variables
(τ, σ0J′), where I ′ ∪ J ′ is a partition of {1, . . . , n − 1}. Thus G−,s(z, z0) is a locally
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finite sum
∑

j G
(j)
−,s(z, z0), where the kernels of G

(j)
−,s(z, z0) admit oscillatory integral

representations of the form

(3.27) (G
(j)
−,s(z, z0))(s, t, s0)

=

∫
A′(s, s0, σ0,J ′ , τ) exp[i(S′(z, z0, s, s0I′ , σ0J′ , τ) − 〈σ0J′ , s0J′〉 − τt)]dσ0J′dτ.

We denote the canonical relation of G
(j)
−,s(z, z0) by Λ

(j)
s (cf. (2.22)). Similarly, we have

G−,r(z, z0) =
∑

k G
(k)
−,r(z, z0) in which the kernels of G

(k)
−,r(z, z0) admit oscillatory

integral representations of the above type with phase variables (τ, ρ0J′′), amplitude
A′′, and phase function S′′(z, z0, r, r0I′′ , ρ0J′′ , τ) − 〈ρ0J′′ , r0J′′〉 − τt. We denote the

canonical relation of G
(k)
−,r(z, z0) by Λ

(k)
r . But then the kernel of H(z, z0) is given

by a sum
∑

j,k H
(j,k)(z, z0). Entering expressions of the type (3.27) for G

(j)
−,s(z, z0)

and G
(k)
−,r(z, z0) into (3.7), and performing the t̄0 integration, we find the following

expression for the kernel of H(j,k)(z, z0):

(3.28) (H(j,k)(z, z0))(s, r, t, s0, r0, t0) =

∫
2πA′(s, s0, σ0,J ′ , τ)A′′(r, r0, ρ0,J ′′ , τ)

× exp[i(S′(z, z0, s, s0I′ , σ0J′ , τ) − 〈σ0J′ , s0J′〉
+ S′′(z, z0, r, r0I′′ , ρ0J′′ , τ) − 〈ρ0J′′ , r0J′′〉 − τt)] dσ0J′ dρ0J′′ dτ.

It is not difficult to verify that −i times the argument in the exponent is a nonde-
generate phase function. Because A′ and A′′ are symbols supported inside a region
with ‖σ‖ < C|τ | and ‖ρ‖ < C|τ | it follows that A′A′′ is a symbol and that (3.28)
is a Fourier integral operator. From the phase function it follows that the canonical
relation of H(j,k)(z, z0) is given by the points

(s, r, t0 + t1 + t2, σ, ρ, τ ; s0, r0, t0, σ0, ρ0, τ)

with

(s, t1, σ, τ ; s0, 0, σ0, τ) ∈ Λ(j)
s and (r, t2, ρ, τ ; r0, 0, ρ0, τ) ∈ Λ(k)

r .

Taking the union over (j, k) results in (3.23).

Using (3.18) and the fact that H is given by a sum of terms of the form (3.28),
it also follows that L is a Fourier integral operator with canonical relation (3.19), as
usual for the solution operators of first-order hyperbolic equations.

The phase function S(z, y0I , η0J , s, r, t)−〈η0J , y0J〉), with S as described in (3.21)–
(3.22), describes locally the canonical relation of H(0, z). Therefore the kernel of
H(0, z) has microlocally an oscillatory integral representation of the form

(3.29) (H(0, z))(y0, s, r, t) = (2π)−(2n−1+|I|)/2

×
∫

A(z, y0, η0J , s, r, t) exp[i(S(z, y0I , η0J , s, r, t) + 〈η0J , y0J〉)] dη0J .

Then the adjoint H(0, z)∗ has amplitude A(z, y0, η0J , s, r, t) and phase −S(z, y0I , η0J ,
s, r, t) − 〈η0J , y0J〉. Hence, the kernel of the composition H(0, z)∗H(0, z) has the
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oscillatory integral representation

(3.30) (2π)−(2n−1)

∫
A(z, y0, η0J , s′, r′, t′)A(z, y0, η0J , s, r, t)

× exp(i[−S(z, y0I , η0J , s
′, r′, t′) + S(z, y0I , η0J , s, r, t)]) dy0Idη0J .

We expand the phase as a function of (s′, r′, t′) in a Taylor series about (s, r, t) and
identify the gradient

(3.31) − ∂S

∂(s, r, t)
(z, y0I , η0J , s, r, t)

= (σ(z, y0I , η0J , s, r, t), ρ(z, y0I , η0J , s, r, t), τ(z, y0I , η0J , s, r, t)).

Applying a change of variables, (y0I , η0J) 	→ (σ, ρ, τ), the phase takes the form

〈(σ, ρ, τ), (s′ − s, r′ − r, t′ − t)〉.(3.32)

In the text preceding (2.23) it was noted that G0,−(z, z0) is unitary. It follows using
(3.8) that H0(z, z0) is also unitary. Therefore, the operator H(0, z)∗H(0, z) must be
a pseudodifferential operator (in (s, r, t)) with symbol 1 in the set of (s, r, t, σ, ρ, τ),
where ψ2 is equal to 1. We conclude that the principal part a of the amplitude A is
given by

|a(z, y0, η0J , s, r, t)| =

∣∣∣∣ ∂(σ, ρ, τ)

∂(y0I , η0J)

∣∣∣∣
1/2

.(3.33)

4. Depth-to-time conversion. For h = h(z, s, r) we consider the mapping

K : h 	→ Q∗
−,s(0)Q∗

−,r(0)

∫ Z

0

H(0, z)Q−,s(z)Q−,r(z)(E2h)(z, ·, ·, ·)dz;(4.1)

we have K = LE2 (cf. (3.18)). The DSR modeling operator (cf. (3.10)) is then given
by

FDδc =
1

2
D2

tKE1c
−3
0 δc.(4.2)

This factorization is exploited in seismic applications such as imaging.
First we make the following observation. We use the notation Θ = Θ(z, s, r, σ, ρ, τ)

for the sum −b(z, s, σ, τ)− b(z, r, ρ, τ) appearing in the canonical relation (3.19) of L,

Θ(z, s, r, σ, ρ, τ) = −b(z, s, σ, τ) − b(z, r, ρ, τ).(4.3)

Because of expression (2.1) the map τ 	→ ζ = Θ is strictly monotone when Θ is real.
Taking as domain only the τ where the two square roots are real, we find the following
lemma. The inverse of this map will be denoted by Θ−1.

Lemma 4.1. Suppose (z, s, r, σ, ρ) are given, let c = max(c(z, s)‖σ‖, c(z, r)‖ρ‖),
and let d =

√
|σ2 c(z,s)2

c(z,r)2 − ρ2| if c(z, s)‖σ‖ ≥ c(z, r)‖ρ‖ and d =
√
|ρ2 c(z,r)2

c(z,s)2 − σ2|
otherwise. The map τ 	→ Θ(z, s, r, σ, ρ, τ) is a diffeomorphism ] −∞,−c[∪ ]c,∞[ →
] −∞,−d[∪ ]d,∞[.

The maximal depth Zmax associated with (z, s, r, σ, ρ, τ, θ) also has an associated
maximal time, given by

Tmax(z, s, r, σ, ρ, τ, θ) = −Γt(Zmax(z, s, r, σ, ρ, τ, θ), s, r, σ, ρ, τ).(4.4)
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We define a subset Ωθ of T ∗R2n−1
(s,r,t), such that t is bounded by Tmax,

Ωθ = {(s, r, t, σ, ρ, τ) | 0 < t < Tmax(0, s, r, σ, ρ, τ, θ)}.(4.5)

We have the following result about K.
Theorem 4.2. The operator K is microlocally a Fourier integral operator with

canonical relation consisting of a set of points,

(4.6) {(Γ(0, z, s, r, 0, σ, ρ, τ); z, s, r,Θ(z, s, r, σ, ρ, τ), σ, ρ) |
z, s, r, σ, ρ, τ ∈ R4n−2, 0 < Zmin(z, s, r, σ, ρ, τ, θ2)}.

This canonical relation is the graph of an invertible map Σ:

{(z, s, r, ζ, σ, ρ) | 0〈z, 0〉Zmin(z, s, r, σ, ρ,Θ−1(z, s, r, ζ, σ, ρ), θ2)} → Ωθ2 .(4.7)

The map K converts depth to time, which is indeed the way seismologists often
look at modeling.

Proof. The operator K is the composition of (3.18) and E2. The first is a Fourier
integral operator with canonical relation given by (3.19). The operator E2 is a Fourier
integral operator with canonical relation given by

{(z, s, r, 0, ζ, σ, ρ, τ ; z, s, r, ζ, σ, ρ) | (z, s, r, ζ, σ, ρ) ∈ T ∗R2n−1
(z,s,r)\0, τ ∈ R\{0}}.(4.8)

In general, the composition of two canonical relations Λ1 ⊂ T ∗(X × Y )\0, Λ2 ⊂
T ∗(Y × Z)\0, X,Y, Z open subsets of RnX ,RnY , respectively, RnZ , is said to be
transversal if

Λ1 × Λ2 intersects T ∗X × (diag T ∗Y ) × T ∗Z transversally.

In the particular case of the canonical relations of L and E2, their composition is
transversal if at the solution τ of

−bs − br = ζ(4.9)

we have dΘ
dτ �= 0; see, e.g., Theorem 2.4.1 in [10]. Because by the previous lemma this

is the case, it then follows that the composition LE2, hence K, is a Fourier integral
operator. The composition of the canonical relations is equal to (4.6).

The canonical relation of K is parameterized by (z, s, r, σ, ρ, τ) in a subset of
R4n−2. To show that it is invertible we must show that the projections of (4.6) on
the two sets given in (4.7) are both diffeomorphisms. By the previous lemma this
is clear for the projection on the right-hand side of (4.7). For the projection on the
left-hand side of (4.7) it follows from Lemma 25.3.6 of [15] and the fact that the right
projection has maximal rank that the linearization of this projection is invertible.
Thus it remains to be shown that the equation

(s0, r0, t0, σ0, ρ0, τ0) = Γ(0, z, s, r, 0, σ, ρ, τ)(4.10)

determines a unique point (z, s, r, σ, ρ, τ) when (s0, r0, t0, σ0, ρ0, τ0) is in Ωθ2 , the
right-hand side of (4.7). The point (s0, r0, t0, σ0, ρ0, τ0) determines a DSR bichar-
acteristic Γ(z, 0, s0, r0, t0, σ0, ρ0, τ0). The t component will be denoted here by Γt =
t0 − γt(z, 0, s0, σ0, τ) − γt(z, 0, r0, ρ0, τ). We have a solution to (4.10) if and only if

Γ(z, 0, s0, r0, t0, σ0, ρ0, τ0) − (s, r, 0, σ, ρ, τ) = 0.(4.11)
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In particular, we have that Γt(z, 0, s0, r0, t0, σ0, ρ0, τ0) = 0. Because Γt depends
strictly monotonically on z, this equation uniquely determines z. The other equa-
tions uniquely determine s, r, σ, ρ, τ . If z < Zmax(0, s0, r0, σ0, ρ0, τ), then there is a
DSR bicharacteristic connecting (s0, r0, t0, σ0, ρ0, τ) at depth 0 with (s, r, t, σ, ρ, τ) =
Γ(z, 0, s, r, t0, σ, ρ, τ) at depth z; hence it follows that then 0 > Zmin(z, s, r, σ, ρ, τ),
and vice versa. So using definition (4.4) this point (z, s, r, σ, ρ, τ) is such that 0 >
Zmin(z, s, r, σ, ρ, τ, θ2) precisely when t < Tmax(0, s0, r0, σ0, ρ0, τ0, θ2). This completes
the proof of the theorem.

5. Modeling in the single-scattering approximation. The replacement of
the wave equation Green’s function by a pair of one-way Green’s functions leads to a
cutoff in the modeling of the scattered wave field. To describe when all the singularities
of the data are modeled by the DSR method, we need the following assumption. We
use some angle θ, 0 < θ < π/2, with the vertical as introduced in section 2.

Assumption 2 (DSR assumption). If (z, x) ∈ X and α, β ∈ Sn−1, ts, tr > 0
depending on (z, x, α, β) are such that ηz(ts, z, x, β, τ) = ηz(tr, z, x, α, τ) = 0, then

c(z, x)−1 ∂ηz
∂t

(t, z, x, β, τ) < − cos(θ), t ∈ [0, ts],(5.1)

c(z, x)−1 ∂ηz
∂t

(t, z, x, α, τ) < − cos(θ), t ∈ [0, tr].(5.2)

It is clear that this assumption is stronger than Assumption 1. In general the set
of rays violating this assumption is not small, but it can contain an open subset of
the canonical relation (1.7), depending on the properties of the background medium.
This limits the applicability of the method discussed here, which however is still useful
in many cases, as discussed in the introduction.

In the following theorem we give the DSR modeling formula, and we give the
result in terms of a cutoff acting on Fδc. The symbol ψ2(0, z, s, r, 0, σ, ρ, τ) can be
pulled back to a symbol that is a function of (s, r, t, σ, ρ, τ) by the inverse of the map
Σ given by (4.6), (4.7).

Theorem 5.1. If Assumption 2 is satisfied with θ = θ1, then FDδc ≡ Fδc.
There is a pseudodifferential operator ψD = ψD(s, r, t,Ds, Dr, Dt) with principal sym-
bol given by the pull back mentioned just above of ψ2, that is, 1 on Ωθ1 , and is in S−∞

outside Ωθ2 , such that

FDδc ≡ ψDFδc.(5.3)

Proof. We reconsider the modeling operator F of Theorem 1.1 and use its de-
scription by (3.5). In this proof, we denote by Gs the map from a function f(z, s, t)
to (Gsf)(z, s, t) =

∫
R×Rn−1×R

G(z, s, t− t0, z0, s0)f(z0, s0, t0) dz0ds0dt0; cf. (1.2). Mo-
tivated by (3.5) and the introduction of H in (3.8), we consider the operator M =
(Idr ⊗Gs)◦ (Gr⊗ Ids), which maps functions of (zs, zr, s, r, t) to functions of (zs, zr, s,
r, t). In our application, we consider M as a map of functions in z > δ to functions on
a small neighborhood of zs = 0, zr = 0. By an argument similar to the first part of the
proof of Lemma 3.1, it follows that M is a Fourier integral operator, with canonical
relation consisting of a set of points

{(ηz,s, ηz,r, ηx,s, ηx,r, t + ts + tr, ηζ,s, ηζ,r, ηξ,s, ηξ,r, τ ; zs, zr, s, r, t, ζs, ζr, ρ, σ, τ)},
(5.4)
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where (ζs, σ) = −τc(zs, s)
−1β, (ζr, ρ) = −τc(zr, r)

−1α, ηz,s = ηz(ts, zs, s, β, τ), and
similar for the other components, and for the r-components, cf. (1.6); α, β ∈ Sn−1 as
in Theorem 1.1.

Denote by R4(z) the restrictions to zs = z and zr = z of functions f(zs, zr, s, r, t)
and by E4(z) the map that maps a function f(s, r, t) to (E4(z)f)(zs, zr, s, r, t) =
δ(zs − z)δ(zr − z)f(s, r, t). It follows, from writing out the distribution kernel of
M , and using the remark below (2.20), that for distributions in (zs, zr, s, r, t) with
singularities with τ−1ζs > 0 and τ−1ζr > 0, we have

R4(0)ME4(z)ψ
′
2(z, 0) = −1

4
Q∗

−,s(0)Q∗
−,r(0)H(0, z)Q−,s(z)Q−,r(z),(5.5)

modulo a regularizing operator, where ψ′
2 = ψ2 −Q−1

−,sQ
−1
−,r[Q−,sQ−,r, ψ2]. Since for

F the rays come from one side of the surface z = 0, we can apply this to (3.5).
Denote by E5 the map that maps a function f(z, s, r, t) to (E5(z)f)(zs, zr, s, r, t) =
δ(zs − zr)f( zs+zr

2 , s, r, t). It follows that we have

R4(0)ME5ψ
′
2(z, 0)E2E1(c

−3
0 δc) ≡ 1

4KE1(c
−3
0 δc),(5.6)

modulo a regularizing operator.

We can find an operator ψ′(z, s, r,Dz, Ds, Dr) such that the principal symbol
ψ′

2 − ψ′ is zero on the set ζ = −b(z, s, σ, τ) − b(z, r, ρ, τ). Namely, first set (for the
principal symbol) ψ′(z, s, r, ζ, σ, ρ) = ψ′

2(z, 0, s, r, σ, ρ,Θ
−1). Then the map ME5(ψ

′
2−

ψ′) is a Fourier integral operator with highest-order amplitude equal to zero. With
lower-order terms in ψ′ we find that we can replace ψ′

2 in (5.6) by an operator ψ′ =
ψ′(z, s, r,Dz, Ds, Dr). The operator ψ′ commutes with E2. Hence, if h = h(z, s, r),
we have that

R4(0)ME5E2ψ
′h = Kh,(5.7)

modulo a smoothing operator. Because of equality (5.7), R4(0)ME5E2 is an invertible
Fourier integral operator with canonical relation given by (4.6), microlocally on a
neighborhood of the set where ψ′ is not in S−∞. Now define microlocally on a
neighborhood of the set where ψ′ is not in S−∞,

ψD = R4(0)ME5E2ψ
′(R4(0)ME5E2)

−1.(5.8)

By Egorov’s theorem this is a pseudodifferential operator with symbol as in the the-
orem and we have

ψDR4(0)ME5E2 = K,(5.9)

modulo a smoothing operator. It follows that (5.3) is satisfied.

6. The Bolker condition. It follows from (4.2) and from Theorem 4.2 that
the canonical relation of FD in (3.10) satisfies Guillemin’s [11] Bolker condition: The
projection of the canonical relation (1.7) on T ∗Y \0 is an embedding.

Indeed, Assumption 2 is stronger than this condition, as can be seen from the
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arguments in the proof of Theorem 4.2. This fact will be important for the inverse
scattering based on modeling data by FD.
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[11] V. Guillemin, On some results of Gel′fand in integral geometry, in Pseudodifferential Opera-

tors and Applications, AMS, Providence, RI, 1985, pp. 149–155.
[12] G. R. Hadley, Multistep method for wide-angle beam propagation, Opt. Lett., 17 (1992),

pp. 1743–1745.
[13] L. Halpern and L. N. Trefethen, Wide-angle one-way wave equations, J. Acoust. Soc.

Amer., 84 (1988), pp. 1397–1404.
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SOME PROPERTIES OF THE CAPACITY VALUE FUNCTION∗

B. A. CHIERA† , A. E. KRZESINSKI‡ , AND P. G. TAYLOR†

Abstract. In a previous paper [B. A. Chiera and P. G. Taylor, Probab. Engrg. Inform. Sci., 16
(2002), pp. 513–522], two of the authors developed a method for ascribing a value to an extra unit
of capacity on a telecommunications link. Specifically, they expressed the value of an extra unit of
capacity as a function of current capacity, current occupancy, and a planning horizon. The intention
was to use this function as an ingredient in a bandwidth reallocation scheme for ensuring efficient
operation of a telecommunications network.

Unfortunately, direct evaluation of the function requires numerical inversion of a Laplace trans-
form expressed in terms of Charlier polynomials, a task that is beyond the processing capabilities
of typical switches in today’s telecommunications networks. Because of this, it is desirable to have
more easily computable methods of either calculating or approximating the capacity value function.
We develop two approaches to this problem: the first is a recursive method of computing the Laplace
transform of the capacity value function, and the second is a linear approximation to the capacity
value function itself.

Key words. Erlang loss system, capacity value function, approximation

AMS subject classifications. 60K30, 41A10

DOI. 10.1137/S0036139903430859

1. Introduction. A topical issue in recent telecommunications literature re-
volves around the problem of how network resources should be reallocated from un-
derutilized to overutilized links. One possible way to approach this problem is by
calculating the expected amount of extra revenue that would be earned on a specified
end-to-end link over some planning horizon if extra capacity were present on that
link. A reallocation scheme can then be designed in which capacity is transferred
from places in the network where its earning capacity is temporarily low to places
where it is high. We would expect that such a scheme should maximize the overall
rate at which the network earns revenue.

Previous approaches to allocating a value to capacity in a telecommunications
context cover an extensive range. They include a simple model in which the value
of capacity is an exponential function of the amount of free capacity [8], a model
that values customers in a dynamic loss system [10], multimarket pricing scenarios
that price resources on the basis of current and future usage [7], and constrained
producer-consumer linear programming models requiring simultaneous solution [11].

For any capacity valuation model to be implementable in practice, it must satisfy
the following criteria:

1. It must require only local information; that is, knowledge of the current state
of the entire network should not be required to compute the value of capacity
on any given route.
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2. It should be scalable. This means that the model must allow for, and be
easily adaptable to, changes in network size.

3. It should involve calculations that can be efficiently implemented by network
switches.

Some of the above pricing schemes satisfy the first two requirements. However,
with the exception of the exponential pricing function given in [8], it is not always
clear that these schemes can be implemented and run in real time on network switches.
In particular, the WALRAS model proposed by Wellman [11] possesses the disadvan-
tage that the time for computation can potentially exceed the time it takes for the
underlying market to change.

While the pricing function suggested by [8] does satisfy all three requirements,
it is not derived from a realistic model for the value of capacity. Thus it is unlikely
that a reallocation scheme based on this valuation would maximize the overall good
of either the subnetwork to which the link belongs or the network as a whole.

An alternative method for valuing capacity was proposed by two of the authors in
[4]. This model, derived from the basic tenets of renewal theory, is designed to reflect
the difference between the amount of lost revenue that would ensue if a particular
link were allocated an extra unit of capacity and if it were not. This difference can
be thought of as the “value to the link” of the extra capacity.

In ongoing work, the authors are planning to incorporate this value function into
a capacity reallocation scheme. The method allows for reallocations to occur between
multiple-link routes and their constituent single-link routes, with the result that the
model is decentralized and scalable while at the same time able to maximize the
revenue in each part of the network.

A potential drawback, however, is that the calculation of the value function in-
volves numerical computations that are beyond the capacity of today’s switches. The
numerical problems manifest themselves at two stages. First, it is necessary to calcu-
late the Laplace transform of the capacity value function, which is expressed in terms
of Charlier polynomials, in a stable and efficient manner. Second, it is necessary to
invert the Laplace transform numerically.

In this paper, we shall address both of the above-mentioned difficulties. By con-
centrating on computing ratios of the Charlier polynomials, rather than the polynomi-
als themselves, we shall develop a stable recursive method for computing the Laplace
transform of the capacity value function. This can be used in conjunction with an
efficient method of transform inversion if one is available. For situations when no such
method is available, we propose a linear approximation to the capacity value func-
tion itself, together with a bound on its accuracy. Furthermore, we present efficient
recursions for calculating the coefficients in the linear approximation. The value of
capacity as given by the linear approximation can be thought of as consisting of an
initial set-up cost and then a fixed per-unit cost. As such, it may prove to be useful
in formulating optimization problems involving the allocation of capacity.

In section 2 we shall give a brief description of the value function of [4] and estab-
lish a preliminary result. In section 3 we shall introduce our recursion for the Laplace
transform of the capacity value function. Section 4 contains our approximation of the
capacity value function itself together with a discussion of the approximation error and
how the various coefficients might be efficiently calculated, while section 5 presents a
numerical comparison of the approximate model compared with the original pricing
model. Finally, some conclusions are presented in section 6.
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2. The valuation model. The model of [4] is calculated on the assumption that
an end-to-end link in a telecommunications network is well modeled by an M/M/C/C
loss system. This is a continuous-time birth-and-death process with state space
{0, 1, . . . , C} [9]. For 0 ≤ n ≤ C, the state n denotes the number of connections
present at any one time. We assume that the arrival rate λ and mean holding time
μ−1 of connections are known. In practice, this may not be true in any a priori sense.
However, methods for online evaluation of these parameters are currently a subject
of great interest in the literature (see, for example, [3]) and it is reasonable to expect
that estimates will be available. We denote the expected amount of revenue earned
per connection by θ.

In [4], two of the authors derived the function Rn,C(T ) that gives the expected
revenue lost in the interval [0, T ] due to arriving connections being rejected, when the
capacity is C and the occupancy at time 0 is n. This model can be converted to a set
of value functions for capacity via the relations

Bn(T ) = Rn,C(T ) −Rn,C+1(T ),(2.1)

Sn(T ) =

{
Rn,C−1(T ) −Rn,C(T ) when n < C,

RC−1,C−1(T ) −RC,C(T ) when n = C,
(2.2)

respectively. The function Bn(T ) gives the amount that the link should “pay” for an
extra unit of capacity. The logic behind (2.1) is that the value of an extra unit of
capacity is given by the expected difference between the revenue that would be lost
over the planning horizon [0, T ] if the extra capacity were present at time 0 and if it
were not. Similarly, the function Sn(T ) gives the expected amount of extra revenue
that would be lost over the planning horizon [0, T ] if the link were to give up a unit
of capacity at time 0.

The formula (2.2) was not explicitly given in [4] for the case n = C. In this case,
if the link were to give up a unit of capacity, it would also have to eject one of its
current customers. The issue then arises as to whether an extra penalty value should
be added to reflect the negative consequences of such a decision. The right-hand side
of (2.2) reflects the situation in which no such penalty is added. The opposite extreme
would be to incorporate an infinite penalty, which would have the effect of precluding
any capacity reallocation away from a full link.

We might envisage a capacity reallocation scheme in which the links act in a
cooperative manner. If Sn(T ) for one link is less than or equal to Bn(T ) for another
link with whom it shares physical capacity, then a unit of capacity will be reallocated
from the first link to the second. Via this mechanism, capacity is moved to that part
of the network in which it can have the greatest effect in reducing loss of revenue.

To evaluate Rn,C(T ), it is necessary to compute the numerical inversion of the
Laplace transform,

R̃n,C(s) =

(
1

s

)(
θλ

(s + Cμ)PC (s/λ) − CμPC−1 (s/λ)

)
Pn

( s

λ

)
,(2.3)

where

Pn(s/λ) = (−μ/λ)nC(λ/μ)
n (−s/μ)(2.4)

and

C(λ/μ)
n (−s/μ) =

n∑
k=0

(
n

k

)(
−s/μ

k

)(
−λ

μ

)n−k

k!(2.5)
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Fig. 1. Rn,C(T ) with n = 4, 5, 6, C = 6, λ = 3, and μ−1 = 0.5.

is a Charlier polynomial as defined in [5]. For some purposes below it will be conve-
nient to write Pn(s/λ) in the form

Pn(s/λ) =

n∑
k=0

(
n

k

)(
1

λ

)k

s(s + μ) . . . (s + (k − 1)μ),(2.6)

which is easily derived by substituting (2.5) into (2.4). In [4] it was recommended that
the Euler method (see Abate and Whitt [1]) be used for the numerical inversion of

R̃n,C(s) to yield Rn,C(T ). This involves numerical integration of the function R̃n,C(s)
along a contour which lies in the right complex half-plane. Thus, to implement the
method, we need to be able to evaluate the right-hand side of (2.3) for complex
numbers s with �(s) > 0.

An example of the lost revenue curves described by Rn,C(T ) is given in Figure 1.
This example is adapted from one presented in [4]. Here the expected loss revenue
curves are given for the case where C = 6, n ∈ {4, 5, 6}, λ = 3, and μ−1 = 0.5.

In practice, it is difficult to evaluate both the expression on the right-hand side of
(2.3) and its inverse Laplace transform. The calculation of the Charlier polynomials

and R̃n,C(s), if not done carefully, may be subject to arithmetic overflow, while the
Euler method, although straightforward from an implementation viewpoint, is nu-
merically complex. It is therefore of interest to develop stable and efficient methods
for the calculation of R̃n,C(s) and Rn,C(T ). In the following sections, we develop a

recursion for R̃n,C(s) and a linear approximation for Rn,C(T ). Furthermore, we give
a stable recursion for computing the coefficients and bounds on the accuracy of the
approximation. To conclude this section, we prove the following lemma, which will
be useful in the rest of the paper.

Lemma 2.1. Let

GC(s) = (s + Cμ)PC (s/λ) − CμPC−1 (s/λ)(2.7)
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so that the denominator of the right-hand side of (2.3) is sGC(s). Then

(i) GC(s) has a zero at s = 0, which implies that GC(s) = sFC(s), where FC(s)
is a polynomial of degree C;

(ii) the zeros −σC < −σC−1 · · · < −σ1 of FC(s) are all real and negative; and
(iii) the maximal zero −σ1 of FC(s) is less than −μ.

Proof. Clearly GC(s) is a polynomial of degree C + 1. To get (i), observe that

GC(s) = (s + Cμ)

(
−μ

λ

)C

C
(λ/μ)
C (−s/μ) − Cμ

(
−μ

λ

)C−1

C
(λ/μ)
C−1 (−s/μ) ,(2.8)

where C
(λ/μ)
n (−s/μ) is defined in (2.5). Substituting s = 0 in (2.5), we see that

C
(λ/μ)
n (0) = (−λ

μ )n and thus the right-hand side of (2.8) is zero at s = 0. This gives

(i).

Now let us think about (ii). It is known [5] that the zeros of C
(λ/μ)
n (x) are all real

and positive. Moreover they interleave, that is, with xn,i the ith zero of C
(λ/μ)
n (x),

0 < xn,1 < xn−1,1 < · · ·xn,i < xn−1,i < xn,i+1 < · · · < xn−1,n−1 < xn,n < ∞.(2.9)

By (2.4), we can see that the zeros of Pn(s/λ) occur at the points sn,i = −xn,iμ,
which are all real and negative. From (2.9) it thus follows that

−∞ < sn,n < sn−1,n−1 < · · · < sn,i+1 < sn−1,i < sn,i < · · · < sn−1,1 < sn,1 < 0.
(2.10)

For notational convenience, define sn,0 = 0 and sn,n+1 = −∞. From (2.6), it is easy
to see that the lead coefficient of Pn(s/λ) is positive and so Pn(s/λ) is negative in
intervals of the form (sn,2k, sn,2k−1) for k = 1, �n/2� and positive in intervals of the
form (sn,2k+1, sn,2k) for k = 0, �n/2	.

It is clear from the representation (2.6) that −Cμ is not a zero of PC−1(s/λ), so the
point −Cμ must lie in one of the intervals (sC−1,i+1, sC−1,i) for i = 0, . . . , C−1. Define
j ∈ {0, . . . , C−1} to be such that the interval that contains −Cμ is (sC−1,j+1, sC−1,j).
It follows from the interleaving property (2.10) that for i 
= j, (s + Cμ)PC(s/λ)
changes sign exactly once in each of the intervals (sC−1,i+1, sC−1,i). Since FC(s) =
(s + Cμ)PC(s/λ) at the zeros of PC−1(s/λ), it too must change sign at least once in
each of the intervals (sC−1,i+1, sC−1,i) for i 
= j. Thus there is at least one zero of
FC(s) in each of the intervals (sC−1,i+1, sC−1,i) for i 
= j.

Now consider the behavior of Fc(s) in the interval (sC−1,j+1, sC−1,j). The func-
tion (s + Cμ)PC(s/λ) changes sign twice in this interval. Assume that j is odd and
not equal to C − 1. Then, by the interleaving property (2.10) and by the fact that
sC−1,j+1 < −Cμ < sC−1,j , it follows that FC(sC−1,j) = (sC−1,j + Cμ)PC(sC−1,j/λ)
and FC(sC−1,j+1) = (sC−1,j+1 + Cμ)PC(sC−1,j+1/λ) must both be negative. More-
over, PC−1(s/λ) is negative for s ∈ (sC−1,j+1, sC−1,j), which gives us that FC(sC,j+1)
and FC(−Cμ) are both positive. There must therefore exist two zeros of FC(s) in the
interval (sC−1,j+1, sC−1,j). A similar argument holds if j is even, equal to 0, or equal
to C − 1.

We have thus shown that the degree-C polynomial FC(s) has C real and negative
zeros, C − 2 of them in intervals of the form (sC−1,i+1, sC−1,i), for i 
= j, and two of
them in the interval (sC−1,j+1, sC−1,j). Part (ii) of the lemma is proved.
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To prove part (iii), we substitute the form (2.6) of Pn(s/λ) into (2.7). We have

GC(s) = s

C∑
k=0

(
C

k

)(
1

λ

)k

s(s + μ) . . . (s + (k − 1)μ)

+ Cμ

C−1∑
k=0

[(
C

k

)
−
(
C − 1

k

)](
1

λ

)k

s(s + μ) . . . (s + (k − 1)μ)

+ Cμ

(
1

λ

)C

s(s + μ) . . . (s + (C − 1)μ)

and so FC(s) = GC(s)/s can be expressed as

FC(s) =

C∑
k=0

(
C

k

)(
1

λ

)k

s(s + μ) . . . (s + (k − 1)μ)

+ Cμ

C−1∑
k=1

(
C − 1

k − 1

)(
1

λ

)k

(s + μ) . . . (s + (k − 1)μ)

+ Cμ

(
1

λ

)C

(s + μ) . . . (s + (C − 1)μ)

= 1 +

C−1∑
k=1

(
C − 1

k − 1

)
[C(s/k + μ)]

(
1

λ

)k

(s + μ) . . . (s + (k − 1)μ)

+

(
1

λ

)C

(s + μ) . . . (s + Cμ),

which is easily seen to be positive for s > −μ. All the zeros of Fc(s) are thus less
than −μ and part (iii) is proved.

3. A stable method for computing R̃n,C(s). In (11) of [4], it was shown
that the polynomials Pn(s/λ) satisfy the recurrence relation

Pn+1(s/λ) =
( s

λ
+

μn

λ
+ 1

)
Pn(s/λ) − μn

λ
Pn−1(s/λ)(3.1)

for n ≥ 1. With Hn(s) ≡ Pn−1(s/λ)/Pn(s/λ), it follows that

1 =
( s

λ
+

μn

λ
+ 1

)
Hn+1(s) −

μn

λ
Hn(s)Hn+1(s)

and so

Hn+1(s) =
1( s

λ
+

μn

λ
+ 1

)
−
(μn

λ

)
Hn(s)

.(3.2)

With the initial condition

H0(s) =
1

s/λ + 1
,(3.3)

we can use (3.2) to calculate Hn(s) for s with �(s) > 0.
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Moreover, Lemma 3.1 below shows that Hn(s) remains bounded for s with �(s) >
0 and so the recursion is stable. Having calculated Hn(s) for n = 1, . . . , C, we can

then calculate R̃C,C(s) via the equation

R̃C,C(s) =

(
1

s

)⎛
⎜⎝ θ

s

λ
+

μC

λ
− μC

λ
HC(s)

⎞
⎟⎠ ,(3.4)

which is easily derived from (2.3), and R̃n,C(s) from the relation

R̃n,C(s) = R̃C,C(s)

C∏
j=n+1

Hj(s).(3.5)

Lemma 3.1. For s with �(s) > 0 and n ≥ 1, the ratios Hn(s) are such that
|Hn(s)| < 1.

Proof. From (3.3), it follows that |H0(s)| is clearly less than one for s with
�(s) > 0. Now assume that |Hn(s)| is less than one for s with �(s) > 0. Then, from
(3.2),

|Hn+1(s)| =

∣∣∣∣∣∣
1( s

λ
+

μn

λ
+ 1

)
−
(μn

λ

)
Hn(s)

∣∣∣∣∣∣
≤ 1∣∣∣ s

λ
+

μn

λ
+ 1

∣∣∣− ∣∣∣μn
λ

Hn(s)
∣∣∣

≤ 1∣∣∣ s
λ

+ 1
∣∣∣ ,

which is less than one for s with �(s) > 0. The lemma is thus proved by mathematical
induction.

4. An approximation to Rn,C(T ). As T → ∞, the occupancy of the M/M/C/C
loss system will be distributed according to the system’s stationary distribution.
Hence, as pointed out in [4] we would expect that the loss curves described by Rn,C(T )
will have asymptotic slope θλπρ,C , where the Erlang-B function

πρ,C =
ρC/C!∑C
i=0 ρ

i/i!
(4.1)

gives the stationary probability that the link is full when the traffic is ρ ≡ λ/μ and
the capacity is C.

In this section, we shall verify that this is indeed the case and develop a straight-
line approximation to Rn,C(T ) of the form

R̂n,C(T ) = θλπρ,CT + an,C(4.2)

that can be used to compute approximate buying and selling prices following a process
similar to that used in (2.1) and (2.2), that is,

B̂n(T ) = R̂n,C(T ) − R̂n,C+1(T ),(4.3)

Ŝn(T ) =

{
R̂n,C−1(T ) − R̂n,C(T ) when n < C,

R̂C−1,C−1(T ) − R̂C,C(T ) when n = C.
(4.4)
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As with (2.2), it may be appropriate to add a penalty function to the right-hand side
of (4.4) when n = C.

A key step in the development of the approximation is given in the following
theorem.

Theorem 4.1. The function Rn,C(T ) defined in section 2 satisfies the following:

lim
T→∞

[Rn,C(T ) − θλπρ,CT ](4.5)

=
2θλg1(n) − θλπρ,C [2g1(C) + Cμ [g2(C) − g2(C − 1)]]

2 [1 + Cμ[g1(C) − g1(C − 1)]]
,(4.6)

where, for n ∈ {0, 1, . . . , C},

g1(n) =
1

μ

n∑
k=1

(
n

k

)(μ
λ

)k

(k − 1)!(4.7)

and

g2(n) =
2

μ2

n∑
k=2

(
n

k

)(μ
λ

)k

(k − 1)!

k−1∑
m=1

1

m
.(4.8)

Proof. It is easily established by differentiating (2.6) that

g1(n) =
dPn(s/λ)

ds

∣∣∣∣
s=0

(4.9)

and

g2(n) =
d2Pn(s/λ)

ds2

∣∣∣∣
s=0

.(4.10)

We also recall the previously used fact that Pn(0) = 1.

By parts (i) and (ii) of Lemma 2.1, the rational function sR̃n,C(s) has one pole
at s = 0 with all the other poles real and negative. Hence, as long as the function

An,C(s) ≡
[
sR̃n,C(s) − θλπρ,C

s

]
(4.11)

does not have a pole at s = 0, all its poles are in the left half-plane; in particular, they
are real and negative. It then follows by the final value theorem (see, for example, [6,
pp. 110–111]) that the limit (4.5) exists and is equal to lims→0 An,C(s).

Expansion of An,C(s) gives

An,C(s) =
sθλPn( s

λ ) − θλπρ,C

[
(s + Cμ)PC( s

λ ) − CμPC−1(
s
λ )
]

s
[
(s + Cμ)PC( s

λ ) − CμPC−1(
s
λ )
] .

Both the numerator and the denominator of this are equal to zero at s = 0. The
derivative of the denominator is also equal to zero at s = 0, which implies that for
the limit as s → 0 to exist, the derivative of the numerator must be equal to zero at
s = 0. Using (4.9), this derivative is equal to

θλ− θλπρ,C [1 + Cμ [g1(C) − g1(C − 1)]] .(4.12)
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Consider the factor 1 + Cμ [g1(C) − g1(C − 1)]. By (4.7), this is equal to

1 + C

[
C∑

k=1

(
C

k

)(μ
λ

)k

(k − 1)! −
C−1∑
k=1

(
C − 1

k

)(μ
λ

)k

(k − 1)!

]

= 1 + C

C−1∑
k=1

(
C − 1

k − 1

)(μ
λ

)k

(k − 1)! + C!
(μ
λ

)C

= 1 + C!

C−1∑
k=0

(μ
λ

)C−k

/k!

= 1 +

∑C−1
k=0

(
λ
μ

)k

/k!(
λ
μ

)C

/C!

=
1

πρ,C

(4.13)

by (4.1). It follows that (4.12) is equal to zero as required. This argument shows
further that if the coefficient of T in (4.2) were anything other than θλπρ,C , then
lims→0 An,C(s) would not exist. This verifies that the approximation (4.2) has the
correct asymptotic slope.

Now, using a further application of l’Hôpital’s rule, together with (4.9) and (4.10),
it is easily seen that lims→0 An,C(s) is equal to the right-hand side of (4.6), which
gives us the result.

Theorem 4.1 tells us that we should take the constant an,C in (4.2) equal to the
right-hand side of (4.6). Specifically, our linear approximation to Rn,C(T ) is given by

R̂n,C(T ) = θλπρ,CT +
2θλg1(n) − θλπρ,C [2g1(C) + Cμ [g2(C) − g2(C − 1)]]

2 [1 + Cμ[g1(C) − g1(C − 1)]]
.

(4.14)

For large problems, we need to be careful in computing the coefficients in this linear
approximation. There is certainly the potential for numerical problems if we attempt
to calculate them directly using (4.1), (4.9), and (4.10). Fortunately, it is possible to
design stable and efficient recursive methods for their evaluation.

It is well known (see, for example, [2]) that πρ,C is most efficiently calculated
using the recursion

πρ,C+1 =
ρπρ,C

C + 1 + ρπρ,C
(4.15)

with πρ,C+1 = 1. This gives us the linear term in the approximation (4.14) and also,
along with (4.13), the denominator of the constant term. Moreover, we can use (4.13)
to derive the fact that, for n ≥ 1,

g1(n) =
1

μ

n∑
j=1

1 − πρ,j

jπρ,j
,(4.16)

which can be computed at the same time as we generate the terms in the recursion
(4.15). This gives us both g1(n) and g1(C) in the constant term. Finally, let ψρ,n =
[nμ [g2(n) − g2(n− 1)]].



1416 B. A. CHIERA, A. E. KRZESINSKI, AND P. G. TAYLOR

Differentiating (3.1) twice and putting s = 0, we get, for n ≥ 2,

ψρ,n+1 =
n + 1

ρ
[2g1(n) + ψρ,n] .(4.17)

This recursion can be initialized by observing that ψρ,2 = 2/λ2.
Generally a link will be dimensioned so that λ/Cμ is close to one. Thus the

coefficient of the multiplicative part of the recursion in (4.17) will be less than one for
the values of interest. The recursion can thus be expected to remain stable for these
values.

The above observations demonstrate that we can compute both coefficients in
the linear approximation (4.2) in a stable and efficient manner. The final question of
interest concerns the accuracy of the approximation. We can use the information in
Lemma 2.1 about the roots of Gc(s) to approach this question. The result is contained
in the following lemma.

Lemma 4.2. The difference between the functions Rn,C(T ) and R̂n,C(T ), as
defined in (4.14), satisfies

(i)

lim
T→∞

Rn,C(T ) − R̂n,C(T )

e−σ1T
= K1,(4.18)

where

K1 = lim
s→−σ1

(s + σ1)

[
sR̃n,C(s) − θλπρ,C

s

]
;(4.19)

(ii)

lim
T→∞

Rn,C(T ) − R̂n,C(T )

e−μT
= 0.(4.20)

Proof. Using Lemma 2.1 and the proof of Theorem 4.1, we see that the partial
fraction expansion of

Dn,C(s) ≡ R̃n,C(s) − θλπρ,C

s2
− an,C

s

is of the form

Dn,C(s) =

C∑
i=1

Ki

s + σi
,(4.21)

where

Ki = lim
s→−σi

(s + σi)

[
sR̃n,C(s) − θλπρ,C

s

]
.(4.22)

From this we can see that

Rn,C(T ) − R̂n,C(T ) =

C∑
i=1

Kie
−σiT(4.23)
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Fig. 2. Rn,C(T ) (- -) versus R̂n,C(T ) (· -) with n = 4, 5, 6, C = 6, λ = 3, and μ−1 = 0.5.

and part (i) follows because −σ1 is the largest root of Gc(s). Part (iii) of Lemma 2.1
tells us that −σ1 < −μ and so part (ii) of this lemma is an easy consequence of part
(i).

Lemma 4.2 tells us that the linear approximation R̂n,C(T ) approaches the actual
function Rn,C(T ) at a rate that is better than exponential with coefficient −μ. This
gives us a useful indication as to the quality of the approximation.

5. A comparison of Rn,C(T ) and R̂n,C(T ). As an illustration of the behavior

of our approximation function R̂n,C(T ), we revisit the example presented in section

2. Figure 2 depicts the original loss curves Rn,C(T ) and also R̂n,C(T ) for C = 6, n ∈
[4, 6], λ = 3, and μ−1 = 0.5. Note that R4,6(T ) < R5,6(T ) < R6,6(T ) and that similarly

R̂4,6(T ) < R̂5,6(T ) < R̂6,6(T ).

From Figure 2 we immediately see that the curves R̂n,c(T ) are very good approx-
imations for Rn,C(T ) for large T .

Next, we compare B̂n,C(T ) against Bn,C(T ) for a larger network where C =
100, n = {50, 100}, λ = 85, and μ−1 = 1. Both functions are displayed in Figure 3.
We observe that the original and approximated functions coincide once the system
has reached equilibrium.

Of particular interest in this example is the linear function described by B̂50,100(T ).
We see that in this instance the approximation results in a negative value for the inter-
cept. Moreover, B50,100(T ) is very close to zero for T such that B̂50,100(T ) is negative.

In practice, this suggests that when B̂50,100(T ) is negative, we should treat the value
of an extra unit of capacity as equal to zero. If we compare the negative values of
B̂50,100(T ) with the corresponding values produced by B50,100(T ), we see that this
approximation is likely to be accurate.

Similar observations can be made with respect to Figure 4, where we compare
Ŝn,C(T ) against Sn,C(T ) for the larger network. In this instance we would once again
interpret all negative values as zero in practice.
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Fig. 3. Bn,C(T ) (- -) versus B̂n,C(T ) (· -) with n = 50, 100, λ = 85, and μ−1 = 1.
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Fig. 4. Sn,C(T ) (- -) versus Ŝn,C(T ) (· -) with n = 50, 100, λ = 85, and μ−1 = 1.

6. Conclusions. Of considerable importance in telecommunications is the abil-
ity to transfer capacity between network flows according to some scheme that ascribes
a value to capacity, in order to alleviate network congestion. The value function must
meet three specific criteria: it is decentralized, scalable, and able to be implemented
by a simple network switch.

In this paper, we have considered the valuation model presented in [4] which
satisfied the first two criteria, and we developed a suitable approximate equivalent.
The calculations involved are sufficiently simple to be implemented by a network
switch.

Further implementation issues, such as the online estimation of the traffic param-



SOME PROPERTIES OF THE CAPACITY VALUE FUNCTION 1419

eters required for these pricing models, are still to be explored. This topic has already
attracted considerable interest in the field and will be the subject of future research.

Acknowledgment. The authors would like to thank an anonymous referee for
pointing out the recursion (4.17).
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DIFFUSIVE AND CHEMOTACTIC CELLULAR MIGRATION:
SMOOTH AND DISCONTINUOUS TRAVELING WAVE SOLUTIONS∗

K. A. LANDMAN† , M. J. SIMPSON† , J. L. SLATER† , AND D. F. NEWGREEN‡

Abstract. A mathematical model describing cell migration by diffusion and chemotaxis is
considered. The model is examined using phase plane, numerical, and perturbation techniques.
For a proliferative cell population, traveling wave solutions are observed regardless of whether the
migration is driven by diffusion, chemotaxis, or a combination of the two mechanisms. For pure
chemotactic migration, both smooth and discontinuous solutions with shocks are shown to exist using
phase plane analysis involving a curve of singularities, and identical results are obtained numerically.
Alternatively, pure diffusive migration and combinations of diffusive and chemotactic migration yield
smooth solutions only. For all cases the wave speed depends on the exponential decay rate of the
initial cell density, and it is bounded by a minimum value which is numerically observed whenever
the initial cell distribution has compact support. The minimum wave speed cmin is proportional to√
χ or

√
D for pure chemotaxis and pure diffusion cases, respectively. The value of cmin for combined

diffusion and chemotactic migration is examined numerically. The rate at which the mixed migration
system approaches either a diffusion-dominated or chemotaxis-dominated system is investigated as
a function of a dimensionless parameter involving D/χ. Finally, a perturbation analysis provides
details of the steep critical layer when D/χ � 1, and these are confirmed with numerical solutions.
This analysis provides a deeper qualitative and quantitative understanding of the interplay between
diffusion and chemotaxis for invading cell populations.

Key words. migration, chemotaxis, diffusion, traveling wave, numerical solution, phase plane,
shock, wave speed
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1. Introduction. Cell migration is an essential feature of many important bio-
logical systems, including wound healing, tumor invasion, and several developmental
biology processes [12, 27, 37]. Typically, to model cell migration, a system of conserva-
tion equations is proposed which incorporates the migratory processes in conjunction
with kinetic terms to simulate proliferation of the migratory population. Additional
kinetic processes (e.g., cell death, cell-receptor binding) can be included in the ki-
netic terms where required. Diffusion and chemotaxis are two common cell migration
mechanisms [5].

Diffusion simulates random walk processes of cells. The Fisher equation [6] is
the archetypal pure diffusion model which considers diffusive migration together with
proliferation of cells via a logistic process.

Chemotaxis describes the movement of cells in the direction of a spatial gradient
of a signaling species called the chemoattractant. The chemoattractant kinetics may
be specified in several ways. An early chemotactic model was developed by Keller
and Segel [13] describing bacterial motion. Other important contributions have been

∗Received by the editors February 10, 2004; accepted for publication (in revised form) October
12, 2004; published electronically April 26, 2005. This research was supported by National Health
and Medical Research Council project grant ID237144.

http://www.siam.org/journals/siap/65-4/60406.html
†Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia

(k.landman@ms.unimelb.edu.au, m.simpson@ms.unimelb.edu.au, j.slater@ms.unimelb.edu.au). The
research of the first author was supported by the Particulate Fluids Processing Center, an Australian
Research Council ARC Special Research Center.

‡Embryology Laboratory, Murdoch Childrens Research Institute, Royal Children’s Hospital,
Parkville, Victoria 3052, Australia (don.newgreen@mcri.edu.au).

1420



DIFFUSIVE AND CHEMOTACTIC CELLULAR MIGRATION 1421

made by Tranquillo [39], Tranquillo and Alt [40], Hillen [10], Othmer and Stevens [29],
and Horstmann and Stevens [11], as well as those reviewed by Ford and Cummings
[7].

The classical Fisher model and several pure chemotaxis models [1, 18, 24, 25, 31,
32] are known to support traveling wave solutions moving with a constant speed. For
the Fisher model, the wave speed is bounded by a minimum value [25]. For pure
chemotactic migration, Landman, Pettet, and Newgreen [18] recently demonstrated
the existence of traveling wave solutions with a minimum wave speed. It should be
noted that haptotaxis, which is based on migration along adhesive extracellular matrix
gradients, is mathematically equivalent to chemotaxis; hence a pure haptotactic model
can also support traveling wave solutions with a minimum wave speed [20, 22, 30]. The
focus of these previous analyses has been to examine the characteristics of traveling
wave solutions for cell migration in response to a single mechanism. The more complex
case of multimechanism migration has received less attention and is therefore poorly
understood.

In this article we consider a model of diffusive and chemotactic cell migration. The
model is motivated by migration processes during embryological development. The
rostral-to-caudal migration of neural crest cells along the developing avian and mam-
malian intestine is one of the most extensive migration paths known in developmental
biology [15]. Neural crest cells show a variety of responses including chemotactic at-
traction to growth factors, which are thought to be produced uniformly along the
intestine mesenchymal tissue (e.g., glial derived neurotrophic factor (GDNF) [43]).
Local gradients in the chemoattractant concentration are postulated to arise from the
binding of the chemoattractant to receptors on the migrating cells, rather than from
diffusion of growth factors from a source. In addition to promoting migration, the
chemoattractant also acts as a survival factor for the migrating population [9, 26, 43].
Interest in the migration of enteric neural crest cells stems from hypotheses which
have linked neural crest cell migration to a common birth defect in humans called
Hirschsprung’s disease or aganglionic megacolon. This defect occurs when the caudal
part of the gut lacks intrinsic nerve cells. Hirschsprung’s disease is thought to oc-
cur when the rostral-to-caudal migration of the neural crest cells fails to completely
colonize the developing intestine [17, 28].

This paper constructs a mathematical framework for the analysis of the combined
diffusive and chemotactic migration, relevant to developmental biology processes. We
utilize a holistic approach incorporating both analytical and numerical analyses of
traveling wave solutions for the proposed model. For the case of purely chemotactic
migration, the results presented here extend the previous work of Landman, Pettet,
and Newgreen [18] in two significant ways. First, the relationship between the wave
speed and the transition from smooth to discontinuous solutions is examined in detail.
Second, an analysis of the functional dependence of the minimum wave speed for pure
chemotaxis migration is presented. This analysis provides a useful relationship similar
to the well-known expression for the Fisher equation.

For the more complex case of combined diffusion and chemotaxis migration we use
a specifically designed numerical algorithm to examine the traveling wave solutions.
In particular, the numerical results are used to show how the combined diffusive and
chemotactic migration model approaches the limits of diffusion-only and chemotaxis-
only cases as the relative contributions of diffusion and chemotaxis are altered. This
kind of analysis is unexplored in previous studies [18, 21]. We use the numerically
determined wave speeds to conjecture some useful bounds on the minimum wave speed
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for the combined diffusion and chemotaxis problem.
The mathematical model for this problem is a coupled system of partial differen-

tial equations for cell density and chemoattractant concentration. A traveling wave
coordinate system is introduced with an unknown wave speed to convert the system
into a coupled system of ordinary differential equations. Phase plane and singular
perturbation methods are then used to explore the solutions of the system. The nu-
merical algorithm is applicable to pure hyperbolic problems including the formation
of shock-fronted solutions as well as parabolic problems.

2. Diffusive and chemotactic cell migration in one dimension. A system
of equations is introduced to describe the diffusive and chemotactic migration of cells
in one dimension. Let n(x, t) and g(x, t) denote the cell density and chemoattractant
concentration per unit length, respectively; x and t are position and time coordinates.
A conservation-of-mass argument for a diffusion and chemotaxis transport of cells
gives

∂n

∂t
= D

∂2n

∂x2
− χ

∂

∂x

(
n
∂g

∂x

)
+ f(n, g),(2.1)

∂g

∂t
= h(n, g),(2.2)

where the diffusion coefficient D and the chemotactic factor χ are assumed to be
constant [20, 21, 22]. The assumption of a constant chemotactic factor ignores satu-
ration effects. Although alternative forms for χ(g) that incorporate saturation have
been proposed [8], the specific relationship relevant to the system of interest is un-
known and therefore a constant value is adopted. Preliminary investigations indicate
that the results of this study are qualitatively insensitive to this assumption. The
f and h terms in (2.1)–(2.2) represent the kinetic terms. Equation (2.2) reflects our
assumption that the distribution of chemoattractant is governed by kinetic processes
rather than diffusion. This is particularly relevant for the migration of neural crest
cells where the chemoattractant GDNF is produced uniformly within the underly-
ing tissues and not from diffusion from some external source [43]. For this case, the
distribution of chemoattractant is governed by a balance between the underlying pro-
duction of chemoattractant, the natural decay of chemoattractant, and also the uptake
of chemoattractant by the migrating cells. Furthermore, care must be taken to ensure
that the steady state of (2.2) does not permit a zero solution as the chemoattractant
is a trophic factor necessary for the survival of the migratory population. Therefore,
the chemoattractant concentration must be strictly positive at all times to sustain the
migratory species.

In keeping with these biologically motivated considerations, the kinetic terms are
chosen to reflect the following assumptions. The cells n proliferate by mitosis and
have a carrying capacity density; these characteristics can be described by a logistic-
type term for f . The chemoattractant g is produced uniformly at a constant rate
throughout the domain and decays with time. Furthermore, the chemoattractant
binds to the cells. Therefore a localized initial distribution of cells creates a gradient
of chemoattractant, which produces a chemoattractant migration velocity. These
effects are described with the following choice of f and h:

f = λ1n

(
1 − n

k1

)
,(2.3)

h = λ2 − λ3g − λ4ng.(2.4)
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For simplicity, a constant mitotic index λ1 is assumed rather than a more complex
form with λ1(g).

The system (2.1)–(2.4) reduces to some special cases. When the chemotactic
factor χ is zero, the equation describing the cell population n reduces to the Fisher
equation [6, 25]. Alternatively, when the diffusivity D is zero, cell migration is driven
by chemotaxis alone. Several authors (e.g., [2, 18, 32]) have studied some aspects of
simple chemotaxis models, or mathematically equivalent haptotaxis models, with a
different choice of kinetic term h. The choice of h here is governed by considerations
relevant to developmental biology problems as discussed.

We are interested in cells at their maximum density migrating into a region with-
out such cells, giving rise to an invading profile with a constant shape and moving at a
constant speed. The well-studied Fisher equation allows such traveling wave solutions,
while purely chemotactic systems also support such solutions [18]. The nature of such
solutions, whether they are smooth or discontinuous functions, and their minimum
wave speed will be investigated here.

Scaling time with the mitotic index and introducing a length scale L, all the
variables can be made dimensionless using the definitions as shown:

n = k1n
∗, g =

λ2

λ3
g∗, t =

1

λ1
t∗, x = Lx∗,(2.5)

D∗ =
D

L2λ1
, χ∗ =

χλ2

L2λ1λ3
, β =

λ3

λ1
, γ =

λ4k1

λ1
.(2.6)

In later sections we choose L so that one of the dimensionless parameters D∗ or χ∗ is
equal to unity. Omitting the asterisk notation, the dimensionless system is

∂n

∂t
= D

∂2n

∂x2
− χ

∂

∂x

(
n
∂g

∂x

)
+ n(1 − n),(2.7)

∂g

∂t
= β(1 − g) − γng.(2.8)

To explore the nature of the dynamics of the system (2.7)–(2.8), we consider numerical
solutions in conjunction with phase plane and perturbation analyses.

3. Numerical solution. Numerical solutions to the full system (2.7)–(2.8) are
sought. We are interested in obtaining results under a wide range of conditions where
diffusion or chemotaxis can either dominate or be absent. Therefore, the numerical
scheme must be sufficiently robust to solve either a purely hyperbolic system (D = 0)
or the simpler diffusion-reaction system (χ = 0). An operator splitting technique is
used to overcome this difficulty [16, 38, 36, 41]. Within each time increment, temporal
integration of the system (2.7)–(2.8) is split into two steps. First the purely hyperbolic
system (2.7)–(2.8) with D = 0, namely,

∂n

∂t
= −χ

∂

∂x

(
n
∂g

∂x

)
+ n(1 − n),(3.1)

∂g

∂t
= β(1 − g) − γng,(3.2)

is solved to yield intermediate solutions. Second, these intermediate solutions are
used as initial conditions to solve the remaining parabolic system

∂n

∂t
= D

∂2n

∂x2
,(3.3)
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∂g

∂t
= 0.(3.4)

Obtaining numerical solutions of linear hyperbolic problems using standard nu-
merical schemes has been referred to as an “embarrassingly difficult problem” [42].
Therefore, the greatest of care must be exercised in obtaining numerical solutions
of the nonlinear hyperbolic system (3.1)–(3.2). To this end, we spatially discretize
(3.1)–(3.2) with the semidiscrete scheme described by Kurganov and Tadmor [14].
The resulting system of ordinary differential equations is explicitly integrated with a
fourth-order Runge–Kutta algorithm using a constant time step [33]. The solution to
the parabolic system (3.3)–(3.4) is obtained using a linear finite element mesh com-
posed of uniformly spaced elements. Temporal integration of the discretized finite
element equations is achieved with a mass-lumped backward Euler scheme [34]. Both
spatial and temporal discretizations are uniform. We choose to include the kinetic
terms in the hyperbolic step of the splitting scheme since this step is solved using an
explicit method convenient for solving nonlinear kinetic terms; alternatively, if the ki-
netic terms are included in the parabolic step, then the implicit Euler stepping would
require further iterations to solve the resulting nonlinear system of equations. From
this point of view the splitting regime (3.1)–(3.4) is computationally efficient.

It should be noted that the main limitation with this numerical scheme is imposed
through the hyperbolic solution method [14] which requires sufficiently small time
steps so that the Courant condition is satisfied,

Cr = max
| λi | Δt

Δx
≤ M,(3.5)

where the λi are the eigenvalues associated with the Jacobian of the flux vector [14]
and M is some constant. The λi relate to the speed of propagation of information
for the system. Fortunately, since we are interested in traveling wave solutions which
move with a constant wave speed, it is clear that a uniformly optimal time step Δt
exists for a particular uniform spatial mesh. The optimal time step can be determined
using a straightforward trial-and-error approach. The finite element solution of the
parabolic system (3.3)–(3.4) is not subject to any numerical stability limitation since
the mass-lumped implicit Euler scheme is known to be unconditionally stable [34].

The numerical scheme outlined here is particularly convenient for analyzing gen-
eral solutions of the system (2.7)–(2.8). The inclusion of Kurganov and Tadmor’s
central scheme is necessary so that the nonlinear hyperbolic term associated with
chemotactic migration can be solved accurately without incurring any high Peclet
number-induced oscillations and numerical diffusion associated with standard numer-
ical techniques [44]. Furthermore, incorporating diffusion through an operator split-
ting scheme is required to maintain generality of the algorithm. Previous attempts at
simulating a combined haptotactic and diffusive migration system discretized the dif-
fusion term explicitly within the central scheme [21]. This previous approach is very
restrictive as explicit solutions of the diffusion equation are subject to well-known sta-
bility criteria [4] which are satisfied only for small values of the diffusion coefficient.
These limitations are completely overcome in this work as the diffusion term is split
and solved implicitly thereby yielding an algorithm valid for any value of χ and D.

The problem is modeled on the infinite x domain. However, for numerical com-
putations the finite domain [0, X] is selected with X chosen to be sufficiently large to
avoid boundary effects. Zero-flux conditions are specified for both boundaries. Since
we are interested in the invasion of cells into the domain, the initial data are chosen
to be primarily localized near the left boundary as discussed in section 4.
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After a particular time, the numerical solution converges to a fixed profile mov-
ing with a constant speed. The traveling wave speed c is computed by selecting a
particular contour, say, n(x, t) = N , and locating the position of that contour at each
time interval using a linear interpolation scheme. Once the position of the contour is
known over successive time intervals, the wave speed can be approximated by

cn =
xn+1 − xn

Δt
(3.6)

for large n, where xn and xn+1 are the positions of the contour at the n and n + 1
time step, respectively, and Δt is the time step. The speed of convergence varies with
initial conditions and parameter values. Consequently, the domain length X must be
chosen sufficiently large if the convergence is slow. When D = 0, the chemotactic
migration cell profile is expected to develop a shock in the low-concentration region
of the profile for some choices of initial condition [22]. It is impractical to use linear
interpolation to determine the position of the contour within the shock because of the
discontinuity. This complication is circumvented by choosing a concentration away
from the shock region to compute the wave speed. Therefore, it is best to use a
sufficiently large contour value N .

4. Traveling wave speed and dependence on the initial conditions. Trav-
eling wave solutions with a range of possible wave speeds greater than some mini-
mum value are known to occur for purely diffusive or purely chemotactic migration
[6, 25, 18]. We expect the same behavior when both diffusion and chemotaxis are
present. Here we investigate how various types of initial data evolve to traveling wave
solutions with different wave speeds. To determine the minimum wave speed numer-
ically, it is necessary to know the relationship between the initial conditions and the
wave speed so that the appropriate initial conditions are specified.

It is possible to investigate the speed of the traveling waves by examining the
leading edge of the wave, assuming it decays exponentially in space [25]. McKean [23]
and Marchant [19] determine relationships between exponential decay rates of initial
data and the wave speed of solutions for the Fisher equation (purely parabolic) and
a haptotactic invasion (purely hyperbolic) system, respectively. We extend this work
to our system with both diffusion and chemotaxis.

Consider initial conditions, where for large x

n(x, 0) = A1e
−ξ1x,(4.1)

g(x, 0) = 1 −A2e
−ξ2x(4.2)

for arbitrary positive constant A1, A2, ξ1 and ξ2. Looking at the evolving wave near
the leading edge and writing n = ñ, g = 1 − g̃, assuming that ñ and g̃ are small, the
system (2.7)–(2.8) simplifies to the linear system

∂ñ

∂t
= D

∂2ñ

∂x2
+ ñ,(4.3)

−∂g̃

∂t
= βg̃ − γñ(4.4)

with the initial conditions (for large x)

ñ(x, 0) = A1e
−ξ1x,(4.5)

g̃(x, 0) = A2e
−ξ2x.(4.6)



1426 LANDMAN, SIMPSON, SLATER, AND NEWGREEN

1 2 3 4 5
 

1

2

3

4

5
c

ξ
1

χ=1

χ=5

χ=10

(a)

D=0

1 2 3 4 5
 

1

2

3

4

5
c

ξ
1

χ=1

χ=10

χ=50

(b)

D=1

Fig. 4.1. Numerical wave speed c versus ξ1 for initial data of the form (4.1)–(4.2). Numerical
results are shown in squares, circles, and triangles. These results were generated using Δx = 0.05
and Δt = 0.01. The continuous curves are given by (4.7). The horizontal lines represent cmin.
Here β = 1 and γ = 1. (a) With D = 0 and increasing values of χ. (b) With D = 1 and increasing
values of χ.

A solution of the form ñ = A1e
−ξ1(x−ct) is sought. Substitution into (4.3)–(4.4)

requires

c =
1

ξ1
+ Dξ1(4.7)

for large values of x. Then solving (4.4) with (4.6), the leading edge of chemoattractant
concentration is

g̃ = e−βt

[
A2e

−ξ2x − γA1

β + ξ1c
e−ξ1x

]
+

γA1

β + ξ1c
e−ξ1(x−ct).(4.8)

For large values of t, both ñ and g̃ are functions of the traveling wave coordinate x−ct,
where c is given by (4.7). This condition is independent of ξ2 and hence independent
of the initial conditions imposed on g.

The analytical result for c given by (4.7) is confirmed by the numerical results
illustrated in Figure 4.1. Two cases are described. In the first, D = 0, so that the cells
are purely chemotactically driven. For fixed values of the kinetic parameters β and γ
and chemotactic factor χ, Figure 4.1(a) shows that a traveling wave solution with wave
speed satisfying (4.7) is realized when ξ1 < 1/cmin. Alternatively, when ξ1 > 1/cmin

a traveling wave of fixed wave speed develops where c = cmin. Furthermore Figure
4.1(a) shows that cmin increases proportional to

√
χ. In section 6.2, both smooth and

discontinuous solutions will be found numerically using initial data of the form (4.1)–
(4.2) (with ξ2 = 0). (Note that (4.7) is also valid when both D = χ = 0; under these
conditions a traveling wave results from the initial nonzero cell density distribution in
conjunction with the kinetics.) The second case, D = 1, χ > 0, illustrated in Figure
4.1(b), has the same qualitative behavior as the case D = 0. The solution with χ = 0
corresponds to the Fisher equation (cmin = 2, [25]) and is not shown here. As χ
increases the value of cmin again increases, but for the case of nonzero D, it clearly
does not scale with

√
χ.

In summary, numerical computations yield a suite of traveling waves with the
wave speed dependent on the exponential decay rate of the initial cell population
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n(x, 0). There is a maximum exponential decay rate such that for ξ1 larger than
the maximum value, the initial data develops into a traveling wave moving with a
minimum wave speed cmin. Further discussion of cmin will appear in section 6.3.2.

The asymptotic form of the initial conditions given by (4.1)–(4.2) is useful for
numerically investigating the dependence of the wave speed on the decay rate ξ1.
However, in the limit ξ1 → ∞ the initial cell distribution tends towards having semi-
compact support, a typical choice being

n(x, 0) =

⎧⎨
⎩

1, x < x1,
q(x), x1 < x < x2,
0, x > x2,

(4.9)

where q(x) is monotonic and continuous. Since all such functions decay faster than
any exponential function, n(x, t) will evolve to a traveling wave with speed c = cmin.
Numerical solutions with such initial data confirm this result.

In light of this discussion, initial conditions used in this study take the form

n(x, 0) =

{
1, x < 10,
e−ξ1(x−10), x ≥ 10,

(4.10)

g(x, 0) ≡ 1.(4.11)

Altering the value of ξ1 in (4.10) enables the leading front of the cell density distri-
bution to decay exponentially with a variable rate. In the limit ξ1 → ∞ the initial
conditions (4.10) approach a step function at x = 10. This is a particular case of the
more general initial condition (4.9) with x1 = x2 = 10. The location of the transition
point to exponential decay is arbitrary as identical traveling wave behavior results
regardless of the point chosen.

5. Traveling wave solution. Introducing the traveling wave coordinate trans-
formation z = x − ct, where c is the dimensionless wave speed, and the variable
v = ∂n

∂x , the dimensionless system (2.7)–(2.8) becomes the following first-order system
of equations:

c
dg

dz
= − [β(1 − g) − γng] ,(5.1)

dn

dz
= v,(5.2)

D
dv

dz
=

χn

c2
[γn + β] [γng − β(1 − g)] − n(1 − n)

−
[
1 +

χ

c2
(β(1 − g) − 2γng)

]
cv.(5.3)

There are two steady states of this system, namely, (g, n, v) = ( β
β+γ , 1, 0) and (1, 0, 0).

The first state corresponds to cells at their carrying capacity density and therefore can
be thought of as the colonized or invaded state, whereas the second is the uncolonized
state. We seek traveling wave solutions connecting the colonized to the uncolonized
state. Note that β

β+γ is a function which depends only on the ratio γ/β; it is an
increasing function of the production rate β, is a decreasing function of binding rate
γ, and is always less than unity, the value of the chemoattractant concentration in
the absence of cells.
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Fig. 6.1. Phase plane for the Fisher equation. Here D = 1, c = 2.5. The steady states are
marked (•).

6. Phase plane, perturbation analysis, and numerical solutions. We first
investigate phase plane and numerical solutions corresponding to the two special cases
when one of D or χ is zero and discuss the nature of the solutions and the minimum
wave speed cmin. For the remaining case, when both migration mechanisms are active,
the transition from Fisher type solutions to chemotactic solutions (and vice versa) is
investigated, and the solutions and cmin are determined numerically. In addition,
perturbation analysis provides some insight into any rapid transition zones.

6.1. Diffusion-driven migration, no chemotaxis. If the chemotactic coeffi-
cient is zero, then the model equations reduce to the Fisher equation which describes
cell migration driven by diffusion and proliferation. Then the system (2.7)–(2.8), in
the traveling wave coordinate, reduces to the differential equation system

dn

dz
= v,(6.1)

D
dv

dz
= −n(1 − n) − cv.(6.2)

It is well known that traveling waves exist and can be found by phase plane analysis
in the (n, v) plane, as illustrated in Figure 6.1. The state (n, v) = (1, 0) is a saddle
for all values of c. The other steady state (0,0) is a stable node if c2 > 4D and a
stable spiral if c2 < 4D. The population density n is required to be nonnegative and
hence cannot be oscillatory around zero; therefore, the wave speed must be restricted
to c2 ≥ 4D giving a minimum wave speed cmin = 2

√
D. The traveling wave solutions

are smooth. Clearly, the cell density is independent of the chemoattractant kinetics.

Numerical solutions to (2.7)–(2.8) with χ = 0 are shown in Figure 6.2 with both
rapid and slowly decaying initial conditions. In both cases, the profiles of n(x, t) show
clear traveling wave behavior characterized by a constant wave speed. For rapidly
decaying initial conditions, Figure 6.2(a) demonstrates a minimum wave speed of
cmin = 2.0, which agrees with the theoretical result. Alternatively for slowly decaying
initial conditions, Figure 6.2(b) illustrates an increased wave speed of c = 2.5, as given
by (4.7). This example confirms the result that the traveling wave speed c depends
on the exponential decay rate of the initial distribution of the cell population.

6.2. Chemotactically driven migration, no diffusion. If the diffusion co-
efficient is zero, then the variable v does not need to be introduced. As discussed in
section 2, when there is no diffusion, we can choose the length scale L so that the
dimensionless χ is identically equal to unity. Then equations (5.1)–(5.3) reduce to the
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Fig. 6.2. Numerical solutions of n(x, t) for the Fisher equation with D = 1, Δx = 0.05, and
Δt = 0.01. (a) Solutions at t = 0, 10, 20, 30, and 40 left to right with ξ1 = 10. The computed wave
speed is c = cmin = 2. (b) Solutions at t = 0, 10, 20, 30, and 40 left to right with ξ1 = 0.5. The
computed wave speed is c = 2.5.

following system:

c
dg

dz
= − [β(1 − g) − γng] ,(6.3)

c

[
1 +

1

c2
(β(1 − g) − 2γng)

]
dn

dz
=

n

c2
[γn + β] [γng − β(1 − g)] − n(1 − n).(6.4)

The chemoattractant kinetic term h chosen here differs from that in [18], resulting in
a different system with different steady states. The steady states of (6.3)–(6.4) are
(g, n) = ( β

β+γ , 1) and (1,0). The point ( β
β+γ , 1) is an unstable focus when c2 > βγ

β+γ

and is a saddle when c2 < βγ
β+γ , while the point (1,0) is always a saddle. It is worth

noting that with no diffusion, the stability of the steady states does not provide a
minimum for the wave speed, since the eigenvalues are always real.

When the function premultiplying dn
dz in (6.4) is identically zero, the derivative

dn
dz is no longer defined. Pettet, McElwain, and Norbury [32] defined such a curve as
a wall-of-singularities. Here the wall-of-singularities can be written as

n =
1

2γg

(
c2 + β(1 − g)

)
.(6.5)

This wall is asymptotic to the n-axis, cutting the positive g-axis at

g = 1 +
c2

β

to the right of the steady state (1, 0). Hence when c2 > βγ
β+γ the two steady states (an

unstable focus and a saddle) are to the left of the wall. Alternatively, when c2 < βγ
β+γ ,

then the two steady states (both saddles) are on either side of the wall. The wall gets
closer to the origin as c2 decreases, and therefore it is possible for the wall to move
below the steady state ( β

β+γ , 1).

Pettet, McElwain, and Norbury [32] showed that a solution approaching a wall-
of-singularities could not cross the wall unless it passed through a special point called
a hole in the wall. A hole is defined by both the function premultiplying dn

dz and the
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right-hand side of (6.4) being equal to zero simultaneously. Marchant, Norbury, and
Perumpanani [20] and Landman, Pettet, and Newgreen [18] showed that for a system
of equations (in the class of (2.1)–(2.2)) a trajectory exiting one steady state in the
phase plane which passed through a hole in the wall could in fact recross the wall by
way of a jump discontinuity to join up with the second steady state.

Similar behavior, where the two steady states are on same side of the wall, occurs
for the system considered here. As noted, our system also allows the two steady states
to be on the opposite sides of the wall. We will show that for this case the presence
of a hole in the wall is irrelevant and all traveling wave solutions exhibit a shock or
discontinuity. For this problem, there is at most one hole in the wall in the positive
(g, n) quadrant.

In seeking a trajectory connecting ( β
β+γ , 1) to (1, 0), two different types of behavior

can occur, and these are explained with two examples.
Example 1. In our first example, Figure 6.3 illustrates the (g, n) phase plane with

decreasing values of wave speed c, for one choice of the kinetic parameters β and
γ. For sufficiently large wave speeds, the two steady states are below the wall as in
Figure 6.3(a) and there is a unique trajectory to the left of the wall, connecting the
two states; this gives a smooth traveling wave. However, as c is decreased, there is
a value c = ccrit where the wall begins to interfere with trajectories emanating from
the unstable node. At this value the trajectory just touches the hole in the wall as in
Figure 6.3(b). For c < ccrit, we must determine whether a trajectory emanating from
( β
β+γ , 1) can cross the wall and connect to the other steady state (1,0).

Marchant [19] and Landman, Pettet, and Newgreen [18] investigated a similar
scenario. The arguments in section 4 of [18] for general kinetic terms apply to our
system of equations, allowing us to summarize the results here. No smooth connection
between the two states can be made; however, there is the possibility for the solution
to be nonsmooth by containing a jump discontinuity. The method relies on hyperbolic
partial differential equation theory, Lax entropy condition, and the Rankine–Hugoniot
jump condition. A solution for n with a shock or discontinuity, traveling of course
with the constant wave speed c, is shown to exist. Let the subscripts L and R denote
the value of the variable on the left and right side of the shock, respectively. Then
from (4.10)–(4.12) in [18], with h = β(1 − g) − γng, the shock conditions are

gL = gR = g,(6.6)

nL + nR =
1

γg

(
c2 + β(1 − g)

)
,(6.7)

uL − uR =
γg

c
(nL − nR),(6.8)

where u = ∂g
∂x . These equations establish that g is continuous, while n and the spatial

gradient of the chemoattractant concentration u support a discontinuity. The Lax
entropy condition [3] is satisfied only if nL > nR. Recall that the wall-of-singularities
satisfies (6.5). Hence, from (6.7) the geometric center of the jump 1

2 (nL + nR) lies
exactly on the wall-of-singularities, and therefore any jump takes the trajectory to
the other side of the wall. In this way, it is possible for a trajectory to pass through
the hole in the wall and then jump to a trajectory on the other side of the wall, thus
connecting the colonized and uncolonized states when c < ccrit, although the wall
prevents a smooth joining trajectory. Such a case is shown in Figure 6.3(c), where
the discontinuity corresponds to the vertical portion of the trajectory that joins the
colonized and uncolonized steady states. After the jump discontinuity, n will have a
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Fig. 6.3. Phase plane for (g, n) for decreasing values of wave speed c. Here β = 0.25, γ = 1.0.
The positions of the steady states (•), wall-of-singularities (dotted line), holes in the wall (•), and
the trajectory joining the colonized and uncolonized steady states (thick line) are shown. The vertical
lines in (c) and (d) correspond to the jump discontinuity in n. (a) c = 1.0, (b) c = ccrit ≈ 0.88, (c)
c = 0.8, (d) c = cmin ≈ 0.69.

smooth leading edge which asymptotes to zero.

However, for a realistic solution, nR > 0, so the jump cannot be so large as to
take the trajectory across the g-axis. As c decreases, the jump size becomes larger,
until at some c = cmin, the trajectory jumps directly from (g, n) = (1, c2/γ) to (1, 0),
as illustrated in Figure 6.3(d). This solution with c = cmin is the only solution with
a zero leading edge and hence has compact support. If c < cmin, no smooth or
nonsmooth traveling shock wave solution exists.

Therefore, our system supports traveling shock wave solutions with wave speed
ccrit > c > cmin. Clearly for this example c2min > βγ

β+γ , since both steady states
remain on the same side of the wall. Example 2 considers the alternative case.

Example 2. In our second example, the value of the production rate β is increased
sufficiently, so that c2min < βγ

β+γ , allowing the possibility for the two steady states to
lie on opposite sides of the wall, as shown in Figure 6.4. For sufficiently large wave
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Fig. 6.4. Phase plane for (g, n) for decreasing values of wave speed c. Here β = 1.0, γ =
1.0. The positions of the steady states (•), wall-of-singularities (dotted line), and the trajectory
joining the colonized and uncolonized steady states (thick line) are shown. The vertical line in (b)
corresponds to the jump discontinuity in n. (a) c = 1.0, (b) c = cmin ≈ 0.556.

speeds, the two steady states are below the wall, as in Figure 6.4(a), and there is a
unique trajectory to the left of the wall, connecting the two states; this gives a smooth
traveling wave. However, as c is decreased to ccrit where

c2crit =
βγ

β + γ
,(6.9)

the steady state lies on the wall and so is also a hole in the wall. For c < ccrit,
the steady state lies on the other side of the wall, as shown in Figure 6.4(b). The
jump discontinuity theory can then be applied again, so that the trajectory emanating
from ( β

β+γ , 1) can cross the wall to join with a trajectory which connects with the

saddle at (1,0). Again, the requirement that nR > 0 implies that as c decreases, the
jump size becomes larger, until at some c = cmin, the trajectory jumps directly from
(g, n) = (1, c2/γ) to (1, 0). If c < cmin, no smooth or nonsmooth traveling shock wave
solution exists. Note that, for this case, no hole is needed when the two steady states
are on opposite sides of the wall, as shown here.

In addition to the phase plane analysis, a numerical solution to the system (2.7)–
(2.8) with D = 0 illustrates the smooth and discontinuous solutions and their corre-
sponding dependence on the wave speed. As discussed in section 4 the wave speed
depends on the exponential decay rate of the initial data for n, and therefore the
mechanism for generating the smooth and discontinuous traveling waves is through
varying the rate of decay ξ1.

With the same parameter values as in Figure 6.4, profiles of n and g at a fixed
time for three cases where the initial cell density distribution decreases at a rapid,
moderate, and slow exponential rate are given in Figure 6.5. The left-most profile
corresponds to a rapidly decaying initial condition. The cell density profile shows
that the cell front is discontinuous, with the discontinuity extending to n = 0, and
therefore the profile has compact support. The gradient of the chemoattractant profile
is also discontinuous at the same position, namely, the smallest value of x where g = 1.
This corresponds to the case where the trajectory in the phase plane jumps across the
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Fig. 6.5. Numerical profiles for n(x, t) (solid line) and g(x, t) (dotted line) with γ = 1.0,
β = 1.0. Left to right n(x, t): Discontinuous solution with maximum shock length (nR = 0) with
ξ1 = 3.0; discontinuous solution with smaller shock length (nR > 0) with ξ1 = 1.5; continuous
solution with ξ1 = 1. The end points of the shocks (•) are shown. Numerical computations were
performed with Δx = 0.05 and Δt = 0.01.

wall to the completely colonized steady state, as in Figure 6.4(b). The middle profile
in Figure 6.5 corresponds to an initial condition where the decay is moderate. This
profile shows a smaller discontinuity in the cell density; however, the discontinuity
does not extend to the base of the profile as the toe of the profile is continuous. Again
there is a discontinuity in the gradient of the chemoattractant at the same position
where the discontinuity in the cell density occurs. Finally, with a slowly decaying
initial condition, the distributions of the cell density, chemoattractant concentration,
and the gradient of the chemoattractant concentration are continuous, as shown in
the rightmost profile. The phase plane corresponding to this final case has the two
steady states on the same side of the wall, as in Figure 6.4(a). With the parameter
values used in Figure 6.3, the numerical solutions are qualitatively similar.

The profiles in Figure 6.5, together with the phase diagrams in Figures 6.3 and
6.4, give a comprehensive understanding of the behavior of the traveling wave solu-
tions obtained from (2.7)–(2.8) when D = 0 and chemotaxis is the only cell migration
process. Similar to the alternative diffusion-only case (χ = 0), the existence of trav-
eling wave solutions is established. In contrast, migration by pure diffusion cannot
give rise to discontinuous solutions because of the smoothing nature of linear diffusion.
However, both these limiting cases show that the speed of the resulting traveling wave
solution is determined by the exponential decay rate of the initial distribution of the
migrating cell population.

Finally, it follows from our scaling arguments (2.6), (6.3)–(6.4), that the minimum
wave speed for the chemotaxis-only migration case scales with

√
χ and hence has the

form

cmin = K(β, γ)
√
χ,(6.10)

where K(β, γ) is a constant dependent on the kinetic parameters. This was anticipated
in the earlier numerical simulations presented in Figure 4.1(a). Therefore cmin has a
similar form to the minimum wave speed of 2

√
D for the diffusion driven migration

as discussed in section 6.1. The major difference is that the coefficient K(β, γ) is
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not a constant but varies in a complicated way with the kinetic parameters β and
γ. The two examples discussed above provide the criterion for determining K. As
in Example 1, if c2min > βγ

β+γ , then cmin is defined as that value of c such that the

trajectory from the hole in the wall passes through (1, c2/γ). Alternatively, as in
Example 2, if c2min < βγ

β+γ , then cmin is defined as that value of c such that the

trajectory from the steady state ( β
β+γ , 1) passes through (1, c2/γ).

An analytical solution for K(β, γ) has been attempted but does not appear possi-
ble at the present time. Instead, numerical solutions are used to compute the minimum
wave speed K(β, γ) over a range of kinetic parameters β and γ. The form of K(β, γ)
is shown in Figure 6.6. In general, K(β, γ) decreases with increasing β and increases
with increasing γ, that is, ∂K

∂β < 0 and ∂K
∂γ > 0. These trends can be understood

by considering the biological processes associated with the kinetic terms. The steady
state concentration g = β

γ+β increases with increasing β or with decreasing γ. As
this steady concentration increases, the chemotactic gradient decreases giving rise to
slower traveling wave speeds and a reduced value of K(β, γ). This intuitive argument
agrees with the form of K(β, γ) deduced with the numerical solutions shown in Figure
6.6. We also investigated whether K(β, γ) depended on a similarity variable, such as
the ratio β

γ alone, as illustrated in Figure 6.6(c). It appears that K(β, γ) has a similar

shape for the wide range of β
γ investigated. However, the location of the curve can

vary considerably for various choices of β.
Incorporating both numerical and phase plane analyses in this work reveals a

remarkable advantage regarding the development and testing of the numerical algo-
rithm. In general, testing numerical schemes for coupled nonlinear migration problems
can be very difficult because of a lack of suitable analytical solutions [35]. Using the
phase plane for the pure chemotaxis problem quantifies certain properties of the solu-
tion, such as the critical wave speed ccrit, the minimum wave speed cmin, and the size
of the discontinuity. This unique information is useful in developing the numerical
scheme as these quantitative checks are invoked to ensure that the numerical scheme
is accurate.

6.3. Migration with both diffusion and chemotaxis. A three-dimensional
phase plane analysis of (5.1)–(5.3) does not provide a productive way for seeking
traveling wave solutions. A numerical study is convenient for examining both the
shape of the invading profile as well as the minimum wave speeds. In particular, the
robust numerical algorithm presented here has no difficulty in generating numerical
solutions for any value of the diffusion coefficient and chemotactic factor. Therefore, it
is of interest to investigate how this general case of combined chemotaxis and diffusive
migration relates to the two limiting cases when either D or χ is zero.

6.3.1. Numerical solution profiles. Various solution profiles showing the in-
fluence of increasing the chemotactic factor χ for a fixed value of diffusivity D = 1
are shown in Figure 6.7(a). Comparison of these profiles shows that their smooth
shape evolves to one with a developing discontinuity as χ increases. Moreover, the
gradient of both the cell density and chemoattractant concentration increases with χ.
Since the profiles are plotted at a fixed time starting from the same initial data, the
wave speed clearly increases with χ from the minimum wave speed associated with the
Fisher equation. This increase in wave speed with χ is expected because the inclusion
of a second migration process enhances cell migration.

Similarly, the effect of increasing D on the numerical solutions is shown in Figure
6.7(b). Now the steep profiles evolve to smooth, flatter profiles as the diffusivity
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Fig. 6.6. Dependence of K(β, γ) on the kinetic parameters. (a) β for various γ values;
(b) γ for various β values; (c) β/γ for β = 10 (short dashed line), β = 1 (solid line), β = 0.5
(long dashed line), and β = 0.1 (dotted line).

increases, which reflect the smoothing nature of linear diffusion. These flatter profiles
travel at a faster rate, as for the Fisher equation [25].

It is interesting to compare the rate at which the added migration processes com-
petes with the underlying migration. In Figure 6.7(a), with the addition of chemotaxis
to diffusive migration, the shape of the front steepens with increasing χ; however, the
smooth shape is maintained fairly consistently up until χ = 50 and it is not until
χ = 100 that the profile begins to tend toward the upper limit of chemotaxis-only
migration with a discontinuous front. Conversely, in Figure 6.7(b), with the addition
of diffusion to chemotactic migration, the shape of the front is very sensitive to the
addition of a small amount of diffusion. The sharp front is smoothed with increasing
D and tends toward the limit of diffusion-only migration for D = 0.5. These obser-
vations show that diffusion masks the influence of chemotaxis more efficiently than
chemotaxis masks diffusion. These trends will now be more thoroughly explored in
terms of the minimum wave speed cmin.

6.3.2. Minimum wave speed. For the system (5.1)–(5.3), a linear stability
analysis of the steady state (g, n, v) = (1, 0, 0) gives real eigenvalues if and only if
c ≥ 2

√
D, ensuring the point is a saddle point, just like for the Fisher equation.

This condition provides a lower bound for the minimum wave speed. Numerical
computations provide an extended analysis of the influence of mixed migration on the
minimum wave speed. We examine the case where one of χ or D is held constant while
simultaneously varying the other migration parameter. Numerical computations are
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Fig. 6.7. Numerical profiles of n(x, 20) (solid line) and g(x, 20) (dotted line). (a) The influence
of increasing chemotaxis with fixed D = 1, with χ increasing from left to right with values indicated.
(b) The influence of increasing diffusion with fixed χ = 1, with D increasing from left to right with
values indicated. All results were computed with β = 1, γ = 1, ξ1 = 10, Δx = 0.05, and Δt was
varied depending on χ.

conducted to determine the effect on cmin.
Fixing the value of the chemotactic factor, namely, χ = 1, the minimum wave

speed increases monotonically with the diffusion coefficient D, as shown in Figure
6.8(a). Furthermore, as the diffusion coefficient increases, the minimum wave speed
asymptotes to 2

√
D. For this choice of kinetic parameters, 2

√
D provides a good ap-

proximation to cmin when D/χ > 0.2. In general, for sufficiently large D/χ, diffusion
dominates over chemotaxis and the minimum wave speed is accurately approximated
by the Fisher wave speed cmin = 2

√
D, while for smaller values of D/χ, chemotaxis

dominates and cmin is greater than that associated with the Fisher equation or chemo-
taxis alone. The numerical results for large D lie a little below 2

√
D; this trend was

also found for haptotactic invasion with added diffusion [19].
Similarly, setting the diffusion coefficient as D = 1, the cmin monotonically in-

creases with the chemotactic factor χ and asymptotes to K(β, γ)
√
χ, as illustrated

in Figure 6.8(b). In this example, K(β, γ)
√
χ gives a good approximation to cmin

when χ/D > 50.0. In general for sufficiently large χ/D, chemotaxis dominates over
diffusion and the minimum wave speed is well approximated by cmin = K(β, γ)

√
χ as

given in (6.10). Conversely, for smaller values of χ/D, diffusion dominates and cmin

is greater than that associated with chemotaxis or diffusion alone.
An explicit formula for cmin as a function of χ and D (as well as the kinetic

parameters) has not been determined at this stage. However, some descriptive com-
ments can be made. The discussion above indicates a natural lower bound for cmin as
max[K(β, γ)

√
χ, 2

√
D]. An upper bound can be conjectured, as indicated in Figure

6.8. These can be combined as

max[K(β, γ)
√
χ, 2

√
D] < cmin <

√
4D + K2(β, γ)χ.(6.11)

This expression suggests that diffusion dominates over chemotaxis when K2(β,γ)χ
4D � 1,

and alternatively that chemotaxis dominates over diffusion when 4D
K2(β,γ)χ � 1.

6.3.3. Perturbation analysis. When chemotaxis is small compared to diffusive
migration, namely, χ/D � 1, a regular perturbation analysis could be undertaken to
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give a solution valid for small χ/D. The first-order terms for n would just be the
solution to the Fisher equation. This analysis is not very insightful and therefore is
not shown here. A more illuminating analysis comes from the alternative case when
D/χ is small.

Marchant [19] examined the case where a small amount of diffusion was added to a
haptotactic invasion problem, using singular perturbation and phase plane arguments.
A similar analysis is performed here but can be taken further and solved exactly. As
discussed in section 6.2, when D = 0, our model supports discontinuous traveling wave
solutions for a range of values of c. We know that a small amount of diffusion added
to a purely chemotactic system has the effect of smoothing out any discontinuities.
However, the gradients are expected to remain large in a small region. When D/χ
is small, a perturbation analysis provides an understanding of the transition region.
The analysis determines the evolution from a discontinuous traveling wave solution
(D = 0) to one which is smooth, but has large derivative, in a small critical layer. Set
χ = 1 without any loss of generality. With D � 1, we seek solutions to (5.1)–(5.3) as
an asymptotic expansion in terms of D as

g = g0(z) + Dg1(z) + D2g2(z) + · · · ,(6.12)

n = n0(z) + Dn1(z) + D2n2(z) + · · · ,(6.13)

v = v0(z) + Dv1(z) + D2v2(z) + · · · .(6.14)

Hence g0 and n0 will satisfy (6.3)–(6.4). We choose to consider the traveling wave
solution with the minimum wave speed cmin. We shift the origin so that the jump
occurs at z = 0. This solution is the first term in the outer solution of the asymptotic
expansion of the solution. At z = 0, for small D, there will be a narrow region where
the rates of change of n are large, since n has to connect the left-hand limit nL and
right-hand limit nR = 0. In this critical layer we seek a solution in the expanded
variable ξ = z/D as

g = G0(ξ) + DG1(ξ) + D2G2(ξ) + · · · ,(6.15)

n = N0(ξ) + DN1(ξ) + D2N2(ξ) + · · · ,(6.16)
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v =
1

D
V0(ξ) + V1(ξ) + DV2(ξ) + · · · .(6.17)

Substitution into (5.1)–(5.3) yields the highest-order terms satisfying

dG0

dξ
= 0,(6.18)

dN0

dξ
= V0,(6.19)

dV0

dξ
= −

[
1 +

1

c2min

(β(1 −G0) − 2γN0G0)

]
cminV0.(6.20)

For the inner solution to match the outer solution, we require

G0 = 1, ξ → ±∞,(6.21)

N0 = nL =
c2min

γ
, ξ → −∞ , N0 = nR = 0, ξ → ∞,(6.22)

V0 = 0, ξ → ±∞.(6.23)

Note that the value of nL is obtained using the jump condition (6.7). Equations
(6.18) and (6.21) give G0(ξ) = 1 for all ξ. This simplifies the coupled system (6.19)–
(6.20) as

dV0

dξ
= −

[
1 − 2γ

c2min

N0

]
cmin

dN0

dξ
= −cmin

[
dN0

dξ
− 2γ

c2min

N0
dN0

dξ

]
,(6.24)

which integrates to

dN0

dξ
= V0 = −cmin

(
N0 −

γ

c2min

N2
0

)
,(6.25)

where the integration constant is zero from the conditions at ξ → ∞. This is a logistic
equation with solution

N0 =
c2min

γ

e−cminξ

1 + e−cminξ
,(6.26)

where N0(0) = c2min/(2γ) with no loss of generality. Therefore, adding a small amount
of diffusion introduces a steep transition region, of width D with exponential behavior
depending on cminz/D (having set χ = 1).

Figure 6.9 compares the numerically generated solutions to the perturbation anal-
ysis logistic solution (6.26). The region about the sharp front is stretched via the
transformation ξ = z/D so that the gradient is O(1) in the ξ coordinate. The nu-
merical profile is translated so that n(ξ, t) = c2min/(2γ) occurs at ξ = 0, as it does
for N0. The profiles of the leading order perturbation analysis and the numerically
generated solution compare very well in the leading edge for ξ > 0 for small values of
D as shown. The perturbation solution does not match as well in the region ξ < 0 for
two reasons. First, we have matched with the jump density nL as ξ → −∞, whereas
the full numerical solution goes to the n = 1 state. Second, the slope of n as ξ → −∞
does not match at this dominant order of the approximation. The next order term,
V1, would be required to match the slope of the outer solution ∂n0

∂z at the left of the
shock as ξ → −∞.
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Fig. 6.9. Critical layer comparison of numerical solution with the dominant perturbation so-
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(b) D = 0.05, (c) D = 0.1.

7. Conclusions. This article considers a mathematical model of cell invasion,
where both diffusion and chemotaxis are the migration mechanisms. The details of
the model were developed such that the results of the analysis are applicable to certain
cell migration processes which are known to occur in developmental biology. A suite of
traveling wave solutions is shown to exist regardless of whether the migration is pure
diffusive, pure chemotaxis, or a combination of diffusive and chemotaxis migration.
For all three cases, the traveling wave speed is bounded from below. The minimum
wave speed is always observed whenever numerical simulations are performed using
initial data where the cell density has compact support. Since the initial distribution
of invading cells usually falls to zero for x large enough, this seems to be the most
biologically relevant situation. Therefore, in general the most biologically relevant
solution for these cell migration models is the solution corresponding to the minimum
wave speed.

An understanding of the nature of the minimum wave speed as a function of the
migration parameters is important. Phase plane analysis can provide values for the
minimum wave speed for the two limiting cases when either the migration is purely
diffusive or chemotactic. These values and the explicit shapes of the solutions can
also be found using numerical methods. In particular, a robust numerical algorithm is
developed which gives stable traveling waves solutions including shocks. The numeri-
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cal algorithm combines a high-accuracy explicit central scheme [14] for the nonlinear
hyperbolic and reaction terms together with a standard implicit finite element so-
lution of the diffusion term with an operator split approach. The use of operator
splitting for this particular problem was critical in combining the numerical solutions
of the chemotaxis and diffusion terms together in a way that conveniently minimized
numerical stability issues. Therefore, the numerical algorithm presented in this work
provides an extremely accurate and versatile means of solving combined chemotaxis
and diffusive migration problems.

For the combined diffusion and chemotactic migration case, numerical results
were used to determine an upper and a lower bound on the minimum wave speed.
Numerical results also demonstrate how the diffusion and chemotaxis mechanisms
interact in a combined migration problem. The rate at which the minimum wave
speed for the mixed migration case approached the minimum wave speed for the two
limiting cases indicated that diffusion dominates over chemotaxis for relatively small
values of the ratio of D∗

χ∗ = Dλ3

χλ2
.

The results from the combined diffusion and chemotaxis case indicate that adding
a small amount of diffusion to a pure chemotaxis problem can result in the chemo-
tactic characteristics of the problem being completely masked by the added diffusion.
This observation is particularly relevant for numerical computations, when parabolic
solvers are often used for chemotaxis (or haptotaxis) dominated processes. Further,
this result also implies that standard numerical solutions of chemotaxis problems
might be extremely sensitive to numerical diffusion and so great care should be exer-
cised in obtaining such solutions.

In summary, this analysis provides a deeper qualitative and quantitative under-
standing of the interplay between diffusion and chemotaxis for invading cell popula-
tions. Often, when modeling biological cell migration, parameter values are difficult to
estimate. If the wave speed can be determined experimentally, and the diffusion rate
estimated, then some reasonable estimates of the chemotactic term may be deduced
from the results presented here.
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Abstract. In a porous medium such as the earth’s subsurface, electromagnetic (EM) waves and
mechanical waves are coupled through the phenomenon of electrokinetics, for which a complete set of
partial differential equations was derived by S. Pride. In this paper, we derive from Pride’s equations
an asymptotic theory that enables forward modeling of the seismic response to an EM source in fully
three-dimensional geometries on a scale that is relevant to exploration. For simplicity, we consider
piecewise homogeneous media separated by interfaces which are curved surfaces in three dimensions.
The following physical picture emerges: An EM source excites an EM wave which propagates into
the earth, stirring up local mechanical movement. At an interface, EM energy is converted to seismic
waves, which may be described by ray theory. Instantly, on the seismic time scale, every interface
becomes a wavefront for both compressional and shear waves; that is, seismic P- and S-waves explode
from both sides of each interface, at every point on it. The rays for these waves leave the interface in
the orthogonal direction and propagate up and down into the homogeneous media on both sides of
the surface. We derive formulas for the initial amplitudes of these waves. Conventional seismic ray
theory then describes propagation of the P- and S-waves, including reflection, transmission, and mode
conversion at any other interfaces that they may encounter. Thus, three-dimensional electroseismic
modeling may be accomplished with conventional EM and conventional seismic modeling tools, using
the present theory to provide the link between them.
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1. Introduction. In a porous medium such as the earth’s subsurface, electro-
magnetic (EM) waves and mechanical waves are coupled through the phenomenon of
electrokinetics [14]. Ions in the pore fluid are attracted to ions of the opposite sign
in the solid at the pore walls, so that there is an electrical double layer, called the
Debye layer, at the pore boundaries. An electric field acting on this double layer will
move the ions relative to each other, creating movement of both the fluid and the
solid. Conversely, a mechanical wave which moves the fluid and solid relative to each
other will create an EM wave. This phenomenon was proposed as the basis of a hy-
drocarbon exploration method in 1936 by R. R. Thompson of Humble Oil Company,
in volume 1 of Geophysics [19]. It was described theoretically 60 years ago [7] and
has been demonstrated in the laboratory, where the magnitude of the coupling, called
the electrokinetic mobility, has been measured (see [13] and references therein).

Starting with the microscopic description, Pride [14] derived from first principles
a complete set of macroscopic equations describing electrokinetics. These are 19 scalar
partial differential equations in which Maxwell’s equations for EM are coupled with
Biot’s equations [1, 2, 3, 15] for movement of fluid and solid in a porous medium. Some
general properties of these equations are known, including uniqueness, source/receiver
reciprocity, energy conservation, and point source and plane wave responses in homo-
geneous media [17]. Also, computer codes have been written to compute the solution
of Pride’s equations in plane layered media [8], that is, media which are piecewise
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homogeneous and which have material properties that vary only in one dimension,
which is depth.

Techniques based on electrokinetics have been proposed for use in exploration of
the earth’s subsurface, and several groups have conducted field experiments [19, 18,
4, 11, 12]. All of these experiments were seismoelectric, i.e., a mechanical (seismic)
source was used, and an EM wave was detected. In this paper, we will analyze the
electroseismic method, where an EM source is used and a seismic wave is detected.

Electrokinetic prospecting methods are especially promising for detecting mate-
rials whose electrical resistivity varies markedly from that of the background, e.g.,
hydrocarbons. EM methods [20, 6] may also be used for this, but their spatial reso-
lution is usually less than desirable because of the long wavelengths of EM waves in
the earth. Seismic methods [6] have much better spatial resolution, but they respond
to much smaller contrasts in material properties. It may be hoped that electrokinetic
methods can combine the virtues of both approaches.

In this paper, we will derive an asymptotic theory that enables forward modeling
of the electroseismic response in fully three-dimensional geometries on a scale that
is relevant to exploration. For these problems, the cost of direct calculation, for
instance with finite differences, is prohibitive. In deriving the theory, we use three
basic assumptions: first, that the EM and mechanical coupling is weak; second, that,
as is common in seismology, conventional elasticity theory may be used in place of
Biot’s theory; and third, that the scales are such that seismic ray theory is valid. Each
of these assumptions is specified in terms of a single parameter that is assumed to be
large or small. Our asymptotic theory is then derived from a systematic perturbation
expansion of Pride’s full system of equations for electrokinetics. For simplicity, we
consider only piecewise homogeneous media separated by interfaces which are curved
surfaces in three dimensions.

The physical picture that emerges from the perturbation expansion is as follows:
An EM source excites an EM wave which propagates into the earth, stirring up local
mechanical movement as it passes. At an interface, EM energy is converted to seismic
waves, which may be described by ray theory. Instantly, on the seismic time scale,
every interface becomes a wavefront for both compressional and shear waves; that is,
seismic P- and S-waves explode from both sides of each interface, at every point on it.
The rays for these waves leave the interface in the orthogonal direction, and propagate
up and down into the homogeneous media on both sides of the surface. Conventional
seismic ray theory [5, 10] then describes propagation of the P- and S-waves, including
reflection, transmission, and mode conversion at any other interfaces that they may
encounter.

All that is necessary to complete this picture are the initial amplitudes of the
P- and S-waves when they originate at the interfaces. Formulas for these initial
amplitudes are given below in section 8. These formulas depend on the material
parameters and on values of the electric field on both sides of the interface where the
seismic waves originate.

With this theory, a general computer program for three-dimensional electroseismic
modeling can be constructed, using commercially available software for the major
computational tasks. First, the EM field is computed using, say, a finite element EM
solver. A small subroutine then uses the formulas of section 8, combined with the
computed values of the electric field, to get the initial P- and S-wave amplitudes on
every interface. Finally, a ray trace program may be used to follow the rays that are
created. In this way, three-dimensional electroseismic modeling may be accomplished
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with conventional EM and conventional seismic modeling tools, using the present
theory to provide the link between them.

This paper is organized as follows.
In section 2, we nondimensionalize Pride’s equations, and introduce the small

and large parameters used for the perturbation analysis. In section 3 we show how
the problem can be reduced to solving the usual homogeneous Biot’s equations, but
with inhomogeneous boundary conditions at all the interfaces. For each interface, we
derive eight scalar jump conditions for Biot’s equations, conditions that depend on
the material parameters and on the computed values of the electric field on both sides
of the interface.

In sections 4–7 we derive a two-parameter asymptotic expansion for Biot’s equa-
tions. This approximation is applicable when seismic ray theory is valid, and when
Biot’s equations give rise to waves that look like the conventional seismic P- and
S-waves which are derived from the theory of an elastic solid. Besides the P- and
S-waves, we obtain the form, in our approximation, of the Biot slow wave.

The Biot slow wave is a diffusive wave, which decays rapidly to zero with propa-
gation distance. It is therefore difficult to observe, and laboratory observation of it in
real rocks has only been accomplished recently [9]. However, as is shown in section 8,
EM energy is converted to Biot slow waves at an interface, and slow waves must be
considered in order to calculate the amplitudes of the P- and S-waves which also orig-
inate there. The necessity of including the Biot slow waves for energy conversion at
an interface is consistent with the results of Pride and Garambois [16] for conversions
of seismic to EM energy.

In section 8, we combine our asymptotic Biot theory with the interface conditions
of section 3 to derive the initial amplitudes of all the waves created at an interface by
an EM source.

In section 9, we compare the asymptotic theory to the results of a computer
program which is designed to compute the electroseismic response in plane layered
media.

Concluding remarks are in section 10.

2. An EM source in the seismic band. For an EM source current js in a
porous medium, Pride’s equations for the electric and magnetic field vectors, E and
H, respectively, are

∇xE = iωμH,(1)

∇xH = (σ − iεω)E + L(−∇p + ω2ρfu) + js,(2)

where ω is frequency, σ, ε, and μ are, respectively, conductivity, dielectric constant,
and magnetic permeability, L is the electrokinetic mobility parameter, p is the pore
pressure, ρf is the density of the pore fluid, and u is the solid displacement.

Pride’s equations for u and the relative fluid displacement w are

−ω2(ρu + ρfw) = ∇ · τ ,(3)

−iωw = LE + (κ/η)(−∇p + ω2ρfu),(4)

τ = (λ∇ · u + C∇ · w)I + G(∇u + ∇uT),(5)
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−p = C∇ · u + M∇ · w,(6)

where τ is the stress tensor, I is the 3 × 3 identity, κ is the permeability, η is the
viscosity of the pore fluid, λ and G are the Lamé parameters of elasticity, and C and
M are the Biot moduli parameters.

Note that in this theory, the electrokinetic mobility L provides coupling between
the EM system (1), (2) and the mechanical system (3)–(6). That is, when L = 0 these
systems are decoupled. We assume weak coupling so that to leading (i.e., zeroth) order
in L, the EM field satisfies (1), (2) with L = 0. These equations are the conventional
Maxwell equations, and can be solved independently of the mechanical system. Then
to leading (i.e., first) order in L the mechanical system satisfies (3)–(6), which are
Biot’s equations with the EM field as a source.

We consider these equations in a homogeneous region of space, i.e., where all
parameters are constant. Then putting (5) into (3) yields

−ω2(ρu + ρfw) = (λ + G)∇(∇ · u) + G∇2u + C∇(∇ · w).(7)

Putting (6) into (4) yields

−ω2(ρfu + ρ̃w) = C∇(∇ · u) + M∇(∇ · w) − iωρ̃LE,(8)

where the pure imaginary parameter

ρ̃ =
iη

ωκ
(9)

has units of density.
The equations may be nondimensionalized by introducing typical values ρ̄, λ̄, Ḡ,

L̄, Ē, and a typical length scale of the geometry, l̄. Define

v̄ =

√
(λ̄ + 2Ḡ)

ρ̄
,

(10)

ū =
l̄

v̄
L̄Ē.

Note that v̄ is a typical compressional wave speed in elasticity theory, i.e., a typical
seismic P-wave speed.

Define the dimensionless variables

x′ = x/l̄, ω′ = ωl̄/v̄, L′ = L/L̄,

ρ′ = ρ/ρ̄, ρ′f = ρf/ρ̄, ρ̃′ = ρ̃/ρ̄,
(11)

λ′ = λ/(λ̄ + 2Ḡ), G′ = G/(λ̄ + 2Ḡ), M ′ = M/(λ̄ + 2Ḡ), C ′ = C/(λ̄ + 2Ḡ),

u′ = u/ū, w′ = w/ū, p′ =
l̄

ū(λ̄ + 2Ḡ)
p, τ ′ =

l̄

ū(λ̄ + 2Ḡ)
τ, E′ = E/Ē.

Use of (10) and (11) shows that (5)–(8) are also satisfied by the primed variables.
We consider the seismic ray theory regime when a typical seismic wavelength is

much smaller than a typical dimension l̄. Thus the dimensionless frequency ω′ satisfies
the high frequency condition

ω′ >> 1.(12)
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However, the frequency is assumed to be subcritical for the porous medium, i.e.,

|ρ̃′| >> 1.(13)

As is shown in sections 4–7, condition (13) assures that the dynamics of the porous
medium may in most regions of space be approximated by the dynamics of elastic-
ity theory, as is commonly assumed in seismology. In particular, this condition is
necessary to obtain wave modes that approximate those of seismic P- and S-waves.
Condition (13) also plays a role in microscopic theory, where it guarantees that
the frequency is much less than the transition frequency separating low frequency
viscous flow in the pores from high frequency inertial flow [14]. Thus the present
theory corresponds to that in [1] rather than that in [2].

Because a typical EM wavelength is much larger than a seismic wavelength, E is
not rapidly varying on the length scale l̄. Therefore, ray theory is not appropriate for
the calculation of the EM field, and the full Maxwell equations (1), (2) with L = 0
must be solved.

Equations (7) and (8) are satisfied in each homogeneous region of space. Let S
be an interface, i.e., a surface separating two homogeneous regions, and let n be a
normal to S. Then Pride’s interface conditions [17] are

Continuity of u, p, w · n, τ · n across S.(14)

Note that (14) comprises eight scalar boundary conditions that must be satisfied at
any interface between two homogeneous regions. Of course Maxwell’s equations also
require continuity of the tangential components of E and H across S.

For notational convenience, we drop primes in what follows and use nondimen-
sional units.

3. Interface conditions for the converted waves. Let

u = u(p) + û w = w(p) + ŵ,(15)

where u = u(p) and w = w(p) are particular solutions of (7) and (8) that do not neces-
sarily satisfy the interface conditions (14), and û, ŵ are solutions of the homogeneous
equations, i.e., (7) and (8) with E = 0.

Particular solutions are easy to find asymptotically by seeking u = u(p) and
w = w(p) that are not rapidly varying in space. From (7) and (8) we obtain

−iωu(p) = −
(
ρf
ρ

)
LE + O

(
1

ω2

)
+ O

(
1

|ρ̃|

)
,

(16)

−iωw(p) = LE + O

(
1

|ρ̃|

)
.

In what follows, we neglect the small terms in this equation. Note, however, that
this approximation is only valid in the far field of the source, where the interfaces
are assumed to lie. Near the source, gradients of the electric field may be large,
invalidating (16). This raises the possibility that some EM energy is converted directly
to seismic waves where the EM source contacts the ground, but we will not investigate
these near-source seismic waves in the present theory.

The particular solution given by (16) represents a mechanical disturbance that
propagates along with the exciting EM wave. In a completely homogeneous space,
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this represents the asymptotic solution. However, if there are interfaces, new waves
must be generated at those interfaces in order for u and w to satisfy the conditions
(14). Let n be a normal to the interface S. Continuity of u across S yields the jump
condition

[|u|] =
[∣∣∣u(p) + û

∣∣∣] = 0,(17)

where [|·|] represents the jump in the value of a quantity across the interface S. That
is, let the normal n point to the side of the interface S+ and let S− be the other side.
The jump in any quantity A is

[| A |] ≡ A |S+ −A |S− .(18)

From (16) and (17) we obtain the jump condition for û

[|−iωû|] =

[∣∣∣∣
(
ρfL

ρ

)
E

∣∣∣∣
]
.(19)

Similarly, from continuity of w · n across S and (15), (16), we obtain

[|−iωŵ · n|] = −[|LE · n |].(20)

Next, pressure p is decomposed into parts corresponding to the particular and
homogeneous solutions

p = p(p) + p̂,(21)

where p(p) satisfies (6) with u,w replaced by u(p),w(p) and p̂ satisfies (6) with u,w
replaced by û, ŵ. However, in a homogeneous region of space

∇ · u(p) = ∇ · w(p) = 0.(22)

Equation (22) follows from taking the divergence of (16) and using the fact that the
divergence of the electric field vanishes in a source-free region of homogeneous space.
From (22) and (6) it follows that p(p) = 0 and so p = p̂. Continuity of p across S then
yields the condition

[|p̂|] = 0.(23)

Finally, the stress tensor τ is decomposed into parts corresponding to the partic-
ular and homogeneous solutions

τ = τ (p) + τ̂ ,(24)

where τ (p), τ̂ each satisfy (5) for u,w replaced by, respectively, the particular or
homogeneous quantities. Substituting (16) into (5) and using (22) yields

τ (p) =

(
−iGρfL

ρω

)(
∇E + ∇ET

)
.(25)

Now use of (24), (25) in the condition (14) that τ · n be continuous across S yields

[|−iωτ̂ · n|] =

[∣∣∣∣
(
GρfL

ρ

)
(∇E + ∇ET) · n

∣∣∣∣
]
.(26)
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In summary, new waves will be generated at an interface S. These waves will
satisfy the homogeneous equations (7) and (8) with the electric field set equal to zero.
However, they will satisfy the inhomogeneous interface conditions (19), (20), (23), and
(26). These jump conditions comprise eight scalar equations, with inhomogeneous
terms that depend on the electric field and on the values of the material parameters
on both sides of the interface.

For notational convenience, we will drop hats in what follows.

4. WKB expansion. The WKB ansatz [10] for a high frequency wave with
phase φ is an asymptotic expansion, as ω → ∞, of the form

u ∼ eiωφ

(
u0 +

1

iω
u1 +

1

(iω)2
u2 + · · ·

)
,

(27)

w ∼ eiωφ

(
w0 +

1

iω
w1 +

1

(iω)2
w2 + · · ·

)
.

From the form of the interface conditions derived in section 3, it may be antici-
pated that −iωu,−iωw are of order O(1), i.e., uj,wj are of order O(1/ω). This is of
no consequence in the expansion (27), since factors of ω may be divided through the
homogeneous Biot equations. It will, however, insert an extra factor of 1/ω in the
error estimates of sections 5–7.

Substituting (27) into (7) and equating coefficients of (iω)k to zero yields a series
of equations. Similarly, substituting (27) into (8) with E = 0 yields a second sequence
of equations. The results are summarized below in matrix-vector form, where L is a
6 × 6 matrix defined below in terms of its 3 × 3 blocks. Let

L = L(∇φ) =

[ (
ρ−G(∇φ)2

)
I − (λ + G)∇φ∇φT ρfI − C∇φ∇φT

ρfI − C∇φ∇φT ρ̃I −M∇φ∇φT

]
,(28)

R1(∇φ,u,w) = (λ + G) {(∇·u)∇φ + ∇(∇φ·u)}

+ G
{
2(∇φ·∇)u + (∇2φ)u

}
+ C {(∇·w)∇φ + ∇(∇φ·w)} ,(29)

R2(∇φ,u,w) = C {(∇ · u)∇φ + ∇(∇φ · u)} + M {(∇ · w)∇φ + ∇(∇φ · w)} .
(30)

Then we obtain

L
[

u0

w0

]
= 0,(31)

L
[

u1

w1

]
=

[
R1(∇φ,u0,w0)

R2(∇φ,u0,w0)

]
,(32)

and for j = 2, 3, 4, . . . ,

L
[

uj

wj

]
=

[
R1(∇φ,uj−1,wj−1)

R2(∇φ,uj−1,wj−1)

]

+

[
(λ + G)∇(∇ · uj−2) + G∇2uj−2 + C∇(∇ · wj−2)

C∇(∇ · uj−2) + M∇(∇ · wj−2)

]
.

(33)
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From (31), L has a nontrivial null space, which contains the vector [u0,w0]T.
Because L is complex symmetric, the complex conjugate [u∗

0,w
∗
0]T is in the null

space of the adjoint of L. The Fredholm alternative then implies that [u∗
0,w

∗
0]T is

orthogonal to the right-hand side of (32), i.e.,

u0 · R1(∇φ,u0,w0) + w0 · R2(∇φ,u0,w0) = 0.(34)

Similarly, [u∗
0,w

∗
0]T is orthogonal to the right-hand side of (33) for all j = 2, 3, 4, . . . .

Equation (31) reduces to the Biot theory dispersion relations if ∇φ is identified as
the slowness vector. This is because a sinusoidal wave is a special case of the form (27),
when φ is linear in x. Of course, wave fields that are much more complicated than
sinusoidal can be constructed from the general WKB expansion given here. However,
analogous to the classification of wave modes, we can classify three distinct types of
waves, which, for large |ρ̃|, correspond to seismic S-waves, seismic P-waves, and the
Biot slow wave. This is done in the next three sections.

5. S-waves. First consider transverse waves u0 = uS,w0 = wS, φ = φS , satis-
fying

uS · ∇φS = wS · ∇φS = 0.(35)

Substitution of (35) into (31) gives(
ρ−G(∇φS)2

)
uS + ρfwS = 0,(36)

ρfuS + ρ̃wS = 0.(37)

From (36) and (37) we get the dispersion relation for transverse waves

ρ−G(∇φS)2 = ρ2
f/ρ̃,(38)

which for |ρ̃| large can be written as

(∇φS)2 =
1

V 2
S

+ O

(
1

|ρ̃|

)
,(39)

where

VS =

√
G

ρ
(40)

is the elastic shear wave (seismic S-wave) speed. The eikonal equation [5, 10], (39) with
the small terms neglected, identifies the phase as approximately that of an S-wave.
The S-wave ray system is derived as the subcharacteristic curves of this equation,
which in a homogeneous medium are straight lines in the directions of ∇φS .

From (39), corrections to φS are of order O(1/|ρ̃|). Because of the exponential
factor in (27) these terms are negligible only if ω/|ρ̃| << 1. Thus, this condition is
necessary for elasticity theory without significant modification, e.g., with attenuation,
to be valid.

From (37)

wS = −ρf
ρ̃

uS.(41)
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From (41) note that for an S-wave, the fluid displacement relative to the solid is small,
of order O(1/|ρ̃|). Thus the fluid motion does not depart substantially from the solid
motion, as would be expected if the porous medium is to approximate an elastic solid.

To get a transport equation for the S-wave amplitudes, assume that wS is small
compared to uS, so that the second term in (34) may be neglected. Then simplifying,
using that uS is orthogonal to ∇φS and wS is small yields

uS · R1 = GuS ·
{
2(∇φS · ∇)uS + (∇φS)2uS

}
= 0.(42)

This equation reduces to the usual transport equation in which energy is conserved
in a ray tube [10]:

∇ ·
(
(uS)2∇φS

)
= 0.(43)

To determine the direction of uS, note that u′
0 = ∇φS×uS,w

′
0 = −(ρf/ρ̃)u

′
0 is

also a solution of (31). That is, [∇φS×uS,− (ρf/ρ̃)∇φS×uS]T is in the null space of
L, and so the complex conjugate of this vector is in the null space of the adjoint of L.
Therefore, the Fredholm alternative implies that [(∇φS×uS)

∗
, (−(ρf/ρ̃)∇φS×uS)

∗
]T

is orthogonal to [R1(∇φS ,uS,wS),R2(∇φS ,uS,wS)]T . To leading order,

(∇φS × uS) · {(∇φS · ∇)uS} = 0.(44)

Thus changes in uS in the direction of ∇φS remain in the plane determined by ∇φS

and uS. Since, in a homogeneous medium, the rays are straight lines in the direction
of ∇φS, the direction of uS remains constant along a ray.

To summarize, we will use the following approximation for S-waves when −iωuS

is of order O(1):

u = eiωφS

[
uS + O

(
1

ω|ρ̃|

)
+ O

(
1

ω2

)]
,

(45)

w = eiωφS

[
−ρf

ρ̃
uS + O

(
1

ω|ρ̃|2

)
+ O

(
1

ω2

)]
.

Here uS, with uS·∇φS = 0, is determined by (43) and (44), and φS is determined,
with error of order O(1/|ρ̃|), by (39).

6. P-waves. Next, consider longitudinal waves

u0 = uL∇φ, w0 = wL∇φ ,(46)

where uL, wL are scalars. Putting (46) into (31) gives(
ρ− (λ + 2G)(∇φ)2

)
uL +

(
ρf − C(∇φ)2

)
wL = 0,(47) (

ρf − C(∇φ)2
)
uL +

(
ρ̃−M(∇φ)2

)
wL = 0.(48)

From (47) and (48) we obtain the longitudinal dispersion relation(
ρf − C(∇φ)2

)2
=

(
ρ̃−M(∇φ)2

) (
ρ− (λ + 2G)(∇φ)2

)
.(49)

There are two roots of the quadratic equation (49) for (∇φ)2. One root φP is obtained
asymptotically by a power series expansion in (ρ̃)−1:

(∇φP )2 =
1

V 2
P

+ O

(
1

|ρ̃|

)
,(50)
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where

VP =

√
(λ + 2G)

ρ
(51)

is the elastic compressional wave (seismic P-wave) speed. Neglecting the small terms
in the eikonal equation (50) identifies these waves as, approximately, seismic P-waves.
For this root, the solution is written as

u0 = uPVP∇φP , w0 = wPVP∇φP .(52)

The constant factor VP is inserted in (52) because Vp∇φP is a unit vector.
The ray system for P-waves are the subcharacteristic curves of equation (50), i.e.,

straight lines in the direction of ∇φP .
As for S-waves, the condition ω/|ρ̃| << 1 must be assumed for accuracy of

exp{iωφP }, when terms of order O(1/|ρ̃|) are dropped in determining φP . Also,
as for S-waves, the fluid motion does not depart substantially from that of the solid.
This can be seen by combining (48), (52), and (50) to get

wP ∼ 1

ρ̃

(
C

V 2
P

− ρf

)
uP .(53)

To derive the transport equation, let wP be small compared to uP , and substitute
into (34). Then use of (50) yields again the transport equation for energy conservation
in a ray tube:

∇ · (u2
P∇φP ) = 0.(54)

To summarize, we will use the following approximation for P-waves when −iωuP

is of order O(1):

u = eiωφP

[
uP

∇φP

|∇φP |
+ O

(
1

ω|ρ̃|

)
+ O

(
1

ω2

)]
,

(55)

w = eiωφP

[
1

ρ̃

(
C

V 2
P

− ρf

)
uP

∇φP

|∇φP |
+ O

(
1

ω|ρ̃|2

)
+ O

(
1

ω2

)]
.

Here uP is determined by (54) and φP is determined, with error of order O(1/|ρ̃|), by
(50).

7. Biot slow waves. To obtain asymptotically the second root of (49) let φ =
φB be written as

φB =
√
ρ̃ φ̄B ,(56)

where the square root is in the first quadrant. Then asymptotically

(∇φ̄B)2 =
1

M̃2
+ O

(
1

|ρ̃|

)
,(57)

where

M̃ =

√
M − C2

(λ + 2G)
(58)
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is real. The eikonal equation (57), with (56), identifies this wave as the Biot slow
wave, which is slow because its speed, VB = Re{M̃/

√
ρ̃}, is small. It is a diffusive

wave, which decays rapidly as it propagates away from where it originates. This is
because the exponential factor in the WKB. expansion is

eiωφB = e
(−1+i)√

2
ω
√

|ρ̃|φ̄B ,(59)

which is transcendentally small unless |ω
√

|ρ̃|φ̄B | is O(1).
If φ̄B is determined from (57) with the error terms dropped, then φ̄B is accurate

up to an error of order O(1/|ρ̃|). In this case corrections to the argument of the
exponential in (59) have an error of O(ω/

√
|ρ̃|), and so higher order terms in ρ̃−1

might be significant depending on the size of this ratio. Nevertheless, in what follows,
we will not need to consider corrections to φ̄B , because the leading order term is
sufficient to determine when the slow wave is transcendentally small such that it need
not be calculated at all; and because we will use the exponential only where φ̄B ≡ 0
to all orders in ρ̃.

For the phase φ̄B the solution is written as

u0 = uBM̃∇φ̄B , w0 = wBM̃∇φ̄B .(60)

The constant factor M̃ is inserted in (60) because M̃∇φ̄B is a unit vector.
From (47), (57), and (58) we obtain that, dropping terms of order O (1/|ρ̃|),

wB ∼ − (λ + 2G)

C
uB .(61)

Note that wB is not small compared to uB unlike the corresponding expressions
for P- and S-waves. This is consistent with the fact that these waves have no ana-
logue in elasticity theory. Thus differences from elasticity theory can occur, but only
locally near where a Biot slow wave originates. We will show in the next section that
at interfaces excited by an EM wave, Biot slow waves can play an important role
in determining other wave amplitudes, even though the slow waves themselves are
undetectably small away from the interfaces.

To obtain the transport equation for the slow wave amplitudes, substitute (60)
(61) into (34) and use (56) and (57). After simplification, the result is again conser-
vation of energy in a ray tube:

∇ · (u2
B∇φ̄B) = 0.(62)

The above equations determine the amplitudes uB and wB to an error of order
O(1/|ρ̃|).

In the next section, we will need to differentiate u and w in order to calculate
the pressure and stress tensor from (6) and (5). A subtlety then arises in the case
of the Biot slow wave, since differentiation of the exponential in (59) brings down a
large factor of

√
ρ̃. In this case the higher order terms such as u1,w1 appear to be

significant if
√
|ρ̃|/ω is not small. To obtain the form of these higher order terms in

ω, but to leading order in |ρ̃|, substitute (56) into (31)–(33) and write the result in
matrix form. Let

L(0) = L(0)(∇φ̄B) =

[
−G(φ̄B)2I − (λ + G)∇φ̄B∇φ̄T

B −C∇φ̄B∇φ̄T
B

−C∇φ̄B∇φ̄T
B I −Mφ̄B∇φ̄T

B

]
.(63)
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Then the equations can be written as

L(0)

[
u0

w0

]
= O

(
1

|ρ̃|

)
,(64)

and for j = 1, 2, . . . ,

L(0)

[
uj

wj

]
=

1√
ρ̃

[
R1(∇φ̄B ,uj−1,wj−1)

R2(∇φ̄B ,uj−1,wj−1)

]
+ O

(
1

|ρ̃|

)
.(65)

The solution of (64) and (65) may be expanded as a power series in (ρ̃)−1/2:

uj =

∞∑
m=0

(ρ̃)(−m/2)uj,m,

wj =

∞∑
m=0

(ρ̃)(−m/2)wj,m.(66)

Letting |ρ̃| → ∞, the leading order terms, uj,0,wj,0, satisfy, for j = 0, 1, 2, . . . ,

L(0)

[
uj,0

wj,0

]
= 0.(67)

Consideration of the null space of L(0) shows that for j = 0, 1, 2, . . .

uj,0 = uB,jM̃∇φ̄B , wj,0 = wB,jM̃∇φ̄B ,(68)

where

wB,j = − (λ + 2G)

C
uB,j .(69)

Finally, the Fredholm condition for the jth term is that the vector [∇φ̄B ,
−C−1(λ+2G)∇φ̄B ]∗T is orthogonal to [R1(∇φ̄B ,uj,0,wj,0),R2(∇φ̄B ,uj,0,wj,0)]. As
in the case of j = 0, which was first done separately above, we derive the expression
for energy conservation in a ray tube:

∇ · (u2
B,j∇φ̄B) = 0.(70)

Therefore the same relations (68), (69), and (70) govern the slow wave amplitudes
to leading order in ρ̃−1/2 to all orders j = 0, 1, 2, . . . in (iω)−j . These are the same
relations (60), (61), and (62) that were first derived for j = 0. However, corrections
to φ̄B and to the j = 0 amplitude terms are of order O(1/|ρ̃|), while corrections to
the amplitudes for j ≥ 1 are larger, of order O(1/

√
|ρ̃|).
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To summarize, we will use the following approximation for Biot slow waves when
−iωuB and −iωuB,j are of order O(1):

(71)

u ∼ eiω
√
ρ̃φ̄B

⎡
⎣uB

∇φ̄B

|∇φ̄B |
+ O

(
1

ω|ρ̃|

)
+

∞∑
j=1

(
uB,j

(iω)j
∇φ̄B

|∇φ̄B |
+ O

(
1

ωj+1
√
|ρ̃|

))⎤
⎦ ,

w ∼ − (λ + 2G)

C
eiω

√
ρ̃φ̄B

⎡
⎣uB

∇φ̄B

|∇φ̄B |
+ O

(
1

ω|ρ̃|

)

+
∞∑
j=1

(
uB,j

(iω)j
∇φ̄B

|∇φ̄B |
+ O

(
1

ωj+1
√
|ρ̃|

))⎤
⎦ .

Here uB , uB,j are determined by (62) and (70), and φ̃B is determined, with error of
order O(1/|ρ̃|), by (57).

8. Initial amplitudes of the seismic waves. Combining (45), (55), and (71),
a wavefield with the three types of waves is written as

(72)

u ∼ eiωφS

[
uS1e1 + uS2e2 + O

(
1

ω|ρ̃|

)
+ O

(
1

ω2

)]

+ eiωφP

[
uP

∇φP

|∇φP |
+ O

(
1

ω|ρ̃|

)
+ O

(
1

ω2

)]

+ eiω
√
ρ̃φ̄B

⎡
⎣uB

∇φ̄B

|∇φ̄B |
+ O

(
1

ω|ρ̃|

)
+

∞∑
j=1

(
uB,j

(iω)j
∇φ̄B

|∇φ̄B |
+ O

(
1

ωj+1
√
|ρ̃|

))⎤
⎦ ,

w ∼ eiωφS

[
−ρf

ρ̃
(uS1e1 + uS2e2) + O

(
1

ω|ρ̃|2

)
+ O

(
1

ω2

)]

+ eiωφP

[
1

ρ̃

(
C

V 2
P

− ρf

)
uP

∇φP

|∇φP |
+ O

(
1

ω|ρ̃|2

)
+ O

(
1

ω2

)]
− (λ + 2G)

C

× eiω
√
ρ̃φ̄B

⎡
⎣uB

∇φ̄B

|∇φ̄B |
+ O

(
1

ω|ρ̃|

)
+

∞∑
j=1

(
uB,j

(iω)j
∇φ̄B

|∇φ̄B |
+ O

(
1

ωj+1
√
|ρ̃|

))⎤
⎦ .

Here e1, e2 are orthogonal unit vectors, orthogonal to ∇φS , and uS1, uS2, uP , uB ,
uB,j are scalar wave amplitudes. As noted previously, each of these amplitudes is
anticipated to be of order O(1/ω), because of the form of interface conditions (19),
(20), (23), and (26).

In the expression for w in equation (72) the small terms of order O(1/|ρ̃|) will
dominate the exponentially small slow wave term, except when the slow wave phase
φ̄B is near zero. However, as shown below, φ̄B = 0 at an interface where waves
originate, and it is then the slow wave term that dominates the expression for w.
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Consider an interface S separating two homogeneous media, and at each point of
S let n be a unit normal pointing into the side S+, i.e., away from S−. We will show
that the interface conditions of section 3 can be satisfied by introducing two waves,
u±,w±, each of the form of (72), originating at S± and subsequently propagating up
and down into the two homogeneous media separated by S.

First note that none of the interface conditions from section 3 have rapid spatial
oscillations. Therefore all the phases must vanish on S:

φ±
S = φ±

P = φ̄±
B = 0 onS.(73)

From (73), every interface is a wavefront for every type of wave. In particular,
∇φ±

S ,∇φ±
P ,∇φ̄±

B are all orthogonal to S. Since rays propagate in the direction of
the phase gradients, it is apparent that all P-, S-, and Biot slow wave rays leave S in
the orthogonal direction. That is, the rays for u+,w+ originating at S+ are in the
direction n, while those for u−,w− originating at S− are in the direction −n. These
observations are sufficient for determination of the phases to leading order in ρ̃, via
conventional ray tracing.

Similarly, the transport (43), (54), and (62) are sufficient to determine the eight
wave amplitudes, provided that their initial values u±

S1, u
±
S2, u

±
P , u±

B are known on S±.
We next determine those initial values by using the eight scalar interface conditions
derived in section 3.

First, we obtain from (72) and (73) that to leading order

u± ∼ u±
S1e1 + u±

S2e2 ± u±
Pn ± u±

Bn onS±,(74)

w± · n ∼ ∓ (λ± + 2G±)

C± u±
B onS±,(75)

since the slow wave dominates the expression for w on S. In these equations λ+

denotes the value of this parameter on S+, λ− denotes the value of this parameter on
S−, with a similar notation for the other parameters.

Next, differentiation of (72) yields

∇ · u± =
√
ρ̃±

(iωu±
B)

M̃±
+

√
ρ̃±

M̃±

∞∑
j=1

(iωu±
B,j)

(iω)j
+

(iωu±
P )

VP
+ o(1) onS±,

∇ · w± = −
√
ρ̃±

M̃±
(λ± + 2G±)

C±

⎡
⎣(iωu±

B) +

∞∑
j=1

(iωu±
B,j)

(iω)j

⎤
⎦ + o(1) onS±.(76)

Inserting (76) into (6) and use of (57) yields that to leading order

p± ∼
√
ρ̃±M̃± (λ± + 2G±)

C± (iωu±
B) onS±.(77)

From (77) the Biot slow wave determines the fluid pressure on the boundary.
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We next compute the normal stress on the interface. To do this, compute from
(72),

(78)

(
∇u + ∇uT

)±
= ± (iωu±

S1)

V ±
S

(
e1n

T + neT
1

)
± (iωu±

S2)

V ±
S

(
e2n

T + neT
2

)

+2

(
iωu±

P

)
V ±
P

nnT + 2

√
ρ̃±

M̃±

⎛
⎝(iωu±

B) +

∞∑
j=1

(
iωu±

B,j

)
(iω)j

⎞
⎠nnT + o(1).

Again, the Biot slow wave term dominates this expression, because of the factor of√
ρ̃±. However, on substitution of (76) and (78) into (5) and taking the dot product

with n it is found that the slow wave contributions cancel out to all orders in ω in
the expression for the normal stress. Because of this remarkable cancellation, it is
not necessary to make assumptions about the size of the ratio of large parameters√

|ρ̃|/ωj . The final expression for the normal stress is

τ± · n =
(λ± + 2G±)

V ±
P

(iωu±
P )n ± G±

V ±
S

(iωu±
S1)e1 ± G±

V ±
S

(iωu±
S2)e2 + o(1).(79)

Now substitution of (74) into (19), (75) into (20), (77) into (23), and (79) into
(26) yields eight scalar equations for the eight amplitudes u±

S1, u
±
S2, u

±
P , u

±
B . After

some algebra, and discarding higher order terms in (iω)−1 the following formulas are
obtained. Let

γ1 =

√
ρ̃+M̃+(λ+ + 2G+)C−√
ρ̃−M̃−(λ− + 2G−)C+

,(80)

γ2 =

[
1 +

(λ+ + 2G+)V −
P

(λ− + 2G−)V +
P

]−1

,(81)

γ3 =

[
1 +

V −
S G+

V +
S G−

]−1

.(82)

Then

−iωu+
B =

[
(λ+ + 2G+)

C+
+

(λ− + 2G−)

C− γ1

]−1

[|LE · n |],(83)

−iωu+
P = γ2

[∣∣∣∣
(
ρf
ρ

)
LE · n

∣∣∣∣
]
− γ2(1 + γ1)(−iωu+

B),(84)

−iωu+
Sj = γ3

[∣∣∣∣
(
ρf
ρ

)
LE · ej

∣∣∣∣
]

for j = 1, 2.(85)

The corresponding formulas for u−
B , u

−
P , u

−
Sj may be obtained from those above

by replacing n by −n, and reversing the roles of + and –. Alternatively, the following
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formulas may be used:

u−
B = γ1u

+
B ,

u−
P =

V −
P

V +
P

(λ+ + 2G+)

(λ− + 2G−)
u+
P ,(86)

u−
Sj = −V −

S

V +
S

G+

G−u+
Sj for j = 1, 2.

9. Comparison with an exact solution. To assess the accuracy of the asymp-
totic solution, we compared it to the results of a computer program designed to solve
electroseismic problems in piecewise homogeneous media that are plane layered. For
such media, where the material properties vary only with the depth dimension, spe-
cial methods exist which are based on two-dimensional Fourier transformation of the
lateral spatial dimensions. Consequently, plane layered media are the only class of
piecewise homogeneous problems in electroseismic prospecting for which solutions
that are exact, to within roundoff error and the numerical accuracy of the Fourier
transforms, can be computed. One example of such a computer code for layered me-
dia is described in [8]. Details of the computer code used here will be described in a
separate publication.

For simplicity, we ignored the earth-air boundary, considering a medium con-
sisting of just two homogeneous half spaces joined at an interface at depth D. The
source is a single, positive 1 amp point electrode at the origin x = y = z = 0, with the
corresponding negative electrode at ∞. For comparison, conversions at the EM source
were removed. For a negative electrode at a finite location on the surface z = 0, the
solution computed here is translated spatially to the location of the electrode and the
sign reversed. If both electrodes are at finite locations, i.e., the source is a bipole,
then the solutions for the two electrodes are summed. Finally, from linearity of the
equations, the results can be scaled for any current.

We computed a number of cases that fell well within the regime for which seismic
ray tracing is valid. Figures 1 and 2 show the predicted geophone response, that
is, the vertical velocity of the solid caused by seismic waves converted from EM at
the interface, for one of these cases. Plotted are the amplitude vs. offset and phase
vs. offset for geophones located on the surface z = 0 at a distance from the source
corresponding to the offset coordinate. Note that the phase plotted here is just the
phase of the complex number representing the geophone response at a point, not one
of the WKB phases, as defined in previous sections. For many of the parameter values
we investigated there were no discernible differences between the asymptotic solution
and that of the layer code when the results were displayed graphically. However,
for the example plotted in Figures 1 and 2 the amplitude vs. offset and phase vs.
offset plots do show some small differences near zero offset. Still, the comparison is
excellent, as would be expected if we were testing the accuracy of ray tracing for this
example.

The parameter values used for Figures 1 and 2 were as follows: D = 1000 m;
frequency is 30 Hz; σ = 0.1 (ohm-m)

−1
in the upper layer and σ = 0.001 (ohm-m)

−1

in the lower layer; ε = 0 throughout, i.e., displacement currents have been neglected,
as is common in geoelectric prospecting [20]; μ = 4π × 10−7 H/m throughout, i.e.,
the magnetic permeability of free space; η = 1.0 × 10−3 Pa-sec in both layers; κ =
1.0 × 10−16 m2 in the upper layer and κ = 1.0 × 10−13 m2 in the lower layer; L =
1.0 × 10−9 m2/V-sec in both layers.
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For both layers the solid density was taken as ρs = 2650 kg/m
2

and the porosity

as 0.3. The fluid density was taken as ρf = 980 kg/m
2

in the upper layer and ρf =

784 kg/m
2
. The density in each layer was then calculated as the porosity weighted

average of the fluid and solid densities.

The Biot theory parameters were calculated using the theory of Pride, Gangi, and
Morgan [15] and reasonable numbers for the variables. Values were VP = 1800 m/sec
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and VS = 1080 m/sec for both layers. Then calculated values in N/m
2

were λ =
1, 949, 572, 601, G = 2, 506, 593, 700, M = 22, 436, 559, and C = 21, 603, 901 in the
upper layer and λ = 1, 896, 229, 249, G = 2, 438, 009, 381, M = 22, 436, 554, and
C = 21, 626, 820 in the lower layer.

Comparison of the asymptotic theory with the geophone response for plane layered
media is really only a test of the P-wave amplitude theory. This is because the
Biot slow wave does not propagate back to the surface; moreover, since all rays are
orthogonal to the plane of the layering, shear waves cannot contribute to the vertical
velocity of the solid. However, from the derivation of the theory, it is expected that
the S-wave accuracy will be comparable to that of the P-waves.

In Figure 3 the amplitude of the vertical velocity at zero offset is plotted as a
function of fluid density in the lower layer, with excellent agreement of the asymptotic
theory and the layer code over four orders of magnitude in fluid density. From (84)
the vertical velocity, which is determined by the P-waves, is the sum of two terms:
the first term in (84) and the second, i.e., the Biot slow wave term. As seen in Figure
3, for small fluid densities both terms contribute about equally, while for large fluid
densities the first term dominates, and the slow wave term is unimportant. There is,
however, a narrow range of fluid densities for which the Biot slow wave determines
the response, and the first term is unimportant. Altogether, both terms are needed
to cover the full range of possibilities.

10. Conclusions. As stated in section 1, the theory developed here can be used
to link conventional EM modeling software with conventional seismic ray tracing soft-
ware to model the electroseismic response of three-dimensional subsurface structures
in the earth. The theory can also be used to obtain simple estimates of the electro-
seismic response if the electric field can be estimated at depth; then use can be made
of the fact that the tangential component of the electric field is continuous across the
interface, while the normal components on both sides of the interface are in inverse
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proportion to the conductivities. For example, since conductivities of a hydrocarbon
reservoir are often orders of magnitude less than that of other kinds of rock, good
P-wave responses are to be expected from reservoir boundaries, because of the large
discontinuities in the normal electric field there.

In addition, the amplitude formulas (80)–(85) can be used to estimate other
parametric dependencies of the electroseismic response. For example, note from (84)
and (85) that all permeability dependencies in both the P- and S-waves are contained
in the Biot slow wave term, through the dependence of γ1 on ρ̃. Thus there is no
permeability information in the S-waves, and the P-waves will also lack permeability
information in cases where the slow wave term is unimportant compared to the other
term in (84). In general, determination of permeability using the type of electroseismic
prospecting described here is expected to be problematic. This contrasts with the
permeability estimates obtained from EM conversions in the near field of a Stonely
wave, as described in [12].

The theory derived here is expected to be of about the same order of accuracy
as seismic ray theory. It also suffers from naive ray theory’s defects, which include,
for instance, edge diffraction. While this phenomenon must surely occur in electro-
seismics, it and other diffraction phenomena have not been included in the present
theory.

Acknowledgment. I would like to thank Minyao Zhou for his help with the
numerical comparisons of section 9, and for many helpful conversations.
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CURRENT-VOLTAGE RELATIONS FOR ELECTROCHEMICAL
THIN FILMS∗
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Abstract. The DC response of an electrochemical thin film, such as the separator in a micro-
battery, is analyzed by solving the Poisson–Nernst–Planck equations, subject to boundary conditions
appropriate for an electrolytic/galvanic cell. The model system consists of a binary electrolyte be-
tween parallel-plate electrodes, each possessing a compact Stern layer, which mediates Faradaic
reactions with nonlinear Butler–Volmer kinetics. Analytical results are obtained by matched asymp-
totic expansions in the limit of thin double layers and compared with full numerical solutions. The
analysis shows that (i) decreasing the system size relative to the Debye screening length decreases
the voltage of the cell and allows currents higher than the classical diffusion-limited current; (ii) fi-
nite reaction rates lead to the important possibility of a reaction-limited current; (iii) the Stern-layer
capacitance is critical for allowing the cell to achieve currents above the reaction-limited current; and
(iv) all polarographic (current-voltage) curves tend to the same limit as reaction kinetics become fast.
Dimensional analysis, however, shows that “fast” reactions tend to become “slow” with decreasing
system size, so the nonlinear effects of surface polarization may dominate the DC response of thin
films.

Key words. Poisson–Nernst–Planck equations, electrochemical systems, thin films, polaro-
graphic curves, Butler–Volmer reaction kinetics, Stern layer, surface capacitance
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Introduction. Microelectrochemical systems pose interesting problems for ap-
plied mathematics because traditional “macroscopic” approximations of electroneu-
trality and thermal equilibrium [1], which make the classical transport equations more
tractable [2], break down at small scales, approaching the Debye screening length.
Of course, the relative importance of surface phenomena also increases with minia-
turization. Microelectrochemical systems of current interest include ion channels in
biological membranes [3, 4, 5] and thin-film batteries [6, 7, 8, 9, 10], which could rev-
olutionize the design of modern electronics with distributed on-chip power sources.
In the latter context, the internal resistance of the battery is related to the nonlinear
current-voltage characteristics of the separator, consisting of a thin-film electrolyte
(solid, liquid, or gel) sandwiched between flat electrodes and interfacial layers where
Faradaic electron-transfer reactions occur [11]. Under such conditions, the internal
resistance is unlikely to be simply constant, as is usually assumed.

Motivated by the application to thin-film batteries, here we revisit the classical
problem of steady conduction between parallel, flat electrodes, studied by Nernst [12]
and Brunner [13, 14] a century ago. As in subsequent studies of liquid [15, 16] and
solid [17, 18] electrolytes, we do not make Nernst’s assumption of bulk electroneu-
trality and work instead with the Poisson–Nernst–Planck (PNP) equations, allowing
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for diffuse charge in solution [1, 2]. What distinguishes our analysis from previous
work on current-voltage relations (or “polarographic curves”) is the use of more re-
alistic nonlinear boundary conditions describing (i) Butler–Volmer reaction kinetics
and (ii) the surface capacitance of the compact Stern layer, as in the recent paper of
Bonnefont, Argoul, and Bazant [19]. Such boundary conditions, although complicat-
ing mathematical analysis, generally cannot be ignored in microelectrochemical cells,
where interfaces play a crucial role. Diffuse-charge dynamics, which can be impor-
tant for high-power applications, also complicates analysis [20], but in most cases it
is reasonable to assume that electrochemical thin films are in a steady state, due to
the short distances for electrodiffusion.

We stress, however, that steady state does not imply thermal equilibrium when
the system sustains a current, driven by an applied voltage. In this paper, we focus
on applied voltages small enough to justify the standard boundary-layer analysis of
the PNP equations, which yields charge densities in thermal equilibrium at leading
order in the limit of thin double layers [21]. In a companion paper [22], we extend
the analysis to larger voltages, at [23] and above [24] the Nernst’s diffusion-limited
current, and show how more realistic boundary conditions affect diffuse charge, far
from thermal equilibrium. In both cases, we obtain novel formulae for polarographic
curves by asymptotic analysis in the limit of thin double layers, which we compare with
numerical solutions, and we focus on a variety of dimensionless physical parameters:
the reaction-rate constants (scaled to the typical diffusive flux) and the ratios of the
Stern length to the Debye length to the electrode separation.

1. Mathematical model. Let us consider uniform conduction through a dilute,
binary electrolyte between parallel-plate electrodes separated by a distance, L. Our
goal is to determine the steady-state response of the electrochemical cell to either
an applied voltage, V , or an applied current, I. Specifically, we seek the electric
potential Φ(X) and the concentrations C+(X) and C−(X) of cations and anions in
the region 0 ≤ X ≤ L. The Faradaic current is driven by redox reactions occurring
at the electrodes, and we neglect any other chemical reactions, such as dissociation/
recombination in the bulk solution or hydrogen production. Since we do not assume
electroneutrality, the region of integration extends to the point where the continuum
approximation breaks down near each electrode, roughly a few molecules away. In
other words, our integration region includes the “diffuse part” but not the “compact
part” of the double layer [1, 11, 25, 26].

1.1. Transport equations. In the context of dilute solution theory [1, 2], the
governing equations for this situation are the steady PNP equations:

d

dX

(
D+

dC+

dX
+ μ+z+FC+

dΦ

dX

)
= 0,(1)

d

dX

(
D−

dC−
dX

+ μ−z−FC−
dΦ

dX

)
= 0,(2)

− d

dX

(
εs

dΦ

dX

)
= (z+C+ − z−C−)F,(3)

where F is Faraday’s constant (a mole of charge), z±, μ±, and D± are the charge
numbers, mobilities, and diffusivities of each ionic species, respectively, and εs is the
permittivity of the solvent, all taken to be constant in the limit of infinite dilution.
The first two equations set divergences of the ionic fluxes to zero in order to maintain
the steady state, and the third is Poisson’s equation relating the electric potential to
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the charge density. In each flux expression, the first term represents diffusion and
the second electromigration. The Einstein relation, μ± = D±/RT , relates mobili-
ties and diffusion coefficients via the absolute temperature, T , and the universal gas
constant, R.

Due to the potentially large electric fields in thin films, as in interfacial double
layers, these classical approximations could break down [1, 25, 26]. For example, the
polarization of solvent molecules in large electric fields can lower the solvent dielectric
permittivity by an order of magnitude, while also affecting diffusivity and mobility.
The solution can also become locally so concentrated or depleted of certain ions as
to make finite sizes and/or interactions (and thus ionic activities) important. In spite
of these concerns, however, it is reasonable to analyze the PNP equations before
considering more complicated transport models, especially because our focus is on
the effect of boundary conditions.

1.2. Electrode boundary conditions. Although PNP equations constitute a
well-understood and widely accepted approximation, appropriate boundary conditions
for them are not so clear, and drastic approximations, such as constant concentration,
potential or surface charge (or zeta potential), are usually made, largely out of math-
ematical convenience. On the other hand, in the context of electric circuit models for
electrochemical cells [20, 27, 28], much effort has been made to describe the nonlinear
response of the electrode-electrolyte interface, while describing the bulk solution as
a simple circuit element, such as a resistor. Here, we formulate general boundary
conditions based on classical models of the double layer [11, 25, 26], with a unified
description of ion transport by the PNP equations.

Our first pair of boundary conditions sets the normal anion flux to zero at each
electrode,

D−
dC−
dX

(0) + μ−z−FC−(0)
dΦ

dX
(0) = 0,(4)

D−
dC−
dX

(L) + μ−z−FC−(L)
dΦ

dX
(L) = 0,(5)

on the assumption that anions do not specifically adsorb onto the surfaces, which holds
for many anions at typical metal surfaces (e.g., SO−2

4 , OH−, F−). The second pair
relates the normal cation flux to the net deposition (or dissolution) flux, or reaction-
rate density, R(C+,ΔΦS), which in the dilute limit is assumed to depend only on
cation concentration and potential drop, ΔΦS , across the compact part of the double
layer, originally proposed by Stern [29]. Following the convention in electrochemistry,
we take ΔΦS to be the potential of the electrode surface measured relative to the
solution. The reference potential is chosen so that the cathode, located at X = 0, is
at zero potential and the anode, located at X = 1, is at the applied cell voltage V .
Therefore, we have the following two boundary conditions:

D+
dC+

dX
(0) + μ+z+FC+(0)

dΦ

dX
(0) = R (C+(0),Φ(0)) ,(6)

−D+
dC+

dX
(L) − μ+z+FC+(L)

dΦ

dX
(L) = R (C+(L),Φ(L) − V ) .(7)

For electrodes, it is typical to assume a balance of forward (deposition) and backward
(dissolution) reaction rates biased by the Stern voltage with an Arrhenius temperature
dependence,
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R(C+,ΔΦS) = KcC+ exp

(
−αczFΔΦS

RT

)
−KaCM exp

(
αazFΔΦS

RT

)
,(8)

where CM is the (constant) density of electrode metal and Kc and Ka are rate con-
stants for the cathodic and anodic reactions [1]. (Expressing the reaction rate in terms
of the surface overpotential, ηS = ΔΦS−ΔΦeq

S , where ΔΦeq
S is the Stern-layer voltage

in the absence of current, R = 0, yields the more common form of the Butler–Volmer
equation [1, 26].) The Stern-layer voltage contributes −zFΔΦS to the activation
energy barriers multiplied by transfer coefficients αc and αa for the cathodic and an-
odic reactions, respectively, where αc ≈ αa ≈ 1

2 , for single electron transfer reactions
[1, 26, 30].

Following Frumkin [31], we apply (8) just outside the Stern layer, in contrast
to “macroscopic” models which postulate the Butler–Volmer equation as a purely
empirical description of reactions between the electrode surface and the electrically
neutral bulk solution. Physically, the Frumkin approach makes more sense since the
activation energy barrier described by the Butler–Volmer equation actually exists at
the atomic scale in the Stern layer, not across the entire “interface” including diffuse
charge in solution. We are not aware of any prior analysis with the full, nonlinear
Butler–Volmer equation as a boundary condition on the PNP equations other than
that of Bonnefont, Argoul, and Bazant [19]. Earlier analyses by Chang and Jaffé [15],
Jaffé and LeMay [16], and Itskovich, Kornyshev, and Vorotyntsev [17] also include
electrode reactions, but only for small perturbations around equilibrium.

The final pair of boundary conditions determines the electric potential by spec-
ifying the voltage drop across the Stern layer in terms of the local electric field and
concentrations,

0 − Φ(0) = ΔΦS

(
dΦ

dX
(0), C+(0), C−(0)

)
,(9)

V − Φ(L) = ΔΦS

(
− dΦ

dX
(L), C+(L), C−(L)

)
.(10)

In macroscopic electrochemistry, these boundary conditions are usually replaced by
the assumption of electroneutrality (which eliminates the need to solve Poisson’s equa-
tion) or by simple Dirichlet boundary conditions on the potential [1]. In colloidal
science, they are likewise replaced by simple boundary conditions of constant surface
charge (or zeta potential) [32, 33]. Here, we incorporate more realistic properties of
the interface as follows: Neglecting the specific adsorption of anions, the Stern layer
acts as a nonlinear capacitor in series with the diffuse layer. Grahame’s celebrated
electrocapillary measurements [34, 35] suggest that (i) the Stern-layer capacitance,
CS , is roughly independent of concentration, depending mainly on the (variable) to-
tal charge, σ,

d(ΔΦS)

dσ
=

1

CS(σ)
,(11)

and (ii) dilute solution theory accurately describes the capacitance, CD(σ,C+), of
the diffuse layer, at least when the charge and current are small enough to be well
described by the Poisson–Boltzmann theory (as derived below). Using Gauss’s law,
the surface charge density can be expressed in terms of the normal electric field,
σ = −εSdΦ/dX, where εS is an effective permittivity of the compact layer. Therefore,
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integrating (11), Grahame’s model corresponds to the assumption

ΔΦS =

∫ −εSdΦ/dx

0

dσ

CS(σ)
,(12)

which determines how the voltage across the compact layer (relative to the point of
zero charge for which ΔΦS = 0) varies as the two capacitors become charged. The
function, CS(σ), should be fit to experimental or theoretical electrocapillary curves
at large concentrations (since 1/Ctotal = 1/CD + 1/CS ≈ 1/CS in that case).

The simplest model that captures this interplay between the compact and diffuse
layers is the Stern model [11, 26], which assumes the capacitance of the compact layer,
CS , to be constant [29]. While more complicated models for the compact layer have
been proposed [36, 37, 25], the Stern model suffices for our purposes, because it al-
lows us to describe surface capacitance easily in the context of our model of Faradaic
reactions. Following Itskovich, Kornyshev, and Vorotyntsev [17] and Bonnefont, Ar-
goul, and Bazant [19], let us introduce an effective width, λS , for the compact layer,
λS = εS/CS , so that (12) reduces to a linear extrapolation of the potential across
the compact layer, −ΔΦS = λSdΦ/dx. Substituting this expression into (9) and (10)
yields two Robin boundary conditions,

Φ(0) − λS
dΦ

dX
(0) = 0,(13)

Φ(L) + λS
dΦ

dX
(L) = V ,(14)

completing a set of six boundary conditions for our three second-order differential
equations. Physically, the Stern layer, as an effective solvation shell for the electrode,
is only a few molecules wide, so it is best to think of λS as simply a measure of the
capacitance of the Stern layer. More generally, the same boundary condition could
also describe a thin dielectric layer on the electrode [38, 39, 40], e.g., arising from
surface contamination or a passivating monolayer.

Note that since the anion flux is zero, the current passing through the cell is
proportional to the cation flux (everywhere in the cell, since it is constant),

I = z+FA

(
D+

dC+

dX
+ μ+z+FC+

dΦ

dX

)
,(15)

where A is the electrode area and a current flow towards the cathode (x = 0) is
taken to be positive. Under potentiostatic conditions, the cell voltage V is given,
and the steady-state polarization curve I(V ) is determined by solving the equations.
Conversely, under galvanostatic conditions, I is fixed, and we solve for V (I).

1.3. An integral constraint. As formulated above, the boundary value prob-
lem is not well posed. Since the anion flux is constant throughout the cell according
to (2), the two anion flux boundary conditions are degenerate, leaving one constant
of integration undetermined. This is not surprising, as we have omitted one crucial
physical parameter: the total number of anions. More precisely, because anions do
not react, we must specify their total number, which remains constant as the steady
state is reached. This corresponds to the constraint

1

L

∫ L

0

C−(X)dX = Cref ,(16)

where Cref is the initial concentration of anions.
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Note that the total number of cations (and hence the total charge) is not known
a priori because the removal of cations at the cathode and the injection of cations at
the anode may significantly alter their total number. This may seem counterintuitive
since we are accustomed to assuming that we know the total cation concentration
at all times based on the original molarity of the solution, but this “macroscopic”
thinking does not apply when the physics at the microscopic level are explicitly being
studied (e.g., diffuse charge layers or microelectrochemical systems). Mathematically,
the reaction boundary conditions at the electrodes (6) and (7) are sufficient to de-
termine the total cation concentration (and total charge), as long as the total anion
concentration is specified.

1.4. Dimensionless formulation. To facilitate our analysis, we formulate the
problem in dimensionless form. For simplicity we also assume that the electrolyte is
symmetric, z+ = −z− ≡ z, which does not qualitatively affect any of our conclusions
as long as z+/|z−| is not too different from 1 (which holds for most simple, aqueous
electrolytes). Scaling the basic variables

x ≡ X/L, c±(x) ≡ C±(xL)/Cref , φ(x) ≡ zFΦ(xL)

RT
,(17)

equations (1)–(3) become

d2c+
dx2

+
d

dx

(
c+

dφ

dx

)
= 0,(18)

d2c−
dx2

− d

dx

(
c−

dφ

dx

)
= 0,(19)

−ε2
d2φ

dx2
=

1

2
(c+ − c−),(20)

where ε ≡ λD/L is the ratio of the Debye screening length λD ≡
√

εsRT
2z2F 2Cref

to the

distance between electrodes. The Debye length is typically on the order of nanometers,
so ε is always extremely small for macroscopic electrochemical cells. This situation
changes, however, as L or Cref is decreased, and in the case of nanoelectrochemical
systems ε could be as large as 10.

The two flux equations are easily integrated, using (4) to evaluate one constant
and leaving the other constant expressed in terms of the current via (15),

dc+
dx

+ c+
dφ

dx
= 4j,(21)

dc−
dx

− c−
dφ

dx
= 0,(22)

where we have defined a dimensionless current density, j ≡ I/Id, scaled to the Nernst’s
diffusion-limited current density (see section 2.1), Id ≡ 4zFD+CrefA/L. Since diffuse
charge is of primary interest here, it is convenient to introduce

c =
1

2
(c+ + c−) and ρ =

1

2
(c+ − c−),(23)

the average concentration of ions and (half) the charge density, respectively, which
leaves us with a coupled set of one second-order and two first-order differential
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equations,

dc

dx
+ ρ

dφ

dx
= 2j,(24)

dρ

dx
+ c

dφ

dx
= 2j,(25)

−ε2
d2φ

dx2
= ρ.(26)

Nondimensionalizing the boundary conditions (remembering that there is an extra
condition needed to determine the current-voltage relation, j(v) or v(j)), we obtain

φ(0) − δε
dφ

dx
(0) = 0,(27)

φ(1) + δε
dφ

dx
(1) = v,(28)

kc[c(0) + ρ(0)]eαcφ(0) − jre
−αaφ(0) = j,(29)

−kc[c(1) + ρ(1)]eαc(φ(1)−v) + jre
−αa(φ(1)−v) = j,(30) ∫ 1

0

[c(x) − ρ(x)]dx = 1,(31)

where

kc ≡
KcL

4D+
, jr ≡ KaLCM

4D+Cref
, v ≡ zFV

RT
, and δ ≡ λS

λD
.(32)

Keep in mind that the dimensionless rate constants decrease with system size, so that
“fast reactions” (kc, jr � 1) may become “slow reactions” (kc, jr = O(1)) as L is
reduced to the micron or submicron scale.

It is important to note that we have scaled the effective Stern-layer width, λS ,
with the Debye screening length, λD, rather than the electrode separation L, thus
introducing the factor ε = λD/L in (27) and (28). This choice is important for our
asymptotic analysis of the limit ε → 0 at fixed δ, which is intended to describe situa-
tions in which L is much larger than both λS and λD. Without it, our analysis would
assume that as ε → 0 the Stern layer becomes infinitely wide compared to the diffuse
layer, even though it is mainly the macroscopic electrode separation which varies. The
limit of very small Stern layer capacitance, which amounts to the Helmholtz model
of the double layer [41], is best studied by letting δ → ∞ after ε → 0. In contrast,
because ε and δ would both be small, the limit of very large Stern-layer capacitance
can be studied by simply letting δ = 0, yielding the Dirichlet boundary conditions

φ(0) = 0, φ(1) = 1(33)

of the Gouy–Chapman model of the double layer [42, 43]. In our work, we shall
consider both limits, starting with the assumption that δ = O(1), which corresponds
to the Gouy–Chapman–Stern model of the double layer [11, 26].

For one-dimensional problems, galvanostatic conditions are more mathematically
convenient than potentiostatic conditions. In the former case, j is given, and v(j) is
easily obtained from the Stern boundary condition at the anode (28). In the latter
case, however, v is specified and j(v) must be determined self-consistently to sat-
isfy (28). Therefore, we shall assume that the current j is specified and solve (24)–(26)
subject to the boundary conditions (29) and (30) and the integral constraint (31).
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2. Boundary-layer analysis. In this section, we briefly review the classical
asymptotic analysis of the PNP equations, pioneered independently by Chernenko
[44], Newman [21], and MacGillivray [45], which involves boundary layers of width
ε (corresponding to diffuse-charge layers of dimensional width, λD). As discussed
below, the classical asymptotics breaks down at large currents approaching diffusion
limitation. Unlike most previous authors, who assume either a fixed potential [42, 43]
or fixed interfacial charge [21] at an isolated electrode or fixed concentrations at cell
boundaries with ion-permeable membranes [4, 5, 24], we solve for the response of a
complete, two-electrode galvanic cell with boundary conditions for Faradaic reactions
and Stern-layer capacitance.

Throughout this section, the reader may refer to Figure 1, which compares the
uniform asymptotic solutions derived below to numerical solutions at several values
of ε. These figures illustrate the structure of the field variables in the cell as well as
give an indication of the quality of the asymptotic solutions. The numerical solutions
are obtained by a straightforward iterative spectral method, described in a companion
paper [22].

2.1. Electroneutrality in the bulk solution. The most fundamental approx-
imation in electrochemistry is that of bulk electroneutrality [1]. As first emphasized
by Newman [21], however, this does not mean that the charge density is vanishing or
unimportant, but rather that over macroscopic distances the charge density is small
compared to the total concentration, |C+ −C−| � C+ +C−, or, in our dimensionless
notation, |ρ| � c. Mathematically, the “macroscopic limit” corresponds to the limit
ε = λD/L → 0. The electroneutral solution is just the leading order solution when
asymptotic series of the form f(x) = f (0)(x)+εf (1)(x)+ε2f (2)(x)+· · · are substituted
for the field variables in (24)–(26).

Carrying out these substitutions and collecting terms with like powers of ε, we
obtain a hierarchy of differential equations for the expansion functions. At O(1) we
have

dc̄(0)

dx
= 2j, −c̄(0)Ē(0) = 2j, ρ̄(0) = 0,(34)

where the bar accent indicates that these expansions are valid in the “bulk region”
ε � x � 1 − ε (or λD � X � L − λD). Integrating these equations, we obtain the
leading order bulk solution:

c̄(0)(x) = co + 2jx,(35)

Ē(0)(x) =
−1

x + co/2j
,(36)

φ̄(0)(x) = φo + log

(
1 +

2jx

co

)
,(37)

where the constants of integration co and φo are the values of the bulk concentration
and potential extrapolated to the cathode surface at x = 0. Note that, despite quasi-
electroneutrality, the electrostatic potential does not satisfy Laplace’s equation at
leading order in the bulk, as emphasized by Levich [46] and Newman [1]. Noting
the presence of ε2 in (26) for the dimensionless potential, it is clear that a negligible
charge density, ρ = O(ε2), is perfectly consistent with a nonvanishing Laplacian of
the potential. More precisely, we have
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Fig. 1. Numerical solutions (solid lines) compared with the leading order uniformly valid ap-
proximations (dashed lines) given by (58)–(61) for the dimensionless potential φ(x), electric field
E(x), concentration c(x), and charge density ρ(x) for the case j = 0.9, kc = 10, jr = 10, δ = 0, and
ε = 0.001, 0.01, 0.1. Linear scales on the left show the entire cell, while log scales on the left zoom
in on the cathodic region. Note that in the concentration and charge density profiles, the numerical
and asymptotic solutions are barely distinguishable for ε ≤ 0.01.

ρ̄(2)(x) =
d2φ̄(0)

dx2
(x) =

1

(x + co/2j)2
(38)

at O(ε2) in (26).

The integral constraint, (31), can be used to evaluate the constant co. If we assume
that c− in the boundary layers does not diverge as ε → 0, then they contribute only
O(ε) to the total anion number. Therefore,
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1 =

∫ 1

0

c−(x)dx =

∫ 1

0

c̄(0)(x)dx + O(ε) = co + j + O(ε),(39)

which implies that co = 1 − j.
At leading order in the bulk, we have recovered the classical theory dating back

a century to Nernst [12, 13, 14]. The solution is electrically neutral with a linear
concentration profile whose slope is proportional to the current. This approximation
leads to one of the fundamental concepts in electrochemistry, that there exists a
“limiting current,” j = 1, or

I = Id =
4zFD+CrefA

L
,(40)

corresponding to zero concentration at the cathode, co = 1 − j = 0. The current is
limited by the maximum rate of mass transfer allowed by diffusion, and larger currents
would lead to unphysical and mathematically inconsistent negative concentrations (see
the appendix).

Examination of the electric field exposes the same limitation on the current: a
singularity exists at j = 1 that blocks larger currents from being attained. The
leading-order bulk approximation to the electric field, Ē(0) = 1/[x + (1 − j)/2j],
diverges near the cathode like 1/x in the limit j → 1. This would imply that the cell
voltage v (calculated below) diverges as j → 1, thus providing a satisfactory theory
of the limiting current since an infinite voltage would be necessary to exceed (or even
attain) it. Unfortunately, this classical picture due to Nernst [12], based on passing
to the singular limit ε = 0, is not valid for any finite value of ε because the solution
is, in general, unable to satisfy all of the boundary conditions.

2.2. Diffuse charge layers in thermal equilibrium. We now derive the lead-
ing order description of the boundary layers in the standard way [21, 5, 26, 1], using
(24)–(25). The singular perturbation in (26) can be eliminated with the rescaling
y = x/ε indicating that the boundary layer at x = 0 has a width O(ε). In terms of
this inner variable, the governing equations in the cathode boundary layer are

dc

dy
+ ρ

dφ

dy
= 2jε,(41)

dρ

dy
+ c

dφ

dy
= 2jε,(42)

−d2φ

dy2
= ρ,(43)

where ε now appears as a regular perturbation since solutions satisfying the cathode
boundary conditions and the matching conditions still exist when ε = 0. At the anode,
the appropriate inner variable is y = (1 − x)/ε, and the equations are the same as
above except that j is replaced with −j, since current is leaving the anode layer, while
it is entering the cathode boundary layer.

Expanding the cathode boundary-layer fields (indicated by the check accent) as
asymptotic series in powers of ε, we obtain at leading order

dč(0)

dy
+ ρ̌(0) dφ̌

(0)

dy
= 0,(44)

dρ̌(0)

dy
+ č(0)

dφ̌(0)

dy
= 0.(45)
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Using (23) to rewrite these equations in terms of c+ and c−, we find that the flux of
each ionic species in the boundary layer is zero at leading order:

dč
(0)
±
dy

± č
(0)
±

dφ̌(0)

dy
= 0.(46)

While this equation appears to contradict the fact that the current is nonzero, the
paradox is resolved in the same way as electroneutrality is reconciled with a non-
harmonic potential in the bulk region: tiny fluctuations about the boundary-layer
equilibrium concentration profiles at O(ε) are amplified by a scaling factor of 1/ε to
sustain the O(1) current. Thus, the leading order contribution to the current in the
boundary layer is

ε

(
dč

(1)
+

dx
+ č

(1)
+

dφ̌(0)

dx
+ č

(0)
+

dφ̌(1)

dx

)
=

dč
(1)
+

dy
+ č

(1)
+

dφ̌(0)

dy
+ č

(0)
+

dφ̌(1)

dy
= 4j.(47)

Integrating (46) and matching with the bulk, we find that the leading order ionic
concentrations are Boltzmann equilibrium distributions:1

č
(0)
± (y) = coe

±[φo−φ̌(0)(y)],(48)

where co = 1 − j and φo = φ̄(0)(0) are obtained by matching with the solution in the
bulk. Note that the Boltzmann distribution arises not from an assumption of thermal
equilibrium in the boundary layer but as the leading order concentration distribution,
even in the presence of a nonnegligible O(1) current.

The general leading-order solution was first derived by Gouy [42] and Chap-
man [43] and appears in numerous books [1, 26, 32, 33] and recent papers [5, 19]:

č(0)(y) = co cosh[φo − φ̌(0)(y)],(49)

ρ̌(0)(y) = co sinh[φo − φ̌(0)(y)],(50)

dφ̌(0)

dy
= 2

√
co sinh

(
φo − φ̌(0)(y)

2

)
,(51)

φ̌(0)(y) = φo + 4 tanh−1
(
γoe

−√
coy

)
,(52)

where γo ≡ tanh(ζo/4) and ζo ≡ φ̌(0)(0) − φo is the leading-order “zeta potential”
across the cathodic diffuse layer, which plays a central role in electrokinetic phenomena
[32, 33]. Note that the magnitude of the diffuse layer electric field scales as 1/ε, as
illustrated in Figure 1.

The value of φ̌(0)(0) hidden in the zeta potential ζo is determined by the Stern
boundary condition, (27). If δ = 0 (Gouy–Chapman model), then φ̌(0)(0) = 0, or
ζo = −φo, which means that the entire voltage drop φo across the cathodic double
layer occurs in the diffuse layer. If δ = ∞ (Helmholtz model), then φ̌(0)(0) = φo,
or ζo = 0, in which case the Stern layer carries all the double-layer voltage. For
finite δ > 0 (Stern model), ζo is obtained in terms of φo by solving a transcendental
algebraic equation,

−ζo = 2δ
√
co sinh(ζo/2) + φo,(53)

1The expression for energy in the Boltzmann equilibrium distribution includes only the energy
due to electrostatic interactions. “Chemical” contributions to the energy are neglected.
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which can be linearized about the two limiting cases and solved for ζo,

−ζo ∼
{
φo − 2δ

√
co sinh(φo/2) if δ � φo/2

√
co sinh(φo/2),

φo/δ
√
co if δ � φo/2

√
co.

(54)

Note that if φo � 1, then −ζo ≈ φo

1+δ
√
co

is a reasonable approximation for any value

of δ ≥ 0. Finally, we solve for φo by applying the Butler–Volmer rate equation, (29),
which yields a transcendental algebraic equation for φo:

kccoe
−ζo+αc(ζo+φo) − jre

−αa(ζo+φo) = j.(55)

Simultaneously solving the pair of (53) and (55) exactly is not possible in general, but
below we will analyze various limiting cases.

In the anodic boundary layer, we find the same set of equations as (41)–(43)
except that j is replaced by −j. Therefore, since the fields do not depend on j at
leading order, the anodic boundary layer has the same structure but with different
constants of integration. Thus, we find that the leading order description of the anodic
boundary layer is given by (49)–(52) with co, φo, γo, and ζo replaced by different
constants c1, φ1, γ1, and ζ1, respectively. Moreover, it is straightforward to show that
c1 = c̄(0)(1) = 1 + j and φ1 = φo + log( 1+j

1−j ).
The leading-order anodic zeta potential, ζ1, and the potential drop across the

entire anodic double layer, v − φ1, are found by solving another pair of transcenden-
tal algebraic equations resulting from the anode Stern and Butler–Volmer boundary
conditions, (28) and (30),

−ζ1 = 2δ
√
c1 sinh(ζ1/2) + φ1 − v,(56)

j = −kcc1e
−ζ1+αc(ζ1+φ1−v) + jre

−αa(ζ1+φ1−v).(57)

As before, the Gouy–Chapman and Helmholtz limits are ζ1 = v − φ1 and ζ1 = 0,
respectively, and for small voltages (or currents) the approximation ζ1 ≈ (v−φ1)/(1+
δ
√
c1) is valid for all δ ≥ 0.

2.3. Leading order uniformly valid approximations. We obtain asymp-
totic approximations that are uniformly valid across the cell by adding the bulk and
boundary-layer approximations and subtracting the overlapping parts:

c(x) = [č(0)(x/ε) − co] + c̄(0)(x) + [ĉ(0)((1 − x)/ε) − c1] + O(ε),(58)

ρ(x) = ρ̌(0)(x/ε) + ε2ρ̄(2)(x) + ρ̂(0)((1 − x)/ε) + O(ε),(59)

E(x) =
1

ε

dφ̌(0)

dy
(x/ε) +

dφ̄(0)

dx
(x) − 1

ε

dφ̂(0)

dy
((1 − x)/ε) + O(ε),(60)

φ(x) = [φ̌(0)(x/ε) − φo] + φ̄(0)(x) + [φ̂(0)((1 − x)/ε) − φ1] + O(ε).(61)

Note that we have kept the O(ε2) term in the charge density since it is the leading-
order contribution in the bulk region and is easily computed from (38). As shown in
Figure 1, the leading-order uniformly valid solutions are very accurate for ε ≤ 0.01
(or L ≥ 100λD) and reasonably good for ε = 0.1. Since higher-order terms are not
analytically tractable, it seems numerical solutions must suffice for nanolayers, where
ε ≈ 1, or else other limits of various parameters must be considered, as below.

The discrepancy in electric potential profile at large ε in Figure 1 is particularly in-
teresting because it arises from a constraint on the total potential drop across the cell.
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To understand the origin of this voltage constraint, recall that the total cell voltage
is determined by the current density flowing through the cell (via the voltage-current
relationship). While ε is technically a parameter in the voltage-current relationship,
a leading-order analysis does not capture the ε dependence. Thus, the leading-order
cell voltage must be the same for all ε, which is what we observe in Figure 1. A close
examination of the potential and electric field profiles reveals that most of the error in
the asymptotic solution for the potential comes from an over-prediction of the electric
field strength (and therefore the potential drop) in the cathode region.

3. Polarographic curves for thin double layers, ε → 0. The relationship
between current and cell voltage is of primary importance in the study of any elec-
trochemical system, so we now use the results from the previous section to calculate
theoretical polarographic curves in several physically relevant regimes. We focus on
the effects of the Stern capacitance and the reaction-rate constants through the di-
mensionless parameters, δ, kc, and jr, with αc = αa = 1/2. For a fixed voltage, the
mathematical results are valid in the asymptotic limit of thin double layers, ε → 0.

3.1. Exact results at leading order. Using the uniformly valid approxima-
tion (61), we can write the leading-order approximation for the cell voltage as

v = φo + 2 tanh−1(j) + (v − φ1).(62)

We can interpret this expression as a decomposition of the cell voltage into the poten-
tial drop across the cathode, bulk, and anode layers, respectively. Note the divergence
in the bulk contribution to the cell voltage as j → 1, which we expect from our earlier
analysis. In the next section, we explore analytic solutions for several limiting cases
and compare them to exact solutions given by (62) with the leading-order cathode
and anode diffuse layer potential drops determined implicitly by (53), (55), (56). To
make plots in our figures, we use Newton iteration to solve for φo and v − φ1 in this
algebraic system.

3.2. Cell resistance at low current. Given the common practice of using
linear circuit models to describe electrochemical systems [27, 28, 20], it is important
to consider the low-current regime, where the cell acts as a simple resistance, R = V/I.
First, we compute the potential drop across the double layers. Since the procedure
is almost identical for the two boundary layers, we focus on the calculation for the
cathode. By writing the boundary conditions (29) in the standard Butler–Volmer
form involving the exchange current and surface overpotential [26, 1],

j = jco
(
e−αcη

c
s − eαaη

c
s
)
,(63)

where jco = (kccoe
−ζo)αajαc

r and ηcs = ΔφS − Δφeq
S are the cathode exchange current

and surface overpotential, respectively. Note that the exchange current contains the
Frumkin correction through the factor e−ζo [26]. For low-current densities, we expect
the surface overpotential to be small, so we can linearize this equation to obtain

j ∼ −jcoη
c
s,(64)

where we have used the fact that αc + αa = 1. Rewriting this equation in terms of
φ̌(0), we find that

φ̌(0) ∼ j

jco
+ φ̌eq(0),(65)
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where φ̌eq(0) is the value of φ̌(0) calculated from the cathode Butler–Volmer rate
equation when there is no current flowing through the electrode. The zeta potential ζo
in the formula for the exchange current is determined by combining (65) with (53) to
obtain a single equation for ζo:

−2δ
√
co sinh(ζo/2) ∼ j

(kccoe−ζo)αajαc
r

+ log

(
jr
kcco

)
+ ζo.(66)

Finally, to compute the total double-layer potential drop, we add the potential drop
across the diffuse layer to φ̌(0):

φo = φ̌(0) − ζo ∼ j

jco
+ log

(
jr
kcco

)
.(67)

A similar calculation at the anode results in

v − φ1 ∼ j

jao
+ log

(
kcc1
jr

)
,(68)

where jao = (kcc1e
−ζ1)αajαc

r and ζ1 is determined by the anode equivalent of (66).
Combining these results with the potential drop across the bulk solution, we find

that the total cell voltage is given by

v(j) ∼ 4 tanh−1(j) +
j

jco
+

j

jao

≈ j

(
4 +

1

jco
+

1

jao

)
(69)

= j r.

This result gives the dimensionless resistance, r, of the electrochemical thin film as a
function of the physical properties of the electrodes and the electrolyte. Note that the
Stern-layer capacitance is accounted for implicitly via the calculation of the electrode
zeta potentials.

3.3. Simple analytical formulae. The exact leading-order current-voltage re-
lation simplifies considerably in a variety of physically relevant limits. These approxi-
mate formulae provide insight into the basic physics and may be useful in interpreting
experimental data.

3.3.1. The Gouy–Chapman limit (δ → 0). In this limit, the capacitance of
the diffuse layer of the charged double layer is negligible compared to the capacitance
of the compact layer. As a result, the voltage drop across the diffuse layer accounts
for the entire potential drop across the charged double layer. Physically, this limit
corresponds to the limits of low ionic concentration or zero ionic volume [26]. Since
ζo = −φo and ζ1 = v − φ1 when δ = 0, the Butler–Volmer rate equations, (55)
and (57), reduce to

kc(1 − j)e−ζo − jr = j and −kc(1 + j)e−ζ1 + jr = j.(70)

Solving for ζo and ζ1, we find that

ζo = ln(1 − j) − ln

(
jr + j

kc

)
and ζ1 = ln(1 + j) + ln

(
kc

jr − j

)
,(71)
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Fig. 2. Exact polarographic curves (dashed lines) for varying δ values compared to polarographic
curves for the Gouy–Chapman (δ = 0) and Helmholtz (δ = ∞) limits (solid lines). Top: a reaction-
limited cell (jr < 1) with physical parameters, kc = 0.03, jr = 0.7. Notice that above the reaction-
limited current density, jr, the highest cell voltages occur for δ values near 0. Bottom: a diffusion-
limited cell (jr > 1) with physical parameters, kc = 0.05, jr = 1.5. In both cases, δ increases as the
curves move upwards.

which can be substituted into (62) to obtain

v(j) = 4 tanh−1(j) + 2 tanh−1(j/jr).(72)

Notice that the boundary layers make a nontrivial contribution to the leading-order
cell voltage. The 2 tanh−1(j/jr) term is especially interesting because it indicates
the existence of a reaction-limited current when jr < 1. In hindsight, it is obvious
that reaction-limited currents exist in the Gouy–Chapman limit because the reaction
kinetics at the anode do not permit a current greater than jr. We emphasize, how-
ever, that the Gouy–Chapman limit is singular because there is no problem achieving
current densities above jr for any δ > 0 (see Figure 2). For any finite δ > 0, the
shift of the anode double-layer potential drop to the Stern layer helps the dissolution
reaction while suppressing the deposition reaction, which permits the current density
to rise greater than jr.

Note that the cathodic and anodic boundary layers do not evenly contribute to



1478 MARTIN Z. BAZANT, KEVIN T. CHU, AND B. J. BAYLY

the cell voltage near the limiting currents. In a diffusion-limited cell, the cathodic
layer makes the greater contribution because as j → 1, ζo diverges while ζ1 approaches
a finite limit. We expect this behavior because as j → 1, the electric field diverges
only at x = 0. However, when the cell is reaction-limited, the division of cell voltage
between the boundary layers is reversed as j approaches the limiting current jr. Even
the voltage drop in the bulk becomes negligible compared to ζ1 in the reaction-limited
case. In this situation, the cell voltage diverges as j → jr because the only way to
achieve a current near jr is to drastically reduce the deposition reaction at the anode.
In other words, the cation concentration at the anode must be made extremely small,
which requires a huge anodic zeta potential.

3.3.2. The Helmholtz limit (δ → ∞). This is the reverse of the Gouy–
Chapman limit. Here, the capacitance of the compact layer is negligible, so the
potential drop across the double layer resides completely in the compact layer. The
Helmholtz limit holds for concentrated solutions or solvents with low dielectric con-
stants and other situations where the Debye screening length becomes negligible [26].
It also describes a thick dielectric or insulating layer on an electrode [38, 20].

In the Helmholtz limit, ζo = 0 = ζ1, so the Butler–Volmer rate equations take
the form

kc(1 − j)eαcφo − jre
−αaφo = j,(73)

−kc(1 + j)eαc(φ1−v) + jre
−αa(φ1−v) = j.(74)

Solving these equations for φo and v − φ1 under the assumption of a symmetric
electron-transfer reaction (i.e., αc = 1/2 = αa) and substituting into the formula for
the cell voltage, we find that

v(j) = 6 tanh−1(j) + 2 ln

(
j +

√
j2 + 4jrkc(1 − j)

−j +
√
j2 + 4jrkc(1 + j)

)
.(75)

While this expression appears to be more complicated than the one obtained for the
Gouy–Chapman model, it is not very different when jr > 1, as can be seen in Figures
2 and 3. In fact, the wide spread in the polarographic curves observed in Figure 2
requires that kc � jr; otherwise, all of the curves would be difficult to distinguish.
Moreover, as we shall see in the next section, in the limit of fast reactions, both models
lead to the same expression for the cell voltage for jr > 1. On the other hand, when
jr < 1, the two models are qualitatively very different. While the Gouy–Chapman
model gives rise to a reaction-limited current, the Helmholtz model does not.

3.3.3. The fast-reaction limit (jr � 1, (jr)
αa(kc)

αc � j/(1 − j)αa).
The polarographic curves for all δ values collapse onto each other in the limit of fast-
reaction kinetics (Figure 3). Even the assumption of symmetry in the electron-transfer
reaction is not required. When reaction rates are much larger than the current, the
two reaction-rate terms in the Butler–Volmer equations, (55) and (57), must balance
each other at leading order:

kc(1 − j)e−ζo+αc(ζo+φo) − jre
−αa(ζo+φo) ≈ 0,(76)

−kc(1 + j)e−ζ1+αc(ζ1+φ1−v) + jre
−αa(ζ1+φ1−v) ≈ 0.(77)
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Fig. 3. Polarographic curves in (a) the Gouy–Chapman limit and (b) the Helmholtz limit as
the reaction-rate constants are increased (dashed lines). For these plots, the reaction-rate constants
(jr = 1, 2, 5, and 10) increase as the curves shift towards the lower right and are related by
kc = jr/2. It should be noted that the fast-reaction limit is reached very quickly; in both plots, the
curve closest to the fast-reaction curve has a jr value of only 10.

Since αc+αa = 1 for theoretical models of single electron-transfer reactions [1, 11, 30],
we can solve explicitly for φo and v − φ1 to obtain

φo = ln

(
jr

kc(1 − j)

)
, v − φ1 = ln

(
kc(1 + j)

jr

)
.(78)

Thus, for fast-reaction kinetics, the leading-order cell voltage is given by

v(j) = 4 tanh−1(j).(79)

Notice that this is exactly the fast-reaction limit of v(j) that we find in both the Gouy–
Chapman and Helmholtz limits. It is straightforward to check the validity of the
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Fig. 4. Polarographic curves for ε values of 0, 0.0001, 0.001, 0.01, and 0.1 (listed in order
from uppermost to lowest curves) with the other physical parameters taken to be δ = 0, kc = 10,
and jr = 10. Notice that for any ε > 0, the cell has no problem achieving current densities higher
than the diffusion-limited current (dashed vertical line). All of these curves, with the exception
of the exact ε = 0 curve, were generated by numerically solving (24)–(26) subject to the boundary
conditions (27)–(31) using the method of our companion paper [22].

assumptions made in (76) and (77) by substituting these results into the expressions
for the reaction rates and observing that the zeta potentials satisfy the bounds ζo ≤ 0

and ζ1 ≤ ln(kc(1+j)
jr−j ), which follow from the monotonicity of ζo and ζ1 as functions

of δ.

4. Thick double layers, ε = O(1). Up to this point, we have examined only
the current-voltage characteristics in the singular limit ε → 0, where the current
density cannot exceed its diffusion-limited value, j = 1. The situation changes for
any finite ε > 0.

4.1. What limiting current? As is clearly evident in Figure 4, the cell has no
problem breaking through the classical limiting current for ε > 0. Figure 4 also shows
that the ε dependence of the polarographic curves becomes significant only at currents
approaching the diffusion-limited current; below j ≈ 0.5, the curves are nearly indis-
tinguishable. Moreover, as ε increases, the upper ends of the polarographic curves
flatten out and shift downwards. This decrease in the cell voltage for large ε values
arises because the diffuse charge layers overlap and are able to interact with each
other. More precisely, the cell has become so small (relative to the Debye screen-
ing length) that the electric fields from the two diffuse layers partially cancel each
other out throughout the cell, resulting in a lower total cell voltage. It should be em-
phasized that this effect is observable only because we are studying a two-electrode
system. Single-electrode systems (in addition to being not physically achievable) are
not capable of showing this behavior because they always implicitly assume an infinite
system size, which effectively discards any interactions from “far away” electrodes.

4.2. Breakdown of the classical approximation. For a diffusion-limited cell,
the classical nonlinear asymptotic analysis just presented leads to an aesthetically
appealing theory that predicts a limiting current at j = 1. The existence of this
limiting current fits nicely with our physical intuition that the concentration of cations
in a solution must always remain nonnegative. In reality, however, the analysis breaks
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down as the current approaches (and exceeds) its limiting value.
The breakdown of the classical asymptotics is evident upon examining the expan-

sions for the bulk field variables as the current is increased toward its diffusion-limited
value. Calculating a few of the higher-order terms in the bulk asymptotic expansion,
we find that

−Ē(x) =
2j

c̄(0)
+

3

2
ε2

(2j)3

(c̄(0))4
+

111

4
ε4

(2j)5

(c̄(0))7
+

6045

4
ε6

(2j)7

(c̄(0))10
+ O(ε8),(80)

c̄(x) = c̄(0) +
1

2
ε2

(2j)2

(c̄(0))2
+

3

2
ε4

(2j)4

(c̄(0))5
+

231

8
ε6

(2j)6

(c̄(0))8
+ O(ε8),(81)

ρ̄(x) = 0 + ε2
(2j)2

(c̄(0))2
+ 6ε4

(2j)4

(c̄(0))5
+

777

4
ε6

(2j)6

(c̄(0))8
+ O(ε8).(82)

Since c̄(0) → 2x as j → 1, the higher-order terms are clearly more singular than
the leading-order term at the limiting current. Rubinstein and Shtilman make a
similar observation from a potentiostatic perspective; they note that the asymptotic
expansions are not uniform in the cell voltage [24].

The inconsistency in the classical approximation was apparently first noticed by
Levich, who observed that the leading-order solution in the bulk predicts an infinite
charge density when the current density reaches 1, which directly contradicts the
assumption of bulk charge neutrality [46]. As j → 1, the bulk charge density is given
by

ρ̄ = −ε2
d2φ̄

dx2
=

ε2

[x + (1 − j)/2j]2
≈ ε2

x2
,(83)

which diverges at the cathode.
Smyrl and Newman first showed that these paradoxical results are related to

the breakdown of thermal equilibrium charge profiles near the cathode, leading to a
significant expansion of the double layer into the bulk solution [23]. They argue that
the assumption of electroneutrality breaks down when ρ̄ ≈ c̄. Since c̄ is proportional
to x at the limiting current, the bulk approximation fails to be valid for x smaller
than O(ε2/3), which leads to a boundary layer that is thicker than the usual Debye
length. From an alternative perspective, the problems begin when ρ̄(0)/c̄(0) ≈ 1
(see Figure 5). Using this criterion, we find that the classical asymptotic theory is
appropriate only when co � (2jε)2/3 or, equivalently, j � 1 − (2ε)2/3. Since the cell
voltage is approximately 4 tanh−1(j) in many situations, this regime also corresponds
to v = O(|ln ε|). This shows that in thin films, where ε is not so small, it is easy to
exceed the classical limiting current and achieve rather different charge profiles [22].

5. Conclusion. In summary, we have revisited the classical PNP equations,
analyzing for the first time the effect of physically realistic boundary conditions for
thin-film galvanic cells and other microelectrochemical systems. In particular, we
focused on the effect of Stern-layer capacitance and Faradaic reactions with Butler–
Volmer kinetics. Such boundary conditions contain new physics, such as the possibility
of a reaction-limited current due to the slow injection of ions at the anode. We also find
that the Stern layer generally allows the cell to exceed limiting currents by carrying
diverging portions of the cell voltage, which would otherwise end up in the diffuse part
of the double layer. We have provided analytical formulae for current-voltage relations
that should prove useful in characterizing the differential resistance of thin films,
such as those used in on-chip microbatteries. Here, we have focused on the classical
nonlinear regime in which thin double layers remain in thermal equilibrium; the more
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Fig. 5. Numerical solutions for the dimensionless cation concentration c+(x) and (full) charge
density 2ρ(x) at the diffusion-limited current (j = 1.0) with physical parameters kc = 10, jr = 10,
αc = αa = 0.5, δ = 0.0, and ε = 0.0001. In the cathode region, electroneutrality breaks down as
the solution becomes cation rich in order to satisfy the reaction boundary conditions. Note that
when x = O(ε2/3), c+ and ρ are both O(ε2/3). For reference, the dashed vertical line shows where
x = ε2/3, and the dashed horizontal line shows where y = ε2/3[(2+22/3)+4/(2+22/3)2] ≈ c+(ε2/3).

exotic, nonequilibrium regime, which arises at and above the classical limiting current,
is analyzed in the companion paper [22].

Appendix. Positivity of ion concentrations. The positivity of the ion
concentrations follows directly from the mathematical formulation of the problem.
For the anion concentration, (22) can be integrated exactly using the integrating
factor eφ to yield

c−(x) = Aeφ(x),(84)

which implies that the sign of c−(x) is the same across the entire domain. Since
the integral constraint (31) requires that c−(x) is positive somewhere in the domain,
c−(x) must be positive everywhere in the domain.

For the cation concentration, we make use of the reaction boundary conditions.
Integrating (21) with the integrating factor eφ, we obtain

c+(x) = c+(0)eφ(0)−φ(x) + 4je−φ(x)

∫ x

0

eφ(y)dy.(85)

Clearly, the integral term is positive because eφ is positive everywhere. Moreover, the
reaction boundary condition (29) implies that c+(0) > 0 because both jr and kc are
positive. Thus, we find that the cation concentration is strictly positive.

Acknowledgments. The authors thank F. Argoul, J. J. Chae, H. A. Stone, and
W. Y. Tam for many helpful discussions.

REFERENCES

[1] J. Newman, Electrochemical Systems, Prentice-Hall, Englewood Cliffs, NJ, 1991.
[2] I. Rubinstein, Electro-Diffusion of Ions, SIAM Stud. Appl. Math. 11, SIAM, Philadelphia,

PA, 1990.



ELECTROCHEMICAL CURRENT-VOLTAGE RELATIONS 1483

[3] V. Barcilon, D.-P. Chen, R. S. Eisenberg, Ion flow through narrow membrane channels:
Part II, SIAM J. Appl. Math., 52 (1992), pp. 1405–1425.

[4] J.-H. Park and J. W. Jerome, Qualitative properties of steady-state Poisson–Nernst–Planck
systems: Mathematical study, SIAM J. Appl. Math., 57 (1997), pp. 609–630.

[5] V. Barcilon, D.-P. Chen, R. S. Eisenberg, and J. W. Jerome, Qualitative properties of
steady-state Poisson–Nernst–Planck systems: Perturbation and simulation study, SIAM J.
Appl. Math., 57 (1997), pp. 631–648.

[6] N. J. Dudney, J. B. Bates, D. Lubben, and F. X. Hart, Thin-film rechargeable lithium batter-
ies with amorphous LixMn2O4 cathodes, in Thin Film Solid Ionic Devices and Materials,
J. Bates, ed., The Electrochemical Society, Pennington, NJ, 1995, pp. 201–214.

[7] B. Wang, J. B. Bates, F. X. Hart, B. C. Sales, R. A. Zuhr, and J. D. Robertson, Char-
acterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes,
J. Electrochem. Soc., 143 (1996), pp. 3204–3213.

[8] B. J. Neudecker, N. J. Dudney, and J. B. Bates, “Lithium-free” thin-film battery with in
situ plated Li anode, J. Electrochem. Soc., 147 (2000), pp. 517–523.

[9] N. Takami, T. Ohsaki, H. Hasabe, and M. Yamamoto, Laminated thin Li-ion batteries using
a liquid electrolyte, J. Electrochem. Soc., 149 (2002), pp. A9–A12.
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[31] A. Frumkin, Wasserstoffüberspannung und struktur der doppelschict, Z. Phys. Chem., 164A

(1933), pp. 121–133.



1484 MARTIN Z. BAZANT, KEVIN T. CHU, AND B. J. BAYLY

[32] R. J. Hunter, Foundations of Colloid Science, Oxford University Press, Oxford, 2001.
[33] J. Lyklema, Fundamentals of Interface and Colloid Science. Volume II: Solid-Liquid Inter-

faces, Academic Press, San Diego, CA, 1995.
[34] D. C. Grahame, The electrical double layer and the theory of electrocapillarity, Chem. Rev.,

41 (1947), pp. 441–501.
[35] D. C. Grahame, Differential capacity of mercury in aqueous sodium fluoride solutions. I. Effect

of concentration at 25◦, J. Amer. Chem. Soc., 76 (1954), pp. 4819–4823.
[36] J. R. Macdonald, Theory of the differential capacitance of the double layer in unadsorbed

electrolytes, J. Chem. Phys., 22 (1954), pp. 1857–1866.
[37] J. R. Macdonald, Static space charge and capacitance for a single blocking electrode, J. Chem.

Phys., 29 (1958), pp. 1346–1358.
[38] A. Ajdari, AC pumping of liquids, Phys. Rev. E (3), 61 (2000), pp. R45–R48.
[39] M. Z. Bazant and T. M. Squires, Induced-charge electro-kinetic phenomena: Theory and

microfluidic applications, Phys. Rev. Lett., 92 (2004), article 066101.
[40] T. M. Squires and M. Z. Bazant, Induced-charge electro-osmosis, J. Fluid Mech., 509 (2004),

pp. 217–252.
[41] H. Helmholtz, Studien über electrische Grenzschichten, Ann. Phys. Chem., 7 (1879), pp. 337–

382.
[42] M. Gouy, Sur la Constitution de la Charge Électrique a la Surface d’un Électrolyte, J. de
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ELECTROCHEMICAL THIN FILMS AT AND ABOVE THE
CLASSICAL LIMITING CURRENT∗
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Abstract. We study a model electrochemical thin film at DC currents exceeding the classical
diffusion-limited value. The mathematical problem involves the steady Poisson–Nernst–Planck equa-
tions for a binary electrolyte with nonlinear boundary conditions for reaction kinetics and Stern-layer
capacitance, as well as an integral constraint on the number of anions. At the limiting current, we
find a nested boundary-layer structure at the cathode, which is required by the reaction boundary
condition. Above the limiting current, a depletion of anions generally characterizes the cathode side
of the cell. In this regime, we derive leading-order asymptotic approximations for the (i) classical bulk
space-charge layer and (ii) another nested highly charged boundary layer at the cathode. The former
involves an exact solution to the Nernst–Planck equations for a single, unscreened ionic species, which
may apply more generally to Faradaic conduction through very thin insulating films. By matching
expansions, we derive current-voltage relations well into the space-charge regime. Throughout our
analysis, we emphasize the strong influence of the Stern-layer capacitance on cell behavior.

Key words. Poisson–Nernst–Planck equations, electrochemical systems, limiting current, reac-
tion boundary conditions, double-layer capacitance, polarographic curves
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Introduction. Thin-film technologies offer a promising way to construct re-
chargeable microbatteries, which can be directly integrated into modern electronic
circuits [1, 2, 3, 4, 5, 6]. Due to the power-density requirements of many applications,
such as portable electronics, microbatteries are likely to be operated at high-current
density, possibly exceeding diffusion limitation. In a thin film, very large electric
fields are easily produced by applying only small voltages, due to the small electrode
separation, which may be comparable to the Debye screening length. Under such
conditions, the traditional postulates of macroscopic electrochemical systems [7, 8]—
bulk electroneutrality and equilibrium double layers—break down near the classical
diffusion-limited current [9]. The mathematical justification for these postulates is
based on matched asymptotic expansions in the limit of thin double layers [10, 11, 12],
which require subtle modifications at large currents.

The concept of a “limiting current,” due to the maximum steady-state flux of
diffusion across an electrochemical cell, was introduced by Nernst a century ago [13].
Consider the simplest case of a binary electrolyte between parallel plate electrodes
with cation redox reactions and inert anions. Assuming neutrality, the bulk con-
centration is a linear function of distance (due to steady diffusion) with a gradient
proportional to the current. Since the total number of anions is fixed, the total inte-
gral of the bulk concentration must also be fixed, which implies that the concentration
at the cathode decreases linearly with current. The “diffusion-limited current” corre-
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Fig. 1. Profiles of the dimensionless potential (top left), electric field (top right), total ionic
concentration (bottom left), and charge density (bottom right) in three regimes: below the classical
diffusion-limited current (j = 0.5), at the limiting current (j = 1), and above the limiting current
(j = 1.5). These are numerical solutions to our model problem with the following dimensionless
parameters: ε = 0.01, δ = 0, kc = 10, jr = 10.

sponds to a vanishing bulk concentration at the cathode, and, as the name suggests,
it can never be reached, except with an infinite voltage.

It was eventually realized that the classical theory is flawed, as illustrated in
Figure 1 by numerical solutions to our model problem below. The bulk concentration
remains linear, but the system is clearly able to achieve and even exceed the classical
limiting current (as shown in the lower left panel of the figure). Levich was perhaps
the first to notice that the assumption of bulk electroneutrality yields approximate
solutions to the Poisson–Nernst–Planck (PNP) equations, which are not self-consistent
near the limiting current, since the predicted charge density eventually exceeds the
salt concentration near the cathode [14]. This paradox was first resolved by Smyrl
and Newman, who showed that the double layer expands at the limiting current
as the Poisson–Boltzmann approximation of thermal equilibrium breaks down [15].
Rubinstein and Shtilman later pointed out that mathematical solutions also exist for
larger currents, well above the classical limiting value, characterized by a region of
nonequilibrium “space charge” extending significantly into the neutral bulk [16]. As
shown in Figure 1, the space-charge layer exhibits anomalously large electric fields
and charge densities, compared to the equilibrium double layers at smaller currents.

The possibility of superlimiting currents has been studied extensively in the differ-
ent context of bulk liquid electrolytes, where a thin space-charge layer drives nonlinear
electro-osmotic slip. This phenomenon of “electro-osmosis of the second kind” was
introduced by Dukhin for the nonlinear electrophoresis of ion-selective, conducting col-
loidal particles [17], and Ben and Chang have recently studied it in microfluidics [18].
The mathematical analysis of second-kind electro-osmosis using matched asymptotic
expansions, similar to the approach taken here, was first developed by Rubinstein



ELECTROCHEMICAL FILMS ABOVE THE LIMITING CURRENT 1487

and Zaltzman for related phenomena at electrodialysis membranes [19, 20]. In earlier
studies, the space-charge layer was also invoked by Bruinsma and Alexander [21] to
predict hydrodynamic instability during electrodeposition and by Chazalviel [22] in a
controversial theory of fractal electrochemical growth.

As in our companion paper on sublimiting currents [9], here we consider (typically
solid or gel) thin films, e.g., arising in microbatteries, which approach the classical
limiting current without hydrodynamic instability. At micron or smaller length scales,
the space-charge layer need not be “thin” compared to the film thickness, so we also
analyze currents well above the classical limiting current, apparently for the first
time. In both regimes, close to and far above the classical limiting current, we derive
matched asymptotic expansions for the concentration profiles and potential, which
we compare against numerical solutions. In addition to our focus on superlimiting
currents and small systems, a notable difference with the literature on second-kind
electro-osmosis is our use of nonlinear boundary conditions for Faradaic electron-
transfer reactions, assuming Butler–Volmer kinetics and a compact Stern layer. We
also analyze the current-voltage relation, thus extending our analogous results for thin
films below the limiting current [9].

1. Statement of problem. Before delving into the analysis (and to make the
paper self-contained), we review governing equations and boundary conditions. We
shall focus solely on the dimensionless formulation of the problem, derived and dis-
cussed in the companion paper [9].

The transport of cations and anions is described by the steady Nernst–Planck
equations

d2c+
dx2

+
d

dx

(
c+

dφ

dx

)
= 0,(1)

d2c−
dx2

− d

dx

(
c−

dφ

dx

)
= 0,(2)

while Poisson’s equation relates the electric potential to the charge density,

−ε2
d2φ

dx2
=

1

2
(c+ − c−) .(3)

Here ε is a small dimensionless parameter equal to the ratio of the Debye screening
length to the electrode separation (or film thickness). Note that this formulation
assumes constant material properties, such as diffusivity, mobility, and dielectric co-
efficient, and neglects any variations which may occur at large electric fields. The
factor of 1/2 multiplying the charge density c+−c− is present merely for convenience.
The domain for the system of (1)–(3) is 0 < x < 1.

The two Nernst–Planck equations are easily integrated under the physical con-
straint that the boundaries are impermeable to anions (i.e., zero flux of anions at
x = 0) and taking the nondimensional current density at the electrodes to be 4j:

dc+
dx

+ c+
dφ

dx
= 4j,(4)

dc−
dx

− c−
dφ

dx
= 0.(5)

Then by introducing the average ion concentration and (half) the charge density,

c =
1

2
(c+ + c−) and ρ =

1

2
(c+ − c−) ,(6)
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we can derive a more symmetric form for the coupled PNP equations:

dc

dx
+ ρ

dφ

dx
= 2j,(7)

dρ

dx
+ c

dφ

dx
= 2j,(8)

−ε2
d2φ

dx2
= ρ.(9)

For this system of one second-order and two first-order differential equations, we
require four boundary conditions and one integral constraint:

φ(0) − δε
dφ

dx
(0) = 0,(10)

φ(1) + δε
dφ

dx
(1) = v,(11)

kc [c(0) + ρ(0)] eαcφ(0) − jre
−αaφ(0) = j,(12)

−kc [c(1) + ρ(1)] eαc(φ(1)−v) + jre
−αa(φ(1)−v) = j,(13) ∫ 1

0

[c(x) − ρ(x)] dx = 1.(14)

These conditions, which are often simplified or omitted in electrochemical modeling,
are central to our analysis. A detailed discussion can be found in the companion
paper [9], so here we simply give an overview.

The first two boundary conditions, (10)–(11), account for the intrinsic capacitance
of the compact part of the electrode-electrolyte interface, which is taken to be linear
(the “Stern model”). The compact-layer charge could contain solvated ions at the
point of closest approach to the electrode, as well as adsorbed ions on the surface.
The capacitance also accounts for the dielectric polarization of the solvation layer
and/or impurities or coatings on the surface. In these boundary conditions, δ is a
dimensionless parameter which measures the strength of the surface capacitance, and
v is the total dimensionless voltage drop across the cell.

The next two boundary conditions, (12)–(13), are Butler–Volmer rate equations,
which represent the kinetics of Faradaic electron-transfer reactions at each electrode,
with an Arrhenius dependence on the compact-layer voltage. In these equations,
kc and jr are dimensionless reaction-rate constants and αc and αa are transfer coef-
ficients for the electrode reaction. It is worth noting that αc and αa do not vary too
much from system to system; typically they have values between 0 and 1, and often
both take on values near 1/2.

Finally, the integral constraint, (14), reflects the fact that the total number of an-
ions is fixed, assuming that anions are not allowed to leave the electrolyte by Faradaic
processes or specific adsorption. When solving time-dependent problems with the
same mathematical model [23, 24], the constraint is not needed, since the total num-
ber of anions is set by the initial condition. Here, we solve for the steady state at
different voltages (and currents), assuming the same average concentration of anions
to allow a meaningful comparison for the same cell.

It is important to understand that the need for an extra constraint reflects that
the current-voltage relationship, j(v), or “polarographic curve,” is not given a priori.
As usual in one-dimensional problems [9], it is easier to assume galvanostatic forcing
at fixed current, j, and then solve for the cell voltage, v(j), by applying the boundary
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condition (11), rather than the more common case of potentiostatic forcing at fixed
voltage, v. For this reason, we take the former approach in our analysis. For steady-
state problems, the two kinds of forcing are equivalent and yield the same (invertible)
polarographic curve, j(v) or v(j).

For some of our analysis, it will be convenient to further simplify the problem by
introducing the dimensionless electric field, E ≡ −dφ

dx . This transformation is useful
because three of the five independent constraints can be expressed in terms of these
variables, without explicit dependence on φ(x), namely, the two Butler–Volmer rate
equations,

kc (c(0) + ρ(0)) e−αcδεE(0) − jre
αaδεE(0) = j,(15)

−kc (c(1) + ρ(1)) eαcδεE(1) + jre
−αaδεE(1) = j,(16)

and the integral constraint on the total number of anions, (14). The potential is
recovered by integrating the electric field and applying the Stern boundary conditions
(10) and (11).

2. Unified analysis at all currents.

2.1. Master equation for the electrostatic potential. We begin our analysis
by reducing the governing equations, (7) through (9), to a single master equation for
the electrostatic potential. Substituting (9) into (7) and integrating, we obtain an
expression for the average concentration:

c(x) = c
¯
o + 2jx +

ε2

2

(
dφ

dx

)2

.(17)

Then by applying the integral constraint, (14), we find that the integration constant,
c
¯
o, is given by

c
¯
o = (1 − j) − ε2

[(
dφ

dx

)∣∣∣∣
x=1

−
(
dφ

dx

)∣∣∣∣
x=0

+
1

2

∫ 1

0

(
dφ

dx

)2

dx

]
.(18)

Note that when the electric field is O(1), (17) and (18) reduce to the leading-order
concentration in the bulk when j is sufficiently below the limiting current [9]. We can
now eliminate ρ and c from (8) to arrive at a single master equation for φ,

ε2

[
−d3φ

dx3
+

1

2

(
dφ

dx

)3
]

+ (c
¯
o + 2jx)

dφ

dx
= 2j,(19)

or, equivalently, for the electric field E,

ε2
[
d2E

dx2
− 1

2
E3

]
− (c

¯
o + 2jx)E = 2j.(20)

Once this equation is solved, the concentration, c, and charge density, ρ, are computed
using (17) and Poisson’s equation, (9).

The master equation has been derived in various equivalent forms since the 1960s.
Grafov and Chernenko [25] first combined (4), (5), and (9) to obtain a single non-
linear differential equation for the anion concentration, c−, whose general solution
they expressed in terms of Painlevé’s transcendents. The master equation for the
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electric field, (20), was first derived by Smyrl and Newman [15] in the special case
of the classical limiting current, where j = 1 and c

¯
o = 0, where they discovered a

nonequilibrium double layer of width ε2/3, which is apparent from the form of the
master equation. We shall study the general electric-field and potential equations
for an arbitrary current, j, focusing on boundary-layer structure in the limiting and
superlimiting regimes.

2.2. Efficient numerical solution. To solve the master equation for the elec-
tric field with the boundary conditions and integral constraint, we use the Newton–
Kantorovich method [26]. Specifically, we use a Chebyshev pseudospectral discretiza-
tion to solve the linearized boundary-value problem at each iteration [26, 27]. Our
decision to use this method is motivated by its natural ability to resolve boundary
layers and its efficient use of grid points. We are able to get accurate results for many
parameter regimes very quickly (typically less than a few minutes on a workstation)
with only a few hundred grid points, which would not be possible at large currents
and/or thin double layers using a naive finite-difference scheme. It is important to
stress that the boundary conditions and the integral constraint are explicitly included
as part of the Newton–Kantorovich iteration. Therefore, the linear boundary-value
problem solved in each iteration is actually an integrodifferential equation with bound-
ary conditions that are integroalgebraic equations.

To ensure convergence at high currents, we use continuation in the current density
parameter, j, and start with a sufficiently low initial j that the bulk electroneutral
solution is a reasonable initial guess; often, initial j values relatively high compared to
the diffusion-limited current are acceptable. After a small increase in current, we check
that the iteration converges to a correspondingly small perturbation of the previous
solution. Analogous continuation in the δ parameter is also sometimes necessary to
compute solutions at high δ values.

The results of the numerical method are presented in the figures below and in [9]
to test our analytical approximations obtained by asymptotic analysis.

2.3. Recovery of classical results below the limiting current, j � 1 −
O(ε2/3). In the low-current regime, the master equation admits the two distinguished
limits around x = 0 that arise in the classical analysis: x = O(1) and x = O(ε). When
x = O(1), we find the usual bulk electric field from (19) and the bulk concentration
from (17). When x = O(ε), the master equation can be rescaled using x = εy to
obtain

−d3φ

dy3
+

1

2

(
dφ

dy

)3

+ c
¯
o
dφ

dy
+ 2jyε

dφ

dy
= 2jε,(21)

which is equivalent to the classical theory at leading order [9]. In particular, the
Gouy–Chapman structure of the double layer can be derived directly from the Smyrl–
Newman equation in this limit [23].

The anode boundary layer comes from a similar O(ε) scaling around x = 1. Note
that in the j � 1 − ε2/3 regime, the scaling x = O(ε2/3) is not a distinguished limit
because the c

¯
o(

dφ
dx ) term would dominate all other terms in (19).

3. Nested boundary layers at the limiting current, j = 1 − O(ε2/3). In
this section, we show that a nontrivial nested boundary-layer structure emerges at
the classical limiting current when general boundary conditions are considered.
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Fig. 2. Numerical solutions for the dimensionless electric field E(x) at current densities of
j = 0.9 and j = 1.0 demonstrating the expansion of the diffuse layer at the limiting current (kc = 1,
jr = 2, δ = 0.1, and ε = 0.0001). For reference, the vertical line shows where x = ε2/3.

3.1. Expansion of the double layer out of equilibrium. As discussed in the
companion paper [9], the classical analysis breaks down as the current approaches the
diffusion-limited current, j → 1. One sign of the problem is that the charge density
at j = 1 grows near the cathode (x → 0),

ρ = ε2
d2φ

dx2
∼ ε2

x2
.(22)

The classical assumption of charged boundary layers of O(ε) width, therefore, fails
because the charge density, ρ = O(1), would be much larger than the salt concentra-
tion, c ∼ 2x = O(ε), at x = O(ε), which violates bulk electroneutrality. This paradox,
noted by Levich [14], was resolved by Smyrl and Newman [15], who realized that the
structure of the double layer must change near the classical limiting current. In par-
ticular, the width of the diffuse part expands to x = O(ε2/3), beyond which the bulk
charge density remains small, ρ = O(ε2/3), as shown in Figure 2. Here, we revisit this
problem with more general boundary conditions and also consider currents above the
classical limiting current.

Mathematically, the classical asymptotics fails because a new distinguished limit
for the master equation appears as j → 1. Rescaling the master equation using
x = ε2/3z gives us

−d3φ

dz3
+

1

2

(
dφ

dz

)3

+
c
¯
o

ε2/3
dφ

dz
+ 2jz

dφ

dz
= 2j,(23)

which implies that we have a meaningful distinguished limit if c
¯
o = O(ε2/3) or, equiv-

alently, j = 1 − O(ε2/3). In this regime, the double layer is no longer in Poisson–
Boltzmann equilibrium at leading order, and the potential satisfies the more general
equation, (23), for z = O(1) or x = O(ε2/3).

Unfortunately, at this scale, all terms in (23) are O(1), so we are forced to solve
the full equation. Although general solutions can be expressed in terms of Painlevé’s
transcendents [8, 18, 25], these are not convenient for applying our nonlinear boundary
conditions or obtaining physical insight. Even when c

¯
o = o(ε2/3), we are left with a
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complicated differential equation which does not admit a simple analytical solution.
However, in the case c

¯
o = o(ε2/3), it is possible to study the asymptotic behavior

of the solution in the limits z → 0 and z → ∞ by considering the behavior of the
neighboring asymptotic layers.

3.2. Nested boundary layers when |1 − j| = o(ε2/3). The appearance of

the new distinguished limit for j = 1 − O(ε2/3) does not destroy the ones that exist
in the classical analysis. In particular, the O(ε) boundary layer at x = 0 does not
vanish. This inner layer was overlooked by Smyrl and Newman because they assumed
a fixed surface charge density given by the equilibrium zeta potential [15], rather
than more realistic boundary conditions allowing for surface charge variations and
electrochemical reactions.

In the general case, a set of nested boundary layers must exist when the current
is near (or above) the classical limiting current. For convenience, we shall refer to
the x = O(ε2/3) and the x = O(ε) regions as the “Smyrl–Newman” and “inner
diffuse” layers, respectively. It is important to realize that, without the inner layer,
it would be impossible to satisfy any reasonable boundary conditions describing the
electrochemical reactions which support the current. In the Smyrl–Newman layer,
the concentration of the active species (here, cations) nearly vanishes at the limiting
current, since c

¯
0 = O(ε2/3), but this would imply a very small reaction rate density.

The paradox of the original Smyrl–Newman solution (which ignores reactions) is that
there are very few ions available at the cathode, and yet there is a very large reaction
rate and current. The resolution involves an inner layer where the cation concentration
increases to O(1).

In the context of our model of electrochemical reactions, we can also understand
the nested boundary layers on mathematical grounds. Consider the reaction boundary
condition at the cathode, (12). To estimate the c and ρ at the electrode surface, we
rescale (17) and Poisson’s equation using x = ε2/3z to obtain

c = c
¯
o + 2jε2/3z +

ε2/3

2

(
dφ

dz

)2

,(24)

ρ = −ε2/3
d2φ

dz2
,(25)

which means that the concentration and charge density are both O(ε2/3) since c
¯
o =

o(ε2/3) when |1 − j| = o(ε2/3). Then, from the Stern boundary condition, we have

φ(0) = −δεĒ = −δε1/3È = O(δε1/3). Plugging these estimates into the reaction
boundary condition, we find

kcO(ε2/3)eαcδε
1/3È(0) = j + jre

−αaδε
1/3È(0) = O(1).(26)

This equation cannot be satisfied in the limit ε → 0 with δ ≥ 0 fixed, which implies
the existence of the inner diffuse layer. In the Gouy–Chapman model without any
compact layer (δ = 0), (26) reduces to a contradiction, O(ε2/3) = j = constant, and
thus implies the existence of the inner diffuse layer. In the Stern model (δ > 0), it
can only be satisfied for very large values, δ = O(|log ε2/3|/ε1/3), but, since δ is fixed,
the nested inner layer must appear as ε → 0. However, this calculation predicts that
the magnitude of the concentration at the cathode (within the inner layer) decreases
with increasing δ, which is clearly seen in the numerical solutions of Figure 3.

To analyze (23), it is convenient to focus on the electric field rather than the
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Fig. 3. Numerical solutions (solid lines) for the dimensionless electric field E(x) and concen-
tration c(x) at the classical diffusion-limited current (j = 1) compared with leading-order asymptotic
approximations (dashed and dot-dashed lines) for kc = 1, jr = 2, ε = 0.01, and δ = 0.1, 10. The
leading-order bulk approximations for E(x) and c(x) are given by (28) and c(x) = 2jx, respectively.
In the diffuse layer, the leading-order approximations are given by (30) and (31). For the δ = 10
curves, the difference between the dashed and dot-dashed curves is that the dashed curve uses an
approximate value for B given by (36), while the dot-dashed curve uses a B value calculated by
numerically solving (33). For reference, the vertical lines show where x = ε and x = ε2/3. The thin
anode diffuse-layer field is not shown.

potential. In terms of the scaled electric field, È(z) ≡ −dφ
dz = ε2/3E(x), (23) becomes

d2È

dz2
− 1

2
È3 − 2j(zÈ + 1) =

c
¯
o

ε2/3
È,(27)

which we shall refer to as the “Smyrl–Newman equation.” From (71) in [9], we know
that the first few terms in the expansion for the bulk electric field at the limiting
current are

−Ē(x) =
1

x
+

3ε2

4x4
+

111ε4

16x7
+

6045ε6

32x10
+ · · ·

=
1

ε2/3

(
1

z
+

3

4z4
+

111

16z7
+

6045

32z10
+ · · ·

)
.

(28)
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Since the second series is asymptotic for z � 1, the expansion in the bulk is valid for
x � ε2/3. In order to match the solution in the Smyrl–Newman layer to the bulk,
we expect the asymptotic solution to (27) as z → ∞ to be given by the expression in
parentheses in (28). We could also have arrived at this result by directly substituting
an asymptotic expansion in 1/z and matching coefficients. As we can see in Figure 3
the leading-order term in (28) is a good approximation to the exact solution in the
bulk and is matched by the solution in the Smyrl–Newman layer as it extends into
the bulk.

We now turn our attention towards the “inner diffuse” layer, which gives us the
asymptotic behavior of the Smyrl–Newman equation in the limit z → 0. Introducing
the scaled variables y = x/ε = z/ε1/3 and Ĕ = εĒ = ε1/3È, (27) becomes

d2Ĕ

dy2
− 1

2
Ĕ3 − 2jε(yĔ + 1) = c

¯
oĔ.(29)

Near the limiting current (i.e., c
¯
o = O(ε2/3)), Ĕ satisfies d2Ĕ

dy2 = 1
2 Ĕ

3 at leading order

with the boundary condition Ĕ → 0 as y → ∞ from the matching condition that È
remains bounded as z → 0. Integrating this equation twice with the observation that
dĔ
dy > 0 gives us

Ĕ(y) ∼ − 2

y + b
,(30)

where b is a constant determined by applying the Butler–Volmer reaction boundary
condition at the cathode. We can estimate c̆(y) and ρ̆(y) by substituting (30) into
(17) and Poisson’s equation to find

c̆(y) = c
¯
o + 2jx +

ε2

2
Ē(x)2 = c

¯
o + 2jεy +

1

2
Ĕ(y)2 =

2

(y + b)2
+ O(ε),(31)

ρ̆(y) = ε2
dĒ

dx
=

dĔ

dy
=

2

(y + b)2
+ O(ε).(32)

Therefore, b satisfies the following transcendental equation at leading order:

kc
4

b2
e2αcδ/b = j + jre

−2αaδ/b.(33)

While this equation does not admit a simple closed-form solution, we can compute
approximate solutions in the limits of small and large δ values. In the small δ limit,
we can linearize (33) and expand b in a power series in δ to obtain

b ∼ 2

√
kc

j + jr
+ δ

(
αc +

αajr
j + jr

)
+ O(δ2).(34)

At the other extreme, for δ � 1, (33) can be approximated by

kc
4

b2
e2αcδ/b ≈ j.(35)

Then, using fixed-point iteration on the approximate equation, we find that

b ∼ 2αcδ

log κ− 2 log log κ + O (log log log δ2)
,(36)
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where κ ≡ jα2
cδ

2/kc. Figure 3 shows that the leading-order approximation (30) is very
good in the inner diffuse layer as long as an accurate estimate for b is used. While
the small δ approximation for b is amazingly good (the asymptotic and numerical
solutions are nearly indistinguishable), the large δ estimate for b is not as good but
is only off by an O(1) multiplicative factor.

Before moving on, it is worth noting that the asymptotic behavior of the con-
centration and charge density in the Smyrl–Newman layer as z → 0 and z → ∞
suggests that the charge density is low throughout the entire Smyrl–Newman layer.
Figure 3 shows how the Smyrl–Newman layer acts as a transition layer, allowing the
bulk concentration to become small near the cathode while still ensuring a sufficiently
high cation concentration at the cathode surface to satisfy the reaction boundary
conditions. The transitional nature of the Smyrl–Newman layer becomes even more
pronounced for smaller values of ε.

4. Bulk space charge above the limiting current, 1 + O(ε2/3) � j �
O(1/ε). As current exceeds the classical limiting value, the overlap region between
the inner diffuse and Smyrl–Newman layers grows to become a layer having O(1)
width. Following other authors [16, 22], we shall refer to this new layer as the “space-
charge” layer because, as we shall see, it has a nonnegligible charge density compared
to the rest of the bulk. Therefore, in this current regime, the central region of the
electrochemical cell is split into two pieces having O(1) width separated by an o(1)
transition layer.

In the bulk, the solution remains unchanged except that c
¯
o cannot be approxi-

mated by 1 − j; the contribution from the integral term is no longer negligible. The
need for this correction arises from the high electric fields required to drive current
through the electrically charged space-charge layer. With this minor modification, we
find that the bulk solution is

c̄(x) = c
¯
o + 2jx,

Ē(x) =
1

xo − x
,(37)

where xo ≡ −c
¯
o/2j is the point where the bulk concentration vanishes (see Figure 4).

Between the two O(1) layers, there is a small transition layer. Rescaling the
master equation using the change of variables z = (x−xo)/ε

2/3 and É(z) = ε2/3Ē(x),
we again obtain the Smyrl–Newman equation, (27), with right-hand side equal to
zero. As before, we find that the solution in the transition layer approaches −1/z
as z → ∞. In the other direction as z → −∞, we will find that the appropriate
boundary condition is É → −2

√
j|z| to match the electric field in space-charge layer.

4.1. Structure of the space-charge layer. Physically, we could argue that
the concentration of ions in the space-charge layer is very small (i.e., zero at leading
order) because the layer is essentially the result of stretching the ionic content of
the overlap between the inner diffuse and Smyrl–Newman layers, which is small to
begin with, over an O(1) region. This physical intuition is confirmed by the numerical
solutions shown in Figures 4, 5, and 6. Therefore, using (17), we obtain the leading-
order solution for the electric field

Ẽ ∼ −2
√
j (xo − x)

ε
.(38)

Note that the magnitude of the field is exactly what is required to make the integral
term in c

¯
o an O(1) contribution. From this formula, it is easy to compute the charge
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Fig. 4. Numerical solutions (solid lines) for the dimensionless electric field E(x), average con-
centration c(x), and charge density ρ(x) above the diffusion-limited current (j = 1.5) compared with
leading-order asymptotic approximations (dashed lines) for kc = 1, jr = 2, ε = 0.01, and δ = 0.1, 10.
The leading-order bulk approximations are given by (37). In the space-charge layer, the leading-order
electric field is given by (38), and leading-order concentration is 0. Finally, (58) and (59) are the
diffuse-layer asymptotic approximations for the electric field and concentration, respectively. For
reference, the vertical lines show where x = ε and x = xo.

density in the space-charge layer:

ρ̃ = ε2
dẼ

dx
∼ ε

√
j

xo − x
,(39)

which is an order of magnitude larger than the O(ε2) charge density in the bulk. The
O(ε) charge density also implies that the concentration must be at least O(ε) because
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Fig. 5. Numerical solutions for the dimensionless cation and anion concentrations above the
diffusion-limited current (j = 1.5) for kc = 1, jr = 2, ε = 0.01, and δ = 0.1, 10. For reference, the
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the anion concentration, c− ρ, is positive.
With the electric field given by (38), we can determine the values of xo and c

¯
o

by solving the system of equations given by the definition of xo and c
¯
o. Using (18)

to calculate c
¯
o and noticing that the leading-order contribution to the integral comes

from the space-charge layer, we obtain

c
¯
o ∼ 1 − j

(
1 + x2

o

)
.(40)

Combining this result with xo = −c
¯
o/2j, we find that

xo ∼ 1 − j−1/2, c
¯
o ∼ 2(j1/2 − j),(41)

which can be substituted into (37) and (38) to yield the leading-order solutions in
the bulk and space-charge layers. It should be noted that the expression for xo is
consistent with the estimate for the width found by Bruinsma and Alexander [21] and
Chazaviel [22] in the limits j−1 � 1 and small space-charge layer (xo � 1), although
our analysis also applies to much larger voltages.

The results obtained via physical arguments in the previous few paragraphs moti-
vate an asymptotic series expansion for E whose leading-order term is O(1/ε). More-
over, because we want to be able to balance the current density at second order, we
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Fig. 6. Numerical solutions (solid lines) for the dimensionless electric field E(x), average con-
centration c(x), and charge density ρ(x) far above the diffusion-limited current (j = 10.0) compared
with leading-order asymptotic approximations (dashed lines) for kc = 1, jr = 2, ε = 0.01, and
δ = 0.1. Each field is shown twice: (1) with x on log scale to focus on the cathode region and
(2) with x on a linear scale to emphasize the interior of the cell. Note that jε = 0.1, so the asymp-
totic approximations are not as good as at lower current densities. For reference, the vertical lines
show where x = ε and x = xo.

choose the second-order term to be O(j). Thus, we have

Ẽ =
1

ε
E−1 + E0j + · · · .(42)

Note that in this asymptotic series, the first term dominates the second term only
as long as j � 1/ε, so the following analysis holds exclusively for current densities
far below O(1/ε). Figure 6 illustrates the breakdown of the leading-order asymptotic
solutions at very high current densities. While the qualitative features of the asymp-
totic approximation are correct (e.g., the shape of E(x) in the diffuse layer and the
slope of c(x) in the bulk), the quality of the approximation is clearly less than at lower
values of j.

The key advantage of a more systematic asymptotic analysis is that we are able to
calculate the leading-order behavior of the space-charge layer concentration c̃, which
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is not possible with only knowledge of the leading-order behavior for the electric field.
Substituting (42) into the master equation (20), it is straightforward to obtain

Ẽ ∼ −2

ε

√
j (xo − x) − 1

2 (xo − x)
+ · · · .(43)

Using this expression in (17), we find the dominant contribution to c̃ is exactly the
same as ρ̃:

c̃ ∼ ε

√
j

xo − x
.(44)

Since c− = c − ρ, this result leads to an important physical conclusion: The space-
charge layer is essentially depleted of anions, c− = o(ε), as is clearly seen in Figures
4 and 5. This contradicts our macroscopic intuition about electrolytes, but, in very
thin films, complete anion deplection might occur. For example, in a microbattery
developed for on-chip power sources using the Li/SiO2/Si system, lithium ion conduc-
tion has recently been demonstrated in nanoscale films of silicon oxide, where there
should not be any counterions or excess electrons [6].

At leading order as ε → 0, the anion concentration, c−, can be set to zero in the
space-charge layer, leaving the following two governing equations:

dc+
dx

+ c+
dφ

dx
= 4j,(45)

−ε2
d2φ

dx2
=

1

2
c+.(46)

As with the binary electrolyte case, these equations can be reduced to a single equation
for the electric potential:

d3φ

dx3
+

d2φ

dx2

dφ

dx
= −2j

ε2
.(47)

Integrating this equation once, we obtain a Riccati equation for dφ
dx :

d2φ

dx2
+

1

2

(
dφ

dx

)2

= −2j

ε2
(x− xo) + h,(48)

where h is an integration constant. Using the transformations

u ≡ eφ/2, z ≡ −j1/3

ε2/3
(x− xo) +

ε4/3h

2j2/3
,(49)

we find that u satisfies Airy’s equation,

d2u

dz2
− zu = 0.(50)

Thus, the general solution for φ(x) is

φ(x) = 2 log

[
a1Ai

(
j1/3

ε2/3
(xo − x) + βh

)
+ a2Bi

(
j1/3

ε2/3
(xo − x) + βh

)]
,(51)

where a1 and a2 are constants determined by boundary conditions and β = ε4/3

2j2/3 .
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To simplify this expression, note that in the limit ε → 0, the potential drop
between x = xo and x = 0 is approximately

φ (xo) − φ(0) ∼ 2 log

⎡
⎣ a1Ai(0) + a2Bi(0)

a1Ai
(

xoj1/3

ε2/3

)
+ a2Bi

(
xoj1/3

ε2/3

)
⎤
⎦ .(52)

Now, using the large argument behavior of the Airy functions, we see that as ε → 0,
the argument of the logarithm approaches zero. Thus, we are lead to the conclusion
that the electric potential at x = xo is less than at x = 0. However, this is completely
inconsistent with our physical intuition and the numerical results, which show that
φ(xo) − φ(0) > 0. Therefore, it must be the case that a2 ≈ 0, so that

φ(x) = 2 log

[
a1Ai

(
j1/3

ε2/3
(xo − x) + βh

)]
(53)

and

E(x) =
2j1/3

ε2/3

Ai′
(

j1/3

ε2/3 (xo − x) + βh
)

Ai
(

j1/3

ε2/3 (xo − x) + βh
) .(54)

In principle, the integration constants h and a1 can be determined by matching to
the inner diffuse layer, x = O(ε) (described below), and the bulk transition layer,
|x0 − x| = O(ε2/3) (described above). Here, the main point is that the leading-
order approximation for the electric field when the region is depleted of anions is
exactly (38), which follows from the asymptotic form of Ai(z) and Ai′(z) as z → ∞
in (54). The equivalence of the single-ion equations and the full governing equations
at leading order mathematically confirms the physically interpretation of the space-
charge layer as a region of anion depletion.

4.2. Boundary layers above the limiting current. To complete our analysis
of the high-current regime, 1+O(ε2/3) � j � O(1/ε), we must consider the boundary
layers. At the anode, all fields are O(1), so we recover the usual Gouy–Chapman solu-
tion with the minor modification that c1 = 2

√
j, which is the value c̄ takes as x → 1.

The cathode structure, however, is much more interesting because it is depleted of
anions (see Figure 5). To our knowledge, this nonequilibrium inner boundary layer on
the space-charge region, related to the reaction boundary condition at the cathode,
has not been analyzed before.

As in the space-charge layer, the leading-order governing equations in this layer
are those of a single ionic species with no counterions (45) and (46). Rescaling those
equations using x = εy, we obtain

dč+
dy

+ č+
dφ̌

dy
= 4jε ≈ 0,(55)

−d2φ̌

dy2
=

1

2
č+.(56)

From these equations, it is immediately clear that the cations have a Boltzmann
equilibrium profile at leading order: c+ ∝ e−φ(y). As in the analysis for the space-
charge layer, it is possible to find a general solution to (55) and (56). By combining
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these equations and integrating, we find that the potential in the cathode boundary
layer has the form

φ̌ ∼ log
[
sinh2(py + q)

]
+ r,(57)

where p, q, and r are integration constants. Therefore, the electric field and concen-
tration are

Ě(y) ∼ −2p coth(py + q),(58)

č(y) =
1

2
č+(y) ∼ 2p2

sinh2(py + q)
.(59)

Matching the electric fields in the diffuse and space-charge layers, we find that
p ∼

√
jxo. Note that because p = O(

√
j), the electric field in the diffuse charge

layer is O(
√
j/ε), which is the same order of magnitude as in the space-charge layer.

To solve for q, we use the expression for p in the cathode Stern and Butler–Volmer
boundary conditions, which leads to the following nonlinear equation:

4kcjxo

sinh2 q
exp

(
2αcδ

√
jxo coth q

)
− jr exp

(
−2αaδ

√
jxo coth q

)
= j.(60)

In the limit of small δ, we can use fixed-point iteration to obtain an approximate
solution,

q ∼ sinh−1

(
2

√
kcjxo exp

(
2αcδ

√
jxo coth qo

)
j + jr exp

(
−2αaδ

√
jxo coth qo

)
)
,(61)

where qo has the same form as q with (coth qo) set equal to 1. For δ � 1, the
leading-order equation is

4kcjxo

sinh2 q
exp

(
2αcδ

√
jxo coth q

)
∼ j,(62)

which implies that q � 1, so that the left-hand side can be small enough to balance
the current. Thus, by using coth q ≈ 1 and sinh q ≈ exp(q)/2, we find that q ∼
αcδ

√
jxo + 1

2 log(16kcxo). The agreement of these asymptotic approximations with
the numerical solutions in the diffuse charge layer is illustrated in Figure 4.

5. Polarographic curves. We are now in a position to compute the leading-
order behavior of the polarographic curve at and above the classical limiting current.
Recall that the formula for the cell voltage is given by

v = −δεE(0) +

∫ 1

0

−E(x)dx− δεE(1).(63)

The integral is the voltage drop through the interior of the cell, and the first and last
terms account for the potential drop across the Stern layers.

At the limiting current, j = 1, we can estimate the voltage drop across the cell by
using the bulk and diffuse-layer electric field to approximate the field in the Smyrl–
Newman transition layer to obtain

v ∼ −δεE(0) +

∫ ε2/3

0

−E(x)dx +

∫ 1

ε2/3

−E(x)dx− δεE(1)(64)

∼ 2
δ

b
+ 2 log

(
ε−1/3 + b

b

)
− 2

3
log ε.(65)

Notice that in the small δ limit, this expression reduces to v ∼ − 4
3 ln ε as ε → 0. The
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Fig. 7. Comparison of numerical polarographic curves (dashed lines) with leading-order asymp-
totic approximations (solid lines) given in (66) for several values of ε with δ = 1.0, kc = 1, and
jr = 2. For ε = 0.001, the numerical and asymptotic polarographic curves are indistinguishable on
this graph. For reference, the vertical dashed line shows the classical diffusion-limited current j = 1.

Table 1

Comparison of the asymptotic approximations (65) and (66) with numerically calculated values
for the cell voltage at various ε and δ values. These cell voltages were computed with kc = 1 and
jr = 2.

j = 1.0 j = 1.5
ε δ vexact vasym vexact vasym

1e-4 0.01 13.125 12.101 1297.799 1289.621
1e-4 1.00 13.222 12.374 1297.048 1291.101
1e-4 10.0 14.290 13.571 1305.318 1300.129
1e-3 0.01 10.165 9.146 140.207 132.790
1e-3 1.00 10.277 9.475 139.450 134.270
1e-3 10.0 11.552 10.890 147.717 143.299
1e-2 0.01 7.339 6.303 22.434 15.725
1e-2 1.00 7.479 6.729 21.624 17.206
1e-2 10.0 9.228 8.465 29.886 26.234
1e-1 0.01 4.922 3.649 9.479 2.637
1e-1 1.00 5.005 4.219 7.790 4.118
1e-1 10.0 7.995 6.327 16.088 13.146

dependence, v(j = 0) ∝ ln ε, is clear in the numerical polarographic curves shown
in Figure 7. (See also Figure 4 of the companion paper [9].) Table 1 compares this
approximation with the exact cell voltage for a few ε and δ values. For small ε values
(ε ≤ 0.01), the asymptotic approximations are fairly good (within 5% to 10%).

Above the limiting current, the space-charge layer makes the dominant contribu-
tion to the cell voltage. Using (37) and (38) in the formula for the cell voltage, we
find that

v ∼ 4
√
j

3ε

(
1 − j−1/2

)3/2

+ 2δ
(
j −

√
j
)1/2

coth q − 1

2
log j − 2/3 log ε.(66)

The first two terms in this expression estimate the voltage drop across the space-charge
and the cathode Stern layers, respectively. The last two terms are the subdominant
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contribution from the bulk where we have somewhat arbitrarily taken x = xo+ε2/3 as
the boundary between the bulk layer and the Smyrl–Newman transition layer. Notice
that we ignore the contribution from the cathode diffuse and Smyrl–Newman layers.
It is safe to neglect the diffuse layer because it is an O(1) contribution. However, the
Smyrl–Newman layer has a nonnegligible potential drop that we have to accept as
error since we do not have an analytic form for the solution in that region.

Figure 7 shows that the asymptotic polarographic curves are quite accurate for
sufficiently small ε values. In Table 1, we compare the results predicted by the asymp-
totic formula with numerical results for a few specific values of ε and δ. It is interesting
that the approximation is also better for large δ values (we explain this observation
in the next section). Also, while the log ε term is subdominant, it makes a significant
contribution to the cell voltage for ε values as small as 0.01.

As with the width of the space-charge layer, xo, our expression for the cell voltage,
(66), is consistent with the results of Bruinsma and Alexander [21] and Chazaviel [22]
near the limiting current, j → 1+, while remaining valid at much larger currents,
j = O(1/ε).

6. Effects of the Stern-layer capacitance. The inclusion of the Stern layer
in the boundary conditions allows us to explore the effects of the intrinsic surface
capacitance on the structure of the cell. From Figures 3 through 5, we can see that
smaller Stern-layer capacitances (i.e., larger δ values) decrease the concentration and
electric-field strength in the cathode diffuse layer. This behavior arises primarily from
the influence of the electric field on the chemical kinetics at the electrode surfaces.
When the capacitance of the Stern layer is low, small electric fields at the cathode
surface translate into large potential drops across the Stern layer, (10), which help
drive the deposition reaction, (12). As a result, neither the electric field nor the cation
concentration need to be very large at the cathode to support high-current densities.
These results confirm our physical intuition that it is only important to pay attention
to the diffuse layer when the Stern-layer potential drop is negligible (i.e., δ � 1).

At high currents, another important effect of the Stern-layer capacitance is that
the total cell voltage becomes dominated by the potential drop across the Stern layer
at large δ values (i.e., small capacitances). This behavior is clearly illustrated in
Figure 8. Notice that for currents below the classical diffusion-limited current, the
total cell voltage does not show a strong dependence on δ. However, for j > 1, the total
cell voltage increases with δ—the increase being driven by the strong δ dependence
of the Stern voltage.

7. Conclusion. In summary, we have studied the classical problem of direct
current in an electrochemical cell, focusing on the exotic regime of high-current den-
sities. A notable new feature of our study is the use of nonlinear Butler–Volmer and
Stern boundary conditions to model a thin film passing a Faradaic current, as in a
microbattery. We have derived leading-order approximations for the fields at and
above the classical, diffusion-limited current, paying special attention to the structure
of the cathodic boundary layer, which must be present to satisfy the reaction bound-
ary conditions. In our analysis of superlimiting current, we have shown that the key
feature of the bulk space-charge layer is the depletion of anions. Our exact solution
of the leading-order problem in the space-charge region, (51), could thus also have
relevance for Faradaic conduction through very thin insulating films.

Using the asymptotic approximations to the fields, we are able to derive a current-
voltage relation, (66), which compares well with numerical results, far beyond the
limiting current. Combined with the analogous formulae in the companion paper [9],



1504 KEVIN T. CHU AND MARTIN Z. BAZANT

0 10 20 30
0

1

2

3

4

δ

v

j = 0.5

Total Cell Voltage

Stern Voltage

Interior Voltage

0 10 20 30
0

5

10

15

δ

v

j = 1

Total Cell Voltage

Stern Voltage

Interior Voltage

0 10 20 30
0

10

20

30

40

50

δ

v

j = 1.5

Total Cell Voltage

Stern Voltage

Interior Voltage

Fig. 8. These graphs break the total cell voltage into contributions from the cell interior and the
Stern layer as a function of δ for ε = 0.01, kc = 2, and jr = 2. Note that at and above the classical
limiting current, the Stern-layer voltage dominates the total cell voltage for large values of δ.

which hold below the limiting current, we have essentially analyzed the full range of
the current-voltage relation. These results could be useful in interpreting experimental
data, e.g., on the internal resistance of thin-film microbatteries.

A general conclusion of this study is that boundary conditions strongly affect
the solution. For example, the Stern-layer capacitance, often ignored in theoretical
analysis, plays an important role in determining the qualitative structure of the cell
near the cathode, as well as the total cell voltage. The nonlinear boundary condi-
tions for Butler–Volmer reaction kinetics also profoundly affect charge distribution
and current-voltage relation, compared to the ubiquitous case of Dirichlet boundary
conditions. The latter rely on the assumption of surface equilibrium, which is of
questionable validity at very large currents.

We leave the reader with a word of caution. The results presented here are valid
mathematical solutions of standard model equations, but their physical relevance
should be met with some skepticism under extreme conditions, such as superlimiting
current. For example, the PNP equations are meant to describe infinitely dilute
solutions in relatively small electric fields [7, 28, 29]. Even for quasi-equilibrium
double layers, their validity is not so clear when the zeta potential greatly exceeds the
thermal voltage, because co-ion concentrations may exceed the physical limit required
by discreteness (accounting also for solvation shells) and counterion concentrations
may become small enough to violate the continuum assumption. Large electric fields
can cause the permittivity to vary, by some estimates up to a factor of ten, as solvent
dipoles become aligned. Including such effects, however, introduces further ad hoc
parameters into the model, which may be difficult to infer from experimental data.
Instead, we suggest using our analytical results (especially current-voltage relations)
to test the validity of the basic model equations in thin-film experiments.
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THREE-DIMENSIONAL PROBABILITY DENSITY FUNCTIONS VIA
TOMOGRAPHIC INVERSION∗
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Abstract. In many experimental observation systems where the goal is to record a three-
dimensional observation of an object, or a set of objects, a lower-dimensional projection of the
intended subject is obtained. In some situations only the statistical properties of such objects are
desired: the three-dimensional probability density function. This article demonstrates that under
special symmetries this function can be obtained from either a one- or two-dimensional probability
density function which has been obtained from the observed, projected data. Standard tomographic
theorems can be used to guarantee the uniqueness of this function, and a natural basis set can be
used in computing the three-dimensional function from the one- or two-dimensional projection. The
theory of this inversion is explored using theoretical and computational methods with examples of
data taken from scientific experiments.
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Introduction. In many experimental observation systems whose goal is to record
a “true” three-dimensional observation of an object, or a set of objects, a lower-
dimensional projection of the intended subject is obtained. In general, the tomo-
graphic inversion theorems for many such systems have been known for some time
and have been used to expedite the inversion of projected data sets: one- and two-
dimensional projections of such structures to obtain the three-dimensional data (Her-
man, 1980; Kak and Slaney, 1987). For the most part, the data collection and sub-
sequent inversions have considered the reconstruction of individual three-dimensional
structures whose unique features are desired.

An alternate problem which utilizes the exact same tomographic theory arises
in a situation where the interest is in some statistical parameterization of a set of
three-dimensional objects and where the data that have been measured are lower-
dimensional projections of these three-dimensional structures. This is true in certain
situations such as the x-ray diffraction of molecules in suspension, where the molecules
are assumed to be randomly oriented and the observed diffraction patterns are a
result of the incoherent superposition of the magnitude of the Fourier transforms
of the various orientations. In this case, the correlation distances between atoms
are the desirable parameter, and in favorable situations the relationships between
the ensemble of projections and the observed data can be used to infer the average
distances between such entities (Hukins, 1981).

Another example concerns the case treated in this article: the recording of the
displacements of animals using either optical or acoustic systems. In this situation, one
type of desired knowledge is the probability density function for velocities pdf(�v), that
is to say, the probability that a given animal is moving with velocity between �v and
�v+d�v, where �v is a three-dimensional velocity. Assuming that the system is temporally
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 (a) A three dimensional 

distribution of objects. 

 One dimensional acoustical 

reflectivity 

 

 (c) A two dimensional image of 

the three dimensional distribution. 
(b) Reflectivity vs. range for a 

sonar pencil beam. 

 

Fig. 1. A diagram which illustrates the utility of the methodology developed. (a) shows a three-
dimensional distribution of objects. The distribution can be measured with either (b) an essentially
one-dimensional sonar system producing a record of animal reflectivity along a line or (c) an image
of the same phenomenon observed with a camera system.

stationary, this statistic provides an interesting parameterization of the state of the
system. Valuable ecological information can be inferred from such a function which
includes the metabolic energy level of the animal (Torres and Childress, 1983) as well
as a knowledge of the animal’s lifestyle and the factors which govern its success in
either foraging or mating.

Two special cases that are treated in the article are illustrated in Figure 1. The
native environment for many observational phenomena is three-dimensional. How-
ever, in many cases it is much easier to measure either one- or two-dimensional data
sets in which the three-dimensional information is embedded. As one example, we
remark that the inferences about the behavior of animal aggregations (swarms, flocks)
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(Okubo, 1980; Parrish and Edelstein-Keshet, 1999; Parrish and Hamner, 1997) could
benefit from the methodology described herein. The figure depicts reflections from an
essentially one-dimensional sonar system (b) and images from a camera (c). In the
case of the sonar, a very narrow beam can be used to measure the range-dependent
locations of animals along a single line. In the case of the camera, the projected
two-dimensional locations of the animals can be inferred.

Mathematical formulation. The starting point for our discussion of the al-
gorithm concerns the existence of a data matrix of object positions as a function of
time: R = {�ri,j}, where the i, jth element corresponds to the three-dimensional
position of object i observed at time tj . Considering this matrix, a set of dis-
placements can be computed for a set of objects at two time instants, {tj , tk} as
{Δ�ri = �rij − �rik|tj − tk, i = 1,M}, where there are M objects. Computing this set
of displacements over all objects and over all time intervals and assuming temporal
stationarity allows the computation of a set of displacements as a function of time
interval Δ�r(ΔT ) = {Δ�ri|ΔT, i = 1,M}. Dividing this data matrix by the time differ-
ence ΔT = tj − tk provides an estimate of the instantaneous velocities of the objects.
However, we choose to leave the data as positions, as they are a bit easier to visualize.

Forming a histogram of the object displacements provides an estimate of the un-
derlying probability density function for object displacement pdf(Δ�r|ΔT ) for a fixed
time interval, ΔT . Dividing three-dimensional space into small three-dimensional
boxes of dimensions, δΔ�r, the approximate three-dimensional probability density
function, derived from the measured data, can be computed by assuming, given
n(Δ�r) as the number of occurrences of the length Δ�r in the interval Δ�r − δΔ�r

2 <

Δ�r ≤ Δ�r + δΔ�r
2 , that

pdf3d(Δ�r|ΔT ) = lim
N,t→∞

n(Δ�r)

N
.

We next consider the data collection process and the consequences of a system that
can measure only a subset of the vector components of the range displacement. In one
case examined here a set of narrow sonar beams constituted the measurement which
transformed the three-dimensional data vector into one that considered only range. A
more common occurrence occurs when a conventional optical camera is used to obtain
a two-dimensional picture of a set of three-dimensional objects. In this case, a con-
ventional camera system provides a projected view of the animals’ three-dimensional
positions. In either case, a linear transformation projects the higher-dimensional data
onto the measured lower-dimensional coordinates, resulting in a loss of information.
For a single object or scene, a multitude of views can be obtained, resulting in a set
of projections which can be used to invert for the true three-dimensional object (Kak
and Slaney, 1987). In the special case when the object has some inherent degree of
symmetry, the structure of the object can be obtained from a reduced set of data.
So, for example, in the case of an object which displays complete three-dimensional
symmetry, the three-dimensional structure can be obtained from a single projection.

The purpose of this article is to extend the theory of the reconstruction of pro-
jected functions to the case of probability density functions. As such, given an ensem-
ble of objects with features {Δ�r}, a probability density function pdf3d(Δ�r) is used to
describe their characteristics. In our case, the resultant measurement of such objects
is a new set of objects with reduced dimensionality. This set of objects has lower
dimensionality, say ρ (a scalar), and a new and different probability density function
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pdf1d(ρ) (in the one-dimensional case) is obtained which is dependent on measurement
geometry.

Defining a new matrix D = {ρij}, where the i, jth element is the projected posi-
tion of object i at time tj , the treatment above can be extended in a similar way to
obtain an estimate for the probability density function of this one-dimensional func-
tion. Given n(Δρ) as the number of occurrences of the length Δρ in the interval
Δρ− δΔρ

2 < Δρ ≤ Δρ + δΔρ
2 , then

pdf1d(Δρ|ΔT ) = lim
N,t→∞

n(Δρ)

N
.

Although we suspect that this theory can be generalized to measurements other
than displacements, only the straightforward relationships between the displacements
in one, two and three dimensions and their respective probability density functions
will be addressed here. In the case of displacement, under the assumption of three-
dimensional isotropy, the inversion from pdf3d(Δρ) to pdf3d(Δ�r) can be formulated
using the theory of reconstruction of functions from their projections. The next sec-
tion demonstrates that the one-dimensional probability density function obtained this
way is a projection of the three-dimensional probability density function. Additional
theorems are proved relating to our specific formulation as well.

Theorems.

The spherically symmetric case. Our first proof examines the relationship
between the three-dimensional probability density function for a fixed time delay ΔT ,
pdf3d(Δ�r|ΔT ), and a one-dimensional projection of it, pdf1d(Δρ|ΔT ). Figure 2 illus-
trates that the formulation concerns the existence of two sets of data and their respec-
tive probability density functions. The two data sets are the “true” three-dimensional
set of object displacements which would be obtained from a “true” three-dimensional
imaging system {Δ�r|ΔT}. The measured data {Δρ|ΔT} is obtained via the mea-
surement process M3d→1d as shown in the diagram (as, for example, using a pencil
sonar beam). The probability density functions, pdf3d(Δ�r|ΔT ) and pdf1d(Δρ|ΔT ) are
obtained from each of these data sets via the binning transformations as above and
represent the underlying statistics of the processes from one point of view. Pdf3d→1d

is the resultant transformation that occurs when one computes pdf1d(Δρ|ΔT ) from
the inherent three-dimensional probability density function by projecting it to a one-
dimensional function.

M3d→1d

{Δ�r|ΔT} ⇒ {Δρ|ΔT}
⇓ ⇓

Pdf3d→1d

pdf3d(Δ�r|ΔT ) ⇒ pdf1d(Δρ|ΔT )

Fig. 2. A diagram illustrating the relationships (clockwise from upper right) between the data
{Δ�r|ΔT}, the projected data {Δρ|ΔT}, the probability density function for the one-dimensional data
pdf1d(Δρ|ΔT ), and the probability density function for the three-dimensional data pdf3d(Δ�r|ΔT ).
The transformations M3d→1d and pdf1d(Δρ|ΔT ) are the projection operator on the data set and the
projection operator on the three-dimensional data.

The first theorem concerns the consistency of the above diagram. That is, the
arrows indicate that the one-dimensional probability density function can be obtained
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in one of two ways: by recording the three-dimensional data and computing the one-
dimensional pdf via a projection of the three-dimensional probability density func-
tion, or by recording the one-dimensional data and computing the probability density
function from this scalar data set. The two methods produce equivalent functions as
indicated by the theorem.

Theorem 1. The one-dimensional probability density function obtained from the
projected data is identical to that obtained via a projection of the three-dimensional
probability density function.

Proof. The question asked here is whether the diagram in Figure 2 “commutes.”
To demonstrate that this is so, assume an arbitrary three-dimensional probability
density function pdf3d(Δ�r|ΔT ) and consider a finite realization of this process in that
a set of N three-dimensional vectors has been observed, {Δ�r1,Δ�r2, . . . ,Δ�rN}. From

the definition of a probability density function, pdf3d(Δ�ri) = limN→∞
n(Δ�ri)

N , where
n(Δ�ri) has been defined as the number of occurrences of event Δ�ri in the interval
Δ�ri − δΔ�ri

2 < Δ�ri ≤ Δ�ri + δΔ�ri
2 . These cells also have dimensions δΔx, δΔy, δΔz,

with the corresponding definition of the probability density function as above for
δΔ�r. Now the transformation M3d→1d maps the data vector {Δ�r|ΔT} into {Δρ|ΔT}.
Without loss of generality, consider the measurement system to be able to resolve
objects in the direction Δz so that {Δ�r|ΔT} → {Δz|ΔT} and the Δx and Δy com-
ponents are lost in the measurement process. Then, for a given cell δΔz, n(Δz|ΔT ) =∑

Δy

∑
Δx n(Δz,Δx,Δy|Δt). Dividing by the total number of observations N

and taking the limit N → ∞ permits the integration to be approximated as∑
Δy

∑
Δx

n(Δz,Δy,Δx|ΔT )
N =

∫
pdf3d(Δ�r)dxdy, which is the marginal probability den-

sity function pdf1d(Δz)dxdy, the projection of pdf3d(Δr) onto the z axis. In the limit
as N → ∞ the marginal distribution can be computed either directly from the three-
dimensional probability density function or by projecting the data to one dimension
and then performing the computation of the probability density function.

We next turn our attention to the class of three-dimensional functions which have
some special symmetry. The simplest case is when the three-dimensional probability
density function has spherical symmetry. In this case, assuming spherical coordinates,
the entire function can be represented by a radial slice so that pdf3d(Δ�r) = pdf3d(ρ),
where ρ is the distance from the origin. Although the ultimate interest is in recon-
structing such functions from a single projection, we pause briefly to state and prove
a simple theorem.

Theorem 2. Given a separable and isotropic probability density function, the
projection of the three-dimensional function is identical to the one-dimensional prob-
ability density function.

This theorem is almost trivial to prove; however, we present it for complete-
ness and because it also illustrates the well-known and important fact that if the
three-dimensional data are normally distributed, no inversion is necessary, as the
one-dimensional probability density function and the three-dimensional probability
density function are identical.

So, for example, if (for fixed ΔT )

pdf3d(ρ) = pdf1d(x)pdf1d(y)pdf1d(z),(1)

then integrating with respect to y and z yields

pdf3d(ρ) = pdf1d(x)

∫
pdf1d(y)dy

∫
pdf1d(z)dz,(2)
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so that

pdf3d(ρ) = pdf1d(x).(3)

As an example, consider a set of object displacements that are normally dis-
tributed in three dimensions with mean 0 and variance σ. The three-dimensional
probability density function of the displacements can be represented as

pdf3d(Δ�r) =
1

2πσ2
exp−Δx2+Δy2+Δz2

2σ2 .(4)

In this case, the projection of this function onto a one-dimensional axis (here
taken to be the z axis with no loss of generality since this function is isotropic) is the
marginal probability distribution function

pdf1d(Δz) =

∫∫
1

2πσ2
exp−Δx2+Δy2+Δz2

2σ2 dxdy,(5)

which is equivalent to

pdf1d(Δz) =
1

2πσ2
exp−Δz2

2σ2 .(6)

Evidently, since the projection of this normally distributed function onto a single
axis results in a normally distributed function with equal variance, there is no need
to invert for the “true” three-dimensional function.

We next continue to pursue our interest in the reconstruction of the three-dimen-
sional probability density function from the projected data and hence the one-dimen-
sional probability density function. In particular, our interest is in the invertibility of
the projection operator pdf3d→1d. We remark that this inversion is possible for the
general class of centrosymmetric functions and can be obtained via some standard
techniques such as the projection slice theorem and its ramifications. Therefore, given
F , a one-dimensional Fourier transform, and H as a Hankel transform, with H−1 as
an inverse Hankel transform, the transformation pdf1d(ρ) → pdf3d(ρ) can be obtained
neglecting normalization coefficients as

pdf3d(ρ) = H−1F [pdf1d(ρ)].(7)

In order to pursue this interest we examine more closely the transformation be-
tween the three-dimensional centrosymmetric function and its one dimensional pro-
jection:

pdf3d(ρ) ↔ pdf1d(ρ).(8)

Initially, assume that the three-dimensional probability density function is uni-
modal so that

pdf3d(ρ) = δ(ρ− ρ0).(9)

In a physical sense, this probability density function corresponds to a set of three-
dimensional translations where the displacement is isotropic, though of a fixed value.
Under this assumption the set of projected vector lengths, and hence the distribution
of the projected lengths, can be computed. The following theorem expresses the
relationship between this simple unimodal distribution and its projection.
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Theorem 3. If pdf3d(ρ) = δ(ρ− ρ0), then

pdf1d(ρ) =
Π( ρ

2ρ0
)

2ρ0
,(10)

where

Π(x) = 1 if |x| ≤ 1/2,(11)

Π(x) = 0 otherwise.(12)

As an outline of the proof, we first assume a spherical coordinate system with φ in
the x, y plane and θ as the angle between a vector and the z axis. Next, we compute the
probability distribution function for θ and φ which will lead to the construction of a set
of three-dimensional isotropic vectors of length ρ0. Following this, the one-dimensional
probability density function pdf1d(ρ) is obtained by taking a set of projections and
computing the probability density function. Since the distribution is isotropic, we
choose the z axis for convenience.

In order to compute the probability density functions for θ and φ we first assume
that an ensemble of values has been chosen for 0 ≤ θ′ ≤ π and 0 ≤ φ′ ≤ 2π that
are uniformly distributed on these intervals. We seek a set of two functions g(θ′) and
h(φ′) which will transform this θ′ and φ′ into a new set of variables, θ and φ. Imagine
the end points of a set of three-dimensional vectors whose origin is at the coordinate
system origin and of length ρ0 as being uniformly distributed on the surface of a
sphere of radius ρ0. Points drawn from this isotropic distribution should sample the
surface area of the sphere uniformly so that, as a function of θ and assuming that
h(φ′) is an identity mapping, an increment in total area A is equal to

ΔA =

∫ θ=g(θ′)

0

r2 sin(θ)dθdφ = 4πr2(θ′/π).(13)

The integral can be solved for θ so that

cos(g(θ′)) = 1 − 2θ′

π
,(14)

yielding

θ = g(θ′) = cos−1

(
1 − 2θ′

π

)
.(15)

Taking the projection of this distribution is particularly simple with respect to
the z axis, since z = ρ0 cos θ:

z = ρ0

(
1 − 2θ′

π

)
.(16)

Since θ′ is uniformly distributed on the interval 0 ≤ θ′ ≤ π, this implies that z is
uniformly distributed on the interval −ρ0 < z < ρ0, and that

p(z) = 1/2ρ0 if |z| ≤ ρ0,

0 otherwise,

(17)

which proves the theorem.
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pdf1d ρ0

1/2ρ0

Fig. 3. The relationship between pdf3d and pdf1d when pdf3d = δ(ρ− ρ0).

We prefer to think of (10) as defining an “impulse response” of the transformation,
as illustrated in Figure 3. Since, strictly, the response is a function of position, it is
not spatially stationary. Nevertheless, it provides a particularly simple method for
inverting the one-dimensional probability density function as shown. Assuming that
pdf3d(ρ) can be represented by a set of discrete samples as

pdf3d(ρ) = {pdf3d(ρi)|i = 1, N} =

N∑
i=1

∫
pdf3d(ρ)δ(ρ− ρi)dρ(18)

and noting that the transformation from pdf3d to pdf1d can be made as

pdf1d(ρ) = P[pdf3d(ρ)],(19)

where

P
[

N∑
i=1

∫
pdf3d(ρ)δ(ρ− ρi)dρ

]
= pdf3d(ρi)

Π( ρ
2ρi

)

2ρi
,(20)

implies that

pdf1d(ρ) =

N∑
i=1

pdf3d(ρi)
Π( ρ

2ρi
)

2ρi
.(21)

This is a system of linear equations which, in principle, can be inverted to obtain an
estimate for pdf3d(ρ) from pdf1d(ρ).

An interesting corollary guarantees that these functions are nonincreasing.
Corollary. The one-dimensional probability density function, considered on the

positive axis, is always a nonincreasing function.
The proof follows from Theorem 3 as the final function is a set of nonincreasing

functions via (22), and since a sum of nondecreasing functions is nondecreasing, the
resultant function is also nondecreasing.

The cylindrically symmetric case. Next, we demonstrate the utility of the
general methodology as applied to cylindrically symmetric functions. One example
of its use is when a camera system monitors the movements of animals. In this case,
a set of two-dimensional projections of the three-dimensional trajectories is obtained.
The treatment here is motivated by the fact that many ecosystems can be regarded as
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having a distribution of animal motions which are isotropic in the horizontal plane but
not the vertical. This is a reasonable assumption when considering some terrestrial
and aquatic ecosystems where the force of gravity can permit the animal to differenti-
ate between vertical versus horizontal movement and the environment is azimuthally
isotropic in the horizontal plane.

In this case the desired probability density function can be considered to have
isotropy in the x, y plane so that the function has cylindrical symmetry, that is,
pdf3d(ρ, θ, z) = pdf3d(ρ, z), where the z, θ, and ρ axes are the ones commonly asso-
ciated with the cylindrical coordinate system (ρ being the length of a vector in the
x, y plane and θ the angle between the vector and the x, y plane). Also, the set of
three-dimensional trajectories are projected onto the x, z axes, resulting in the mea-
surement of a set of vectors in the x, z plane. Accordingly, we seek a transform from
pdf2d(x, z), the measured data to the “true” probability density function, pdf3d(ρ, z).
Note that Δ has been dropped, as it is assumed that the functions are defined on
physical variables that obey the geometric requirements of being “projected” via the
measurement process.

If ρ and z are independent variables, the three-dimensional probability density
function pdf3d(ρ, z) can be expressed as pdf2d(ρ)pdf1d(z), a product of these lower-
dimensional functions. In the case where the probability density function cannot
be written as a product of the two probability density functions, an alternate strat-
egy for data categorization can be used where the joint probability density function,
pdf3d(ρ, z), can be estimated by creating a finite number of bins for the variable z,
δzi, and by observing the probability density function pdf(x; δzi) for each one of these
δzi. In either case, the goal here is to invert for the function pdf2d(ρ, z) given the
function pdf1d(x) of measured data. Note that, as before, the one-dimensional func-
tion pdf1d(x) of measured (projected) data is not equivalent to pdf3d(x, 0, 0), a slice
through the three-dimensional probability density function.

Considering the probability density function only in the plane, we state a theo-
rem similar to Theorem 3, but this time for the two-dimensional to one-dimensional
projection.

Theorem 4. If pdf2d(ρ) = δ(ρ− ρ0), then

pdf1d(ρ) =
2

πρ0(1 − ρ2

ρ2
0
)

1
2

for 0 ≤ ρ ≤ ρ0,(22)

0, ρ0 < ρ.(23)

The theorem states that if one has a unimodal two-dimensional probability den-
sity function which is circularly symmetric in the plane, then the probability density
function for the projection of the set of vectors of length ρ0 will be equal to the above
pdf1d(ρ).

For this cylindrically symmetric case, the measurement process will “project”
these vectors located in the x, y plane onto the x axis. Here, a linear transformation
is derived between the probability density function for the set of projected lengths
(uniformly distributed in θ, now assumed to be the angle between the vector ρ and
the x axis) and the observed one-dimensional probability density function for their
distribution, pdf1d(x).

The proof is as follows: Given a set of vectors in the x, y plane of length ρ0 and
uniformly distributed on 0 ≤ θ ≤ 2π we seek the pdf1d(x) of their projected lengths.
Geometrically, the cumulative distribution function of x in the positive quadrant
(x ≥ 0, y ≥ 0) for uniform θ is proportional to the length of the arc of a circle
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of radius ρ0 for 0 ≤ θ ≤ π/2. Now, considering a new angle, θ′ = π/2 − θ (the
angle between the vector and the y axis), the cumulative distribution function for the
normalized length of the arc of the circle from θ′ = 0 to some value θ′ is

CDF (θ′) =
2

πρ0

∫ θ′

0

ρ0dθ =
2θ′

π
.(24)

Transforming back to the original polar angle θ via θ′ = π
2 − θ yields

CDF (θ) = 1 − 2θ

π
.(25)

Since cos(θ) = ρ
ρ0

,

CDF (ρ) = 1 − 2

π
cos−1

(
ρ

ρ0

)
,(26)

where we limit

0 ≤ cos−1

(
ρ

ρ0

)
≤ π/2.(27)

Taking the derivate with respect to x yields the probability density function, so
that pdf1d(ρ) = δ(ρ− ρ0) is transformed to

2

πρ0(1 − ρ2

ρ2
0
)

1
2

for 0 ≤ ρ ≤ ρ0, 0 otherwise(28)

by the measurement process.
Interestingly, this function goes to infinity at ρ

ρ0
= 1; however, its integral exists

and can be used to define the probability of events over any finite interval. The
consideration of the other quadrants is accomplished most easily by assuming first that
the absolute value of the measurements |Δx| are used. This simplifies the bookkeeping
needed to keep track of the inverse cosine argument and renders the positive and
negative x axes the same. Second, a similar treatment for the negative y axis which
defines a new angle which goes from −π

2 ≤ θ ≤ 0 yields the same result. Thus, the
theorem is proved.

In examining the probability density function, it can be noted that the transfor-
mation from two dimensions to one dimension, this time, is somewhat more merciful
to the data interpretation in the absence of inversion. So, for example, the most
likely value for the projected data is identical to the length of the vector (i.e., when
ρ
ρ0

= 1). Nevertheless, the transformation does occur and it behooves the experi-
menter to examine the effects of this projection process in every case. This motivates
the development of inversion techniques which will allow the computation of the ra-
dially symmetric function from the measured data. As before, a useful view of (22)
is as a basis set for the observed data. In this view, the collected data is composed of
a superposition of this set of stretched and renormalized functions. The development
of inversion techniques that will allow the estimation of pdf2d(ρ) from pdf1d(ρ) will be
considered in the next section.

Numerical analysis.

The spherically symmetric case. We next consider the numerical inversion
of the set of equations that can be generated from Theorem 3. Assuming discrete
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sampling of both the projected data and the proposed inverse solution, a set of matrix
equations can be formulated using (21). Assuming the form �b = A�x, where �b is the
observed data (the one-dimensional probability density function) and �x is the desired
inverse (a radial slice through the three-dimensional probability density function), a
numerical inversion can be performed.

A discrete version of the system of equations can be obtained by integrating the
observed data pdf1d(ρ) over intervals δρ so that pdf1d(δρj) =

∑N
i=1 pdf3d(ρi)Π(

δρj

2ρi
).

In addition, considering only positive displacements allows the distribution to be one-
sided so that

pdf1d(δρj) =

N∑
i=1

pdf3d(ρi)Π

(
δρj
ρi

)
, where ρi, ρj ≥ 0.(29)

Assuming bin widths of unit value, the system of equations can be represented as⎡
⎢⎢⎢⎢⎢⎢⎣

b1
b2
.
.
.
bN

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1
2 · · · 1

N
1
2 · · · 1

N
· · · ·

· · ·
· ·

1
N

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

.

.

.
xN

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Since this matrix is upper right triangular, a solution can be written down so that

xN = bNN,

xN−1 = (N − 1)(bN−1 − bN ),

which implies

xi = i(bi − bi+1) for i < N

= ibi for i = N.

Thus, the inverse matrix can be written as

A−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1
2 −2

·
·

(N − 1) −(N − 1)
N

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Computing the signal-to-noise of this inversion can be accomplished by adding
noise to the observed data vector, �bobs = �b+�ε, where �ε is a noise vector, and then com-
puting the inversion. Substituting back into the expression for x yields a computed �xc,
where

xci = i((bi + εi) − (bi+1 + εi+1)),(30)

or

xci = i(boi − boi+1),(31)



TOMOGRAPHIC INVERSION OF PDFs 1517

where boi and boi+1 are random variables which consist of the observed values of the
parameters. Therefore, xci is a function of two random variables. If boi and boi+1 can
be described by probability density functions which are independent and, moreover,
normally distributed with variance σi and σi+1, then the random variable xci has a
probability density function which is normal and has variance of

σ2
xci

= i2(σ2
i + σ2

i+1),(32)

which demonstrates that the variance increases with the square of value i and is a
sum of the variances of the observed data values.

The cylindrically symmetric case. The cylindrically symmetric case can be
treated in a manner almost identical to that of the spherically symmetric case. The
situation is somewhat more complicated in this case due to the form of the trans-
formation from two-dimensional to one-dimensional probability density function as
represented by (22). The two-dimensional probability pdf2d(ρ) can be represented by
a discretely sampled version as

pdf1d(ρ) =

N∑
i=1

pdf2d(ρi)
2

πρi(1 − ρ2

ρ2
i
)

1
2

.(33)

As before, we prefer to think of this as a “system response” to a unimodal probability
density function (pdf2d(ρ) = δ(ρ−ρi)). Integrating this equation over finite bin widths
of size Δρ to accommodate the data collection process yields

pdf1d(δρj) =

∫ ρj+
Δρ
2

ρj−Δρ
2

N∑
i=1

pdf2d(ρi)
2

πρi(1 − ρ2
j

ρ2
i
)

1
2

dρj .(34)

Taking the integral inside of the sum and noting that

∫ ρj+
Δρ
2

ρj−Δρ
2

2

πρi(1 − ρ2
j

ρ2
i
)

1
2

dρj = CDF

(
ρj +

Δρ

2
; ρi

)
− CDF

(
ρj −

Δρ

2
; ρi

)
,(35)

where CDF stands for the cumulative distribution function for pdf1d(ρ) as in (26),
implies that

pdf1d(δρj) =

N∑
i=1

pdf2d(ρi)

(
CDF

(
ρj +

Δρ

2
; ρi

)
− CDF

(
ρj +

Δρ

2
; ρi

))
.(36)

This equation can then be transformed into a more compact notation as

pdf1d(δρj) =

N∑
i=1

pdf2d(ρi)ΔCDF (ρj , ρi),(37)

where

ΔCDF (ρj , ρi) = CDF

(
ρj +

Δρ

2
; ρi

)
− CDF

(
ρj +

Δρ

2
; ρi

)
(38)

=
2

π

(
cos

(
ρj − Δρ

2

ρi

)
− cos

(
ρj + Δρ

2

ρi

))
.(39)
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The matrix is, again, upper right triangular because via (23)

ΔCDF (ρj , ρi) = 0 if ρi > ρj .(40)

Therefore, the numerical solution of the set of linear equations can be computed as
before. The noise analysis can also be performed; however, we have not derived an
analytic expression, as above, as the inverse matrix has a much more complicated
structure. We defer these considerations to a future publication.

Experimental results.

The spherically symmetric case. As an example of the use of the method for
the analysis of collected data we present results that utilize data generated from the
FishTV sonar system (Jaffe et al., 1995). Briefly, the FishTV system is a multibeam
sonar system which operates at a frequency of 445 kHz with bandwidth of 25 kHz
and at frame rates of up to 4 Hz. The system provides acoustic backscatter from a
set of 64 beams whose beam widths are 2 degrees by 2 degrees. The system resolves
512 range bins at a range increment of 0.75 cm, which yields a three-dimensional
data set of dimensions 16 degrees by 16 degrees by 3.8 meters. The system has
been used to measure the sonar reflectivity (Jaffe, Ohman, and De Robertis, 1998)
and behavior (Jaffe, De Robertis, and Ohman, 1999) of small animals in the water
column (zooplankton).

Given that the azimuthal resolution of the system is 2 degrees by 2 degrees, at
a range of 3 m the cross-track resolution of the system is 10.5 cm by 10.5 cm. In
contrast, the range resolution of the system, dictated by the bandwidth of the signal,
in excellent signal-to-noise can be as small as 1 cm. Clearly, an algorithm which
takes advantage of the superior range resolution in order to estimate the pdf(�v), the
probability density function for velocity, is desired. This was especially appealing
since the animal motions were suspected to be small, as they are quiescent during
some of our observation times (daylight). In addition, during this time, there is
good reason to believe that this probability density function is spherically symmetric.
One advantage of the algorithm proposed here is that it permits use of this much
better range resolution in order to compute the three-dimensional probability density
function from the one-dimensional observations.

Data shown here were collected in a fjord in British Columbia over a period of
approximately 10 minutes. The sonar was suspended below an anchored ship and
oriented into the current via the use of a current vane which was placed on the
data collection package. The sonar was operated at a rate of 2 Hz and was aimed
slightly downward into the layer of animals that collects at depth during the daytime.
Suspended at 85 meters, the system recorded the time varying reflections from targets
that were between 7 and 10 meters in range. The recording process yielded a set of
time varying reflections from each of the 64 sonar beams. Additional information
describing the system can be found in Jaffe et al. (1995).

Extensive software development in conjunction with validation of the system’s
performance has been performed over a period of several years (De Robertis, 2001).
The first step is to identify the presence of individual targets in each of the 64 sonar
beams. This is accomplished via the use of a correlation receiver and also by inspecting
the neighboring beams for side lobes as our targets are azimuthally spread. The
output of this first step is an estimate for the three-dimensional voxel (horizontal and
vertical bearing angle and range) in which the target is located, and its acoustic cross
section (reflectivity). This set of three-dimensional locations, which are obtained over
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Fig. 4. A set of displacement distribution functions: the number of targets that underwent
translation ΔX in time interval ΔT as a function of time delay.

a relatively short period of time for one complete system transmission-and-receive
cycle, is referred to as a frame.

The next step in our treatment of the data, for the purposes of this article, is to
consider the range displacements only. The histogram of these values provides the
data from which the probability density function can be estimated. The histogram
formed solely from the range estimates forms an estimate for pdf1d(ρ). In order to
compute this function from the target lists as a function of frame number, various
approaches can be used. Probably the most sophisticated approach would be to track
the targets temporally and to estimate their range displacements accordingly. A
simpler approach was taken here which should yield approximately the same results.
That is, given a time interval, the range displacement vectors were computed for all
targets in successive frames, which were separated by the given time interval from
the two lists (with reflectivities above a certain value). This is computationally very
simple, and under the assumption that the individual target locations are uncorrelated
(among themselves), the extra displacements from targets that were not the same
should produce a “dc value” or plateau upon which the true target displacements are
observable. The displacements were binned into bins of width 1.5 cm. Although the
data recording interval results in a range increment of .75 cm, this value was used, as
it was closer to the “true” resolution of the system as measured by the width of the
autocorrelated pulse.

Figure 4 contains a set of four histograms for these estimated range displacements
from this data set. These displacement distributions can easily be converted into an
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estimate for pdf1d(ρ) by simply dividing through by the total number of observations.
The data indicate that there is a mean translation of the animals’ positions (due to
the current) which is superimposed upon a broadening of the distribution, which we
have assumed is due to animal motion. It is evident that the majority of the animals
are hardly moving at all, that is to say, the majority of their displacement is due
to the current. This further motivated our interest in using this inversion algorithm
to obtain a higher resolution estimate than could be obtained from just the three-
dimensional positions, which suffer from poor azimuth resolution (relative to animal
displacement).

The data in Figure 4 were obtained by forming the histograms for each of the
individual beams for each of the time delays and then shifting them by small amounts
in order to line them up. The reason that they had different modes for their displace-
ments was due to the small differences in pointing angles for each of the 64 beams.
This resulted in a different value for the projection of the current vector onto each of
the beam-pointing angles. The correction assumes that the width of the peaks will
change little as a function of this systematic correction.

Since these data were obtained by regarding only changes in animal position in
range, the data reflects an estimate for pdf1d(Δρ|ΔT ). Moreover, since it is likely that
the “true” animal displacement probability density function is isotropic, the data were
treated using the above analysis. Note that this probability density function might
be due to both turbulence as well as animal movement. In the case that both of those
are isotropic, the analysis considered here can be rightfully applied. In addition, since
the current regime where the study was done was extremely laminar, the broadening
of the probability density function was interpreted as due to animal movement. The
inverse was computed by multiplying the data by the matrix A−1 to obtain an estimate
for the radial slice through the three-dimensional function (here kept in the form of
a displacement histogram). Figure 5 shows the result. An interesting feature of the
inverse is that there is a significant decrease in the estimated number of targets that
are simply drifting with the current, as contrasted with the estimate that would be
obtained by simply taking the one-dimensional displacements histograms.

In order to test whether this inversion differs significantly from the measured data
and to explore its stability, a simulation was done. Under the assumption that (1) the
measured data was not subject to any systematic error and (2) the underlying proba-
bility density function for the measured data is Poisson distributed with expectation
and standard deviation equal to the measured value, an ensemble of potential mea-
sured waveforms was simulated. Each member of the ensemble was then multiplied by
the inverse matrix (as above) to compute a new inverse. This yielded an ensemble of
inverses whose standard deviations are shown as dashed lines in Figure 5. The error
curves indicate that, at the origin, the computed inverse is significantly different from
the measured data; however, at larger displacements the inversion is not. This is an
interesting and significant observation. Perhaps some degree of active swimming is
needed for survival.

The cylindrically symmetric case. In this section we consider the utilization
of the methodology which was developed for the cylindrically symmetric case. In the
above spherically symmetric case we described the application of the methodology
to data that were measured using a specially designed sonar system. Here, standard
camera technology has been used to view the behavior of animals from a single di-
rection. Under the assumption that the underlying probability density function for
velocity has cylindrical symmetry, a temporally changing set of data from this sin-
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Fig. 5. The result of performing the matrix inversion A−1 on the one-dimensional sonar data
for different time delays. The solid black line is the observed histogram of the range displacement
data. The gray line is the result obtained after multiplying by the inverse matrix. The dashed gray
lines indicate plus or minus one standard deviation. The output of this process is an estimate for a
radial slice through the spherically symmetric, three-dimensional histogram.

gle camera can be used to infer a radial line through the cylindrically symmetric
distribution.

Here we consider experiments that were performed to observe the behavior of
small underwater animals (zooplankton of size 1 mm) in order to study the differences
in their behavior in the presence and absence of food. The animals were placed in an
aquarium and photographed with a video camera under dim red light. Postprocessing
of the data yielded a set of displacement vectors for the animals {Δxi,Δzi; t, i = 1, N}
as a function of time.

This section contains the results of processing the set of five animal trajectories
which consisted of approximately 100 positions each, yielding about 500 animal dis-
placements (Leising and Franks, 2002). These vectors were then assembled into two
histograms of displacements, one for Δx and the other for Δz, under the assump-
tion that the two probability density functions are independent, as described above.
The displacements for both positive and negative values were combined under the
assumption that the distribution is symmetric.

As described above, the forward problem was modeled using a finite number of
bins, and the algorithm was tested on several simulated distributions. Here, the ex-
perimental data of the recorded animal positions were used to obtain a set of animal
displacements which were binned into 11 size classes. In order to compute the inver-



1522 JULES S. JAFFE

sion, an 11 by 11 matrix was created for the forward problem. The forward matrix
was computed as

1. .356 .227 .167 .132 .110 .093 .081 .072 .065 .059
0. .644 .249 .174 .136 .111 .095 .082 .073 .066 .059
0. 0. .523 .206 .148 .118 .095 .082 .073 .065 .060
0. 0. 0. .452 .180 .131 .105 .089 .077 .068 .061
0. 0. 0. 0. .404 .162 .119 .096 .820 .072 .064
0. 0. 0. 0. 0. .368 .148 .110 .089 .076 .067
0. 0. 0. 0. 0. 0. .341 .138 .102 .084 .072
0. 0. 0. 0. 0. 0. 0. .319 .129 .096 .079
0. 0. 0. 0. 0. 0. 0. 0. .301 .122 .091
0. 0. 0. 0. 0. 0. 0. 0. 0. .285 .116
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .272

The inverse matrix will not be shown here; however, the inverted data set is
shown in Figure 6, along with the original data histogram of the displacements. As
the figure indicates, the estimate for the true data set is somewhat different than
the observed data. Curves of plus or minus one standard deviation, computed in
an identical way to the spherically symmetric case, are also shown. Interestingly,
in the same way as in the spherically symmetric case, a decrease in targets that
were practically still is evident. This inversion then also suggests that there are fewer
targets moving with very small velocities than would be measured from just computing
the probability density function from the projected data. In this case, it is widely
known that the animals execute a “hop and sink” strategy for foraging, indicating
that they indeed spend little of their time not moving at all. Since the animals are
somewhat negatively buoyant, they cannot simply suspend movement and maintain
their depth.
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Fig. 6. A histogram of observed animal displacements, proportional to pdf1d(Δx) (solid black),
and the inversion for the “true” three-dimensional histogram, proportional to pdf3d(Δr) (gray).
The dashed gray lines indicate plus or minus one standard deviation. The data was collected with a
camera system which viewed animal displacements in dim red light.
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Discussion and conclusions. In this article a theory of tomographic inversions
for probability density functions from observed data has been proposed. The theory
is motivated by the many data collection systems that observe a lower-dimensional
projection of the data where both one-dimensional and two-dimensional projections
of three-dimensional vectors are observed. In the two cases considered here, a three-
dimensional sonar system and an optical camera, animal displacement distributions
were processed to obtain an estimate for radial slices through the two- and three-
dimensional displacement probability density functions. The identical nature of this
problem to the standard theories relating to tomographic inversion is emphasized.
Several theorems are proved which demonstrate the utility of inverting symmetric
marginal probability density functions using tomographic theorems. The utility of
these ideas is demonstrated via the application of the numerical implications to ex-
perimentally collected data.

From the scientific point of view there are a host of interesting problems that
could be explored using the methodology described here. In this regard, this author’s
primary interest has been in tracking individual animals in various aquatic environ-
ments. Other applications of the methodology may relate to tracking animals both on
land and in the air. As demonstrated, even one-dimensional range information from
a simple device can be transformed into a radial slice of a multidimensional proba-
bility density function using the methodology presented here. In the case of animals
that fly, the similarities are clear between observing birds or insects and the aquatic
examples in the applications given here. Other interesting probability moments exist
as well. So, for example, one might be interested in the joint distribution of some
predator and prey via their relative distances in some reduced-dimensional coordi-
nate system. Inversion for the true joint probability density function from this joint
distribution, under assumptions here of various symmetries, therefore seems like an
interesting future application of the technique.

In a similar context, we remark that other work by this author involves the
projection of fluorescent organisms onto a plane (Jaffe, Franks, and Leising, 1998;
Franks and Jaffe, 2001). Under various assumptions about symmetry, the correlation
distances can be computed.

From the point of view of the reconstruction of multidimensional functions from
projections, there are a number of theoretical questions which arise as a result of this
work. A significant issue concerns the underlying assumptions of isotropy, either in
three dimensions or in two, and how strictly isotropic the distributions need to be in
order for the results to apply. So, for example, in the analysis of the sonar system’s
measurements of one-dimensional displacements, it was assumed that the animals’
movements could be described by an isotropic probability density function. However,
since the animals remain at a depth strata during the day, it cannot be strictly true
that their distribution is isotropic, as over time they would diffuse into the entire
volume. If the underlying three- or two-dimensional probability density function is
not strictly isotropic, the above theorems do not apply; however, if the distribution
is “almost” isotropic, then one might hope that some variation of the theorems can
be used. Moreover, when the system is not truly isotropic, perhaps one can use
some fewer number of projections than would be required for a true multidimensional
inversion without arbitrary assumptions about the underlying structure of the desired
object. The application of the theory and methodology described here to situations
of pragmatic interest is an interesting area for future research.

Additional issues which relate to the numerical solution of the system of equations
remain. These issues are generic to the theory of the reconstruction of functions from
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projections and thus relate to the field in general. Under the special symmetries con-
sidered here, the inversions would benefit from additional work. So, for example, only
a straightforward multiplication by the matrix inverse was performed here. However,
in the presence of noise, this inversion is probably neither a maximum likelihood nor
maximum a priori estimate for the solution. So, for example, in both cases considered
here, it is likely that there is some noise amplification as a result of the simplicity of
the inversions.

Another issue relates to the numerical implementation of the inverse. Tomo-
graphic reconstructions are typically performed through the use of filtered back-
projection. It would be interesting to characterize the performance of that algorithm
in comparison to the more analytically based algorithms that capitalize on the sym-
metry which have been proposed here.

Finally, perhaps the most surprising and significant conclusion is that it is pro-
ductive to perform tomographic inversions on marginal probability density functions.
As shown, these inversions can provide an estimate for a true underlying two- or three-
dimensional probability density function when performed on one- and two-dimensional
projected data. Collection of these lower-dimensional data sets can vastly simplify an
experimental setup, as the collection of true three-dimensional data requires both care-
ful calibration and additional hardware when compared with the lower-dimensional
case.
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Abstract. The capacity for multiple equilibria in an isothermal homogeneous continuous flow
stirred tank reactor is determined by the reaction network. Examples show that there is a very
delicate relationship between reaction network structure and the possibility of multiple equilibria.
We suggest a new method for discriminating between networks that have the capacity for multiple
equilibria and those that do not. Our method can be implemented using standard computer al-
gebra software and gives answers for many reaction networks for which previous methods give no
information.
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1. Introduction. We are interested in studying the uniqueness of positive equi-
librium points of a special but large class of systems of nonlinear ordinary differential
equations (ODEs): those that derive from chemical reaction networks. In order to
understand how these equations arise, we will first look informally at an example of
a reaction network and see how it induces a system of ODEs.

Consider some chemical species A, B, C, D, W, X, Y, and Z, and suppose that
the chemical reactions occurring among these species are

A + B � C, X � 2A + D � Y, D � C + W, B + D � Z.(1.1)

We will study a particular kind of reactor, called a continuous flow stirred tank
reactor (CFSTR; see [3]) by chemical engineers. Think of a CFSTR as just some
enclosed volume endowed with a feed stream and an outflow stream. Suppose that its
contents are kept at constant temperature and are spatially uniform. Now imagine
that a liquid mixture of species A, B, C, D, W, X, Y, and Z is continuously supplied to
some CFSTR at a constant volumetric flow rate g (volume/time). Also, the contents
of the CFSTR are continuously removed at the same volumetric flow rate g. Chemical
reactions occur in the CFSTR, according to (1.1). We would like to investigate the
temporal evolution of the composition of the mixture within the CFSTR. Let us denote
by cfA, c

f
B , . . . , c

f
Z the molar concentrations (moles/volume) in the feed stream and

by cA(t), cB(t), . . . , cZ(t) the molar concentrations within the CFSTR (and effluent
stream) at time t. We will denote the vector of all molar concentrations within the
CFSTR by c(t). We get the picture shown in Figure 1.1.

One source of change in composition is the occurrence of chemical reactions. It
is generally assumed that the occurrence rate of each reaction at time t depends just
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Fig. 1.1. The CFSTR of the reaction network (1.1).

on the mixture composition c(t). For example, for the reaction A + B → C there
exists a nonnegative real-valued rate function KA+B→C such that KA+B→C(c) is the
occurrence rate of reaction A+B → C per unit volume of mixture when the mixture
composition is given by the vector c. Let us now think about the instantaneous rate
of change of cA. Whenever the reaction A+B → C occurs we lose one molecule of A.
Also, whenever the reaction C → A+B occurs we gain one molecule of A. Similarly,
whenever the reaction X → 2A + C occurs we gain two molecules of A, and so on.

The other source of changes in composition is the difference between the com-
position cf in the feed stream and the composition c in the effluent stream. (Note
that the composition of the effluent stream is presumed to be identical to that of
the homogeneous mixture within the vessel.) If V is the total volume of the mixture
within the CFSTR,1 we get

V ċA = g(cfA − cA) − V KA+B→C(c) + V KC→A+B(c)(1.2)

− 2V K2A+D→X(c) + 2V KX→2A+D(c)

− 2V K2A+D→Y (c) + 2V KY→2A+D(c).

We will now look more closely at the structure of the rate functions. In most cases
chemists suppose the rate functions to be of mass-action type (see [26]). This means
that, for example, for the reaction A+B → C, the more A there is in the CFSTR, the
more occurrences of the reaction there will be, and similarly for B. More precisely,
we presume that the occurrence rate of the reaction A + B → C is proportional to
the probability of A and B meeting in the CFSTR, which, in turn, is proportional to
the value of cAcB . Thus, we write

KA+B→C(c) = kA+B→CcAcB ,

where kA+B→C is a positive rate constant for the reaction A + B → C. For the
reaction 2A + D → X an occurrence requires two molecules of A and one molecule
of D to meet in the CFSTR, and we consider the probability of this encounter to be
proportional to c2AcD. Therefore we get

K2A+D→X(c) = k2A+D→Xc2AcD,

1We assume hereafter that the densities of the feed and the effluent streams are identical and time-
invariant. This implies that V is constant in time. We also assume throughout that the temperature
of the reacting mixture is held constant.
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where k2A+D→X is the rate constant for the reaction 2A + D → X. In the case of
a reaction such as D → C + W it is presumed that the occurrence rate is simply
proportional to the molar concentration of D, i.e.,

KD→C+W (c) = kD→C+W cD.

The rate constants are usually either approximated on the basis of chemical prin-
ciples or are deduced from experiments. If we assume mass-action kinetics for the
network (1.1), then we get the following associated system of differential equations:

ċA = (g/V )(cfA − cA) − kA+B→CcAcB + kC→A+BcC − 2k2A+D→Xc2AcD(1.3)

+ 2kX→2A+DcX − 2k2A+D→Y c
2
AcD + 2kY→2A+DcY ,

ċB = (g/V )(cfB − cB) − kA+B→CcAcB + kC→A+BcC

+ kZ→B+DcZ − kB+D→ZcBcD,

ċC = (g/V )(cfC − cC) + kA+B→CcAcB − kC→A+BcC

+ kD→C+W cD − kC+W→DcCcW ,

ċD = (g/V )(cfD − cD) + kX→2A+DcX − k2A+D→Xc2AcD

+ kY→2A+DcY − k2A+D→Y c
2
AcD − kD→C+W cD + kC+W→DcCcW

− kB+D→ZcBcD + kZ→B+DcZ ,

ċW = (g/V )(cfW − cW ) + kD→C+W cD − kC+W→DcCcW ,

ċX = (g/V )(cfX − cX) − kX→2A+DcX + k2A+D→Xc2AcD,

ċY = (g/V )(cfY − cY ) + k2A+D→Y c
2
AcD − kY→2A+DcY ,

ċZ = (g/V )(cfZ − cZ) + kB+D→ZcBcD − kZ→B+DcZ .

Therefore we obtain a system of ODEs where all equations are determined by
the reaction network up to some constants: cfA, cfB , . . . , c

f
Z , g/V , and kA+B→C ,

kC→A+B , . . . , kZ→B+D. We are now going to ask the question: does this system
of ODEs have no more than one positive equilibrium for all positive values of g/V ,
all positive values of the rate constants, and all nonnegative values of the feed con-
centrations cfA, cfB , . . . , c

f
Z?

This question is motivated by experiments. For homogeneous liquid phase CF-
STRs, there are very few reports of reaction networks with more than one positive
equilibrium, despite hundreds of reaction networks being studied (see [9] for one such
report). We are asking this question for all positive rate constants since in practice
there is poor knowledge of the rate constants of reactions.

This question is not easy to answer, in general. Even if, for the simple example
above, we could decide one way or the other by some ad-hoc method, there will be
thousands of other reaction networks for which we will still not know the answer.
There are important reaction networks with hundreds of reactions. Ideally, there will
be a simple way to decide on the uniqueness of equilibria.

We say that a mass-action network has the capacity for multiple positive equilibria
(in an isothermal homogeneous CFSTR context) if there are positive values of the flow
rate, the volume, the rate constants, and nonnegative values of the feed concentrations
such that the resulting differential equations admit two or more distinct positive
equilibria.

According to [30], there are examples of very similar reaction networks with very
different capacities for multiple positive equilibria (see Table 1.1). Networks (i) and



MULTIPLE EQUILIBRIA IN COMPLEX REACTION NETWORKS 1529

Table 1.1

Some examples of reaction networks and their capacity for multiple positive equilibria [30].

Reaction Has the capacity for
network multiple equilibria?

(i) A + B � P
B + C � Q Yes
C � 2A

(ii) A + B � P
B + C � Q No
C + D � R
D � 2A

(iii) A + B � P
B + C � Q
C + D � R Yes
D + E � S
E � 2A

(iv) A + B � P
B + C � Q No

C � A

(v) A + B � F
A + C � G Yes
C + D � B
C + E � D

(vi) A + B � 2A No

(vii) 2A + B � 3A Yes

(viii) A + 2B � 3A No

(iii) in Table 1.1 have the capacity for multiple positive equilibria, but the “middle
case” network (ii) does not. Similarly, network (iv) is almost identical to (i), but
does not have the capacity for multiple positive equilibria. Moreover, network (v) is
an example that shows that we don’t need two or more copies of the same species
to appear in the same reaction for the network to admit multiple positive equilibria.
Also, changing (vi) to (vii) does bring in multiple positive equilibria, but changing (vi)
to (viii) does not. Therefore, a good theory of multiple positive equilibria in CFSTRs
should be able to differentiate between these subtle differences.

Let us look again at the system of ODEs in (1.3). If we are just interested in
equilibria, we set all the left-hand side terms equal to zero, and we get a system of
polynomial (algebraic) equations. Let us also move the feed terms cfA, . . . , c

f
Z to the

other side of the equations. We choose units such that g/V = 1. If we now change
signs in both sides and rearrange terms, then we get the following system of eight
polynomial equations:

cfA = cA + kA+B→CcAcB − kC→A+BcC + 2k2A+D→Xc2AcD(1.4)

− 2kX→2A+DcX + 2k2A+D→Y c
2
AcD − 2kY→2A+DcY ,

cfB = cB + kA+B→CcAcB − kC→A+BcC − kZ→B+DcZ

+ kB+D→ZcBcD,

cfC = cC − kA+B→CcAcB + kC→A+BcC − kD→C+W cD

+ kC+W→DcCcW ,
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cfD = cD − kX→2A+DcX + k2A+D→Xc2AcD − kY→2A+DcY

+ k2A+D→Y c
2
AcD + kD→C+W cD − kC+W→DcCcW

+ kB+D→ZcBcD − kZ→B+DcZ ,

cfW = cW − kD→C+W cD + kC+W→DcCcW ,

cfX = cX + kX→2A+DcX − k2A+D→Xc2AcD,

cfY = cY − k2A+D→Y c
2
AcD + kY→2A+DcY ,

cfZ = cZ − kB+D→ZcBcD + kZ→B+DcZ .

Let us denote by k the vector formed by the parameters kA+B→C , kC→A+B , . . . ,
kZ→B+D. Now we denote by p(c, k) the vector of right-hand sides of the system of
polynomial equations (1.4), and we call it the polynomial function associated to the
reaction network (1.1). We regard p(c, k) as a vector-valued function of a (positive)
composition vector c and depending on a (positive) vector of rate constants k.

We say that the reaction network (1.1) is an injective reaction network if the
function c → p(c, k) is injective for all positive k.

The following simple fact is a key observation: If a reaction network has the
capacity for multiple positive equilibria, then there exists some choice of positive vector
k0 such that the function c → p(c, k0) is not injective. In particular, p(c∗, k0) =
p(c#, k0) = cf for some feed composition cf and some distinct compositions c∗, c#.
In other words, an injective reaction network does not have the capacity for multiple
positive equilibria; i.e., injectivity is a sufficient condition for the absence of multiple
positive equilibria.

Remark 1.1. Injectivity is not a necessary condition for the absence of multiple
positive equilibria. The reason is that, for a network to admit multiple positive
equilibria, there must be a k0 such that p(·, k0) maps two distinct compositions not
only into the same vector, but, in fact, also into a nonnegative feed composition cf

(see (1.4), (3.10)). Were it not for this nonnegativity condition, injectivity would be
equivalent to uniqueness of equilibria.

Nevertheless, the class of injective reaction networks subsumes the largest class
of reaction networks for which the answer was previously found in [20, 30, 31]. The
main purpose of this paper is to describe a method that allows us to decide whether a
given reaction network is injective or not.

Remark 1.2. In general, it is of course very difficult to check whether a given
multidimensional polynomial function is injective or not. Moreover, the function
c → p(c, k) involves several unknown parameters. Our method derives, first, from a
theoretical observation about the function p(·, ·) and, second, from a rather remarkable
empirical observation.

The theoretical observation, discussed in section 3, is that a reaction network is

injective whenever its associated polynomial function has the property that ∂p(c,k)
∂c

is nonsingular for all positive c and all positive k. (There is no claim here that any
such assertion is true for polynomial functions in general; rather, the assertion is
made specifically for polynomial functions that derive, in the manner indicated, from
chemical reaction networks.)

To describe the empirical observation, we first note that the nonsingularity prop-

erty is, of course, equivalent to the requirement that det(∂p(c,k)
∂c ) be nonzero for

all positive c and all positive k. For moderately large networks, the calculation of

det(∂p(c,k)
∂c ) will result in hundreds or thousands of terms, even after combining all

similar monomials. Each resulting nonzero term will be a monomial in the (positive)
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species concentrations and the (positive) rate constants, with each term containing
an integer coefficient. Thus the sign of each term is carried by the sign of its integer
coefficient. The empirical observation is this: For very large and robust classes of
networks it is the case that, despite the huge number of terms, the integer coefficient

in every term is positive! In this case, det(∂p(c,k)
∂c ) cannot vanish, and injectivity of

the network is ensured (as is the impossibility of multiple positive equilibria). In fact,
we will show that positivity of all nonzero coefficients is both necessary and sufficient
for injectivity of the network.

In a subsequent article we intend to characterize, in graph-theoretical terms, large
classes of networks for which all coefficients are positive. In the meantime, we observe
that, for a given network of interest, checking for positivity of the coefficients is a
matter that can be resolved by presently available computer algebra systems.

By way of example, we show in (1.5) the first few terms of the expansion of

det(∂p(c,k)
∂c ) for network (1.1):

det

(
∂p(c, k)

∂c

)
(1.5)

= 10kC→A+BkD→C+W k2A+D→XcAc
2
DkW→0kB+D→ZkX→0kY→0kZ→0

+ 4kC→A+BkD→0k2A+D→XcAc
2
DkW→0kB+D→ZkX→0kY→2A+DkZ→0

+ 4kC→A+BkD→0k2A+D→Y cAcDkW→0kB→0kX→0kY→0kZ→0

+ kC→A+Bk2A+D→Xc2AkA→0kW→0kB+D→ZcDkX→0kY→2A+DkZ→0

+ 4kC→A+BkD→0k2A+D→Y cAcDkW→0kB→0kX→2A+DkY→0kZ→0

+ 6kC→A+BkD→C+W k2A+D→Y cAcDkW→0kB→0kX→2A+DkY→0kZ→B+D

+ 9kC→0k2A+D→Y c
2
AcDkA+B→CkC+W→DcCkB+D→ZcBkZ→0kX→0kY→0

+ 9kC→0k2A+D→Y c
2
AcDkA+B→CkC+W→DcCkB+D→ZcBkZ→0kX→2A+DkY→0

+ · · · .

In Table 1.2 we exhibit the (computer-generated) set of all coefficients that would
have resulted had the expansion been completed. Note that all the entries are positive.
Thus, we conclude that network (1.1) does not have the capacity for multiple positive
equilibria in an isothermal CFSTR context.

Our claim that, across wide varieties of reaction networks, it is common for all
coefficients to be positive is consistent with the paucity of experimental observations
of multiple equilibria in isothermal homogeneous CFSTRs.

In section 3 we provide elaboration on the remarks made here.
Before we describe our results we would like to specify their place in the general

landscape of chemical reaction network theory.
Stability results are discussed in [6, 7, 8, 11, 12, 13, 14, 15, 16, 18, 20, 24].
In [12, 13, 14, 15, 16, 17, 18, 19, 20, 25] reaction networks are classified by means

of a nonnegative integer index called the deficiency. It is then shown how, for reac-
tion networks of small deficiency, one can decide whether they have the capacity for
multiple positive equilibria (see also the software package [21]).

On the other hand, it is also shown (see [27]) that the deficiency-oriented theory
is not likely to give information for a large class of isothermal homogeneous CFSTRs.
Work that is complementary to the deficiency-oriented theory, and aimed specifically
at CFSTRs, was originated in [29] and then substantially broadened in [30, 31].

In [30, 31] Schlosser and Feinberg associate to any reaction network a graph called
the Species-Complex-Linkage (SCL) graph of the reaction network. Then they describe
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Table 1.2

The list of all nonzero coefficients in the expansion of the determinant of the Jacobian of the
function c → p(c, k) for the reaction network (1.1). Note that they are all positive.

10 4 4 1 4 6 9 9 4 4 4 1 4 1 4 4 4 4 9 4 4
1 4 4 1 1 4 4 1 1 1 4 4 4 4 4 4 6 4 4 4 4
1 1 4 1 1 4 1 1 1 4 4 1 1 15 4 1 4 4 4 1 1
9 1 4 9 4 4 4 1 1 4 15 4 1 9 1 1 1 1 1 1 1
3 3 3 4 1 4 4 4 1 1 4 4 9 1 1 4 4 4 4 15 1
1 4 4 1 1 4 1 6 4 4 4 4 1 1 4 4 4 4 10 1 4
4 4 4 4 6 1 1 4 4 4 6 4 2 1 2 1 1 1 4 10 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 3 1 1 4
4 4 1 1 1 1 1 4 4 1 1 6 4 4 1 4 1 1 9 1 1
1 4 1 1 1 1 4 1 4 4 4 2 1 10 4 4 4 4 1 4 1
1 1 4 1 1 1 1 4 1 4 2 1 1 6 4 4 4 15 1 1 6
2 4 1 1 4 4 1 4 1 4 4 1 4 4 4 4 1 4 1 1 2
4 4 4 4 4 4 4 1 4 4 1 1 1 1 4 4 1 4 1 1 1
1 4 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 3 1 1 1 1 3 1 1 1 1 4 4 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1

a criterion in terms of the SCL graph that implies that the CFSTR associated to the
reaction network does not have the capacity for multiple positive equilibria. This SCL
graph criterion of [30, 31] describes large classes of reaction networks that do not have
the capacity for multiple positive equilibria. On the other hand, it is not conclusive
for some reaction networks (including (1.1)), and it is not easy to implement as a
computer algorithm.

In Theorems 3.1–3.3 we describe equivalent formulations of the injectivity crite-
rion that allow us to decide whether a given reaction network is injective or not using
a simple computer algorithm (recall that an injective reaction network cannot have
the capacity for multiple positive equilibria). Moreover, the injectivity criterion is less
restrictive than the SCL graph criterion in [30, 31]: if the SCL graph criterion can
be applied, then our criterion can be applied as well, but sometimes the SCL graph
criterion is not conclusive, while our criterion is conclusive.

Applications of chemical reaction network theory are very diverse. There has been
a recent surge of interest in applications of dynamics arising from complex reaction
networks in biology. A very interesting discussion of biological applications appears in
[4]. Also, recent articles address the role of reaction networks in cellular biochemistry
[1, 2, 5, 10], in genetics [22, 23, 33], in bioengineering [32], and immunology [34].

In section 2 we give a precise definition of a reaction network, and we discuss
some associated ideas. In section 3 we prove equivalent formulations of injectivity
for reaction networks (recall that injectivity implies the absence of multiple positive
equilibria). We will see that some of these equivalent formulations of injectivity allow
us to test whether a given reaction network is injective or not, using a very sim-
ple algorithm. In section 4 we describe a condition which implies that a reaction
network does have the capacity for multiple positive equilibria. Section 5 contains
concluding remarks.
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2. Definitions and notation. We denote by R+ the set of strictly positive real
numbers, and by R̄+ the set of nonnegative real numbers. For an arbitrary finite set
I we denote by RI the real vector space of all formal sums

∑
i∈I αii for all αi ∈ R.

Note that I becomes a basis of RI . By RI
+ we mean the set of sums

∑
i∈I αii in which

all αi are strictly positive. By R̄I
+ we mean the set of sums

∑
i∈I αii in which all αi

are nonnegative.

In the following definition the complexes of a reaction network are to be under-
stood as the objects (such as A + B) at the heads and tails of the reaction arrows.

Definition 2.1 (see [14, 18]). A chemical reaction network consists of three
finite sets:

(i) a set S of species of the network;
(ii) a set C ⊂ R̄S

+ of complexes of the network;
(iii) a set R ⊂ C × C of reactions, with the following properties:

(a) (y, y) /∈ R for any y ∈ C ;
(b) for each y ∈ C there exists y′ ∈ C such that (y, y′) ∈ R or such that

(y′, y) ∈ R.

When (y, y′) ∈ R we say that the complex y reacts to complex y′. When this is
the case we will write y → y′, since it is the usual notation in chemistry.

If we look at the differential equations in (1.3), it is clear that, for CFSTRs in
general, there will be not only terms that derive from the occurrence of chemical
reactions but also linear terms (such as −(g/V )cA) that derive from the presence

of the outflow stream, and constant terms (such as (g/V )cfA) that derive from the
presence of the feed stream. So that all such terms can be brought into a common
reaction network theory framework, it will be useful to regard such “flow” terms as
having derived from formal chemical “reactions” such as A → 0 (corresponding to
the outflow of A) and 0 → A (corresponding to the feed of A); see [12, 25]. Here we
view “0” as the zero vector of RS . If we imagine A → 0 to be governed by mass-
action kinetics with rate constant kA→0 = g/V , then the contribution to ċA in (1.3)
will be precisely −(g/V )cA. We adopt the convention that the mass-action rate of
a reaction of the form 0 → A is constant (and equal to the associated rate constant

k0→A). Thus, if we choose k0→A = (g/V )cfA, then the contribution of the reaction

0 → A to ċA is just (g/V )cfA. In this way, the formal “flow reactions” A → 0 and
0 → A account for the flow terms that appear in the equation for ċA. More generally,
there are advantages to viewing CFSTR mass-action differential equations as having
derived from a mass-action system in which the set of “true” reactions is augmented
with the set of “flow reactions,” with appropriately chosen rate constants. (Recall
that we have chosen units such that g/V = 1 so that, for us, ks→0 = 1 for all s ∈ S .)

Hereafter, we shall regard the operative reaction network under discussion to be
the augmented one. If, for example, all species are present in the feed stream, then
we augment the set of reactions in (1.1) by adding the following flow reactions:

0 → A, 0 → B, 0 → C, 0 → D, 0 → W, 0 → X, 0 → Y, 0 → Z,(2.1)

A → 0, B → 0, C → 0, D → 0, W → 0, X → 0, Y → 0, Z → 0.

If a certain species, say W , is deemed absent from the feed stream (i.e., if cfW = 0), then
the reaction 0 → W would be omitted. (With respect to injectivity considerations,
the presence or absence of certain species in the feed is of no consequence.) Flow
reactions of type 0 → A are called feed reactions, and flow reactions of type A → 0
are called outflow reactions. As Figure 1.1 indicates, all species are deemed present
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in the effluent stream, so there is an outflow reaction for each species. (In a future
paper we will discuss the implications of relaxing this assumption.)

So, the augmented network corresponding to the reaction network (1.1) has
the set of species S = {A,B,C,D,W,X, Y, Z} and the set of complexes C =
{A,B,C,D,W,X, Y, Z, 0, A + B, 2A + D,C + W,B + D}. It contains the ten true
reactions in (1.1) and, when all species are deemed to be in the feed, the sixteen flow
reactions in (2.1).

In general, we denote by Rt the set of true reactions, by Rf the set of feed
reactions, and by Ro the set of outflow reactions.

Definition 2.2. A mass-action system is a reaction network (S ,C ,R) taken
together with an element k ∈ RR

+ . The number ky→y′ is the rate constant of the
reaction y → y′ ∈ R.

For two vectors in R̄S
+ , say u =

∑
s∈S uss and v =

∑
s∈S vss, we denote

uv =
∏

s∈S (us)
vs . Here we use the convention that 00 = 1.

We will now show how, by using the notation above, we can express the system
of ODEs associated to a reaction network as a very compact formula. For example,
note that the term kA+B→CcAcB on the first line in (1.3) can be written as ky→y′cy;
here y = A + B and y′ = C are regarded as vectors in RS , where S is the set of
species. Also, the term −2k2A+D→Y c

2
AcD on the second line in (1.3) can be written

as −2ky→y′cy, where y = 2A + D, y′ = Y .
If we look for all appearances of k2A+D→Y c

2
AcD in (1.3), we notice that they

take place in equations corresponding to species A,D, Y , i.e., exactly the species that
appear in the complexes y, y′. Moreover, the coefficient of each species in the reaction
2A + D → Y is equal (up to sign) to the coefficient of the monomial k2A+D→Y c

2
AcD

in the equation corresponding to that species. The sign is minus for species in y and
plus for species in y′. Therefore the factor k2A+D→Y c

2
AcD contributes to the right side

of the (vector) ODE precisely as the term ky→y′cy(y′−y), where y = 2A+D, y′ = Y .
Then we get the following two definitions (see [14, 19]).
Definition 2.3. The species-formation-rate function (or simply the rate func-

tion) for a mass-action system (S ,C ,R, k) is the function r(·, k) : R̄S
+ → RS , defined

by

r(c, k) =
∑

y→y′∈R

ky→y′cy(y′ − y).

Definition 2.4. The system of differential equations associated to a mass-action
system (S ,C ,R, k) is given by

ċ = r(c, k).

We see here again that the reaction network (S ,C ,R) and the vector k uniquely
determine the system of differential equations associated to a mass-action system.

Definition 2.5. A positive equilibrium of a mass-action system (S ,C ,R, k) is
an element c ∈ RS

+ such that r(c, k) = 0.
Definition 2.6. We say that a reaction network (S ,C ,R) has the capacity for

multiple positive equilibria if there exist k ∈ RR
+ , a ∈ RS

+ , b ∈ RS
+ , a �= b, such that

r(a, k) = r(b, k) = 0.
To formulate the following definition recall that we have R = Rf ∪Ro∪Rt, where

Rf ∪ Ro is the set of flow reactions (Rf is the set of feed reactions, Ro is the set of
outflow reactions), and Rt is the set of true reactions.
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Definition 2.7. Given a chemical reaction network N = (S ,C ,R), its associ-
ated polynomial function pN (·, ·) : RS

+ × R
Rt∪Ro
+ → RS is

pN (c, k) =
∑

y→y′∈Rt∪Ro

ky→y′cy(y − y′).

Note that

r(c, k) = −pN (c, k) +
∑

y→y′∈Rf

ky→y′cy(y′ − y).

With Sf denoting the set of species in the feed stream, note also that∑
y→y′∈Rf

ky→y′cy(y′ − y) =
∑
s∈Sf

k0→ss.

The last equation results from the fact that Rf = {0 → s : s ∈ Sf} and, for y = 0,
cy = 1. Finally, note that the equilibrium equation r(c, k) = 0 is equivalent to

pN (c, k) =
∑
s∈Sf

k0→ss,(2.2)

and the sum on the right side of (2.2) is constant. Therefore, if the polynomial
function c → pN (c, k) is injective for every value of the parameter k ∈ R

Rt∪Ro
+ , then

there cannot exist multiple positive equilibria.
Definition 2.8. We say that a chemical reaction network N = (S ,C ,R) is

injective if the polynomial function c → pN (c, k) is injective for all k ∈ R
Rt∪Ro
+ .

Remark 2.9. Our consideration of CFSTRs suggests that, for the outflow re-
actions (i.e., those of the form s → 0), we should require the rate constants to be
identical for all s ∈ S . Recall that these rate constants were identified with g/V ,
which we set to 1. It would appear then that our requirement of injectivity of pN (·, k)
for all k ∈ R

Rt∪Ro
+ is stronger than it need be for the application we have in mind.

However, it is not hard to show that if pN (·, k) is injective for all k ∈ R
Rt∪Ro
+ sat-

isfying the restriction ks→0 = 1 for every s ∈ S , then pN (·, k) is injective for all
k ∈ R

Rt∪Ro
+ .

In fact, suppose that, for some k∗ ∈ R
Rt∪Ro
+ , there are distinct a∗ ∈ RS

+ , b∗ ∈ RS
+

such that pN (a∗, k∗) = pN (b∗, k∗). Now choose k#, a#, b# as follows:

a#
s = a∗sk

∗
s→0 ∀s ∈ S ,

b#s = b∗sk
∗
s→0 ∀s ∈ S ,

k#
y→y′ = k∗y→y′/

∏
s∈S

k∗s→0
ys ∀y → y′ ∈ Rt ∪ Ro.

Then k#
s→0 = 1 for all s ∈ S , and pN (a#, k#) = pN (b#, k#). This is to say that if

pN (·, k∗) is not injective for some unrestricted k∗, then there is a restricted k# such
that pN (·, k#) also fails to be injective.

3. Characterizations of the injectivity property. In this section we prove
some equivalent characterizations of the injectivity property that make it possible
to check whether a given reaction network is injective by using standard computer
algebra software.
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Recall that for each reaction network N = (S ,C ,R) we defined its associated
polynomial function pN (·, ·) : RS

+ × R
Rt∪Ro
+ → RS .

Theorem 3.1. A reaction network N is injective if and only if we have

det

(
∂pN
∂c

(c, k)

)
�= 0 ∀c ∈ RS

+ and ∀k ∈ R
Rt∪Ro
+ .(3.1)

Remark 3.1. Note that there is some similarity between this theorem and the
Jacobian conjecture2 over the field of real numbers, since we are concluding injectivity
from the nonsingularity of the Jacobian of a polynomial function. Of course, there
are also important differences, e.g., the fact that the domain of the function p(·, k) is
restricted to RS

+ , and (3.1) holds for all positive values of the parameter k.
Proof. We will show a chain of equivalences from the negation of (3.1) to the

noninjectivity of pN (·, k). The derivative of pN (·, k) at some point c ∈ RS
+ is a

linear transformation from RS to RS . According to [18], the result of applying the
derivative of pN (·, k) to an arbitrary vector γ ∈ RS can be written as(

∂pN
∂c

(c, k)

)
(γ) =

∑
y→y′∈Rt∪Ro

ky→y′cy(y ∗ γ)(y − y′),

where “∗” is a special scalar product in RS , defined by

v ∗ w =
∑
s∈S

(vsws/cs).

(Here we use the fact that all the components of c are strictly positive.) Note that to
say that (3.1) is not true is equivalent to(

∂pN
∂c

(c, k)

)
(γ) = 0 for some c ∈ RS

+ , k ∈ R
Rt∪Ro
+ , γ ∈ RS , γ �= 0,(3.2)

which is also equivalent to∑
y→y′∈Rt∪Ro

ky→y′cy(y ∗ γ)(y − y′) = 0 for some c ∈ RS
+ , k ∈ R

Rt∪Ro
+ and(3.3)

some γ ∈ RS , γ �= 0.

Using the change of variables ηy→y′ = ky→y′cy and δs = γs/cs we notice that condition
(3.3) is equivalent to∑

y→y′∈Rt∪Ro

ηy→y′(y · δ)(y − y′) = 0 for some η ∈ R
Rt∪Ro
+ and(3.4)

some δ ∈ RS , δ �= 0,

where “·” is the usual scalar product in RS . The condition (3.4) in turn is equivalent
to ∑

y→y′∈Rt∪Ro

Ky→y′(ey·δ − 1)(y − y′) = 0 for some K ∈ R
Rt∪Ro
+ and(3.5)

some δ ∈ RS , δ �= 0,

2The Jacobian conjecture over the field of real numbers says that if a polynomial function
f : Rm → Rm has nonsingular Jacobian everywhere, then f is injective. This conjecture was
proved to be false in [28].
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since the signs of y · δ and ey·δ − 1 are the same, regardless of the value of y · δ. Then
the condition (3.5) is equivalent to

∑
y→y′∈Rt∪Ro

Ky→y′

(
by

ay
− 1

)
(y − y′) = 0 for some K ∈ R

Rt∪Ro
+ and(3.6)

some a �= b ∈ RS
+

via another change of variables, such that bs
as

= eδs for all s ∈ S . Note that a �= b if
and only if δ �= 0. Condition (3.6) is equivalent to∑

y→y′∈Rt∪Ro

κy→y′(by − ay)(y − y′) = 0 for some κ ∈ R
Rt∪Ro
+ and(3.7)

some a �= b ∈ RS
+ ,

where κy→y′ =
Ky→y′

ay . Now, note that this is equivalent to saying that for some value

of κ ∈ R
Rt∪Ro
+ the function pN (·, κ) is not injective on RS

+ . Therefore, we showed
that the reaction network N is injective if and only if (3.1) is true.

It is perhaps worthwhile to consider a small example, which is easily worked by
hand. Consider network (3.8):

A + B � C, A → 2B.(3.8)

The system of CFSTR differential equations associated to (3.8) is

ċA = cfA − cA − kA+B→CcAcB + kC→A+BcC − kA→2BcA,(3.9)

ċB = cfB − cB − kA+B→CcAcB + kC→A+BcC + 2kA→2BcA,

ċC = cfC − cC + kA+B→CcAcB − kC→A+BcC ,

where we supposed that g/V = 1. If we now again look for equilibria and rearrange
terms, we get

cfA = cA + kA+B→CcAcB − kC→A+BcC + kA→2BcA,(3.10)

cfB = cB + kA+B→CcAcB − kC→A+BcC − 2kA→2BcA,

cfC = cC − kA+B→CcAcB + kC→A+BcC .

Therefore the associated polynomial function for the reaction network (3.8) is

p(c, k) = (cA + kA+B→CcAcB − kC→A+BcC + kA→2BcA,(3.11)

cB + kA+B→CcAcB − kC→A+BcC − 2kA→2BcA,

cC − kA+B→CcAcB + kC→A+BcC).

Then, for the reaction network (3.8), we have

det

(
∂p

∂c
(c, k)

)
(3.12)

= det

⎡
⎣ 1 + kA+B→CcB + kA→2B kA+B→CcA −kC→A+B

kA+B→CcB − 2kA→2B 1 + kA+B→CcA −kC→A+B

−kA+B→CcB −kA+B→CcA 1 + kC→A+B

⎤
⎦

= 1 + kC→A+B + kA+B→CcA + kA+B→CcB

+ 3kA→2BkA+B→CcA + kA→2BkC→A+B .
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Notice that in (3.12) all coefficients3 of the monomials in the expansion of the deter-
minant are 1, except the coefficient of kA→2BkA+B→CcA, which is 3. In particular,
they are all positive numbers. Therefore, in this case, det(∂f∂c (c, k)) > 0 for all c ∈ Rn

+

and for all k ∈ Rm
+ , so the reaction network (3.8) is injective as well.

Compare this to det(∂p∂c (c, k)) for the polynomial function associated to the reac-
tion network (vii) in Table 1.1, which is

det
(
∂p

∂c
(c, k)

)
= 1 + k2A+B→3Ac

2
A − 2k2A+B→3AcAcB + 3k3A→2A+Bc

2
A.(3.13)

The reaction network (vii) in Table 1.1 does admit multiple positive equilibria, and,
as we have seen above, the determinant of the Jacobian of its associated polynomial
function has a monomial with a negative coefficient.

Now we are in a position to review and elaborate further on what was said in
Remark 1.2. It is worth repeating here that det(∂p∂c (c, k)) can be calculated using cur-
rently available computer algebra software and that the result of such a computation
will sometimes have hundreds or even thousands of terms, each a monomial in the
(positive) species concentrations and the (positive) rate constants. It is remarkable
that, more often than not, all such monomials will have positive coefficients, so that
det(∂p∂c (c, k)) is positive for all positive c and all positive k (recall Table 1.2). Indeed,
for large networks the positivity of the monomial coefficients can also be checked with
computer algebra software. In this way, Theorem 3.1 provides a (surprisingly robust)
way to ensure that a given network is injective and, therefore, incapable of multiple
positive equilibria.

In fact, Theorem 3.1 provides the information that networks (ii) and (iv) in Table
1.1 cannot give rise to multiple positive equilibria. On the other hand, Theorem 3.1 by
itself stands silent on the capacity for multiple positive equilibria of the very similar
networks (i) and (iii). In section 4 we will discuss extensions of Theorem 3.1 that do
give information about networks (i) and (iii).

For polynomials in general, it is not necessary that each coefficient be positive in
order for the polynomial to take strictly positive values for all positive values of the
variables. (The polynomial x2 − xy + y2 is, of course, an elementary counterexam-
ple.) On the other hand, we will show that, for the class of polynomials considered
here, positivity of the numerical coefficients is also necessary if positive values of the
polynomial are to result for all positive values of the variables (i.e., the species concen-
trations and rate constants). In turn, this will imply that positivity of all (nonzero)
coefficients is not only sufficient but also necessary for a network’s injectivity (see
Theorem 3.3).

In the following theorem we draw a relationship between the underlying network
of chemical reactions and the numerical coefficients in the expansion of det(∂p∂c (c, k)).
This relationship will have some importance not only here but also in a subsequent
paper, in which we describe large classes of networks for which all (nonzero) coefficients
are positive.

Theorem 3.2. Consider some reaction network N with n species. Then for
each coefficient in the expansion of det(∂pN

∂c (c, k)) there is a set of n reactions {y1 →
y′1, . . . , yn → y′n} (taken from the true and outflow reactions) such that the coefficient
is equal to

det([y1, . . . , yn]) det([y1 − y′1, . . . , yn − y′n]).(3.14)

3We are looking at coefficients of monomials with respect to the coordinates of c and k.
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Moreover, for each choice of n reactions such that (3.14) is not zero, there is a corre-
sponding coefficient in the expansion of det(∂pN

∂c (c, k)).
Proof. Recall that, with the notation from the proof of Theorem 3.1, we have(

∂pN
∂c

(c, k)

)
(γ) =

∑
y→y′∈Rt∪Ro

ηy→y′(y ∗ γ)(y − y′),

where ηy→y′ = ky→y′cy. With {e1, . . . , en} denoting the canonical basis of RS , we
have

det

(
∂pN
∂c

(c, k)

)

= det

⎡
⎣ ∑
y→y′∈Rt∪Ro

ηy→y′(y ∗ e1)(y − y′), . . . ,
∑

y→y′∈Rt∪Ro

ηy→y′(y ∗ en)(y − y′)

⎤
⎦ ,

and, according to the definition of “∗”, it follows that(
n∏

i=1

ci

)
det

(
∂pN
∂c

(c, k)

)

= det

⎡
⎣ ∑
y→y′∈Rt∪Ro

ηy→y′(y · e1)(y − y′), . . . ,
∑

y→y′∈Rt∪Ro

ηy→y′(y · en)(y − y′)

⎤
⎦ .

Therefore the coefficients in the expansion of det(∂pN
∂c (c, k)) are exactly the coefficients

in the expansion of

det

⎡
⎣ ∑
y→y′∈Rt∪Ro

ηy→y′(y · e1)(y − y′), . . . ,
∑

y→y′∈Rt∪Ro

ηy→y′(y · en)(y − y′)

⎤
⎦ .

Note now that each term in the expansion of the determinant above is a scalar multiple
of a product of the form

∏n
i=1 ηyi→y′

i
, where y1 → y′1, . . . , yn → y′n are some reactions

in Rt ∪ Ro.
Let us look at some fixed set {y1 → y′1, . . . , yn → y′n} ⊂ Rt ∪ Ro. With Sn

denoting the set of all permutations of {1, . . . , n}, the coefficient of
∏n

i=1 ηyi→y′
i

in
the expansion of the determinant above is∑

σ∈Sn

det[(yσ(1) · e1)(yσ(1) − y′σ(1)), . . . , (yσ(n) · en)(yσ(n) − y′σ(n))]

=
∑
σ∈Sn

det[y1
σ(1)(yσ(1) − y′σ(1)), . . . , y

n
σ(n)(yσ(n) − y′σ(n))]

=
∑
σ∈Sn

y1
σ(1)y

2
σ(2) . . . y

n
σ(n) det[(yσ(1) − y′σ(1)), . . . , (yσ(n) − y′σ(n))]

=
∑
σ∈Sn

y1
σ(1)y

2
σ(2) . . . y

n
σ(n)sgn(σ) det[(y1 − y′1), . . . , (yn − y′n)]

=

( ∑
σ∈Sn

y1
σ(1)y

2
σ(2) . . . y

n
σ(n)sgn(σ)

)
det[(y1 − y′1), . . . , (yn − y′n)]

= det[y1, . . . , yn] det[(y1 − y′1), . . . , (yn − y′n)].
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Therefore all coefficients in the expansion of det(∂pN
∂c (c, k)) are of the form

det[y1, . . . , yn] det[y1 − y′1, . . . , yn − y′n]

for some set {y1 → y′1, . . . , yn → y′n} ⊂ Rt ∪ Ro.
Remark 3.2. In a future paper we will use the result of Theorem 3.2 to explain

why, for large classes of reaction networks, all coefficients of the monomials in the
expansion of det(∂pN

∂c (c, k)) are nonnegative (i.e., our empirical observation).

Note that Theorem 3.2 gives us a way of computing the coefficients of det(∂pN
∂c (c, k))

one by one. In particular, it suggests a simple parallel computation algorithm for
checking injectivity.

We prove now that the injectivity of a reaction network N is completely charac-
terized by the signs of the coefficients of det(∂pN

∂c (c, k)).
Theorem 3.3. A reaction network N is injective if and only if all the coefficients

in the expansion of det(∂pN
∂c (c, k)) are nonnegative.

Proof. Suppose that all the coefficients in the expansion of det(∂pN
∂c (c, k)) are

nonnegative. We want to show that N is injective.
Consider the function f : RS

+ × R
Rt∪Ro
+ → R defined by

f(c, k) =

(∏
s∈S

cs

)
det

(
∂pN
∂c

(c, k)

)
.

Note that f vanishes if and only if det(∂pN
∂c (c, k)) vanishes. As in the proof of Theorem

3.2, the terms in the expansion of f(c, k) are of the form

det[y1, . . . , yn] det[y1 − y′1, . . . , yn − y′n]

(
n∏

i=1

ηyi→y′
i

)
,(3.15)

where ηy→y′ = ky→y′cy, and with each term corresponding to some choice of n reac-
tions from the set Rt ∪Ro. Note that

∏
s∈S cs and

∏n
i=1 ηyi→y′

i
are strictly positive,

since c and k are regarded to have strictly positive coordinates. Then, to show injectiv-
ity, it is enough to show that there exists some set {y1 → y′1, . . . , yn → y′n} ⊂ Rt∪Ro

such that det[y1, . . . , yn] det[y1 − y′1, . . . , yn − y′n] �= 0. But if we just choose the set
{y1 → y′1, . . . , yn → y′n} to be Ro, we have

det[y1, . . . , yn] det[y1 − y′1, . . . , yn − y′n] = 1,

because, up to a permutation, yi = ei and y′i = 0 for i = 1, . . . , n. Therefore (3.1) is
true, and, according to Theorem 3.1, N is injective.

Suppose now that N is injective. We want to show that all the coefficients in
the expansion of det(∂pN

∂c (c, k)) are nonnegative. Of course, the coefficients in the

expansion of det(∂pN
∂c (c, k)) are the same as the coefficients in the expansion of f(c, k).

We will show that all the coefficients in the expansion of f(c, k) are nonnegative. Note
that f(c, k) equals a homogeneous polynomial of degree n of the coordinates of η. Note
also that, since we can write the terms in the expansion of f(c, k) as in (3.15), it follows
that each monomial in this expansion contains a product

∏n
i=1 ηyi→y′

i
for some set of

n distinct reactions {y1 → y′1, . . . , yn → y′n}, and there is no other monomial with the
same set of n reactions. Suppose now that there is some monomial with a negative
coefficient in the expansion of f(c, k). Then, by choosing some η ∈ R

Rt∪Ro
+ such

that the coordinates of η that appear in the negative monomial are very large, and
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all other coordinates of η are very small (i.e., very close to zero), we conclude that
f takes a negative value somewhere in its domain. Similarly, by using a monomial
with a positive coefficient (for example, the monomial with the coefficient “1” that
we mentioned above) we conclude that f takes a positive value somewhere in its
domain. Since the domain of f is connected, it follows that f is zero somewhere
in its domain. According to Theorem 3.1, this contradicts the hypothesis that N is
injective. Therefore there cannot exist any monomial with a negative coefficient in the
expansion of f(c, k), so there cannot exist any monomial with a negative coefficient
in the expansion of det(∂pN

∂c (c, k)).

Remark 3.3. Theorem 3.3 allows us to show that, although injectivity is sufficient
to conclude that a reaction network does not admit multiple positive equilibria, it is
not a necessary condition. One such example is the reaction network (vi) in Table 1.1.
Indeed, that reaction network does not admit multiple positive equilibria but has

det

(
∂p

∂c
(c, k)

)
= 1 + kA+B→2AcA − kA+B→2AcB + 2k2A→A+BcA,

which does have one negative coefficient, so the network is not injective.

Remark 3.4. Theorems 3.2 and 3.3 imply that, given a reaction network with
n species and m reactions, it is only the structure of its subnetworks of exactly n
reactions (some of which could be outflow reactions) that dictates whether the reaction
network is injective or not. Also, given some reaction network that does admit multiple
positive equilibria, Theorems 3.2 and 3.3 allow us to pinpoint the subnetwork or
subnetworks that create the capacity for multiple positive equilibria as exactly the
ones for which the product of determinants det[y1, . . . , yn] det[y1 − y′1, . . . , yn − y′n]
is negative. Or, consider some finite family of reaction networks, each containing
exactly n species. According to Theorem 3.2, we can enumerate all possible “bad”
subnetworks in that family (i.e., subnetworks that have exactly n reactions, and for
which the product of determinants above is negative). Then, in that family, only
the reaction networks that contain a copy of some “bad” subnetwork can have the
capacity for multiple positive equilibria.

Remark 3.5. Up to now we have considered only reaction networks where all
species are in the outflow. If N is a reaction network such that not all species are in
the outflow, but there are n reactions {y1 → y′1, . . . , yn → y′n} in N (some of which
could be outflow reactions) such that det[y1, . . . , yn] det[y1−y′1, . . . , yn−y′n] > 0, then
Theorem 3.3 remains valid.

4. Sufficient conditions for existence of multiple positive equilibria. Re-
call that, as we mentioned in section 1, the injectivity property is not a necessary
condition for the absence of multiple positive equilibria (see also Remark 3.3). In
other words, if a network N is not injective, this does not imply that N has the
capacity for multiple positive equilibria. Theorems 4.1 and 4.2 below say that if N is
not injective and satisfies an additional condition, then N does have the capacity for
multiple positive equilibria. We begin with a lemma.

Lemma 4.1. Let N = (S ,C ,R) be some reaction network (augmented to include
the flow reactions). Suppose that there is some c ∈ RS

+ and some k ∈ R
Rt∪Ro
+ such

that

det

(
∂pN
∂c

(c, k)

)
= 0
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and ∑
y→y′∈Rt∪Ro

ky→y′cy(y − y′) ∈ RS
+ .

Then N does have the capacity for multiple positive equilibria.
Proof. The reaction network N admits multiple positive equilibria if and only if

there is some κ ∈ R
Rt∪Ro
+ and some a �= b ∈ RS

+ such that∑
y→y′∈Rt∪Ro

κy→y′ay(y − y′) =
∑

y→y′∈Rt∪Ro

κy→y′by(y − y′) = cf

for some cf ∈ R̄S
+ (recall Remark 1.1). Consider η ∈ R

Rt∪Ro
+ such that ηy→y′ =

ky→y′cy for each reaction y → y′ ∈ Rt ∪ Ro, where c and k are as in the theorem
statement. Then, as in the proof of Theorem 3.1, there exists some δ ∈ RS , δ �= 0,
such that ∑

y→y′∈Rt∪Ro

ηy→y′(y · δ)(y − y′) = 0.

Consider a ∈ RS
+ given by as = 1 for every s ∈ S , and consider b ∈ RS

+ given

by bs = eδs for every s ∈ S . Note that δ �= 0 implies a �= b. Denote by κ ∈ R
Rt∪Ro
+

the vector given by κy→y′ = y·δ
ey·δ−1

ηy→y′ for all y → y′ ∈ Rt ∪ Ro with y · δ �= 0, and
κy→y′ = ηy→y′ for all y → y′ ∈ Rt ∪ Ro with y · δ = 0.

Then we have∑
y→y′∈Rt∪Ro

κy→y′(by − ay)(y − y′) =
∑

y→y′∈Rt∪Ro

ηy→y′(y · δ)(y − y′) = 0.

Note that, without loss of generality, we can suppose that the norm of δ is very
small. On the other hand we have

lim
δ→0

⎛
⎝ ∑

y→y′∈Rt∪Ro

κy→y′ay(y − y′)

⎞
⎠

= lim
δ→0

⎛
⎝ ∑

y→y′∈Rt∪Ro

κy→y′(y − y′)

⎞
⎠

=
∑

y→y′∈Rt∪Ro

ηy→y′(y − y′)

=
∑

y→y′∈Rt∪Ro

ky→y′cy(y − y′) ∈ RS
+ .

Then, for small enough δ, it follows that
∑

y→y′∈Rt∪Ro
κy→y′ay(y − y′) ∈ RS

+ .
Theorem 4.1. Consider some reaction network N = (S ,C ,R) (augmented to

include the flow reactions). For η ∈ R
Rt∪Ro
+ let Tη : RS → RS be defined by

Tη(δ) =
∑

y→y′∈Rt∪Ro

ηy→y′(y · δ)(y − y′),(4.1)

and let

f(η) = det(Tη).(4.2)
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Suppose that for some η∗ ∈ R
Rt∪Ro
+ we have

f(η∗) < 0,(4.3) ∑
y→y′∈Rt∪Ro

η∗y→y′(y − y′) ∈ RS
+ .(4.4)

Then N has the capacity for multiple positive equilibria.

Proof. Consider some η# ∈ R
Rt∪Ro
+ such that for all y → y′ ∈ Ro the num-

ber η#
y→y′ is very large, and for all y → y′ ∈ Rt the number η#

y→y′ is very small.

Then condition (4.4) holds for η#, and, for reasons similar to those in the proof of
Theorem 3.3, f(η#) > 0.

Suppose now that there is some η∗ ∈ R
Rt∪Ro
+ such that both (4.3) and (4.4)

are true. Because the set of vectors η that satisfy (4.4) is convex, and because the
function f is continuous, it follows that on the line segment that connects η# and η∗

there will be some η̃ such that condition (4.4) holds for η̃, and f(η̃) = 0.

Now, for some fixed c̃ ∈ RS
+ , choose k̃ ∈ R

Rt∪Ro
+ such that η̃y→y′ = k̃y→y′ c̃y for

all y → y′ ∈ Rt ∪Ro. According to the chain of equivalences in the proof of Theorem
3.1 (from (3.1) to (3.4)) we have

det

(
∂pN
∂c

(c̃, k̃)

)
= 0.

Also, note that

∑
y→y′∈Rt∪Ro

k̃y→y′ c̃y(y − y′) ∈ RS
+ .

Then the hypothesis of Lemma 4.1 is satisfied, so its conclusion is also true.

Remark 4.1. Note that if some vector η∗ ∈ R
Rt∪Ro
+ satisfies (4.3) and (4.4), then

λη∗ also satisfies (4.3) and (4.4) for any positive number λ. Therefore, if there is some
η∗ that satisfies (4.3) and (4.4) and has all coordinates positive, then there is some
η∗∗ that satisfies (4.3) and (4.4) and has all coordinates positive and of total sum 1.
Then Theorem 4.1 can be implemented by considering the polynomial optimization
problem (4.5)–(4.8), with linear constraints on a compact domain:

minimizef(η)(4.5)

subject to the constraints

ηy→y′ ≥ ε ∀y → y′ ∈ Rt ∪ Ro,(4.6) ∑
y→y′∈Rt∪Ro

ηy→y′ = 1,(4.7)

∑
y→y′∈Rt∪Ro

ηy→y′(ys − y′s) ≥ ε ∀s ∈ S ,(4.8)

where ε is some very small positive number. Note that, from the point of view of
applying Theorem 4.1, it is enough to find some vector η∗ satisfying (4.6)–(4.8) and
such that f(η∗) < 0 (i.e., we don’t need to find the global minimum, as we are just
interested in knowing if the minimum is negative).
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Theorem 4.2. Consider some reaction network N = (S ,C ,R) (augmented
to include the flow reactions). Suppose that there is a set of n reactions {y1 →
y′1, . . . , yn → y′n} (where n is the number of species) such that

det(y1, . . . , yn) det(y1 − y′1, . . . , yn − y′n) < 0(4.9)

and

n∑
i=1

ηi(yi − y′i) ∈ RS
+ for some positive numbers η1, . . . , ηn.(4.10)

Then N does have the capacity for multiple positive equilibria.

Proof. Consider some η∗ ∈ R
Rt∪Ro
+ such that for all y → y′ ∈ {y1 → y′1, . . . , yn →

y′n} the number η∗y→y′ is very large, and for all other y → y′ the number η∗y→y′ is very
small. Then, as in the proof of Theorem 3.3, it follows that f(η∗) < 0, because in
the expansion of det(Tη∗) the negative term corresponding to the subnetwork {y1 →
y′1, . . . , yn → y′n} dominates all other terms.

Suppose in particular that η∗yi→y′
i

= ληi for some (very large) number λ. Then

(4.4) holds for this η∗, since
∑n

i=1 ηi(yi − y′i) ∈ RS
+ , and

∑
y→y′∈Rt∪Ro

η∗y→y′(y − y′)

is very close to λ
∑n

i=1 ηi(yi − y′i). Therefore we can apply Theorem 4.1.

Remark 4.2. Note that if some numbers η1, . . . , ηn satisfy
∑n

i=1 ηi(yi−y′i) ∈ RS
+ ,

then the numbers λη1, . . . , ληn satisfy
∑n

i=1 ληi(yi−y′i) ∈ RS
+ for any positive number

λ. Then, when implementing Theorem 4.2, we can replace condition (4.10) with the
systems of inequalities

ηi ≥ 1 for i = 1, . . . , n,(4.11)
n∑

i=1

ηi(yis − y′is) ≥ 1 ∀s ∈ S .(4.12)

Remark 4.3. For networks (i), (iii), (v) in Table 1.1 the less powerful but easily
applied Theorem 4.2 already affirms the capacity for multiple positive equilibria. For
network (vii) Theorem 4.1 affirms the capacity for multiple positive equilibria, while
Theorem 4.2 stands silent.

Remark 4.4. Suppose that we are given a reaction network N having n species,
and we would like to know if N has the capacity for multiple positive equilibria (in
the isothermal homogeneous CFSTR context). An algorithm that investigates this
problem proceeds as follows: First, check4 if there is any subnetwork of n reactions
such that (4.9) holds. If (4.9) is false for all such subnetworks, then, according to
Theorems 3.2 and 3.3, N does not have the capacity for multiple positive equilibria.
If one or more subnetworks of N satisfy (4.9), then check5 if Theorem 4.2 applies for
any such subnetwork. If Theorem 4.2 remains indecisive, then try to apply the more
computationally intensive method given by Theorem 4.1 and described in Remark
4.1.

4For example, this can be done by computing det(
∂pN (c,k)

∂c
) in order to recover the coefficients

for the various subnetworks (recall Theorem 3.2).
5This will be very easy, since we only have to check the feasibility of the system of linear inequal-

ities (4.11) and (4.12).
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5. Concluding remarks. We believe that the theorems presented here have
broad utility in deciding the capacity of a complex mass-action system to engender
multiple positive steady states in a homogeneous isothermal CFSTR context. That
these techniques should be robust relies heavily on our assertion that, despite the

presence of hundreds or even thousands of terms in the expansion of det(∂pN (c,k)
∂c ) for

a complex reaction network, it will typically be the case that all (nonzero) coefficients
are positive. (When there are negative coefficients for a given network, they will
typically be very few in number.) Although we have given examples to support this
assertion, we have not, in this paper, tried to explain why positivity of the coefficients
is to be expected broadly. Nor have we tried to identify those aspects of reaction
network structure that give rise to negative coefficients. We intend to take up these
questions in a future paper. There we will show how certain representations of reaction
networks in graph-theoretical terms give surprisingly rapid and incisive information.

Acknowledgment. The authors are grateful for support from the United States
National Science Foundation.
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Abstract. Thanks to the use of the Cagniard–De Hoop method, we derive an analytic solution
in the time domain for the half-space problem associated with the wave equation with Engquist–
Majda higher order boundary conditions. This permits us to derive new convergence results when
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1. Introduction. The design of accurate absorbing boundary conditions (ABCs)
for the numerical calculation of waves in the time domain is already an old subject
since the major work of Engquist and Majda [11], [12] in the late 1970s. Their main
contribution was the construction and analysis of a hierarchy of local boundary condi-
tions for the wave equation. Let us concentrate on the two-dimensional (2D) acoustic
wave equation:

1

c2
∂2u

∂t2
− Δu = 0, x = (x1, x2) ∈ R2, t > 0.(1.1)

Assuming that the data (initial data) of the problem are supported in the upper
half-space R2

+ = {x2 > 0}, it is natural to try to reduce the effective numerical
computations to this half-space by imposing adequate absorbing boundary conditions
on the artificial boundary Γ = ∂R2

+. In [11], Engquist and Majda proposed the
following condition (the integer N is a parameter meant to be large):

BNu = 0 on Γ,(1.2)

where the operators

BN = BN

(
∂

∂t
,

∂

∂x1
,

∂

∂x2

)
, N ≥ 0,

are a family of homogeneous differential operators defined inductively by⎧⎪⎪⎨
⎪⎪⎩
B0 = 2I, B1 =

∂

∂t
− c

∂

∂x2
,

BN+1 =
∂

∂t
BN − c2

4

∂2

∂x2
1

BN−1.
(1.3)
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Note that BN can be rewritten in the form

BN = SN−1

(
∂

∂t
,

∂

∂x1

)
∂

∂x2
−QN

(
∂

∂t
,

∂

∂x1

)
,

where QN and SN−1 are homogeneous polynomials of two variables of respective
degrees N and N − 1. In particular, BN remains of first order with respect to x2; the
condition (1.2) can be seen as a Dirichlet-to-Neumann (or impedance) type boundary
condition since it can be formally rewritten as

∂u

∂x2
−

QN ( ∂
∂t ,

∂
∂x1

)

SN−1(
∂
∂t ,

∂
∂x1

)
u = 0.(1.4)

Remark 1.1. For smooth solutions (up to the boundary Γ) of the wave equation,
the boundary condition (1.2) can be rewritten in terms of t and x2 derivatives only.
Indeed, BN is obviously even with respect to the x1 variable, and, thanks to the wave
equation, the second order derivative with respect to x1 can be replaced by t and x2

derivatives:

∂2

∂x2
1

−→ 1

c2
∂2

∂t2
− ∂2

∂x2
2

.

As a consequence, one can show that [21]

BNu = 0 ⇐⇒ B̃Nu = 0, B̃N =

(
∂

∂t
− c

∂

∂x2

)N

.(1.5)

This remark will be useful in section 3.
Let us recall that the initial boundary value problems (IBVPs) for linear hyper-

bolic systems (1.2), or (1.4) or (1.5), are constructed as an approximation of an exact
or transparent boundary condition

Bu = 0, B =
∂

∂x2
− L,(1.6)

where L is a pseudodifferential operator in (x1, t) whose symbol is known explicitly.
More precisely, if one uses the Laplace–Fourier transform in the (t, x1) plane (see (3.3)
and (3.2)),

ϕ(x1, t) → ϕ̃(k, s),

one has the formula

L̃ϕ(k, s) =

(
k2 +

s2

c2

) 1
2

ϕ(k, s), Re

(
k2 +

s2

c2

) 1
2

≥ 0.(1.7)

This comes from the fact that if u is a solution of the wave equation in the lower half-
space R2

− = {x2 < 0} with zero initial data, its partial Laplace–Fourier transform in
t and x1, ũ(k, x2, s), satisfies

ũ(k, x2, s) = ũ(k, 0, s)e(k2+ s2

c2
)
1
2 x2 , x2 ≤ 0,
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which yields in particular

dũ

dx2
(k, 0, s) −

(
k2 +

s2

c2

) 1
2

ũ(k, 0, s) = 0.

The presence of the square root in the symbol of L makes the operator L, and con-
sequently the boundary condition (1.6), nonlocal in space and time, which is a priori
very unpleasant from the numerical point of view. The approximate condition simply
comes from a rational approximation of the symbol of L in such a way that the re-
sulting boundary condition can be expressed in terms of differential operators, which
is much more tractable from the numerical point of view. If one writes

(
k2 +

s2

c2

) 1
2

=
s

c

(
1 +

c2k2

s2

) 1
2

,

the problem is reduced to the rational approximation of the function of one variable:

f(z) = (1 + z2)
1
2 .

Noticing that f(z) is a solution of the fixed point equation,

f(z) = 1 +
z2

1 + f(z)
,(1.8)

one obtains a rational approximation (or continuous fraction expansion) of f(z) with
the following fixed point algorithm:

fn+1(z) = 1 +
z2

1 + fn(z)
, f1(z) = 1.(1.9)

The condition (1.2) is obtained by replacing in (1.6) L by LN , whose symbol is
s
cfN ( cks ). It is then relatively easy to deduce the induction formula (1.3) from (1.9).

Remark 1.2. It is easy to show that the sequence fn(z) converges, for large n,
to f(z) only if |z| < 1. Moreover, the convergence is uniform and exponential in any
compact of the unit circle. For |z| > 1, fn(z) converges to −f(z), which is the other
solution of (1.8). However, it is not a problem for the application to ABCs, as will be
shown in this paper.

It is also well known that (1.9) provides the sequence of {n, n − 1} (for even n)
and {n− 1, n− 1} (for odd n) Padé approximants [3] of f(z) at the neighborhood of
the origin:

f2(z) = 1 +
z2

2
, f3(z) = 1 +

2z2

4 + z2
, . . . ;

and in particular one has

fn(z) − f(z) = O((z2)N ), z → 0.(1.10)

That is why the boundary condition (1.2) is known as the Engquist–Majda condition
of order 2m. Equation (1.10) shows that the rational approximation of the symbol of L
given by (1.9) is better for the small values of ck/s, which has a physical interpretation
(see below).

During recent years, abundant research has been devoted to various improvements
(including in particular “better” rational approximations) and extensions (including in
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particular the application to other wave equations) of the Engquist–Majda conditions.
It is not possible to give here an exhaustive bibliography, and we will refer the reader
to recent review papers on the subject by Hagström [18], [19] and Givoli [13]. In the
last decade, alternative solutions have been progressively developed and, especially,
researchers have tried to promote again the use of exact nonlocal boundary either by
using specific geometries for the absorbing boundaries, as in the works by Grote and
Keller [14], [15], or by exploiting the recent progress in rapid algorithms (multipoles)
and rational approximation, as in the work of Alpert, Greengard, and Hagström [2],
[1]. Approximately during the same period, the introduction by Bérenger of the
perfectly matched layers (PMLs) technique [6], [5] partly revolutionized the subject.
The philosophy here is to replace the absorbing boundary with an absorbing layer (or
sponge layer) which is such that any wave propagating in the computational domain
is transmitted to the absorbing layer without being reflected. This method quickly
attracted many researchers in different fields of application, in particular because of
its good practical performances and its easy implementation.

All these methods (local higher order ABCs, nonlocal ABCs, and PMLs) have
been successfully introduced in a number of different computational codes. Of course,
for anybody who wants to use such codes, the natural question is, Which is the best
method for the absorption of waves? Our feeling is that there is no universal answer
to such a question and that a response should include some criteria: nature of the
problem to be addressed, accuracy, speed of calculation, ease of implementation, long
time behavior, etc. However, even with given criteria, the answer would be delicate, in
particular because no complete and fair comparison has been done between the three
classes of methods. The first reason, which is easy to understand, is that there is
probably nobody in the world who has implemented the three methods with the same
amount of care. The second reason is a lack of analysis, which is hard in particular if
one is interested in getting convincing error estimates. The objective of the present
paper is to fill partially this lack in the theory in the case of local ABCs.

Of course, there are a lot of available theoretical results about higher order ABCs.
The first question that was raised by Engquist and Majda in their original papers was
that of the well-posedness of the IBVP “wave equation—ABC.” This is not a trivial
question since it is known that polynomial approximations of degree greater than
2 of the function f(z) (as, for instance, the successive Taylor approximations of f
around 0) give rise to strongly ill-posed problems. However, thanks to the well-known
Kreiss theory (the so-called normal mode analysis [26], [22]), the stability theory of
higher order ABCs is more or less completely understood. In particular, necessary
and sufficient conditions were given in [27] about the rational approximations of f(z)
in order to ensure the strong well-posedness of the corresponding IBVP (of course,
the approximations fn given by (1.9) fulfill these conditions, as already observed
in [12]) and energy estimates (giving rise to stability results, i.e., a priori estimates
independent of N) were obtained in [8].

Concerning the accuracy of ABCs, the simplest analysis consists in analyzing
the reflection of plane waves, which amounts to studying particular solutions of the
following form (k ∈ R and θ ∈ [−π

2 ,
π
2 ] are parameters, K is the wave number, while

θ represents the angle of incidence of the incident plane wave):

uθ(x, t) = exp ik(x1 sin θ − x2 cos θ − ct) + R exp ik(x1 sin θ + x2 cos θ − ct),
(1.11)

where
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Fig. 1. The reflection coefficient.

(i) exp ik(x1 sin θ − x2 cos θ − ct) is the incident wave,
(ii) exp ik(x1 sin θ + x2 cos θ − ct) is the reflected wave, R being the reflection

coefficient.

By construction, (1.11) is a solution of the wave equation (1.1). It remains to deter-
mine R in order to satisfy the boundary condition (1.2). The computations show that
R depends only on the angle of incidence θ:

R = RN (θ) ≡ (fN − f)(sin θ)

(fN + f)(sin θ)
= (−1)N

(
1 − cos θ

1 + cos θ

)N

.(1.12)

In particular one sees that for any θ ∈ ]−π
2 ,

π
2 [, RN (θ) tends (exponentially fast) to

0 when N → +∞ while |RN (±π
2 )| = 1 (see also Figure 1). There are much fewer

results about convergence and error estimates. In fact, there was no real progress
since the initial result of Engquist and Majda, which we are recalling now. They were
addressing the following 2D model problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Find v : R2
− × R 
→ R such that

1

c2
∂2v

∂t2
− Δv = 0 in R2

− × R+,

v(x1, 0, t) = g(x1, t) on x2 = 0,

v(x, t) = 0 for t < 0.

(1.13)

One wishes to get a good approximation of v in a domain Ωb = {x/− b < x2 < 0} for
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given b > 0 by putting an ABC on the line x2 = −a, with a > b:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find vN : Ωa × R 
→ R such that

1

c2
∂2vN

∂t2
− ΔvN = 0 in Ωa × R+,

vN (x1, 0, t) = g(x1, t) on x2 = 0,

BNvN = 0 on x2 = −a,

vN (x, t) = 0 for t < 0.

(1.14)

In (1.14) there are two important parameters: the order N of the boundary condition
and the distance a from the source g to the interface. One assumes that the function
g is square integrable in both space and time:∫ +∞

0

∫
R

|g(x1, t)|2 dx1dt < +∞.(1.15)

Theorem 1.3 (see [12]). For any ε > 0 and any arbitrarily large integer M ,
there exist N0 = N0(ε,M) and a0 = a0(ε,M) such that, for any N ≥ N0 and a ≥ a0,∫ T

0

∫
Ωb

|(v − vN )(x, t)|2 dx dt < ε ∀T ≤ Ma.(1.16)

(i) This result is only a convergence result and does not provide an error esti-
mate. Thus it is not a guide for choosing in practice N and a.

(ii) The fact that the result is valid for any time interval of the form [0,Ma]
indicates that the result takes into account an arbitrary large number of reflections
on the absorbing boundary.

(iii) What is not satisfactory with Theorem 1.3 is the fact that the estimate (1.16)
requires a to be sufficiently large. In particular, this does not provide a convergence
result when N → +∞ for fixed a.

(iv) Looking at the proof of the theorem enlightens the need for a sufficiently
large. It is not our purpose to reproduce here the proof, but it seems useful to
emphasize some points. The idea is to use the Fourier transform in space and time:

v(x1, x2, t) → ṽ(k, x2, ω) = ṽ(k, x2, iω).

One can get an explicit solution for both ṽ and ṽN . In particular, we have∣∣∣∣∣∣∣∣∣

ṽ(k, x2, ω) = g̃(k, ω) exp(k2 − ω2/c2)
1
2 · x2,

(k2 − ω2/c2)
1
2 =

⎧⎨
⎩
√
k2 − ω2/c2 if k2 ≥ ω2/c2,

i
√
ω2/c2 − k2 if k2 ≤ ω2/c2.

In particular,
(i) if k2 < ω2/c2, the function x2 → ṽ(k, x2, ω) is oscillating: this is the region

of propagative modes;
(ii) if k2 > ω2/c2, the function x2 → ṽ(k, x2, ω) is exponentially decaying when

x2 → −∞: this is the region of evanescent modes.
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When one looks at the error eN = vN − v, its Fourier transform appears as a sum
(the sum is a priori infinite but becomes finite if one is interested in times less than
Ma) over j ≥ 1 of terms of the form

RN

(
ck

ω

)j

· g̃(k, ω) · exp[(k2 − ω2/c2)
1
2 (±x2 + 2ja)],

where the reflection coefficient RN is given by

RN (ν) =
(fN − f)(ν)

(fN + f)(ν)
(1.17)

and satisfies ⎧⎨
⎩
RN (σ) ≤ 1 (stability result),

RN (σ) → 0 for |σ| < 1 (cf. Remark 1.2).

Up to technical details (this is in particular where the assumption (1.15) intervenes),
the idea of the proof is the following:

(i) In the propagative region k2 < ω2/c2, |RN (σ)|j can be made arbitrarily
small by choosing N large enough.

(ii) In the evanescent region k2 > ω2/c2, | exp[(k2 − ω2/c2)
1
2 (±x2 + 2ja)]| can

be made arbitrarily small by choosing a large enough.
One then concludes with Plancherel’s theorem.

Physically, the fact that fn(z) has nothing to do with f(z) for |z| > 1 means that
the evanescent modes are not correctly taken into account by the absorbing condition.
This is why one needs to have a large enough in order to “kill” the amplitude of the
evanescent modes at the boundary x2 = a.

In 1988, Halpern and Rauch proposed a high-frequency analysis in [20]. More
recently, an advance was achieved by Hagström (see [17] and [16], [18]), who derived
an approximation theory for the approximation of (a class of) pseudodifferential op-
erators, with the aim of applying it to ABCs, based on a new reinterpretation of (1.2)
and standard quadrature theory. He obtained error estimates and convergence results
only by making N go to +∞ (i.e., without touching the position of the boundary).
However, its results were nonuniform in time.

The history of the present work is the following. The Cagniard–De Hoop method
is particularly well known in the physics and engineering communities for calculating
analytical solutions of time-dependent wave propagation problems, especially in seis-
mology (see [7], [25], [24]). This method permits one, moreover, to establish a link
between time domain solutions and harmonic plane waves. Trying to learn something
about this method (for a completely different problem), we immediately realized that
it could easily be applied to the problem of ABCs and would probably help to get
new error estimates. The computations are so simple that it is rather surprising to
see that nobody did them before, to our knowledge. This article presents the results
we have obtained with this method and may prove to be a useful tool in teaching this
subject.

The outline of the paper is as follows. In section 2, we describe the model problem
we are dealing with (the half-space problem with a point source) and state our two
main results: Theorem 2.1, which provides an explicit solution of the corresponding
fundamental solution, and Theorem 2.4, which provides error estimates in the case
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of a general source function. These two results show that one can get a convergence
result only by letting N go to +∞. In some sense, this shows that the need for large
a in Theorem 1.3 is due to the technique used in the proof but does not correspond
to a necessity. However, our results in Theorems 2.1 and 2.4 show that increasing the
distance from the source to the absorbing boundary helps to get better error estimates.
We also pay attention to large time behavior of the error, which has already been the
subject of previous research works (see [10], [9], [4]). Sections 3 and 4 are devoted to
the proofs of Theorems 2.1 and 2.4. In section 5, we analyze our results in more detail
and make the comparison between numerical results and (quasi-)analytical results.

2. Main results. The first result of this paper is an explicit expression of the
fundamental solution of the 2D wave equation in the half-space R+

2 = {x2 > 0} with
higher order ABCs on Γ = {x2 = 0}(= ∂R+

2 ). Since the problem is invariant under
translations in the x1-direction, we can restrict ourselves to the case where the source
point is

xS = (0, h) with h > 0.(2.1)

The problem we want to solve is⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Find u : R2
+ × R 
→ R such that

1

c2
∂2u

∂t2
− Δu = δ(x− xS) × δ(t) in R2

+,

BNu = 0 on Γ,

u(x, t) = 0 for t < 0.

(2.2)

To state our result, it is useful to introduce some notation. Let us define the image
source point x∗

S by

x∗
S = (0,−h)(2.3)

and let us set (see Figure 2)

r(x) = |x− xS |, r∗(x) = |x− x∗
S |.(2.4)

We also define the function θ(x), x ∈ R2
+, by

θ(x) ∈
]
−π

2
,
π

2

[
, x− x∗

S = (r∗(x) sin θ(x), r∗(x) cos θ(x))t,(2.5)

and finally the function Φ(x, t), x ∈ R2
+, t > 0, by

Φ(x, t) =
r∗(x)2 sin2 θ(x) − (c2t2 − r∗(x)2)

r∗(x)2 sin2 θ(x) + (c2t2 − r∗(x)2)
=

x2
1 − (c2t2 − r∗(x)2)

x2
1 + (c2t2 − r∗(x)2)

.(2.6)

We can notice that

ct > r∗(x) =⇒ |Φ(x, t)| < 1.

Finally, we recall that the Chebyshev polynomials PN (x), N ≥ 0, are defined by

P0(x) = 1, P1(x) = x, PN+1(x) − 2xPN (x) + PN−1(x) = 0(2.7)
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(0, h)

(0,−h)

r(x)

r
∗ (x

)

θ

(x1, x2)

x1

x2

Fig. 2. Illustration of the notation

and satisfy

∀x ∈ [−1, 1], PN (x) = cos(N arccos(x)).(2.8)

In particular, we see that

∀x ∈ [−1, 1], |PN (x)| ≤ 1.

Theorem 2.1. The solution u(x, t) = GN (x, t) of problem (2.2) is given by

GN (x, t) = Gi(x, t) + GN
r (x, t),(2.9)

where, if H denotes the Heaviside function,∣∣∣∣∣∣∣∣∣∣

Gi(x, t) =
1

2π
√
t2 − r(x)2

c2

H(ct− r(x)),

GN
r (x, t) = − PN (Φ(x, t))

2π
√
t2 − r∗(x)2

c2

[
ct− (x2 + h)

ct + (x2 + h)

]N
H(ct− r∗(x)).

(2.10)

Remark 2.2. The function Gi(x, t), which does not depend on N , is nothing
but the restriction to the half-space R2

+ of the fundamental solution of the 2D wave
equation in the whole space. That is why it is called the incident field. Conversely,
the field GN

r (x, t), due to the presence of the boundary Γ, is called the reflected field,
which does depend on N .

Remark 2.3. The presence of the factor H(ct − r∗(x)) indicates that the re-
flected field GN

r (·, t) is compactly supported in the set Ω(t) = Ω1(t) ∪ Ω2(t) (see
Definition 4.6).

Let us now consider the approximation in the upper half-space of the solution u
of the 2D wave equation with a “smooth” point source:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Find u : R2 × R+ 
→ R such that

1

c2
∂2u

∂t2
− Δu = δ(x− xS) × f(t) in R2 × R+,

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0 in R2,

(2.11)
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where we assume that the source function f(t) is bounded and has support [0, T ] (T
can be equal to +∞, which includes the case of a permanent source term) by the
solution uN of the boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Find uN : R2 × R+ 
→ R such that

1

c2
∂2uN

∂t2
− ΔuN = δ(x− xS) × f(t) in R2 × R+,

BNuN = 0 on Γ,

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0 in R2.

(2.12)

Theorem 2.4. At each point x ∈ R2
+, one has the following pointwise estimates:

(i) For r∗(x)
c ≤ t ≤ r∗(x)

c + T (⇔ x ∈ Ω1(t)—see (4.6)),

|u(x, t) − uN (x, t)|
(2.13)

≤ 1

2π

(
ct− (x2 + h)

ct + (x2 + h)

)N

Log

(
ct +

√
c2t2 − r∗(x)2

r∗(x)

)
‖f‖L∞ .

(ii) For t > r∗(x)
c + T (⇔ x ∈ Ω2(t)—see (4.6)),

|u(x, t) − uN (x, t)|
(2.14)

≤ 1

2π

(
ct− (x2 + h)

ct + (x2 + h)

)N

Log

(
ct +

√
c2t2 − r∗(x)2

c(t− T ) +
√
c2(t− T )2 − r∗(x)2

)
‖f‖L∞ .

Moreover, one has the following uniform estimates:
(i) For h

c ≤ t ≤ h
c + T ,

‖(u− uN )(·, t)‖L∞(R2
+

) ≤
1

2π

(
ct− h

ct + h

)N

Log

(
t +

√
t2 − (h/c)2

(h/c)

)
‖f‖L∞ .(2.15)

(ii) For t > h
c + T ,

‖(u− uN )(·, t)‖L∞(R2
+

) ≤
1

2π

(
ct− h

ct + h

)N

Log

(
t +

√
t2 − (t− T )2

t− T

)
‖f‖L∞ .

(2.16)

These results lead to the following comments:
(i) The error converges spectrally to 0 (in the uniform norm) when N goes to

infinity.
(ii) For given t, the upper bounds in the estimates (2.15) and (2.16) diminish

when the distance h from the source to the absorbing boundary increases. This is
coherent with the physical intuition and numerical observations.

(iii) Concerning the behavior of the error for large t, if we assume that T < +∞,
we observe that the right-hand side in the estimate (2.16) behaves for large t as

1

2π

√
2T

t
,
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which shows that, for all N and h, the error converges uniformly to 0 when t tends to
+∞. On the other hand, when T = +∞, the right-hand side in the estimate (2.15)
behaves as

1

2π
Log t,

which a priori authorizes a logarithmic growth on the error when t tends to +∞. This
is what happens if f(t) is, for instance, the Heaviside function.

Remark 2.5. We have chosen here to analyze the approximation of a problem
associated to a point source. It would not be difficult to adapt Theorem 2.4 (or more
precisely its proof) to treat the case of a distributed source term f(x, t) or nonzero
initial data u0 and u1. In the same way, we have chosen to present L∞ estimates,
which seemed to us more pertinent in practice. However, once again, it is easy to
adapt the proof in order to get Lp or energy estimates.

3. Proof of Theorem 2.1. As we have already stated, the formula (2.9), (2.10)
results directly from the application of the Cagniard–De Hoop method to prob-
lem (2.2). In order to make this paper easily understandable to a reader who is
not familiar with this technique, we detail the proof (only some explicit calculations
will be omitted). Let us decompose the solution u of (2.2) as

u = Gi + ur,

where Gi, given by (2.10), is the fundamental solution of the 2D wave equation. By
linearity, it is clear that ur satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Find ur : R2
+ × R 
→ R such that

1

c2
∂2ur

∂t2
− Δur = 0 in R+

2 ,

BNur = −BNGi on Γ,

u(x, t) = 0 for t < 0.

(3.1)

We apply the following successively to ur:
(i) The Laplace transform in time (s is the dual variable of t):

ũr(x1, x2, s) =

∫ +∞

0

ur(x1, x2, t)e
−st dt.(3.2)

(ii) The Fourier transform in the tangential space variable x1 (k is the dual
variable of x1):

ûr(k, x2, s) =

∫ +∞

−∞
ũr(x1, x2, s)e

ikx1 dx1.(3.3)

The algorithm for applying the Cagniard–De Hoop method is the following:
1. Compute explicitly ûr(k, x2, s).
2. Apply the inverse Fourier transform in x1:

ũr(x1, x2, s) =
1

2π

∫ +∞

−∞
ûr(k, x2, s)e

−ikx1 dx1.(3.4)
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3. Transform (by means of complex analysis methods) the integral (3.4) into an
integral of the form

ũr(x1, x2, s) =

∫ +∞

0

F (x1, x2, t)e
−st dt.(3.5)

Then, by surjectivity of the Laplace transform, we shall have identified the solution
(compare (3.2) and (3.5))

ur(x1, x2, t) ≡ F (x1, x2, t).(3.6)

The first step is straightforward. From the wave equation, we deduce that the function
x2 
→ ûr(k, x2, s) satisfies

−d2ûr

dx2
2

+

(
k2 +

s2

c2

)
ûr = 0.

Retaining only the solutions that decay when x2 → +∞ for Re(s) ≥ 0, we deduce
the existence of a complex-valued function A(k, s) such that

ûr(k, x2, s) = A(k, s)e−(k2+ s2

c2
)
1
2 x2 ,(3.7)

where we have chosen to use the determination of the complex square root corre-
sponding to

∀z ∈ C, Re z
1
2 ≥ 0,(3.8)

which corresponds to making the branch cut of z
1
2 coincide with the semireal axis

Im z = 0, Re z < 0 (see Figure 3). Since ur + Gi is smooth for y < h, we can use
the fact that

BN (ur + Gi) = 0 ⇐⇒
(

1

c

∂

∂t
− ∂

∂x2

)N

(ur + Gi) = 0 for x2 = 0.(3.9)

On the other hand, it is well known that the Laplace–Fourier transform of Gi is
given by

Ĝi(k, x2, s) =
e−(k2+ s2

c2
)
1
2 |x2−h|

2(k2 + s2

c2 )
1
2

.(3.10)

Taking into account the form (see (3.7) and (3.10)) of ûr and Ĝi, the boundary
condition (3.9) leads to

(
s

c
+

(
k2 +

s2

c2

) 1
2

)N

A(k, s) +
1

2

(
s

c
−
(
k2 +

s2

c2

) 1
2

)N

e−(k2+ s2

c2
)
1
2 h

(k2 + s2

c2 )
1
2

= 0.

This permits us to compute A(k, s) and finally to get

ûr(k, x2, s) = −RN
(
k,

s

c

) e−(k2+ s2

c2
)
1
2 (x2+h)

2(k2 + s2

c2 )
1
2

,(3.11)
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Im(p)

Re(p)−π

+π

Fig. 3. The branch cut for the determination of the complex square root.

where we have set

RN (k, σ) = RN

(
k

σ

)
=

[
σ − (k2 + σ2)

1
2

σ + (k2 + σ2)
1
2

]N

.(3.12)

Therefore (this is step 2) we have

ũr(x1, x2, s) = − 1

4π

∫ +∞

−∞
RN

(
k,

s

c

) e−(k2+ s2

c2
)
1
2 (x2+h)

(k2 + s2

c2 )
1
2

e−ikx1 dk,(3.13)

which we would like to transform into an integral of the form (3.5) (this is step 3).
This is the part of the approach which is specific to the Cagniard–De Hoop method.
We are helped by the following facts:

(i) The integrand in (3.13) is homogeneous in s and k.
(ii) The dependence with respect to x2 of this integrand is exponential.

First, exploiting the homogeneity property, we apply the change of variable k = ps/c
and obtain

ũr(x1, x2, s)

(3.14)

= − 1

4π

∫ +∞

−∞
RN (p, 1)

e−s[(1+p2)
1
2 (

x2+h

c )+ip
x1
c ]

(1 + p2)
1
2

dp,

(
≡
∫ +∞

−∞
Ψ(p)dp

)
.

In what follows we fix (x1, x2) ∈ R2
+ with x1 > 0 (which is not restrictive since

the solution we are looking for is clearly even in x1). We introduce r∗ = r∗(x) and
θ = θ(x) (∈ [0, π/2] since x1 ≥ 0) according to the definitions (2.4) and (2.5). We
thus have {

x1 = r∗ sin θ,

x2 + h = r∗ cos θ.
(3.15)

Now the idea is to consider the variable p as a complex variable and to see the
integral (3.14) as a contour integral, the contour coinciding with the real axis. If one
is able, by a contour deformation, to transform this integral into a contour integral
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D
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Re(p)

Γ−

Ω

Γ+

i

−i

−i sin θ

Fig. 4. The contours Γ and D.

on some curve Γ along which one can use a parametric representation of the form

(1 + p2)
1
2

(
x2 + h

c

)
+ ip

x1

c
= t for t > 0,(3.16)

we shall have reached our goal. To achieve this, we first remark that the integrand Ψ(p)
in (3.14) is an analytic function of p if one excludes the two branch cuts constituted of
the two half-lines of purely imaginary numbers whose modulus is greater than 1 (see
Figure 4). Then we introduce the so-called Cagniard–De Hoop contour Γ, defined as⎧⎪⎪⎨

⎪⎪⎩
Γ = Γ+ ∪ Γ−,

Γ± =

{
p = γ±(t) ≡ −i

ct

r∗
sin θ ± cos θ

√
c2t2

r∗2 − 1, t ≥ r∗

c

}
.

(3.17)

It is clear that the two curves Γ± are symmetric with respect to the imaginary axis,
and meet at point −i sin θ (for t = r∗/c). More precisely, it is easy to check that Γ is
nothing but the branch of the hyperbola of

Y 2

sin2 θ
− X2

cos2 θ
= 1 (p = X + iY, (X,Y ) ∈ R2),

which is located in the upper half-space Y = Im p > 0. Note that this hyperbola
does not intersect the two branch cuts of Ψ. All this information is summarized in
Figure 4.

In fact to understand where (3.17) comes from, it suffices to remark that γ±(t) are
nothing but the two roots of (3.16), considered as an equation in p (the calculations
are left to the reader).
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-ρ ρD

Im(p)

Re(p)

C−(ρ) C+(ρ)
Γ−(ρ) Γ+(ρ)

i

−i

−i sin θ

Fig. 5. The closed contour Dρ ∪ Cρ ∪ Γρ.

Let us denote by D the real line and by Ω the connected part of the complex
plane delimited by D and Γ. Let ρ > 0 be a parameter that is meant to tend to +∞.
We set ∣∣∣∣∣

Dρ = {p ∈ D/|p| ≤ ρ}, Γρ = {p ∈ Γ/|p| ≤ ρ},

Cρ = {p ∈ Ω/|p| = ρ}.

Note that Cρ is made of two arcs of the circle of center 0 and radius ρ that join Dρ

to Γρ in such a way that Dρ ∪ Cρ ∪ Γρ is a closed curve. Since Ψ(p) is analytic in
Ω, the integral of Ψ along Dρ ∪ Cρ ∪ Γρ (we choose the orientation of this path such
that the real segment is described in the sense of increasing values—see Figure 5) is
identically 0: ∫

Dρ

Ψ(p) dp +

∫
Cρ

Ψ(p) dp +

∫
Γρ

Ψ(p) dp = 0.

Thanks to the choice of the square root, and since x2 + h > 0, the function Ψ(p)
decays exponentially to 0 when Im p goes to +∞. As a consequence, it is easy to
show that (Jordan’s lemma)

lim
ρ→+∞

∫
Cρ

Ψ(p) dp = 0.

Therefore, from (3.14), we deduce

ũr(x1, x2, s) = − 1

4π

∫
Γ

RN (p, 1)
e−s[(1+p2)

1
2 (

x2+h

c )+ip
x1
c ]

(1 + p2)
1
2

dp.
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We use the parametrizations p = γ+(t) and p = γ−(t) for t ≥ r∗(x)
c , respectively,

along Γ+ and Γ− and remark that∣∣∣∣∣∣∣∣
• (1 + p2)

1
2

(
x2 + h

c

)
+ ip

x1

c
= t (by construction),

• dp

( 1
c2 + p2)

1
2

= ± dt

(t2 − r∗2

c2 )
1
2

on Γ±.

Therefore, since t goes from +∞ to r∗

c on Γ+ and from r∗

c to +∞ on Γ−,

ũr(x1, x2, s) = − 1

4π

∫ +∞

r∗
c

[
RN (γ+(t), 1) + RN (γ−(t), 1)

] e−st

(t2 − r∗2

c2 )
1
2

dt.

Finally, observing that γ−(t)2 = γ+(t)
2
, and using the fact that

√
z =

√
z, we deduce

that

RN (γ−(t), 1) = RN (γ+(t), 1) =⇒ RN (γ+(t), 1)+RN (γ−(t), 1) = 2Re
[
RN (γ+(t), 1)

]
,

which yields

ũr(x1, x2, s) = − 1

2π

∫ +∞

r∗
c

Re
[
RN (γ+(t), 1)

] e−st

(t2 − r∗2

c2 )
1
2

dt.(3.18)

Thanks to formula (3.12), one has

RN (γ+(t), 1) =
[
R1(γ+(t), 1)

]N
,(3.19)

while one easily computes that

R1(γ+(t), 1) =
r∗ − ct cos θ + i sin θ

√
c2t2 − r∗2

r∗ + ct cos θ − i sin θ
√

c2t2 − r∗2
= ρ1(t)e

iα(t).

Setting Φ = Φ(x, t) (cf. (2.6)), one finds that (the calculations—rather tedious but
straightforward—are left to the reader)⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ρ1(t) =

ct− r∗ cos θ

ct + r∗ cos θ
=

ct− (x2 + h)

ct + (x2 + h)
,

cosα(t) =
r∗2 sin2 θ − (c2t2 − r∗2)

r∗2 sin2 θ + (c2t2 − r∗2)
= Φ.

Therefore, according to (3.19),

Re
[
RN (γ+(t), 1)

]
= ρ1(t)

N cos(Nα(t)),

that is to say, since α(t) = arccos Φ,

Re
[
RN (γ+(t), 1)

]
=

[
ct− (x2 + h)

ct + (x2 + h)

]N
PN (Φ).(3.20)

It is then easy to conclude the proof of Theorem 2.1 from (3.18) and (3.20).
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4. Proof of Theorem 2.4. Let u and uN be the respective solutions of (2.11)
and (2.12). We introduce the error (or reflected field) eN defined as

eN = uN − u.(4.1)

To get the pointwise estimates (2.13) and (2.14), we fix x ∈ R2
+ and set r∗ = r∗(x)

and θ = θ(x). Obviously eN (x, t) = 0 for t ≤ r∗/c, while for t > r∗/c we deduce from
Theorem 2.1 that

eN (x, t) =

∫ t

max( r∗
c ,t−T )

GN
r (x, τ)f(t− τ) dτ, t ≥ r∗

c
,(4.2)

using the fact that f is supported in [0, T ] and GN
r (x, ·) in [0, r∗

c ]. We deduce that⎧⎪⎨
⎪⎩
|eN (x, t)| ≤ ‖f‖L∞(0,t) · ‖GN

r (x, ·)‖L1( r∗
c ,t) if

r∗

c
≤ t ≤ r∗

c
+ T,

|eN (x, t)| ≤ ‖f‖L∞(0,T ) · ‖GN
r (x, ·)‖L1(t−T,t) if t >

r∗

c
+ T.

(4.3)

We thus have to estimate the L1-norm of the functions t 
→ GN
r (·, t). Using the fact

that

|PN (Φ(x, t))| ≤ 1

(estimate which is quasi-optimal for a range of values of t) we get

|GN
r (x, t)| ≤ 1

2π
√
t2 − r∗2

c2

(
ct− (x2 + h)

ct + (x2 + h)

)N

.

We remark that, for t ≥ r∗

c , the function ct 
→ ( ct−(x2+h)
ct+(x2+h) ) is increasing. Therefore,∣∣∣∣∣∣∣∣∣∣∣

‖GN
r (x, ·)‖L1( r∗

c ,t) ≤
1

2π

(
ct− (x2 + h)

ct + (x2 + h)

)N ∫ t

r∗
c

dτ√
τ2 − r∗2

c2

=
1

2π

(
ct− (x2 + h)

ct + (x2 + h)

)N

Log

(
ct +

√
c2t2 − r∗2

r∗

)
,

(4.4)

while, as soon as t > r∗

c + T ,∣∣∣∣∣∣∣∣∣∣∣∣∣∣

‖GN
r (x, ·)‖L1(t−T,t)

≤ 1

2π

(
ct− (x2 + h)

ct + (x2 + h)

)N ∫ t

t−T

dτ√
τ2 − r∗2

c2

=
1

2π

(
ct− (x2 + h)

ct + (x2 + h)

)N

Log

(
ct +

√
c2t2 − r∗2

c(t− T ) +
√
c2(t− T )2 − r∗2

)
.

(4.5)

It is easy to deduce (2.13) and (2.14) from (4.3), (4.4), and (4.5).
We now move to the proof of the uniform estimates (2.15) and (2.16). Let us

introduce the two disjoint sets∣∣∣∣∣
Ω1(t) = {x ∈ R2

+/c(t− T ) < r∗(x) ≤ ct},

Ω2(t) = {x ∈ R2
+/r

∗(x) ≤ c(t− T )}.
(4.6)
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(0,−h)

ctc(t− T )

Ω1(t)

Fig. 6. The set Ω1(t), h
c
≤ t < h

c
+ T .

(0,−h)

Ω1(t)

Ω2(t)

Fig. 7. Ω1(t) and Ω2(t), t ≥ h
c

+ T .

These two sets are represented in Figures 6 and 7 for two values of t. Note that
Ω1(t) is not empty as soon as t > h

c , while Ω2(t) is not empty as soon as t > h
c + T .

According to (4.3), in order to derive an L∞ estimate of eN (·, t), we need an upper
bound for the quantity

sup
x∈Ω1(t)

‖GN
r (x, ·)‖L1( r∗

c ,t) when t >
h

c

and for the quantity

sup
x∈Ω2(t)

‖GN
r (x, ·)‖L1(t−T,t) when t >

h

c
+ T.

We remark that for each x ∈ Ω(t) = Ω1(t) ∪ Ω2(t), h ≤ x2 + h ≤ ct. Therefore,
noticing that the function

x 
→ ct− x

ct + x
, x ∈ [0, ct],

is decreasing, we get

sup
x∈Ω1(t)

(
ct− (x2 + h)

ct + (x2 + h)

)
= sup

x∈Ω2(t)

(
ct− (x2 + h)

ct + (x2 + h)

)
=

ct− h

ct + h
.(4.7)

On the other hand, using the fact that the two functions

∣∣∣∣∣∣∣∣∣
r 
→ ct

r
+

√
c2t2

r2
− 1, r ∈ [0, ct],

r 
→ ct +
√
c2t2 − r2

c(t− T ) +
√
c2(t− T )2 − r2

, r ∈ [0, c(t− T )] (t > T ),
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are, respectively, decreasing and increasing, we deduce that∣∣∣∣∣∣∣∣∣∣∣∣

sup
x∈Ω1(t)

Log

∣∣∣∣∣ ctr∗ +

√
c2t2

r∗2 − 1

∣∣∣∣∣ = Log

(
t +

√
t2 − (h/c)2

(h/c)

)
if

h

c
< t <

h

c
+ T,

sup
x∈Ω1(t)

Log

∣∣∣∣∣ ctr∗ +

√
c2t2

r∗2 − 1

∣∣∣∣∣ = Log

(
t +

√
t2 − (t− T )2

t− T

)
if t >

h

c
+ T,

sup
x∈Ω2(t)

Log

∣∣∣∣∣ ct +
√
c2t2 − r∗2

c(t− T ) +
√
c2(t− T )2 − r∗2

∣∣∣∣∣ = Log

(
t +

√
t2 − (t− T )2

t− T

)

if t >
h

c
+ T

These last three equalities, together with (4.3), (4.4), and (4.5), permit us to show
the inequalities

sup
x∈Ω1(t)

∥∥GN
r (x, ·)

∥∥
L1( r∗

c ,t)

(4.8)

≤ 1

2π

(
ct− h

ct + h

)N

Log

(
ct

h
+

√
c2t2

h2
− 1

) (
t >

h

c

)
,

sup
x∈Ω2(t)

∥∥GN
r (x, ·)

∥∥
L1(t−T,t)

(4.9)

≤ 1

2π

(
ct− h

ct + h

)N

Log

(
t +

√
t2 − (t− T )2

t− T

) (
t >

h

c
+ T

)
.

It is then easy to conclude the proof of Theorem 2.4 from (4.8), (4.9), and (4.3).
Remark 4.1. In formula (2.10), the function GN

r naturally appears as the product
of three terms. In the proof above, in order to estimate GN

r we have estimated
independently, for the sake of simplicity, each of these factors. In particular, our final
estimates are not necessarily sharp.

5. Illustration and analysis of the results.

5.1. Analysis of the 2D fundamental solutions.
Relative error analysis. One of the difficulties in representing numerically the

reflected field GN
r given by (2.10) is the presence of the singularity of the circle r∗(x) =

ct. To overcome this difficulty, the idea is to compare this reflected field to what it
would be with the Dirichlet boundary condition (which corresponds to N = 0). That
is why we introduce the relative error field defined as

γN
r (x, t) =

GN
r (x, t)

G0
r(x, t)

= PN (Φ(x, t))

[
ct− (x2 + h)

ct + (x2 + h)

]N
, x ∈ Ω(t).(5.1)

(Note that G0
r(·, t) does not vanish inside the disk r∗(x) < ct.) In the following

experiments we choose h = 1 and c = 1. On Figures 8 to 12 we represent, at
three different times—namely, t = 3, 5, and 7 from top to bottom—the level lines of
x 
→ γN

r (x, t). Each figure corresponds to one value of N (N = 1, 2, 5, 10, 20).
We clearly observe the following:
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Fig. 8. x �→ γ1
r (x, t), t = 3, 5, and 7.
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Fig. 9. x �→ γ2
r (x, t), t = 3, 5, and 7.
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Fig. 10. x �→ γ5
r (x, t), t = 3, 5, and 7.
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Fig. 11. x �→ γ10
r (x, t), t = 5, 7, and 9.
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Fig. 12. x �→ γ20
r (x, t), t = 3, 5, and 7.

(i) The amplitude of the error strongly decays with N (take care of the scales).
For instance, at t = 3, the error level is 0.4 for N = 1, 0.2 for N = 2, 0.02 for
N = 5, 7.10−4 for N = 10, and 6.10−7 for N = 20.

(ii) As expected, the amplitude of the error also increases in time. By a homo-
geneity argument, it is obvious that looking at different t’s for fixed h is equivalent to
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Fig. 13. t �→ GN
r (x, t), r∗ = 5, θ = 0.
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Fig. 14. t �→ γN
r (x, t), r∗ = 5, θ = 0.

looking at different h’s for fixed t. Therefore, our results also illustrate the influence
of h on the reflected field.

(iii) When N increases, the relative error concentrates more and more on the
neighborhood of the absorbing boundary. Moreover, its dependence with respect to
the space variable is more and more complicated (this is the effect of the Chebyshev
polynomials).

Study of the error as a function of time. Here we wish to study the evolution of
the reflected field at a given point x as a function of time. All the points we observe
are located on the circle r∗(x) = 5 so that the reflected field arrives at these points at
time t = 5.

(i) The case of the point θ(x) = 0. Contrary to what the plane wave analysis
might suggest, the reflected field is not identically 0 for θ(x) = 0, i.e., on the x2 axis.
However, the function t 
→ GN

r (x, t) is not discontinuous (except for N = 0!) at time
t = τ = τ(x) = (x2 + h)/c, as shown by the formula

GN
r (x, t) =

(−1)N+1

2π

[ct− (x2 + h)]N− 1
2

[ct + (x2 + h)]N+ 1
2

for t > τ.(5.2)

It becomes even less and less singular as N increases. Moreover, one sees that the
function t 
→ GN

r (x, t) is increasing from t = τ to t = 2Nτ , then decreasing for
t > 2Nτ , and tends to 0 when t → +∞ as 1/2πct. The maximum of t 
→ GN

r (x, t) is
given by

sup
t≥τ

GN
r (x, t) =

1

2N + 1

(
2N − 1

2N + 1

)N− 1
2

∼ 1

2Ne
(N → +∞).(5.3)

These properties are illustrated in Figures 13 and 14, where we represent (in Figure 13)
the variations of t 
→ GN

r (x, t), t ∈ [0, 20] for N = 1 to 5. Looking at the relative
error, the formula

γN
r (x, t) = (−1)N

[ct− (x2 + h)]N− 1
2

[ct + (x2 + h)]N+ 1
2

for t > τ(5.4)

shows that the function t 
→ γN
r (x, t), t > τ , increases from 0 to 1. This is confirmed

in Figure 14.
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Fig. 15. t �→ γN
r (x, t), r∗ = 5, θ = π

6
.

5 10 15 20
–0.4

–0.2

0

0.2

0.4

0.6

t

N=1
N=2
N=3
N=4
N=5

Fig. 16. t �→ γN
r (x, t), r∗ = 5, θ = π

3
.

(ii) The case of points θ(x) �= 0. In this case, the function t 
→ γN
r (x, t) is no

longer continuous for t = τ :

lim
t→τ

γN
r (x, t) = RN (θ(x)) = (−1)N

(
1 − cos θ

1 + cos θ

)N

.(5.5)

In Figures 15 and 16 we represent the variations of t 
→ γN
r (x, t) for θ = π/6 and

θ = π/3. In each figure, one makes N vary from 1 to 5. Clearly, the higher N is, the
more the function oscillates. Finally, for large times, one easily computes that

lim
t→+∞

γN
r (x, t) = (−1)N(5.6)

independently of the value of N .
Study of the error as a function of the distance to the image source. We consider

here the spatial variation of the reflected field along a ray, namely, the part of a half-
line starting from the image source point S∗ included in the half-space R2

+. For a
given direction θ ∈ ]−π/2, π/2[, this ray is also defined as

Dθ =
{
x ∈ R2

+/θ(x) = θ
}

= {(r∗ sin θ, r∗ cos θ), r∗ ≥ h/ cos θ}.

In the following figures we represent the variations of the reflected field GN
r , for fixed

θ as a function of r∗ ≥ h/ cos θ, for different values of t and N .
For θ = 0, r∗ ≤ h. In Figures 17 to 19, we represent the variations of GN

r along
D0 for three values of t, t = 3, 5, 8. Each figure corresponds to one value of N , and
therefore the scale varies a lot from one picture to another. Once again, one observes
that the reflected field is smoother and smoother as N increases.

For θ = π/6, r∗ ≤ 2h/
√

3. In Figures 20 to 22, we represent the variations of GN
r

along Dπ/6 for t = 3, 5, 8. This time, the functions are singular for r∗ = ct. However,
one observes that the region where GN

r takes very large values becomes more and
more confined close to the point r∗ = ct as N increases.

For θ = π/3, r∗ ≤ 2h. In Figures 23 to 25, we represent the variations of GN
r

along Dπ/3 for t = 3, 5, 8. The functions are still singular for r∗ = ct. The shape of
the reflected wave is more complicated than for θ = π/6, especially for large N .

Angular variation of the reflected wave. Our previous results have already illus-
trated the dependence of the reflected field with respect to θ(x). Here, let us consider
the relative error γN

r (x, t) along the “reflected” wave front defined as
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Fig. 18. r∗ �→ G5
r (r∗, θ = 0, t).
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Fig. 19. r∗ �→ G10
r (r∗, θ = 0, t).
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Fig. 20. r∗ �→ G1
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Fig. 21. r∗ �→ G5
r (r∗, θ = π/6, t).
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Fig. 22. r∗ �→ G10
r (r∗, θ = π/6, t).
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Fig. 23. r∗ �→ G1
r (r∗, θ = π/3, t).

2 3 4 5 6 7 8 9 10
–3

–2

–1

0

1

2

3

4

x 10
– 3

r*

t=3
t=5
t=7

Fig. 24. r∗ �→ G5
r (r∗, θ = π/3, t).
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Fig. 25. r∗ �→ G10
r (r∗, θ = π/3, t).

WFr(t) = ∂Ω(t) = {x ∈ R2
+/r

∗(x) = ct}
(
�= ∅ for t >

h

c

)
.

Let Mθ(t) = (ct sin θ, ct cos θ) ∈ WFr(t) (note that Mθ(t) describes WFr(t) when θ
varies from − arccos h

ct to + arccos h
ct ); one easily deduces from (2.10) that

lim
x→Mθ(t), x∈Ω(t)

γN
r (x, t) = RN (θ) = (−1)N

(
1 − cos θ

1 − cos θ

)N

.

In other words, the curve representing, as a function of the direction θ, the variations
of the relative error γN

r (x, t) along the “reflected” wave front WFr(t) is nothing but
the portion of the curve of Figure 1 that corresponds to − arccos h

ct ≤ θ ≤ arccos h
ct .

5.2. The case of a source term.
Comparison with numerical experiments. We have implemented a MATLAB code

for the computation of the convolution integral (4.2). To validate our “exact” solu-
tion(!), we have compared our results with those obtained with a finite difference
code written by F. Collino. In our experiment, the source function is a truncated first
derivative of a Gaussian:

f(t) =
d

dt
{e−2πf0(t−t0)

2}H(2t0 − t), f0 = 10, t0 = 1/f0.(5.7)
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Fig. 26. Total field. N = 1. Fig. 27. Reflected field. N = 1.

Fig. 28. Total field. N = 5. Fig. 29. Reflected field. N = 5.

In Figures 26 to 29 we have compared the “analytical” solution (top picture in each
panel) to the numerical one (bottom picture in each panel) for two values of N : N = 1
and 5. In each picture we represent the level lines of the solution at time t = 0.4. The
left pictures represent the total field while the right pictures represent the reflected
field (the error). In each case, for the representation, the reflected field has been
amplified by a factor which depends on N : 1.3 for N = 1 and 25 for N = 5. In
each case, the results reveal a very good agreement between the two solutions. In
Figures 30 to 33 we have compared both solutions at point (0.9, 0.1) as functions of
time. The solid curves represent the “analytical” solution and the dashed curves the
numerical one for two values of N : N = 1 and 5. As before the left pictures represent
the total field while the right pictures represent the reflected field.

L∞ error estimates. In Figures 34 and 35 we have compared the L∞-norm of the
reflected field (the solid curves) to the uniform estimates (2.15) and (2.16) given by
Theorem 2.4 (the dashed curves) for N = 1, 2, 5, 10. The source is a step function in
time: f(t) = 1 if 0 ≤ t ≤ 2 and f(t) = 0 otherwise. Our estimate appears to be very
sharp for N = 1 and becomes less accurate (although quite acceptable) as N increases.
Since we used the L∞-norm of the source function to establish our error estimates,
one could imagine that this estimate is not very sharp for more complicated source
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Fig. 30. Total field. N = 1.

0 0.2 0.4 0.6 0.8 1
–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

2.5

3
x 10

– 4

analytical
numerical 

Fig. 31. Reflected field. N = 1.
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Fig. 32. Total field. N = 5.
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Fig. 33. Reflected field. N = 5.

functions. To check this, we have repeated the previous experiment when the source
is still given by (5.7) with f0 = 1. Figures 36 and 37 illustrate these experiments for
N = 1 and 5. The estimate is obviously less accurate than in the case of the step
source function but still gives a reasonable bound.

6. Conclusion and perspectives. The use of the Cagniard–De Hoop method
has enabled us to obtain a quasi-analytical representation of the field reflected by
Engquist–Majda higher order ABCs. This permits us to obtain new theoretical esti-
mates for the time-dependent problem.

Of course, the method can be applied to other boundary conditions (we give in the
appendix the example of Higdon’s boundary conditions). It would also be interesting
to treat other equations such as Maxwell’s equations or elastodynamics equations.
One also might think that the Cagniard–De Hoop method could be a new tool for
analyzing the stability of boundary conditions.

In a forthcoming work, we wish to treat the case of the PMLs for ABCs. This
should give some insights about the quantitative comparison between ABCs and
PMLs.
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Fig. 34. Error estimates. N = 1.
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Fig. 35. Error estimates. N = 5.
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Fig. 36. Error estimates. N = 1.
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Fig. 37. Error estimates. N = 5.

Appendix. Extension to Higdon’s boundary conditions. In 1986 Hig-
don [23], [21] proposed another approximation of the condition (1.2) of the form

BN
Higu =

N∏
j=1

(
cosαj

∂

∂t
− c

∂

∂x

)
u = 0.(A.1)

These conditions are a generalization of the condition (1.5) (obtained with αj = 0 for
all j) and have the property to be exactly satisfied by any linear combination of plane
waves whose angle of incidence is αj .

Using the same method as in section 3, it can be shown that the solution of the
problem

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Find u : R2
+ × R 
→ R such that

1

c2
∂2u

∂t2
− Δu = δ(x− xS) × δ(t) in R2

+,

BN
Higu = 0 on Γ,

u(x, t) = 0 for t < 0

(A.2)



1574 JULIEN DIAZ AND PATRICK JOLY

is given by

u(x, t) = GN
Hig(x, t) = Gi(x, t) + GN

Hig,r(x, t),(A.3)

where

∣∣∣∣∣∣∣∣∣∣∣

Gi(x, t) =
1

2π
√
t2 − r(x)2

c2

H(ct− r(x)),

GN
Hig,r(x, t) =

1

2π
√
t2 − r∗

c2

⎡
⎣ n∏
j=1

ρj(x, t)

⎤
⎦ cos

⎡
⎣ n∑
j=1

ψi(x, t)

⎤
⎦H(ct− r∗(x)),

(A.4)

where ρj(x, t) and ψi(x, t) are given by

ρj(x, t) =

√
(ct− aj)

2 − b2j
(ct + aj)2 − b2j

(A.5)

and

ψj(x, t) = arccos

⎡
⎣r∗(x, t)2 − c2t2 + r∗(x, t)2 cos2 αj − r∗(x, t)2 cos2 θ√

((ct− aj)2 − b2j )((ct + aj)2 − b2j )

⎤
⎦ ,(A.6)

ψj(x, t) = arccos

⎡
⎣r∗(x, t)2 − c2t2 + r∗(x, t)2 cos2 αj − (x2 + h)2√

((ct− aj)2 − b2j )((ct + aj)2 − b2j )

⎤
⎦(A.7)

with

aj = r∗(x) cosαj cos θ = cosαj(x2 + h)

and

bj = r∗(x) sin θ sinαj = x1 sinαj .

Thanks to (A.5), one can see that the function x 
→ GN
Hig,r(x, t) is singular on the

circle r∗(x) = ct except in the directions αj .
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STRUCTURAL BIFURCATION OF 2-D NONDIVERGENT FLOWS
WITH DIRICHLET BOUNDARY CONDITIONS:

APPLICATIONS TO BOUNDARY-LAYER SEPARATION∗
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Abstract. This article addresses transitions in the topological structure of a family of divergence-
free vector fields u(·, t) with Dirichlet boundary conditions. We show that structural bifurcation—i.e.,
change in topological-equivalence class—occurs at t0 if u(·, t0) has an isolated degenerate ∂-singular
point x̄ ∈ ∂M such that ∂2u(x̄, t0)/∂n∂t �= 0. The main results are proved by classifying orbit
structures of u near such a point x̄ ∈ ∂M of u(·, t0). The condition of x̄ being a ∂-singular point is
equivalent to the one originally postulated by Prandtl for boundary-layer separation. Our analysis
and classification do contribute, in fact, to a rigorous characterization of boundary-layer separation
in 2-D incompressible fluid flows.
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1. Introduction. This article is part of a research program on the use of topo-
logical ideas to study the spatio-temporal structure of 2-D incompressible fluid flows
in physical space, along with its stability and bifurcations. This program consists of
research in two areas: (a) the study of the topological structure of divergence-free vec-
tor fields, and its evolution in time or with respect to an arbitrary parameter; and (b)
the study of the structure and evolution of velocity fields for 2-D incompressible fluid
flows governed by a class of equations that comprises the Navier–Stokes equations,
the Euler equations, and the quasi-geostrophic equations of rotating flows.

Mathematically speaking, there are two general methods for describing a fluid
flow: the Euler representation and the Lagrange representation; see [1, 2, 3, 6, 9, 13,
17]. In the Euler representation, the motion of a fluid is described by a set of par-
tial differential equations (PDEs)—such as the Euler equations or the Navier–Stokes
equations, supplemented with proper boundary conditions—that govern the velocity
field at every point in the (2-D or 3-D) flow domain. The Lagrange representation of
a fluid flow, on the other hand, amounts to studying the trajectories of fluid particles
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as a function of initial position in the flow domain, subject to the ordinary differential
equations (ODEs) that govern the change in position given the velocity. Of course
the velocities of the particles satisfy the PDEs we just mentioned.

Our approach is to classify the topological structure of the instantaneous velocity
field, treating the time variable as a parameter, and the changes in this structure with
respect to time. The aforementioned two areas of our program draw inspiration from
and are relevant to both the Eulerian and the Lagrangian approaches to fluid flows.

The study in area (a) is kinematic in nature, and the results and methods de-
veloped can naturally be applied to other problems of mathematical physics that
involve divergence-free vector fields. These include, for instance, problems in elec-
tromagnetism in which the magnetic field is necessarily divergence-free. The main
topics in this area include structural classification, structural stability, and structural
bifurcation, as well as their applications to fluid dynamics in general and to geophys-
ical fluid dynamics in particular. The study in area (b) involves specific connections
between the solutions of the evolution equations—whether Navier–Stokes, Euler, or
quasi-geostrophic—and the flow structure in the physical space.

The main objective of this paper is to contribute to a rigorous characterization of
boundary-layer separation in 2-D incompressible fluid flows. This is a long-standing
problem in fluid mechanics that goes back to the pioneering work of Prandtl [15] in
1904. Classical boundary-layer theory is presented in [2, 9, 16]. The Prandtl equation
represents an approximation of the Navier–Stokes equations inside the boundary layer
in the absence of separation; this equation is rigorously analyzed in a recent textbook
[14] and several articles [4, 5, 18].

Basically, the boundary layer is a narrow region of sharp velocity gradients be-
tween a no-slip wall, where the velocity has to vanish, and the interior of the fluid.
This layer of high shear can detach from the boundary, generating vortices and lead-
ing to more complicated turbulent behavior near the wall as well as in the interior
of the flow domain [9]. It is important, therefore, to characterize, if at all possible,
the conditions for separation. Experimentally one observes that the normal derivative
of the velocity field vanishes at or near separation points. Chorin and Marsden [2]
note that there is no known theorem that can be applied to determine the separation
reliably. This article, along with [8, 10], is an attempt to derive a rigorous charac-
terization of streamline detachment from the boundary for 2-D divergence-free vector
fields. These results are applied in the companion papers [7, 12] to the actual prob-
lem of boundary-layer separation in solutions of the 2-D incompressible Navier–Stokes
equations.

In the present article, we address structural transitions for a family of divergence-
free vector fields u(·, t) with Dirichlet boundary conditions. We show that structural
bifurcation—i.e., change in their topological-equivalence class—occurs at t0 if u(·, t0)
has an isolated degenerate ∂-singular point x̄ ∈ ∂M , such that ∂2u(x̄, t0)/∂n∂t �= 0.
The condition that x̄ ∈ ∂M is a ∂-singular point is related, as we shall see in section
3, to the Prandtl condition [15] for boundary-layer separation.

Our main results are based on a complete classification of orbit structures near an
isolated degenerate ∂-singular point. These results extend over several papers and rely
on a delicate analysis of the flow structure near the boundary for both free-slip and
Dirichlet boundary conditions. The first step was to classify the flow structure and its
transitions near the boundary for flows subject only to boundary conditions of zero
normal flow, often called free-slip conditions in fluid dynamics [8]. Second, Ma and
Wang [10] analyzed the case of Dirichlet boundary conditions for a 2-D divergence-free
vector field; in fluid mechanics the Dirichlet condition on the velocity is often called
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the no-slip condition.
Technically speaking, homogeneous Dirichlet boundary conditions for u(·, t0) im-

ply that all points on ∂M are singular points in the usual sense. Hence, to analyze and
to classify the structure of u near the boundary, including the separation point, we
need to use the concept of a ∂-singular point, introduced in [10], which corresponds
to singular points of the normal derivative of u in the usual sense. Finally, in the
present paper we make the connection between the structure of the original velocity
fields and the structure of the normal derivative of the velocity field.

The paper is organized as follows. In section 2, we summarize our previous
results, including a structural stability theorem, necessary conditions on structural
bifurcation, and a singularity classification theory for 2-D divergence-free vector fields.
Section 3 states the structural-bifurcation theorems near a flat boundary for such
fields, which are proved in section 4. Section 5 addresses structural bifurcations near
a curved boundary, and section 6 applies the theory to streamline detachment from the
boundary. It is the results of section 6 that are applied in the companion papers [7, 12]
to boundary-layer separation in the 2-D Navier–Stokes equations for incompressible
flows.

2. Preliminaries. Let M ⊂ R2 be a closed and bounded domain with Cr+1

(r ≥ 2) boundary ∂M , and let TM be the tangent bundle of M . Let Cr
n(TM) be the

space of all Cr vector fields on M that satisfy a boundary condition of no normal flow
(or no penetration), let Dr(TM) be the subspace of Cr

n(TM) that is divergence-free,
and let Br

0(TM) be the subspace of Dr(TM) that satisfies a homogeneous Dirichlet
boundary condition:

Cr
n(TM) = {u ∈ Cr(TM) | un|∂M = 0},

Dr(TM) = {u ∈ Cr(TM) | un|∂M = 0, divu = 0},
Br

0(TM) = {u ∈ Dr(TM) | u|∂M = 0}.

Here un = u · n and uτ = u · τ , while n and τ are the unit normal and tangent vector
on ∂M , respectively. It is easy to see that

Br
0(TM) ⊂ Dr(TM) ⊂ Cr

n(TM) ⊂ Cr(TM).

We start with some basic concepts. Let X = Dr(TM) or Br
0(TM) in the following

four definitions.
Definition 2.1. Two vector fields u, v ∈ X are called topologically equivalent in

X if there exists a homeomorphism of ϕ : M → M , which takes the orbits of u to the
orbits of v and preserves their orientation.

Definition 2.2. Let u ∈ C1([0, T ], X) be a one-parameter family of vector fields
in X. The vector field u0 = u(·, t0) (0 < t0 < T ) is called a bifurcation point of u at
time t0 if, for any t− < t0 and t0 < t+ with t− and t+ sufficiently close to t0, the
vector field u(·, t−) is not topologically equivalent to u(·, t+). In this case, we say that
u(x, t) has a bifurcation at t0 in its global structure.

Definition 2.3. Let u ∈ C1([0, T ], X). We say that u(x, t) has a bifurcation
in its local structure in a neighborhood U ⊂ M of x0 at t0 (0 < t0 < T ) if, for any
t− < t0 and t0 < t+ with t− and t+ sufficiently close to t0, the vector fields u(·, t−)
and u(·, t+) are not topologically equivalent locally in U ⊂ M .

We remark here that bifurcation in the vector field’s local structure does not
imply bifurcation in its global structure. In fact, one can easily construct examples
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(a)                                                         (b)                                                              (c)

p

q

q

p

q

p

Fig. 2.1. Flow structure (a) for t = t− < t0, (b) for t = t0, and (c) for t = t+ > t0.
Bifurcations in local structure occur at t = t0 near both p and q, but there is no bifurcation in global
structure when going from (a) to (c).

showing that flow structure changes in some local area U ⊂ M , but not on the whole
manifold M ; see, for instance, the flow transitions shown in Figure 2.1.

Definition 2.4. A vector field v ∈ X is called structurally stable in X if there
exists a neighborhood O ⊂ X of v such that for any u ∈ O, u and v are topologically
equivalent.

A point p ∈ M is called a singular point of u ∈ Cr
n(TM) if u(p) = 0; a singular

point p of u is called nondegenerate if the Jacobian matrix Du(p) is invertible; u is
called regular if all singular points are nondegenerate.

By definition, in the case where homogeneous Dirichlet boundary conditions are
satisfied, all points on the boundary are singular points. In order to classify the
structure of the divergence-free vector fields near the boundary in this case, and infer
the possible bifurcations in this structure, we need to distinguish between different
types of singular points on the boundary. The concepts of ∂-regular and ∂-singular
points introduced in [10] are crucial in order to study the topological structure of
divergence-free vector fields with homogeneous Dirichlet boundary conditions.

Let p ∈ ∂M , and let U be a neighborhood of p. Then on ∂M ∩U there exist unit
tangent and normal vector fields τ and n. For U sufficiently small, we can extend
these two vector fields to U so that the orbits of n in U are tangent to λn with n
restricted to ∂M ∩U ; here 0 ≤ λ ≤ 1. Note that when U is sufficiently small, for any
two points x, y ∈ ∂M ∩ U , λnx and λny do not intersect within U . The extension of
τ in U is taken to be orthogonal to n.

Definition 2.5. Let u ∈ Br
0(TM) (r ≥ 2).

(i) A point p ∈ ∂M is called a ∂-regular point of u if ∂uτ (p)/∂n �= 0; otherwise,
p ∈ ∂M is called a ∂-singular point of u.

(ii) A ∂-singular point p ∈ ∂M of u is called nondegenerate if

det

⎛
⎜⎜⎜⎝

∂2uτ (p)

∂τ∂n

∂2uτ (p)

∂n2

∂2un(p)

∂τ∂n

∂2un(p)

∂n2

⎞
⎟⎟⎟⎠ �= 0.
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A nondegenerate ∂-singular point of u is also called a ∂-saddle point of u.
Definition 2.6. u ∈ Br

0(TM) (r ≥ 2) is called D-regular if

(i) u is regular in
◦
M , the interior of M , and

(ii) all ∂-singular points of u on ∂M are nondegenerate.
For a D-regular divergence-free vector field v on M , an interior nondegenerate

singular point of v can be either a center or a saddle, and saddles of v must be

connected to saddles. An interior saddle p ∈ ◦
M is called self-connected if p is connected

only to itself, i.e., p occurs in a graph whose topological form is that of the number 8.
The following structural stability theorem in the presence of homogeneous Dirich-

let boundary conditions was proved in [10].
Theorem 2.7 (Ma and Wang [10]). Let u ∈ Br

0(TM) (r ≥ 2). Then u is
structurally stable in Br

0(TM) if and only if
1. u is D-regular;
2. all interior saddle points of u are self-connected; and
3. each ∂-saddle point of u on ∂M is connected to a ∂-saddle point on the same

connected component of ∂M .
Moreover, the set of all structurally stable vector fields is open and dense in Br

0(TM).
Based on Theorem 2.7, the following theorem gives some necessary conditions for

structural bifurcation.
Theorem 2.8. Let u ∈ C1([0, T ], Br

0(TM)) (r ≥ 2).
1. If u(x, t) has a bifurcation in its local structure in an arbitrarily small neigh-

borhood U ⊂ M of x0 at t0 (0 < t0 < T ), then x0 ∈ ◦
M (respectively,

x0 ∈ ∂M) must be a degenerate singular point (respectively, degenerate ∂-
singular point) of u(x, t) at t0.

2. If u(x, t) has a bifurcation in its global structure at t0 (0 < t0 < T ), then
u(x, t0) does not satisfy at least one of the conditions (1)–(3) in Theorem 2.7.

To proceed, we need to recall the definition of indices of singular points of a vector
field. Let p ∈ M be an isolated singular point of v ∈ Cr

n(TM); then

ind(v, p) = deg(v, p),

where deg(v, p) is the Brouwer degree of v at p.

Let p ∈ ∂M be an isolated singular point of v, and let M̃ ⊂ R2 be an extension
of M , i.e., M ⊂ M̃ such that p ∈ M̃ is an interior point of M̃ . In a neighborhood of
p in M̃ , v can be extended by reflection to ṽ such that p is an interior singular point
of ṽ, thanks to the no normal flow condition, i.e., v · n|∂M = 0. Then we define the
index of v at p ∈ ∂M by

ind(v, p) =
1

2
ind(ṽ, p).

Let p ∈ M be an isolated singular point of v ∈ Cr
n(TM). An orbit γ of v is said

to be a stable orbit (respectively, an unstable orbit) connected to p if the limit set
ω(x) = p (respectively, α(x) = p) for any x ∈ γ.

We now introduce a singularity classification theorem for incompressible vector
fields, which will be useful in our discussion of structural bifurcation.

Theorem 2.9 (Ghil, Ma, and Wang [8]). Let p ∈ M be an isolated singular point
of v ∈ Dr(TM), r ≥ 1. Then p is connected only to a finite number of orbits, and the
stable and unstable orbits connected to p alternate when tracing a closed curve around
p. Furthermore
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1. when p ∈ ◦
M , p has 2n (n ≥ 0) orbits, n of which are stable, and the other n

unstable, while the index of p is

ind(v, p) = 1 − n;

2. when p ∈ ∂M , p has n + 2 (n ≥ 2) orbits, two of which are on the boundary
∂M , and the index of p is

ind(v, p) = −n

2
.

No confusion should arise between the integer n, used for counting orbits, and
the notation n for the normal direction to the boundary ∂M .

3. Structural bifurcations near a flat boundary. In this section, we assume
that the boundary ∂M contains a flat part Γ ⊂ ∂M , and consider structural bifur-
cation near a ∂-singular point x̄ ∈ Γ. For simplicity, we take a coordinate system
(x1, x2) with x̄ at the origin and with Γ given by

Γ = {(x1, 0)
∣∣ |x1| ≤ δ}

for some δ > 0. Obviously, the tangent and normal vectors on Γ are the unit vectors
in the x1- and x2-directions, respectively.

Let u ∈ C1([0, T ], Br
0(TM)) (r ≥ 2) be a one-parameter family of divergence-free

vector fields subject to homogeneous Dirichlet boundary conditions. In a neighbor-
hood U ⊂ M of x̄ ∈ Γ, u(x, t) can be expressed near x = 0 by

u(x, t) = x2v(x, t).(3.1)

It is easy to see that u and v have topologically equivalent streamlines in an interior
neighborhood of x = 0. To proceed, we consider the Taylor expansions of both u(x, t)
and v(x, t) at t0 (0 < t0 < T ):⎧⎪⎪⎪⎨

⎪⎪⎪⎩
u(x, t) = u0(x) + (t− t0)u

1(x) + o(|t− t0|2),
u0(x) = u(x, t0),

u1(x) =
∂u(x, t0)

∂t
,

(3.2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v(x, t) = v0(x) + (t− t0)v
1(x) + o(|t− t0|)2,

v0(x) = v(x, t0),

v1(x) =
∂v(x, t0)

∂t
.

(3.3)

Let ui = (ui
1, u

i
2), v

i = (vi1, v
i
2), i = 0, 1. We start with the following conditions

for structural bifurcation.
Assumption (H). Let x̄ = 0 ∈ Γ be an isolated degenerate ∂-singular point of

u0(x), u0 ∈ Ck+1 near x̄ ∈ Γ for some k ≥ 2. Assume that

∂u0(0)

∂n
= 0,(3.4)

ind(v0, 0) �= −1

2
,(3.5)

∂u1(0)

∂n
�= 0,(3.6)

∂k+1u0
1(0)

∂kτ∂n
�= 0.(3.7)
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Some remarks are now in order.
Remark 3.1. Condition (3.4) says that x̄ = 0 ∈ Γ is a ∂-singular point of u0(x). In

a 2-D incompressible flow governed by either the Euler or the Navier–Stokes equations,
this condition is equivalent to the leading-order vorticity vanishing at x̄. The latter
is the so-called Prandtl condition, which Prandtl suggested might identify boundary-
layer separation points in incompressible flows [15].

Remark 3.2. Condition (3.5) amounts to saying that there exist a number n �= 1
of interior orbits of v0 connected to x̄ ∈ Γ. Since u0 = x2v

0, the number of interior
orbits of u0 connected to x̄ ∈ Γ is exactly n �= 1 as well. This shows that x̄ ∈ Γ is
a degenerate ∂-singular point of u0(x), which is necessary for structural bifurcation,
according to our structural stability and bifurcation theorems; see Theorems 2.7 and
2.8 here, or [8, 10].

Remark 3.3. Condition (3.6) states that the first-order term u1 of the Taylor
expansion for the normal derivative of u is different from zero. This is just the
simplest necessary condition of such a type; if it does not hold, we need to work on
a higher-order Taylor expansion, and the corresponding results proved in this article
will be true as well. In fluid-mechanics applications, condition (3.6) is equivalent to
the vorticity associated with u1 not vanishing at the boundary. In addition, it is easy
to see that (3.6) is equivalent to

∂u1
1(0)

∂x2
=

∂u1
1(0)

∂n
�= 0,

which shows that the acceleration of the fluid in the tangential direction near x̄ is
nonzero.

Remark 3.4. Condition (3.7) is a technical condition and amounts to saying
that the tangential component u0

1 of the leading-order term has a nontrivial Taylor
expansion. Furthermore, let k be the smallest integer satisfying condition (3.7). It is
easy to show that k ≥ 2. In fact, u0(x) has the Taylor expansion at x = 0,

u0(x) =

{
cx2 + 2ax1x2 + bx2

2 + x2h1(x),

− ax2
2 + x2h2(x),

(3.8)

with hi(x) = o(|x|) (i = 1, 2). Since x̄ ∈ Γ is a degenerate ∂-singular point of u0(x),
it follows that c = 0, a = 0, which implies that k ≥ 2.

The structural bifurcation of u(x, t) near a degenerate ∂-singular point on a flat
boundary segment is described by the following theorems.

Theorem 3.5. Let u ∈ C1([0, T ], Br
0(TM)) (r ≥ 2) satisfy Assumption (H).

Then there exist a neighborhood

Γ0 = {(x1, 0)
∣∣ |x1| ≤ δ0} ⊂ Γ

of x̄ = 0 and an ε0 > 0 such that all ∂-singular points of u(·, t0±ε) are nondegenerate
for any 0 < ε ≤ ε0. Moreover,

1. if the index ind(v0, 0) is an integer, then one of u(x, t0 ± ε) has exactly two
∂-singular points on Γ0, and the other has no ∂-singular points on Γ0; and

2. if the index ind(v0, 0) is not an integer, then each of u(x, t0 ± ε) has exactly
one ∂-singular point on Γ0.

Theorem 3.6 (structural bifurcation theorem). Let u ∈ C1([0, T ], Br
0(TM))

(r ≥ 2) satisfy Assumption (H). Then
1. the vector field u has a bifurcation in its local structure at (x̄, t0); and
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2. if x̄ ∈ ∂M is a unique ∂-singular point of u with the same index as ind(v0, 0)
on ∂M , then u(x, t) has a bifurcation in its global structure at t = t0.

The proofs of these two theorems are based on analyzing the orbits of u to provide
a complete classification of the local structure of u near (x̄, t0). The bifurcation results
follow immediately from the classification.

4. Proofs of the main theorems.

4.1. Proof of Theorem 3.5. The proof of the theorem is a direct consequence
of the following three propositions.

Proposition 4.1. There exist a neighborhood Γ0 ⊂ Γ of x̄ = 0 and an ε0 > 0
such that all ∂-singular points of u(·, t0 ± ε) are nondegenerate for any 0 < ε ≤ ε0.

Proof. Let x∗ ∈ Γ, x∗ = (x∗
1), and 0 < |x∗

1| ≤ δ0 with 0 < δ0 sufficiently small, to
be chosen later. Then

∂u

∂n
(x∗, t0 ± ε) =

∂u

∂x2
(x∗, t0 ± ε) = 0.(4.1)

By the Taylor expansion (3.2) and condition (3.6) it suffices to consider only the
first-order approximation of (3.2). Hence,

∂u0
i (x

∗
1, 0)

∂x2
± ε

∂u1
i (x

∗
1, 0)

∂x2
= 0 (i = 1, 2).(4.2)

We need to show that

det

⎛
⎜⎜⎜⎜⎝

∂2u0
1

∂x1∂x2
± ε

∂2u1
1

∂x1∂x2

∂2u0
1

∂x2
2

± ε
∂2u1

1

∂x2
2

∂2u0
2

∂x1∂x2
± ε

∂2u1
2

∂x1∂x2

∂2u0
2

∂x2
2

± ε
∂2u1

2

∂x2
2

⎞
⎟⎟⎟⎟⎠

x=(x∗
1 ,0)

�= 0.(4.3)

For u ∈ C1([0, T ], Br
0(TM)), u(x1, 0, t) = 0 for all (x1, 0) ∈ Γ and 0 ≤ t ≤ T . Thus

we obtain

∂u1

∂x1
(x1, 0, t) = 0 ∀ |x1| ≤ δ̄.

Thanks to the fact that u is divergence-free, we have

∂u2

∂x2
(x1, 0, t) = −∂u1

∂x1
(x, 0, t) = 0 ∀ |x1| ≤ δ̄.

Consequently

∂u0
2(x1, 0)

∂x2
± ε

∂u1
2(x1, 0)

∂x2
= 0 ∀ |x1| ≤ δ̄,

which yields

∂2u0
2(x

∗
1, 0)

∂x1∂x2
± ε

∂2u1
2(x

∗
1, 0)

∂x1∂x2
= 0.

To verify (4.3), it suffices to prove that

∂2u0
1(x

∗
1, 0)

∂x1∂x2
± ε

∂2u1
1(x

∗
1, 0)

∂x1∂x2
�= 0,



1584 MICHAEL GHIL, TIAN MA, AND SHOUHONG WANG

since the sum of the diagonal terms in (4.3) is zero thanks to the fact that ∂u/∂x2 is
divergence-free.

From conditions (3.7) and (3.6) we get⎧⎪⎪⎨
⎪⎪⎩

∂u0
1(x1, 0)

∂x2
= αxk

1 + o(|x1|k), α �= 0,

∂u1
1(x1, 0)

∂x2
= β + o(|x1|), β �= 0.

(4.4)

Therefore it follows from (4.2) that

ε = ±α

β
x∗k

1 + o(|x∗
1|k).(4.5)

Thus from (4.4) and (4.5) we obtain that

∂2u0
1(x

∗
1, 0)

∂x1∂x2
± ε

∂2u1
1(x

∗
1, 0)

∂x1∂x2
= αkx∗k−1

1 + o
(
|x∗

1|k−1
)
,

which is different from zero for 0 < |x∗
1| ≤ δ0, provided that δ0 is sufficiently small.

Hence (4.3) follows, and the proof of the proposition is complete.
Proposition 4.2. If ind(v0, 0) = integer, then one of u(x, t0 ± ε) has no ∂-

singular points on Γ0, and the other one has exactly two ∂-singular points on Γ0 with
one ∂-singular point on each side of x̄ = 0.

Proof. From (3.1) it is easy to see that the zero points of v(x, t) on Γ are equivalent
to the ∂-singular points of u(x, t). Hence we only have to prove the assertion for the
vector field v(x, t0 ± ε).

According to (3.8) we have, for the component v2 that is normal to Γ,

v2(x1, 0, t) = 0 ∀x1 ∈ Γ, t ≥ 0.

By (3.6) and (3.7) we infer from (3.1) that{
v0
1(x1, 0) = αxk

1 + o(|x1|k), α �= 0,

v1
1(x1, 0) = β + g(x1), β �= 0, g(0) = 0.

(4.6)

On the other hand, if ind(v0, 0) is an integer, then by Remark 3.2 the number n
of interior orbits of v0 connected to x̄ = 0 is even. Hence, one of the two boundary
orbits of v0 connected to x̄ = 0 is stable, and the other one is unstable. It follows
that the exponent k in (4.6) is even, i.e., k = 2m (m ≥ 1).

Consider the two equations

0 = v1(x1, 0, t0 + ε) = v0
1(x1, 0) + εv1

1(x1, 0) + o(|ε|)(4.7)

= αx2m
1 + εβ + εg(x1) + o(|ε|, |x1|2m),

0 = v1(x1, 0, t0 − ε) = v0
1(x1, 0) − εv1

1(x1, 0) + o(|ε|)(4.8)

= αx2m
1 − εβ − εg(x1) + o(|ε|, |x1|2m),

where m ≥ 1. Without loss of generality, assume that α, β > 0. Then there is a
δ0 > 0 such that for any ε > 0 sufficiently small, (4.8) has only two solutions x±

1 of
opposite sign, x−

1 (ε) < 0 < x+
1 (ε), in the interval (−δ0, δ0), and (4.7) has no solutions

in (−δ0, δ0). The claim is verified.
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V1
V2

Γ0

γ1

γ2

γn

Fig. 4.1. Case of n interior orbits connected to x̄ = 0 ∈ Γ, where Γ ⊂ ∂M is flat, and n ≥ 3 is
odd.

Proposition 4.3. If ind(v0, 0) = noninteger, then for any ε > 0 sufficiently
small each u(x, t0 ± ε) has exactly one ∂-singular point on Γ.

Proof. Indeed, when ind(v0, 0) = −n/2 is a fraction, then n is odd. Hence the
exponent k in (4.6) is odd, i.e., k = 2m + 1 (m ≥ 1). Therefore each of the two
equations

αx2m+1
1 + εβ + εg(x1) + o

(
|ε|, |x1|2m+1

)
= 0,

αx2m+1
1 − εβ − εg(x1) + o

(
|ε|, |x1|2m+1

)
= 0

has exactly one solution in (−δ0, δ0).

4.2. Proof of Theorem 3.6. As mentioned earlier, u and v have topologically
equivalent streamlines in an interior neighborhood of x = 0; hence bifurcation in the
local structure of u at x̄ = 0 is equivalent to that of v. As a result, we only have
to consider the local bifurcation for the vector field v. We divide the proof into two
steps.

Step 1. The case where ind(v0, 0) = integer. By Theorem 3.5, the number of
boundary saddle points of v0 + εv1 in a small neighborhood Γ0 ⊂ Γ ⊂ ∂M of x̄ is not
the same as that for v0 − εv1. Therefore, v0 + εv1 and v0 − εv1 are not topologically
equivalent locally near x̄ ∈ Γ ⊂ ∂M .

Step 2. The case where ind(v0, 0) = fraction. Without loss of generality, we
assume that the two orbits connected to x̄ = 0 on Γ0 ⊂ ∂M are stable (i.e., α < 0 in
(4.6)), and v1

1(0) > 0 (i.e., β > 0 in (4.6)). Let x+ = (x+
1 , 0) and x− = (x−

1 , 0) ∈ Γ0 ⊂
∂M be the singular points of v0 +εv1 and v0−εv1, respectively. Hence, x−

1 < 0 < x+
1

as in Theorem 3.5. The nondegeneracy of both x− and x+ implies that

ind(v0 ± εv1, x±) = −1

2
,

and there is exactly one orbit γ+(ε) of v0 + εv1 in
◦
M connected to x+ (respectively,

exactly only one orbit γ−(ε) of v0 − εv1 in
◦
M connected to x−).

By (3.5) and Remark 3.2, there are n (n ≥ 3 and odd) orbits γi (1 ≤ i ≤ n) of v0

in
◦
M connected to x̄ ∈ Γ; see Figure 4.1. Let V1 ⊂ ◦

M (respectively, V2 ⊂ ◦
M) be the

domain near x̄ = 0 ∈ Γ0 ⊂ ∂M enclosed by ∂M and γ1 (respectively, by ∂M and γn).

Since v1
1(0) > 0, the flow of v0 + εv1 crosses γn transversally and enters into

V2 (respectively, the flow of u0 − εu1 crosses γ1 transversally and enters into V1).
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x 0 Γ0

γ

γ1 γi

γn

U1

0 x+

U2

U1

+

+γ1

γ

γ
i

n
+

+

+

(a)                                                                                                     (b)

U 
2

γ+

Fig. 4.2. Sketch illustrating the proof of assertion (1) in Theorem 3.6: (a) orbits at t− < t0,
and (b) orbits at t+ > t0

Therefore, we have

γ+(ε) ⊂ V2, γ−(ε) ⊂ V1.(4.9)

Obviously,

lim
ε→0

γ−(ε) = γ1, lim
ε→0

γ+(ε) = γn.

Moreover, there are n orbits γ+
i = γ+

i (ε) of v0 + εv1 in V − V1 (respectively, n orbits
γ−
i = γ−

i (ε) of v0 − εv1 in V −V2), which are connected to singular points of v0 + εv1

(respectively, v0 − εv1) such that

lim
ε→0

γ+
i (ε) = γi, lim

ε→0
γ−
i (ε) = γi,

where V ⊂ ◦
M is a neighborhood of x̄ = 0.

Let U−
1 (respectively, U+

2 ) be the domain enclosed by ∂M and γ− (respectively,
by ∂M and γ+), and U−

2 = V − U−
1 (respectively, U+

1 = V − U+
2 ); see Figures 4.2(a)

and 4.2(b), respectively. We infer from (4.9) that

γ+
i ⊂ U+

1 , γ−
i ⊂ U−

2 (1 ≤ i ≤ n).(4.10)

We know that, under topological equivalence, the orbits of v0 + εv1 connected
to a singular boundary point are mapped, preserving orientation, to the orbits of
v0 − εv1 connected to a singular boundary point. Since v0 + εv1 and v0 − εv1 are
topologically equivalent locally at x̄ ∈ Γ, the restriction of v0 + εv1 to U+

1 would have
to be topologically equivalent to v0 − εv1 in U−

1 . This is in contradiction with (4.10).
Thus, assertion (1) of Theorem 3.6 is proven.

Assertion (2) of Theorem 3.6 is a corollary of assertion (1). Indeed, if x̄ ∈ ∂M is
a unique singular point of u0 which has the same index as ind(v0, 0) on ∂M , then the
structural bifurcation of u(x, t) locally at (x̄, t0) implies the structural bifurcation in
its global structure.

The proof of Theorem 3.6 is thus complete.
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5. Structural bifurcations near a curved boundary.

5.1. Main theorems. We now generalize in this section the main bifurcation
theorems in section 3 for the flat boundary case to the curved boundary case.

Consider structural bifurcation near a ∂-singular point x̄ ∈ ∂M of u(x, t) on a
general Cr+1 boundary ∂M (r ≥ 2). Let x̄ ∈ ∂M and (x1, x2) be an orthogonal
coordinate system with origin x̄, which has its x1-axis tangent to ∂M at x̄, and its
x2-axis oriented in the inward normal direction.

Let u ∈ C1([0, T ], Br
0(TM)) (r ≥ 2) have the Taylor expansion at t0 (0 < t0 < T )

as in (3.2). In particular, let

u0 = (u0
1, u

0
2) = u(x, t0),

u1 = (u1
1, u

2
1) =

∂u(x, t0)

∂t
.

In addition, let n be the number of interior orbits of u0(x) connected to x̄. Then we
can restate Assumption (H) as (H′) below, with condition (3.5) on the index there
replaced by a geometrical condition n �= 1, i.e., (5.2) below.

Assumption (H′). Let x̄ ∈ ∂M be an isolated degenerate ∂-singular point of
u0(x) = u(x, t0), with u0 ∈ Ck+1 near x̄ ∈ Γ for some k ≥ 2. Assume that

∂u0(x̄)

∂n
= 0,(5.1)

n �= 1,(5.2)

∂u1
1(x̄)

∂n
�= 0,(5.3)

∂k+1u0
1(x̄)

∂kτ∂n
�= 0.(5.4)

We have then the following structural bifurcation theorems, as in section 3.

Theorem 5.1. Let u ∈ C1([0, T ], Br
0(TM)) satisfy Assumption (H′) and let

r ≥ 2. Then in a neighborhood Γ ⊂ ∂M of x̄, the ∂-singular points of u(x, t0 ± ε) are
nondegenerate for any ε > 0 sufficiently small. Moreover,

1. if n = even (n ≥ 0), then one of u(x, t0 ± ε) has two ∂-singular points on Γ,
and the other one has no ∂-singular point on Γ; and

2. if n = odd (n ≥ 3), then each of u(x, t0 ± ε) has only one ∂-singular point on
Γ.

Theorem 5.2 (structural bifurcation theorem). Let u ∈ C1([0, T ], Br
0(TM)) be

a one-parameter family of divergence-free vector fields satisfying Assumption (H′) and
r ≥ 2. Then the following assertions hold true:

1. u(x, t) has a bifurcation in its local structure at (x̄, t0); and
2. if x̄ ∈ ∂M is a unique degenerate ∂-singular point of u0(x) = u(x, t0) on ∂M ,

then u(x, t) has a bifurcation in its global structure at t0.

5.2. Coordinate transformation. The main ideas that prove Theorems 5.1
and 5.2 are as follows. First, we introduce a local coordinate transformation, which
preserves the divergence-free character of the vector field and maps a neighborhood
Γ ⊂ ∂M of x̄ to a flat boundary. This allows us to show that Assumption (H′) is equiv-
alent to Assumption (H) for the new transformed vector field. Then Theorems 5.1
and 5.2 follow immediately from Theorems 3.5 and 3.6.
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In the coordinate system (x1, x2) introduced at the beginning of this section, the
boundary ∂M can be expressed locally near x̄ = 0 ∈ ∂M by

x2 = f(x1), f(0) = 0, f ′(0) = 0.(5.5)

We make the local coordinate transformation{
x̃1 = x1,

x̃2 = x2 − f(x1).
(5.6)

Obviously, the transformation (5.6) takes a neighborhood U ⊂ M of x̄ to a domain
Ũ ⊂ R2

+ = {(x̃1, x̃2) ∈ R2 | x̃2 ≥ 0} and maps the boundary part U ∩ ∂M to a
neighborhood of x = 0 on the x̃1-axis.

Let ϕ : U → Ũ be the transformation (5.6), and ϕ∗ : Cr(TU) → Cr(T Ũ) the
isomorphism induced by ϕ. It is easy to see that

ϕ∗ = Dϕ =

⎛
⎝ 1 0

−f ′(x̃1) 1

⎞
⎠ ,

and, for any u ∈ Cr(TU),

ũ = ϕ∗ ◦ u =

⎛
⎝ u1

u2 − f ′(x̃1)u1

⎞
⎠ .(5.7)

Then it is a direct calculation to derive the following lemma.
Lemma 5.3. If u ∈ Cr(TU) is divergence-free, then ũ = ϕ∗ ◦u is also divergence-

free. Moreover, as u|∂M∩U = 0, then ũ(x̃1, 0) = 0, and{
ũ(x̃) = x̃2ṽ(x̃),

ṽ2(x̃1, 0) = 0.
(5.8)

5.3. Proof of Theorems 5.1 and 5.2. According to Theorems 3.5 and 3.6,
the proof of these two theorems will be achieved in a few lemmas, as follows.

Lemma 5.4. Let u ∈ C1([0, T ], Br
0(TM)) satisfy Assumption (H′). Then the

vector field ũ = ϕ∗ ◦ u = x̃2ṽ(x̃, t) satisfies Assumption (H).
Proof. Notice that ϕ maps x̄ = 0 to x̃ = 0. Since u and ũ are topologically

equivalent locally near x = 0 and x̃ = 0, (5.2) implies that the number n of interior
orbits connected to x̃ = 0 of ṽ(x, t0) is different from 1. Hence

ind(ṽ(x, t0), 0) = −n

2
�= −1

2
.

By (5.7), ũ1 = u1, and ϕ∗ takes the inward normal vector n at x = 0 to the
normal vector ñ = (0, 1) at x̃ = 0. Therefore, we have

∂u1
1(0)

∂n
�= 0 =⇒ ∂ũ1

1(0)

∂x2
�= 0,

where u1
1(x) = ∂u(x, t0)/∂t.
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By tensor analysis, we know that, under a coordinate transformation ϕ : U → Ũ ,
the directional derivative of a function f(x) satisfies ∂f/∂r = ∂f/∂r̃, where r is a
vector and r̃ = (Dϕ)r.

By (5.7) we see that u0
1 = ũ0

1, and ñ = (0, 1) at x̃ = 0. Hence we have

∂k

∂τk
∂u0

1(0)

∂n
=

∂k

∂τ̃k
· ∂ũ

0
1(0)

∂ñ
=

∂k

∂xk
1

∂ũ0
1(0)

∂x2
,

and the proof of the lemma is complete.
Lemma 5.5. A point x ∈ ∂M ∩U is a ∂-regular point of u ∈ Br

0(TM) if and only
if x̃ = ϕ(x) = (x̃1, 0) is a ∂-regular point of ũ = Dϕ · u.

Proof. By Definition 2.5, it suffices to show that the two vector fields ∂u/∂n and
∂ũ/∂x̃2 have the same singular points on the boundary in the sense of homeomor-
phism; here

∂u

∂n
= (N · ∇)u = n1

∂u

∂x1
+ n2

∂n

∂x2

and the vector field N is defined in U with the unit modulus |N | = 1 such that the
orbits of N are the normal lines λn in U . Note that, when U is properly chosen, for
any x, y ∈ U ∩ ∂M , x �= y, the normal lines λnx and λny do not intersect within U .

Equivalently, we proceed to check the desired result for the two vector fields ∂ũ/∂ñ
and ∂ũ/∂x̃2, where ∂ũ/∂ñ is the transformation of ∂u/∂n that is expressed by⎧⎪⎪⎨

⎪⎪⎩
∂ũ

∂ñ
=

(
Ñ · ∇̃

)
ũ = ñ1

∂ũ

∂x̃1
+ ñ2

∂ũ

∂x̃2
,

Ñ =

(
ñ1

ñ2

)
= Dϕ ◦N =

(
1 0

−f ′ 1

)(
n1

n2

)
=

(
n1

n2 − f ′n1

)
.

(5.9)

From (5.8) we see that

ũ(x̃1, 0) = 0 ∀ x̃1 ∈ ∂R2
+ ∩ Ũ .(5.10)

By (5.9) and (5.10) we deduce that

∂ũ

∂ñ
= (n2 − f ′(x1)n1)

∂ũ

∂x̃2
on ∂R2

+ ∩ Ũ .(5.11)

From (5.5) and n2 �= 0 for x ∈ ∂M near x̄, the result follows and the proof of the
lemma is complete.

Lemma 5.6. A point x ∈ ∂M ∩U is a ∂-saddle point of u ∈ Br
0(TM) if and only

if x̃ = ϕ(x) ∈ ∂R2
+ ∩ Ũ is a ∂-saddle point of ũ = Dϕ · u.

Proof. It suffices to prove that ∂ũ/∂ñ and ∂ũ/∂x̃2 have the same nondegenerate
singular points on the boundary Γ = ∂R2

+ ∩ Ũ = {(x̃1, 0) | |x̃1| < δ}, i.e., both
Jacobian determinants

det

⎛
⎜⎜⎜⎝

∂2ũ1

∂x̃1∂ñ

∂2ũ1

∂x̃2∂ñ

∂2ũ2

∂x̃1∂ñ

∂2ũ2

∂x̃2∂ñ

⎞
⎟⎟⎟⎠ and det

⎛
⎜⎜⎜⎜⎝

∂2ũ1

∂x̃1∂x̃2

∂2ũ1

∂x̃2
2

∂2ũ2

∂x̃1∂x̃2

∂2ũ2

∂x̃2
2

⎞
⎟⎟⎟⎟⎠

have the same nonzero points on Γ.
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From (5.8) we see that

∂ũ2(x̃1, 0)

∂x2
= 0 ∀ |x1| < δ(5.12)

for some δ > 0. By (5.11) and (5.12) one deduces that

∂2ũ2(x̃1, 0)

∂x̃1∂ñ
= 0,

∂2ũ2(x̃1, 0)

∂x̃1∂x̃2
= 0.

Hence we only need to prove that

∂2ũ1(x̃1, 0)

∂x̃1∂ñ
�= 0 ⇐⇒ ∂2ũ1(x̃1, 0)

∂x̃1∂x̃2
�= 0,(5.13)

∂2ũ2(x̃1, 0)

∂x̃2∂ñ
�= 0 ⇐⇒ ∂2ũ2(x̃1, 0)

∂x̃2
2

�= 0.(5.14)

From (5.11) and (5.12) we immediately derive (5.14).
Thanks to (5.8), for any integer k ≥ 0,

∂kũ1(x̃1, 0)

∂x̃1k
= 0.(5.15)

By assumption, (x̃1, 0) is a singular point of ∂ũ/∂x2, i.e., a ∂-saddle point of ũ:

∂ũ1(x̃1, 0)

∂x2
= 0.(5.16)

From (5.15) and (5.16) it follows that

∂2ũ1(x̃1, 0)

∂x̃1∂ñ
=

∂

∂x̃1

[
ñ1

∂ũ1

∂x̃1
+ ñ2

∂ũ1

∂x̃2

] ∣∣∣∣∣
x̃=(x̃1,0)

= ñ2
∂ũ1(x̃1, 0)

∂x̃1∂x̃2
.

By (5.9), ñ2 = n2 − f ′(x1)n1 �= 0 for x = (x1, x2) ∈ ∂M near x̄ = 0. Thus we derive
(5.13), and the proof is complete.

6. Applications to boundary-layer separation.

6.1. Two examples. In order to understand intuitively the connection between
structural bifurcation and boundary-layer separation, we proceed by discussing two
typical examples that illustrate how structural bifurcations occur in some fluid flows.
For simplicity, we consider in this section only bifurcation near flat boundaries.

Let u ∈ C1([0, T ], Br
0(TM)), x̄ ∈ Γ ⊂ ∂M be an isolated ∂-singular point of

u0(x) = u(x, t0), 0 < t0 < T , where Γ is a flat part of ∂M . We take a coordinate
system (x1, x2) with x̄ at the origin and Γ = {x1, 0)

∣∣ |x1| < δ}. Thus u(x, t) can be
expressed in a neighborhood U ⊂ M of x̄ by

u(x, t) = x2v(x, t),(6.1)
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Fig. 6.1. Boundary-layer separation and reattachment near a flat boundary.

as in section 3. Let

v0(x) = v(x, t0) = (v0
1(x), v0

2(x)),

v1(x) =
∂

∂t
v(x, t0) = (v1

1(x), v1
2(x)).

Example 6.1. When the index of the vector field v0(x) at the singular point x̄ = 0
is zero, i.e., ind(v0, 0) = 0, structural bifurcation occurs, as shown in Figure 6.1. The
figure corresponds to boundary-layer separation of an incompressible, initially parallel
flow over a flat plate.

Figure 6.1(a) shows the flows structure of u(x, t0−ε), a typical shear flow near the
boundary. At the time instant t0 − ε, with ε > 0 small, the flow exhibits no singular
points near x̄ = 0. At the time instant t0, the time at which structural bifurcation
occurs, u0(x) = u(x, t0) is given by Figure 6.1(b), which has an isolated ∂-singular
point x̄ = 0 ∈ ∂M . At a later time, u(x, t0 + ε) is given by either Figure 6.1(c) or
Figure 6.1(d). Even more complicated flow patterns are possible in the recirculation
region, but in a real fluid the figure-eight streamline in Figure 6.1(d) will be affected by
the viscosity and evolve into two separate, counterrotating vortices. On the boundary,
there are exactly two ∂-saddle points on ∂M near x̄ = 0, denoted by x− and x+ in
Figures 6.1(c) and 6.1(d). We shall prove hereafter that the pattern shown in Figure
6.1(c) is generic.

Example 6.2. When ind(v0, 0) = −1, global structural bifurcation of u may occur,
due to a local transition near x̄ ∈ ∂M . An example of such a global bifurcation of
an incompressible flow field is shown in Figure 6.2. The transition from Figure 6.2(a)
through Figure 6.2(b) to Figure 6.2(c) is more idealized than in Figure 6.1 but is
entirely consistent with our rigorous results, as well as physically plausible.

6.2. Boundary-layer separation. We now address the separation of stream-
lines and their reattachment in a 2-D divergence-free vector field, from the point of
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x x x

(a)                                                                                (b)                                                                               (c)

Fig. 6.2. Global structural bifurcation of a 2-D incompressible flow in a compact domain.

view of the rigorous results in sections 3 and 5. The connection to actual boundary-
layer separation in an incompressible fluid governed by the Navier–Stokes equations
is made in the companion papers [7, 12].

We start with Assumption (H) in the case where ind (v0, 0) = 0, i.e., there are
no interior orbits of u0 connected to x̄ = 0. For convenience, we call it Assumption
(H0), and it reads as follows.

Assumption (H0). Let x̄ = 0 ∈ Γ be an isolated degenerate ∂-singular point of
u0(x), u0 ∈ Ck+1 near x̄ ∈ Γ for some k ≥ 2. Assume that

∂u0(0)

∂n
= 0,(6.2)

ind(v0, 0) = 0,(6.3)

∂u1(0)

∂n
�= 0,(6.4)

∂k+1u0
1(0)

∂kτ∂n
�= 0.(6.5)

Theorem 6.3. Let u ∈ C1([0, T ], Br
0(TM)) be as given in (6.1) satisfying As-

sumption (H0). Then the following conclusions hold:
1. There must be some closed orbits of u separated from x̄ = 0 ∈ ∂M , as shown

schematically in either Figure 6.1(c) or Figure 6.1(d).
2. The flow structure after the separation enjoys the following properties:

(a) there are exactly two ∂-saddle points x− and x+ of u(·, t) near x̄ = 0
with one on each side of x̄, x− < x̄ < x+;

(b) x− and x+ are connected by an extended interior orbit γ(t) that consists
of orbits of u(·, t); and

(c) the closed orbits of conclusion (1) above are enclosed by the extended
orbit γ(t) and the portion of the boundary between x− and x+.

3. The whole extended orbit γ(t) shrinks to x̄ as t → t0.
A few remarks are now in order.
Remark 6.4. The closed orbits in Figures 6.1(c), 6.1(d), and 6.2(a)–(c) corre-

spond, in a real fluid, to isolated vortices or, in the case of figure-eight ones, to pairs
of counterrotating vortices.

Remark 6.5. The separation occurs as t crosses the critical instant t0 from either
left to right or from right to left; this is dictated by the orientation of u1 in comparison
to that of u0 in the expansion (3.2).
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Fig. 6.3. Convergence of an extended orbit γ(ε) → x̄ = 0.

Remark 6.6. The reattachment of a streamline γ(t) to the boundary, as described
in conclusion 2(b) above, differs from a particle’s streakline (i.e., from its path in real
time): as the vortex grows in time, particles are either trapped inside the vortex or
pushed into the interior of the fluid, away from the vortex.

Proof of Theorem 6.3. By Theorem 3.5, without loss of generality, we assume
that u(x, t0 + ε) has two ∂-saddle points x−(ε) and x+(ε), and u(x, t0 − ε) has none.
Then both ∂-saddle points x−(ε) and x+(ε) of u(x, t0 + ε) tend to x = 0 as ε → 0.

By assumption, the singular point x̄ ∈ ∂M of v0(x) is isolated; therefore the
stability lemma of extended orbits (Lemma 7.2) in the appendix ensures that both
∂-saddle points x−(ε) and x+(ε) must be connected by an extended orbit γ(ε) with
γ(ε) → x̄ as ε → 0; see Figure 6.3. Because the sum of the indices of the singular
points near x̄ ∈ ∂M of u(x, t0 ± ε) is zero, there exist centers of v(x, t0 + ε) near γ(ε),
which converge to x̄ ∈ ∂M as ε → 0. The other assertions are even easier to verify.

In the above theorem, there might be several centers that appear in the recircula-
tion region. However, subject to an additional but generic assumption, the following
theorem shows that there must be exactly one center that separates from the boundary
near x̄.

Theorem 6.7. Let u ∈ C1([0, T ], Br
0(TM)) be as given in (6.1); satisfy Assump-

tion (H0) with k = 2, and

∂2u0
1(0)

∂x2
2

�= 0.(6.6)

Then the center separated from x̄ ∈ ∂M is unique, as shown in Figure 6.1(c).
Remark 6.8. Consider the Taylor expansion of the vorticity ω = −∂u2/∂x1 +

∂u1/∂x2 of the vector field u:⎧⎨
⎩

ω(x, t) = ω0(x) + ω1(x)(t− t0) + o((t− t0)
2),

ω0(x) = ω(x, t0), ω1(x) =
∂ω

∂t
(x, t0).

(6.7)

Conditions (6.2)–(6.4), and (6.6) are equivalent, respectively, to

ω0(0) = 0,(6.8)

∂2ω0(0)

∂x2
1

�= 0,(6.9)

ω1(0) �= 0,(6.10)

∂ω0(0)

∂n
�= 0.(6.11)
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Proof of Theorem 6.7. First we observe that conditions (6.2), (6.4), and (6.5) are
equivalent to the following conditions on v:

∂2v0
1(0)

∂x2
1

�= 0,(6.12)

∂v0
1(0)

∂x2
�= 0,(6.13)

v1
1(0) �= 0.(6.14)

We only have to prove that the interior singular point of v(x, t0 +ε) near x̄ ∈ ∂M
is unique. By the Taylor expansion, we have{

v1(x, t0 + ε) = v0
1(x) + εv1

1(x) + o(|ε|),
v2(x, t0, ε) = v0

2(x) + εv1
2(x) + o(|ε|).

By the nondivergence of u0(x) and by (6.12) and (6.13), we derive{
v0
1(x) = λx2 + αx2

1 + o(|x1|2, |x2|), α �= 0, λ �= 0,

v0
2(x) = −αx1x2 + x2 · o(|x|).

By (6.14) we have {
v1
1(x) = β + O(|x|), β < 0,

v1
2(x) = x2 ·O(|x|).

Hence the interior singular points (x̃1, x̃2) of v(x, t0 + ε) with x̃2 > 0 satisfy the
equations ⎧⎪⎨

⎪⎩
αx2

1 + λx2 + εβ + o(|ε|, |x2|, |x1|2) = 0,

−αx1 + ε ·O(|x|) + o(|x|) = 0,

α �= 0, λ �= 0, β < 0.

(6.15)

It follows from the implicit function theorem that a solution (x̃1, x̃2) with x̃2 > 0, if
it exists, is unique for any ε > 0 sufficiently small. The existence of such a solution
to (6.15) is derived by Theorem 6.3, and the proof is complete.

Remark 6.9. The set of all vector fields u satisfying (6.12) and (6.13) is open and
dense in the topological space

A =
{
u ∈ C1([0, T ], B3

0(TM))
∣∣u satisfy Assumption (H0)

}
.

Hence, Theorem 6.3 shows that the separation from the boundary of a simple vortex
is generic.

7. Appendix. Extended orbits and their stability. The purpose of this
appendix is to recall a lemma on stability of extended orbits [11]. We start with a
definition.

Definition 7.1. Let v ∈ Cr(TM) be a vector field. A curve γ ⊂ M is called an
extended orbit of v if

(i) it is a union of curves

γ =
⋃
i=1

γi;



STRUCTURAL BIFURCATION AND BOUNDARY-LAYER SEPARATION 1595

p

p

p
γ1

γ2

γi

1

2

i

Fig. 7.1. An extended orbit.

(ii) either γi is an orbit of v, or γi consists of both orbits and singular points of
v; and

(iii) the ω-limit set of γi is the α-limit set of γi+1,

ω(γi) = α(γi+1),

whenever γi and γi+1 are orbits of v; namely, the end points of γi are singular
points of v, and the starting end point of γi+1 is the finishing end point of γi;
see Figure 7.1.

The point p1 = α(γ1) is called the starting point of the extended orbit γ.
The following stability lemma for extended orbits has been proved by Ma and

Wang [11] in Step 2 of their proof of Lemma 4.5. We restate it here as a separate
lemma since it is quite useful in analyzing the orbits of families of vector fields, and
thus in solving some problems in 2-D incompressible fluid flows.

Lemma 7.2 (stability of extended orbits [11]). Let vn ∈ Cr(TM) be a sequence
of 2-D vector fields with limn→∞ vn = v ∈ Cr(TM). Suppose that γn ⊂ M is
an extended orbit of vn and the starting points pn1 of γn converge to p1. Then the
extended orbits γn of vn converge to an extended orbit γ of v with starting point p1.

Acknowledgments. The authors are grateful to an anonymous referee for pro-
viding insightful comments. Preliminary results of this investigation were presented
at the the Fourth International Conference on Dynamical Systems and Differential
Equations held in Wilmington, North Carolina, in May 2002, and at the SIAM Con-
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AN AGE-STRUCTURED EPIDEMIC MODEL IN A PATCHY
ENVIRONMENT∗

WENDI WANG† AND XIAO-QIANG ZHAO‡

Abstract. A time-delayed epidemic model is proposed to describe the dynamics of disease
spread among patches. An age structure is incorporated in order to simulate the phenomenon that
some diseases only occur in the adult population. Sufficient conditions are established for global ex-
tinction and uniform persistence of the disease. One example shows that the disease could undergo
persistence-extinction-persistence switches as the migration rate of juveniles increases, although juve-
niles are immune and cannot transmit the disease. The second example indicates that this switching
phenomenon also happens when juveniles migrate with susceptible adults.

Key words. epidemic model, population dispersal, stage structure, persistence and extinction
of disease

AMS subject classifications. 92D30, 34K20, 37N25

DOI. 10.1137/S0036139903431245

1. Introduction. Population dispersal plays an important role in the dynamics
of epidemic diseases. There has been much evidence that diseases spread from one
region to other regions due to the immigration of infective individuals. For example,
the arrival of new infectives has been demonstrated as being important in the out-
breaks of measles observed in Iceland (see [5]); in the 19th century, cholera spread
from its ancestral site in the Orient to other parts of the world, producing a pandemic
in Europe; in the 14th century, Bubonic plague was transmitted to Europe and killed
perhaps one third to one half of Europe’s population, which was probably caused by
trading ships moving from the East to Europe. Hence, it is important to use math-
ematical models to understand the effect of population dispersal on the spread of a
disease.

Brauer and van den Driessche [4] proposed an epidemic model with population
dispersal by adding an immigration term, where infective individuals enter the system
at a constant rate. A constant immigration term has a stabilizing effect on the
dynamics and tends to increase the minimum number of infective individuals in the
models (see [3]).

In [19] we proposed an epidemic model for many patches where immigration
rates and emigration rates of infective individuals depend on their numbers, and
showed that population dispersal has a significant effect on a disease outbreak. Other
researchers [1, 2] have studied multicity epidemic models and their basic reproduction
numbers. For the models in [19, 1, 2], it is assumed that all the individuals in one
patch have the same ability to transmit a disease and the same risk of being infected
by a disease. For some diseases, such as sexual diseases, it is reasonable to consider
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the disease transmission in adult population and neglect transmission in juveniles. In
order to incorporate these points into epidemic models with population dispersal, we
may divide a population into two stages: juvenile stage and adult stage (see, e.g., [6]).
For simplicity, we assume that

(A1) disease transmission occurs only in adult individuals, and juvenile individuals
are immune to the disease;

(A2) juvenile individuals do not have the ability to reproduce, and adults are re-
sponsible for the reproduction of the population.

In the case of population dispersal among n patches, which may simulate n cities
or n countries, let Ji be the number of juvenile individuals in patch i and Ai be the
number of adult individuals in patch i. When the patches are isolated, we assume
that Ji satisfies the following equation:

dJi
dt

= Bi(Ai)Ai − μiJi,(1.1)

where Bi(Ai) is the per capita birth rate of adult individuals in patch i and μi is the
per capita death rate of juveniles in patch i. Following [6, 22], we assume that Bi(Ai)
satisfy the following basic assumptions:

(A3) Bi(Ai) > 0 for all Ai > 0, i = 1, 2, . . . , n;
(A4) Bi(Ai) is continuously differentiable for Ai > 0, and B

′

i(Ai) < 0 for all Ai > 0,
i = 1, 2, . . . , n.

As mentioned in [6], the following three types of birth functions Bi(Ai) can be found
in the biological literature:

(B1) Bi(Ai) = bie
−aiAi with ai > 0, bi > 0;

(B2) Bi(Ai) = pi

qi+Am
i

with pi, qi,m > 0;

(B3) Bi(Ai) = ki

Ai
+ li with ki > 0, li > 0.

We consider a disease transmission of SIS type. The adult population is divided
into two classes: susceptible individuals and infective individuals. Susceptible indi-
viduals become infective after contact with infective individuals. Infective individuals
return to the susceptible class when they are recovered. Gonorrhea and other sexu-
ally transmitted diseases or bacterial infections exhibit this phenomenon. We denote
the number of susceptible individuals in patch i by Si and the number of infective
individuals in patch i by Ii. Therefore, Ai = Si + Ii. When the patches are isolated,
we assume that Si and Ii obey the following system:⎧⎪⎨

⎪⎩
dSi
dt

= Ri(t) − diSi − βiSiIi + γiIi,

dIi
dt

= βiSiIi − (di + γi)Ii,

(1.2)

where Ri(t) is the transition rate of juvenile individuals from juvenile stage to adult
stage in patch i, di is the death rate of adults in patch i, βi is the contact rate of
susceptible individuals with infectious individuals in patch i, and γi is the recovery
rate of infectives in patch i.

When the patches are connected, we suppose that the immigration rate of sus-
ceptible individuals from the jth patch to the ith patch is aij , the immigration rate
of infective individuals from the jth patch to the ith patch is bij , −aii > 0 is the
emigration rate of susceptible individuals in the ith patch, −bii > 0 is the emigration
rate of infective individuals in the ith patch, cij is the immigration rate of juvenile
individuals from the jth patch to the ith patch, and −cii > 0 is the emigration rate
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of juvenile individuals in the ith patch. Under the above assumptions, we have the
following model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dJi
dt

= Bi(Ai(t))Ai(t) − μiJi(t) −Ri(t) +
n∑

j=1

cijJj(t),

dSi
dt

= Ri(t) − diSi − βiSiIi + γiIi +
n∑

j=1

aijSj ,

dIi
dt

= βiSiIi − (di + γi)Ii +
n∑

j=1

bijIj ,

i = 1, . . . , n.

(1.3)

Here we have neglected the death rates and birth rates of individuals during the
dispersal process. Thus, we have

n∑
j=1

aji = 0,

n∑
j=1

bji = 0,

n∑
j=1

cji = 0, i = 1, . . . , n.(1.4)

We further assume that all of aij and bij , i �= j, are positive so that the n × n
matrix (aij) and (bij) are irreducible. Note that system (1.3) indicates that the
population can have different demographic structures and different infection forces
among different patches.

We now derive a formula for Ri(t) in terms of the parameters and the variables in
the model. For simplicity, we define r as the age at which a juvenile in each patch be-
comes an adult host. Let J(t, a) := (J1(t, a), . . . , Jn(t, a))T , where Ji(t, a) is the num-
ber of juveniles in patch i at time t with age a. Clearly, R(t) := (R1(t), . . . , Rn(t))T =
J(t, r). As in [13, 16], the age-space dynamics of the population is described by

(∂t + ∂a)Ji(t, a) =

n∑
j=1

cijJj(t, a) −

⎛
⎝ n∑

j=1

cji + μi

⎞
⎠ Ji(t, a)

=

n∑
j=1

cijJj(t, a) − μiJi(t, a),(1.5)

with the birth law given by

J(t, 0) = B(A(t)) := (B1(A1(t))A1(t), . . . , Bn(An(t))An(t))T .

Define V (t, a) := J(t, t− a) for all t ≥ a ≥ 0. Then V (t, a) satisfies

∂V (t, a)

∂t
= CJV (t, a), t ≥ a,(1.6)

where

CJ :=

⎡
⎢⎢⎣

−μ1 + c11 c12 · · · c1n
c21 −μ2 + c22 · · · c2n
· · · · · · · · · · · ·
cn1 cn2 · · · −μn + cnn

⎤
⎥⎥⎦ .

Integrating (1.6) from a to t, we have

V (t, a) = exp(CJ(t− a))V (a, a) = exp(CJ(t− a))B(A(a)) ∀t ≥ a,
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and hence

J(t, s) = V (t, t− s) = exp(CJs)B(A(t− s)) ∀t ≥ s ≥ 0.

It then follows that

R(t) = J(t, r) = exp(CJr)B(A(t− r)).(1.7)

By arguments similar to those in [18], we can interpret the (i, j)-element of exp(CJr)
as the probability that a juvenile individual born in the jth patch will be found at
age r in the ith patch.

Motivated by three types of birth functions (see (B1), (B2), and (B3)), we always
assume that birth rate Gi(Ai) := Bi(Ai)Ai satisfies Gi ∈ C1([0,∞), R) for each i.
Clearly, Gi(Ai) ≥ 0 for all Ai ≥ 0. Define G(A) := (G1(A1), . . . , Gn(An)) for all
A = (A1, . . . , An) ∈ Rn

+.
Note that R(t) does not depend on the variables of juveniles. The Si and Ii

equations can be decoupled from the Ji equations in (1.3) to obtain the following
reduced model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSi
dt

= Ri(t) − diSi − βiSiIi + γiIi +
n∑

j=1

aijSj ,

dIi
dt

= βiSiIi − (di + γi)Ii +
n∑

j=1

bijIj ,

(R1(t), . . . , Rn(t))T = exp(CJr)G(A(t− r)),

S(θ) = φ(θ), I(θ) = ψ(θ), ∀ θ ∈ [−r, 0], (φ, ψ) ∈ C2
+, i = 1, . . . , n,

(1.8)

where C+ := C([−r, 0], Rn
+).

By [12, Theorem 5.2.1], it follows that for any (φ, ψ) ∈ C2
+ there is a unique

solution (S(t, φ, ψ), I(t, φ, ψ)) of (1.8), and S(t, φ, ψ) ≥ 0, I(t, φ, ψ)) ≥ 0 for all t ≥ 0
in its maximal interval of existence. The purpose of this paper is to study the long-
term behavior of the model system (1.8) and the effects of population dispersal on
the spread of the disease.

The remaining parts of this paper are organized as follows. Section 2 presents the
discussion of the disease free equilibrium and reproduction number for model (1.8). In
section 3, we establish sufficient conditions for the global extinction and persistence,
respectively, of the disease. Section 4 contains the application of the general results
to a special case of the model with two patches. A discussion section completes the
paper.

2. Disease free equilibrium. In this section, we establish sufficient conditions
for the existence and uniqueness of a disease free equilibrium so that we can define
the reproduction number for the model (1.8). We start with the introduction of
cooperative systems of delay differential equations.

For x, y ∈ Rn, we write x ≥ y if x − y ∈ Rn
+, x > y if x − y ∈ Rn

+ \ {0}, x � y
if x − y ∈ int(Rn

+). Let r be a nonnegative real number and x(t) be a continuous
function from [−r, σ) to Rn (σ > 0). For each t ∈ [0, σ), we define xt ∈ C([−r, 0], Rn)
by xt(θ) = x(t + θ) for all θ ∈ [−r, 0]. Consider an autonomous delay system

dx(t)

dt
= f(xt),(2.1)

where f : D → Rn is Lipschitz continuous and D is an open subset of C([−r, 0], Rn).
For any φ ∈ D, let x(t, φ) be the unique solution of (2.1) satisfying x(θ, φ) = φ(θ)
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for all θ ∈ [−r, 0]. For φ, ψ ∈ C([−r, 0], Rn) we write φ ≤ ψ if φ(θ) ≤ ψ(θ) for all
θ ∈ [−r, 0]. System (2.1) is said to be cooperative if the following quasi-monotone
condition holds:

(Q) Whenever φ ≤ ψ and φi(0) = ψi(0) holds for some i, then fi(φ) ≤ fi(ψ).
In particular, (2.1) with r = 0, an autonomous ordinary differential system, is cooper-
ative if off-diagonal elements of the Jacobian matrix of f at any point in the domain
are nonnegative. It is well known that the comparison principle holds for cooperative
systems. For the basic theory of cooperative systems, we refer to [12].

Recall that the stability modulus of an n × n matrix M , denoted by s(M), is
defined by

s(M) := max{Reλ : λ is an eigenvalue of M}.

If M has nonnegative off-diagonal elements and is irreducible, then s(M) is a simple
eigenvalue of M with a (componentwise) positive eigenvector (see, e.g., [14, Theorem
A.5]).

Let (S∗
1 , . . . , S

∗
n, 0, . . . , 0) be a disease free equilibrium of (1.8). Then it is easy to

see that (S∗
1 , . . . , S

∗
n) is an equilibrium of the following ordinary differential system:

dSi

dt
= Ri(S) − diSi +

n∑
j=1

aijSj , i = 1, . . . , n,(2.2)

where S = (S1, . . . , Sn) ∈ Rn
+, (R1(S), . . . , Rn(S))T := exp(CJr)G(S). Set exp(CJr) =

(pij). Since (1.6) is cooperative, it follows that pij ≥ 0 for all 1 ≤ i, j ≤ n. Further,
we have

Ri(S) =

n∑
j=1

pijGj(Sj).(2.3)

Define H = (H1, . . . , Hn) : Rn
+ → Rn by

Hi(S) = Ri(S) − diSi +

n∑
j=1

aijSj , ∀S ∈ Rn
+, 1 ≤ i ≤ n.

Clearly, H(0) ≥ 0. If G′
i(Ai) ≥ 0 for all Ai ≥ 0, 1 ≤ i ≤ n, then ∂Hi(S)

∂Sj
> 0 for all

S ∈ Rn
+, 1 ≤ i �= j ≤ n.

For any α ∈ (0, 1) and S � 0, by (2.3) and (A4), we have

Ri(αS) − diαSi +

n∑
j=1

aijαSj > α

⎡
⎣Ri(S) − diSi +

n∑
j=1

aijSj

⎤
⎦

for each i = 1, 2, . . . , n, and hence H(αS) � αH(S), which means that H is strongly
sublinear on Rn

+ (see, e.g., [21]).
For S � 0, let M(S) denote the following matrix:⎡

⎢⎢⎣
p11B1(S1) − d1 + a11 a12 + p12B2(S2) · · · a1n + p1nBn(Sn)

p21B1(S1) + a21 p22B2(S2) − d2 + a22 · · · p2nBn(Sn) + a2n

· · · · · · · · · · · ·
pn1B1(S1) + an1 pn2B2(S2) + an2 · · · pnnBn(Sn) − dn + ann

⎤
⎥⎥⎦ .

In what follows we use notation K = (k, . . . , k) ∈ Rn for each k ∈ R, and let
H ′(S) be the Jacobian matrix of H at S ∈ Rn

+. Assume that the following hold:
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(A5) dGi(Ai)
dAi

≥ 0 for all Ai ∈ (0,∞), i = 1, . . . , n;
(A6) s(M(∞)) < 0;
(A7) s(H ′(0)) > 0 if H(0) = 0.

Biologically, (A5) means that the birth rate of juveniles in each patch increases
as the number of adult individuals in the same patch increases. Roughly speaking,
M(∞) is the per capita reproduction matrix for susceptible hosts in all patches when
their numbers are sufficiently large in every patch. (A6) implies that the sizes of sus-
ceptible host populations decrease as long as they are large enough, which prevents
unbounded susceptible populations. Similarly, (A7) implies that the sizes of suscepti-
ble host populations increase as long as they are small, which prevents the extinction
of susceptible hosts. These can be seen from the proof of the following theorem.

Theorem 2.1. Let (A1)–(A7) hold. Then (1.8) has a unique disease free equi-
librium E0 = (S∗

1 , S
∗
2 , . . . , S

∗
n, 0, . . . , 0).

Proof. By (A6), we have s(M(K)) < 0 if k is large enough. Let v̄ = (v̄1, . . . , v̄n)
be a positive eigenvector associated with s(M(K)). Choose l > 0 large enough such
that lv̄i > k, i = 1, 2, . . . , n. If we rewrite (2.2) as dS

dt = H(S), by (A4) we have

0 > s(M(K))lv̄ = M(K)lv̄ > H(lv̄), ∀t ≥ 0.(2.4)

Let S(t, lv̄) be the solution of (2.2) satisfying S(0, lv̄) = lv̄. Since (2.2) is cooperative,
it follows from (2.4) that S(t, lv̄) is nonincreasing in t ≥ 0 and converges to an
equilibrium as t approaches infinity (see, e.g., [12, Corollary 5.2.2]). It follows that
every solution S(t, x) of (2.2) in Rn

+ exists globally on [0,∞). Let Φ0(t) be the
solution semiflow of (2.2) on Rn

+, that is, Φ0(t)x = S(t, x) for all t ≥ 0, x ∈ Rn
+. Then

Φ0(t) is strongly monotone on Rn
+ in the sense that x > y implies Φ0(t)x � Φ0(t)y

for all t > 0. Note that H is strongly sublinear on Rn
+. By [21, Proposition 2.2]

as applied to Φ0(t) (t > 0), system (2.2) has at most one positive (componentwise)
equilibrium. In the case where H(0) > 0, S(t, 0) is nondecreasing in t ≥ 0 and
converges to an equilibrium x̄ > 0 as t approaches infinity, and hence x̄ = Φ0(t)x̄ �
Φ0(t)0 = S(t, 0) ≥ 0 for any t > 0. Thus, the standard comparison method implies
that the positive equilibrium x̄ is globally attractive, and hence asymptotically stable,
for (2.2) in Rn

+. In the case where H(0) = 0, [21, Corollary 3.2] implies that (2.2) has
a positive equilibrium S∗ = (S∗

1 , S
∗
2 , . . . , S

∗
n), which is globally asymptotically stable

for S ∈ Rn
+ \ {0}. Consequently, (1.8) has a unique disease free equilibrium.

Now we are ready to consider a basic reproduction number for the system (1.8).
The basic reproduction number, denoted by R0, is “the expected number of secondary
cases produced, in a completely susceptible population, by a typical infective individ-
ual” (see [7]). For the case of a single infected compartment, R0 is simply the product
of the infection rate and the mean duration of the infection. For the model (1.8) with
several infected compartments, the basic reproduction number can be defined as the
number of new infections produced by a typical infective individual in the population
at the disease free equilibrium (see [18]). Following [18], we let xi = Ii for i = 1, . . . , n
and xn+i = Si for i = 1, . . . , n. Then model (1.8) can be rewritten as

dxi

dt
= fi(x) = Fi(x) − Vi(x), i = 1, . . . , 2n,

where

Fi(x) = βixixn+i, Vi(x) = (di + γi)xi −
n∑

j=1

bijxj for i = 1, . . . , n.
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Here we do not write the expressions for Fi(x),Vi(x) for i = n+ 1, . . . , 2n, since they
are not important at this moment. Furthermore, the disease free equilibrium E0 now
becomes (0, . . . , 0, S∗

1 , S
∗
2 , . . . , S

∗
n).

For i = 1, . . . , n,Fi(x) is the rate of appearance of new infections in compartment
i, and Vi(x) is the net decreasing rate of infectives in compartment i due to infective
flows inside the system of infected compartments.

If F = (F1, . . . ,F2n) and V = (V1, . . . ,V2n), let us partition the derivatives
DF(E0) and DV(E0) as

DF(E0) =

[
F 0
0 0

]
, DV(E0) =

[
V 0
J3 J4

]
,

where

F =

[
∂Fi

∂xj
(E0)

]
n×n

, V =

[
∂Vi

∂xj
(E0)

]
n×n

.

Then it is easy to obtain

F =

⎡
⎢⎢⎣

β1S
∗
1 0 · · · 0

0 β2S
∗
2 · · · 0

· · · · · · · · · · · ·
0 0 · · · βnS

∗
n

⎤
⎥⎥⎦

and

V =

⎡
⎢⎢⎣

d1 + γ1 − b11 −b12 · · · −b1n
−b21 d2 + γ2 − b22 · · · −b2n
· · · · · · · · · · · ·
−bn1 −bn2 · · · dn + γn − bnn

⎤
⎥⎥⎦ .

According to [7, 18], the matrix FV −1 is called the next generation matrix, and
its spectral radius is defined as the reproduction number for (1.8), that is,

R0 := ρ(FV −1).

Let M1 denote the matrix⎡
⎢⎢⎣

β1S
∗
1 − d1 − γ1 + b11 b12 · · · b1n

b21 β2S
∗
2 − d2 − γ2 + b22 · · · b2n

· · · · · · · · · · · ·
bn1 bn2 · · · βnS

∗
n − dn − γn + bnn

⎤
⎥⎥⎦ .

Clearly, M1 is irreducible and has nonnegative off-diagonal elements. Then s(M1) is a
simple eigenvalue of M1 with a positive eigenvector. Furthermore, M1 = F−V . Thus,
the following observation is implied by the proof of [18, Theorem 2] with J1 = M1.

Lemma 2.1. There hold two equivalences:

R0 > 1 ⇔ s(M1) > 0, R0 < 1 ⇔ s(M1) < 0.(2.5)

By Lemma 2.1 and the proof of Theorem 2.1, it easily follows that R0 < 1 implies
that E0 is asymptotically stable, and that R0 > 1 implies that E0 is unstable.
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3. Global dynamics. The purpose of this section is to discuss the global ex-
tinction and persistence of the disease described by model (1.8).

Define eij := max{aij , bij}, i �= j, and eii := min{aii, bii}. Let M(S) denote the
matrix function⎡

⎢⎢⎣
p11B1(S1) − d1 + e11 e12 + p12B2(S2) · · · e1n + p1nBn(Sn)

p21B1(S1) + e21 p22B2(S2) − d2 + e22 · · · p2nBn(Sn) + e2n

· · · · · · · · · · · ·
pn1B1(S1) + en1 pn2B2(S2) + en2 · · · pnnBn(Sn) − dn + enn

⎤
⎥⎥⎦ .

Consider a time-delayed cooperative system

dAi

dt
= Ri(A(t− r)) − diAi +

n∑
j=1

eijAj , i = 1, . . . , n.(3.1)

Assume that (A1)–(A5) and (A7) hold and that s(M(∞)) < 0. By [21, Theorem 3.2]
and an argument similar to the proof of Theorem 2.1, it easily follows that system
(3.1) admits a unique positive equilibrium Ā = (Ā1, . . . , Ān), and Ā is globally stable
in C+ \ {0}. Let M1 denote the matrix⎡

⎢⎢⎣
β1Ā1 − d1 − γ1 + b11 b12 · · · b1n

b21 β2Ā2 − d2 − γ2 + b22 · · · b2n
· · · · · · · · · · · ·
bn1 bn2 · · · βnĀn − dn − γn + bnn

⎤
⎥⎥⎦ .

We then have the following result.
Theorem 3.1. Let (A1)–(A5) and (A7) hold. Assume that s(M(∞)) < 0. If

s(M1) < 0, then E0 is globally attractive for (1.8) in (C+ \ {0}) × C+.
Proof. Note that Ai = Si + Ii for all 1 ≤ i ≤ n. By (1.8), we have

dAi

dt
= Ri(A(t− r)) − diAi +

n∑
j=1

aijSj +

n∑
j=1

bijIj , i = 1, . . . , n.(3.2)

Then we have

dAi

dt
≤ Ri(A(t− r)) − diAi +

n∑
j=1

eijAj , i = 1, . . . , n.(3.3)

Given (φ, ψ) ∈ (C+ \{0})×C+, let (S(t), I(t)) be the solution of (1.8). It then follows
from the comparison principle that

lim sup
t→∞

Ai(t) ≤ Āi, i = 1, . . . , n.

As a consequence, each positive solution of (1.8) satisfies

lim sup
t→∞

Si(t) ≤ Āi, i = 1, . . . , n.

Choose a sufficiently small positive number ε such that s(M1 + εβ) < 0, where β =
diag(β1, . . . , βn). Then there exists a t0 > 0 such that Si(t) ≤ Āi+ε for all t ≥ t0, i =
1, . . . , n. It follows that

dIi
dt

≤ (βi(Āi + ε) − di − γi)Ii +

n∑
j=1

bijIj , ∀t ≥ t0, i = 1, . . . , n.(3.4)
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Let us consider an auxiliary system

dIi
dt

= (βi(Āi + ε) − di − γi)Ii +

n∑
j=1

bijIj , i = 1, . . . , n.(3.5)

Since s(M̄1 + εβ) < 0, it is easy to see that all the solutions of (3.5) tend to the
origin as t tends to infinity. Since (3.5) is cooperative, it follows from the comparison
principle that Ii(t) → 0 as t → ∞, i = 1, . . . , n.

Let Φ(t) : C2
+ → C2

+ be the solution semiflow of (1.8), that is,

Φ(t)(φ, ψ) = (St(φ, ψ), It(φ, ψ)),

where St(φ, ψ)(θ) = S(t + θ, φ, ψ), It(φ, ψ)(θ) = I(t + θ, φ, ψ) for all θ ∈ [−r, 0],
and (S(t, φ, ψ), I(t, φ, ψ)) is the solution of (1.8) through (φ, ψ). For any (φ, ψ) ∈
(C+ \ {0}) × C+, it is easy to see that S(t, φ, ψ) > 0 for t > r. Let ω = ω(φ, ψ)
be the omega limit set of Φ(t)(φ, ψ). Since I(t, φ, ψ) → 0 as t → ∞, there holds
ω = ω̄ × {0}. We claim that ω̄ �= {0}. Assume that, by contradiction, ω̄ = {0}. Then
lim
t→∞

(S(t, φ, ψ), I(t, φ, ψ)) = (0, 0). Consequently, for any sufficiently small ξ > 0 there

is a T ∗ > 0 such that

Si(t) < ξ, Ii(t) < ξ, ∀ i = 1, . . . , n, t ≥ T ∗,(3.6)

where the dependence of Si and Ii on (φ, ψ) is suppressed. It follows from (1.8) that

dSi

dt
≥

n∑
j=1

pijGj(Sj(t− r)) − (di + βiξ)Si +

n∑
j=1

aijSj , i = 1, . . . , n,(3.7)

for t ≥ T ∗. Consider the cooperative system of delay differential equations

dSi

dt
=

n∑
j=1

pijGj(Sj(t− r)) − (di + βiξ)Si +

n∑
j=1

aijSj , i = 1, . . . , n.(3.8)

In the case where H(0) = 0, since s(H ′(0)) > 0, we can further restrict ξ > 0 such
that s(H ′(0) − ξβ) > 0, where β = diag(β1, . . . , βn). Let x(t, φ) be the solution of
(3.8) satisfying x0(φ) = φ ∈ C+. By [21, Theorem 3.1], it follows that either x(t, φ)
is unbounded for every φ ∈ C+ \ {0} or there exists an equilibrium x∗ � 0 of (3.8)
such that lim inft→∞ x(t, φ) ≥ x∗ for every φ ∈ C+ \{0}. In the case where H(0) > 0,
[12, Corollary 5.2.2]) implies that x(t, 0) is nondecreasing in t. Moreover, if x(t, 0)
is bounded, then x(t, 0) converges to an equilibrium x∗ > 0. Since the ordinary
differential system (3.8) with r = 0 is cooperative and irreducible, it follows that
x∗ � 0. Consequently, the comparison principle (see [12, Theorem 5.1.1]) implies that
either S(t) is unbounded or lim inft→∞ S(t) ≥ x∗, which contradicts limt→∞ Si(t) = 0
for all i = 1, . . . , n.

It is easy to see that

Φ(t) |ω (φ, 0) = (Φ1(t)φ, 0),

where Φ1(t) is the solution semiflow of the following system:

dSi

dt
= Ri(S(t− r)) − diSi +

n∑
j=1

aijSj , i = 1, . . . , n.(3.9)
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By [9, Lemma 2.1′], ω is an internal chain transitive set for Φ(t), and hence ω̄ is an
internal chain transitive set for Φ1(t). By the proof of Theorem 2.1 and [21, Theorem
3.2], it follows that S∗ is globally asymptotically stable for (3.9) in C+ \ {0}. Since
ω̄ �= {0}, we have ω̄ ∩W s(S∗) �= ∅. By [9, Theorem 3.1 and Remark 4.6], we then get
ω̄ = S∗. This proves ω = {(S∗, 0)}. Consequently, (S(t, φ, ψ), I(t, φ, ψ)) → (S∗, 0) as
t → ∞.

Remark 3.1. Let (A1)–(A5) and (A7) hold. Assume that s(M(∞)) < 0. Note
that Āi is near to S∗

i for i = 1, . . . , n, provided that the dispersal coefficients aij and
bij are small for i, j = 1, . . . , n. Hence, it is one implication of Theorem 3.1 that
the disease, which dies out in the absence of population dispersal, still dies out when
population dispersal is weak.

Corollary 3.1. Let (A1)–(A5) and (A7) hold. Assume that s(M(∞)) < 0. If
aij = bij for i = 1, . . . , n, j = 1, . . . , n, and R0 < 1, then E0 is globally attractive for
(1.8) in (C+ \ {0}) × C+.

Proof. In this special case, eij = aij = bij for all 1 ≤ i, j ≤ n, and hence
Ā = S∗, M̄ = M , and M̄1 = M1. By Lemma 2.1, s(M1) < 0. Thus, the conclusion
follows from Theorem 3.1.

The subsequent result shows that the disease is uniformly persistent in the case
where R0 > 1.

Theorem 3.2. Let (A1)–(A7) hold and R0 > 1. If s(M(∞)) < 0, then there
is a positive constant ε such that every solution (S(t, φ, ψ), I(t, φ, ψ)) of (1.8) with
(φ, ψ) ∈ C2

+ and ψ(0) > 0 satisfies

lim inf
t→∞

Ii(t, φ, ψ) ≥ ε ∀1 ≤ i ≤ n.

Furthermore, (1.8) admits at least one (componentwise) positive equilibrium.

Proof. Define

X := {(φ, ψ) ∈ C+ × C+},
X0 := {(φ, ψ) ∈ X : ψ(0) > 0},
∂X0 := X \X0.

By the form of (1.8), it is easy to see that both X and X0 are positively invariant.
Clearly, ∂X0 is relatively closed in X, and ∂X0 = {(φ, ψ) ∈ X : ψ(0) = 0}. Further-
more, system (1.8) is point dissipative in Rn

+ since nonnegative solutions of (1.8) are
ultimately bounded (see the proof of Theorem 3.1).

Let (S(t, φ, ψ), I(t, φ, ψ)) be the solution of (1.8) through (φ, ψ), and define

M∂ := {(φ, ψ) ∈ X : (St(φ, ψ), It(φ, ψ)) ∈ ∂X0 ∀ t ≥ 0}.

Then we have the following claim.

Claim 1. M∂ = {(φ, ψ) ∈ ∂X0 : I(t, φ, ψ) = 0 ∀ t ≥ 0}.
Indeed, it suffices to prove that for each (φ, ψ) ∈ M∂ , I(t, φ, ψ) = 0 for all t ≥ 0.

Suppose that this does not hold. Then there exist some i0, 1 ≤ i0 ≤ n, and t0 ≥ 0
such that Ii0(t0, φ, ψ) > 0. We partition {1, 2, . . . , n} into two sets Q1 and Q2 such
that

Ii(t0, φ, ψ) = 0 ∀i ∈ Q1,

Ii(t0, φ, ψ) > 0 ∀i ∈ Q2.
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By the definition of M∂ we see that Q1 is nonempty. Q2 is also nonempty since
Ii0(t0, φ, ψ) > 0. For any j ∈ Q1, we have

dIj(t, φ, ψ)

dt

∣∣∣∣
t=t0

≥ bji0Ii0(t0, φ, ψ) > 0.

It follows that there is an ε0 > 0 such that Ij(t, φ, ψ) > 0, j ∈ Q1, for t0 < t < t0 + ε0.
Clearly, we can restrict ε0 > 0 to be small enough such that Ii(t, φ, ψ) > 0, i ∈ Q2,
for t0 < t < t0 + ε0. This means that (St(φ, ψ), It(φ, ψ)) /∈ ∂X0 for t0 < t < t0 + ε0,
which contradicts the assumption that (φ, ψ) ∈ M∂ .

Define M3 := diag(β1, . . . , βn). Then we can choose η > 0 small enough such that
s(M1 − ηM3) > 0. Consider the following system:

dSi

dt
= Ri(S(t− r)) − (di + βiε1)Si +

n∑
j=1

aijSj , i = 1, . . . , n.(3.10)

First, as in our previous analysis of system (2.2), we can restrict ε1 > 0 to be small
enough such that (3.10) admits a unique positive equilibrium S∗(ε1), which is glob-
ally asymptotically stable for (3.10) (see the proof of Theorem 2.1 and [21, Theo-
rem 3.2]). By the implicit function theorem, it follows that S∗(ε1) is continuous in
ε1. Thus, we can restrict ε1 to be small enough such that S∗(ε1) > S∗ − η. Let
S(t, φ, ψ) = (S1(t, φ, ψ), . . . , Sn(t, φ, ψ)) and I(t, φ, ψ) = (I1(t, φ, ψ), . . . , In(t, φ, ψ)).
Then we further have the following claim.

Claim 2. lim supt→∞ maxi{Ii(t, φ, ψ)} > ε1 for all (φ, ψ) ∈ X0.
Suppose, for the sake of contradiction, that there is a T > 0 such that 0 < Ii(t) ≤

ε1, i = 1, 2, . . . , n, for all t ≥ T. Then for t ≥ T we have

dSi

dt
≥ Ri(S(t− r)) − (di + βiε1)Si +

n∑
j=1

aijSj , i = 1, . . . , n.(3.11)

Since the equilibrium S∗(ε1) of (3.10) is globally asymptotically stable and S∗(ε1) >
S∗ − η, there is a T1 > 0 such that S(t) ≥ S∗ − η for t ≥ T + T1. As a consequence,
for t > T + T1, we have

dIi
dt

≥ βi(S
∗
i − η)Ii − (di + γi)Ii +

n∑
j=1

bijIj , i = 1, . . . , n.(3.12)

Since the matrix M1 − ηM3 has a positive eigenvalue s(M1 − ηM2) with a positive
eigenvector, it is easy to see that Ii(t) → ∞ as t → ∞, i = 1, 2, . . . , n, which leads to
a contradiction.

Note that the delay differential system

dSi

dt
= Ri(S(t− r)) − diSi +

n∑
j=1

aijSj , i = 1, . . . , n,(3.13)

admits a global asymptotic stable equilibrium S∗ in C([−r, 0], Rn
+) \ {0}. In the case

where H(0) = 0, there are exactly two equilibria (0, 0) and E0 = (S∗, 0) in M∂ . By
Claim 2, we see that (0, 0) and E0 are isolated invariant sets in X, W s((0, 0))∩X0 = ∅,
and W s(E0) ∩X0 = ∅. Clearly, every forward orbit in M∂ converges to either (0, 0)
or E0, and (0, 0) and E0 are acyclic in M∂ . By [17, Theorem 4.6], it follows that
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the solution semiflow associated with (1.8) is uniformly persistent with respect to
(X0, ∂X0). In the case where H(0) > 0, there is only one equilibrium E0 = (S∗, 0)
in M∂ , and every forward orbit in M∂ converges to E0. By a similar argument,
we see that the solution semiflow is uniformly persistent with respect to (X0, ∂X0).
Consequently, [15, Theorem A.2] with Z = C([−r, 0], R2n

+ ) and e = (1, . . . , 1) ∈ R2n

implies the required uniform persistence of solutions of (1.8).
By applying [20, Theorem 2.4] to the autonomous semiflow generated by the

ordinary differential system (1.8) with A(t − r) replaced by A(t), we conclude that
system (1.8) has an equilibrium (S̄, Ī) ∈ X0. Then S̄ ∈ Rn

+ and Ī ∈ int(Rn
+). We

further claim that S̄ ∈ Rn
+\{0}. Suppose that S̄ = 0. By the second equation in (1.4),

we then get 0 = −
∑n

i=1(μi + γi)Īi, and hence Īi = 0, i = 1, 2, . . . , n, a contradiction.
By the first equation in (1.8) and the irreducibility of the cooperative matrix (aij),
it follows that S̄ = S(t, S̄, Ī) ∈ int(Rn

+) for all t > 0. Then (S̄, Ī) is a componentwise
positive equilibrium of (1.8).

4. A case study. In order to illustrate the results of the last section, we suppose
that the birth rates are in the form of (B3) and that there are only two patches. Then
model (1.8) becomes⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dSi
dt

= Ri(t) − (di + ai)Si − βiSiIi + γiIi + ajSj , i, j = 1, 2, i �= j,

dIi
dt

= βiSiIi − (di + γi + bi)Ii + bjIj , i, j = 1, 2, i �= j,

(R1(t), R2(t))
T = exp(CJr)(k1 + l1A1(t− r), k2 + l2A2(t− r))T ,

(4.1)

where ai, bi, and ci are the migration rates of adult susceptibles, adult infectives, and
juveniles, respectively, of patch i. Set exp(CJr) = (pij). Then we have

R1(t) = p11(k1 + l1A1(t− r)) + p12(k2 + l2A2(t− r)),

R2(t) = p21(k1 + l1A1(t− r)) + p22(k2 + l2A2(t− r)).

Set

M4 :=

[
p11l1 − a1 − d1 p12l2 + a2

p21l1 + a1 p22l2 − a2 − d2

]
.

Then it is easy to see that (A1)–(A7) are satisfied if s(M4) < 0.
Let E0 = (S∗

1 , S
∗
2 , 0, 0) be the disease free equilibrium of (4.1). Then S∗

1 and S∗
2

satisfy the following linear system:

p11(k1 + l1S
∗
1 ) + p12(k2 + l2S

∗
2 ) − (d1 + a1)S

∗
1 + a2S

∗
2 = 0,

p21(k1 + l1S
∗
1 ) + p22(k2 + l2S

∗
2 ) − (d2 + a2)S

∗
2 + a1S

∗
1 = 0.

Set

h1 = β1 S
∗
1 + β2 S

∗
2 − b1 − b2 − γ1 − γ2 − d1 − d2,

h2 = β1S
∗
1β2S

∗
2 − b1b2 − β1S

∗
1 (d2 + γ2 + b2)

−β2S
∗
2 (d1 + γ1 + b1) + (d1 + γ1 + b1)(d2 + γ2 + b2).

(4.2)

It is easy to see that

s(M1) =
h1 +

√
h2

1 − 4h2

2
.(4.3)
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Then R0 > 1 if and only if h1 ≥ 0 or⎧⎪⎨
⎪⎩

h1 < 0,

1 +
β1S

∗
1β2S

∗
2 − b1b2

(d1 + γ1 + b1)(d2 + γ2 + b2)
<

β1S
∗
1

d1 + γ1 + b1
+

β2S
∗
2

d2 + γ2 + b2
.

(4.4)

Now, we illustrate that the dispersal of juvenile individuals has a significant effect
on the spread of the disease, although they are immune to the disease and cannot
transmit the disease.

Example 4.1. We fix k1 = k2 = k, l1 = l2 = l, d1 = d2 = d, μ1 = μ2 = μ, a1 =
a2 = a, b1 = b2 = b, γ1 = γ2 = γ. That is, we suppose that the population in the first
patch has the same birth rate, death rate, dispersal rate for adults, and recovery rate
as the population in the second patch. We let the contact rates βi and the dispersal
rates for juveniles vary in two patches. Let the migration rate of juveniles from the
first patch to the second be c1 and the rate from the second to the first be c2. Thus
we have

CJ =

[
−μ− c1 c2

c1 −μ− c2

]
.

It is easy to obtain

exp(CJr) =

⎡
⎢⎢⎣

c2 p + c1 q

c1 + c2

c2 (−q + p)

c1 + c2
c1 (−q + p)

c1 + c2

p c1 + c2 q

c1 + c2

⎤
⎥⎥⎦ ,

with p = e−μr and q = exp(−r(μ + c1 + c2)). Note that

R1(t) =
k(c1 q + 2 c2 p− c2 q) + l (c1 q + c2 p)A1(t− r) + l (c2 p− c2 q)A2(t− r)

c1 + c2
,

R2(t) =
k(2 c1 p− c1 q + c2 q) − l (c1 q − c1 p)A1(t− r) + l (c2 q + c1 p)A2(t− r)

c1 + c2
.

By direct calculations, we obtain

S∗
1 = − (2 c1 a p + 2 a c2 p + c1 d q − c1 l p q + 2 d c2 p− c2 l p q − c2 d q) k

(c1 + c2) (p l − d) (−q l + 2 a + d)
,

S∗
2 = −k (−c1 l p q + 2 c1 a p− c1 d q + 2 c1 d p− c2 l p q + 2 a c2 p + c2 d q)

(c1 + c2) (p l − d) (−q l + 2 a + d)
.

Then we can use Theorem 3.1, Corollary 3.1, and Theorem 3.2 to discuss the effect
of population dispersal. In order to be concise and clear, we further fix a = b = 0.2,
μ = 2, r = 1, d = 0.5, l = 1, k = 1, and γ = 0. Then, by the method of estimation, it
is not hard to see that s(M4) < 0. Hence (A1)–(A7) are satisfied. In this case, it is
clear that s(M(K)) < 0 for all large k.

Now, let us vary c1, c2, β1, and β2 to see the effect of the dispersal of juvenile
members. First, we fix β1 = 1.4 and β2 = 1. If the dispersal of juvenile individuals is
turned off, then

S∗
1 = − p k

p l − d
= 0.3711, S∗

2 = − p k

p l − d
= 0.3711.
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Fig. 1. The graph of function h1 when a = b = 0.2, μ = 2, r = 1, d = 0.5, l = 1, k = 1,
β1 = 1.4, β2 = 1, c1 = 0.1, and γ = 0.
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Fig. 2. The graph of function h2 when a = b = 0.2, μ = 2, r = 1, d = 0.5, l = 1, k = 1,
β1 = 1.4, β2 = 1, c1 = 0.1, and γ = 0.

As a consequence, h1 = −0.5093 < 0, h2 = 0.0193 > 0. Hence, the disease dies out in
the patches if there is no dispersal for juvenile individuals. If we increase c1 and c2 from
0, by numerical calculations, we see that h1 is always negative (see Figure 1). However,
h2 changes the sign as c2 increases (see Figure 2). For the case in Figure 2, we see
that the disease remains extinct in the two patches when the dispersal coefficient c2 is
weak, and breaks out in the two patches when c2 is strong. In this case, the migration
of juveniles from the second patch to the first patch could intensify the disease spread.
Secondly, we fix β1 = 1.4, β2 = 1.25, and c1 = 0.6. Then h1 remains negative, and
the graph of h2 is given in Figure 3. From this figure and numerical calculations, we
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Fig. 3. The graph of function h2 when a = b = 0.2, μ = 2, r = 1, d = 0.5, l = 1, k = 1,
β1 = 1.4, β2 = 1.25, c1 = 0.6, and γ = 0.

see that the disease spreads in the two patches when 0 < c2 < 0.1064 or 0.7607 < c2,
and dies out when 0.1064 < c2 < 0.7607. Thus, the disease undergoes a transition
from uniform persistence to extinction and a second transition from extinction to
uniform persistence; i.e., there exist persistence-extinction-persistence switches, as
the dispersal rate c2 increases from 0.

Let us now change the parameters to a = b = 0.2, μ = 2, r = 1, d = 0.5, l = 1,
k = 1, β1 = 2, and β2 = 0.8. In this case, if the dispersal of juvenile individuals is
turned off, then h1 = −0.3609 < 0, h2 = −0.0570 < 0. Hence, Theorem 3.2 means
that the disease spreads in two patches when there is no dispersal for juveniles. But
if we take c2 = 0.01, by means of Maple, we see that h1 is always negative when c1
varies. Further, the profile of h2 is given in Figure 4. Numerical calculation shows
that h2 = 0 at c1 = 0.4484. Hence, by Theorems 3.1 and 3.2, the disease spreads in
two patches if 0 < c1 < 0.4484 and dies out in two patches if c1 > 0.4484. This means
that the dispersal of juveniles can also lower the risk of a disease outbreak.

Example 4.1 indicates the existence of the persistence-extinction-persistence
switches where the migration rates of juveniles are independent of the migration rates
of adults. However, the mobility of juveniles may be associated with that of their
adults. To find functions that accurately describe patterns of juvenile movement and
adult movement, a good way is to construct a submodel by considering factors such as
behaviors of the population and resource differences among patches. For simplicity,
we assume that juveniles and susceptible adults move together at the same migration
rate. This is a very simple way to relate the movements of juveniles and adults. Our
next example shows that persistence-extinction-persistence switches can also occur in
this special case.

Example 4.2. We fix μ1 = μ2 = 2, d1 = d2 = 0.5, l1 = 1, l2 = 0.5, r = 1, k1 = 1,
k2 = 2, β1 = 1.4, β2 = 0.7, b1 = 0.2, b2 = 0.01, γ1 = γ2 = 0, a1 = c1 = 0.5, and
a2 = c2. Since ai = ci, i = 1, 2, we have assumed that juveniles and their susceptible
adults in each patch move together. By arguments similar to those in Example 4.1, we
see that h1 < 0 if 0 ≤ a2 ≤ 0.9, h2 < 0 if 0 ≤ a2 < 0.1589 or 0.4891 < a2 ≤ 0.9, and
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Fig. 4. The graph of function h2 when a = b = 0.2, μ = 2, r = 1, d = 0.5, l = 1, k = 1, β1 = 2,
β2 = 0.8, c2 = 0.01, and γ = 0.
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Fig. 5. h1 is negative as a2 varies from 0 to 0.9.

h2 > 0 if 0.1589 < a2 < 0.4891 (see Figures 5 and 6). Hence, the disease is uniformly
persistent in two patches when 0 ≤ a2 < 0.1589 or 0.4891 < a2 ≤ 0.9, and dies out
when 0.1589 < a2 < 0.4891. This shows that the persistence-extinction-persistence
switching phenomenon happens as the dispersal rate a2 increases from 0.

5. Discussion. Spatial heterogeneity plays an important role in the persistence
and dynamics of epidemics. Papers [4, 8, 10, 11] have discussed the effect of immi-
gration of infectious individuals or age structure on the persistence of diseases from
different point of views. In [19] we have shown that spatial heterogeneity can increase
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Fig. 6. h2 transits from negative value to positive value and then has a second transit from
positive to negative as a2 varies from 0 to 0.9.

the persistence of a disease, and can also reduce the persistence of a disease in the
presence of suitable parameters. In this paper, we have proposed an epidemic model
with population dispersal among n patches, which may simulate n cities. This is
clearly applicable to real situations because data for many diseases are available on a
city-by-city scale. We have divided a population into two stages, juvenile stage and
adult stage, and assumed that the disease spreads only in adult population. (Sexual
diseases are typical examples for this.) The novelty of this paper is that we have in-
corporated the age structure into the model and studied the effect of the composition
of spatial heterogeneity and age heterogeneity. In Theorem 2.1, we have obtained
sufficient conditions under which the model admits a unique disease free equilibrium.
Then we have defined the reproduction number of the model with many patches ac-
cording to the ideas in [7, 18]. In Theorems 3.1 and 3.2, we have given sufficient
conditions for global extinction and uniform persistence of the disease in terms of the
reproduction number. Then we applied our general results to a case in which the birth
rates are in the form of (B3) and there are only two patches. We have found that the
dispersal of juveniles, although they are immune and cannot transmit the disease, has
significant effect on the disease spread. Specifically, in Example 4.1 we have shown
that the disease can spread to all patches by increasing the dispersal rate of juveniles
in one patch, although the disease dies out in any patch in the absence of the dis-
persal of juveniles; we have also shown that the disease can die out in all patches by
increasing the dispersal rate of juveniles in one patch, although the disease spreads
in each patch in the absence of the dispersal of juveniles. Further, we have found the
new phenomenon that the disease could undergo persistence-extinction-persistence
switches in the sense that the disease admits a transition from uniform persistence
to extinction and a second transition from extinction to uniform persistence as the
dispersal rate c2 increases. Example 4.2 shows that this switching phenomenon also
happens when juveniles move together with susceptible adults.

The general behavior of the model with more than two patches or with birth
rates of other forms is not clear at present. It should be more reasonable to consider
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many stages or varying lengths of juvenile stages in different patches. We leave this
as future work.

Acknowledgments. We are very grateful to two anonymous referees for care-
ful reading and valuable comments which led to an improvement of our original
manuscript.
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A MAXIMUM PRINCIPLE FOR BELTRAMI COLOR FLOW∗
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Abstract. We study, in this work, the maximum principle for the Beltrami color flow and
the stability of the flow’s numerical approximation by finite difference schemes. We discuss, in the
continuous case, the theoretical properties of this system and prove the maximum principle in the
strong and the weak formulations. In the discrete case, all the second order explicit schemes that are
currently used violate, in general, the maximum principle. For these schemes we give a theoretical
stability proof, accompanied by several numerical examples.
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1. Introduction. The maximum principle in its various forms is a powerful and
instrumental tool for establishing results concerning existence, uniqueness, and other
qualitative properties of linear and nonlinear partial differential equations (PDEs). A
complete overview of this subject through 1967 can be found in [14].

We are interested in the property of the maximum principle for Beltrami color
flow in the context of scale-space theory. This theory claims that significant infor-
mation exists in all levels of resolution/scale of the image. It is important to create
a simplification process, called a “scale-space,” from which the information can be
extracted.

The notion of causality in the context of image processing and especially in scale-
space and denoising arenas was put forward in the work of Koenderink [10]. In
the one-dimensional case it is desirable that the simplification process of the signal
not create new maxima. This demand, together with homogeneity, leads to filtering
with a Gaussian kernel. The convolution of this kernel with the initial image is the
solution of the linear diffusion equation with the initial image as initial condition.
For higher-dimensional signals the noncreation of new maxima cannot be achieved.
It is usually replaced by a new principle—the noncreation of new level sets. This new
principle is called in the scale-space literature “the causality principle.” It is directly
related, in the scalar case, to the extremum principle as observed by Hummel [7]. The
extremum principle is taken as the natural generalization of the causality principle to
the vectorial case.

Moreover, the relevance of investigating the maximum principle for the Beltrami
flow and other PDE-based models can be seen through the work of Alvarez et al. [1].
In this paper, the authors propose a rigorous connection between scale-space analysis
and PDEs. They start from a very natural set of filtering axioms and show that
the resulting filtered image must necessarily be the solution of a second order fully
nonlinear parabolic PDE. The maximum principle is one of their axioms, which is
imposed so that smoothing of the original image is made with no enhancement.
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The problem of the discrete maximum principle was studied in many works. This
issue is important as it ensures that intensity values in the evolving image are con-
strained by the initial image values and do not grow without bounds. Perona and
Malik [12] proposed a numerical scheme which satisfies this property as proved in
[22]. Also the PDE introduced by Catte et al. [3] was proved to satisfy the discrete
maximum principle [22].

In this paper we treat the Beltrami flow for color images and study two aspects of
the maximum principle (continuous and discrete). First we deal with the continuous
formulation of the maximum principle and prove it for both the strong and the weak
formulations. The motivation for considering these two formulations is threefold.
First, the strong formulation is presented here in order to check the validity of the
maximum principle for a smooth solution. Second, this property is generalized for a
class of nonregular functions via a weak formulation of the maximum principle. In
what concerns the weak formulation, we follow the duality approach of Florack [6] and
later Mumford and Gidas [11]. In these works the image is conceived as a generalized
function. The duality approach describes the sensor space (also called “device space”)
as a functional space. The data we usually process, which result from the interaction
of the physical/optical data and the sensor, are modeled as an inner product of the
sensor function and the “true image.” In this context, the set of images is equivalent
to the set of linear functionals on the sensor functional space. It is natural from
this point of view to study the flow equations on the image space directly. We are
able to do so by defining generalized (weak) solutions to our flow equations. Our
third motivation lies in the fact that to achieve a proper analysis of images, we must
consider functions with less regular structure than the smooth functions we dealt with
in the strong formulation. This again leads to the study of weak solutions.

To the best of our knowledge, for highly nonlinear and strongly coupled systems
like the one we describe here, no mathematical analysis has been performed even for
smooth functions. In previous works [4, 2], well-posedness and the maximum principle
were treated for scalar valued functions only and for initial data of Lipschitz type,
which excludes discontinuous functions.

In the last part of the paper we study the discrete maximum principle for a
certain explicit difference scheme by which the nonlinear differential equation is ap-
proximated. We show that to approximate the various derivatives to a given order is
not enough to guarantee the maximum principle. This scheme can violate the max-
imum principle. We present, however, a proof of the stability of this scheme along
with examples that clearly demonstrate stability while failing to obey the maximum
principle.

The paper is organized as follows. In section 2 we review the Beltrami frame-
work. In section 3 we deal with the continuous formulation of the maximum principle.
We prove the extremum principle for the strong solution of the parabolic quasi-linear
system that characterizes the Beltrami color flow. In section 4 we introduce a weak
(generalized) solution for this system and prove the extremum principle in a weak for-
mulation. In section 5 we discuss the properties of the second order central difference
scheme, which in general violates the maximum principle. For this scheme we give a
theoretical stability proof. In section 6 we present numerical results. We summarize
and conclude in section 7.

2. The Beltrami framework. Let us briefly review the Beltrami framework
for nonlinear diffusion in computer vision [8, 18, 19].

The space of interest in computer vision such as images, texture, disparity in
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stereo-vision, optical flow, and distortion in registration is represented as a fiber bun-
dle. The base manifold is the image domain. We consider in this work a flat and
compact domain. A nonflat domain is treated, for example, in [17]. The feature
space, be it gray-values, color, optical flow, texture, etc., is the fiber space. Any
particular image or vector field is a section of this fiber bundle. We assume that the
Riemannian structure can be defined for the base manifold and for the fiber bun-
dle. Thus, we represent an image and other local features as an embedding map of a
Riemannian manifold in a higher-dimensional space—the fiber bundle. The simplest
example is a gray-level image which is represented as a two-dimensional surface em-
bedded in R3. We denote the map by X : Σ → R3, where Σ is a two-dimensional
surface, and we denote the local coordinates on it by (σ1, σ2). The map U is given in
general by (U1(σ1, σ2), U2(σ1, σ2), U3(σ1, σ2)). In our example we represent the map
U as follows: (U1 = σ1, U2 = σ2, U3 = I(σ1, σ2)). We choose on this surface a Rie-
mannian structure, namely a metric. The metric is a positive definite and symmetric
2-tensor that may be defined through the local distance measurements:

ds2 = g11(dσ
1)2 + 2g12dσ

1dσ2 + g22(dσ
2)2.

The canonical choice of coordinates in image processing is Cartesian. For such a
choice, which we follow in the rest of the paper, we identify σ1 = x1 and σ2 = x2.
We use below the Einstein summation convention in which a pair of upper and lower
identical indices is summed over. With this convention, the above equation is written
as ds2 = gijdx

idxj . We denote the elements of the inverse of the metric by superscripts
gij = (g−1)ij , and the determinant by g = det(gij).

Once the image is defined as an embedding mapping of Riemannian manifolds, it
is natural to look for a measure on this space of embedding maps.

2.1. Polyakov action: A measure on the space of embedding maps.
Denote by (Σ, g) the image manifold and its metric, and by (M,h) the space-feature
manifold and its metric. Then the functional S[U ] attaches a real number to a map
U : Σ → M :

S[Ua, gij , hab] =

∫
dV ||dU ||2g,h,

where dV is a volume element that is expressed in a local coordinate system as dV =√
gdxdy. The integrand ||dU ||2g,h is the Riemannian Frobenius norm of the tangent

map. It is expressed in a local coordinate system by ||dU ||2g,h = (∂xiU
a)gij(∂xjU

b)hab.
This functional, for m = 2 and hab = δab, was first proposed by Polyakov [13] in the
context of high energy physics, and the theory is known as string theory.

Let us formulate the Polyakov action in matrix form: (Σ, G) is the image manifold
and its metric as before. Similarly, (M,H) is the spatial-feature manifold and its
metric. Define

Aab = (�∇Ua)tG−1�∇U b.

The map U : Σ → M has a weight

S[U,G,H] =

∫
dmσ

√
g Tr(AH),

where m is the dimension of Σ and g = det(G).
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Using standard methods in the calculus of variations, the Euler–Lagrange equa-
tions with respect to the embedding (assuming a Euclidean embedding space) are (see
[18] for explicit derivation)

0 = − 1

2
√
g
hab δS

δU b
=

1
√
g
∂xi(

√
ggij∂xjU

a),(2.1)

or in matricial form,

0 = − 1

2
√
g
hab δS

δU b
=

1
√
g
div (D∇Ua)︸ ︷︷ ︸

ΔgUa

(2.2)

(where the matrix D = (dij)i,j=1,2 =
√
gG−1). The extension for non-Euclidean

embedding space is treated in [9, 19, 20, 21]. The elements of the induced metric for
color images with Cartesian color coordinates are

gij = δij + β2
3∑

a=1

Ua
xi
Ua
xj
,(2.3)

where β > 0 is the ratio between the spatial and color distances, and the subscript
of U denotes partial derivation. Note that this metric is different from the Di Zenzo
matrix [24] (which is not a metric since it is not positive definite). A generaliza-
tion of Di Zenzo’s gradient for color images was investigated in [23] by constructing
an anisotropic vector-valued diffusion model with a common tensor-valued structure
descriptor.

The value of the parameter β, present in the elements of the metric gij , is very
important and determines the nature of the flow. In the limit β → 0, for example,
the flow degenerates to the decoupled channel by channel linear diffusion flow. In the
other limit β → ∞ we get a new nonlinear flow. The gray-value analogue of this limit
is the total variation (TV) flow of [15] (see details in [19]).

Since (gij) is positive definite, g ≡ det(gij) > 0 for all σi. This factor is the
simplest one that does not change the minimization solution while giving a reparame-
terization invariant expression. The operator that acts on Ua is the natural generaliza-
tion of the Laplacian from flat spaces to manifolds and is called the Laplace–Beltrami
operator, denoted by Δg.

The nonlinear diffusion or scale-space equation emerges via the gradient descent
minimization:

Ua
t =

∂

∂t
Ua = − 1

2
√
g
hab δS

δU b
= ΔgU

a.(2.4)

The mathematical properties of this system, together with the initial and bound-
ary conditions which will be detailed below, are studied in the rest of the paper with
an emphasis on the extremum principle.

3. The extremum principle in the strong formulation. Here we establish
the maximum principle for the strong solution of the initial boundary-value problem
which characterizes the Beltrami color flow. We refer to the term “strong solutions”
when we talk about solutions which are functions with some smoothness criteria that
we detail below. Let us first introduce some notation. We denote the image domain
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by Ω. It is a bounded open domain in R2. We denote by ∂Ω the boundary of Ω.
We define the space-time cylinder QT = Ω × (0, T ), and denote its lateral surface by
ST = {(x, t)|x ∈ ∂Ω, t ∈ (0, T )}. We also define the parabolic boundary by the union
of the bottom and the lateral boundaries of the cylinder ΓT = Ω

⋃
ST .

The PDE is the gradient descent equation for the Polyakov action, as was de-
scribed in the previous section. We rearrange the equation by explicitly carrying out
the calculation of the derivation operator div. The result is the sum of two terms: The
first term results from applying the div to

√
gG−1, and the second from applying the

div to the gradient’s components Ua
xi

. Remember that the metric, and consequently
its inverse and its determinant, depends on first order derivatives. Applying the div
operator to it gives rise to second order derivatives of the different channels as well.
Rearranging the right-hand side of (2.4) according to the second order derivatives,
and the coefficients thereof, we arrive at the following coupled system of PDEs:

Ua
t = (F a

b)
ijU b

xixj
, (x, t) ∈ QT ,(3.1)

where a, b = 1, 2, 3 are indices in color space, i, j = 1, 2 are spatial indices, and
summation is applied to all repeated indices. Note that (F a

b) are nine 2 × 2 matrices.
Denote by Ha = (Ua

xixj
)2ij=1 the Hessian of Ua. This system of PDEs can be written

in terms of a trace in the spatial domain as

Ua
t = Trace

(
F a

bH
b
)
, (x, t) ∈ QT ,(3.2)

where, as before, the repeated b index implies a summation over the color indices.
The system of PDEs for which we establish the extremum principle is

Ua
t = ΔgU

a =
1
√
g
div(D∇Ua), Ua = R,G,B,(3.3)

where D is defined as before: D =
√
gG−1.

The initial and boundary conditions are

Ua(x, 0) = Ua
0 (x), x ∈ Ω,(3.4)

D�∇Ua · �n
∣∣∣
ST

= 0,(3.5)

where �n is the outer normal to ∂Ω and the dot product denotes, as usual, the Euclidean
scalar product in R2.

Lemma 3.1. The nine 2 × 2 matrices (F a
b) are symmetric, positive definite, and

their elements (F a
b)

ij are rational functions of the first derivatives of the different
channels. These matrix elements are, moreover, uniformly bounded functions on QT .

Proof. The proof is by direct calculation. One finds, for example,

(
F 2

1

)11
= −RxGx

g2
22

g2
+ (RxGy + RyGx)

g12g22

g2
− RyGy

g

(
1 +

g2
12

g

)
,(3.6)

(
F 2

1

)12
=

(
F 2

1

)21
=

RxGy + RyGx

g
− RxGy + RyGx

g2
g11g22(3.7)

−RxGy + RyGx

g2
g2
12 + 2

RxGxg22 + RyGyg11

g2
g2
12,(3.8)

(
F 2

3

)22
= −RyGy

g2
11

g2
+ (RxGy + RyGx)

g11g12

g2
− RxGx

g

(
1 +

g2
12

g

)
(3.9)
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(here we have denoted by R,G,B the three components of the color vector
−→
U ).

These are rational functions of the first derivatives. The diagonal elements of
(F a

b) are strictly positive (by a direct check), and the negativity of the discriminant
implies the positive definiteness of these matrices. One can verify directly that the
coefficients are bounded functions of the first derivatives. These properties are verified
along the same lines for all matrices.

Next we state the maximum principle for the strong solutions of the coupled
system of PDEs (3.3), with initial data (3.4) and boundary condition (3.5).

Theorem 3.2. Let
−→
U0 ∈ C2(Ω). Then a solution

−→
U ∈ C2,1(Q̄T ) satisfies the

following maximum principle:

(1) max
Q̄T

3∑
a=1

Ua = max
Ω

3∑
a=1

Ua
0 ,(3.10)

(2) max
Q̄T

Ua = max
Ω

Ua
0 .(3.11)

Proof. Note that assertion (2) does not imply, in general, assertion (1). We start
by proving assertion (1). Consider the following system of inequalities:

V a
t < (F a

b)
ijV b

xixj
, (x, t) ∈ QT ,(3.12)

where F a
b = F a

b(∇�V ).
We now show that a smooth solution of this system of inequalities satisfies

max
Q̄T

3∑
a=1

V a = max
ΓT

3∑
a=1

V a.(3.13)

Let V̄ =
∑3

a=1 V
a, and suppose on the contrary that the maximum of V̄ is attained

at an interior point (x0, t0) ∈ Q̄T \ΓT . This assumption leads to a contradiction as
follows: The maximality at the point (x0, t0) implies

V̄t|(x0,t0) ≥ 0 (V̄t|(x0,t0) = 0 if 0 ≤ t0 < T ).(3.14)

Based on (2.1), the system of inequalities (3.12) is equivalent to

V a
t <

1
√
g
∂xi(g

ij√g∂xjV
a), (x, t) ∈ QT .(3.15)

Since the Laplace–Beltrami operator that acts on the components depends only on
the geometry, the sum of the components obeys the same inequality:

V̄t <
1
√
g
∂xi(g

ij√g∂xj V̄ ).(3.16)

On the other hand, carrying out the div computation explicitly, we rewrite this
inequality as

1
√
g
∂xi

(gij
√
g∂xj V̄ ) = gij V̄xixj

+ ωj V̄xj
.

The functions ωj depend on the first and second derivatives of each of the components
of the color vector. They are bounded on QT by the smoothness of

−→
V ∈ C2,1(Q̄T ).
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The positive definiteness of the matrix gij and the maximality at the point (x0, t0)
imply

1
√
g
∂xi(g

ij√g∂xj V̄ )|(x0,t0) = gij V̄xixj |(x0,t0) < 0.(3.17)

Clearly (3.14) and (3.17) contradict (3.16). We conclude that (3.13) holds for a
solution of the system of inequalities (3.12).

Using the result for the solution of the system of inequalities, we prove the result
concerning the solution �U of our system (3.3). We define W a = Ua − εt and W̄ =∑3

1 W
a, Ū =

∑3
1 U

a. Then ∇W a = ∇Ua, gij( �W ) = gij(�U) and we obtain the
following inequalities:

W a
t − 1

√
g
∂xi(g

ij√g∂xj
W a) = Ua

t − 1
√
g
∂xi

(gij
√
g∂xj

Ua) − ε < 0.(3.18)

Since �W = (W a)a=1,2,3 satisfies (3.18), it follows that

max
Q̄T

W̄ = max
ΓT

W̄ .

Letting ε → 0, we establish that

max
Q̄T

Ū = max
ΓT

Ū .

Due to the boundary condition (3.5), the maximum cannot be attained on ST (see
[14, pp. 65–67]). Therefore assertion (1) is proved.

Next we prove assertion (2). Observe first that the off-diagonal matrices F a
b

with a 
= b can be written as Ua
xi

times a bounded function. Taking, for example,
(a, b) = (1, 2), one finds by rearranging the terms in (3.1) that

(F 1
2 )ij = U1

x1
· f ij

1 (∇−→
U ) + U1

x2
· f ij

2 (∇−→
U ).(3.19)

Thus if i = 1, j = 1, for example, then

f11
1 = −U2

x1

g2
22

g2
+ U2

x2

g12g22

g2
, f11

2 = U2
x1

g12g22

g2
+ U2

x2

(
g2
22

g2
+

1

g

)
.

One can write the other off-diagonal matrices similarly. For the structure of the
induced metric, we can easily see that

g ≥ 1,
gij
g

≤ 1 for all i, j = 1, 2.(3.20)

Since the solution
−→
U is in C2,1(Q̄T ), one can readily establish, using (3.20), that the

functions f ij
1 , f ij

2 are bounded on QT . We can, therefore, write the first equation of
the system (3.1), (3.4), (3.5) in the following form:

U1
t = (F 1

1 )ijU1
xixj

+ U2
xixj

(U1
x1
f ij
1 + U1

x2
f ij
2 ) + U3

xixj
(U1

x1
gij1 + U1

x2
gij2 ),(3.21)

where gij1 , gij2 are, as above, bounded functions depending on the first derivatives of

the vector solution
−→
U . We rewrite this equation:

U1
t = (F 1

1 )ijU1
xixj

+ T iU1
xi
,
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where T i are continuous functions on a compact domain and therefore bounded func-
tions. Again using the maximality of the point (x0, t0), the positive definiteness of
the matrix F 1

1 , and reasoning similar to that in the proof of assertion (1), we can
conclude that

max
Q̄T

U1 = max
Ω

U1
0 .

For the other two components the proof is the same, mutatis mutandis. Thus assertion
(2) is proved.

In the next section we define a weak solution for the Beltrami color flow and prove
that it obeys the extremum principle if it exists.

4. Weak formulation of the extremum principle. In this section we define
a weak solution of the system (3.3), (3.4), (3.5) under the smoothness assumptions
that are detailed below. We further prove the extremum principle for this type of
solution.

Let us introduce the following notations. Denote by V (QT ) the space of functions
which belong to L2(QT ) and have first weak derivatives satisfying ∇u ∈ L∞(QT ),
ut ∈ L∞(QT ). The Sobolev space W p,q

r is the space of functions for which the Lr

norm of their first generalized p spatial derivatives and q time derivatives is finite
(below we omit the second superscript for functions on the spatial domain only).

First we define a weak solution as follows.
Definition 4.1. A weak solution of the system (3.3), with initial and boundary

conditions (3.4), (3.5), is a vector function �U ∈ V (QT ) such that for any vector
function �η ∈ V (QT ) (i.e., each of the components of the vector are in V (QT )) the
following integral identities hold for almost all t ∈ [0, T ]:∫

QT

Ua
t η

a√g dxdt +

∫
QT

gijUa
xi
ηaxj

√
g dxdt = 0.(4.1)

Remark 4.1. The integral
∫
Ω

√
g dx means the area of the two-dimensional man-

ifold embedded in R5.
Remark 4.2. Florack [6], in viewing an image as a tempered distribution (see

[16]), adopted the space of the so-called slow growth functions (smooth functions of
rapid decay) as the sensor space. In this paper we take V (QT ) as the sensor functional
space, which we choose in accordance with the weak formulation of our problem.

Next we prove that if a weak solution exists and it satisfies ∇(�Ut) ∈ L∞(QT ), the
following weak extremum principle holds.

Theorem 4.1. Assume the initial data �U0 ∈ W 1
2 (Ω). For a weak solution of the

system (3.3), (3.4), (3.5) such that ∇(�Ut) ∈ L∞(QT ) we have for almost all (x, t) ∈ QT

ess inf
Ω

Ua
0 ≤ Ua(x, t) ≤ ess sup

Ω
Ua

0 .(4.2)

Proof. We prove (4.2) for one of the components. We divide the cylinder QT into
a finite number of cylinders of equal height Qts = Ω × (ts−1, ts), where ts = T

N s and
s = 1, 2, . . . , N. For the cylinder Qt1 we define ka = ess supΩ Ua

0 (x) and (Ua)ka =
max{0, Ua − ka} for (x, t) ∈ Ω × (0, t1).

Choose the test function η1 = Rk1 . Note that by the hypothesis, �U ∈ V (QT ),
and therefore the choice of such η is justified. Identity (4.1) for component R is now∫

Qt1

RtR
k1
√
gdxdt +

∫
Qt1

dijRxiR
k1
xj

dx dt = 0.(4.3)
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Since the matrix D (D =
√
gG−1) depends on the gradient ∇�U and ∇�U ∈

L∞(Qt1), we have that D is a uniformly positive definite matrix, and thus there
exists a constant ν > 0 such that

dij(∇Ū)Rxi
Rk1

xj
≥ ν|∇Rk1 |2 for almost every (x, t) ∈ Qt1 .

Therefore, (4.3) for the component R becomes∫
Qt1

RtR
k1
√
gdxdt + ν

∫
Qt1

|∇R|2 dx dt ≤ 0.(4.4)

Since for almost all t ∈ (0, t1)∫
Ω

Rt(x, t)R
k1(x, t) dx =

1

2

d

dt

∫
Ω

(
Rk1(x, t)

)2

dx,

we get∫
Qt1

RtR
k1
√
g dx dt=

1

2

∫
Qt1

((Rk1)2)t
√
g dx dt(4.5)

=
1

2

(∫
Ω

(Rk1)2
√
g
∣∣∣t1
0
dx−

∫
Qt1

(Rk1)2(
√
g)t dx dt

)
,(4.6)

and using (4.4), we get

1

2

∫
Ω

(
Rk1(x, t)

)2∣∣∣
t=t1

dx + ν

∫
Qt1

|∇Rk1 |2dxdt ≤ 1

2

∫
Qt1

(Rk1)2(
√
g)t dx dt

+
1

2

∫
Ω

(Rk1
0 )2

√
g0 dx.(4.7)

Since �U0 ∈ W 1
2 (Ω) and Rk1(x, 0) = Rk1

0 = 0, then
∫
Ω
(Rk1

0 )2
√
g0 dx = 0 and (4.7)

becomes

1

2

∫
Ω

(
Rk1(x, t)

)2

dx + ν

∫
Qt1

|∇Rk1 |2 dx dt ≤ 1

2

∫
Qt1

(Rk1)2(
√
g)t dx dt.(4.8)

Denote by || · ||V (QT ) the norm on the space V (QT ), where

||u||V (QT ) = max
0≤t≤T

||u||L2(Ω) +

√∫
QT

|∇u|2 dx dt.

By assumption, �Utx ∈ L∞(QT ), and then there exists a positive constant C such
that C = supQT

(
√
g)t.

The Cauchy–Schwarz inequality leads us to∣∣∣∣∣
∫
Qt1

(Rk1)2(
√
g)t dx dt

∣∣∣∣∣≤ C

∫
Qt1

(Rk1)2 dx dt

≤ Ct1

(
max

0≤t≤t1
||Rk1 ||L2(Ω)

)2

≤ Ct1||Rk1 ||2V (Qt1 ).(4.9)
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Therefore (4.8) becomes

min

{
1

2
, ν

}
||Rk1 ||2V (Qt1

) ≤ Ct1||Rk1 ||2V (Qt1
).

Then for sufficiently small t1 such that

Ct1 < min

{
1

2
, ν

}
,(4.10)

we obtain ||Rk1 ||V (Qt1 ) = 0, which implies that for almost every (x, t) ∈ Ω × (0, t1)
we have

R(x, t) ≤ ess sup
Ω

R0.

The same argument is valid for the cylinders Qts = Ω × (ts−1, ts), 2 ≤ s ≤ N , as
long as their height satisfies the requirement analogue of (4.10). Thus, after a finite
number of steps we obtain for the component R the estimate (4.2), for almost every
(x, t) ∈ QT .

In a similar way we can proceed with the other components.

5. The discrete maximum principle and stability. In this section we show
that the commonly used central difference second order explicit schemes in general
violate the discrete maximum principle. Nevertheless, for these schemes, we give a
theoretical proof of stability.

We work on a rectangular grid

xi = iΔx, yj = jΔy, tm = mΔt,

i, j = 0, 1, 2, . . . ,M, m = 0, 1, 2, . . . ,

[
T

Δt

]
.

The spatial units are normalized such that Δx = Δy = 1. The approximate
solution (Rm

ij , G
m
ij , B

m
ij ) samples the functions

Rm
ij ≡ U1(iΔx, jΔy,mΔt),

Gm
ij ≡ U2(iΔx, jΔy,mΔt),

Bm
ij ≡ U3(iΔx, jΔy,mΔt).

On the boundary we impose the Neumann boundary condition. This corresponds to
a prolongation by reflection of the image across the boundary.

We replace the second spatial derivatives and the first time derivative by a central
difference and forward difference, respectively. Based on (2.4), the first element R of
the color vector satisfies the following equation:

Rt =
1
√
g
div(D∇R).(5.1)
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The diffusion matrix is written here as

D =

(
a b
b c

)
,

where the coefficients are given in terms of the image metric a = g22/
√
g , c =

g11/
√
g , b = −g12/

√
g. With this notation, (5.1) is written as

Rt =
1
√
g
((aRx + bRy)x + (bRx + cRy)y).(5.2)

We approximate (5.2) by the following central difference explicit scheme:

Rm+1
ij = Rm

ij + βΔtOij(R
m, Gm, Bm),(5.3)

where Oij(R
m, Gm, Bm) is the discrete version of the right-hand side of (5.1) and is

given explicitly, in the central difference framework, by

(5.4)

Oij =
1

√
gm
i,j

[
ami+ 1

2 ,j
(Rm

i+1,j −Rm
i,j) − ami− 1

2 ,j
(Rm

i,j −Rm
i−1,j)

+ cmi,j+ 1
2
(Rm

i,j+1 −Rm
i,j) − cmi,j− 1

2
(Rm

i,j −Rm
i,j−1)

+
1

4
bmi,j+1(R

m
i+1,j+1 −Rm

i−1,j+1) −
1

4
bmi,j−1(R

m
i+1,j−1 −Rm

i−1,j−1)

+
1

4
bmi+1,j(R

m
i+1,j+1 −Rm

i+1,j−1) −
1

4
bmi−1,j(R

m
i−1,j+1 −Rm

i−1,j−1)
]
,

where the half indices are obtained by linear interpolation. The equations for the two
other color components are discretized in the same manner. This scheme is stable
under CFL-like bound requirements of the time step. The stability, as well as the lack
of extremum principle property, can be seen in the following theorem.

Theorem 5.1. If, for all m = 0, 1, 2, . . . , [ T
Δt ], Δt satisfies the condition

Δt ≤ 1

8βmax
i,j

{
am

i+ 1
2
,j√

gm
i,j

,
am

i− 1
2
,j√

gm
i,j

,
cm
i,j+ 1

2√
gm
i,j

,
cm
i,j− 1

2√
gm
i,j

} ,(5.5)

then the solution satisfies

|Rm
i,j | ≤ eS

β
2 tm max

i,j
|R0

i,j |,

|Gm
i,j | ≤ eS

β
2 tm max

i,j
|G0

i,j |,

|Bm
i,j | ≤ eS

β
2 tm max

i,j
|B0

i,j |,(5.6)

where

S = max
0≤p≤m

Sp and Sp = max
i,j

|bpi,j+1|√
gpij

+ max
i,j

|bpi,j−1|√
gpij

+ max
i,j

|bpi+1,j |√
gpij

+ max
i,j

|bpi−1,j |√
gpij

.

(5.7)
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Proof. We give the proof for only one of the components, since the proof is the
same for the other two. We introduce the following notation:

Lm
ij = ami+ 1

2 ,j
(Rm

i+1,j −Rm
i,j) − ami− 1

2 ,j
(Rm

i,j −Rm
i−1,j),(5.8)

Mm
ij = cmi,j+ 1

2
(Rm

i,j+1 −Rm
i,j) − cmi,j− 1

2 ,j
(Rm

i,j −Rm
i,j−1),(5.9)

Nm
ij =

1

4

[
bmi,j+1(R

m
i+1,j+1 −Rm

i−1,j+1) − bmi,j−1(R
m
i+1,j−1 −Rm

i−1,j−1)
]
,(5.10)

Pm
ij =

1

4

[
bmi+1,j(R

m
i+1,j+1 −Rm

i+1,j−1) − bmi−1,j(R
m
i−1,j+1 −Rm

i−1,j−1)
]
.(5.11)

Therefore, using (5.3) and (5.5), we can write

∣∣∣Rm+1
ij

∣∣∣ ≤ 1

2

∣∣∣Rm
ij

∣∣∣ +

∣∣∣∣∣14Rm
ij + β

Δt√
gmij

Lm
ij

∣∣∣∣∣ +

∣∣∣∣∣14Rm
ij + β

Δt√
gmij

Mm
ij

∣∣∣∣∣
+

∣∣∣∣∣β Δt√
gmij

Nm
ij

∣∣∣∣∣ +

∣∣∣∣∣β Δt√
gmij

Pm
ij

∣∣∣∣∣ .(5.12)

If

Δt ≤ 1

8βmax
i,j

am

i+ 1
2
,j√

gm
i,j

for all m = 0, 1, 2, . . . , [ T
Δt ], then
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1
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+
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,
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2 ,j

(Rm
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i,j)
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8
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|Rm
ij | .

Thus we can get the estimate∣∣∣∣∣2 · 1

8
Rm

ij + β
Δt√
gmij

Lm
ij

∣∣∣∣∣ ≤ 1

4
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ij | if Δt ≤ 1
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} .(5.13)

In the same way we obtain∣∣∣∣∣2 · 1

8
Rm

ij + β
Δt√
gmij
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ij
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{
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gm
i,j

,
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2√
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i,j

} .(5.14)
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Let

Nm,1
i,j = β

Δt

4
√
gmij

bmi,j+1(R
m
i+1,j+1 −Rm

i−1,j+1)

and

Nm,2
i,j = β

Δt

4
√
gmij

bmi,j−1(R
m
i+1,j−1 −Rm

i−1,j−1).

Then we obtain for Nm,1
i,j

|Nm,1
i,j | ≤ 2 · β Δt

4
√
gmij

|bmi,j+1|max
ij

|Rm
i,j |.(5.15)

A similar inequality can be written for |Nm,2
i,j | and for |Pm

i,j |. Thus we have

|Nm
ij | ≤ β

Δt

2
√
gmij

(|bmi,j+1| + |bmi,j−1|) max
ij

|Rm
i,j |
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and

|Pm
ij | ≤ β

Δt

2
√
gmij

(|bmi+1,j | + |bmi−1,j |) max
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i,j |
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From (5.13)–(5.17) it follows that
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gmij
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.
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Fig. 5.1. Top-left: noisy Camila image. Top-right: result of the Beltrami flow after 90 iteration.
Bottom: plot of maximum of each of the channels versus number of iterations. Parameters: β2 =
100, Δt = 0.0091.

Next, applying (5.18) repeatedly, we find that if condition (5.19) is satisfied, then

|Rm
ij | ≤

(
1 +

β

2
ΔtSm−1

)(
1 +

β

2
ΔtSm−2

)
. . .

(
1 +

β

2
ΔtS0

)
max
i,j

|R0
i,j |

≤
(

1 +
β

2
ΔtS

)m

max
i,j

|R0
i,j | ≤ e

β
2 tmS max

i,j
|R0

i,j |,

where S is given in (5.7).

The inequalities (5.6) clearly show that the maximum principle can be violated,
but we still have stability. The inequalities in Theorem 5.1 show that the numerical
solution is bounded in each iteration by the maximum value of the initial image
multiplied by a factor. It guarantees that the flow does not blow up in finite time
and ensures its stability. At the same time it is clear from the positivity of β that
the maximum principle can be violated. One can actually see it in practice (see
Figures 5.1, 5.2, and 5.3). We note that this does not indicate that the scheme is not
accurate. This situation is not unprecedented. The Crank–Nicolson scheme for the
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Fig. 5.2. Top-left: noisy Claudia image. Top-right: result of the Beltrami flow after 100
iterations. Bottom: (a) Plot of the maximum of each of the channels versus number of iterations.
(b) Detail of the previous graph (the first 4 iterations). Parameters: β2 = 100, Δt = 0.01.

one-dimensional heat equation, for example, is also known not to obey the maximum
principle while being a useful and accurate scheme.

The reason for this discrepancy between the continuous and the discrete setting
is that this second order approximation is not a nonnegative one. Indeed, the mixed



1630 LORINA DASCAL AND NIR A. SOCHEN

0 10 20 30 40 50 60 70 80
7.9

7.92

7.94

7.96

7.98

8

8.02

8.04

Fig. 5.3. Top-left: noisy windmill. Top-right: denoised image by the Beltrami flow after 80
iterations. Bottom: plot of maximum of each of the channels versus number of iterations. Parame-
ters: β2=3, Δt = 0.0091.

derivatives in (5.2) can create negative weights in certain pixels. One can easily
show that a scheme which is based on a nonnegative discretization does satisfy the
discrete maximum principle. Based on this result, the problem of proving the discrete
maximum principle boils down to the problem of finding a nonnegative second order
difference approximation. In [22], Weickert proposed a way to build a nonnegative
scheme. The nonnegativity of his proposed scheme depends, however, on the condition
number of the diffusion tensor D. Only in pixels where the condition number is smaller
than 3 + 2

√
2 are the weights nonnegative. This limits the application of the scheme,

since in many images the condition number is higher than this limit in many pixels.

6. Details of the implementation and results. In this section we present
results that represent the numerical behavior of the above described numerical scheme.
The initial data are given in three channels r, g, and b in the range 0 to 255. We first
transfer the images to the more perceptually adaptive coordinates R = log(1+r), G =
log(1 + g), B = log(1 + b). The dynamic range of these variables is 0 to 8, and these
adaptive coordinates do not limit the generality of our analysis. In the two examples
presented below we corrupt the images with random noise and then denoise them
using the scheme mentioned above. In the implementation, the parameters β and Δt
were chosen to satisfy the stability condition (5.5).
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Fig. 6.1. Camila image. Left: ellipsoid—initial noisy data. Right: ellipsoid—after applying
Beltrami, 90 iterations, β = 10.

Fig. 6.2. For Camila image (β = 10). Left: distribution of the initial noisy data. Right:
distribution of the data after 100 iterations.

Figures 5.1, 5.2, and 5.3 all demonstrate the stability of the process, on the one
hand, and the violation of the maximum principle, on the other. In Figures 5.2 and
5.3, one notices that after a certain small number of iterations the maximum principle
is satisfied. This is not the case in Figure 5.1, where the violation of the maximum
principle is stable and is observable over the whole evolution. The stability can also
be explained by the experiments presented in Figures 6.1 and 6.2.

Figure 6.2 depicts the distribution of colors in the Camila image before and af-
ter the Beltrami color flow. In Figure 6.1 the ellipsoids have as principle axes the
eigenvectors of the covariance-matrix of the color image. The contracting form of the
ellipsoid after applying the Beltrami flow indicates a stable denoising process.

7. Concluding remarks. In this paper, we studied the extremum principle
property for the Beltrami color flow. We adapted the duality paradigm of Florack
and considered “true images” as generalized functions. We therefore investigated,
besides the strong solutions, also the generalized (weak) solutions. We proved the
extremum principle in both the strong and the weak formulations.

We also addressed the problem of the discrete maximum principle and its close
relationship with stability. In contrast to the continuous case, the discrete maximum
principle cannot automatically be guaranteed. The central difference scheme does
not necessarily satisfy the extremum principle. Though this property is violated, we
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proved the stability of the scheme. Numerical examples show, nevertheless, that this
scheme is a useful tool in denoising.

Questions of existence and uniqueness, as well as analysis of more elaborated
numerical schemes, are currently being studied.

Acknowledgment. We thank Shoshana Kamin for interesting discussions.
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PROBLEMS OF STATIONARY FLOW OF ELECTRORHEOLOGICAL
FLUIDS IN A CYLINDRICAL COORDINATE SYSTEM∗
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Abstract. We consider the general problem on stationary flow of the electrorheological fluid
with the constitutive equation developed in [R. H. W. Hoppe and W. G. Litvinov, Comm. Pure.
Appl. Anal., 3 (2004), pp. 809–848] in the cylindrical coordinate system. The problem is studied
under mixed boundary conditions wherein velocities are specified on one part of the boundary and
surface forces are given on the other part. The existence of a solution to this problem and the
convergence of Galerkin approximations are established. Then, we consider the occasion where the
flow is axially symmetric and study a problem on an electrorheological clutch. This problem is solved
numerically, and the results of calculations of the electric field and velocities are presented.
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lutions, electrorheological clutch
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1. Introduction. Electrorheological fluids are smart materials which are con-
centrated suspensions of polarizable particles in a nonconducting dielectric liquid. In
moderately large electric fields, the particles form chains along the field lines, and
these chains then aggregate to form columns [16]. These chainlike and columnar
structures cause dramatic changes in the rheological properties of the suspensions.
The fluids become anisotropic; the apparent viscosity (the resistance to flow) in the
direction orthogonal to the direction of electric field abruptly increases, while the
apparent viscosity in the direction of the electric field changes not so drastically.

The chainlike structures directed along the magnetic field lines are formed in
magnetic suspensions whose behavior is similar to the behavior of electrorheological
suspensions. It was shown experimentally that the apparent viscosity of the flow of
magnetic suspensions in the direction orthogonal to the direction of the magnetic field
is about three times greater than the apparent viscosity of the flow in the direction
of the magnetic field; see [18, p. 85].

The chainlike and columnar structures are destroyed under the action of large
stresses, and then the apparent viscosity of the fluid decreases and the fluid becomes
less anisotropic.

The following constitutive equation of electrorheological fluids was developed in
[8]:

σij(p, u,E) = −pδij + 2ϕ(I(u), |E|, μ(u,E))εij(u), i, j = 1, . . . , n, n = 2 or 3.
(1.1)

∗Received by the editors August 7, 2003; accepted for publication (in revised form) August 16,
2004; published electronically June 14, 2005. This work has been supported by the German National
Science Foundation (DFG) within the Collaborative Research Center SFB 438.

http://www.siam.org/journals/siap/65-5/43288.html
†Department of Mathematics, University of Houston, Houston, TX 77204-3008 (rohop@math.

uh.edu).
‡Institute of Mathematics, University of Augsburg, Universitaetsstr. 14 D-86159 Augsburg, Ger-

many (litvinov@math.uni-augsburg.de).
§The Bergen Center for Computational Science, Thormhlensgt. 55, N-5008 Bergen, Norway (talal

@ii.uib.no).

1633



1634 R. H. W. HOPPE, W. G. LITVINOV, AND T. RAHMAN

Here, σij(p, u,E) are the components of the stress tensor which depend on the
pressure p, the velocity vector u = (u1, . . . , un), and the electric field strength
E = (E1, . . . , En); δij are the components of the unit tensor (the Kronecker delta);
and εij(u) are the components of the rate of strain tensor

εij(u) =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
,(1.2)

where xi are Cartesian coordinates of a point x = (x1, . . . , xn).
Moreover, I(u) is the second invariant of the rate-of-strain tensor

I(u) =
n∑

i,j=1

(εij(u))2,(1.3)

and ϕ the viscosity function depending on I(u), |E|, and μ(u,E).
The function μ is introduced into the constitutive equation (1.1) in order to take

into account the anisotropy of the electrorheological fluid under which the viscosity of
the fluid depends on the angle between the vector of the electric field and the vector of
the velocity with respect to the charged electrode (the counter electrode is not charged
usually). The electrode can move relative to the body of an electrorheological device,
and hence we consider that the electrode can move relative to the reference frame
under consideration.

Let ǔ(x, t) = (ǔ1(x, t), ǔ2(x, t), ǔ3(x, t)) be a vector of transfer velocity; ǔ(x, t) is
the velocity of a point of the electrode which coincides with the point x of the frame
at an instant t. It is assumed that ǔ is a known function.

We define the function μ as the square of the cosine of the angle between the
vector of the electric field and the vector of the velocity relative to the electrode, i.e.,

μ(u,E) =

(
u− ǔ

|u− ǔ| ,
E

|E|

)2

R3

=
((ui − ǔi)Ei)

2(∑3
i=1(ui − ǔi)2

)(∑3
i=1 E

2
i

) .(1.4)

Here and below, the Einstein convention on summation over a repeated index is
applied, and we denote by (., .)R3 the scalar product in R3.

If the electrode does not move relative to the reference frame, then ǔ = 0 and the
function μ takes the form

μ(u,E) =

(
u

|u| ,
E

|E|

)2

R3

.(1.5)

In the general case, the function ǔ is defined as follows:

ǔ(x, t) =
◦
u(t) + w(x, t),(1.6)

where
◦
u(t) = (

◦
u1(t),

◦
u2(t),

◦
u3(t)) is a vector of the translation velocity and w(x, t) =

(w1(x, t), w2(x, t), w3(x, t)) is a vector of the rotational velocity.
The function μ(u,E) is an invariant which is independent of the choice of the

reference frame and the motion of the frame with respect to the electrode.
The viscosity function ϕ is identified by approximation of flow curves (see [8])

and it was shown in [8] (see also the appendix) that it can be represented as follows:

ϕ(I(u), |E|, μ(u,E)) = b(|E|, μ(u,E))(λ + I(u))−
1
2 + ψ(I(u), |E|, μ(u,E)),(1.7)

where λ is a small parameter, λ ≥ 0.
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The constitutive equation (1.1) with the viscosity function (1.7) allows one to
describe the following main peculiarities of flow of electrorheological fluids:

(a) singular or almost singular viscosity function at zero value of the rate-of-strain
tensor,

(b) an arbitrary nonlinear relationship between the shear rates and the shear
stresses,

(c) an arbitrary dependence of the viscosity on the module of the vector of the
electric field and on the angle between the vectors of the velocity and electric
field (the anisotropy).

With some assumptions natural from a physical point of view, the constitutive equa-
tion (1.1) with the viscosity function (1.7) leads to well-posed mathematical problems
(see sections 4 and 5 below and [8]).

The functions b and ψ in (1.7) can be identified so that a set of flow curves
obtained for different electric fields E is approximated in an arbitrary range of the
shear rates with an arbitrarily high degree of accuracy (for example, by splines).

The Bingham constitutive equation of electrorheological fluids, which is of con-
siderable current use (see, e.g., [4], [16], [22]), gives no way to closely approximate a
set of flow curves, especially at small shear rates (see Figure A-1 in the appendix).
In addition, the Bingham constitutive equation takes no account of the anisotropy of
electrorheological fluids.

We consider Maxwell’s equations in the following form (see, e.g., [10]):

curlE +
1

c

∂B

∂t
= 0, divB = 0,

curlH − 1

c

∂D

∂t
= 0, divD = 0.(1.8)

Here E is the electric field, B the magnetic induction, D the electric displacement, H
the magnetic field, and c the speed of light. One can assume that

D = εE, B = μH,(1.9)

where ε is the dielectric permittivity and μ the magnetic permeability.
Since electrorheological fluids are dielectrics, the magnetic field H can be ne-

glected. Then (1.8), (1.9) give the following relations:

curlE = 0,(1.10)

div(εE) = 0.(1.11)

It follows from (1.10) that there exists a function of potential θ such that

E = − grad θ,(1.12)

and (1.11) implies

div(ε grad θ) = 0 in Ω1.(1.13)

Here Ω1 is the domain of the fluid flow in the Cartesian coordinate system.
The boundary conditions are the following:

θ = Ui(t) on Γi, i = 1, . . . , k,(1.14)

θ = 0 on Γi0,(1.15)

ν · ε grad θ = 0 on Γ\
(

k⋃
i=1

(Γi ∪ Γi0)

)
.(1.16)
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Here Γi and Γi0 are the surfaces of the ith control and null electrodes, respectively,
and it is supposed that Γi, Γi0 are open subsets of the boundary Γ of Ω1.

Therefore, the equations for the functions E and (p, v) are separated. Because of
this, we assume hereafter that the function of electric field E is known.

In the special case that the direction of the velocity relative to the electrode
u(x, t) − ǔ(x, t) at each point (x, t) at which E(x, t) �= 0 is known, the function
(x, t) → μ(u,E)(x, t) becomes well known, and the viscosity functions (1.7) takes the
form

ϕ(I(u), |E|, x, t) = e(|E|, x, t)(λ + I(u))−
1
2 + ψ1(I(u), |E|, x, t),(1.17)

where

e(|E|, x, t) = b(|E|, μ(u,E)(x, t)),

ψ1(I(u), |E|, x, t) = ψ(I(u), |E|, μ(u,E)(x, t)).(1.18)

In many electrorheological devices the fluid flows in domains of which the boundaries
are the surfaces of revolution. Problems on flow of electrorheological fluids in such
domains are convenient to consider in cylindrical coordinates.

In section 2, we present governing equations. In section 3, we formulate a gen-
eral boundary value problem on stationary flow of the electrorheological fluid in the
cylindrical coordinate system and adduce some auxiliary results. Section 4 contains
approximate solutions and existence theorems for the general boundary value problem.
In section 5, we consider a problem on stationary axially symmetric flow. A problem
on an electrorheological clutch is formulated and solved numerically in section 6.

2. Governing equations and assumptions. We consider the system of cylin-
drical coordinates r, α, z. An element of the length dl is defined in cylindrical coor-
dinates as dl = (dr2 + r2 dα2 + dz2)

1
2 . Denote the components of a vector v in the

mobile orthonormal basis er, eα, ez by v1, v2, v3; i.e., v = (v1, v2, v3).

Let u = (u1, u2, u3) be a velocity vector. The components of the rate-of-strain
tensor have the following form in cylindrical coordinates,

ε11(u) =
∂u1

∂r
, ε22(u) =

1

r

∂u2

∂α
+

u1

r
, ε33(u) =

∂u3

∂z
,

ε12(u) = ε21(u) =
1

2

(
1

r

∂u1

∂α
+

∂u2

∂r
− u2

r

)
,

ε23(u) = ε32(u) =
1

2

(
∂u2

∂z
+

1

r

∂u3

∂α

)
,

ε13(u) = ε31(u) =
1

2

(
∂u1

∂z
+

∂u3

∂r

)
,(2.1)

and the second invariant of the rate-of-strain tensor is defined by

I(u) =
3∑

i,j=1

(εij(u))2.(2.2)

We assume the following.

(A0) Ω1 is a bounded domain in R3 with a Lipschitz continuous boundary Γ.
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Let P be the operator of translation from cylindrical coordinates to Cartesian
ones,

P : (r, α, z) → P(r, α, z) = (x1, x2, x3),

x1 = r cosα, x2 = r sinα, x3 = z, r ∈ R+, α ∈ [0, 2π), z ∈ R,(2.3)

where R+ = {y ∈ R, y ≥ 0} and we identify the points (0, α, z) with the point (0, 0, z),
α ∈ [0, 2π). The inverse operator P−1 is defined by

P−1 : P−1(x1, x2, x3) = (r, α, z),

r = (x2
1 + x2

2)
1
2 , α = arctan

x2

x1
, z = x3.(2.4)

Here, we consider that the mapping (x1, x2) → arctan x2

x1
is a multifunction at the

point x1 = x2 = 0, namely, arctan 0
0 = [0, 2π).

Let

Ω = P−1 (Ω1), S = P−1(Γ).(2.5)

We consider a stationary flow problem under the Stokes approximation; i.e., we
ignore inertial forces, which are assumed to be small as compared with the internal
forces caused by the viscous stresses. Then the motion equations take the following
form:

∂p

∂r
− 2

∂

∂r
(ϕε11(u)) − 2

r

∂

∂α
(ϕε12(u)) − 2

∂

∂z
(ϕε13(u)) − 2ϕ

r
(ε11(u) − ε22(u)) = K1

in Ω,(2.6)

1

r

∂p

∂α
− 2

∂

∂r
(ϕε21(u)) − 2

r

∂

∂α
(ϕε22(u)) − 2

∂

∂z
(ϕε23(u)) − 4

r
ϕε12(u) = K2 in Ω,

(2.7)

∂p

∂z
− 2

∂

∂r
(ϕε31(u)) − 2

r

∂

∂α
(ϕε32(u)) − 2

∂

∂z
(ϕε33(u)) − 2

r
ϕε13(u) = K3 in Ω.(2.8)

Here the viscosity function ϕ is defined either by (1.7) or by (1.17), and K1, K2, K3

are the components of the volume force vector K.
The velocity function u meets the incompressibility condition

divc u =
∂u1

∂r
+

1

r

∂u2

∂α
+

∂u3

∂z
+

u1

r
= 0 in Ω.(2.9)

Here and below, we denote by divc the operator of divergence in cylindrical coordi-
nates.

Suppose that S1 and S2 are open subsets of S such that S1 is nonempty, S1∩S2 =
∅, and S1 ∪ S2 = S. We consider mixed boundary conditions, wherein velocities are
specified on S1 and surface forces are given on S2, i.e.,

u = û on S1,(2.10)

[−pδij + 2ϕεij(u)]νj = Fi on S2, i, j = 1, 2, 3.(2.11)

Here, by νj and Fi we denote the components of the unit outward normal to S2

and the components of the vector of surface force with respect to the basis vectors
er, eα, ez.
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Let

S̃ = {(r, α, z)|r = 0, α ∈ [0, 2π), z ∈ R+}, S0 = Ω ∩ S̃.(2.12)

In particular, S0 can be an empty set. It follows from (2.9) that

u1 = 0 on S0,(2.13)

and therefore ∂u1

∂z = 0 on S0, and since ε13(u) = 0 on S0 (see (2.8)), we obtain

∂u3

∂r
= 0 on S0.(2.14)

It follows also from (2.6), (2.7), and (2.1) that

lim
r→0

(ε11(u) − ε22(u))(r, α, z) = 0,

lim
r→0

(ε12(u))(r, α, z) = 0, u2 = 0 on S0.(2.15)

In the case when the viscosity function is defined by (1.7), we assume the following.
(A1) b : y1, y2 → b(y1, y2) is a function continuous in R+× [0, 1], and, in addition,

0 ≤ b(y1, y2) ≤ a0, (y1, y2) ∈ R+ × [0, 1],(2.16)

where a0 is a positive constant.
(A2) ψ : (y1, y2, y3) → ψ(y1, y2, y3) is a function continuous in R2

+ × [0, 1], and
for an arbitrarily fixed (y2, y3) ∈ R+ × [0, 1] the partial function ψ(., y2, y3) : y1 →
ψ(y1, y2, y3) is continuously differentiable in R+, and the following inequalities hold:

a2 ≥ ψ(y1, y2, y3) ≥ a1,(2.17)

ψ(y1, y2, y3) + 2
∂ψ

∂y1
(y1, y2, y3)y1 ≥ a3,(2.18) ∣∣∣∣ ∂ψ∂y1

(y1, y2, y3)

∣∣∣∣ y1 ≤ a4,(2.19)

where a1–a4 are positive constants.
In the case that the viscosity function is defined by (1.17), we suppose the follow-

ing.
(A3) for an arbitrary fixed (y2, x, t) ∈ R+ × Ω1 × R+, the partial function

ψ1(., y2, x, t) : y1 → ψ1(y1, y2, x, t) is continuously differentiable in R+, and the fol-
lowing inequalities hold:

a2 ≥ ψ1(y1, y2, x, t) ≥ a1,(2.20)

ψ1(y1, y2, x, t) + 2
∂ψ1

∂y1
(y1, y2, x, t)y1 ≥ a3,(2.21) ∣∣∣∣∂ψ1

∂y1
(y1, y2, x, t)

∣∣∣∣ y1 ≤ a4.(2.22)

As for the function e, we assume

e ∈ L∞(R+ × Ω1 × R+), 0 ≤ e(y, x, t) ≤ a0, y ∈ R+, x ∈ Ω1, t ∈ R+.
(2.23)



FLOW OF ELECTRORHEOLOGICAL FLUIDS 1639

At λ = 0 the viscosity function ϕ defined by (1.7) is singular at I(u) = 0, ϕ(0, |E|,
μ(u,E)) = ∞, and flow problems for such viscosity function reduce to the solution of
variational inequalities.

The equation (1.7) with a small positive λ defines a fluid with a finite but possibly
large viscosity at I(u) = 0. From a physical point of view a fluid with bounded
viscosity is more reasonable than the fluid with singular unbounded viscosity (all
is bounded in actuality). It is shown in [8] that the solutions of the problems with
bounded viscosities converge to the solution of the problem with the singular viscosity
as λ tends to zero. Because of this, we assume that

λ > 0 in (1.7) and (1.17).(2.24)

Let us dwell on the physical sense of the inequalities (2.16)–(2.23). The inequal-
ities (2.16) and (2.17) indicate that the viscosity is bounded from below and from
above by positive constants. The inequality (2.18) implies that for fixed values of |E|
and μ(u,E) the derivative of the function I(u) → G(u) is positive, where G(u) is the
second invariant of the stress deviator

G(u) =
n∑

i,j=1

(σij(p, u,E) + pδij)
2 = 4[ϕ(I(u), |E|, μ(u,E))]2I(u).

This means that in case of simple shear flow the shear stress increases with increasing
shear rate. (2.19) is a restriction on ∂ϕ

∂y1
for large values of y1.

The inequalities (2.20)–(2.23) are analogous to the inequalities (2.16)–(2.19).
All inequalities (2.16)–(2.23) are natural from a physical point of view.
The viscosity function is identified by approximation of a set of flow curves which

are obtained experimentally by viscometric testing for different electric fields. The
inequalities (2.16)–(2.23) are consistent with the shapes of the flow curves and enable
one to approximate a set of flow curves over a wide range of shear rates with a high
degree of accuracy (see the appendix below and [3], [8], [19]).

3. Generalized solution of the problem. We define the following sets:

J0 =

{
v|v = (v1, v2, v3) ∈ C∞(Ω)3, v1

∣∣
S0

= 0, v2

∣∣
S0

= 0,

∂vk

∂αk

∣∣∣
α=0

=
∂vk

∂αk

∣∣∣
α=2π

, k = 0, 1, 2, . . .

}
,(3.1)

J = {v|v ∈ J0, v
∣∣
S1

= 0},(3.2)

J1 = {v|v ∈ J, divc v = 0}.(3.3)

Let H and H1 be the closures of J and J1 with respect to the norm

||v||H =

(∫
Ω

I(v)r dr dα dz

) 1
2

,(3.4)

and let H0 be the closures of J0 relative to the norm

||v||H0 =

(
||v||2H +

∫
S1

|v|2 ds
) 1

2

.(3.5)
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Let also Y be the space of scalar functions which are square integrable in Ω with
respect to the measure r dr dα dz. The norm in Y is defined by

||h||Y =

(∫
Ω

h2 r dr dα dz

) 1
2

.(3.6)

We define the operator G that maps H0 into a set of vector valued functions deter-
mined in Ω1 as follows:

v = (v1, v2, v3) ∈ H0, G(v) = {G(v)i}3
i=1,

G(v)1 = (v1 cosα− v2 sinα) ◦ P−1,

G(v)2 = (v1 sinα + v2 cosα) ◦ P−1, G(v)3 = v3 ◦ P−1.(3.7)

We assign also the following norm in H0:

||v||1 = ||G(v)||H1(Ω1)3 ,(3.8)

where || � ||H1(Ω1)3 is the norm of the product of three Sobolev spaces H1(Ω1).
Lemma 3.1. Suppose that the condition (A0) is satisfied. Then the expressions

(3.4) and (3.8) define equivalent norms in H, and the expressions (3.5) and (3.8) are
equivalent norms in H0. The operator G is an isomorphism of H0 onto H1(Ω1)

3, and
the following equality holds:

||h||Y = ||h ◦ P−1||L2(Ω1).(3.9)

Proof. The equivalence of the norms (3.4) and (3.8) in H, and the norms (3.5)
and (3.8) in H0, follows from the fact that I(v) is the invariant, i.e.,

3∑
i,j=1

[(εij(v))(r, α, z)]
2 =

3∑
i,j=1

[(εij(G(v)))(P(r, α, z))]2,(3.10)

and from the Korn inequality.
Therefore, G(H0) ⊂ H1(Ω1)

3. Let g = (g1, g2, g3) ∈ H1(Ω1)
3. We have(

∂

∂r
(gi ◦ P)

)
(r, α, z) =

∂gi
∂x1

(P(r, α, z)) cosα +
∂gi
∂x2

(P(r, α, z)) sinα,(
∂

∂α
(gi ◦ P)

)
(r, α, z) = − ∂gi

∂x1
(P(r, α, z))r sinα +

∂gi
∂x2

(P(r, α, z))r cosα,(
∂

∂z
(gi ◦ P)

)
(r, α, z) =

∂gi
∂x3

(P(r, α, z)), i = 1, 2, 3.(3.11)

We define a vector-function v = (v1, v2, v3) as follows:

v1 = (g1 ◦ P) cosα + (g2 ◦ P) sinα,

v2 = (g2 ◦ P) cosα− (g1 ◦ P) sinα, v3 = g ◦ P.(3.12)

It follows from (3.7), (3.11), and (3.12) that v = G−1g ∈ H0, where G−1 is the
inverse of G. Therefore, G(H0) = H1(Ω1)

3.
The equalities (3.11) imply G−1 ∈ L(H1(Ω1)

3, H0), and by the Banach theorem
on closed range the operator G is an isomorphism of H0 onto H1(Ω1)

3.
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Everywhere below, we use the following notations: if H is a normed space, we
denote by H∗ the dual of H and by (f, h) the duality between H∗ and H, where
f ∈ H∗, h ∈ H. In particular, if f ∈ Y or f ∈ Y n, n = 2 or 3, then (f, h) is the scalar
product in Y or in Y n, respectively. That is, we identify the spaces Y and Y n with
their dual spaces Y ∗ and (Y n)∗, respectively.

The sign ⇀ denotes weak convergence in a Banach space.
We suppose that û belongs to the space of traces on S1 of the functions from H0,

i.e., û ◦ P−1 ∈ H
1
2 (P(S1)). Then, there exists a function ũ such that

ũ ∈ H0, ũ
∣∣
S1

= û, divc ũ = 0.(3.13)

We assume also that

K = (K1,K2,K3) ∈ Y 3, F ◦ P−1 = (F1, F2, F3) ◦ P−1 ∈ L2(P(S2))
3.(3.14)

We define operators L : H → H∗ and B ∈ L(H,Y ∗) as follows:

(L(v), h) = 2

∫
Ω

ϕεij(ũ + v)εij(h)r dr dα dz, v, h ∈ H,(3.15)

(Bv,w) =

∫
Ω

(divc v)wr dr dα dz, v ∈ H, w ∈ Y.(3.16)

In (3.15) the function ϕ is defined either by (1.7) or by (1.17).
We consider the problem: Find a pair of functions (v, p) satisfying

v ∈ H, p ∈ Y,(3.17)

(L(v), h) − (B∗ p, h) = (K + F, h), h ∈ H,(3.18)

(Bv,w) = 0, w ∈ Y.(3.19)

Here, B∗ is the operator adjoint of B and

(K + F, h) =

∫
Ω

Kihi r dr dα dz +

∫
S2

Fihi ds.(3.20)

The pair (u = v + ũ, p), where (v, p) is a solution of the problem (3.17)–(3.19), will
be called the generalized solution of the problem (2.6)–(2.11), (2.13)–(2.15).

Indeed, by use of Green’s formula, it can be seen that, if (v, p) is a solution of
the problem (3.17)–(3.19), then the pair (u = v + ũ, p) is a solution of the problem
(2.6)–(2.11), (2.13)–(2.15) in the distributional sense. On the contrary, if (u, p) is a
smooth solution of the problem (2.6)–(2.11), (2.13)–(2.15), then the pair (v = u−ũ, p)
is a solution of the problem (3.17)–(3.19).

Lemma 3.2. Suppose that the condition (A0) is satisfied. Then, the following
inf-sup condition,

inf
g∈Y

sup
w∈H

(Bw, g)

||w||H ||g||Y
≥ β1 > 0,(3.21)

holds true. The operator B is an isomorphism from H⊥
1 onto Y , where H⊥

1 is the
orthogonal complement of H1 in H, and the operator B∗ is an isomorphism from Y
onto the polar set

H◦
1 = {q ∈ H∗, (q, v) = 0, v ∈ H1}.(3.22)
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Moreover

||B−1||L(Y,H⊥
1 ) ≤

1

β1
, ||(B∗)−1||L(H◦

1 ,Y ) ≤
1

β1
.(3.23)

This lemma follows from the corresponding result in Cartesian coordinates (see
[2], [8], [13]), since G is an isomorphism of H0 onto H1(Ω1)

3 and I(v) is invariant (see
(3.10)) and divc v is an invariant also; i.e.,

(divc v)(r, α, z) = (divG(v))(P(r, α, z)).(3.24)

4. Approximate solutions and existence theorems. Let {Xm}∞m=1 and
{Nm}∞m=1 be sequences of finite-dimensional subspaces in H and Y , respectively,
such that

lim
m→∞

inf
h∈Xm

||w − h||H = 0, w ∈ H,(4.1)

lim
m→∞

inf
g∈Nm

||f − g||Y = 0, f ∈ Y,(4.2)

inf
g∈Nm

sup
h∈Xm

(Bh, g)

||h||H ||g||Y
≥ β > 0,(4.3)

Xm ⊂ Xm+1, Nm ⊂ Nm+1, m ∈ N.(4.4)

We seek an approximate solution of the problem (3.17)–(3.19) of the form

vm ∈ Xm, pm ∈ Nm,(4.5)

(L(vm), h) − (B∗ pm, h) = (K + F, h), h ∈ Xm,(4.6)

(Bvm, g) = 0, g ∈ Nm.(4.7)

Theorem 4.1. Suppose that the function ϕ defining the operator L (see (3.15))
is given by (1.7) and that the conditions (A0), (A1), (A2), (2.24) are satisfied. Let
also (3.13), (3.14), (4.1)–(4.4) hold. Then there exists a solution (v, p) of the problem
(3.17)–(3.19), and for an arbitrary m ∈ N there exists a solution of the problem (4.5)–
(4.7), and a subsequence {vk, pk} can be extracted from the sequence {vm, pm} such
that

vk → v in H, pk → p in Y.(4.8)

Indeed, we replace cylindrical coordinates r, α, z by Cartesian coordinates x1, x2, x3

in the problems (3.17)–(3.19) and (4.5)–(4.7). Then, we use Lemma 3.1 and Theorem
5.1 from [8] for these problems in Cartesian coordinates and pass back to cylindrical
coordinates. As a result, we obtain that there exists a solution of the problem (3.17)–
(3.19), and there exists a solution of the problem (4.5)–(4.7) for any m ∈ N, and a
subsequence {vk, pk} can be extracted from the sequence {vm, pm} such that

vk ⇀ v in H, pk ⇀ p in Y.(4.9)

(4.8) is proved by using (4.9) and the arguments of Theorem 2.1 from [2].
The next theorem follows from the results of [2].
Theorem 4.2. Suppose that the function ϕ defining the operator L (see (3.15))

is given by (1.17) and that the conditions (A0), (A3), (2.23), (2.24) are satisfied.
Let also (3.13), (3.14), (4.1)–(4.4) hold. Then there exists a unique solution (u, p) of
the problem (3.17)–(3.19), and for an arbitrary m ∈ N there exists a unique solution
(vm, pm) of the problem (4.5)–(4.7); moreover,

vm → v in H, pm → p in Y.
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5. Problem of axially symmetric flow.

5.1. Formulation of the problem. In the case of axially symmetric flow
the components of a velocity vector u in the mobile orthonormal basis (er, eα, ez)
of the cylindrical coordinate system depend on r, z only, i.e., u(r, z) = (u1(r, z),
u2(r, z), u3(r, z)); the components of the rate-of-strain tensor have the form

ε11(u) =
∂u1

∂r
, ε22(u) =

u1

r
, ε33(u) =

∂u3

∂z
,

ε12(u) = ε21(u) =
1

2

(
∂u2

∂r
− u2

r

)
, ε23(u) = ε32(u) =

1

2

∂u2

∂z
,

ε13(u) = ε31(u) =
1

2

(
∂u1

∂z
+

∂u3

∂r

)
;(5.1)

and the second invariant of the rate-of-strain tensor is defined by

I(u) =

(
∂u1

∂r

)2

+
(u1

r

)2

+

(
∂u3

∂z

)2

+
1

2

(
∂u2

∂r
− u2

r

)2

+
1

2

(
∂u2

∂z

)2

+
1

2

(
∂u1

∂z
+

∂u3

∂r

)2

.(5.2)

We assume that the domain of flow of the electrorheological fluid Ω1 satisfies the
condition (A0) and has the following form:

Ω1 = {x|x = (x1, x2, x3), x3 ∈ (0, l), (x2
1 + x2

2)
1
2 < R2(x3),

(x2
1 + x2

2)
1
2 > R1(x3) if R1(x3) > 0, (x2

1 + x2
2)

1
2 ≥ R1(x3) if R1(x3) = 0},(5.3)

where R1 and R2 are functions given in (0, l). The function R1 takes nonnegative
values, R2 takes positive values, and R2(x3) > R1(x3) for all x3 ∈ (0, l).

The condition (A0) imposes restrictions on the functions R1 and R2. The func-
tions R1 and R2 can be Lipschitz continuous as well as discontinuous with a finite
number of points of discontinuity. But in the second case the functions R1 and R2

must be Lipschitz continuous in between the points of discontinuity.

Let Ω2 = P−1(Ω1); the mapping P−1 is defined by (2.4). Since the flow of the
fluid is assumed to be axially symmetric—i.e., the functions of velocity, pressure, and
electric field are independent of α in cylindrical coordinate system—we consider our
problem in the domain Ω3, which consists of points (r, z) such that (r, α, z) ∈ Ω2,
α ∈ [0, 2π).

According to (5.3), the domain Ω3 is defined by

Ω3 = {(r, z)|0 < z < l, R1(z) < r if R1(z) > 0,

R1(z) ≤ r if R1(z) = 0, r < R2(z)}.(5.4)

We consider the stationary flow problem under the neglect of the inertial forces.
Taking into account (2.6)–(2.8) and (5.1), we obtain the following motion equations:
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∂p

∂r
− 2

∂

∂r

(
ϕ
∂u1

∂r

)
− ∂

∂z

(
ϕ

(
∂u1

∂z
+

∂u3

∂r

))
− 2

r
ϕ

(
∂u1

∂r
− u1

r

)
= K1 in Ω3,

(5.5)

− ∂

∂r

(
ϕ

(
∂u2

∂r
− u2

r

))
− ∂

∂z

(
ϕ
∂u2

∂z

)
− 2

r
ϕ

(
∂u2

∂r
− u2

r

)
= K2 in Ω3,(5.6)

∂p

∂z
− ∂

∂r

(
ϕ

(
∂u1

∂z
+

∂u3

∂r

))
− 2

∂

∂z

(
ϕ
∂u3

∂z

)
− ϕ

r

(
∂u1

∂z
+

∂u3

∂r

)
= K3 in Ω3,

(5.7)

where the function ϕ is defined either by (1.7) or by (1.17).
The equation of incompressibility takes the form

divc u =
∂u1

∂r
+

∂u3

∂z
+

u1

r
= 0 in Ω3.(5.8)

Let S be the boundary of Ω3 and

T = {z|z ∈ (0, l), R1(z) = 0},
S0 = {(r, z)|r = 0, z ∈ T }.(5.9)

In particular, S0 can be an empty set.
Let also

S′ = {(r, α, z)|(r, z) ∈ S\S0, α ∈ [0, 2π)}.(5.10)

Then P(S′) = Γ, where Γ is the boundary of the domain Ω1 defined by (5.3).
Suppose that S1 and S2 are open subsets of S\S0 such that S1 is not empty,

S1 ∩ S2 = ∅, and S1 ∪ S2 = S\S0. We consider mixed boundary conditions, wherein
velocities are specified on S1 and surface forces are given on S2, i.e.,

u|S1 = ǔ,(5.11)

[(−p + 2ϕε11(u))ν1 + 2ϕε13(u)ν3]|S2 = F1,(5.12)

[2ϕε21(u)ν1 + 2ϕε23(u)ν3]|S2 = F2,(5.13)

[(−p + 2ϕε33(u))ν3 + 2ϕε31(u)ν1]|S2
= F3,(5.14)

where ν1 and ν3 are the components of the unit outward normal ν = (ν1, 0, ν3) to the
boundary S′. By analogy with the above (see (2.13)–(2.15)), we obtain the following
boundary conditions on S0:

u1

∣∣
S0

= 0, u2

∣∣
S0

= 0,
∂u3

∂r

∣∣∣
S0

= 0,

lim
r→0

(
∂u1

∂r
− u1

r

)
(r, z) = 0, z ∈ T ,

lim
r→0

(
∂u2

∂r
− u2

r

)
(r, z) = 0, z ∈ T .(5.15)

5.2. Functional spaces and two lemmas. We introduce the following sets:

J0 = {v|v = (v1, v2, v3) ∈ C∞(Ω3)
3, v1

∣∣
S0

= 0, v2

∣∣
S0

= 0},
J = {v|v ∈ J0, v = 0 on S1},
J1 = {v|v ∈ J , divc v = 0},(5.16)

where the operator divc is defined by (5.8).
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We denote by H and H1 the closures of J and J1 with respect to the norm

||v||H =

(∫
Ω3

I(v)r dr dz

) 1
2

,(5.17)

where I(v) is given by (5.2).
Let H0 be the closure of J0 relative to the norm

||v||H0 =

(
||v||2H +

∫
S1

|v|2 ds
) 1

2

,(5.18)

where ds = (dz2 + dr2)
1
2 .

Let also Y be the space of scalar functions which are square integrable in Ω3 with
respect to the measure r dr dz. The norm in Y is defined by

||h||Y =

(∫
Ω3

h2r dr dz

) 1
2

.(5.19)

By analogy with the Lemma 3.1, we obtain the following result.
Lemma 5.1. Suppose that the domain Ω1 defined by (5.3) satisfies the condition

(A0). Then, the expressions (5.17) and (3.8) define equivalent norms H, and the
expressions (5.18) and (3.8) are equivalent norms in H0; moreover, the following
equality holds:

(2π)
1
2 ||h||Y = ||h̃ ◦ P−1||L2(Ω1),(5.20)

with h̃(r, α, z) = h(r, z), α ∈ [0, 2π).
Lemma 5.2. Suppose that the domain Ω1 defined by (5.3) satisfies the condition

(A0). Denote by B the operator divc acting in the space H, i.e.,

Bv =
∂v1

∂r
+

∂v3

∂z
+

v1

r
.(5.21)

Then, the following inf-sup condition,

inf
g∈Y

sup
v∈H

(Bv, g)
||v||H||g||Y

≥ β2 > 0,(5.22)

holds true.
The operator B is an isomorphism from H⊥

1 onto Y, where H⊥
1 is the orthogonal

complement of H1 in H, and the operator B∗ that is the adjoint of B is an isomorphism
from Y onto the polar set

H◦
1 = {q ∈ H∗, (q, v) = 0, v ∈ H1}.(5.23)

Moreover,

||B−1||L(Y,H⊥
1 ) ≤

1

β 2

, ||(B∗)−1||L(H◦
1 ,Y) ≤

1

β 2

.(5.24)

Lemma 5.2 does not follow from Lemma 3.2. For the proof of Lemma 5.2, see [14].
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5.3. Generalized solution. We suppose that the function ǔ (see (5.11)) belongs

to the traces on S1 of the functions from H0. Then there exists a function
∗
u such that

∗
u ∈ H0,

∗
u
∣∣
S1

= ǔ, divc
∗
u = 0.(5.25)

We assume also that

K = (K1,K2,K3) ∈ Y3, F = (F1, F2, F3) ∈ L2(S2)
3.(5.26)

Define an operator M : H → H∗ as follows:

(M(v), h) = 2

∫
Ω3

ϕεij(
∗
u + v)εij(h)r dr dz, v, h ∈ H,(5.27)

where the function ϕ is given either by (1.7) or by (1.17), and εij(v) are defined by
(5.1). We consider the problem: Find a pair of functions (v, p) satisfying

v ∈ H, p ∈ Y,(5.28)

(M(v), h) − (B∗ p, h) = (K + F, h), h ∈ H,(5.29)

(Bv, w) = 0, w ∈ Y.(5.30)

Here B∗ is the operator adjoint of B and

(K + F, h) =

∫
Ω3

Kihir dr dz +

∫
S2

Fihi ds.(5.31)

The pair (u =
∗
u + v, p), where (v, p) is a solution of problem (5.28)–(5.30), will be

called the generalized solution of the problem (5.5)–(5.8), (5.11)–(5.15).
Let {Xm}∞m=1 and {Nm}∞m=1 be sequences of finite-dimensional subspaces in H

and Y, respectively, such that

lim
m→∞

inf
h∈Xm

||w − h||H = 0, w ∈ H,(5.32)

lim
m→∞

inf
g∈Nm

||f − g||Y = 0, f ∈ Y,(5.33)

inf
g∈Nm

sup
h∈Xm

(Bh, g)
||h||H||g||Y

≥ β > 0,(5.34)

Xm ⊂ Xm+1, Nm ⊂ Nm+1, m ∈ N.(5.35)

We seek an approximate solution of the problem (5.28)–(5.30) of the form

vm ∈ Xm, pm ∈ Nm,(5.36)

(M(vm), h) − (B∗ pm, h) = (K + F, h), h ∈ Xm,(5.37)

(B vm, g) = 0, g ∈ Nm.(5.38)

Theorem 5.1. Suppose that the function ϕ is given by (1.7) and that the con-
ditions (A1), (A2), (2.24) are satisfied. Let the conditions (A0), (5.3) hold and Ω3

be defined by (5.4). Assume also that (5.25), (5.26), (5.32)–(5.35) are fulfilled. Then
there exists a solution v, p of the problem (5.28)–(5.30), and for an arbitrary m ∈ N

there exists a solution of the problem (5.36)–(5.38), and a subsequence {vk, pk} can
be extracted from the sequence {vm, pm} such that

vk → v in H, pk → p in Y.(5.39)
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Indeed, by using the arguments of Theorem 5.1 from [8], we prove that there exists
a solution of the problem (5.36)–(5.38) for any m ∈ N, and a subsequence {vk, pk}
can be extracted from the sequence {vm, pm} such that

vk ⇀ v in H, pk ⇀ p in Y.(5.40)

(5.39) is proved by using (5.40) and the reasonings of the Theorem 2.1 from [2].
Theorem 5.2. Suppose that the function ϕ is given by (1.17) and that the

conditions (A0), (A3), (2.23), (2.24) are satisfied. Let also (5.25), (5.26), (5.32)–
(5.35) hold. Then, there exists a unique solution of the problem (5.28)–(5.30), and
there exists a unique solution of the problem (5.36)–(5.38) for any m ∈ N; in addition,
vm → v in H, pm → p in Y.

The proof of this theorem is analogous to the proof of Theorem 2.1 from [2].

6. Electrorheological clutch.

6.1. Problem on an electric field. Figure 1 (left) displays a scheme of an
electrorheological clutch consisting of two coaxial cylinders. The gap between the
cylinders is filled with an electrorheological fluid. The inner cylinder hosts a high
voltage lead supplying the lateral surface, which serves as the electrode, whereas the
lateral surface of the outer cylinder acts as the counter electrode.

ω

Gap between
cylinders filled
with ER fluid

Electrodes

ri

li
le

re

Ω3

z

r

Fig. 1. Simple model for an electrorheological fluid clutch (left) and the computational domain
(right).

By applying a voltage, one enhances the viscosity of the fluid. Under sufficiently
large voltage the inner and external cylinders are almost rigidly bound and rotate
practically at the same angular velocity. By varying the voltage, one obtains various
slippage of the cylinders, i.e., various transmission ratio of the clutch.

The flow in the clutch is axially symmetric. According to Figure 1 (left) and (5.3),
(5.4), the domain Ω3 corresponding to the flow in the clutch has the form shown in
Figure 1 (right).

The vector function of electric field E is defined as E = − grad θ, where θ is the
function of the electric potential that meets the following equation:

div(χ grad θ) = 0,(6.1)
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where χ is the dielectric permittivity. In our case grad θ = (∂θ∂r ,
∂θ
∂z ), and (6.1) takes

the form

∂

∂r

(
χ
∂θ

∂r

)
+

χ

r

∂θ

∂r
+

∂

∂z

(
χ
∂θ

∂z

)
= 0 in Ω3,(6.2)

and θ satisfies the following boundary conditions:

θ = U on D1, θ = 0 on D2,
∂θ

∂r
= 0 on S0,

ν1χ
∂θ

∂r
+ ν3χ

∂θ

∂z
= 0 on S\(D1 ∪D2 ∪ S0).(6.3)

Here, U = constant> 0, S is the boundary of Ω3, and

D1 = {(r, z)| r = ri, z ∈ (le − li, le)},

D2 = {(r, z)| r = re, z ∈ (le − li, le)},

S0 = {(r, z)| r = 0, z ∈ (0, le − li)}.(6.4)

Let

Z =

{
w|w ∈ C∞(Ω3),

∂w

∂r
= 0 onS0

}
,(6.5)

and let Z0 be the closure of Z with respect to the norm

||w||Z0 =

(∫
Ω3

[
w2 +

(
∂w

∂r

)2

+

(
∂w

∂z

)2
]
r dr dz

) 1
2

.(6.6)

Again, we consider the following space:

Z = {w|w ∈ Z0, w = 0 on D1 ∪D2}.(6.7)

The expression

||w||Z =

(∫
Ω3

[(
∂w

∂r

)2

+

(
∂w

∂z

)2
]
r dr dz

) 1
2

(6.8)

defines a norm in Z being equivalent to the norm of Z0 determined by (6.6). Let θ0

be a function such that

θ0 ∈ Z0, θ0 = U on D1, θ0 = 0 on D2.(6.9)

We assume that χ is a function that is integrable in Ω3 with respect to the measure
r dr dz, and in addition,

b1 ≥ χ ≥ b0 > 0 a.e. in Ω,(6.10)

where b0 and b1 are positive constants.
Define a bilinear form a : Z0 × Z → R as follows:

a(q, h) =

∫
Ω3

χ

(
∂q

∂r

∂h

∂r
+

∂q

∂z

∂h

∂z

)
r dr dz, q ∈ Z0, h ∈ Z.(6.11)
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Consider the following problem: Find θ1 satisfying

θ1 ∈ Z, a(θ1, h) = −a(θ0, h), h ∈ Z.(6.12)

The function θ = θ0 + θ1 is a generalized solution of the problem (6.2), (6.3).
The Riesz theorem implies the following result.
Theorem 6.1. Suppose that (6.9) and (6.10) are satisfied. Then there exists a

unique solution of the problem (6.12), and there exists a unique generalized solution
θ of the problem (6.2), (6.3). The function θ is represented in the form θ = θ0 + θ1,
where θ0 is a function satisfying (6.9) and θ1 is the solution of the problem (6.12).

6.2. Problem on the fluid flow. We assume that the velocity vector u and the
pressure p depend only on r, z in the mobile orthonormal basis er, eα, ez of cylindrical
coordinate system r, α, z and, in addition, u(r, z) = (0, u2(r, z), 0). We denote the
function u2 by u.

According to (2.1), we have

ε12(u) = ε21(u) =
1

2

(
∂u

∂r
− u

r

)
, ε23(u) = ε32(u) =

1

2

∂u

∂z
,

ε11(u) = ε22(u) = ε33(u) = ε13(u) = ε31(u) = 0,(6.13)

and

I(u) =
1

2

(
∂u

∂r
− u

r

)2

+
1

2

(
∂u

∂z

)2

.(6.14)

In line with (5.5)–(5.7), the motion equations take the form

∂p

∂r
=

∂p

∂z
= 0,(6.15)

∂

∂r

(
ϕ

(
∂u

∂r
− u

r

))
+

∂

∂z

(
ϕ
∂u

∂z

)
+

2

r
ϕ

(
∂u

∂r
− u

r

)
= 0,(6.16)

where volume force vector is ignored.
In the case under consideration, the condition of incompressibility (2.9) is satis-

fied.
We prescribe velocities on the surfaces of the internal and external cylinders S1

and specify surface forces on the top boundary of the electrorheological fluid S2. In
this case, we have (see Figure 1 (right))

S1 =

4⋃
i=1

S1i,(6.17)

where

S11 = {(r, z)|z = 0, r ∈ (0, re)}, S12 = {(r, z)|r = re, z ∈ (0, le)},

S13 = {(r, z)|z = le − li, r ∈ (0, ri)}, S14 = {(r, z)|r = ri, z ∈ ((le − li), le)},
(6.18)

and

S2 = {(r, z)|z = le, r ∈ (ri, re)}.(6.19)



1650 R. H. W. HOPPE, W. G. LITVINOV, AND T. RAHMAN

In the case that the inner cylinder is leading, we deal with the following boundary
conditions:

u(r, z) =

⎧⎨
⎩

0 on S11 ∪ S12 ∪ S0,
ωr on S13,
ωri on S14,

(6.20)

ϕ
∂u

∂z
= 0 on S2, p = c̃ on S2.(6.21)

Here ω is the angular velocity of the internal cylinder, and we assume that F1 = F2 =
0, F3 = −c̃, c̃ = constant> 0; see (5.12)–(5.14). S0 is given in (6.4), and according to
(5.15), we have

u
∣∣
S0

= 0, lim
r→0

(
∂u

∂r
− u

r

)
(r, z) = 0, z ∈ (0, le − li).(6.22)

In the case that the external cylinder is leading, we consider the boundary con-
ditions of this type:

u =

⎧⎨
⎩

ωr on S11,
ωre on S12,
0 on S13 ∪ S14 ∪ S0,

(6.23)

where ω is the angular velocity of the external cylinder, and, in addition, (6.21) and
(6.22) hold.

In the case under consideration the set J0 has the form

J0 = {v|v ∈ C∞(Ω3), v = 0 on S0},(6.24)

and H0 is the closure of J0 relative to the norm (compare with (5.16)–(5.18), (6.14))

||v||H0 =

(∫
Ω3

[
v2 +

(
∂v

∂r
− v

r

)2

+

(
∂v

∂z

)2
]
r dr dz

) 1
2

.(6.25)

The space H appears as

H = {v|v ∈ H0, v = 0 on S1},(6.26)

and the norm in H is given by

||v||H =

(∫
Ω3

[(
∂v

∂r
− v

r

)2

+

(
∂v

∂z

)2
]
r dr dz

) 1
2

.(6.27)

It follows from Lemma 5.1 that the expressions (6.25) and (3.8) with v1 = 0,
v2 = v, v3 = 0 define equivalent norms in H0, whereas (6.27) and (3.8) are equivalent
norms in H.

Equation (6.15) implies p = c = constant, and (6.21) yields c = c̃.

Let
∗
u be a function from H0 that satisfies either (6.20) or (6.23) according to

which cylinder, inner or external, is leading.
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The operator M : H → H∗ is defined as follows:

(M(v), h) =
1

2

∫
Ω3

ϕ

[(
∂(

∗
u + v)

∂r
−

∗
u + v

r

)(
∂h

∂r
− h

r

)
+

∂(
∗
u + v)

∂z

∂h

∂z

]
r dr dz.

(6.28)

In the case under consideration the velocity vector is orthogonal to the vector of the
electric field at each point (r, z) ∈ Ω3. Therefore, in (6.28) the function ϕ is defined
by (see (1.7))

ϕ = b(|E|, 0)(λ + I(
∗
u + v))−

1
2 + ψ(I(

∗
u + v), |E|, 0),(6.29)

where the function I is given by (6.14).
We consider the following problem: Find a function v such that

v ∈ H, (M(v), h) = 0, h ∈ H.(6.30)

The pair (u =
∗
u + v, p), where v is a solution of the problem (6.30) and p = c̃, is a

generalized solution of the problem (6.15), (6.16), (6.21), (6.22), and (6.20) or (6.23).
Let {Vm}∞m=1 be a sequence of finite-dimensional subspaces in H such that

lim
m→∞

inf
h∈Vm

||w − h||H = 0, w ∈ H,(6.31)

Vm ⊂ Vm+1, m ∈ N.(6.32)

We define an approximate solution of the problem (6.30) of the form

vm ∈ Vm, (M(vm), h) = 0, h ∈ Vm.(6.33)

It follows from Theorem 5.2 that for the function ϕ defined by (6.29) there exists a
unique solution of the problems (6.30) and (6.33); in addition, vm → v in H.

6.3. Simulation results. The nonlinear problem (6.30) is solved through solv-
ing a sequence of linear problems. Given v0 ∈ H, find vk ∈ H, k = 1, 2, . . . , such that

d ∈ H, (M̂(vk−1)d, h) = −(M(vk−1), h) ∀h ∈ H,(6.34)

vk = vk−1 + α d.(6.35)

Here α is a relaxation parameter, and M̂ is the linearized version of the operator M
(cf. [2]), defined as

(M̂(w)v, h) =
1

2

∫
Ω3

(b(|E|, 0)(λ + I(
∗
u + w))−

1
2 + ψ(I(

∗
u + w), |E|, 0))

×
[(

∂(
∗
u + v)

∂r
−

∗
u + v

r

)(
∂h

∂r
− h

r

)
+

∂(
∗
u + v)

∂z

∂h

∂z

]
r dr dz.(6.36)

Note that (M̂(w)v, h) = (M(v), h) whenever w = v. The algorithm can be termed
the Birger–Kachanov method with relaxation; see [5] for the analysis of the original
Birger–Kachanov method.

We consider the electrorheological fluid called the Rheobay TP AI 3656, a prod-
uct of Bayer [1]. The experimentally obtained flow curves (relating the shear stress
to the shear rate) of this product, corresponding to different electric field strengths
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Fig. 2. Contour plot of the electric potential: wide gap configuration.

orthogonal to the velocities, have been approximated by cubic splines. The viscosity
function ϕ is then calculated from these splines; see the appendix for details.

In order to understand the behavior of our electrorheological fluid in our model
clutch, we study the flow in two different geometrical configurations of the clutch,
the wide- and the narrow gap configurations. In the wide gap configuration, we take
ri = 35 mm, re = 70 mm, and li = 250 mm, le = 300 mm. During this test the
cylinder (outer or inner, whichever is leading) rotates with an angular velocity of 125
rad sec−1. For the narrow gap configuration, we take a much narrower gap between
the cylinders by setting ri = 24 mm and re = 25 mm. In this case li = 25 mm, le = 30
mm, and the angular velocity of the leading cylinder (outer or inner) is 5 rad sec−1.

The function of the electric field potential θ was calculated approximately by
using the Galerkin method with continuous and piecewise linear finite elements for
the problem (6.12).

Figure 2 shows a contour plot of the electric potential calculated on the wide gap
configuration for an applied voltage of 10 kV on the inner electrode. The distribution
of this electric potential is linear along any cross-section inside the gap between the
electrodes.

Angular velocity profiles for different applied voltages, calculated at one cross
section of the gap, are shown in Figures 3 and 4.

From the calculations performed we arrive at the following conclusions:
1. The electric field E = (Er, Ez) in the gap between the cylinders is close to a

constant vector (U/(ri − re), 0) for the narrow and wide gap configurations.
At each point between the electrodes, with the exception of points in a very
small zone by the ends of the electrodes, the electric field (Er, Ez) tends to
(U/(ri − re), 0) as (re − ri)/ri tends to zero. The electric field decays sharply
as the distance to the electrodes increases (see Figure 2).

2. In the case when the gap between the cylinders is wide and the outer cylinder
is leading, a zone with a constant angular velocity is formed near the outer
cylinder, and this zone increases with the increase of voltage (see Figure 3
left).

3. In the case when the gap between the cylinders is wide and the inner cylinder
is leading, a zone with a constant angular velocity is formed near the outer
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Fig. 3. Angular velocity profile. Wide gap configuration with leading outer cylinder (left) and
leading inner cylinder (right). The curves C1, C2, and C3 correspond to U = 0 V, U = 50 kV, and
U = 100 kV, respectively.
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Fig. 4. Angular velocity profile. Narrow gap configuration with leading outer cylinder (left)
and leading inner cylinder (right). The curves C1, C2, and C3 correspond to U = 0 V, U = 2 kV,
and U = 3 kV, respectively.

cylinder, as in the case when the outer cylinder is leading. This zone increases
under the increase of voltage (see Figure 3 right).

4. In the case of a narrow gap between the cylinders, the zone with a constant
angular velocity is not formed. The velocity profiles are almost linear at
various voltages. No matter what cylinder is leading and what voltage is
applied, the velocity profile tends to linear as (re − ri)/ri tends to zero (see
Figure 4). In this case essentially the velocity profile does not depend on the
shape of a flow curve, and the shear rate is a constant.

We note that in the case of a wide gap between the cylinders, the zone with
a constant angular velocity is also formed under the flow of the Bingham fluid.
The proximity of the Bingham velocity profiles to the profiles presented in Figure 3
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depends on the proximity of approximations of the flow curves by the affine functions
τ0+b0γ, where τ0 and b0 are the yield stress and the viscosity of the Bingham fluid
and γ is the shear rate. (About the proximity of solutions for close flow curves, see
[13, section 6.2].)

As may be seen from the appendix Figure A-1, one cannot obtain good approxi-
mations of the flow curves by affine functions, especially for small shear rates.

Appendix. Identification of the viscosity function. In the following, we
present a set of cubic splines (flow splines) approximating a set of experimentally
obtained flow curves and show how the viscosity function ϕ is calculated from these
splines. These flow curves (splines) are for the electrorheological fluid called Rheobay
TP AI 3656, a product of Bayer, based on a water-free dispersion of polymer particles
in silicone oil (Baysilone Oil M); see [1] for specifications. The application of such a
product can be found in various devices, such as shock absorbers, vibration dampers,
clutches, and so on.

A.1. The flow splines. The set of cubic splines approximating experimentally
obtained flow curves corresponding to a set of different electric field strengths, which
are orthogonal to the velocity, are shown in Figure A-1. Complete information for the
reconstruction of these splines, i.e., the sample points representing the shear rates γ,
the data representing the shear stress τ , and the end slopes (derivatives), are provided
in Table A-1.

Each flow curve has been approximated within the interval [γ0, γ1] (in our case
γ0 = 100 sec−2, γ1 = 2000 sec−2) by a cubic spline with the given end slopes. Outside
of the interval [γ0, γ1] the splines have been extended on R+ by straight lines (see
the dotted lines in Figure A-1), so that the obtained function γ → τ(γ) becomes
continuously differentiable in R+.

A linear interpolation is used to calculate the function τ(γ) for values of |E|
intermediate between the values given in the Table A-1.
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Fig. A-1. Flow splines showing the effect of field strength (50Hz, AC) and shear rate γ on
shear stress τ at 40oC. The cubic splines are constructed using the data provided in Table A-1.
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Table A-1

The table contains complete information for the reconstruction of the five cubic splines displayed
in Figure A-1. Each of the last five columns in the table corresponds to a spline approximating a
flow curve, containing two end slopes and eleven data values corresponding to the eleven sample
points in the first column of the table.

Shear stress (Pa)

Shear rate 0.0 1.5 2.0 2.5 3.0
γ [per sec] V/mm kV/mm kV/mm kV/mm kV/mm

1.0 ×102 30.2 563.0 979.0 1360.0 1720.0
2.0 ×102 48.0 650.0 1070.0 1500.0 1900.0
4.0 ×102 69.3 695.0 1140.0 1600.0 2030.0
6.0 ×102 83.5 700.0 1170.0 1640.0 2070.0
8.0 ×102 100.0 712.0 1180.0 1670.0 2110.0
1.0 ×103 110.0 723.0 1200.0 1676.0 2140.0
1.2 ×103 115.0 727.0 1210.0 1686.0 2160.0
1.4 ×103 120.0 731.0 1220.0 1693.0 2180.0
1.6 ×103 125.0 735.0 1240.0 1696.0 2190.0
1.8 ×103 130.0 740.0 1250.0 1706.0 2200.0
2.0 ×103 135.0 743.0 1254.0 1710.0 2210.0

Slope at left end 0.180 0.870 0.910 1.400 1.800
Slope at right end 0.025 0.015 0.020 0.020 0.050

A.2. The viscosity function. We now show how the viscosity function ϕ is
calculated from the function τ(γ). Let τ0 be the point of intersection of a left dotted
line with the shear stress axis. This dotted line is the continuation of the flow curve
in the interval [0, γ0), and τ0 is the yield stress.

The viscosity function, in the case of a simple shear flow, is determined as follows:

ϕ =
1

2

τ

γ
, where γ =

(
1

2
I(u)

) 1
2

.

Generalizing it to an arbitrary flow, we get

b =
τ0√
2

and ψ =
τ − τ0

2γ
=

τ − τ0

(2I(u))
1
2

.(A-1)

For a fixed value of |E| and I(u), we can thus find the value of ϕ using (A-1) and
(6.29), i.e.,

ϕ =
b

(λ + I(u))
1
2

+ ψ.(A-2)

The parameter λ was chosen equal to 1.011e−11 sec−2.
In the general case, when there are given flow curves for different values of |E|

and μ(u,E), one obtains expressions (A-2) for different values of |E| and μ(u,E); see
(1.7).
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DIFFUSION APPROXIMATION FOR LINEAR TRANSPORT WITH
MULTIPLYING BOUNDARY CONDITIONS∗

V. PROTOPOPESCU† AND L. THEVENOT‡

Abstract. We consider the diffusion limit of a suitably rescaled model transport equation in a
slab with multiplying boundary conditions, as the scaling parameter ε tends to zero. We show that,
for sufficiently smooth data, the solution converges in the L2-norm for each t > 0 to the solution
of a diffusion equation with Robin boundary conditions corresponding to an incoming flux. The
derivation of the diffusive limit is based on an asymptotic expansion, which is rigorously justified.

Key words. diffusion approximation, transport equation, multiplying boundary condition,
boundary layer, Milne problem, asymptotic expansion, spectral theory
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1. Statement of the problem and main result. Traditionally, transport
equations have been studied in media with either dissipative or conservative bound-
ary conditions (BCs), while the possible multiplication of particles is confined to
volume scattering effects (fission). Recently, multiplying BCs have attracted an in-
terest on their own, first in connection with a model for cell population dynamics
[R], and afterwards with the extension of general transport theory results [B1], [BE].
The cell population dynamics is described by an equation that shares strong formal
similarities with the linear transport equation; in particular, multiplying BCs ensure
the survivability of the cell population. For transport phenomena proper, multiplying
BCs may occur in rarefied gas dynamics whereby, upon collision, molecules previously
adsorbed at the boundaries may be liberated and reenter the medium. In heteroge-
neous reactors, with periodic structures of alternating slabs/rods/prisms of fissionable
and moderating materials, one could model the effect of the fissionable material upon
the moderating one as a multiplying boundary.

In general multidimensional geometries, multiplying BCs lead to difficulties, since
the combined effect of geometry and net production of particles at the boundaries may
result in the absence of overall control of the flux. In slab (one-dimensional) geometry,
if the velocities are bounded, the growth effect can be controlled. This is also the
case in general multidimensional geometries if the minimum travel time between two
successive boundary collisions is bounded away from zero. Under these conditions,
one can prove that the corresponding transport operator generates an exponentially
bounded, positivity preserving evolution semigroup [BT], [MaT], [LaM], [B3].

In this paper, we consider the diffusion limit for the linear transport equation
with multiplying BCs in slab geometry and provide the first proof of the existence
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and precise meaning of such a limit. The derivation of diffusion (hydrodynamics)
from transport with either dissipative or conservative BCs based on scaling argu-
ments and/or asymptotic analysis has a rather long history. A more or less formal
mathematical treatment can be found in [HM], [KL], [BLP], [Se], [Sa], [BSS], [DL2,
Chap. XXI-5], [BM], [M1], [MPT], [MoT], and the references therein. However, when
applied to multiplying BCs, the scaling method presents additional difficulties.

First, while conservative (dissipative) BCs for the transport equation result in
Neumann (Dirichlet) BCs for the diffusion equation, without their own additional
scaling, multiplying BCs have to be properly scaled: otherwise, in the limit of infi-
nite time, they would lead to uncontrollable growth. To this end we introduce the
scaled restitution coefficient at the surface α = 1 + βε (β > 0), which means that
we consider multiplying BCs which are almost conservative, and we prove that the
corresponding transport semigroup is exponentially bounded in time, uniformly with
respect to the scaling parameter ε. The time behavior is then controlled by adding
an extra absorption term. We also study the spectral properties of the corresponding
transport operator, which are related to the time asymptotic behavior of the transport
semigroup. A direct estimate of the “leading eigenvalues,” which could give a better
understanding of the asymptotic behavior, is still missing.

The second difficulty is related to the boundary layer problem. Indeed, to carry
out the analysis, we need to bound, uniformly in ε, the solution of the Milne problem
with specularly reflecting BCs that arises from the boundary layer. The solvability
condition of this Milne problem yields the BCs for the diffusion problem.

Finally, the proof of the convergence of the transport solution to the solution
of the diffusive equation is based on rigorous estimates of the various terms in the
asymptotic expansion. The interest of the asymptotic expansions is that the method
permits one to solve the boundary layer problem. However, representing the solution
of the transport equation as an expansion in the scaling parameter ε requires certain
regularity of the solution of the diffusion equation and thereby of the data of the
transport equation.

We state now the problem and the main result. Consider the linear transport
equation

Pb(1.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂fε
∂t

(x, μ, t) = −ε−1μ
∂fε
∂x

− ε−2Cfε − γfε + S on (−a, a) × (−1, 1) × R+,

fε(−a, μ, t) = (1 + βε) fε(−a,−μ, t) + εS−(μ), μ > 0,

fε(a,−μ, t) = (1 + βε) fε(a, μ, t) + εS+(μ), μ > 0,

fε(x, μ, 0) = f0(x, μ)

as an initial-boundary value problem in the space L2
(
(−a, a) × (−1, 1)

)
. Here γ and

β are two positive constants, f0 and S are in L2
(
(−a, a)× (−1, 1)

)
, and S+ ∈ L2(0, 1)

and S− ∈ L2(0, 1). The collision operator C and the projection operator P are defined
as

Cϕ(μ) = ϕ(μ) − Pϕ(μ) = ϕ(μ) − 1

2

∫ 1

−1

ϕ(μ′) dμ′, ϕ ∈ L2(−1, 1),

Pϕ = 2

∫ 1

0

μϕ(μ)dμ, ϕ ∈ L2(0, 1).

Theorem 1. Let γ be an absorption coefficient such that γ > β
2a + β2

2 . Let us
assume that the data Pf0 and PS are sufficiently smooth (for the precise conditions,
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see Lemma 3 in section 4). Then the solution fε of the transport equation Pb(1.1)
satisfies

‖fε − f‖L2((−a,a)×(−1,1)) ≤ εMeδT , uniformly on compact subsets of t ∈ (0, T ],

(1)

where T > 0, M and δ are two positive constants independent of T and ε, and f is
the solution of the related diffusion equation, considered as an initial-boundary value
problem in H1(−a, a),

Pb(1.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f

∂t
(x, t) =

1

3

∂2f

∂x2
− γf + PS on (−a, a) × R+,

4

3

∂f

∂n
= β f + PS− in x = −a,

4

3

∂f

∂n
= β f + PS+ in x = a,

f(x, 0) = Pf0(x).

The additional absorption γ that appears in both the transport and diffusion prob-
lems is introduced in order to make the corresponding evolutions dissipative. Indeed,
in the absence of net absorption, unscaled multiplying BCs lead to an unbounded
semigroup, and even scaled multiplying BCs lead only to an exponentially bounded
semigroup, with strictly positive type. On the other hand, introducing a suitable
absorption, as described by the parameter γ, makes the semigroup a contraction, and
as a result, the analysis is simplified. In this sense, the presence of γ may be viewed
as a mathematical artifact. At the same time though, we note that γ estimates quite
sharply the multiplicative effect of the boundaries. Besides and beyond the rigorous
proof of the asymptotic equivalence between the transport and diffusive regimes as
expressed by (1), this relationship between γ and β is an interesting result in itself,
since it allows one to compare, within a specified geometry, the relative effects of the
boundary multiplication and the volume absorption needed to counteract it.

The precise meaning and complete analysis of all the terms and operators ap-
pearing in the two problems above will be clarified in the next sections, as follows.
In section 2 we study the properties of the transport operator with multiplying BCs
in order to derive some exponential bound of the transport semigroup. In section 3
we investigate the Milne problem with specularly reflecting BCs that arises from the
boundary layer. In section 4 we apply a scaling argument to prove the main result.
Section 5 contains a short discussion.

2. Spectral properties of the transport operator. We define the space

W 2 = W 2
(
(−a, a) × (−1, 1)

)
=

{
ϕ ∈ L2

(
(−a, a) × (−1, 1)

)
; μ

∂ϕ

∂x
∈ L2

(
(−a, a) × (−1, 1)

)}
,

endowed with the norm ‖ϕ‖W 2 := (‖ϕ‖2
L2 + ‖μ∂ϕ

∂x ‖2
L2)

1
2 , where L2 denotes the usual

L2
(
(−a, a)× (−1, 1)

)
-norm. It is known (see [DL2, Chap. XXI]) that functions of W 2

have traces on {a} and on {−a} in L2(−1, 1).
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We consider the transport operator

⎧⎪⎪⎨
⎪⎪⎩

Tεϕ = −1

ε
μ
∂ϕ

∂x
− 1

ε2
Cϕ,

D(Tε) =
{
ϕ ∈ W 2, ϕ(−a, μ) = α ϕ(−a,−μ) and ϕ(a,−μ) = α ϕ(a, μ) for μ > 0

}
(2)

in a slab of width 2a. The restitution coefficient at the surface, α, is strictly greater
than 1, accounting for multiplying BCs. The collision operator C is a nonnegative
self-adjoint operator on L2(−1, 1). The spectrum of C is composed of two eigenvalues,
namely, λ = 0 associated with the constant eigenvector and λ = 1 associated with
the infinite-dimensional subspace of functions with zero mean. These two eigenspaces
reduce the operator C. For convenience, we define the streaming operator [GMP]

Aεϕ = −1

ε
μ
∂ϕ

∂x
− 1

ε2
ϕ, D(Aε) = D(Tε),

which generates a group (see [BT], [MaT], [LaM], and [B2]).
Proposition 1. The spectrum of Aε, σ(Aε), is located in {λ ∈ C, − 1

ε2 ≤ Re λ ≤
− 1

ε2 + lnα
2aε } and is composed of the line {λ ∈ C,Re λ = − 1

ε2 } and the segments

⋃
k∈Z

{
− 1

ε2
+ v

(
lnα

2aε
+ i

kπ

2aε

)
, v ∈ [0, 1]

}
.

The spectrum of Tε, σ(Tε), consists of the spectrum σ(Aε), plus possibly a denumerable
set of isolated eigenvalues with finite algebraic multiplicities. Moreover, the semigroup
generated by Tε satisfies, for all ϕ ∈ L2

(
(−a, a) × (−1, 1)

)
, the estimate∥∥etTεϕ

∥∥
L2 ≤ α eω(α,ε)t ‖ϕ‖L2(3)

with the exponential bound ω(α, ε) = lnα
2aε + 1

2ε2 (α + 1
α − 2).

Remark 1. With the scaled restitution coefficient α = 1 + βε (β > 0), the
transport semigroup becomes exponentially bounded in time, uniformly in ε, since

w(1 + βε, ε) =
ln (1 + βε)

2aε
+

1

2ε2

(
1 + βε +

1

1 + βε
− 2

)
−→ β

2a
+

β2

2
(ε → 0).

Proof. First we study the spectrum of Aε. Let us consider λ = − 1
ε2 + ib, where

b ∈ R, and the sequence of functions ϕn(x, μ) =
√
n e

−i bxε
μ + 1

x2−a2 fn(μ) (n ∈ N),
where fn(μ) = nμ1l[0, 1

n ](μ) + (2−nμ)1l[ 1
n , 2

n ](μ) and 1l[a,b](.) denotes the characteristic

function of the interval [a, b]. We notice that ϕn is in the domain of Aε and

(λ−Aε) ϕn(x, μ) = −μ
2x

x2 − a2
ϕn(x, μ).

One verifies easily that there exists a constant M > 0 such that ‖ϕn‖L2 ≥ M and
‖(λ−Aε)ϕn‖L2 converges to zero as n tends to ∞. Therefore the line {λ ∈ C,Re λ =
− 1

ε2 } belongs to the spectrum of Aε.

Let us consider now λ = − 1
ε2 + v( lnα

2aε + i kπ
2aε ), where v ∈ (0, 1) and k ∈ Z, and

the sequence of functions ϕn(x, μ) =
√
n e−x sgn(μ) ( ln α

2a +i kπ
2a ) fn(μ) (n ∈ N), where

fn(μ) = (n(μ + v) + 1)1l[−v− 1
n ,−v](μ) + (−n(μ + v) + 1)1l[−v,−v+ 1

n ](μ)

− (n(μ− v) + 1)1l[v− 1
n ,v](μ) − (−n(μ− v) + 1)1l[v,v+ 1

n ](μ).
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We notice that the functions ϕn are in the domain of Aε and

(λ−Aε) ϕn =
lnα

2aε
(v − |μ|) ϕn +

kπi

2aε
(v − |μ|) ϕn.

As before, one verifies that there exists a constant M > 0 such that ‖ϕn‖L2 ≥ M
and ‖(λ − Aε)ϕn‖L2 converges to zero as n tends to ∞. Therefore the segment
{− 1

ε2 + v( lnα
2aε + i kπ

2aε ), v ∈ [0, 1]} belongs to the spectrum of Aε.
The remainder of the complex plane is the resolvent set of the operator Aε. This

can be checked by writing down explicitly the expression of the evolution generated by
Aε, calculating the resolvent of Aε via Laplace transform, and estimating its norm for
complex numbers belonging to the complement of σ(Aε). A well-known compactness
result (see [M2, Chap. 3]) ensures that the operators Aε and Tε have the same essential
spectrum. Thus the spectrum of Tε is composed of the spectrum of Aε together with,
possibly, isolated eigenvalues with finite algebraic multiplicities.

In order to prove the estimate (3), we consider the solution fε of the equation⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂fε
∂t

(x, μ, t) = −1

ε
μ
∂fε
∂x

− 1

ε2
Cfε on (−a, a) × (−1, 1) × R+,

fε(−a, μ, t) = α fε(−a,−μ, t), μ > 0,

fε(a,−μ, t) = α fε(a, μ, t), μ > 0,

fε(x, μ, 0) = ϕ(x, μ),

(4)

where ϕ ∈ L2
(
(−a, a) × (−1, 1)

)
. We apply here the method of change of functions

introduced in [LoM] in a related framework. Let hε = αsgn(μ) x
2a+ 1

2 fε. The new
function hε satisfies the following transport equation with (conservative) specularly
reflecting BCs:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂hε

∂t
(x, μ, t) = −1

ε
μ
∂hε

∂x
+

1

ε
|μ| lnα

2a
hε −

1

ε2
hε

+
1

2ε2

∫ 1

−1

α
x
2a (sgn(μ)−sgn(μ′)) hε(x, μ

′, t) dμ′ on (−a, a) × (−1, 1) × R+,

hε(−a, μ, t) = hε(−a,−μ, t), μ > 0,

hε(a,−μ, t) = hε(a, μ, t), μ > 0,

hε(x, μ, 0) = αsgn(μ) x
2a+ 1

2 ϕ(x, μ).

(5)

Let us multiply the transport equation (5) by hε, integrate by parts on (−a, a) ×
(−1, 1) × (0, t) for t > 0, and use the specularly reflecting BCs; then

1

2
‖hε(t)‖2

L2 ≤ 1

2
‖hε(0)‖2

L2 +

(
lnα

2aε
− 1

ε2

)∫ t

0

‖hε(s)‖2
L2 ds

+
1

2ε2

∫ t

0

∫ a

−a

∫ 1

−1

∫ 1

−1

α
x
2a (sgn(μ)−sgn(μ′)) hε(x, μ

′, s) hε(x, μ, s) dμ′dμdxds.

By noticing that the function x 	−→ α
x
a + α− x

a attains its maximum on [−a, a] in −a
and in a, it follows that∫ a

−a

∫ 1

−1

∫ 1

−1

α
x
2a (sgn(μ)−sgn(μ′)) hε(x, μ

′) hε(x, μ) dμ′dμdx ≤
(
α +

1

α

)
‖hε‖2

L2 ,
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yielding

1

2
‖hε(t)‖2

L2 ≤ 1

2
α2‖ϕ‖2

L2 +

(
lnα

2aε
+

1

2ε2

(
α +

1

α
− 2

))∫ t

0

‖hε(s)‖2
L2 ds.

By Gronwall’s lemma we have ‖hε(t)‖2
L2 ≤ α2 e2ω(α,ε)t ‖ϕ‖2

L2 , which together with
the inequality ‖fε(t)‖L2 ≤ ‖hε(t)‖L2 concludes the proof.

3. Milne problem with reflecting boundary conditions. The problem of
the boundary layer is related to the conservative Milne problem with reflecting BCs
in bounded and semi-infinite geometries. The difference in the nature of these ge-
ometries leads to somewhat different analyses. First, we introduce the functional
spaces which we shall use in what follows. Let HT := L2(((−1, 1), |μ|dμ);L∞(0,∞))
and L2

μ(0, 1) denote the spaces of measurable functions for which the norms ‖ϕ‖2
HT

:=∫ 1

−1
|μ| supx∈(0,∞) |ϕ(x, μ)|2 dμ, ‖ϕ‖2

L2
μ(0,1) :=

∫ 1

0
μ|ϕ(μ)|2dμ are, respectively, bounded.

3.1. Bounded geometry.
Lemma 1. Let e2a > α > 0 (this condition is satisfied for α ∈ [0, 1]), and let f

and g be in L2
μ(0, 1). Then there exists an extension φ of the functions f and g in

W 2 which satisfies ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ
∂φ

∂x
+ φ = 0 on (−a, a) × (−1, 1),

φ(−a, μ) = α φ(−a,−μ) + f(μ), μ > 0,

φ(a,−μ) = α φ(a, μ) + g(μ), μ > 0.

(6)

Moreover, the extension application is continuous, i.e., there exists a constant M
independent of α and a, such that

‖φ‖W 2 ≤ Mα2
(
‖f‖L2

μ(0,1) + ‖g‖L2
μ(0,1)

)
.

Proof. The solution of (6) is given, for μ > 0, by

φ(x, μ) =
(
e

2a
μ − α2e−

2a
μ

)−1(
αg(μ) e−

a+x
μ + f(μ) e−

x−a
μ

)
,

φ(x,−μ) =
(
e

2a
μ − α2e−

2a
μ

)−1(
g(μ) e

a+x
μ + αf(μ) e

x−a
μ

)
.

If α > 1, the condition 2a > lnα ensures e
2a
μ − α2e−

2a
μ > 0 for all 0 < μ < 1.

Lemma 2. Let TR be the transport operator with specularly reflecting BCs:⎧⎪⎨
⎪⎩

TR ϕ = −μ
∂ϕ

∂x
− Cϕ,

D(TR) =
{
ϕ ∈ W 2, ϕ(−a, μ) = ϕ(−a,−μ) and ϕ(a,−μ) = ϕ(a, μ) for μ > 0

}
.

The value 0 is an algebraically simple eigenvalue of TR, associated with the constant
eigenvector. The same result holds for the adjoint of TR.

Proof. It is obvious that the constant functions are eigenfunctions of TR associ-
ated with the eigenvalue 0. Let ϕ denote an eigenfunction associated with 0. Upon
integrating by parts, we obtain (TRϕ,ϕ) = (Cϕ,ϕ) = 0, where the bracket denotes
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the scalar product in L2
(
(−a, a)× (−1, 1)

)
. Then Cϕ = 0 and ϕ does not depend on

μ. Thus ϕ is constant because ∂ϕ
∂x = 0.

Now let us note that (TRϕ, 1) = (−μ∂ϕ
∂x , 1) − (Cϕ, 1) = −(ϕ,C1) = 0. If ϕ is a

generalized eigenfunction such that TRϕ = 1, then (TRϕ, 1) = 4a. Therefore TR does
not admit other generalized eigenfunctions beyond the constant functions. The same
proof holds for the adjoint of TR defined by T 


R ϕ = μ∂ϕ
∂x−Cϕ, D(T 


R) = D(TR).
From Lemma 2 and from the theory of isolated singularities of the resolvent

(see [Y]), we deduce the Fredholm alternative for the operator TR and the following
proposition.

Proposition 2. Let f and g be in L2
μ(0, 1). The system⎧⎪⎪⎪⎨

⎪⎪⎪⎩
μ
∂ϕ

∂x
+ Cϕ = 0 on (−a, a) × (−1, 1),

ϕ(−a, μ) = ϕ(−a,−μ) + f(μ), μ > 0,

ϕ(a,−μ) = ϕ(a, μ) + g(μ), μ > 0,

(7)

admits a solution in W 2 if and only if∫ 1

0

μ
(
g(μ) + f(μ)

)
dμ = 0.(8)

Moreover, if they exist, the solutions are defined up to a constant, and there is a
unique solution in ker(TR)⊥ which satisfies∫ a

−a

∫ 1

−1

ϕ(x, μ) dxdμ = 0.(9)

Proof. According to Lemma 2, 0 is an algebraically simple eigenvalue of TR and
of its adjoint, TR


, associated with the constant eigenvector. The associated spectral
projection, P , is bounded and ker(P ) = R(−TR) (see [Y]). Thus the range of TR,
R(TR), is a closed subspace and R(TR) = R(TR) = ker(TR


)⊥ = ker(TR)⊥.
Now let φ be the extension of f and g as in Lemma 1. Then ϕ satisfies (7) if and

only if the function ψ = ϕ− φ satisfies the system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ
∂ψ

∂x
+ Cψ = TRψ = −μ

∂φ

∂x
− Cφ on (−a, a) × (−1, 1),

ψ(−a, μ) = ψ(−a,−μ), μ > 0,

ψ(a,−μ) = ψ(a, μ), μ > 0.

(10)

Since R(TR) = ker(TR)⊥, the system (10) admits a solution if and only if∫ a

−a

∫ 1

−1

(
μ
∂φ

∂x
(x, μ) + Cφ(x, μ)

)
dxdμ = 0.(11)

Moreover, the solution ψ is unique in ker(TR)⊥, which implies∫ a

−a

∫ 1

−1

ϕ(x, μ) dxdμ =

∫ a

−a

∫ 1

−1

φ(x, μ) dxdμ.

But φ = −μ∂φ
∂x , and an integration by parts leads to (9). Likewise, we can see that

condition (11) is equivalent to condition (8).
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3.2. Semi-infinite geometry. We note that, in contradistinction with the
bounded geometry case, 0 belongs to the spectrum of the transport operator in semi-
infinite geometry with reflecting BCs

T̃R ϕ = −μ
∂ϕ

∂x
− Cϕ, D(T̃R)

=
{
ϕ ∈ W 2

(
(0,∞) × (−1, 1)

)
, ϕ(0, μ) = ϕ(0,−μ) for μ > 0

}
but is not an isolated eigenvalue (see [P]).

Proposition 3. The systems⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

±μ
∂ϕ

∂x
+ Cϕ = 0 on (0,∞) × (−1, 1),

ϕ(0, μ) = ϕ(0,−μ) + f(μ), μ > 0,

lim
x→∞

ϕ(x, μ) = 0

(12)

admit a unique solution ϕ in HT∩L1((−1, 1); L∞(0,∞)) if f ∈ L2
μ(0, 1), in Lp((−1, 1);

L∞(0,∞)) for all 1 ≤ p < ∞ if f ∈ L2(0, 1), and in L∞((0,∞) × (−1, 1)) if
f ∈ L∞(0, 1) if and only if ∫ 1

0

μf(μ)dμ = 0.(13)

Moreover, there exists a positive constant M such that

‖ϕ‖HT
≤ M‖f‖L2

μ(0,1),(14)

‖ϕ‖L1((−1,1); L∞(0,∞)) ≤ M‖f‖L2
μ(0,1),(15)

‖ϕ‖Lp((−1,1); L∞(0,∞)) ≤ M‖f‖L2(0,1),(16)

‖ϕ‖L∞ ≤ M‖f‖L∞(0,1),(17)

‖ϕ(0, .)‖L2(0,1) ≤ M‖f‖L2(0,1).(18)

Proof. We consider the problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ
∂ϕ

∂x
+ Cϕ = 0 on (0,∞) × (−1, 1),

ϕ(0, μ) = ϕ(0,−μ) + f(μ), μ > 0,

lim
x→∞

ϕ(x, μ) = 0.

(19)

First we notice that, by integrating (19) with respect to x and μ, we get
∫ 1

0
μf(μ)dμ =

0. Now let f ∈ L2
μ(0, 1). Integration of (19) with respect to the spatial variable leads

to ⎧⎪⎪⎨
⎪⎪⎩

ϕ(x, μ) = − 1

μ

∫ ∞

x

e
s−x
μ Pϕ(s)ds, μ < 0,

ϕ(x, μ) =
1

μ

∫ x

0

e
s−x
μ Pϕ(s)ds +

1

μ

∫ ∞

0

e−
s+x
μ Pϕ(s)ds + f(μ)e−

x
μ , μ > 0.

(20)
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By integrating (20) with respect to μ, we obtain that Pϕ satisfies the integral equation

Pϕ(x) =

∫ ∞

0

H(x, s)Pϕ(s)ds +
1

2

∫ 1

0

f(μ)e−
x
μ dμ,

where

H(x, s) =
1

2

∫ 1

0

1

μ
e−

|x−s|
μ dμ+

1

2

∫ 1

0

1

μ
e−

|x+s|
μ dμ =

1

2

∫ ∞

1

1

t
e−t|x−s|dt+

1

2

∫ ∞

1

1

t
e−t|x+s|dt.

Let H be the operator which acts on L2(0,∞) as

Hg(x) =

∫ ∞

0

H(x, s)g(s)ds,

and let

F (x) =
1

2

∫ 1

0

f(μ)e−
x
μ dμ.

We introduce the subspace X = {h ∈ L2(0,∞) | |||h||| < ∞}, endowed with the norm

|||h|||2 = ‖h‖2
L2 +

(∫∞
0

x2|h(x)|dx
)2

. We check easily that |||F ||| ≤ C‖f‖L2
μ(0,1). Then

Pϕ is a solution g of the equation g −Hg = F , with F ∈ X.
Now, let us consider the even extension of the functions g and F to R. Since the

kernel H is an even function in each variable, it follows that

Hg(x) =

∫ ∞

−∞

1

2

∫ ∞

1

1

t
e−t|x−s|dt g(s)ds.

Thus, we can take advantage of the Fourier analysis, as in [P]. The preceding equation
is equivalent to

ĝ(ξ)
(
1 − arctan(ξ)

ξ

)
= F̂ (ξ),(21)

where ĥ(ξ) = 1√
2π

∫∞
−∞ h(x) eiξx dx denotes the Fourier transform of a function h and

ξ 	−→ arctan(ξ)
ξ is the Fourier transform of the function x 	−→ 1

2

∫∞
1

1
t e

−t|x|dt. Since

F belongs to X, the Fourier transform of F , F̂ , belongs to C2(R). Also, since the

function ξ 	−→ (1 − arctan(ξ)
ξ )−1 has a quadratic singularity in ξ = 0, (21) admits a

unique solution if and only if F̂ (0) = 0 and dF̂
dξ (0) = 0. While the condition

dF̂

dξ
(0) = i

∫ ∞

−∞
xF (x)dx = 0

is always satisfied due to the evenness of F , the condition

F̂ (0) =

∫ ∞

−∞
F (x)dx = 2

∫ ∞

0

F (x)dx = 0

with F (x) = 1
2

∫ 1

0
f(μ)e−

x
μ dμ is implied by condition (13). We estimate now the

L2(0,∞)-norm of the solution g = Pϕ of (21). Let ε > 0; then according to
Plancherel’s formula, we get∫ ∞

0

|Pϕ(x)|2dx =

∫ ε

0

∣∣∣ ξ

ξ − arctan(ξ)
F̂ (ξ)

∣∣∣2dξ +

∫ ∞

ε

∣∣∣ ξ

ξ − arctan(ξ)
F̂ (ξ)

∣∣∣2dξ.
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On the one hand, by using the uniform boundedness on R2 of the function (x, ξ) ∈
R2 	−→ eixξ−1−ixξ

x2ξ2 , we have

∫ ε

0

∣∣∣ ξ

ξ − arctan(ξ)
F̂ (ξ)

∣∣∣2dξ ≤ C2(ε)

∫ ε

0

∣∣∣ F̂ (ξ)

ξ2

∣∣∣2dξ
= C2(ε)

∫ ε

0

∣∣∣ F̂ (ξ) − F̂ (0) − iξ(x̂F )(0)

ξ2

∣∣∣2dξ
= C2(ε)

∫ ε

0

∣∣∣∫ ∞

0

F (x)
eixξ − 1 − ixξ

ξ2
dx

∣∣∣2dξ ≤ C2(ε)

(∫ ∞

0

x2|F (x)| dx
)2

.

On the other hand, it is easy to check that∫ ∞

ε

∣∣∣ ξ

ξ − arctan(ξ)
F̂ (ξ)

∣∣∣2dξ ≤ C1(ε)

∫ ∞

ε

∣∣F̂ (ξ)
∣∣2dξ ≤ C1(ε)‖F‖2

L2 .

Therefore, ‖Pϕ‖L2(0,∞) ≤ |||F ||| and ‖Pϕ‖L2(0,∞) ≤ C‖f‖L2
μ(0,1). Thus, we showed

that Pϕ is uniquely defined if condition (13) is satisfied, and (20) gives the solution
of (19). To prove (14), we estimate each part of (20) as follows:

∫ 1

0

μ|f(μ)|2 sup
x∈(0,∞)

|e− x
μ |2dμ ≤ ‖f‖2

L2
μ(0,1),

∫ 1

0

μ

μ2
sup

x∈(0,∞)

∣∣∣∫ ∞

0

e−
s+x
μ Pϕ(s)ds

∣∣∣2dμ =

∫ 1

0

dμ

μ

(
sup

x∈(0,∞)

e−
2x
μ

)∣∣∣∫ ∞

0

e−
s
μPϕ(s)ds

∣∣∣2

≤
∫ 1

0

dμ

μ

∫ ∞

0

e−
2s
μ ds

∫ ∞

0

|Pϕ(s)|2ds ≤ M‖f‖2
L2

μ(0,1),

∫ 1

0

μ

μ2
sup

x∈(0,∞)

∣∣∣∫ x

0

e
s−x
μ Pϕ(s)ds

∣∣∣2dμ ≤
∫ 1

0

dμ

μ
sup

x∈(0,∞)

∫ x

0

e2 s−x
μ ds

∫ x

0

|Pϕ(s)|2ds

≤
∫ 1

0

dμ

μ

μ

2

∫ ∞

0

|Pϕ(s)|2ds ≤ M‖f‖2
L2

μ(0,1),

∫ 0

−1

|μ|
μ2

sup
x∈(0,∞)

∣∣∣∫ ∞

x

e
s−x
μ Pϕ(s)ds

∣∣∣2dμ ≤
∫ 1

0

dμ

μ
sup

x∈(0,∞)

∫ ∞

x

e2 x−s
μ ds

∫ ∞

x

|Pϕ(s)|2ds

≤
∫ 1

0

dμ

μ

μ

2

∫ ∞

0

|Pϕ(s)|2ds ≤ M‖f‖2
L2

μ(0,1).

Inequality (15) is obtained using similar estimates.
We show now that Pϕ is a bounded function if f ∈ L2(0, 1); more precisely, there

exists M > 0 such that

‖Pϕ‖L∞(0,∞) ≤ M‖f‖L2(0,1).(22)
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One first notices, by using the evenness of F , that

F̂ (ξ) =
2√
2π

∫ 1

0

μf(μ)

1 + ξ2μ2
dμ.

Then, as Pϕ is the inverse Fourier transform of ĝ, it is sufficient to prove that ĝ from
(20) is bounded in L1(R). As before, we choose a sufficiently small ε > 0 and get

∫ ε

0

∣∣∣ ξ

ξ − arctan(ξ)
F̂ (ξ)

∣∣∣dξ =

∫ ε

0

∣∣∣ ξ3

ξ − arctan(ξ)

F̂ (ξ)

ξ2

∣∣∣dξ ≤ C2(ε)

(∫ ε

0

∣∣∣ F̂ (ξ)

ξ2

∣∣∣2dξ
)1/2

≤ C2(ε)

∫ ∞

0

x2|F (x)| dx ≤ C2(ε) ‖f‖L2
μ(0,1) ≤ C2(ε) ‖f‖L2(0,1).

On the other hand,∫ ∞

ε

∣∣∣ ξ

ξ − arctan(ξ)
F̂ (ξ)

∣∣∣dξ ≤ C1(ε)

∫ ∞

ε

|F̂ (ξ)|dξ ≤ C1(ε)

∫ ∞

ε

dξ

∫ 1

0

μ|f(μ)|
1 + ξ2μ2

dμ

≤ C1(ε) ‖f‖L2(0,1)

∫ ∞

ε

(∫ 1

0

μ2(
1 + ξ2μ2

)2 dμ

)1/2

dξ ≤ C1(ε) ‖f‖L2(0,1).

Thus estimate (22) is proven.
From (22) and (20), we easily obtain the estimates (16), (17), and (18). Finally,

a similar result holds for the system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−μ
∂ϕ

∂x
+ Cϕ = 0 on (0,∞) × (−1, 1),

ϕ(0, μ) = ϕ(0,−μ) + f(μ), μ > 0,

lim
x→∞

ϕ(x, μ) = 0.

We consider now the Milne problem without the decay condition at infinity.

Proposition 4. Let f ∈ L2(0, 1) and 1 ≤ p < ∞. If
∫ 1

0
μf(μ)dμ = 0, then the

systems ⎧⎨
⎩ ±μ

∂ϕ

∂x
+ Cϕ = 0 on (0,∞) × (−1, 1),

ϕ(0, μ) = ϕ(0,−μ) + f(μ), μ > 0,

(23)

admit an infinity of solutions in Lp((−1, 1); L∞(0,∞)), or in L∞((0,∞) × (−1, 1))
if f ∈ L∞(0, 1). These solutions are obtained by adding any constant to the unique
solution of (12).

Proof. From the method introduced in [BSS], slightly modified in [DL2, Chap.
XXI.3, Appendix, p. 335], we know (see the proof of [DL2, Thm. 3, p. 340]) that there
exists a sequence {xn}n∈N such that xn −→ ∞ and the solution ϕ of (23) satisfies∫ xn

0

dx

∫ 1

−1

(
ϕ(x, μ) − Pϕ(x)

)2
dμ ≤ 1

2

∫ 1

−1

μϕ2(0, μ)dμ.

To prove the above estimate, the authors use only the fact that the solution is bounded
in the space variable. Now if f = 0, we get∫ 1

−1

μϕ2(0, μ)dμ =

∫ 1

0

μ
(
ϕ2(0, μ) − ϕ2(0,−μ)

)
dμ = 0.

Therefore ϕ is independent of the velocity variable, and thus ∂ϕ
∂x = 0 and ϕ is a

constant.
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4. Proof of the main result. In order to prove the existence of all the terms
in the asymptotic expansion in the proof of Theorem 1, we need a few additional
regularity results for the solution of the diffusion equation Pb(1.2). These results are
warranted by the following lemma.

Lemma 3. If the data Pf0 and PS are in L2(−a, a), then the problem Pb(1.2)
admits a unique solution in H1(−a, a). Let h be a smooth extension function of the

sources on the boundary PS±. Assuming that both functions Pf0−h and PS− 1
3
∂2h
∂x2 +

γh belong to H10(−a, a) and satisfy the BCs

4

3

∂2i+1 .

∂x2i+1
(±a) = ±β

∂2i .

∂x2i
(±a), i = 0, . . . , 4,(24)

then the solution f of Pb(1.2) is in H5(−a, a) and there exist two positive constants
M and δ such that∥∥∥∂if

∂xi
(t)

∥∥∥
L2(−a,a)

≤ Meδt ∀t ≥ 0, i = 1, . . . , 5.(25)

Remark 2. Notice that the exponential bound eδt in estimate (25) is due to
the fact that the Robin BCs are unstable. With the assumptions of Lemma 3, the
solution f of the diffusion equation Pb(1.2) is in fact in H10(−a, a). The assumptions
of Lemma 3 can probably be refined; here we focus only on the rigorous justification of
the asymptotic expansion to prove the asymptotic equivalence as quantified by (1).

Proof. To simplify the proof we remove the constant 4/3 in the BCs. First, we use
the superposition principle to eliminate the nonhomogeneous sources at the boundary,
and define the (smooth) extension function

h(x) =
PS+

4a2
(x + a)2(x− a) +

PS−

4a2
(x− a)2(x + a).

Thus the function g = f − h satisfies the following equation with homogeneous BCs:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂g

∂t
(x, t) =

1

3

∂2g

∂x2
− γg + ψ,

∂g

∂n
= β g in x = −a and x = a,

g(x, 0) = ϕ,

(26)

where ϕ = Pf0 − h and ψ = PS − 1
3
∂2h
∂x2 + γh.

We can now apply the variational theory (see, for example, [DL1, Chap. VII.2.3.2])
to deduce the existence of a solution in H1(−a, a) and that the operator

TDf =
1

3

∂2f

∂x2
−γf, D(TD) =

{
f ∈ H2(−a, a),

∂f

∂x
(a) = βf(a),

∂f

∂x
(−a) = −βf(−a)

}

generates an analytic semigroup. Notice that the assumptions in Lemma 3 are equiv-
alent to the fact that ϕ ∈ D(T 5

D) and ψ ∈ D(T 5
D). Then the semigroup theory (see

[Pa]) implies that the solution g belongs to D(T 5
D), namely, g ∈ H10(−a, a) and

∂2i+1g

∂x2i+1
(±a) = ±β

∂2ig

∂x2i
(±a), i = 0, . . . , 4.(27)



DIFFUSION APPROXIMATION FOR LINEAR TRANSPORT 1669

For sake of brevity, we omit here the rather technical proof of estimates (25); the
interested reader can find them in [PT].

Proof of Theorem 1. We seek the solution fε in the form

fε = u0
ε(x, μ, t) + ui

ε

(
x, μ, τ =

t

ε2

)
+ ub

ε

(
ξ =

x

ε
, μ, t

)
+ wε(x, μ, t),

where u0
ε, ui

ε, ub
ε, and wε denote, respectively, the interior, initial layer, boundary

layer, and remainder terms. Each one of these first three terms is assumed to satisfy
exactly the transport equation and is written as an asymptotic expansion in ε, namely,

u0
ε =

∞∑
n=0

εnu0
n, ui

ε =

∞∑
n=0

εnui
n, ub

ε =

∞∑
n=0

εnub
n.

In what follows we expand u0
ε and ub

ε to order 2 and ui
ε to order 0 in ε. The initial

layer term is assumed to satisfy

ui
0(τ) −→ 0 (τ → ∞).(28)

The boundary layer terms are written as

ub
j

(x
ε
, μ, t

)
= ub+

j

(
ξ+ =

a− x

ε
, μ, t

)
1l(0,a)(x) + ub−

j

(
ξ− =

a + x

ε
, μ, t

)
1l(−a,0)(x)

(j = 0, 1, 2).

Each term ub+
j and ub−

j (j = 0, 1, 2) are in fact defined on ξ± ∈ (0,∞) and assumed
to satisfy

ub±
j (ξ±) −→ 0 (ξ± → ∞) (j = 0, 1, 2).(29)

In the initial and boundary layer terms we perform the change of variables τ =
t
ε2 and ξ = x

ε , respectively. By replacing each term in Pb(1.1) and equating the
coefficients of corresponding powers in ε, we get

Cu0
0 = 0,(30)

Cu0
1 = −μ

∂u0
0

∂x
,(31)

Cu0
2 = −

(∂u0
0

∂t
+ μ

∂u0
1

∂x
+ γu0

0 − S
)
,(32)

∂ui
0

∂τ
= −Cui

0,(33)

μ
∂ub

0

∂ξ
+ Cub

0 = 0,(34)

μ
∂ub

1

∂ξ
+ Cub

1 = 0,(35)
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μ
∂ub

2

∂ξ
+ Cub

2 = −γub
0 −

∂ub
0

∂t
.(36)

The same procedure applied to the initial data and the BCs leads to

u0
0(x, μ, 0) + ui

0(x, μ, 0) = f0(x, μ),(37)

and for μ > 0⎧⎪⎨
⎪⎩

u0
0(−a, μ) + ub

0

(
−a

ε
, μ

)
= u0

0(−a,−μ) + ub
0

(
−a

ε
,−μ

)
,

u0
0(a,−μ) + ub

0

(a
ε
,−μ

)
= u0

0(a, μ) + ub
0

(a
ε
, μ

)
,

(38)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u0
1(−a, μ) + ub

1

(
−a

ε
, μ

)
= u0

1(−a,−μ) + ub
1

(
−a

ε
,−μ

)

+ βu0
0(−a,−μ) + βub

0

(
−a

ε
,−μ

)
+ S−,

u0
1(a,−μ) + ub

1

(a
ε
,−μ

)
= u0

1(a, μ) + ub
1

(a
ε
, μ

)
+ βu0

0(a, μ) + βub
0

(a
ε
, μ

)
+ S+,

(39)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ub
2

(
−a

ε
, μ

)
+ u0

2(−a, μ, t) = ub
2

(
−a

ε
,−μ

)
+ βub

1

(
−a

ε
,−μ

)
+ u0

2(−a,−μ, t) + βu0
1(−a,−μ, t),

ub
2

(a
ε
,−μ

)
+ u0

2(a,−μ, t) = ub
2

(a
ε
, μ

)
+ βub

1

(a
ε
, μ

)
+ u0

2(a, μ, t) + βu0
1(a, μ, t).

(40)

Equations (30)–(33) are treated in a standard manner (see [Sa], [BSS], and [DL2,
Chap. XXI-5]). Equation (30) implies that u0

0 belongs to ker(C), i.e., u0
0(x, μ, t) =

u0
0(x, t). We solve (31) and (32) using the solvability condition R(C) = ker(C)⊥,

implied by the Fredholm alternative, since C is self-adjoint. Let us note that the
solvability condition for (31) is trivially satisfied, and

u0
1(x, μ, t) = −μ

∂u0
0

∂x
(x, t) + c1(x, t).

In what follows we shall take c1 = 0. The solvability condition for (32),∫ 1

−1

(∂u0
0

∂t
(x, t) + μ

∂u0
1

∂x
(x, μ, t) + γu0

0(x, t) − S
)
dμ = 0,

leads to the diffusion equation in Pb(1.2), namely,

∂u0
0

∂t
=

1

3

∂2u0
0

∂x2
− γu0

0 + PS.

From (33), the initial layer term is given by

ui
0

(
x, μ,

t

ε2

)
=

1

2

∫ 1

−1

ui
0(x, μ

′, 0) dμ′ + e−
t
ε2

(
ui

0(x, μ, 0) − 1

2

∫ 1

−1

ui
0(x, μ

′, 0) dμ′
)
.



DIFFUSION APPROXIMATION FOR LINEAR TRANSPORT 1671

Condition (28) yields ui
0(x, μ, 0) ∈ ker(C)⊥ = ker(Id− C), namely,

ui
0(x, μ, 0) = f0(x, μ) − 1

2

∫ 1

−1

f0(x, μ
′) dμ′,

hence

ui
0

(
x, μ,

t

ε2

)
= e−

t
ε2

(
f0(x, μ) − 1

2

∫ 1

−1

f0(x, μ
′) dμ′

)
.

Consequently, (37) implies the initial condition for the diffusion equation in Pb(1.2):

u0
0(x, 0) =

1

2

∫ 1

−1

f0(x, μ
′) dμ′.

To complete the analysis and show that u0
0 is indeed the solution of Pb.(1.2), we

treat now the boundary layer problem. Since u0
0 does not depend on μ, and taking

into account (34) and (39), the term ub
0 satisfies⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

μ
∂ub

0

∂ξ
+ Cub

0 = 0 on
(
−a

ε
,
a

ε

)
× (−1, 1),

ub
0

(
−a

ε
, μ

)
= ub

0

(
−a

ε
,−μ

)
, μ > 0,

ub
0

(a
ε
,−μ

)
= ub

0

(a
ε
, μ

)
, μ > 0.

Then Lemma 2 implies that ub
0 is a constant, and condition (29) implies that ub

0 = 0.
According to (35) and (38), the term ub

1 satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

μ
∂ub

1

∂ξ
+ Cub

1 = 0 on
(
−a

ε
,
a

ε

)
× (−1, 1),

ub
1

(
−a

ε
, μ

)
= ub

1

(
−a

ε
,−μ

)
+ 2μ

∂u0
0

∂x
(−a, t) + βu0

0(−a, t) + S−(μ), μ > 0,

ub
1

(a
ε
,−μ

)
= ub

1

(a
ε
, μ

)
− 2μ

∂u0
0

∂x
(a, t) + βu0

0(a, t) + S+(μ), μ > 0.

(41)

We note that ub
1 depends on the parameter t, which appears in the nonhomogeneous

boundary terms. Let us define, for μ > 0, the functions f and g as

f(μ, t) = 2μ
∂u0

0

∂x
(−a, t)+βu0

0(−a, t)+S−(μ), g(μ, t) = −2μ
∂u0

0

∂x
(a, t)+βu0

0(a, t)+S+(μ).

According to Proposition 2, (41) admits some solutions ub
1 in L2

(
(−a, a)× (−1, 1)

)
if

and only if ∫ 1

0

μ
(
f(μ, t) + g(μ, t)

)
dμ = 0.(42)

Condition (42) is equivalent to

−2

3

∂u0
0

∂x
(a, t) +

β

2
u0

0(a, t) +
2

3

∂u0
0

∂x
(−a, t) +

β

2
u0

0(−a, t) +
1

2
PS+ +

1

2
PS− = 0,
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which leads to the nonhomogeneous Robin BCs in Pb(1.2). The boundedness of ub
1 in

ε can be obtained from the solution of the Milne problem in semi-infinite geometry.
The change of variables ξ± = a∓x

ε implies

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−μ
∂ub+

1

∂ξ+
+ Cub+

1 = 0 on (0,∞) × (−1, 1),

ub+
1 (0,−μ) = ub+

1 (0, μ) − 2μ
∂u0

0

∂x
(a, t) + βu0

0(a, t) + S+(μ), μ > 0,

lim
ξ+→∞

ub+
1 (ξ+, μ) = 0,

(43)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μ
∂ub−

1

∂ξ−
+ Cub−

1 = 0 on (0,∞) × (−1, 1),

ub−
1 (0, μ) = ub−

1 (0,−μ) + 2μ
∂u0

0

∂x
(−a, t) + βu0

0(−a, t) + S−(μ), μ > 0,

lim
ξ−→∞

ub−
1 (ξ−, μ) = 0.

(44)

Proposition 3 yields that (43) and (44) admit, respectively, a unique solution in
L2((−1, 1); L∞(0,∞)), and give separately the previous nonhomogeneous Robin BCs
at a and −a. We deduce from

∥∥∥ub
1

(x
ε
, μ

)∥∥∥2

L2((−a,a)×(−1,1))
≤ a

(
‖ub+

1 ‖2
L2((−1,1);L∞(0,∞)) + ‖ub−

1 ‖2
L2((−1,1);L∞(0,∞))

)(45)

that ub
1 is uniformly bounded in ε in L2((−a, a) × (−1, 1)). Indeed

∫ 1

−1

∫ a

0

∣∣∣∣ub+
1

(
a− x

ε
, μ

)∣∣∣∣
2

dxdμ =

∫ 1

−1

ε

∫ a
ε

0

∣∣ub+
1 (ξ+, μ)

∣∣2 dξ+dμ
≤ a

∫ 1

−1

(
sup

ξ∈(0,∞)

∣∣ub+
1 (ξ, μ)

∣∣)2

dμ.

The same estimate holds for ub−
1 .

We notice that, according to Lemma 2 (see also Proposition 4), the term ub
1 is

defined up to an arbitrary function of time that we denote σε(t). Then we have to
replace in the asymptotic expansion the term ub

1 by ub
1 + σε(t), where ub

1 is uniquely
defined with ub+

1 and ub−
1 . According to (36) and (40), the term ub

2 satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ
∂ub

2

∂ξ
+ Cub

2 = 0 on
(
−a

ε
,
a

ε

)
× (−1, 1),

ub
2

(
−a

ε
, μ

)
= ub

2

(
−a

ε
,−μ

)
+ βub

1

(
−a

ε
,−μ

)
+ βσε + βμ

∂u0
0

∂x
(−a)

+ u0
2(−a,−μ) − u0

2(−a, μ), μ > 0,

ub
2

(a
ε
,−μ

)
= ub

2

(a
ε
, μ

)
+ βub

1

(a
ε
, μ

)
+ βσε − βμ

∂u0
0

∂x
(a)

+ u0
2(a, μ) − u0

2(a,−μ), μ > 0.

(46)
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Of course, the nonhomogeneous boundary terms depend also on the time t. According
to Proposition 2, (46) admits some solutions in L2

(
(−a, a) × (−1, 1)

)
if and only if

σε(t) = − 1

β

∫ 1

0

μ

(
βμ

∂u0
0

∂x
(−a, t) + βub

1

(
−a

ε
,−μ, t

)
+ u0

2(−a,−μ, t) − u0
2(−a, μ, t)

− βμ
∂u0

0

∂x
(a, t) + βub

1

(a
ε
, μ, t

)
+ u0

2(a, μ, t) − u0
2(a,−μ, t)

)
dμ.

As before, the boundedness of ub
2 in ε is related to the Milne problem in semi-infinite

geometry. With σε = σ+
ε + σ−

ε , the terms ub+
2 and ub−

2 satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−μ
∂ub+

2

∂ξ+
+ Cub+

2 = 0 on (0,∞) × (−1, 1),

ub+
2 (0,−μ) = ub+

2 (0, μ) + βub
1

(a
ε
, μ

)
+ βσ+

ε − βμ
∂u0

0

∂x
(a)

+ u0
2(a, μ) − u0

2(a,−μ), μ > 0,

lim
ξ+→∞

ub+
2 (ξ+, μ) = 0,

(47)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ
∂ub−

2

∂ξ−
+ Cub−

2 = 0 on (0,∞) × (−1, 1),

ub−
2 (0, μ) = ub−

2 (0,−μ) + βub
1

(
−a

ε
,−μ

)
+ βσ−

ε + βμ
∂u0

0

∂x
(−a)

+ u0
2(−a,−μ) − u0

2(−a, μ), μ > 0,

lim
ξ−→∞

ub−
2 (ξ−, μ) = 0.

(48)

Proposition 3 yields that (47) and (48) admit, respectively, a unique solution in
L2((−1, 1);L∞(0,∞)) if and only if the two following conditions are satisfied:

σ+
ε (t) = − 1

β

∫ 1

0

μ

(
−βμ

∂u0
0

∂x
(a, t) + βub

1

(a
ε
, μ, t

)
+ u0

2(a, μ, t) − u0
2(a,−μ, t)

)
dμ,

σ−
ε (t) = − 1

β

∫ 1

0

μ

(
βμ

∂u0
0

∂x
(−a, t) + βub

1

(
−a

ε
,−μ, t

)
+ u0

2(−a,−μ, t) − u0
2(−a, μ, t)

)
dμ.

As before, the estimate

∥∥∥ub
2

(x
ε
, μ

)∥∥∥2

L2((−a,a)×(−1,1))
≤ a

(
‖ub+

2 ‖2
L2((−1,1);L∞(0,∞)) + ‖ub−

2 ‖2
L2((−1,1);L∞(0,∞))

)(49)

yields that ub
2 is uniformly bounded in ε in L2((−a, a)× (−1, 1)), where ub

2 is uniquely
defined.

At this stage, all the functions which appear in the asymptotic expansion are well
defined if u0

0 is the solution of Pb(1.2). We estimate now the remainder wε, which
satisfies the equation⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂wε

∂t
(x, μ, t) = −ε−1μ

∂wε

∂x
− ε−2Cwε − γwε + Ψ0

ε on (−a, a) × (−1, 1) × R+,

wε(−a, μ, t) = (1 + βε) wε(−a,−μ, t) + Ψb−
ε (μ, t), μ > 0,

wε(a,−μ, t) = (1 + βε) wε(a, μ, t) + Ψb+
ε (μ, t), μ > 0,

wε(x, μ, 0) = Ψi
ε(x, μ),

(50)
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where

Ψ0
ε(x, μ, t) = −ε

(
∂u0

1

∂t
+ ε

∂u0
2

∂t
+ μ

∂u0
2

∂x
+ γu0

1 + εγu0
2

)
− γui

0

(
t

ε2

)
− μ

ε

∂ui
0

∂x

(
t

ε2

)

− ε

(
∂ub

1

∂t

(x
ε

)
+ γub

1

(x
ε

)
+

∂σε

∂t
(t) + γσε(t) + ε

∂ub
2

∂t

(x
ε

)
+ εγub

2

(x
ε

))
,

Ψb−
ε (μ, t) = ε3βu0

2(−a,−μ, t) + ε3βub
2

(
−a

ε
,−μ, t

)
,

Ψb+
ε (μ, t) = ε3βu0

2(a, μ, t) + ε3βub
2

(a
ε
, μ, t

)
,

Ψi
ε(x, μ) = −ε

(
u0

1(x, μ, 0) + σε(0) + εu0
2(x, μ, 0) + ub

1

(x
ε
, μ, 0

)
+ εub

2

(x
ε
, μ, 0

))
.

Let φε(t) be an extension given by Lemma 1 of ε−3Ψb−
ε and ε−3Ψb+

ε . We show in
what follows that the extension φε is uniformly bounded in ε in W 2. The function
Wε = wε − ε3φε satisfies

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂Wε

∂t
(x, μ, t) = −ε−1μ

∂Wε

∂x
− ε−2CWε − γWε + Ψ

0

ε on (−a, a) × (−1, 1) × R+,

Wε(−a, μ, t) = (1 + βε) Wε(−a,−μ, t), μ > 0,

Wε(a,−μ, t) = (1 + βε) Wε(a, μ, t), μ > 0,

Wε(x, μ, 0) = Ψ
i

ε(x, μ),

(51)

where Ψ
i

ε(x, μ) = Ψi
ε(x, μ) − ε3φε(x, μ, 0), and

Ψ
0

ε = Ψ0
ε − ε3 ∂φε

∂t
− ε2μ

∂φε

∂x
− εCφε − ε3γφε = Ψ0

ε − ε3 ∂φε

∂t
− εCφε − ε2φε

(
εγ − 1

)
.

We note that the semigroup generated by Tε − γ, where Tε is defined in (2), with a
restitution coefficient α = 1 + βε, is exponentially stable, due to the absorption γ.
Indeed, in the limit ε → 0, the exponential bound w(1 + βε, ε) given in Proposition 1
is dominated by the absorption coefficient γ (see Remark 1). Finally, the estimate (3)
and the Duhamel formula yield

‖Wε‖L2 ≤ (1 + β)‖Ψi

ε‖L2 + (1 + β)

∫ t

0

‖Ψ0

ε(s)‖L2ds.

Last, lengthy but straightforward calculations yield the estimates (see [PT])

‖Ψi

ε‖L2 ≤ εM, ‖Ψ0

ε(t)‖L2 ≤ εMeδt ∀t ≥ 0,

which conclude the proof.

5. Discussion. Theorem 1 remains true when the BCs are infinitesimally par-
tially absorbing. In this case, β < 0 and we can take γ = 0 and obtain a diffusion
equation with stable Robin BCs. While the proof is simpler, due to the fact that the
transport operator (2) is now dissipative, the procedure to solve the boundary layer
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problem is similar to the one presented here. In particular, we still need to expand
the boundary layer term to the second order, because we are not able, due to the BCs,
to obtain an estimate of the remainder directly from (50). This difficulty is overcome
by using the superposition principle and considering an extension of the boundary
sources. To control the quadratic singularity in ε the equation, we need the boundary
sources to be of order three in ε, which can be obtained with an asymptotic expansion
of the boundary layer term up to order two.

If the transport problem has finite (unscaled) partially absorbing BCs (α < 1),
the diffusion limit with Dirichlet BCs is obtained without any of the boundary layer
complications.

Similar results can be proven for the transport problem set in Lp((−a, a)×(−1, 1)),
1 ≤ p < ∞, by using the same scaling of the BCs. The case p = 1 is still open, but—at
least formally—it appears that in order to prove the result for p = 1 one would need
to resort to a different scaling of the BCs, namely, α = 1 + β ε2. This aspect of the
problem is under investigation.

Finally, we remark on a specific feature of this problem within the P1-approxi-
mation framework. In this approximation, which is widely used in neutron transport
theory, the BCs are written as the difference between the (P1-approximated values
of the) incoming and outgoing currents at the boundaries. This leads to certain
inconsistencies in the BCs for the diffusion limit, in which the notion of current is
not well defined. To avoid these inconsistencies, one has to use the exact formulation
and impose the (exact) BCs by using the distribution function itself or its integral
(particle density), without resorting to the notion of (approximate) current. We are
indebted to Profs. M. M. R. Williams and E. Larsen for independently raising the
issue of this discrepancy between the exact and P1-approximation results.

Acknowledgment. We thank M. Mokhtar-Kharroubi for helpful discussions.
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REGULARIZATION BY KINETIC UNDERCOOLING OF BLOW-UP
IN THE ILL-POSED STEFAN PROBLEM∗
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Abstract. It is well known that the one-dimensional supercooled Stefan problem possesses
solutions that blow up in finite time. The asymptotics of such solutions have been analyzed by
Herrero and Velazquez [European J. Appl. Math., 7 (1996), pp. 119–150]. Here we consider the effect
of kinetic undercooling as a regularizing mechanism to prevent the formation of such singularities
and study the continuation of the solution through the “near blow-up” regime. The asymptotics of
solutions and interfaces are described for small values of the kinetic undercooling parameter. It is
shown that, in this limit, the interface jumps over an interval determined by the latent heat and
by the initial data. Specifically, in dimensionless variables, if the temperature profile at blow-up is
denoted by u(x, t−c ), where tc is the finite blow-up time, then the interface jumps over the interval
in which u(x, t−c ) < −λ, where λ is the latent heat.
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AMS subject classifications. 35B40, 35R35, 80A22

DOI. 10.1137/04060528X

1. Introduction. The classical Stefan problem arises as an important model
in conductive heat transfer problems that involve two phases separated by an un-
known phase boundary. In its usual context, the governing equations for temperature
are parabolic in both phases, and at the phase boundary the temperature is usually
specified as being constant, with a release of latent heat on melting or an uptake on
solidification; this latter condition is commonly referred to as the Stefan condition.
Further, there is usually a sign requirement (relating to well-posedness) on the initial
and/or boundary data that the temperature of the material in the solid phase be neg-
ative and that in the liquid phase be positive. Although the problem will be described
in the notation and context of heat transfer, mathematically equivalent problems also
arise in mass transfer applications. Accordingly, an appropriate generalization of the
Stefan condition at the phase boundary will be considered in view of its relevance to
such problems (see, for example, [2] or [27] and the references therein). In this con-
text existence, uniqueness, and well-posedness, in both the classical and weak sense,
are known (see, for example, Fasano and Primicerio [16], [17], [18] and Elliott and
Ockendon [13]). However, as shown by Sherman [33] and characterized by Fasano,
Primicerio, and Lacey [20], if the sign requirement on the temperature is violated,
with the liquid being sufficiently supercooled (or the solid sufficiently superheated),
then a solution may still exist locally in time, but now blow-up can occur in a fi-
nite time (i.e., the temperature develops an unbounded first derivative at the phase
boundary (interface) or, equivalently, the speed of the interface becomes unbounded).

Several authors have considered the nature of the singularity which appears as
blow-up occurs and the possible continuation of solutions after blow-up. In particular,
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Herrero and Velazquez [25] have obtained asymptotic behaviors for the interface and
blow-up profile, while Gurtin [24] and Götz and Zaltzman [23] argue that under certain
conditions the interface jumps at the blow-up time. Regularization of the model is
required in order for the phase change to be described to completion. Here we consider
the one-phase, one-dimensional problem and hence consider kinetic undercooling as
the regularizing mechanism (in higher space dimensions, surface energy effects could
be included). An alternative (less physical) regularization approach is discussed in
Fasano et al. [21], where a Baiocchi-type transformation is used to give the Crank–
Gupta (oxygen diffusion-consumption) moving boundary problem; the constraint of
solution nonnegativity for this problem provides the required regularizing mechanism.

The layout of the paper is as follows. In section 2, the statement of the one-
phase problem is carefully derived as a limit case of the two-phase formulation. In
section 3 the problem statement is given, together with integral statements and the
conditions for blow-up. Section 4 derives the same blow-up asymptotics as those
obtained by Herrero and Velazquez [25], albeit through the use of an alternative (in our
case less rigorous but perhaps more transparent and comprehensive) approach. The
regularization asymptotics are then described in section 5, with the main timescale for
the interface jump described in section 5.2 and the consequent recovery of the classical
Stefan problem in section 5.3. The case of zero segregation coefficient is discussed in
section 6, where kinetic undercooling is shown not to prevent blow-up. Finally, in
section 7, the asymptotics are compared to numerical solutions of the full problem.

2. Derivation of the one-phase Stefan problem. We first describe the
derivation of the one-phase Stefan problem in multiple dimensions with kinetic un-
dercooling and surface tension effects included. The governing equations for the two-
phase multidimensional problem may be written as

∂

∂t
(ρciui) = ∇.(Ki∇ui), x ∈ Di(t), i = 1, 2, D = D1 ∪D2,

where i = 1 denotes the liquid phase, i = 2 the solid phase, and ui(x, t),Ki, and ci
the temperature, conductivity, and specific heat, respectively, in the corresponding
phase. The density ρ is taken to be the same in both phases. We present the problem
in terms of heat transfer but, as indicated in (for instance) Evans and King [14], the
same formulation arises in problems of mass transfer for which the one-phase limit
discussed below is more often relevant.

The conditions on the moving phase boundary F (x, t) = 0 are the Stefan condition

[
Ki

∂ui

∂n

]i=1

i=2

= −ρvn
(
[ciui]

i=1
i=2 + L

)
(2.1)

and temperature continuity (in view of the possibility of segregation in mass transfer
applications, we allow greater generality by introducing a constant “partition coeffi-
cient” μ), together with kinetic undercooling and surface tension effects, i.e.,

u1 =
u2

μ
= ακ + βvn.(2.2)

Here n denotes the outward normal (from the liquid phase into the solid), vn is the
velocity of the phase boundary in that direction, ∂/∂n the outward normal derivative,
α the surface tension coefficient, κ the mean curvature, β the kinetic undercooling
coefficient, and L the latent heat per unit mass at the equilibrium temperature um
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(cf. Charach, Zaltzman, and Götz [7], for example), and we choose units such that
the equilibrium melting temperature is zero. We assume that appropriate initial
conditions and boundary conditions on the fixed boundary ∂D are given to complete
the problem statement.

We now introduce the dimensionless variables

x̃ =
x

�
, t̃ =

K1

ρc1�2
t, ũi =

ui

U
ñ =

n

�
, κ̃ = �κ, ṽn =

ρc1�

K1
vn,

where � is a typical length scale and U is a representative temperature scale. We
define the dimensionless parameters

λ =
L

c1U
, ε =

βK1

ρc1U�
, α̃ =

α

U�
, c =

c2
c1

, K =
K2

K1
;

λ is commonly termed the Stefan number. For simplicity we have taken ρ, ci, and Ki

to be constant. Dropping the tildes then gives the dimensionless formulation

∂u1

∂t
= ∇2u1, x ∈ D1(t),

∂u2

∂t
=

K

c
∇2u2, x ∈ D2(t),(2.3)

on F (x, t) = 0 u1 =
u2

μ
= ακ + εvn,(2.4)

∂u1

∂n
−K

∂u2

∂n
= −vn ((1 − μc)u1 + λ)(2.5)

subject to suitable nondimensionalized initial and fixed boundary conditions, in par-
ticular u2(x, 0) = U2(x). When ε �= 0, a truly one-phase problem is not possible in
either the freezing or melting regime, since u2 is nonzero on the moving boundary,
leading to temperature variations in the solid. Moreover, even in the absence of ki-
netic undercooling and surface tension (ε = α = 0), only the melting regime vn > 0
can be reduced to a bona fide one-phase problem, whereby U2 ≡ 0 implies u2 ≡ 0
and (2.10) below holds exactly. This contrasts with the freezing regime vn < 0 when
temperature variations in the solid result even when U2 ≡ 0, as described below.
Nevertheless, we can obtain a one-phase formulation asymptotically by considering
the limit K → 0, being careful to distinguish the cases of melting and freezing. To
leading order in the solid, away from the moving interface, we then have, if x has not
been visited by the interface, that

u2 = U2(x),(2.6)

where U2(x) is the initial temperature. However, there also exists an interior layer
near the moving interface in which significant temperature changes occur in the solid.
The scaling for this interior layer is

x = x0(t) + θn̂n,

where F (x0, t) = 0, so x0 lies on the moving boundary. At leading order within this
layer in the solid we obtain from (2.3) that

∂2u2

∂n̂2
= −cvn

∂u2

∂n̂
(2.7)

subject to (in view of (2.4))

u2 = μu1(x0, t) at n̂ = 0,
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which gives for n̂ = O(1) that

u2 ∼
{

(μu1(x0, t) − U2(x0))e
−cvnn̂ + U2(x0) if vn > 0,

μu1(x0, t) if vn ≤ 0,
(2.8)

where the sign in (2.7) implies that we can impose u2 → U2(x0) as n̂ → ∞ (to match
with (2.6)) in the former case but not in the latter (from which we have to exclude the
possibility of exponential growth). This highlights the fact that the regimes vn > 0
and vn < 0 must be carefully distinguished. We do not consider cases in which the
interface reverses direction; if it does, then the requirement of matching with (2.6)
may need modification due to an earlier visit by the moving boundary. For vn < 0,
the leading-order equation in D2, in the limit K → 0 with |x − x0| = O(1), namely,

∂u2

∂t
= 0,

implies on matching with (2.8) that

u2 = μu1(x, ω(x)) for x ∈ D2(t)\D2(0),(2.9)

where we write F (x, t) = 0 in the form t = ω(x) (of course, D2(t)\D2(0) being non-
empty corresponds to vn < 0). Since ∂

∂n̂ = K ∂
∂n , the leading-order Stefan condition

(2.5) for the liquid becomes

∂u1

∂n
+ vnu1 = vn(cU2 − λ) if vn > 0(2.10)

and

∂u1

∂n
+ vn(1 − μc)u1 = −λvn if vn < 0.(2.11)

In [14] we were concerned with the particular case U2 ≡ 0 in the melting regime
vn > 0 (and it should be emphasized that the one-phase model derivation given there
applies only when vn > 0), in which the Stefan condition (2.10) simplifies to

∂u1

∂n
+ vnu1 = −λvn.(2.12)

Here we consider the freezing regime vn < 0. For brevity we henceforth take c = 1,
or equivalently redefine μ, so the Stefan condition (2.11) reads

∂u1

∂n
+ vn(1 − μ)u1 = −λvn.(2.13)

In the case μ = 0 (complete segregation into the fluid), this reduces to (2.12) and,
as is to be expected, conservation of total heat within the fluid (sensible and latent)
then follows, as discussed in [14]. For μ = 1 (ui continuous at the interface), however,
the condition reduces to

∂u1

∂n
= −λvn.(2.14)

It is the freezing (supercooled liquid) regime that has received the most atten-
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tion in the literature, as it is this case which is ill-posed in the absence of kinetic
undercooling and surface tension effects (as of course is the melting regime of a su-
perheated solid). The effect of kinetic undercooling has been considered by numerous
authors. Visintin [35] and Xie [36] established existence and uniqueness of the two-
phase problem in one space dimension. Dewynne et al. [11] investigated the behavior
of similarity (including traveling wave) solutions of the one-phase problem. Stability
was investigated by Coriell and Parker [9] and Coriell and Sekerka [10]. Charach and
Zaltzman [5], [6] and Charach, Zaltzman, and Götz [7] developed large-time asymp-
totic solutions.

The effects of surface tension have received even more attention. For exam-
ple, Mullins and Sekerka [29] analyzed the stability of supersaturated solutes and
supercooled melts in a spherical geometry. Chadam and Ortoleva [3] discussed the
stability properties of planar melting and solidification (with and without surface ten-
sion). Zhu, Peirce, and Chadam [38] extended these linear stability results to earlier
times. Chadam, Howison, and Ortoleva [4] considered the radially symmetric case and
showed existence and uniqueness if the supersaturation is not too large, but nonexis-
tence in finite time if the far-field supersaturation is sufficiently pronounced. Linear
stability of a radially symmetric similarity solution is also examined. Existence and
uniqueness results for small surface tension in the two-phase problem are discussed in
Friedman and Reitich [22], while Scianna [32] showed global existence and determined
the large-time asymptotics in the radially symmetric case.

The simultaneous effects of surface tension and kinetic undercooling have been
considered by several authors. Schaefer and Glicksman [30] considered stability of
the spherical supercooled case, while the two-dimensional case was considered by
Umantsev and Davis [34]. Doole [12] examined the stability of similarity and traveling
wave solutions for the two-dimensional, one-phase problem. Existence and uniqueness
results were obtained by Chen and Reitich [8]. Yi [37] demonstrated existence of
solutions for the Hele–Shaw problem (obtained from the Stefan problem in the limit
of small specific heat) in the one-phase supercooled case. Surface tension is often
incorporated through a Gibbs–Thomson term, as in (2.2). However, a term of the
form eσκ, based on Nernst’s law, was treated by Abergel, Hilhorst, and Issard-Roch
[1] and Scheid [31]. Analogous considerations for nonlinear kinetic undercooling were
discussed in Evans and King [15].

Of particular relevance to the work presented here is that of Gurtin [24], who
postulates a jump in the position of the phase interface when blow-up occurs in the
supercooled one-phase, one-dimensional case in the absence of kinetic undercooling.
Götz and Zaltzman [23] studied the one-dimensional two-phase problem with kinetic
undercooling and showed that as the kinetic modulus β → 0 (in our notation), the
limiting solution contains a jump exactly equal to the interval in which u1(x, t

−
c ) < −λ,

where tc is the blow-up time. It is the asymptotics of this situation that is of most
interest to us here.

3. Problem formulation. The one-dimensional, one-phase supercooled Stefan
problem with linear kinetic undercooling can be stated in dimensionless terms as
follows:

in 0 < x < s(t)
∂u

∂t
=

∂2u

∂x2
,(3.1)

on x = s(t) u = εṡ(t),
∂u

∂x
+ ṡ(t)(1 − μ)u = −λṡ(t),(3.2)
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on x = 0
∂u

∂x
= 0,(3.3)

at t = 0 s = 1, u = uin(x) ≤ 0 for 0 ≤ x ≤ 1.(3.4)

The suffix 1 on the temperature variable from the previous section has been dropped
for brevity, and a Neumann condition has been taken on the fixed boundary x = 0.
The length scale � has been taken to be the width of the initial region occupied by
the liquid, while a characteristic reference temperature U is provided by the initial
temperature profile in the liquid.

The important dimensionless parameters are the kinetic undercooling parameter
ε, the Stefan number λ, and the initial supercooling parameter Q, defined by

Q =

∫ 1

0

(uin(x) + λ)dx.(3.5)

In the absence of kinetic undercooling (i.e., for ε = 0), Q < 0 is a necessary and
sufficient condition for blow-up (see Sherman [33] and Fasano, Primicerio, and Lacey
[20]). By this we mean that there exists a tc < ∞ such that

lim
t→t−c

s > 0 and lim
t→t−c

ṡ = −∞.

We are interested in describing the asymptotics of this case in the limit ε → 0+, where
kinetic undercooling has a regularizing effect.

The following integral statements hold:∫ s(t)

0

(u(x, t) + λ)dx = με

∫ t

0

ṡ(τ)2dτ + Q(3.6)

(the significance of positivity or otherwise of Q in the unregularized case ε = 0 may
be apparent from this expression) and∫ s(t)

0

x(u(x, t) + λ)dx =

∫ 1

0

x(uin(x) + λ)dx +

∫ t

0

u(0, τ)dτ(3.7)

+ με

∫ t

0

sṡ2dτ − ε(s− 1).

It can be seen from (3.6) that in the case μ = 0, kinetic undercooling will not prevent
blow-up if Q < 0.

4. Blow-up of the unregularized problem. Results equivalent to those of
Herrero and Velazquez [25] (and Herrero, Medina, and Velazquez [26], where the
full asymptotic structure in the one-dimensional case is completed) are derived here
through an alternative derivation using a Baiocchi-type transformation; they will be
required subsequently for the analysis of the regularized case. Denoting the moving
boundary by t = ω(x) (so that ω(s(t)) = t) and setting ε = 0, the transformation

w(x, t) =

∫ t

ω(x)

u(x, t′)dt′(4.1)

gives the system

in 0 < x < s(t)
∂w

∂t
=

∂2w

∂x2
− λ,(4.2)
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on x = s(t) w = 0,
∂w

∂x
= 0,(4.3)

on x = 0
∂w

∂x
= −Q,(4.4)

at t = 0 s = 1, w =

∫ 1

x

(x′ − x)(uin(x′) + λ)dx′ for 0 ≤ x ≤ 1.(4.5)

Taking blow-up to occur at the location x = xc ∈ (0, 1) and the time t = tc < ∞,
the rescalings

y =
(x− xc)

(tc − t)
1
2

, τ = − log(tc − t), L(τ) =
s(t) − xc

(tc − t)
1
2

(4.6)

(where L here is not to be confused with the latent heat which appeared earlier), with

w(x, t) = (tc − t)Φ(y, τ),(4.7)

transform (4.2)–(4.5) into the system

in − xce
τ/2 < y < L(τ)

∂Φ

∂τ
=

∂2Φ

∂y2
− y

2

∂Φ

∂y
+ Φ − λ,(4.8)

on y = L(τ) Φ = 0,
∂Φ

∂y
= 0,(4.9)

on y = −xce
τ/2 ∂Φ

∂y
= −Qeτ/2.(4.10)

The asymptotic structure of this problem as τ → ∞ can be subdivided into two
main regions, as follows. First, for y = O(1) we introduce the expansion

Φ ∼ λ + A(τ)Φ0(y) + Ȧ(τ)Φ1(y) as τ → ∞,(4.11)

where A(τ) ≡ Φ(0, τ) − λ remains to be determined, with Ȧ � A � 1 as τ → ∞.
Thus

∂2Φ0

∂y2
− y

2

∂Φ0

∂y
+ Φ0 = 0,

∂2Φ1

∂y2
− y

2

∂Φ1

∂y
+ Φ1 = Φ0,

so that, without loss of generality (by excluding exponential growth as y → ∞),

Φ0 = 1 − y2

2
(4.12)

and

d

dy

(
e−y2/4

(
Φ0

dΦ1

dy
− Φ1

dΦ0

dy

))
= e−y2/4Φ2

0,

which implies

Φ0
dΦ1

dy
− Φ1

dΦ0

dy
= −1

2
y3 − y + 4ey

2/4

∫ y/2

−∞
e−σ2

dσ,
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and hence

Φ1 ∼ −16
√
π

y3
ey

2/4 as y → ∞.(4.13)

Second, the scalings for the interior layer z = O(1) at the moving boundary are

y = L +
z

L
, Φ =

1

L2
Ψ(z, τ),

with Ψ ∼ Ψ0(z) as τ → ∞ and

d2Ψ0

dz2
− 1

2

dΨ0

dz
− λ = 0,

implying that

Ψ0 = −2λz − 4λ
(
1 − ez/2

)
.(4.14)

Leading-order matching of (4.11)–(4.12) with (4.14) (in the limit z → −∞) yields

A ∼ 2λ

L2
,

while matching of the exponential in (4.14) with (4.13) requires

16
√
π

L3
eL

2/4Ȧ ∼ −4λ

L2
,

so that

16
√
π

L4
eL

2/4L̇ ∼ 1.(4.15)

This then gives

32
√
π

L5
eL

2/4 ∼ τ as τ → ∞

and thus

L ∼ 2 (ln τ)
1/2

, A ∼ λ/2 ln τ as τ → ∞.(4.16)

Since

u =
∂Φ

∂τ
+

y

2

∂Φ

∂y
− Φ =

∂2Φ

∂y2
− λ,

we have

u ∼ −λ−A(τ) for y = O(1), u ∼ −λ(1 − ez/2) for z = O(1).(4.17)

Denoting the blow-up profile u(x, tc) by uc(x), it follows using (4.6) that

uc(x) ∼ −λ− λ

2 ln (− ln(xc − x))
as x → x−

c .(4.18)
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Fig. 1. A schematic illustration of the generic blow-up profile uc(x) = u(x, tc) which gives
Q < 0 in (4.19).

The profile is shown schematically in Figure 1. From (3.6), the blow-up profile satisfies

Q =

∫ xc

0

(uc(x) + λ)dx =

∫ x∗

0

(uc(x) + λ)dx + Qc,(4.19)

where uc(x
∗) = −λ (see Figure 1) and

Qc =

∫ xc

x∗
(uc(x) + λ)dx.

As we shall see, Qc < 0 represents the quantity of heat that the solid needs to absorb
before the interface can be continued in the classical sense, the remainder, Q − Qc,
then being nonnegative (at least for profiles of the form shown in Figure 1). It is in
effect the manner in which Qc is removed from the liquid phase that is investigated
in subsequent sections.

Nongeneric blow-up scenarios are also possible (see also [25]) and, since we shall
need to exclude such a possibility in a particular situation in section 6 below, we
record the first of these here. The analysis is in some respects simpler than that of
the generic case above since there is no logarithmic dependence on τ . The expansion
(4.11) is replaced by

Φ ∼ λ + e−τ/2Φ̂(y),(4.20)

where

Φ̂(y) = A

(
y − y3

6

)

(the various modes can be identified as corresponding to solutions which are polyno-
mials in y) and the value of the positive constant A depends on the initial data; the
interior layer scalings then read

y = L +
z

L
, w = (tc − t)4/3Ψ̂(z, τ)
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with

L ∼
(

6λ

A

)1/3

eτ/6, Ψ̂ ∼
(

A

6λ

)2/3

Ψ̂0

and

d2Ψ̂0

dz2
− 1

3

dΨ̂0

dz
− λ = 0,

so that

Ψ̂0 = −3λz − 9λ
(
1 − ez/3

)
.

It follows in particular that

u ∼ −λ + A(xc − x)(4.21)

for y = O(1), with (4.21) also furnishing the local behavior of uc(x) as x → x−
c , and

that

s(t) ∼ xc +

(
6λ

A

)1/3

(tc − t)1/3 as t → t−c .(4.22)

5. The regularized problem with μ > 0. The blow-up described in the
previous section is moderated and then suppressed by the (small) kinetic undercooling
term, as we now describe. There are three timescales of relevance, namely, the slow
down timescale t = tc +O

(
ε2 ln3 ln(1/ε)

)
, on which the blow-up rate in ṡ is mitigated

somewhat; the turnaround timescale t = tc + O (ε), during which the interface speed
goes through a minimum and the interface moves so as to release the required amount
of latent heat (i.e., the interface moves quickly to the next location x∗ at which
uc(x) = −λ); and, finally, the timescale t = tc + (μ/3ν)ε ln(1/ε) + O(ε) (where ν is a
constant defined in section 5.2), at the end of which the classical Stefan problem is
recovered.

5.1. The slow down timescale. This is the shortest of the timescales. As
indicated by (4.17) the solution as blow-up is approached is almost of the self-similar
form

u ∼ U
(
(x− xc)/(tc − t)

1
2

)
,

so we first rescale via

t = tc(ε) + ε2T, x = xc(ε) + εX, s = xc(ε) + εS(T )

to obtain in the first instance the full balance

∂u

∂T
=

∂2u

∂X2
,(5.1)

at X = S(T ) u = Ṡ(T ),
∂u

∂X
+ (1 − μ)Ṡu = −λṠ,(5.2)

where · denotes d/dT . However, as indicated by (4.17) (and indeed by (5.14) be-
low, which implies “almost traveling-wave” behavior in matching as T → +∞), this
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complete elimination of ε is in fact spurious; the scales appropriate to describing the
transition are in fact

T = δ−3T̂ , S = δ−2Ŝ, X = δ−2Ŝ + δ−1Ẑ,

where δ = 1/ ln ln(1/ε) (so that ε has to be minute for δ to be genuinely small in prac-
tice; fortunately this issue does not arise on the other timescales). The dependence
on ε is thus remarkably weak.

Hence

δ
∂u

∂T̂
− dŜ

dT̂

∂u

∂Ẑ
=

∂2u

∂Ẑ2
,(5.3)

on Ẑ = 0 u = δ
dŜ

dT̂
,

∂u

∂Ẑ
+ (1 − μ)

dŜ

dT̂
u = −λ

dŜ

dT̂
,(5.4)

so, writing

u ∼ Û0(Ẑ, T̂ ) + δÛ1(Ẑ, T̂ ), Ŝ ∼ Ŝ0(T̂ ) + δŜ1(T̂ ) as δ → 0,

we find that

Û0 = −λ

(
1 − exp

(
−dŜ0

dT̂
Ẑ

))
,(5.5)

Û1 =
λd2Ŝ0

dT̂ 2(
dŜ0

dT̂

)3

⎛
⎝
⎛
⎝1

2

(
dŜ0

dT̂

)2

Ẑ2 +
dŜ0

dT̂
Ẑ + 1

⎞
⎠ exp

(
−dŜ0

dT̂
Ẑ

)
− 1

⎞
⎠(5.6)

+ (1 − μ)
dŜ0

dT̂
exp

(
−dŜ0

dT̂
Ẑ

)
+ μ

dŜ0

dT̂
− λ

dŜ1

dT̂
Ẑexp

(
−dŜ0

dT̂
Ẑ

)
.

Since dŜ0/dT̂ < 0, we thus have to these orders that

u ∼ −λ + δ

⎛
⎜⎝μ

dŜ0

dT̂
−

λd2Ŝ0

dT̂ 2(
dŜ0

dT̂

)3

⎞
⎟⎠ as Ẑ → −∞

as the condition required in matching with (4.18), so that

μ
dŜ0

dT̂
−

λd2Ŝ0

dT̂ 2(
dŜ0

dT̂

)3 = −λ

2
.

It follows (by suitable choice of xc(ε) at O(εδ−2), i.e., up to a translation of Ŝ0) that
we have

μŜ0 +
λ

2
(

dŜ0

dT̂

)2 = −λ

2
T̂ .(5.7)

Finally, writing

Ŝ0 = − λ

2μ
T̂ −W 2(5.8)



1688 J. R. KING AND J. D. EVANS

yields

2W 2((
λ
2μ

) 1
2 −

(
λ
2μ

)
W

) dW

dT̂
= 1

so that, by suitable choice of tc(ε) at O(ε2δ−3) (i.e., up to a translation of T̂ ),

W 2 + 2

(
2μ

λ

) 1
2

W +
4μ

λ
ln

(
W −

(
2μ

λ

) 1
2

)
= − λ

2μ
T̂ .(5.9)

It follows from (5.9) that

W ∼
(
−λT̂

2μ

)1/2

−
(

2μ

λ

)1/2

as T̂ → −∞,(5.10)

which gives the required behavior

Ŝ0 ∼ 2
(
−T̂

)1/2

as T̂ → −∞(5.11)

to match with (4.16) and also

W ∼
(

2μ

λ

)1/2

+ e−λ2T̂ /8μ2

as T̂ → +∞,(5.12)

which gives the behavior

Ŝ0 ∼ − λ

2μ
T̂ − 2μ

λ
− 2

(
2μ

λ

)1/2

e−λ2T̂ /8μ2

as T̂ → +∞,(5.13)

furnishing a matching condition for the next timescale. The behaviors of Ŝ0 and
dŜ0/dT̂ are shown in Figure 2 using (5.7) and (5.11).

5.2. The turnaround timescale. Setting

t = tc(ε) + εt̂, x = s(t̂; ε) + εẑ

in the interior layer located at the moving boundary, we have

ε
∂u

∂t̂
− ds

dt̂

∂u

∂ẑ
=

∂2u

∂ẑ2
,(5.14)

at ẑ = 0 u =
ds

dt̂
,

∂u

∂ẑ
+ (1 − μ)

ds

dt̂
u = −λ

ds

dt̂
,(5.15)

while in the outer region x = O(1)

∂u

∂t̂
= ε

∂2u

∂x2
,

so that

u ∼ uc(x),(5.16)
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Fig. 2. Illustration of the leading-order asymptotic solution showing (A) Ŝ0 and (B) dŜ0/dT̂
using (5.7)–(5.9) with λ = μ = 1. The far-field matching behaviors are clearly exhibited, particularly

in (B), where dŜ0/dT̂ ∼ −(−T̂ )−1/2 as T̂ → −∞ and dŜ0/dT̂ ∼ −λ/2μ as T̂ → +∞.

where, as before, uc(x) = u0(x, tc), u0 being the solution to the classical (ε = 0)
Stefan problem, as discussed above. Expanding in (5.14)–(5.15) in the form

u ∼ û0(ẑ, t̂ ), s ∼ ŝ0(t̂ ) as ε → 0

yields

û0 = −λ
(
1 − e−

˙̂s0ẑ
)

+ ˙̂s0

(
μ + (1 − μ)e−

˙̂s0ẑ
)
,(5.17)

where · now denotes d/dt̂. Matching (5.17) as ẑ → −∞ with (5.16) requires that ŝ0

be given by

μ ˙̂s0 = uc(ŝ0) + λ with ŝ0 = xc at t̂ = 0.(5.18)

This first-order ordinary differential equation governs the dynamics of the interface
motion over the current timescale.

In the one-phase limit, we have from (2.9) that

u2 = μu1(x, ω(x)) = εμ
ds

dt
(ω(x)) ,

which implies that

u2 ∼ uc(x) + λ

is, to leading order, independent of μ. Thus, as expected (cf. Gurtin [24]), the tem-
perature left behind in the second phase during this rapid transition is given by that
in the first phase modified by the latent heat λ in a manner which accounts correctly
for the conservation of energy on change of phase.

It remains to discuss the behavior of the ordinary differential equation (5.18).
First, it follows from (4.18) that the initial behavior is governed by

μ ˙̂s0 ∼ − λ

2 ln (− ln(xc − ŝ0))
(5.19)
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and hence

ŝ0 ∼ xc −
λ

2μ

t̂

ln
(
− ln t̂

) as t̂ → 0+.(5.20)

Since t̂ = εδ−3T̂ , this gives the matching condition

ŝ0 ∼ xc −
λ

2μ
εδ−2T̂ ,

consistent with (5.13).
Elsewhere, uc(x) depends on the initial data. The key observation regarding

(5.18) is that the interface slows down as it approaches the point x∗ < xc at which
uc(x

∗) = −λ; we generically have

uc ∼ −λ− ν(x− x∗)(5.21)

as x → x∗ for some positive constant ν and hence

ŝ0 ∼ x∗ + e−ν(t̂−t̂c)/μ as t̂ → +∞(5.22)

for some constant t̂c.
It is worth remarking that the nongeneric behavior

uc ∼ −λ− ν(x− x∗)2m+1(5.23)

as x → x∗ for some positive constant ν and integer power m > 0 gives instead the
algebraic decay behavior

ŝ0 ∼ x∗ +

(
μ

2mνt̂

)1/2m

as t̂ → +∞.(5.24)

5.3. The timescale of recovery of the classical Stefan problem. The rel-
evant timescale corresponds to s = xc + O(ε1/3), so by (5.22) the scalings

t̂ =
μ

3ν
ln(1/ε) + t̂c + T̄ , s(T̄ ; ε) = x∗ + ε1/3S̄, x = s(T̄ ; ε) + ε2/3

Z
˙̄S

pertain, where · is now d/dT̄ . Thus in the interior layer Z = O(1)

ε1/3

˙̄S
2

∂u

∂T̄
+ ε1/3

¨̄SZ

˙̄S
3

∂u

∂Z
− ∂u

∂Z
=

∂2u

∂Z2
(5.25)

at Z = 0 u = ε1/3 ˙̄S,
∂u

∂Z
+ (1 − μ)u = −λ.(5.26)

Expanding in the form

u ∼ U0(Z) + ε1/3U1(Z, T̄ ), S̄ ∼ S̄0(T̄ ) as ε → 0

yields

U0 = −λ
(
1 − e−Z

)
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and hence

−λ
¨̄S0Z

˙̄S
3

0

e−Z − ∂U1

∂Z
=

∂2U1

∂Z2
,(5.27)

at Z = 0 U1 = ˙̄S0,
∂U1

∂Z
= −(1 − μ) ˙̄S0,(5.28)

so that

U1 =
λ ¨̄S0

˙̄S
3

0

((
1

2
Z2 + Z + 1

)
e−Z − 1

)
+ (1 − μ) ˙̄S0e

−Z + μ ˙̄S0.

Since (5.16) still applies in x < s, matching as Z → +∞ (noting that ˙̄S < 0) with
(5.22) requires that S̄0 be given by the ordinary differential equation

μ ˙̄S0 − λ
¨̄S0

˙̄S
3

0

= −νS̄0,(5.29)

with

S̄0 ∼ e−νT̄/μ − λμ

3ν2
e2νT̄/μ as T̄ → −∞.(5.30)

As T̄ → +∞, the first term in (5.29) becomes negligible and we obtain

S̄0 ∼ −
(

6λ

ν

)1/3

T̄ 1/3 as T̄ → +∞;(5.31)

the formulation (5.29) indicates how the interface s passes through x∗. A numerical
solution of (5.29) as an initial value problem is shown in Figure 3, using the two-term
behavior (5.30) at T̄ = −T̄init (for suitably large T̄init) to start the scheme.

Finally, from (5.31) we can deduce that for t = tc0 + O(1) we recover at leading
order the classical Stefan problem

in 0 < x < s0(t)
∂u0

∂t
=

∂2u0

∂x2
,

on x = 0
∂u0

∂x
= 0,

on x = s0(t) u0 = 0,
∂u0

∂x
= −λ

ds0

dt
,

at t = tc0 u0 = uc(x), s0 = x∗,

whose small t− tc0 behavior can be shown (essentially as above) to take the form

s0(t) ∼ x∗ −
(

6λ

ν

)1/3

(t− tc0)
1/3

as t → t+c0,

thereby matching with (5.31).
The discussion so far has assumed that the blow-up profile has only two roots for

uc(x) + λ = 0 with 0 ≤ x ≤ xc. The case in which there are more than two roots
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Fig. 3. (A) and (B) show S̄0 and ˙̄S0, respectively, against T̄ calculated from (5.29). The values
ν = 0.1, λ = μ = 1 were taken for illustrative purposes, and the scheme started from T̄ = −20. The
asymptotic behavior (5.31) is also shown in both (A) and (B).

gives rise to the possibility of repeated blow-up in the unregularized problem. Such
scenarios depend upon the blow-up profile satisfying

Q−Qc =

∫ x∗

0

(uc(x) + λ)dx < 0.

The case in which uc < −λ for all x is remarked upon in the next subsection.

5.4. Final behavior. In this section we address the possible ultimate outcomes
of (3.1)–(3.4) for arbitrary ε. One possibility for any μ is that s → s∞ as t → ∞ for
some positive constant s∞ (which will depend on the initial data), with

on x = s∞ ε
∂u

∂x
∼ −λu

giving the asymptotic boundary condition, implying that

u ∼ −U∞e−κ2t cos(κx) as t → ∞(5.32)

for some positive constant U∞, where κ is (generically) the smallest root of

εκ tanκs∞ = λ.(5.33)

However, for μ < 1 it is also possible that s drops to zero in finite time, a scenario
which can be identified by assuming that the left-hand side of (3.1) is asymptotically
negligible (the self-consistency of this assumption being readily checked a posteriori),
implying that

u ∼ U(t),
∂u

∂x
∼ U̇(t)x

for some function U(t). The moving boundary conditions then yield

U ∼ εṡ, U̇s + ṡ(1 − μ)U ∼ −λṡ,
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so for μ �= 1 we obtain

ṡ ∼ Asμ−1 − λ

ε(1 − μ)
(5.34)

for some constant A. If A > 0 and μ < 1, then s tends to s∞ ∼ (λ/ε(1− μ)A)1/(μ−1)

as t → ∞, and the behavior of (5.34) in this case can easily be seen to be consistent
with the small s∞ limit of (5.32)–(5.33). If μ > 1, then A is necessarily less than zero
(since ṡ < 0 must hold for u < 0) and the same conclusion applies (the equivalent
result can easily be seen always to follow when μ = 1 as well). However, for μ < 1
with A < 0 we have that

s ∼ ((2 − μ)(−A)(te − t))
1

2−μ , U ∼ ε(−A) ((2 − μ)(−A)(te − t))
− 1−μ

2−μ as t → t−e
(5.35)
for some finite extinction time te which will depend on the initial data, with u be-
coming unbounded in this limit. Thus, interestingly, there are two possible generic
outcomes for μ < 1: first, s → s∞ > 0 with (5.32), and second, (5.35), the borderline
between the two being given by the nongeneric case A = 0 in (5.34), whereby

s ∼ λ

ε(1 − μ)
(te − t), U ∼ − λ

1 − μ
.(5.36)

For small ε, when uc(ŝ0) < −λ for all ŝ0 the result (5.18) does not in general
hold uniformly as ŝ0 approaches zero. We shall not address the corresponding small
ε asymptotics here, but it is plausible that for μ < 1 the scenario (5.35) will typically
ultimately apply, whereas for μ ≥ 1 we necessarily have s∞ > 0, so the interface does
not impinge upon the boundary, though as ε tends to zero s∞ presumably also does
so.

6. The special case μ = 0. We stress that the parameter μ plays no role
in the zero kinetic undercooling case, so it does not feature as a special case in the
unregularized problem. It does, however, require separate treatment for ε > 0 since,
as already noted, even with kinetic undercooling bona fide blow-up can occur for
μ = 0. Here we treat the behavior close to the blow-up time t = tc for arbitrary
ε > 0. Two reformulations of (3.1)–(3.4) are helpful in this case (it is no coincidence
that these reformulations are available only in the special case μ = 0, which is also
exceptional with regard to its blow-up properties); we first recall from (3.6) that∫ s(t)

0

(u(x, t) + λ)dx = Q(6.1)

holds for all time when μ = 0. Again introducing w as in (4.1), we obtain (4.2) subject
to

on x = s(t) w = 0,
∂w

∂x
= −ε,(6.2)

on x = 0
∂w

∂x
= −Q− ε,(6.3)

at t = 0 s = 1, w = ε(1 − x) +

∫ 1

x

(x′ − x)(u0(x
′) + λ)dx′,(6.4)

the conditions (6.3) and (6.4) following from (6.2) and

at t = 0
∂2w

∂x2
= u0(x) + λ.
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Second, introducing

v = −
∫ s(t)

x

(u(x′, t) + λ)dx′,(6.5)

so that

v = ε +
∂w

∂x
, u =

∂w

∂t
=

∂v

∂x
− λ,(6.6)

leads to

∂v

∂t
=

∂2v

∂x2
,(6.7)

on x = s(t) v = 0,
∂v

∂x
= λ + εṡ(t),(6.8)

on x = 0 v = −Q,(6.9)

at t = 0 s = 1, v = −
∫ 1

x

(u0(x
′) + λ)dx′.(6.10)

If the λ terms are negligible, then (6.7)–(6.10) reduces to the classical Stefan
problem with Stefan number ε. The boundary condition we have adopted on x = 0,
(3.3), differs in form from (6.9), but provided xc > 0 the analysis of section 4 carries
over because it is local to x = xc; thus identifying u with −v and ε with λ, it follows
from (4.17) that

v ∼ ε + A(τ) for y = O(1), v ∼ ε(1 − ez/2) for z = O(1),(6.11)

immediately prior to blow-up, where (4.6) remains valid, as does y = L + z/L. The
expressions (4.16) become

L ∼ 2 (ln τ)
1/2

, A ∼ ε/2 ln τ as τ → ∞

in the current notation; since

ṡ ∼ −1

2
L(τ)(tc − t)−1/2 as t → t−c

the λ term in (6.8) is indeed negligible, as required for self-consistency. From (6.6)
and (4.18) (which now gives the local behavior of v) we have

uc(x) ∼ − ε

2 ln2 (− ln(xc − x)) (− ln(xc − x)) (xc − x)
as x → x−

c ,(6.12)

so (unlike (4.18)) u becomes unbounded as the blow-up time is approached.
For u < 0, we have from (6.6) that v is monotonic decreasing with x, and hence

(6.11) is consistent with (6.9) only if −Q > ε (that this inequality should arise is
perhaps not surprising in the light of (6.3)). A second, distinct, blow-up scenario thus
necessarily pertains when this inequality is not satisfied; this has xc = 0, so the form
of the boundary condition on x = 0 is important in this case, and this form of blow-up
can most conveniently be derived directly from the original formulation (3.1)–(3.4),
with μ = 0 and with the λ term again negligible in the limit t → t−c . We thus seek
self-similar behavior of the form

u ∼ 1

(tc − t)1/2
f(η), η =

x

(tc − t)1/2
, s(t) ∼ σ(tc − t)1/2 as t → t−c ,(6.13)
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Fig. 4. Plot of the solutions to the transcendental equation (6.14) together with the asymptotic
behaviors (6.16) and (6.17). We have that σ∗ ≈ 3.0045 and Λ ≈ 1.28475.

implying

f = −Beη
2/4

for some constant B, with σ given by the transcendental equation

1

2
σe−σ2/4

∫ σ

0

eη
2/4dη =

(−Q)

ε
(6.14)

and with

B =
ε

2
σe−σ2/4;(6.15)

these follow from (3.2) and (6.1). Thus as (−Q)/ε → 0+ we have

σ ∼ (2(−Q)/ε)
1/2

, B ∼ ((−Q)ε/2)
1/2

,(6.16)

and as (−Q)/ε → 1+,

σ ∼ (2/ ((−Q)/ε− 1))
1/2

(6.17)

with B exponentially small.
We plot in Figure 4 the solutions to (6.14), the nonmonotonicity following from

(6.16)–(6.17). There is thus a range of (−Q)/ε > 1 (which we denote 1 < (−Q)/ε < Λ,
as in Figure 4) for which two solutions are possible, and we speculate that those with
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σ ≤ σ∗ are stable (where σ = σ∗ corresponds to the maximum value of (−Q)/ε
from (6.14)) and those beyond the fold, in σ > σ∗, are unstable. In the range of
1 < (−Q)/ε < Λ there are thus two generic (stable) blow-up scenarios (one with
xc = 0, σ < σ∗ and another with xc > 0 depending on the initial data, for which
(6.12) applies), separated by a nongeneric (unstable) scenario of the form (6.13) with
σ > σ∗. Finally, in the borderline case (−Q)/ε = 1 it is in principle possible that
a form of blow-up which would be nongeneric for arbitrary parameter values may
occur generically, so it is worthwhile to confirm that the situation described at the
end of section 4 cannot pertain with xc = 0; thus, while in the current notation (4.21)
becomes

v ∼ ε + Ax,

which satisfies (6.9), it also follows that v is increasing with x, contrary to the as-
sumption that u < 0. Thus we conjecture that (6.13) provides the only generic form
of blow-up for (−Q)/ε ≤ 1 and (6.17) for (−Q)/ε > 1.

For completeness we also note that when Q > 0 (so that blow-up does not occur
even without kinetic undercooling) we have s ∼ Q/λ as t → ∞, with u decaying
exponentially with t, as dictated by the relevant linear diffusion problem subject to

on x = Q/λ ε
∂u

∂x
∼ −λu.

Finally, for Q = 0 we have

u ∼ −λ, s ∼ λ

ε
(tc − t) as t → t−c ,

which in fact furnishes the exact solution to (3.1)–(3.4) for μ = 0, u0 ≡ −λ. This
exact solution generalizes to arbitrary μ < 1 to

u = − λ

1 − μ
, s =

λ

ε(1 − μ)
(tc − t),(6.18)

a solution which is consistent with (5.18) and which has played a role above in (5.36);
moreover, (6.18) generalizes further to

u = −λ− εμq + (λ− ε(1 − μ)q)eqz, s = q(tc − t)

for arbitrary wavespeed q (cf. (5.17)).
For small ε, the relevant regime is of course that leading to (6.12). The transition

to this from the blow-up behavior described in section 4 is rather complex, and we
shall not give anything like full details; the initial stages can be described by naively
incorporating the ε term in the boundary condition in x = s into the interior layer
analysis of section 4, in which case the ordinary differential equation (4.15) generalizes
to

16
√
π

L4
eL

2/4L̇ ∼ 1 − εL

2λ
eτ/2,

which itself has a rather delicate asymptotic structure in the limit ε → 0 over the
timescales on which the second term on the right-hand side comes to dominate the
first. Subsequently, there is a phase in which the λ terms are asymptotically negligible
(i.e., the evolution is governed by the zero latent heat problem), from which the blow-
up behavior (6.12) ultimately emerges.
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7. Numerical results. The method of lines may be used to solve the problem
(3.1)–(3.4) numerically. The method adopted is described in detail in the appendix
and follows Fasano, Meyer, and Primicerio [19], with the modification discussed in
Meyer [28] used to accommodate the Neumann condition on the fixed boundary. The
scheme may be used for both cases ε = 0 and ε > 0, with the minor modifications
needed for the former case also described in the appendix.

For the numerical simulations, the initial profile adopted was the following piece-
wise linear function:

uin(x) =

⎧⎪⎨
⎪⎩

−a, x < α̂,

−a + a
(x− α̂)(x− β̂)

(1 − α̂)(1 − β̂)
, α̂ < x ≤ 1,

(7.1)

where α̂ = 0.2 and β̂ = 0.9 were fixed in all of the following calculations.
Figure 5 shows the full numerical solution for the interface position and speed in

the case with no kinetic undercooling, ε = 0. Taking a = 0.4, 0.5, 0.6, 0.8 gives Q =
0.33, 0.167, 1.3 × 10−7,−0.33, respectively, from (3.5). The increase in the interface
speed as Q decreases is clearly illustrated. Blow-up would be expected to occur in
the case Q = −0.33. Not surprisingly, such behavior is not fully reproduced in the
numerics, with truncation errors presumably serving to regularize the problem.

Figures 6 and 7 show the time development of the full numerical solution for the
interface position and speed as the two key parameters, the segregation coefficient μ
and the kinetic undercooling parameter ε, vary independently; the initial profile (7.1)
with a = 0.8, corresponding to Q = −0.33, was adopted. Figure 6 shows the approach
to blow-up behavior as μ → 0+ for ε = 1, while Figure 7 illustrates the corresponding
behavior as ε → 0+ for μ = 1. As already noted, kinetic undercooling does not
prevent blow-up when μ = 0, with Figure 6 illustrating that this limit is approached
relatively quickly as μ is decreased (the numerical scheme being particularly sensitive
to the value of μ, as can be seen from the scalar equation (A.9) for determination of
the position of the interface at the next time level). For comparison in Figure 7, the
asymptotic blow-up behavior (4.16) of the unregularized problem

ṡ ∼ −
(

1

ln(tc − t)
√

ln(− ln(tc − t))

)
(tc − t)−1/2 as t → t−c(7.2)

is also plotted in Figure 7(B) (the estimate tc = 0.0096 being used for the blow-up
time, this being determined from the full numerical solution in the ε = 0 case with
the same initial profile). The value ε = 10−4 represents the smallest value accessible
numerically with reasonable accuracy.

Figures 8 and 9 compare the full numerical solution (shown in both as (A) and
(B)) with the asymptotics (shown in both as (C) and (D)) of sections 4 and 5 for
the specific case ε = 10−3, μ = 1, Q = −0.33. The same initial profile was used and
the time variable − ln |t − tc| was chosen to illustrate the timescales involved. The
asymptotics require estimates of certain values from the blow-up profile which were
obtained from the full numerical scheme in the ε = 0 case with the same initial profile.
This yielded the approximate values xc = 0.56, x∗ = 0.15, tc = 0.0096, ν = 1.75, with
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Fig. 5. Results from the method of lines numerical scheme on (3.1)–(3.4) in the unregularized
case ε = 0. The initial profile (7.1) was taken with the parameter a varied to give the values of
initial supercooling parameter Q shown. The interface location s is shown in (A) and its speed ṡ in
(B).
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Fig. 6. Results from the method of lines numerical scheme for (3.1)–(3.4) in the regularized
case ε = 1, Q = −0.33 for selected values of the segregation coefficient μ; (A) shows s and (B) ṡ. The
initial profile (7.1) was taken with the parameter a = 0.8. Our analysis implies bona fide blow-up
occurs for μ = 0, and we observe that for μ = 0.1 and μ = 0.25 also the regularizing term seems
insufficient to prevent the numerical scheme from breaking down in a manner akin to such blow-up.
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Fig. 7. Results from the method of lines numerical scheme for (3.1)–(3.4) in the regularized
case with μ = 1, Q = −0.33 for selected values of the kinetic parameter ε; (A) shows s and (B) ṡ.
The initial profile (7.1) was taken with the parameter a = 0.8 fixed. Also shown for comparison in
(B) is the asymptotic blow-up behavior (7.2).
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Fig. 8. Comparison of numerical and asymptotic solutions for the interface s(t). The parameter
values taken were ε = 10−3, μ = 1. (A) and (B) show s(t) from the method of lines numerical scheme
for (3.1)–(3.4) with a = 0.8 in the initial profile (7.1), so that Q = −0.33. The value tc = 0.0096 was
used in (A) and (B) for the transformed timescale, which was estimated using the numerical scheme
on the same initial profile but with the parameter value ε = 0 (this scheme also gave the estimates
xc = 0.56, x∗ = 0.15). The upper curve gives s(t) for t < tc and the lower gives s(t) for t > tc.
(C) and (D) illustrate the asymptotic approximations derived for s(t) in section 5 on the three main
timescales. The parameter values for ε and μ are used to express these asymptotic approximations
for s in terms of t− tc. Since the asymptotics are for times relative to tc, an approximation for tc
is not necessary, but the estimates xc = 0.56, x∗ = 0.15 from the numerical scheme with ε = 0 were
used. For comparison in (C) the blow-up asymptotic solution (4.16) is also shown. In (D), only the
initial and final behaviors (5.20) and (5.22) on the turnaround timescale are shown since behavior
over the whole of this timescale is controlled by (5.18), which requires the full profile uc(x). The
interval over which the interface effectively “jumps” is represented in (D) by the vertical distance
between horizontal asymptote at s ≈ 0.56 and the end of the timescale that leads to the recovery of
the classical Stefan problem at s ≈ 0.15.



1702 J. R. KING AND J. D. EVANS

Fig. 9. Comparison of numerical and asymptotic solutions for the interface speed ds/dt in the
example described in Figure 8. Results analogous to those shown for s in Figure 8 are given here
for ds/dt. Results from the method of lines numerical scheme are shown in (A) and (B), while the
asymptotic approximations derived in section 5 are shown in (C) and (D). We note in (D) a gap
in the asymptotic solution for the turnaround timescale where only the start and end behaviors are
shown. The intermediate behavior requires the blow-up profile as dictated by (5.18).

Figure 10 showing the initial profile u0(x) and an approximation to the blow-up profile
uc(x). These values are very sensitive to the approximation to the blow-up profile
chosen and are recorded here for illustrative purposes only. Even though ε = 10−3

is relatively large (as far as the asymptotics are concerned, since δ ≈ 0.52 is still not
particularly small), only qualitative comparisons can be made. Although the initial
behavior on the turnaround timescale of section 5.2 cannot really be observed for the
ε chosen, the emergence of the predicted timescales is supported. On the turnaround
timescale, the asymptotics suggest that ds/dt will decrease according to (5.13) before
subsequently increasing to eventually give (5.22), with profiles of the form shown in
Figure 1 indicating from (5.18) the existence of a local minimum for ds/dt.
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Fig. 10. Illustration of the initial and blow-up profiles from the method of lines numerical
scheme in the case ε = 0, Q = −0.33, where a = 0.8 in the initial profile (7.1). The blow-up profile
is of course approximate and has the value Q = −0.3, illustrating that approximately 10% of Q
has been lost by the numerical scheme. This approximation to the blow-up profile was used to give
the estimates xc = 0.56, x∗ = 0.15, ν = 1.75 with tc = 0.0096. These values are used in both the
numerical scheme and asymptotic approximations shown in Figures 8 and 9.

8. Discussion. The regularization of the supercooled Stefan problem by kinetic
undercooling in the one-dimensional, one-phase case has been discussed both asymp-
totically and numerically. The derivation of the one-phase model from a two-phase
formulation highlights the necessity to distinguish between the cases in which the
interface advances and retreats. The asymptotics of the main transition timescales
for regularization by kinetic undercooling support the proposal of Gurtin [24] that
an appropriate ε = 0 formulation which allows continuation through blow-up involves
an instantaneous jump in the interface location (to a position which the ε → 0+

asymptotics uniquely identifies, clarifying an issue raised in [24]) at the blow-up time.
This abrupt jump becomes a smooth but rapid one in the regularized problem with
0 < ε � 1. For μ = 0, the regularization becomes ineffective in preventing singularity
formation (as follows from the conserved quantity (6.1)), and some intriguing blow-up
behavior arises.

One way of characterizing concisely the asymptotic results is to note the power
laws and so forth which describe the various intermediate asymptotic regimes. Here we
note, in particular, the (−T̂ )1/2 behavior in (5.11), the near-linear nature of (5.20), the
exponential decay in (5.22), and the T̄ 1/3 rate of decrease in (5.31). Other noteworthy
features include the cases in which two distinct generic behaviors occur (so that which
is realized depends on the initial data); these arise in section 5.4 for 0 < μ < 1 (related
behavior for μ = 0 is described at the end of section 6, but the conservation law (6.1)
which pertains in this case means that the dependence on the initial conditions can be
characterized explicitly through the value of Q ≥ −ε) and in section 6 for μ = 0 with
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1 < (−Q)/ε ≤ Λ, wherein the existence of multiple similarity solutions is particularly
striking.

Obvious extensions of this work are to consider the analogous two-phase and
higher-dimensional problems.

Appendix. Method of lines numerical scheme. The continuous time prob-
lem is discretized and solved at successive time levels as a sequence of free boundary
problems for the ordinary differential equations which arise in this way.

At time level t = tn with tn − tn−1 = Δt the solution {un(x), sn} is computed as
the solution of the discretized equations

in 0 < x < sn u′′
n − 1

Δt
(un − un−1) = 0,(A.1)

u′
n(0) = 0,(A.2)

sn − sn−1

Δt
= f(un(sn)), s0 = s(0) = 1,(A.3)

u′
n(sn) = −sn − sn−1

Δt
(λ + (1 − μ)un(sn)) .(A.4)

Here, we have allowed for a general kinetic condition of the form ṡ = f(u), where f(u)
satisfies the conditions f ′(u) > 0 and f(0) = 0. The power law form f(u) = u1/n/ε
is common, with n = 1 being the case considered in the main text. It is assumed
that the function un−1(x) (defined over [0, sn−1]) and sn−1 are both known. The free
boundary problem (A.1)–(A.4) may be solved by the method of invariant embedding
(or the sweep method), as described in [28].

Writing (A.1)–(A.4) as a first-order system over (0, sn)

u′
n = vn, v′n =

1

Δt
(un − un−1),(A.5)

the Riccati transformation

vn(x) = R(x)un(x) + Wn(x)(A.6)

relates un and vn, where

R′ =
1

Δt
−R2, R(0) = 0,(A.7)

and

W ′
n = −R(x)Wn − un−1(x)

Δt
, Wn(0) = 0.(A.8)

(A.3) and (A.6) show that sn is a root of the scalar equation

σn(x) ≡ (x− sn−1)

Δt
− f

⎛
⎝ −(Wn(x) + λ (x−sn−1)

Δt )

R(x) + (1 − μ)
(

x−sn−1

Δt

)
⎞
⎠ = 0.(A.9)

Given sn, we have

un(sn) = − λṡn + Wn(sn)

R(sn) + (1 − μ)ṡn
,(A.10)
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where

ṡn =
sn − sn−1

Δt
= f(un(sn))(A.11)

and

u′
n(sn) = vn(sn) = −ṡn

(
λR(sn) − (1 − μ)Wn(sn)

R(sn) + (1 − μ)ṡn

)
.(A.12)

The triple {un(sn), vn(sn), sn} is an exact solution of (A.3), (A.4), and (A.6).
Once sn is determined, then vn can be found by integrating backward over [0, sn)

the reverse sweep equation

v′n =
1

Δt
(R(x)vn + Wn(x) − un−1(x)) ,(A.13)

with vn(sn) given in (A.12).
The above algorithm was implemented as follows. A time-independent mesh with

grid points {xi}Ni=0 was imposed on the interval [0, 1], the grid being uniform with
xi = i/N . Nonuniform grids with clustering of grid points where the free boundary
moves quickly may also be used. The time step Δt is variable. The Riccati equation
(A.7) has the closed form solution

R(x,Δt) =
1√
Δt

tanh

(
x√
Δt

)
,(A.14)

while the linear equation (A.8) is integrated to give

Wn(x) cosh

(
x√
Δt

)
= −

∫ x

0

un−1(τ)

Δt
cosh

(
τ√
Δt

)
dτ

and evaluated using a suitable quadrature rule (here the simple trapezoidal rule was
used). The function σn(x) is evaluated at successive mesh points of the grid before
sn−1 until it changes sign between, say, x
 and x
−1. The free boundary sn is now de-
termined as the root of the quadratic interpolant through σ(x
−1), σ(x
), and σ(x
+1).
Equation (A.6) is also integrated to give

un(x) = un(sn)
cosh

(
x√
Δt

)
cosh

(
sn√
Δt

) + cosh

(
x√
Δt

)∫ x

sn

Wn(τ)

cosh
(

τ√
Δt

)dτ
and evaluated by the trapezoidal rule, first from sn to x
−1 and then backward over
the fixed mesh.

In the special case ε = 0, (A.3) and (A.4) reduce to

un(sn) = 0, s0 = s(0) = 1,(A.15)

u′
n(sn) = −λ

(sn − sn−1)

Δt
,(A.16)

with (A.9) replaced with

σn(x) = Wn(x) + λ
(x− sn−1)

Δt
= 0(A.17)

and (A.10)–(A.12) modified to

un(sn) = 0, ṡn =
sn − sn−1

Δt
, u′

n(sn) = vn(sn) = Wn(sn) = −λṡn.

The algorithm for this special case proceeds as before.
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Abstract. This paper contains qualitative and quantitative comparisons between a weakly
nonlinear analysis and direct numerical simulations of a free-boundary problem. The former involves
modulating the most linearly unstable mode, taking a small perturbation of the neutrally stable value
νc of a parameter ν related to the activation energy. Analogously, we perform the direct numerical
computations near the marginally unstable value, namely, ν = νc − ε2, where ε is rather small.

We delineate the role of a different parameter σ (related to the Arrhenius kinetics) in the com-
bustion dynamics when ν = νc − ε2. In particular, the numerics show that varying σ produces a
period-doubling scenario when ε lies approximately between 0.08 and 0.12. We describe the σ inter-
vals within which complex dynamics occur for various values of ε and for ν fixed at νc − ε2. When
ε drops to approximately 0.06, the asymptotic and numerical solutions agree well for all physical
values of σ.
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expansions, Crank–Nicolson method, Fourier transforms
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1. Introduction. In this article, we study the nonuniform dynamics of front
propagation in a free-boundary model of solid combustion, through both weakly non-
linear analysis and direct simulations. We do the first quantitative comparison of the
two methods.

The asymptotic technique applies to the weakly unstable setting. In particular,
we fix the bifurcation parameter ν related to the activation energy to within a rather
small number ε2 of the neutrally stable value νc. By solving numerically in the same
regime, we closely investigate the role of a parameter σ associated with the Arrhenius
kinetics. In particular, period-doubling and eventual chaos develop as the kinetics
parameter σ decreases (and the bifurcation parameter ν remains at a deviation of ε2

from its critical value).

Weakly nonlinear analysis involves modulating the most linearly unstable mode.
Within quite a small neighborhood of the neutral stability boundary, Fourier spectra
of the numerical quasi-steady-state solutions indicate a regime in which a single mode
dominates, as well as complex regimes of front propagation.

As the bifurcation parameter ν approaches ever closer to the neutrally stable
value, the range of the parameter σ for which period-doubling and other strongly
nonlinear dynamics occur shrinks. Sufficiently near the stability threshold (ε approx-
imately 0.06), numerical solutions for all values of σ agree closely with the weakly
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nonlinear solutions. By varying ε, we quantify the domain of applicability of the
weakly nonlinear analysis.

The problem under consideration models, for example, solid combustion, in which
a chemical reaction converts a solid fuel directly into solid products with no intermedi-
ate gas phase formation. For instance, in self-propagating high-temperature synthesis
(SHS), a flame wave advancing through powdered ingredients leaves high-quality ce-
ramic materials or metallic alloys in its wake. (See, for instance, [15, 17, 20].)

The propagation results from the interplay between heat generation and heat
diffusion in the medium. A balance exists between the two in some parametric regimes,
producing a constant burning rate. In other cases, competition between the reaction
and the diffusion results in a wide variety of nonuniform behaviors, some leading to
chaos.

Shkadinsky, Khaikin, and Merzhanov [18] predicted the simplest oscillatory re-
gimes through numerical simulation on reaction-diffusion partial differential equations
(PDEs). The system contains Arrhenius-kinetics terms that account for chemical
conversion throughout the spatial domain.

Various works have explored numerically the dynamics of models that employ
approximations to the Arrhenius kinetics. For instance, in [1], Arrhenius kinetics
with a cutoff was used to observe chaotic pulsations, following a number of period-
doubling bifurcations.

Other approximations exploit the narrowness of the reaction zone. A point-source
model has an exact traveling-wave solution and is more amenable to analysis than
one with the full Arrhenius kinetics. Matkowsky and Sivashinsky [14] studied a
concentrated-kinetics model in the case of large activation energy. The δ-function
kinetics follow from an analysis similar to that of [19].

This free-interface problem has been studied numerically in [4]. For a sufficiently
large activation energy, the work showed transitions to chaos via a period-doubling
solution and highly irregular relaxational oscillations. The authors attributed a lack
of sequential secondary bifurcations to the difference between the point-source and
distributed-kinetics models (as in [1]). Later, however, in [9], the entire spectrum of
behavior was observed for the free-interface model, as previously had been seen for
distributed kinetics.

In [9], the authors performed numerical computations on a second model of solid
combustion as well. They motivate it by noting that both the reaction-diffusion model
as in [18] and the free-interface model in [14] assume a constant value of thermal
diffusivity. However, some problems manifest a clear dependence of this parameter
on degree of conversion. In fact, when the burnt product is a foam-like substance, heat
diffusion in the product region is negligible. For such cases, they consider a model
that includes the heat equation on a semi-infinite domain ahead of the reaction and
a nonlinear kinetic condition imposed on the moving boundary. The present paper
uses this free-boundary problem.

Note that both the free-interface (two-sided) model and the free-boundary (one-
sided) model stem from reaction-diffusion PDEs with full Arrhenius kinetics. To
emphasize, the one-sided model is not an adaptation of the two-sided model; rather
each of them is a viable derivative of the reaction-diffusion model. The two-sided
model assumes a single constant conductivity throughout the reactant and product
zones. The one-sided model assumes zero conductivity in the burned region. In some
cases the first approximation is more appropriate, in others the second.

Belyaev and Komkova discovered a pulsating regime in the burning of a chrome-
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magnesium thermite in 1950 [2]. A planar front may have oscillated with a constant
frequency in their experiments, but they did not observe the process in detail. Later
Merzhanov, Filonenko, and Borovinskaya [16] observed experimentally both the pe-
riodic propagation of a flat front in SHS as well as spinning waves, showing a fuller
understanding of the behaviors. All the models discussed in this literature review
exhibit the same spectrum of dynamics as experiments. Specifically, we refer to com-
puted solutions of (i) the reaction-diffusion system governed by the full Arrhenius
kinetics (e.g., [5]), (ii) the reaction-diffusion system with Arrhenius kinetics with a
cutoff (e.g., [1]), and models that use point-source kinetics like (iii) the free-interface
(“two-sided”) model with constant heat diffusivity (e.g., [9]), as well as (iv) the free-
boundary (“one-sided”) model, in which heat transfer behind the flame front (in the
burned matter) is qualitatively unimportant (e.g., [9]).

Simulations on all these models show the same dynamical behaviors as one pushes
the bifurcation parameters deeper into the instability regions. In particular, numerical
simulations and analysis in [9] show that dynamics of the two-sided and one-sided
problems agree extremely closely.

In the present work, we fix the bifurcation parameter ν within ε2 of the neutrally
stable value and vary the kinetics parameter σ, rather than exploring regimes more
and more strongly unstable in ν. In addition, we vary ε, thereby also changing ν,
and study the impact on the dynamics with respect to the kinetics parameter σ. We
will point out the agreement with dynamical scenarios described in previous studies,
which use a variety of models.

The stability thresholds for uniformly propagating fronts generally differ for all of
the different kinetics mentioned, however. Distributed kinetics have only the numeri-
cal approximate bifurcation values. Intricate bifurcation analyses [13, 10] of instabil-
ities for the point-source models have also classified the interactions of clockwise and
counterclockwise spinning waves on the surface of a cylinder. Margolis’s review paper
[13] includes a thorough discussion of resonance phenomena, treating sample radii that
yield close, as well as equal, eigenvalues. Also, Booty, Margolis, and Matkowsky [3]
predicted cascades of bifurcations from a double eigenvalue of a linearized model of
condensed-phase combustion in a long cylindrical sample. They show that the inclu-
sion of melting in the model makes the neutral-stability threshold more accessible. A
bifurcation parameter ν in the present work is restricted to a smaller neighborhood of
the value corresponding to a single neutrally stable eigenvalue. A different parameter
σ is varied to produce period-doubling behaviors numerically.

Combustion in two dimensions can be described by a one-dimensional model when
the only unstable mode corresponds to the dynamics with no spatial variation in the
transverse direction. For example, the linear stability analysis in [12] shows that for a
free-boundary model, a flat front dominates the behavior for the case of a sufficiently
narrow strip of material with insulated edges.

In particular, to satisfy the boundary conditions, the wave numbers are integer
multiples of π/a, where a is the strip width [12]. If a < π, all modes are stable
for ν > 1/3. Exactly one mode (the zeroth mode) loses stability at νc = 1/3. The
zero mode corresponds to the dynamics with no spatial variation in the transverse
direction (i.e., to the one-dimensional case). If, on the other hand, π < a < 2π, then,
as we decrease ν, the first mode π/a loses stability prior to the flat mode, namely,
at a value of ν > 1/3. In both cases (a < π and π < a < 2π) the weakly nonlinear
analysis shows that the evolution is governed by a complex Landau–Stuart ordinary
differential equation [11]. (See what follows for the narrow-strip analysis.)
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At a = π, the flat mode and the first wavy mode both lose stability at νc = 1/3,
while the other modes remain stable. The nonlinear interaction of the flat and curvy
modes is the subject of the weakly nonlinear analysis in [12], which culminates in the
derivation of a system of two complex Landau–Stuart equations. (Notice that if the
width a is infinite, a continuum of modes goes unstable, and the evolution is governed
by Ginzburg–Landau PDEs.)

In the remainder of this section, we introduce the governing equations and, for
convenience, summarize a linear stability analysis. Because we consider the case in
which a zero-wavenumber mode is the most unstable, we present the model in one
space dimension. In [21], we do a full linear stability study for the two-dimensional
problem formulated as an initial-value problem.

Section 2 contains a weakly nonlinear analysis, and section 3 shows simulations
in the marginally unstable regime. In computations, the dynamics unfold as the
parameter σ associated with the Arrhenius kinetics decreases (while the bifurcation
parameter ν remains fixed within ε2 of its neutrally stable value).

Section 4 presents quantitative comparisons of the asymptotic solutions and com-
puted solutions. Some qualitative comparisons for a similar problem—involving com-
peting flat and wavy (two-dimensional) modes—appear in [6] (together with numerics
that venture into more strongly unstable regimes than in the present paper). Here
we investigate the numerical solutions for marginally unstable values of the activation
energy, allowing a full range of kinetics-parameter values.

Specifically, we perform the computations with ν fixed near the marginally un-
stable value, namely, ν = νc − ε2, where ε is fairly small. For ε smaller than about
0.12, we see the smooth periodic solutions that the weakly nonlinear analysis pre-
dicts, provided σ has an appropriate value. In particular, Fourier transforms of the
numerical data illustrate the ranges of σ in which the analysis accurately predicts the
quantitative behavior of solutions.

The data simultaneously reveal the development of complex dynamics in various
kinetics-parameter regimes (with the inverse activation energy ν held at ε2 units below
the stability threshold), when ε exceeds about 0.06. When ε drops below this value,
the σ intervals of strongly nonlinear dynamics disappear.

In the model, we seek the temperature distribution u(x, t) in one spatial dimen-
sion and the interface position Γ(t) = {x|x = f(t)} that satisfy the appropriately
nondimensionalized free-boundary problem

∂u

∂t
=

∂2u

∂x2
, x > f(t), t > 0,(1.1)

V = G
(
u
∣∣
Γ

)
, t > 0,(1.2)

∂u

∂x

∣∣∣∣
Γ

= −V, t > 0.(1.3)

Here V is the velocity of the rightward-traveling interface, i.e.,

V =
df

dt
.

In addition, the temperature satisfies the condition

u → 0 as x → ∞;(1.4)
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that is, the ambient temperature is normalized to zero at infinity.
To model solid combustion, we take the Arrhenius function as the kinetics function

G in the nonequilibrium interface condition (1.2) [4, 17]. Then, with appropriate
nondimensionalization, the velocity of propagation relates to the interface temperature
as

V = exp

[(
1

ν

)
u− 1

σ + (1 − σ)u

]
(1.5)

at the interface Γ. Here ν is inversely proportional to the activation energy of the
exothermic chemical reaction that occurs at the interface, and 0 < σ < 1 is the
ambient temperature nondimensionalized by the adiabatic temperature of combustion
products. (See [8].)

Inverting the Arrhenius function (1.5), we reexpress the boundary condition (1.2)
in the form

u|Γ = 1 + νK(V ;σ, ν),(1.6)

where

K(V ;σ, ν) =
ln(V )

1 − (1 − σ)ν ln(V )
.(1.7)

Note the function K(V ) has been introduced to have the convenient properties K(1) =
0, K ′(1) = 1.

For ease of subsequent asymptotic and numerical analysis, we reformulate the
problem in the front-attached coordinate frame:

η = x− f(t), τ = t.

Problem (1.1)–(1.6) then takes the form

∂u

∂τ
=

∂2u

∂2η
+ V

∂u

∂η
, η > 0, τ > 0,(1.8)

u|Γ = u(0, τ) = 1 + νK(V ),(1.9)

∂u

∂η

∣∣∣∣
Γ

=
∂u

∂η

∣∣∣∣
(0,τ)

= −V,(1.10)

lim
η→∞

u = 0.(1.11)

The free-boundary problem (1.8)–(1.11) admits a traveling-wave solution

u0(η, τ) = exp(−η), f0(τ) = τ.(1.12)

The problem linearized about the traveling wave has a normal-mode solution of the
form

w = eλτg(η;λ), φ = eλτ ,(1.13)
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where w and φ represent the perturbations about u0 and f0, respectively. Substituting
them into the linearized problem produces an eigenvalue problem in λ and g(η;λ).

The discrete spectrum values are zero and

λ =
1 − 3ν ±

√
(3ν − 1)2 − 4ν3

2ν2
.(1.14)

The eigenfunction corresponding to the eigenvalue λ is

g(η;λ, ν) = (1 + νλ) exp
(
−
(
1 +

√
1 + 4λ

) η

2

)
− exp(−η).(1.15)

Linearly unstable behavior occurs for this system only when �λ is positive.
The basic solution (1.12) is neutrally stable under a small perturbation of the

form (1.13) if �λ = 0. Setting �λ = 0 in (1.14) gives the critical value νc of ν,
namely,

νc =
1

3
.(1.16)

The corresponding neutrally stable eigenvalues from (1.14) are ±iω, where

ω =
√

3.(1.17)

If ν < 1/3, then �λ > 0, and the basic solution is linearly unstable. (See, for example,
[12, 21].)

2. Weakly nonlinear analysis. Let ε2 be a small deviation from the neutrally
stable value of ν, namely,

ε2 = νc − ν =
1

3
− ν.(2.1)

We consider the time scales

t0 = τ, t1 = ετ, t2 = ε2τ

as independent variables, so that ∂/∂τ = ∂/∂t0 + ε ∂/∂t1 + ε2 ∂/∂t2. We then seek a
solution of the form

u(η, t0, t1, t2) = e−η + εA(t1, t2)e
i
√

3t0g

(
η; i

√
3,

1

3

)
(2.2)

+ ε2w2(η, t0, t1, t2) + · · · + CC,

f(t0, t1, t2) = t0 + ε

{
A(t1, t2)e

i
√

3t0 +
1

2
B(t1, t2)

}
+ ε2φ2(t0, t1, t2) + · · · + CC,

where A(t1, t2) is complex, and “CC” stands for complex-conjugate terms. The real-
valued function B(t1, t2) modulates the constant-velocity solution to the linearized
problem.

Notice that in O(ε), the weakly nonlinear solution (2.2) has only one Fourier term
in t0. We will show below in (2.19)–(2.20) that the O(ε2) term contains the second
harmonic. We refer to the expansion (2.2) as a “single-mode approximation” because
the leading-order perturbation contains only one mode in fast time.
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Making the substitutions (2.2) and equating like powers of ε results in subproblems
for the terms in the perturbation expansions above, subject to solvability conditions
on the amplitudes A and B. The O(1) problem is satisfied identically because in (2.2)
we took the temperature-interface pair (u, f) perturbed about (e−η, t0), a solution to
the nonlinear problem (1.8)–(1.11). The O(ε) problem is just the linearized problem
with ν = νc = 1/3, which is satisfied identically by the O(ε) terms in the expansions
(2.2).

The problems of order εj , j = 2, 3, are

∂wj

∂t0
− ∂2wj

∂η2
− ∂wj

∂η
+ e−η ∂φj

∂t0
= Qj(η, t),(2.3)

wj |η=0 −
1

3

∂φj

∂t0
= αj(t),(2.4)

∂wj

∂η

∣∣∣∣
η=0

+
∂φj

∂t0
= βj(t),(2.5)

lim
η→∞

wj = 0,(2.6)

where t = (t0, t1, t2). For brevity, we have named the right-hand sides above as Qj ,
αj , and βj . The PDEs (2.3) can be represented as

L1wj + L2φj = P(w1, φ1, . . . , wj−1, φj−1).(2.7)

L1 and L2 are linear operators on bounded functions in L2(Ω), where Ω = {(η, τ)|0 ≤
η < ∞, 0 ≤ τ < ∞}.

According to Fredholm’s alternative, equation (2.7) has a nonsecular (bounded-
in-time) solution if the right-hand side is orthogonal to the null space of the adjoint
operator L∗. That is,

(L1wj + L2φj , v) = 0(2.8)

for v ∈ kerL∗ and the inner product defined such that

(f1, f2) = lim
T→∞

1

T

∫ T

0

∫ ∞

0

f1(η, τ)f2(η, τ) dη dτ.(2.9)

The quantity v in (2.8) satisfies(
− ∂

∂t0
− ∂2

∂η2
+

∂

∂η

)
v = 0,(2.10)

2i

√
3

3
v|η=0 −

(
1 − i

1

3

)
∂v

∂η

∣∣∣∣
η=0

= 0.(2.11)

Nonzero solutions are

u1(η, t0; i
√

3) = exp(i
√

3t0)h(η; i
√

3) and u0(η, t0; 0) = 1,(2.12)

where

h(η; i
√

3) = exp

((
1 −

√
1 − 4i

√
3

)
η

2

)
.(2.13)
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Substituting v = u1 into the solvability condition (2.8) when j = 2 produces the
differential equation

∂A

∂t1
= 0.(2.14)

Substituting v = u0 into the solvability condition (2.8) when j = 2 produces the
differential equation

∂B

∂t1
= AĀr0, r0 = −3(2 + K ′′(1)).(2.15)

Substituting (2.14) and (2.15) into the O(ε2) problem in (2.3)–(2.6) yields the
problem

∂w2

∂t0
− ∂2w2

∂η2
− ∂w2

∂η
+ e−η ∂φ2

∂t0
= A2e2i

√
3t0R2(η) + AĀR0(η) + CC,(2.16)

w2|η=0 −
1

3

∂φ2

∂t0
= A2e2i

√
3t0F2 + AĀF0 + CC,(2.17)

∂w2

∂η

∣∣∣∣
η=0

+
∂φ2

∂t0
= A2e2i

√
3t0G2 + AĀG0 + CC.(2.18)

The solution (w2, φ2) consists of a homogeneous and a particular solution. Because
only the inhomogeneous terms will contribute to the solvability condition at the next
order, we present the nonsecular solution as

w2 = A2e2i
√

3t0g2(η) + AĀg0(η) + CC,(2.19)

φ2 = A2e2i
√

3t0C2 + AĀ + CC,(2.20)

where gj(η), j = 0, 2, satisfy the initial-value problems

g′′j + g′j − ji
√

3gj = ji
√

3C2e
−η −Rj(η),(2.21)

gj(0) = ji

√
3

3
C2 + Fj ,(2.22)

g′j(0) = −ji
√

3C2 + Gj ,(2.23)

g2(η) → 0 as η → ∞,(2.24)

where

Rj(η) = −(−1)j/2g′(η)i
√

3 − 2 − j

4
r0e

−η,(2.25)

Fj =
1

2
(−1)j/2K ′′(1) +

2 − j

12
r0,(2.26)

Gj = −2 − j

4
r0.(2.27)
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Recall that r0 is given in (2.15). Also, g(η) = g(η; i
√

3) is defined via (1.15).
Substituting v = u1 into the solvability condition (2.8) when j = 3 produces the

Landau–Stuart equation

dA

dt2
= χA + βA2Ā,(2.28)

where

χ ≡ −∂λ0

∂ν

∣∣∣∣
ν=νc

=
3

2
(9 +

√
3i).(2.29)

The coefficient β is defined as

β =

∫∞
0

R(η)h̄(η) dη + FU∫∞
0

(g(η) + e−η)h̄(η) dη − 1
3U − 1

,(2.30)

where

R(η) = r0g
′(η) + i

√
3 [2C2ḡ

′(η) − g′2(η) + 2Re (g′0(η))];(2.31)

F =
1

3
(6C2 + ir0

√
3)K ′′(1) + i

√
3

2
K ′′′(1);(2.32)

U = −1

2
(3 + i

√
3).(2.33)

Once we solve the Landau–Stuart equation (2.28) subject to an initial condition,
the full asymptotic expansion (2.2) is known with w2 and φ2 given in (2.19)–(2.20)
and B given in (2.15). In what follows, we compare the asymptotic solution with a
numerical solution over the range 0 < σ < 1 with ν fixed at a small deviation ε2 from
the neutrally stable value 1/3, as given in (2.1).

The amplitude equation (2.28) determines the dynamics of the unstable mode

A(t2)e
i
√

3t0 , subject to self-interaction. The dynamics of the mode depend on the
relationships between the coefficients χ and β and are affected by the kinetics function
K(V ), introduced in (1.7). Recall that the function K(V ) is normalized such that
K(1) = 0 and K ′(1) = 1. The form of the kinetics function comes into play via K ′′(1)
and K ′′′(1), which appear explicitly in r0, Fj , and F of (2.15), (2.26), and (2.32),

respectively. Note from (2.17) that Fj , j = 2, 0, are the coefficients of A2e2i
√

3t0 and
AĀ, respectively, on the right-hand side of an O(ε2) boundary condition. Also, F

is the coefficient of A2Āei
√

3t0 on the right-hand side α3(t) of the O(ε3) boundary
condition (2.4). In particular, α3(t) has the form

α3(t) =

{(
∂A

∂t2
− χA

)
1

3
ei

√
3t0(2.34)

+A3e3i
√

3t0F3 + A2Āei
√

3t0F + CC

}
+

1

3

∂B

∂t2
.

(F3 does not pertain to this discussion.)
To examine the behavior of the front in the different parameter regimes, let us

consider the real equation in |A| corresponding to the complex equation (2.28), namely,

d|A|
dt2

= |A|(Re(χ) + |A|2Re(β)).(2.35)
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Perturbation amplitude |A| = 0 is a stationary solution for (2.35). Because
Re(χ) = 27/2 is greater than zero, trajectories with an initial point near the origin
in the complex A plane tend away from the origin. That is, in the absence of other
equilibria, the amplitude blows up in (slow) time for ν slightly below the critical value
1/3.

Equation (2.35) has a second equilibrium |A| =
√
−Re(χ)/Re(β) (a circle in the

complex-A plane) if Re(β) is negative. A simple stability analysis of (2.35) shows that
d|A|/dt2 < 0 outside of the circle, and d|A|/dt2 > 0 inside it. As a result, the limit
cycle in the complex-A plane is asymptotically stable in this setting. A supercritical
Hopf bifurcation occurs at ν = 1/3. The nonlinear solution develops oscillations of
magnitude O(ε) on the time scale O(ε−2). (See the expansion in (2.2).)

The quantity Re(β) is a quadratic function in σ with no roots at physical values of

σ. For all 0 < σ < 1, Re(β) is negative. The amplitude of the flat mode A(t2)e
i
√

3t0

approaches the limit cycle |A| =
√
−Re(χ)/Re(β). The nonlinear problem (1.8)–

(1.11) develops oscillations, as detailed below.

3. Numerical method. We integrate numerically the exact problem as given
by (1.8)–(1.11). In section 4, we compare the numerical solution with the asymptotics
derived above. As was pointed out in [7], numerical solutions of (1.8)–(1.11) are very
sensitive to the boundary condition (1.10). In order to obtain an alternative condition,
we integrate (1.8) with respect to η from 0 to ∞. Subsequently applying conditions
(1.9)–(1.11) results in the equation

d

dt

∫ ∞

0

udη = −νftK(V ).(3.1)

We use (3.1) to replace (1.10) and adopt the Crank–Nicolson method for the numerical
solution. The computation domain for η is [0, 10] with δt = δη = 0.025. This produces
a nonlinear system of m (= 401) equations. In particular, in reference to (2.2), we
introduce perturbation variables u∗ and f∗ defined by

u = e−η + εu∗; f = t + εf∗.(3.2)

Our discretization of condition (3.1) is

(∫ ∞

0

u∗dη
)∣∣∣tk+1

tk
= − ν

2ε
[(1 + εf∗

t (tk+1))K(1 + εf∗
t (tk+1))(3.3)

+ (1 + εf∗
t (tk))K(1 + εf∗

t (tk))](tk+1 − tk),

where the integral on the left-hand side of (3.3) can be approximated by a composite
trapezoidal rule.

We solve the nonlinear system of equations using Newton’s method. The Jacobian
matrix has the following sparse structure:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

# # 0 0 0 0 . . . 0
# # # # # # . . . #
# # # # 0 0 . . . 0
# 0 # # # 0 . . . 0
...

. . .
. . .

. . .
...

# 0 . . . 0 # # # 0
# 0 . . . 0 0 # # #
# 0 . . . 0 0 0 # #

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(3.4)
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where # denotes a nonzero element. The matrix can be efficiently inverted by using
Gaussian elimination with backward substitution.

The next section contains comparisons between numerical and asymptotic solu-
tions. For the asymptotic solution, we integrate the ordinary differential equation
(2.28) using a fourth-order Runge–Kutta method. As was pointed out in section 2,
the Landau–Stuart equation (2.28) has circular limit cycles in the complex-A plane
for all values of the kinetic parameter σ in the interval 0 < σ < 1.

4. Comparison between asymptotics and numerics. To fix the idea, we
first consider ε = 0.1. The value of ν remains at the marginally unstable value νc−ε2,
as introduced in (2.1), so ν ≈ 0.323̄. We show in this section that this choice of ε
corresponds to a mix of dynamics as σ varies. Subsequently, we both decrease and
increase ε and discuss the impact on the front behavior. For the remainder of this
paper, we take the initial condition A(0) = 0.1.

To start, take σ = 0.48 in the kinetic function (1.7). Figure 4.1 shows the nu-
merical (solid line) and asymptotic (dashed line) values of front speed perturbation
as a function of time t in the interval 0 ≤ t ≤ 60. Specifically, for the numerical and
asymptotic solutions we have graphed the quantities

vn = f∗
t and va = A(t2)e

i
√

3t0 +
1

2
B(t1, t2) + εφ2(t0, t1, t2),(4.1)

respectively, where f∗ is defined in (3.2), and va contains the first three terms in the
perturbation in (2.2).

Figure 4.1 shows that from t = 0 to about t = 30, the small front speed pertur-
bation is linearly unstable, and its amplitude grows exponentially in time. As this
amplitude becomes large, nonlinearity takes effect. At around t = 30, the front speed

0 10 20 30 40 50 60
−8

−6

−4

−2

0

2

4

6

8

10

Fig. 4.1. Velocity perturbation versus time: Comparison between numerical (solid line) and
asymptotic (dashed line); σ = 0.48, ε = 0.1, A(0) = 0.1 (ν ≈ νc − ε2 = 1/3 − (0.1)2 = 0.323̄).
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Fig. 4.2. Fourier amplitude of the numerical steady-state velocity perturbation; σ = 0.48,
ε = 0.1, A(0) = 0.1, 50 < t < 100 (ν ≈ νc − ε2 = 1/3 − (0.1)2 = 0.323̄).

perturbation has reached steady oscillation. The asymptotic solution accurately cap-
tures the period in both transient behavior for t = 0 to 30 and the long-time behavior
after t = 30. The amplitude and phase differ somewhat.

The weakly nonlinear approach describes well, by definition, marginally unstable
large-time behaviors when a single modulated temporal mode of frequency

√
3 cap-

tures the dynamics. (See (2.2).) We have illustrated such a case in Figure 4.1. We
then numerically calculated the velocity perturbation data {f∗

t (ti)} on the time in-
terval 50 < t < 100, using the parameter values as in Figure 4.1. The discrete Fourier
transform of the data reveals the dominance of one mode. (See Figure 4.2.)

However, the subsequent modes do contribute to the solution as well. The second
spike in Figure 4.2 is about 3/5 the height of the first, and the third is fully 1/2 the
height of the second. Contributions of higher-order modes may explain some quanti-
tative discrepancies between the numerical and asymptotic solutions in Figure 4.1.

Figure 4.3 summarizes the Fourier transformed velocity data for all physical val-
ues of σ (0 < σ < 1). For each σ value and each frequency, the color indicates
the corresponding amplitude, with the red end of the spectrum standing for larger
numbers than the violet end, as the legend to the right of the figure illustrates. For
roughly 0.3 < σ < 0.6, the figure shows the dominance of the lowest-order mode,
suggesting the appropriateness of the weakly nonlinear analysis in this range.

Notice, however, that at least four additional modes appear significant as well.
Nevertheless, for σ in the interval approximately (0.3, 0.6), the weakly nonlinear so-
lution captures the gross features of the oscillation. (See, for example, Figure 4.1.)

With our choice of ε = 0.1, Figure 4.3 shows that for σ greater than approximately
0.6, a single mode cannot be expected to capture the full dynamics of the solution.
For example, for σ = 0.85, the asymptotic solution certainly will not exhibit a velocity
perturbation with the very sharp peaks seen in the numerical solution in Figure 4.4.
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Fig. 4.3. Amplitudes corresponding to each frequency of the Fourier transformed velocity per-
turbation data for the Arrhenius kinetics parameter σ in the interval (0, 1); ε = 0.1, A(0) = 0.1,
35 < t < 85 (ν ≈ νc − ε2 = 1/3 − (0.1)2 = 0.323̄).
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Fig. 4.4. Velocity perturbation versus time: Numerical solution for σ = 0.85, ε = 0.1, A(0) =
0.1 (ν ≈ νc − ε2 = 1/3 − (0.1)2 = 0.323̄).

Further, Figure 4.3 shows that the Fourier spectrum has a complicated character
for σ sufficiently small, starting with the emergence of a period-doubling solution
for σ ≈ 0.25. Naturally, the asymptotic solution captures neither the period-doubling
solution nor the period-quadrupling computed for σ = 0.22 and σ = 0.21, respectively.
(Numerical solutions in Figures 4.5 and 4.6 illustrate the dynamics.) Figure 4.3 reflects
the breakdown of the numerical solution for σ less than approximately 0.15.
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Fig. 4.5. Velocity perturbation versus time: Period-doubling numerical solution for σ = 0.22,
ε = 0.1, A(0) = 0.1 (ν ≈ νc − ε2 = 1/3 − (0.1)2 = 0.323̄).
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Fig. 4.6. Velocity perturbation versus time: Period-quadrupling numerical solution for σ =
0.21, ε = 0.1, A(0) = 0.1 (ν ≈ νc − ε2 = 1/3 − (0.1)2 = 0.323̄).

The weakly nonlinear analysis of section 2 predicts periodic single-mode-dominant
solutions for all physical values of σ (0 < σ < 1) when ν = 1/3 − ε2 is sufficiently
close to the neutrally stable value νc = 1/3. From numerical simulation with ε = 0.1,
the interval in which a single mode dominates has been identified via Figure 4.3
as a subinterval of (0, 1), namely, (0.3, 0.6). The corresponding asymptotic solution
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Fig. 4.7. Amplitudes corresponding to each frequency of the Fourier transformed velocity per-
turbation data for the Arrhenius kinetics parameter σ in the interval (0, 1); ε = 0.06, A(0) = 0.1,
35 < t < 85 (ν ≈ νc − ε2 = 1/3 − (0.06)2).

captures the numerical solution accurately even for ε as large as 0.1 when the dynamics
associated with varying the parameter σ are not too complex. In particular, the
interval 0.3 < σ < 0.6 corresponds to good agreement. In what follows, we discuss
the effects of decreasing and increasing ε.

We have seen that the approximate interval of σ ≥ 0.6 in Figure 4.3 corresponds
to sharply spiking solutions with many Fourier modes contributing. This far right
interval moves farther and farther to the right as ε decreases. When ε drops to 0.06,
the interval of spiking solutions disappears.

As we decrease ε, graphs analogous to Figure 4.3 also show the period-doubling
region pushed farther and farther to the left along the σ axis. Similarly, the far left
code-failure region moves farther to the left. When ε drops to 0.07, the period-doubling
interval essentially disappears, and solutions can be computed even for extremely
small σ values.

Figure 4.7 shows that for ε = 0.06, one mode dominates strongly throughout the
entire interval 0 < σ < 1. The asymptotic and numerical solutions are consistent for
all physical values of σ when ν = 1/3 − ε2 if ε lies in the relatively small interval
0 < ε < 0.06.

Figure 4.7 also shows that only three higher-order modes appear to make slight
additional contributions, fewer than for any value of σ illustrated in Figure 4.3 for
ε = 0.1. Therefore, as expected, the weakly nonlinear and numerical solutions agree
more closely with ε reduced from 0.1 to 0.06. Figure 4.8 (ε = 0.06) shows good
agreement in period—as does Figure 4.1 when ε = 0.1. Also, the phase, amplitude,
and centerline agreement has improved considerably in Figure 4.8 for the decreased ε.
In Figure 4.8, the asymptotic solution oscillates between about −6 and 6, while the
numerical extends from −5 to 7, and their difference at the quasi-steady-state peaks
is about 1. In Figure 4.1 for ε = 0.1, the asymptotic solution also lies between −6
and 6, but the numerical solution varies between −4.5 to 7.9. The difference at the
peaks is about 2.

We have discussed the impact of reducing ε from the value 0.1 used in Figures 4.1–
4.6, which all pertain to the dynamics when ν = 1/3−(0.1)2. If ε increases beyond 0.1,
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Fig. 4.8. Velocity perturbation versus time: Comparison between numerical (solid line) and
asymptotic (dashed line), σ = 0.48, ε = 0.06, A(0) = 0.1 (ν ≈ νc − ε2 = 1/3 − (0.06)2 = 0.32973̄).

then the far right σ interval in Figure 4.3, corresponding to sharply spiking solutions,
has a left-hand endpoint that moves farther and farther to the left: The σ interval of
solutions with sharp peaks expands.

Also, as we increase ε, graphs analogous to Figure 4.3 show the period-doubling
region pushed farther and farther to the right along the σ axis, when compared with
Figure 4.3. In addition, the far left code-failure region has a right-hand endpoint that
moves farther and farther to the right: The σ interval on which the code breaks down
expands.

When ε grows to 0.12, the σ zone in which one mode dominates strongly becomes
extremely narrow. The asymptotic and numerical solutions agree well for σ in the
approximate interval (0.41, 0.42).

5. Conclusions and discussion. We have quantitatively compared a weakly
nonlinear analysis and direct numerical integration for a solid combustion model. By
definition, the weakly nonlinear approach is well suited to the study of marginally
unstable large-time behaviors when the modulated most-unstable mode captures the
dynamics.

For both the asymptotic and numerical methods, we examined nonuniform solu-
tions corresponding to ν fixed within ε2 of the stability boundary. When ε = 0.1, for
values of σ in the approximate interval (0.3, 0.6), the weakly nonlinear analysis pre-
dicted accurately the transient and steady-state behaviors and particularly the period
of oscillation. Beyond these special values of σ, the steady-state front propagation
exhibited complicated nonlinear behaviors. We took the Fourier transforms of com-
putational solutions to illustrate that higher-order modes play a significant role on σ
intervals outside of (0.3, 0.6) when ε = 0.1.

For larger values of ε, the σ interval of applicability of the weakly nonlinear
analysis shrinks. By contrast, when ε drops to approximately 0.06, the asymptotic
and numerical solutions agree well for all physical values of σ.

Specifically, as ε increases from 0.06 (Figure 4.7) to ε = 0.1 (Figure 4.3) and
beyond, a period-doubling sequence develops in σ. As ε gets larger (thereby pushing
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ν somewhat deeper into the instability region), the period-doubling bifurcation occurs
at larger and larger values of σ, and the subsequent bifurcations occur as σ decreases.
We note that this result, when viewed for a fixed value of σ, shows a period-doubling
sequence in ν (as ε increases), which concurs with the dynamical scenarios described
in the literature for experiments, as well as for simulations on reaction-diffusion and
free-interface models.

In future work, we will suggest a hybrid expansion-perturbation technique for cap-
turing more complex dynamics than those that have single-mode dominance. A more
flexible general expansion as in [22] will assume that the temperature and interface
position can be represented as a Fourier-like series that includes multiple temporal
modes varying in fast time.
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NÉEL WALLS IN LOW ANISOTROPY SYMMETRIC DOUBLE
LAYERS∗
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Abstract. A new model for the study of one-dimensional walls in magnetic multilayers is
presented. We obtain the optimal scaling of this energy functional for low anisotropy double layers
with magnetic layers of equal thickness. We prove that the optimal scaling may be attained by
opposing Néel walls. We obtain the core length of the Néel wall and a detailed description of its
structure. We illustrate our findings numerically.
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1. Introduction. A magnetic multilayer consists of two or more magnetic films,
separated by a layer of nonmagnetic material (see Figure 1). Each layer may be of
a different thickness. Multilayers seem to have good permanent magnet properties,
in particular a high coercive field and approximately rectangular hysteresis loop [17].
For that reason multilayers are an integral part of magnetic memories (MRAMs) and
have been one of the most important applications of ferromagnetic thin films in the
past few years.

The magnetization distribution in a ferromagnetic material is described by the
micromagnetics model, introduced by Landau and Lifshitz [12]. In nondimensional
variables, the Landau–Lifshitz energy functional for a sample occupying a volume V
is

F [m] =
q

2

∫
V

Φ(m) dx +
1

2

∫
V

|∇m|2 dx +
1

2

∫
R3

|∇η|2 dx.(1.1)
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Fig. 1. One-dimensional wall setting in a multilayer.
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In (1.1), |m| = 1 in V , and m = 0 outside V . The three terms in (1.1) are anisotropy,
exchange, and stray field energy, respectively. The parameter q is the quality factor,
defined as q = Ku/(μ0M

2
s ), where Ku is the crystalline anisotropy constant, Ms

is the saturation magnetization, and μ0 is the permeability of vacuum (μ0 = 4π ×
10−7N/A2). In (1.1), lengths are measured in units of the exchange length, l =√
Cex/(μ0M2

s ), where Cex is the exchange constant. The energy is measured in units

of e =
√
μ0M2

sCex.
The stray field is hs = −∇η, where η is obtained by solving the equation

div (−∇η + m) = 0 in R3(1.2)

in the sense of distributions. The solution has the explicit form

η = ∇N ∗ m,(1.3)

where N(x) = − 1
4π

1
|x| is the Newtonian potential.

For physical parameters typical of Permalloy (Cex = 1.3 × 10−11J/m, Ku =
5 × 102J/m3, Ms = 8 × 105A/m), the quality factor is q ≈ 6.21 × 10−3. Thus it is
physically relevant to consider the low anisotropy limit q → 0, which is the situation
considered in this article.

Functional (1.1) has been the focus of recent attention in the mathematical com-
munity, and the energy landscape for a single magnetic layer is now fairly well under-
stood [9, 4, 5, 6, 8, 7, 18].

Due to the nonlocal nature of the magnetostatic interactions, the behavior of the
magnetization distribution in double layers is very different from the single layer case.
The magnetization patterns correspond to local minimizers of the Landau–Lifshitz
energy. In a double layer, a pattern that would otherwise be energetically unfavorable
for a single layer can be permitted by producing a pattern in the other layer which
will cause the necessary field cancellations. With this compensating mechanism, new
phenomena occur that are intrinsic to double layers.

The domain structure in magnetic films can be rather complicated [10, 6, 18].
In order to understand the structure in double films, we start by analyzing one-
dimensional profiles, which will be the building blocks of more complicated structures.
We are interested in both the structure and the energy of the minimizers. We are
mainly interested in the scaling of the energy in terms of q as q → 0, since all other
parameters are kept fixed. To determine the energy of the minimizers, we consider an
appropriate function in the admissible class, which provides us with an upper bound
for the energy in terms of q. Subsequently we find a lower bound for the energy with
the same scaling in q. The upper bound and the matching lower bound ensure that
the energy is optimal, at least in terms of scaling.

In this article, we focus on the study of Néel walls in multilayers formed by two
layers of equal thickness. Throughout this article we will refer to these multilayers
as symmetric double layers. A description of the Néel wall in a single ferromagnetic
layer was presented in [7], where the following energy functional, due originally to
Aharoni [1], was analyzed:

FA
q,δ[m] =

q

2

∫
R

(
m2

1 + m2
2

)
+

1

2

∫
R

|m′|2 +
1

2

∫
R

(
m2

1 −m1 (Γδ ∗m1)
)

+
1

2

∫
R

m2 (Γδ ∗m2).(1.4)
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The set of admissible functions is

A =

{
m = (m1,m2,m3)|m1,m2 ∈ H1(R), m′

3 ∈ L2(R), |m| = 1 a.e.,(1.5)

m → ±e3 as x → ±∞
}
.

In (1.4), δ represents the (rescaled) thickness of the sample, and

Γδ(x) =
1

4πδ
log

(
1 +

4δ2

x2

)
.(1.6)

Functional (1.4) is derived directly from (1.1) by considering magnetization profiles
that depend only on the x-variable. Functional (1.4) provides an accurate description
of the minimizers for thin films (δ � 1), since the dependence on the thickness variable
becomes negligible as δ → 0 [9, 6, 8, 7, 18, 11, 3]. For thicker films, lower energy can
be achieved with higher-dimensional structures [10, 18, 16].

For the study of Néel walls, we consider magnetization profiles such that m2 = 0.
The optimal energy scaling for a Néel wall in a single layer was obtained in [7]. In
particular, it was proved that for a given δ > 0 there exist positive constants c0 and
C0 such that

c0

log 1
q

≤ inf
m∈A,m2=0

FA
q,δ[m] ≤ C0

log 1
q

(1.7)

as q → 0. Moreover, it was shown that the Néel wall has a long logarithmic tail,
which extends the stray field interactions to great distances.

In double layers the structure of Néel walls can be very different [14, 19, 20]. In
this article we prove that in low anisotropy symmetric double layers, the logarithmic
tail of the Néel wall disappears. The stray field becomes an exchange-type energy,
and the wall becomes more localized and similar to the Landau–Lifshitz wall [12].

Considering a double layer as depicted in Figure 1, we have derived the following
one-dimensional model for the study of magnetic walls in double layers:

Gq,α,δ1,δ2 [m1,m2] = Fq,δ1 [m1] +
δ2
δ1

Fq,δ2 [m2](1.8)

+
δ2
2

∫
R

u1 (u2 ∗ Θα,δ1,δ2) − v1 (v2 ∗ Θα,δ1,δ2) dx

+
δ2
2

∫
R

v1 (u2 ∗ Ψα,δ1,δ2) − u1 (v2 ∗ Ψα,δ1,δ2) dx,

where m1 = (u1, v1, w1) and m2 = (u2, v2, w2) represent the magnetization inside
each layer, Fq,δ1 and Fq,δ2 are as in (1.4), and

Θα,δ1,δ2(x) =
1

2δ1δ2π

(
log

(
x2 + (2α + δ1)

2

x2 + (2α + δ1 + δ2)2

)
− log

(
x2 + 4α2

x2 + (2α + δ2)2

))
,

Ψα,δ1,δ2(x) =
1

δ1δ2π

(
arctan

(
2α + δ1
x− s

)
− arctan

(
2α

x− s

)

− arctan

(
2α + δ1 + δ2

x− s

)
+ arctan

(
2α + δ2
x− s

))
.(1.9)
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We have not been able to find this model in the literature, and therefore a complete
derivation of this model is given in Appendix A. For the study of Néel walls, we
assume v1 = v2 = 0. For a symmetric double layer, δ1 = δ2 = δ.

This article is organized as follows. In section 2, we obtain the optimal energy
scaling for Néel walls in symmetric double layers. In particular, we show that for fixed
δ > 0 and α > 0 there exists a constant C0 > 0 such that

4
√
q ≤ inf

m∈A
Gq,α,δ,δ[m] ≤ C0

√
q.(1.10)

The upper bound is obtained considering Néel walls in the double layer.
A more detailed analysis is carried out in section 3, where we prove that for a

family of minimizers of the Néel wall functional (2.7), {mq}{q>0},

lim
q→0

1
√
q
Gq,α,δ,δ[mq] = min

m∈A,m2=0

∫
R

m2
1 dx +

δ (δ + 3α)

3

∫
R

(m′
1)

2 dx +

∫
R

|m′|2 dx.

(1.11)

We also prove that, given a family of minimizers {mq}{q>0}, we can extract a sequence
(not relabeled) such that the rescaled family {mq(x/

√
q)}{q>0} converges strongly in

H1(R). We interpret this in the Γ-limit sense of an appropriately scaled family of
functionals. The limiting profile is studied in section 4 using a formal asymptotic
expansion.

In section 5 we illustrate all of our findings numerically. To this end, we have
implemented a modified Newton method for energy minimization. Finally, a detailed
derivation of the model used in this article is presented in Appendix A.

2. Optimal scaling: Opposing Néel walls. Since the stray field energy is
nonnegative, the Landau–Lifshitz wall profile always provides us with a lower bound
for the energy:

Gq,α,δ[m1,m2] ≥ min
m1,m2∈A

F̃q[m1,m2],(2.1)

where

F̃q[m1,m2] =
1

2

2∑
j=1

(
q

∫
R

(u2
j + v2

j ) dx +

∫
R

|m′
j |2 dx

)
.(2.2)

Since m1 and m2 are decoupled in (2.2), the minimum will be achieved for m1 =
m2 = (u, v, w). Moreover, we can assume that either u = 0 or v = 0. Otherwise,
following Lemma 4 in [7], consider m̃ = (

√
u2 + v2, 0, w). Then

F̃q[m̃, m̃] = q

∫
R

(u2 + v2) +

∫
R

(
(uu′ + vv′)2

u2 + v2
+ (w′)2

)

= q

∫
R

(u2 + v2) +

∫
R

|m′|2 −
∫

R

(uv′ − vu′)2

u2 + v2
≤ F̃q[m,m].(2.3)

Therefore, a lower bound for (1.8) in a symmetric double layer is obtained by mini-
mizing

min
m∈A,m2=0

F̃q[m,m].(2.4)
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This is the minimization problem studied by Landau and Lifshitz in [12]. The mini-
mizer is

m = (sech (
√
qx), 0, tanh(

√
qx)),(2.5)

and the minimum energy is

q

∫
R

u2 dx +

∫
R

|m′|2 dx = 4
√
q.(2.6)

In a single layer, this is not optimal for a Néel wall, as proved in [7]. However, we can
prove that, due to stray field cancellations, this energy scaling is indeed optimal in a
symmetric double layer.

To obtain a matching upper bound for the energy, we consider Néel walls in
symmetric double layers and study the functional

Gq,α,δ[m1,m2] =
q

2

∫
R

u2
1 +

1

2

∫
R

|m′
1|2 +

1

2

∫
R

(
u2

1 − u1 (Γδ ∗ u1)
)

+
q

2

∫
R

u2
2(2.7)

+
1

2

∫
R

|m′
2|2 +

1

2

∫
R

(
u2

2 − u2 (Γδ ∗ u2)
)

+
δ

2

∫
R

u1 (u2 ∗ Θα,δ).

In (2.13), we have renamed the energy functional Gq,α,δ ≡ Gq,α,δ,δ, and the convo-
lution kernel Θα,δ ≡ Θα,δ,δ, in view of definitions (1.8) and (1.9), respectively. In
Fourier space,

(2.8)

Gq,α,δ[m1,m2] =
q

2

∫
R

|û1|2 dξ +
1

2

∫
R

4π2ξ2|m̂1|2 dξ +
1

2

∫
R

|û1|2
(
1 − Γ̂δ(ξ)

)
dξ

+
q

2

∫
R

|û2|2 dξ+
1

2

∫
R

4π2ξ2|m̂2|2 dξ+
1

2

∫
R

|û2|2
(
1 − Γ̂δ(ξ)

)
dξ+

δ

2

∫

R

û1û2Θ̂a,δ(ξ) dξ.

In the following lemma, we prove that in a symmetric double layer the minimum of
(2.7) is achieved by opposing Néel walls; i.e., u1 = −u2.

Lemma 2.1. Consider m1,m2 ∈ A, where m1 = (u1, 0, w1) and m2 = (u2, 0, w2).
Define m̃1 = (−u1, 0, w1) and m̃2 = (−u2, 0, w2). Then, either

Gq,α,δ[m1, m̃1] ≤ Gq,α,δ[m1,m2](2.9)

or

Gq,α,δ[m2, m̃2] ≤ Gq,α,δ[m1,m2].(2.10)

Proof. We can rewrite the Fourier representation (2.8) as

Gq,α,δ[m1,m2] =
q

2

∫
R

|û1|2 dξ +
1

2

∫
R

4π2ξ2|m̂1|2 dξ

+
1

2

∫
R

|û1|2
(

1 − Γ̂δ(ξ) −
δ

2
Θ̂α,δ(ξ)

)
dξ +

q

2

∫
R

|û2|2 dξ +
1

2

∫
R

4π2ξ2|m̂2|2 dξ

+
1

2

∫
R

|û2|2
(

1 − Γ̂δ(ξ) −
δ

2
Θ̂α,δ(ξ)

)
dξ +

δ

4

∫
R

|û1 + û2|2Θ̂a,δ(ξ) dξ.(2.11)
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Note that ∫
R

|û2|2
(

1 − Γ̂δ(ξ) −
δ

2
Θ̂α,δ(ξ)

)
dξ(2.12)

is the stray field energy that corresponds to a symmetric double layer where u1 =
−u2, and therefore it is nonnegative. Thus, given (m1,m2), since all the terms in
(2.11) are nonnegative, we can always lower the total energy by selecting (m1, m̃1) or
(m2, m̃2).

In view of this lemma, we need to consider only opposing Néel walls. Thus, we
need to study functional

G̃q,α,δ[m] = q

∫
R

u2 dx +

∫
R

|m′|2 dx +

∫
R

u2 dx−
∫

R

u (Γδ ∗ u) dx(2.13)

−δ

2

∫
R

u (u ∗ Θα,δ) dx,

which can be written in Fourier space as

(2.14)

G̃q,α,δ[m] = q

∫
R

|û|2 dξ +

∫
R

4π2ξ2|m̂|2 dξ +

∫
R

|û|2
(

1 − Γ̂δ(ξ) −
δ

2
Θ̂α,δ(ξ)

)
dξ.

The lower semicontinuity and existence of minimizers of functional (2.13) follow from
Lemmas 1, 2, and 3 in [7]. The main difficulty in establishing the existence of mini-
mizers lies in the fact that functional (2.13) is translation invariant. This problem is
resolved in [7] by considering a translation of m such that m(0) = (1, 0, 0). The result
then follows from the Sobolev embedding and the Rellich compactness theorem [21].

As a consequence of Lemma 2.1,

inf
m1,m2∈A

Gq,α,δ[m1,m2] = inf
m∈A

G̃q,α,δ[m].(2.15)

Thus, the existence of minimizers for functional (2.7) is established. To simplify
notation, in what follows we will drop the tilde from functional (2.13).

The matching upper bound that we need can be obtained by considering the test
function m = (sech (

√
qx), 0, tanh(

√
qx)), which is the Landau–Lifshitz wall. The

Fourier transform of u(x) = sech (
√
qx) can be obtained by residues [2]:

û(ξ) =
π
√
q
sech

(
π2ξ
√
q

)
.(2.16)

The stray field energy of this profile is

Es =

∫
R

û2

(
1 − 1 − e−2πδ|ξ|

2πδ|ξ| − 1

2
e−4πa|ξ| (1 − e−2πδ|ξ|)2

2πδ|ξ|

)
dξ(2.17)

=
π2

q

∫
R

sech2

(
π2ξ
√
q

)(
1 − 1 − e−2πδ|ξ|

2πδ|ξ| − 1

2
e−4πα|ξ| (1 − e−2πδ|ξ|)2

2πδ|ξ|

)
dξ

=
1
√
q

∫
R

sech2(ξ)

(
1−1 − e−2δ|ξ|√q/π

2δ|ξ|√q/π
− 1

2
e−4α|ξ|√q/π (1 − e−2δ|ξ|√q/π)2

2δ|ξ|√q/π

)
dξ

=
4δ
√
q

π2

(
δ

3
+ α

)∫
R

|ξ|2sech2(ξ) dξ + O(q) =
2δ
√
q

3

(
δ

3
+ α

)
+ O(q).
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Therefore ∃q0 > 0 such that

Es ≤
4δ
√
q

3

(
δ

3
+ α

)
∀q ≤ q0.(2.18)

The total energy is therefore

G̃q,α,δ[m] =

{
4 +

2δ

3

(
δ

3
+ α

)}
√
q + O(q) ≤ 4

{
1 +

δ

3

(
δ

3
+ α

)}
√
q ∀q ≤ q0.

(2.19)

We collect all this in the following theorem.
Theorem 2.2. Consider the one-dimensional wall energy functional for a sym-

metric double layer (1.8). Given α > 0 and δ > 0 fixed, ∃ q0 > 0 such that

4
√
q ≤ min

m1,m2∈A
Gq,α,δ,δ[m1,m2] ≤ 4

{
1 +

δ

3

(
δ

3
+ α

)}
√
q ∀q ≤ q0.(2.20)

An estimate of the value of q0 is presented in Appendix B.

3. Néel walls: Limiting behavior. In this section we study the structure of
Néel walls in symmetric double layers and obtain the limiting behavior of any sequence
of minimizers of the Néel wall functional (2.13). This is the content of the following
theorem.

Theorem 3.1. Given α > 0 and δ > 0, consider {mq}{q>0} ⊂ AN = {m =
(m1, 0,m3) ∈ A} such that

Gq,α,δ[mq] ≤ C
√
q,(3.1)

and define m̃q(x) = mq(
x√
q ). There exists a subsequence of {mq}{q>0} (not relabeled)

such that the following two statements hold:
(i)

lim
q→0

1
√
q
Gq,α,δ[mq] = min

m∈AN

Fα,δ[m],(3.2)

where

Fα,δ[m] =

∫
R

m2
1 dx +

(
1 + δ

(
1

3
δ + α

))∫
R

(m′
1)

2 dx +

∫
R

(m′
3)

2 dx.(3.3)

(ii) The subsequence converges strongly in AN to n ∈ AN such that

Fα,δ[n] = min
m∈AN

Fα,δ[m].(3.4)

Proof. Given the sequence of minimizers, consider the new rescaled sequence
m̃q(x) = mq(

x√
q ). This sequence is bounded in the following sense:

∫
R

ũ2
q(x) dx +

∫
R

|m̃′
q|2 dx =

√
q

∫
R

u2
q(x) dx +

1
√
q

∫
R

|m′
q|2 dx(3.5)

≤ 1
√
q
Gq,α,δ[mq] ≤ C.
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Thus there is a subsequence (not relabeled) that converges weakly in AN to n ∈ AN .
Consider now nq(x) = n(

√
qx). Then,

n̂q(ξ) =
1
√
q
n̂

(
ξ
√
q

)
(3.6)

and

(3.7) Gq,α,δ[nq] =
√
q

∫
R

u2(ξ) dξ +
√
q

∫
R

4π2ξ2|n̂(ξ)|2 dξ

+
1
√
q

∫
R

û2(ξ)

(
1 − 1 − e−2πδ|ξ|√q

2πδ|ξ|√q
− 1

2
e−4πa|ξ|√q (1 − e−2πδ|ξ|√q)2

2πδ|ξ|√q

)
dξ.

We need to take the limit of the stray field energy. Since α
√
q � 1 and δ

√
q � 1,

lim
q→0

1

q

(
1 − 1 − e−2πδ|ξ|√q

2πδ|ξ|√q
− 1

2
e−4πa|ξ|√q (1 − e−2πδ|ξ|√q)2

2πδ|ξ|√q

)
=

(
1

3
δ + a

)
4π2|ξ|2δ.

(3.8)

The stray field energy can be written as

1
√
q
Es = δ

(
1

3
δ + a

)∫
R

4π2ξ2û2(ξ)ϕ̂(
√
qξ) dξ,(3.9)

where

ϕ̂(ξ) =
1(

1
3δ + a

) 1

4π2ξ2

(
1 − 1 − e−2πδ|ξ|

2πδ|ξ| − 1

2
e−4πa|ξ| (1 − e−2πδ|ξ|)2

2πδ|ξ|

)
.(3.10)

Note that ϕ̂(0) = 1 and ϕ̂ ∈ L1(R) ∩ L∞(R), so ϕ ∈ L1(R) ∩ L2(R). Therefore, the
stray field can be written, in real space, as

1
√
q
Es = δ

(
1

3
δ + a

)∫
R

u
(
u ∗ ϕ√

q

)
dx,(3.11)

where ϕ√
q(x) = 1√

qφ( x√
q ), which is an approximation to the identity. Therefore we

can take the limit in (3.7), and we obtain

lim
q→0

1
√
q
Gq,α,δ[nq] =

∫
R

û2(ξ) dξ +

∫
R

4π2ξ2

(
1 + δ

(
1

3
δ + a

))
|û(ξ)|2 dξ(3.12)

+
1

2

∫
R

4π2ξ2|ŵ(ξ)|2 dξ =

∫
R

u2 dx +

(
1 + δ

(
1

3
δ + a

))∫
R

(u′)2 dx +

∫
R

(w′)2 dx

= Fα,δ[n].

Since mq was a minimizer,

1
√
q
Gq,α,δ[mq] ≤

1
√
q
Gq,α,δ[nq],(3.13)

and thus

lim sup
q→0

1
√
q
Gq,α,δ[mq] ≤ lim

q→0

1
√
q
Gq,α,δ[nq] = Fα,δ[n].(3.14)



1734 CARLOS J. GARCIA-CERVERA

Observe now that

1
√
q
Gq,α,δ[mq] = Hq,α,δ[m̃q],(3.15)

where

Hq,α,δ[m] =

∫
R

u2 dx +

∫
R

|m′|2 dx + δ

(
1

3
δ + α

)∫
R

u
(
u ∗ ϕ√

q

)
dx.(3.16)

Since m̃q converges to n weakly in AN , by the lower semicontinuity of the functional,

Fα,δ[n] ≤ lim inf
q→0

1
√
q
Gq,α,δ[mq].(3.17)

Combining (3.14) and (3.17), we conclude that

lim
q→0

1
√
q
Gq,α,δ[mq] = Fα,δ[n].(3.18)

It is easy to see that n must be a minimizer of Fα,δ: Given any m0 ∈ A, consider
ñq(x) = m0

(√
qx

)
. Then

Fα,δ[m0] = lim
q→0

1
√
q
Gq,α,δ[ñq] ≥ lim

q→0

1
√
q
Gq,α,δ[mq] = Fα,δ[n].(3.19)

This proves (i). Since the sequence nq converges weakly to n and the energies converge,
the limit is strong, which proves (ii).

From the previous proof, it is easy to see that Hq,α,δ → Fα,δ in AN as q → 0, in
the Γ-limit sense [13].

4. Asymptotic analysis of the limiting profile. We perform a formal asymp-
totic expansion of the minimizers of functional Fα,δ, defined in (3.3), for δ � 1. Since
|m| = 1, it is customary to write m = (cos θ, 0, sin θ), where θ → ±π

2 as x → ±∞.
We consider the functional

Fβ [m] =

∫
R

m2
1 dx + (1 + β)

∫
R

(m′
1)

2 dx +

∫
R

(m′
3)

2 dx,(4.1)

where β = δ(3α + δ)/3 � 1. We do the change of variables to θ, and get

Fβ [θ] =

∫
R

cos2 θ dx +

∫
R

(θ′)2 dx + β

∫
R

(θ′)2 sin2 θ dx.(4.2)

The Euler–Lagrange equation is

(1 + β sin2 θ)θ′′ + (1 + β(θ′)2) sin θ cos θ = 0.(4.3)

For β = 0, we get

θ′′ + sin θ cos θ = 0,(4.4)

which has as solution cos θ = tanhx. This is the Landau–Lifshitz profile [12]. The
asymptotic analysis can be carried out more easily if we consider profiles of the form
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m = (sechϕ, 0, tanhϕ) instead, and write the equation for ϕ. Since cos θ = sechϕ
and sin θ = tanhϕ, we get θ′ = ϕ′sechϕ and

θ′′ = sechϕ
(
ϕ′′ − (ϕ′)2 tanhϕ

)
.(4.5)

The equation becomes then(
1 + β tanh2 ϕ

) (
ϕ′′ − (ϕ′)2 tanhϕ

)
+
(
1 + β(ϕ′)2 sech2 ϕ

)
tanhϕ = 0.(4.6)

Assume that ϕ ∼ ϕ0 + βϕ1 + O(β2). Then,(
1 + β tanh2(ϕ0 + βϕ1)

) (
ϕ′′

0 + βϕ′′
1 − (ϕ′

0 + βϕ′
1)

2 tanh(ϕ0 + βϕ1)
)

(4.7)

+
(
1 + β(ϕ′

0 + βϕ′
1)

2 sech2(ϕ0 + βϕ1)
)
tanh(ϕ0 + βϕ1) = 0.

Collecting terms, we get

ϕ′′
0 + (1 − (ϕ′

0)
2) tanhϕ0 = 0.(4.8)

The solution is ϕ0 = x. The next term in (4.7) is

ϕ′′
1 − 2ϕ′

1ϕ
′
0 tanhϕ0 − (ϕ′

0)
2 sech2 ϕ0ϕ1 + tanh2(ϕ0)

(
ϕ′′

0 − (ϕ′
0)

2 tanhϕ0

)
(4.9)

+(ϕ′
0)

2 sech2 ϕ0 tanhϕ0 + sech2 ϕ0ϕ1 = 0.

Since ϕ0 = x and ϕ′
0 = 1, the equation simplifies to

ϕ′′
1 − 2ϕ′

1 tanhx− tanh3 x + sech2 x tanhx = 0.(4.10)

Then (
ϕ′

1

cosh2 x

)′
=

ϕ′′
1 − 2ϕ′

1 tanhx

cosh2 x
= sech2 x tanh3 x− sech4 x tanhx.(4.11)

We can integrate the right-hand side:∫
sech2 x tanh3 x dx =

∫
sinhx

(
cosh2 x− 1

)
cosh5 x

dx =
1

4

1

cosh4 x
− 1

2

1

cosh2 x
,∫

sech4 x tanhx dx =

∫
sinhx

cosh5 x
dx = −1

4

1

cosh4 x
.(4.12)

Therefore,

ϕ′
1 = C cosh2 x +

1

2

1

cosh2 x
− 1

2
(4.13)

and, integrating,

ϕ1 = C
sinh 2x + 2x

4
+

1

2
tanhx− x

2
+ D.(4.14)

We want ϕ to be odd, so D = 0. Unless C = 0, ϕ1 will dominate over ϕ0, so we take
C = 0, and finally,

ϕ1 =
1

2
tanhx− x

2
.(4.15)

Therefore,

m =

(
sech

(
x +

β

2
(tanhx− x)

)
, 0, tanh

(
x +

β

2
(tanhx− x)

))
+ O(β2).(4.16)



1736 CARLOS J. GARCIA-CERVERA

5. Numerical experiments. We have implemented a truncated Newton method
with an inexact line search for the minimization of

Gq,α,δ[m1,m2] =
1

2
q

∫
R

u2
1 dx +

1

2

∫
R

|m′
1|2 dx +

1

2

∫
R

u2
1 dx− 1

2

∫
R

u1 (Γδ ∗ u1) dx

+
1

2
q

∫
R

u2
2 dx +

1

2

∫
R

|m′
2|2 dx +

1

2

∫
R

u2
2 dx− 1

2

∫
R

u2 (Γδ ∗ u2) dx

− δ

2

∫
R

u1 (u2 ∗ Θα,δ) dx.(5.1)

The method is well known, and the details can be found in the literature [15], so we
will simply describe some of the details particular to our implementation.

We consider a finite interval I = [−M,M ], and restrict the functional to I. We
have performed simulations in several intervals of increasing size until no change
was found in the characteristics of the wall. For the results presented here we used
I = [−200, 200]. We define the grid points xi = −M + iΔx, for i = 0, 1, . . . , n + 1,
where Δx = 2M

n+1 . The magnetization is approximated by a linear interpolant in the
subinterval Ii = [xi, xi+1], for i = 0, 1, . . . , n. We impose the boundary conditions
u0 = un+1 = 0. For the simulations presented here we fixed the parameters δ = 1
and a = 10−1. The parameter q varied in the range q ∈ [10−3, 1].

To evaluate the stray field, we need to approximate convolution integrals of the
form

v(xj) =

∫ M

−M

u(s)K(xj − s) ds.(5.2)

Substituting the piecewise linear interpolant,

v(xj) ≈
n∑

i=0

∫ xi+1

xi

(
ui +

ui+1 − ui

Δx
(s− xi)

)
K(xj − s) ds.(5.3)

Grouping terms,

vj =

n∑
i=1

ui

[ ∫ xi+1

xi

(
1 − (s− xi)

Δx

)
K(xj − s) ds +

∫ xi

xi−1

(s− xi−1)

Δx
K(xj − s) ds

]
.

(5.4)

This can be written in the form

vj =

n∑
i=1

Kj−iui,(5.5)

where

Kλ = Δx

∫ 1

0

(1 − t)K (Δx(λ− t)) + tK (Δx(λ + 1 − t)) dt.(5.6)

The sum (5.5) has the shape of a discrete convolution, and it can therefore be efficiently
evaluated using the fast Fourier transform (FFT) in O(n log n) operations.
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The unit length constraint in the magnetization is taken into account by consid-
ering a line search on the function

h(ε) = Gq,α,δ

[
m1 + εp1

|m1 + εp1|
,

m2 + εp2

|m2 + εp2|

]
,(5.7)

where (p1,p2) is a descent direction, i.e., h′(0) < 0.
In Figure 2 we show the profiles of several minimizers as a function of q. All the

numerically computed minimizers were opposed Néel walls, consistent with Lemma
2.1. These same profiles are presented in Figure 3, but this time the abscissa is
rescaled by

√
q. As can be seen, all the plots collapse into one, illustrating that the

core length is 1/
√
q, as proved in section 4. This limiting profile is plotted in Figure 4,

where it is compared to the profile of the minimizer of (5.1) computed numerically.
The profiles are almost indistinguishable.

The computed values for the minimum energy as a function of q are presented
in Table 1. From the results in the third column it is clear that the energy scales
like

√
q. We plot the results in a logarithmic scale in Figure 5. The energy of the

asymptotic approximation (4.16) was computed to machine precision using adaptive
Gaussian quadrature. The computed energy coincides to a remarkable degree with
the energy obtained using the asymptotic analysis described in the previous section.
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Fig. 2. Néel wall profiles for several values of q.

6. Conclusion. We have presented a new model for the analysis of one-
dimensional walls in double layers. Using this new model, we have studied the struc-
ture of Néel walls and obtained the core length of the wall, the optimal energy scaling,
and the structure of the minimizers. The main observation is that in a symmetric dou-
ble layer the Néel wall no longer has a long logarithmic tail. The wall profile becomes
local and similar to the classic Landau–Lifshitz wall. Thus, the range of nonlocal in-
teractions is considerably reduced. We have implemented a truncated Newton method
for energy minimization, and illustrated all the results numerically. In our simulations



1738 CARLOS J. GARCIA-CERVERA

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

q1/2 x

m
1

−20 −15 −10 −5 0 5 10 15 20
−1

−0.5

0

0.5

1

q1/2 x

m
3

q=1
q=1/4
q=1/16
q=1/64
q=1/256

q=1
q=1/4
q=1/16
q=1/64
q=1/256

Fig. 3. Néel wall profiles for several values of q. The abscissa has been rescaled to illustrate
that the core length scales like

√
q.
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Fig. 4. Comparison between the computed limiting profile and the asymptotic approximation
obtained in section 2.

we have managed to accurately capture the energy scaling, the core length, and the
structure of the wall.

Appendix A. One-dimensional model for double layers. In this section
we derive the model used in this article, starting from the Landau–Lifshitz energy
functional.
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Table 1

Minimum energy as a function of q. The energy is computed with the energy minimization
algorithm described in section 5, and the energy scaling in q is obtained. We fixed the parameters
δ = 1 and a = 10−1.

Energy scaling as q → 0

n qn = 2−n En log
En−1

En
/log 2

0 1.000000E+00 0.413832547E+01
1 5.000000E-01 0.294556828E+01 0.490501
2 2.500000E-01 0.209484869E+01 0.491699
3 1.250000E-01 0.148838645E+01 0.493096
4 6.250000E-02 0.105647543E+01 0.494489
5 3.125000E-02 0.749249198E+00 0.495741
6 1.562500E-02 0.530979818E+00 0.496788
7 7.812500E-03 0.376078916E+00 0.497621
8 3.906250E-03 0.266248579E+00 0.498261
9 1.953125E-04 0.188430720E+00 0.498739
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Fig. 5. Comparison between the numerically computed energy, the optimal energy obtained in
section 2, and the energy of the Landau–Lifshitz wall. The asymptotics give us an upper bound,
while the Landau–Lifshitz wall provides us with a lower bound.

We consider a double layer, infinite in both the x and y directions, and solve
the magnetostatic equation in two dimensions. The stray field is hs(x, z) = −∇η,
where

η = ∇N ∗ m(A.1)

is the magnetostatic potential, and N(x) = 1
2π log(|x|), x = (x, z) ∈ R2.

For the study on one-dimensional walls, we assume that m depends only on x.
The double layer will be identified with the domain Ω = R×[−a−D1,−a]∪[a, a+D2].
In the bottom layer, we have m = (u1, v1, w1), and in the top layer, m = (u2, v2, w2).
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Then,

(A.2) η(x, z) =

∫
Ω

∂xN(x− s, z − t)u(s) ds +

∫
Ω

∂zN(x− s, z − t)v(s) ds

=

∫
Ω

∂xN(x− s, z − t)u(s) ds +

∫
R

(N(x− s, z + a + D1) −N(x− s, z + a)) v1(s) ds

+

∫
R

(N(x− s, z − a) −N(x− s, z − a−D2)) v2(s) ds.

The stray field energy is

(A.3)
2

μ0M2
s

E =

∫
Ω

∇η · m dx dz =

∫
Ω

u∂xη + v∂zη dx dz

=

∫
R

u1(x)

∫ −a

−a−D1

∂xη(x, z) dz dx +

∫
R

u2(x)

∫ a+D2

a

∂xη(x, z) dz dx

+

∫
R

v1(x) (η(x,−a) − η(x,−a−D1)) dx +

∫
R

v2(x) (η(x, a + D2) − η(x, a)) dx.

We can easily compute the derivative of η w.r.t. x:

∂xη(x, z) =

∫
Ω

∂xxN(x− s, z − t)u(s) ds(A.4)

+

∫
R

(∂xN(x− s, z + a + D1) − ∂xN(x− s, z + a)) v1(s) ds

+

∫
R

(∂xN(x− s, z − a) − ∂xN(x− s, z − a−D2)) v2(s) ds.

Since ΔN = δ, we get that ∂xxN(x−s, z−t) = δ(x,z)−∂zzN(x−s, z−t). Substituting
this,

∂xη(x, z) = u(x) −
∫

Ω

∂zzN(x− s, z − t)u(s) ds

+

∫
R

(∂xN(x− s, z + a + D1) − ∂xN(x− s, z + a)) v1(s) ds(A.5)

+

∫
R

(∂xN(x− s, z − a) − ∂xN(x− s, z − a−D2)) v2(s) ds

= u(x) −
∫

R

(∂zN(x− s, z + a + D1) − ∂zN(x− s, z + a))u1(s) ds

−
∫

R

(∂zN(x− s, z − a) − ∂zN(x− s, z − a−D2))u2(s) ds

+

∫
R

(∂xN(x− s, z + a + D1) − ∂xN(x− s, z + a)) v1(s) ds

+

∫
R

(∂xN(x− s, z − a) − ∂xN(x− s, z − a−D2)) v2(s) ds.
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Now we compute the energy step by step:

(A.6)∫
R

u1(x)

∫ −a

−a−D1

∂xη(x, z) dz dx = D1

∫
R

u2
1(x) dx−

∫
R

u1(x)

∫
R

u1(s)(N(x− s,D1)

−2N(x− s, 0) + N(x− s,−D1))ds dx

−
∫

R

u1(x)

∫
R

u2(s)
(
N(x− s,−2a) −N(x− s,−2a−D1)

−N(x− s,−2a−D2) + N(x− s,−2a−D1 −D2)
)
ds dx

+
1

2π

∫
R

u1(x)

∫
R

v2(s)

(
arctan

(
2a + D1

x− s

)
− arctan

(
2a

x− s

)

− arctan

(
2a + D1 + D2

x− s

)
+ arctan

(
2a + D2

x− s

))
ds dx

= D1

∫
R

u2
1 dx−D1

∫
R

u1 (u1 ∗ ΓD1
) dx +

D1D2

2

∫
R

u1 (u2 ∗ Θa,D1,D2
) dx

+
D1D2

2

∫
R

u1 (v2 ∗ Ψa,D1,D2) dx,

where we have defined

(A.7)

ΓDi(x) =
1

2πDi
log

(
1 +

D2
i

x2

)
, i = 1, 2,

Θa,D1,D2(x) =
1

2D1D2π

(
log

(
x2 + (2a + D1)

2

x2 + (2a + D1 + D2)2

)
− log

(
x2 + 4a2

x2 + (2a + D2)2

))
,

Ψa,D1,D2
(x) =

1

D1D2π

(
arctan

(
2a + D1

x− s

)
− arctan

(
2a

x− s

)

− arctan

(
2a + D1 + D2

x− s

)
+ arctan

(
2a + D2

x− s

))
,(A.8)

(A.9)

∫
R

u2(x)

∫ a+D2

a

∂xη(x, z) dz dx = D2

∫
R

u2
2 dx−D2

∫
R

u2 (u2 ∗ ΓD2
) dx

+
D1D2

2

∫
R

u2 (u1 ∗ Θa,D1,D2
) dx− D1D2

2

∫
R

u2 (v1 ∗ Ψa,D1,D2
) dx.
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Now

η(x,−a) − η(x,−a−D1)

=

∫
R

u1(s)

∫ −a

−a−D1

(∂xN(x− s,−a− t) − ∂xN(x− s,−a−D1 − t)) dt ds

+

∫
R

u2(s)

∫ a+D2

a

(∂xN(x− s,−a− t) − ∂xN(x− s,−a−D1 − t)) dt ds

+

∫
R

(N(x− s,D1) − 2N(x− s, 0) + N(x− s,−D1)) v1(s) ds

+

∫
R

(
N(x− s,−2a) −N(x− s,−2a−D2)

−N(x− s,−2a−D1) + N(x− s,−2a−D1 −D2)
)
v2(s) ds

=
D1D2

2
u2 ∗ Ψa,D1,D2

+ D1v1 ∗ ΓD1
− D1D2

2
v2 ∗ Θa,D1,D2

(A.10)

and

η(x, a + D2) − η(x, a)

=

∫
R

u2(s)

∫ a+D2

a

(∂xN(x− s, a + D2 − t) − ∂xN(x− s, a− t)) dt ds

+

∫
R

u1(s)

∫ −a

−a−D1

(∂xN(x− s, a + D2 − t) − ∂xN(x− s, a− t)) dt ds

+

∫
R

(
N(x− s, 2a + D1 + D2) −N(x− s, 2a + D2)

−N(x− s, 2a + D1) + N(x− s, 2a)
)
v1(s) ds

+

∫
R

(
N(x− s,D2) − 2N(x− s, 0) + N(x− s,−D2)

)
v2(s) ds

= −D1D2

2
u1 ∗ Ψa,D1,D2 −

D1D2

2
v1 ∗ Θa,D1,D2 + D2v2 ∗ ΓD2 .(A.11)

Assembling all this, we get the stray field energy:

2

μ0M2
s

Es = D1

∫
R

u2
1 dx−D1

∫
R

u1 (u1 ∗ ΓD1) dx + D1

∫
R

v1 (v1 ∗ ΓD1) dx(A.12)

+D2

∫
R

u2
2 dx−D2

∫
R

u2 (u2 ∗ ΓD2) dx + D2

∫
R

v2 (v2 ∗ ΓD2) dx

+D1D2

∫
R

u1 (u2 ∗ Θa,D1,D2) − v1 (v2 ∗ Θa,D1,D2) dx

+D1D2

∫
R

u1 (v2 ∗ Ψa,D1,D2) − v1 (u2 ∗ Ψa,D1,D2) dx.
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In order to write this in Fourier space, we need the Fourier transform of the convolution
kernels. We start with the following:∫

R

log

(
x2 + α2

x2 + β2

)
e−2πiξx dx =

∫
R

log

(
1 +

α2 − β2

x2 + β2

)
e−2πiξx dx(A.13)

=
β2 − α2

2πiξ

∫
R

1

1 + α2−β2

x2+β2

2x

(x2 + β2)2
e−2πiξx dx

=
β2 − α2

2πiξ

∫
R

2x

(x2 + α2)(x2 + β2)
e−2πiξx dx.

Using residue theory, we get that∫
R

2x

(x2 + α2)(x2 + β2)
e−2πiξx dx = 2πi(Res (f, iα) + Res (f, iβ))

= 2πi

(
2iβ

2iβ(α2 − β2)
e2πβξ +

2iα

2iα(β2 − α2)
e2παξ

)
(A.14)

for ξ < 0. When we put it all together, we get∫
R

log

(
x2 + α2

x2 + β2

)
e−2πiξx dx =

e−2πβ|ξ| − e−2πα|ξ|

|ξ| .(A.15)

Therefore

1

2π

∫
R

log

(
1 +

D2
j

x2

)
e−2πiξx dx =

1 − e−2πDj |ξ|

2π|ξ| , j = 1, 2,(A.16)

and

(A.17)
1

2π

∫
R

(
log

(
x2 + 4a2

x2 + (2a + D2)2

)
− log

(
x2 + (2a + D1)

2

x2 + (2a + D1 + D2)2

))
e−2πiξx dx

= −e−4πa|ξ| (1 − e−2πD1|ξ|)(1 − e−2πD2|ξ|)

2π|ξ| .

Finally,

1

π

∫
R

e−2πiξx arctan
(α
x

)
dx = −2i

π

∫ ∞

0

sin(2πξx) arctan
(α
x

)
dx

= −2i

π

(
− 1

2πξ
cos(2πξx) arctan

(α
x

) ∣∣∣∣
∞

0

− α

2πξ

∫ ∞

0

cos(2πξx)
1

α2 + x2
dx

)

= −i
1 − e−2π|ξ|α

2πξ
.(A.18)

Therefore

1

π

∫
R

e−2πiξx

(
arctan

(
2a + D1

x

)
− arctan

(
2a

x

)
(A.19)

− arctan

(
2a + D1 + D2

x

)
+ arctan

(
2a + D2

x

))
dx

= −ie−4πa|ξ| (1 − e−2π|ξ|D1)(1 − e−2π|ξ|D2)

2πξ
.
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Thus, the stray field energy can be written in Fourier space as

(A.20)

2

μ0M2
s

Es = D1

∫
R

û1
2
(ξ)

(
1 − 1 − e−2πD1|ξ|

2πD1|ξ|

)
dξ + D1

∫
R

v̂1
2(ξ)

1 − e−2πD1|ξ|

2πD1|ξ|
dξ

+D2

∫
R

û2
2
(ξ)

(
1 − 1 − e−2πD2|ξ|

2πD2|ξ|

)
dξ + D2

∫
R

v̂2
2(ξ)

1 − e−2πD2|ξ|

2πD2|ξ|
dξ

+

∫
R

(û1(ξ)û2(ξ) − v̂1(ξ)v̂2(ξ))e
−4πa|ξ| (1 − e−2πD1|ξ|)(1 − e−2πD2|ξ|)

2π|ξ| dξ

− i

∫
R

(
v̂1(ξ)û2(ξ) − û1(ξ)v̂2(ξ)

)
e−4aπ|ξ| (1 − e−2πD1|ξ|)(1 − e−2πD2|ξ|)

2πξ
dξ.

Note that the interaction between the layers decays exponentially with the spacer
distance.

In this one-dimensional setting, the Landau–Lifshitz energy for a double layer
reduces to

(A.21) F [m1,m2] =
KuD1

2

∫
R

(
u2

1 + v2
1

)
dx +

AD1

2

∫
R

|m′
1|2 dx

+
D1μ0M

2
s

2

∫
R

u2
1 dx− D1μ0M

2
s

2

∫
R

u1 (ΓD1
∗ u1) dx +

D1μ0M
2
s

2

∫
R

v1 (ΓD1
∗ v1) dx

+
KuD2

2

∫
R

(
u2

2 + v2
2

)
dx +

AD2

2

∫
R

|m′
2|2 dx

+
D2μ0M

2
s

2

∫
R

u2
2 dx− D2μ0M

2
s

2

∫
R

u2 (ΓD2
∗ u2) dx +

D2μ0M
2
s

2

∫
R

v2 (ΓD2
∗ v2) dx

+
D1D2μ0M

2
s

2

∫
R

u1 (u2 ∗ Θa,D1,D2) − v1 (v2 ∗ Θa,D1,D2) dx

+
D1D2μ0M

2
s

2

∫
R

v1 (u2 ∗ Ψa,D1,D2) − u1 (v2 ∗ Ψa,D1,D2) dx,

where

Γi(x) =
1

2πDi
log

(
1 +

D2
i

x2

)
, i = 1, 2,

Θa,D1,D2(x) =
1

2D1D2π

(
log

(
x2 + (2a + D1)

2

x2 + (2a + D1 + D2)2

)
− log

(
x2 + 4a2

x2 + (2a + D2)2

))
,

Ψa,D1,D2
(x) =

1

D1D2π

(
arctan

(
2a + D1

x− s

)
− arctan

(
2a

x− s

)

− arctan

(
2a + D1 + D2

x− s

)
+ arctan

(
2a + D2

x− s

))
(A.22)
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and in Fourier space

Γ̂Dj
(ξ) =

1 − e−2πDj |ξ|

2πDj |ξ|
, j = 1, 2,

Θ̂a,D1,D2
(ξ) = e−4πa|ξ|

(
1 − e−2πD1|ξ|

) (
1 − e−2πD2|ξ|

)
2πD1D2|ξ|

,

Ψ̂a,D1,D2
(ξ) = ie−4πa|ξ|

(
1 − e−2πD1|ξ|

) (
1 − e−2πD2|ξ|

)
2πD1D2ξ

.(A.23)

To write the energy in dimensionless variables, we define x = lx′, a = lα, D1 = lδ1,
and D2 = lδ2, where l =

√
A/(μ0M2

s ). Define also q = Ku/(μ0M
2
s ). Performing this

change of variables and dropping the prime in x′, we obtain

1

D1

√
μ0M2

sA
F [m1,m2] =

q

2

∫
R

(
u2

1 + v2
1

)
dx +

1

2

∫
R

|m′
1|2 dx(A.24)

+
1

2

∫
R

u2
1 dx− 1

2

∫
R

u1 (Γδ1 ∗ u1) dx

+
1

2

∫
R

v1 (Γδ1 ∗ v1) dx +
qδ2
2δ1

∫
R

(
u2

2 + v2
2

)
dx

+
δ2
2δ1

∫
R

|m′
2|2 dx +

δ2
2δ1

∫
R

u2
2 dx

− δ2
2δ1

∫
R

u2 (Γδ2 ∗ u2) dx +
δ2
2δ1

∫
R

v2 (Γδ2 ∗ v2) dx

+
δ2
2

∫
R

u1 (u2 ∗ Θα,δ1,δ2) − v1 (v2 ∗ Θα,δ1,δ2) dx

+
δ2
2

∫
R

v1 (u2 ∗ Ψα,δ1,δ2) − u1 (v2 ∗ Ψα,δ1,δ2) dx.

Appendix B. Validity range for the upper bound. In order to estimate the
value of q0 in (2.18), we need to study the stray field (2.17). Define

η =
2δ|ξ|√q

π
(B.1)

and

β =
α

δ
.(B.2)

We need to study the Taylor series of

φ(η) = 1 − 1 − e−η

η
− 1

2
e−2βη (1 − e−η)2

η
.(B.3)

Using the Taylor polynomials of e−η and e−2βη, we obtain

(B.4) φ(η) =

(
1

3
+ β

)
η2 + η3

(
e−η1

4!
− β2e−2βη3 − βe−2βη4

− e−2βη

2

(
1

4
+

1

3
e−η2 − η

3!
e−η2 +

η2

36
e−2η2

))
,
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where ηk ∈ [0, η] for k = 1, 2, 3, 4. Using (B.4), (B.1), and (B.2) in (2.17), we obtain

Es ≤
2δ
√
q

3

(
δ

3
+ α

)
+

8δ3q

π3

(
1

3
+

α2

δ2
+

α

δ

)∫
|ξ|3sech2(ξ) dξ(B.5)

+
4δ4q3/2

3π4

∫
|ξ|4sech2(ξ) dξ +

4δ5q2

9π5

∫
|ξ|5sech2(ξ) dξ.

Estimate (2.20) holds for

q0 ≤ min

{
M,

4

9

(
δ

3
+ α

)2 [
8

π3

(
δ2

3
+ α2 + δα

)∫
|ξ|3sech2(ξ) dξ

+
4δ3M1/2

3π4

∫
|ξ|4sech2(ξ) dξ +

4δ4M3/2

9π5

∫
|ξ|5sech2(ξ) dξ

]−2
}
,(B.6)

where M > 0 is arbitrary.
Note that as α → ∞, q0 → 0. This is consistent with the fact that as α → ∞,

the layers are decoupled, and we recover the Néel wall energy for a single layer, for
which the upper bound is not (2.20) but (1.7).

Acknowledgment. The author wishes to thank the anonymous reviewer. His/her
comments helped improve considerably the presentation of the results in this article.
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EFFECTS OF SOG ON DPP-RECEPTOR BINDING∗

YUAN LOU† , QING NIE‡ , AND FREDERIC Y. M. WAN†

Abstract. Concentration gradients of morphogens are known to be instrumental in cell signaling
and tissue patterning. Of interest here is how the presence of a competitor of BMP ligands affects cell
signaling. The effects of Sog on the binding of Dpp with cell receptors are analyzed for dorsal-ventral
morphogen gradient formation in vertebrate and Drosophila embryos. This prototype system includes
diffusing ligands, degradation of morphogens, and cleavage of Dpp-Sog complexes by Tolloid to free
up Dpp. Simple and biologically meaningful necessary and sufficient conditions for the existence of a
steady state gradient configuration are established, and existence theorems are proved. For high Sog
production rates (relative to the Dpp production rate), it is found that the steady state configuration
exhibits a more intense Dpp-receptor concentration near the dorsal midline. Numerical simulations of
the evolution of the system show that, beyond some threshold Sog production rate, the transient Dpp-
receptor concentration at the dorsal midline would become more intense than that of the steady state,
before subsiding and approaching a nonuniform steady state of lower magnitude. The magnitude of
the transient concentration has been found to increase by several fold with increasing Sog production
rate. The highly intense Dpp activity at and around the dorsal midline is consistent with available
experimental observations and other analytical studies.

Key words. morphogen gradients, reaction-diffusion, pattern formation, mathematical model-
ing
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1. Introduction. The proper functioning of tissues and organs requires that
each cell differentiate appropriately for its position. In many cases, the positional
information that instructs cells about their prospective fate is conveyed by concen-
tration gradients of morphogens bound to cell receptors. Morphogens are signaling
molecules that, when bound to cell receptors, assign different cell fates at different
concentrations [1], [2]. Morphogen action is of special importance in understanding
development because it is a highly efficient way for a population of uncommitted cells
in an embryo to create complex patterns of gene expression in space. This role of mor-
phogens has been the prevailing thought in tissue patterning for over half a century,
but only recently have there been sufficient experimental data and adequate analyti-
cal studies for us to begin to understand how various useful morphogen concentration
gradients are formed [3], [4].

Dorsal-ventral (back-to-belly) patterning in vertebrate and Drosophila (fruit fly)
embryos is now known to be regulated by bone morphogenetic proteins (BMP). The
BMP activity is controlled mainly by several secreted factors including the antagonists
chordin and short gastrulation (Sog). In Drosophila, seven zygotic genes have been
proposed to regulate dorsal-ventral patterning. Among them, decapentaplegic (Dpp)
encodes BMP homologues that promote dorsal cell fates such as amnioserosa and
inhibits development of the ventral central nervous system. The chordin homologue

∗Received by the editors August 13, 2003; accepted for publication (in revised form) December
28, 2004; published electronically July 26, 2005. The work was partially supported by NIH grants
R01GM67247, P20GM066051, and NSF SCREM grant DMS0112416.

http://www.siam.org/journals/siap/65-5/43321.html
†Department of Mathematics, The Ohio State University, Columbus, OH 43210 (lou@math.

ohio-state.edu).
‡Department of Mathematics, Center for Complex Biology Systems, University of California,

Irvine, CA 92697 (qnie@math.uci.edu, fwan@math.uci.edu).

1748



EFFECTS OF SOG ON DPP-RECEPTOR BINDING 1749

Sog is expressed ventrally and promotes central nervous system development. The
phenotype of Sog loss-of-function mutants is intriguing; as expected for a Dpp antag-
onist, ventral structures are lost but, in addition, the amnioserosa is reduced. This
result is paradoxical, as the amnioserosa is the dorsal-most tissue, and thus apparently
a BMP antagonist is required for maximal BMP signaling [5], [6], [7], [8].

In principle, morphogen concentration gradients can be generated through the
production of morphogens at particular sources, followed by their diffusion and degra-
dation in appropriate regions [4], [9], [10], [11], [12]. In the above Dpp/Sog system,
the production of Dpp is pretty much uniform in the dorsal region and absent in the
ventral region, while the opposite is true for Sog. However, the Dpp activity has a
sharp peak around the midline of the dorsal region in the presence of its “inhibitor”
Sog. Mutation of Sog results in a reduction and a broadening of Dpp activity around
the midline of the dorsal region. As the system contains many variables, the ques-
tion of what leads to a sharp concentration peak is difficult to tackle by traditional
experimental means.

Recently, Eldar et al. [13] studied a more complex morphogen system that includes
the effects of Sog (and other morphogens) on Dpp activities. By performing massive
computer calculations to search for molecular networks that support robustness, they
found that the presence of the BMP inhibitor Sog stimulates intense Dpp activity
at the dorsal midline resulting in highly nonuniform Dpp-receptor concentration in
space for the the patterning process. They also showed that the Dpp concentration
gradient itself is robust to changes in gene dosage. Two conditions were stipulated in
their model to produce agreement with experimentally observed gradient formation.
First, the steady state of the system is achieved by shutting off the production of
Dpp through setting the production rate to zero 10 minutes after the initiation of
the system [14], and there is no degradation of Dpp-receptor complex in the model.
Second, the model requires immobility of free Dpp molecules; i.e., Dpp does not
diffuse, but diffusion of the Dpp-Sog complexes and other ligands can occur.

For formation of morphogen gradients in a wing imaginal disc (a structure in the
larva that will become the wing of the adult fly), Lander, Nie, and Wan [4] and Lou,
Nie, and Wan [9] have demonstrated the important biological roles of diffusion for Dpp,
and degradation for the Dpp-receptor complex. Without degradation, the steady state
of the system is not achievable unless ligand production is shut off after a while, as in
[14]. Eldar et al., in a recent paper [15], have also studied how degradation of ligand
affects robustness of morphogen gradients. Most recently, the diffusion coefficient of
Dpp has been measured in vivo using FCS (fluorescence correlation spectroscopy)
techniques [16], and it was found that the magnitude of diffusion coefficient for Dpp
is close to the magnitude of the diffusion coefficient for the Dpp-Sog complex used in
[14] and hence not negligible.

Given the rather special restrictions on the Dpp/Sog system in [13] and [14], it is
desirable to investigate the possibility of an alternative and simpler known biological
mechanism for the generation of the intense Dpp activities around the dorsal midline.
In this paper, we will extend the dynamic Dpp/Sog system formulated in [17] for
morphogen activities in dorsal-ventral patterning by allowing for diffusion of ligands,
degradation of the morphogens, and the cleavage of Dpp-Sog complexes by the enzyme
Tolloid to free up a fraction τ of Dpp and to degrade part of Sog.

In this study, we will establish a biologically meaningful necessary and sufficient
condition for the existence of a steady state. This condition requires a balance of
the production of ligands, strength of degradation, and rate of cleavage of Dpp-Sog
complex by Tolloid, with no restrictions on the diffusion coefficients of the ligands.
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Fig. 1. Cross section of a Drosophila embryo, and the reaction schemes with rate constants.

To gain insight into the dependence of the morphogen activities on various biologi-
cal parameters, we will obtain a perturbation solution of the steady state gradients
with a biologically relevant assumption that the Sog production rate is high compared
to that of Dpp [13], [14]. The solution indicates that the requirement for complete
immobility of Dpp is not necessary for a biologically realistic Dpp-receptor gradient
that is intense in Dpp activity at the dorsal midline. Finally, we will perform nu-
merical simulations for the dynamics of the system. It is found that the cleavage of
Sog-Dpp complex by Tolloid produces a transient peak of the Dpp-receptor concen-
tration around the dorsal midline that is significantly stronger than the corresponding
concentration at the steady state. The dependence of the peak on various biological
parameters, including Sog production rate and diffusion coefficients, is also investi-
gated. The overall features of the various concentrations of the model are consistent
with experimental observations [5], [6], [7], [8]. A more complete model including
more biological components and its comparison with new experiments on robustness
of morphogen gradients will be presented in a separate paper [18].

2. Mathematical formulation. For an analytical and computational study of
the biological phenomenon of interest, a system of partial differential equations and
auxiliary conditions is formulated to capture the essential features of the dynamics
of the two interacting morphogens. This approach was first applied to study the
development of the Drosophila wing imaginal disc [19], [20], [4]. The three basic bio-
logical processes involving Dpp in the wing disc are diffusion for free Dpp molecules,
their reversible binding with receptors, and degradation of the bound Dpp. The main
purpose was to investigate the role of diffusion in the formation of a Dpp-receptor
concentration gradient in the wing disc. That system was extended to include the ef-
fect of Sog on Dpp activities in a dorsal-ventral configuration [17] in an embryo, with
the cleavage of Dpp-Sog complexes by Tolloid implicitly incorporated into the sys-
tem through the complete recovery of Dpp after cleavage (while the Sog components
degrade completely). The cleavage-recovery phenomenon has been suggested by pre-
vious experimental studies [21], [22]. Here we consider an even more general system
than that in [17] by allowing fractional recovery through the fraction parameter τ ,
0 ≤ τ ≤ 1, with τ = 1 corresponding to complete recovery.

The setting for dorsal-ventral patterning in a Drosophila embryo during develop-
ment is different and more complex than that considered in [4]. As shown in the
sketch of the dorsal-ventral cross section of the embryo in Figure 1, Dpp is produced
only in the dorsal region (with the rate vL(x)), while Sog is produced only in the
ventral region (with the rate vS(x)). For a one-dimensional study of the dynamics of
Sog and Dpp in the presence of cell receptors, we have idealized the dorsal-ventral an-
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nular cross-section of the embryo as a ring and introduced an artificial cut of the ring
at the ventral midline to map the cut ring onto the line segment [−Xmax, Xmax], with
X = 0 corresponding to the dorsal midline. Let [L], [S], [LS], [LR] denote the concen-
trations of Dpp, Sog, Dpp-Sog complexes, and Dpp bound to receptors, respectively.
The first three diffuse with coefficients of diffusion DL, DS , and DLS , respectively,
while the concentration for the immobile and undegradable receptor is fixed at R0

and uniformly distributed in [−Xmax, Xmax]. The system of equations governing the
morphogen dynamics of such a system consists of the following four coupled second or-
der differential equations, three of them being nonlinear partial differential equations
(PDE) of the reaction-diffusion type:

∂[L]

∂T
= DL

∂2[L]

∂X2
−Kon[L] (R0 − [LR]) − Jon[L][S]

+Koff[LR] +
(
Joff + τJdeg

)
[LS] + vL(X),(1)

∂[LR]

∂T
= Kon[L] (R0 − [LR]) −

(
Koff + Kdeg

)
[LR],(2)

∂[LS]

∂T
= DLS

∂2[LS]

∂X2
+ Jon[L][S] −

(
Joff + Jdeg

)
[LS],(3)

∂[S]

∂T
= DS

∂2[S]

∂X2
− Jon[L][S] + Joff[LS] + vS(X)(4)

for −Xmax < X < Xmax and T > 0. The coefficients {Kon, Jon}, {Koff , Joff},
{Kdeg, Jdeg} are the binding rate constants, the off rate constants, and the degradation
rate constants of Dpp and Sog, respectively. With the morphogen activities symmetric
about the ventral (as well as dorsal) midline, we must have the following symmetry
(no flux) conditions at the two ends of the solution domain:

X = ±Xmax :
∂[L]

∂X
=

∂[LS]

∂X
=

∂[S]

∂X
= 0.

The number of independent parameters may be reduced by suitable normalization.
Let

x =
X

Xmax
, t =

D0T

X2
max

,(5)

{hL, hLS} =
X2

maxR0

D0
{Kon, Jon},(6)

{fL, fLS , gL, gLS} =
X2

max

D0
{Koff , Joff ,Kdeg, Jdeg},(7)

{VL(x), VS(x)} =
X2

max

R0D0
{vL(X), vS(X)},(8)

{ρL, ρS , ρLS} =

{
DL

D0
,
DLS

D0
,
DS

D0

}
,(9)

{A,B,C,D} =

{
[L]

R0
,
[LR]

R0
,
[LS]

R0
,
[S]

R0

}
.(10)
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In these relations, it would seem natural to choose the normalizing diffusion coefficient
D0 to be the maximum of the three diffusion coefficients. However, it turns out to be
more appropriate to choose D0 = DS to facilitate an appreciation of the implication
of the solution. At this time, we will leave D0 unspecified, but will see in section 4
why it is expeditious to specify it as DS . In terms of these normalized quantities,
(1)–(4) may be written as

A,t = ρLA,xx − hLA(1 −B) − hLSAD + fLB + (fLS + τgLS)C + VL(x),(11)

B,t = hLA(1 −B) − (fL + gL)B,(12)

C,t = ρLSC,xx + hLSAD − (fLS + gLS)C,(13)

D,t = ρSD,xx − hLSAD + fLSC + VS(x)(14)

for −1 < x < 1 and t > 0, with ( ),z = ∂( )/∂z for the temporal and spatial derivatives
of the dependent variables A,B,C,D.

3. Existence of steady state solutions. In this section, we examine the exis-
tence of time-independent (or steady state) solutions of the system (11)–(14) subject
to the no flux conditions at the two end points, which can now be written in terms of
the normalized unknowns as

x = ±1 : A,x = C,x = D,x = 0 (t > 0).(15)

With the steady state solution independent of time, (12) becomes an algebraic equa-
tion and can be solved for B in terms of A:

B =
A

αL + A
, αL =

gL + fL
hL

.(16)

The expression for B is then used to eliminate it from (11), leaving the following three
simultaneous equations for the three unknowns A,C, and D:

ρLA,xx − gLhLA

fL + gL + hLA
− hLSAD + (fLS + τgLS)C + VL = 0,(17)

ρLSC,xx + hLSAD − (fLS + gLS)C = 0,(18)

ρSD,xx − hLSAD + fLSC + VS = 0(19)

for −1 < x < 1 subject to the boundary conditions (15).
Throughout this section we assume the following:
(A1) fL, fLS , gL, gLS , hL, and hLS are continuous positive functions in [−1, 1];

ρL, ρLS , and ρS are positive constants; VS , VL are nonnegative integrable functions

that satisfy
∫ 1

−1
VL > 0 and

∫ 1

−1
VS > 0; and τ is a constant satisfying 0 ≤ τ ≤ 1.

If VL(x) and VS(x) are continuous, we seek a classical solution of (15)–(19); i.e.,
A, C, and D are twice continuously differentiable in [−1, 1] that satisfy (15)–(19).
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Theorem 3.1. Suppose that (A1) holds and VL, VS are continuous in [−1, 1].
Then (15)–(19) has a positive classical solution if and only if both of the following
inequalities hold:

∫ 1

−1

VL(x)dx > (1 − τ)

∫ 1

−1

VS(x)dx,(20)

∫ 1

−1

VL(x)dx < (1 − τ)

∫ 1

−1

VS(x)dx +

∫ 1

−1

gL(x)dx.(21)

Since
∫ 1

−1
VL(x) > 0, the first condition is trivially satisfied for τ = 1 (full recov-

ery of Dpp), and the second is a distributed version of the necessary and sufficient
condition for existence in [9], [10], [11], [12] (that the Dpp production rate must be
slower than the degradation rate of the Dpp-receptor complexes). For 0 ≤ τ < 1,
these two conditions may be combined to give a similar condition on a nonnegative
“effective” Dpp production rate [VL − (1 − τ)VS ] (see section 5).

Lemma 3.2. If (15)–(19) has a positive classical solution, then (20) and (21)
must hold.

Proof. Adding up (17) and (18) and integrating over [−1, 1], we obtain with the
help of (15)

∫ 1

−1

VL =

∫ 1

−1

gLhLA

fL + gL + hLA
+ (1 − τ)

∫ 1

−1

gLSC.(22)

Similarly, adding up (18) and (19) and integrating over [−1, 1], we get

∫ 1

−1

gLSC =

∫ 1

−1

VS .(23)

It follows from (22) and (23) that

∫ 1

−1

VL =

∫ 1

−1

gLhLA

fL + gL + hLA
+ (1 − τ)

∫ 1

−1

VS .(24)

For A > 0 in [−1, 1], we have

0 <

∫ 1

−1

gLhLA

fL + gL + hLA
<

∫ 1

−1

gL,(25)

which along with (24) implies (20)–(21).
In view of Lemma 3.2, we’ll assume that (20)–(21) holds for the rest of this

subsection. Our goal is to show that if VL and VS are continuous, then the condition
(20)–(21) implies that (15)–(19) has at least a positive classical solution. The idea is
to introduce some parameter λ and consider the following system of equations:

ρLÃ,xx + λF1(x, Ã, C̃, D̃) = 0, −1 < x < 1,(26)

ρLSC̃,xx + λF2(x, Ã, C̃, D̃) = 0, −1 < x < 1,(27)
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ρSD̃,xx + λF3(x, Ã, C̃, D̃) = 0, −1 < x < 1,(28)

Ã,x = C̃,x = D̃,x = 0 at x = −1, 1,(29)

where λ ∈ (0, 1] and Fi (i = 1, 2, 3) is given by

F1(x, Ã, C̃, D̃) = − gLhLÃ

fL + gL + hLÃ
− hLSÃD̃ + (fLS + τgLS)C + VL,(30)

F2(x, Ã, C̃, D̃) = hLSÃD̃ − (fLS + gLS)C̃,(31)

F3(x, Ã, C̃, D̃) = −hLSÃD̃ + fLSC̃ + VS .(32)

We establish some a priori estimates for nonnegative classical solutions of (26)–
(29).

Lemma 3.3. Let (Ã, C̃, D̃) be any nonnegative classical solution of (26)–(29). If
λ > 0, then Ã(x) > 0, C̃(x) > 0, and D̃(x) > 0 for every x ∈ [−1, 1].

Proof. Similar to (23) we have
∫ 1

−1
gLSC̃ =

∫ 1

−1
VS . Hence C̃ ≥ 0, C̃ �≡ 0. By (27)

and (31) we have

−ρLSC̃,xx + λ(fLS + gLS)C̃ = λhLSÃD̃ ≥ 0, −1 < x < 1.(33)

This together with C̃,x(−1) = C̃,x(1) = 0, via the maximum principle [23], implies

that C̃(x) > 0 for every x ∈ [−1, 1]. Since VL �≡ 0 and VS �≡ 0, similarly by (26)–(29)
and the maximum principle we can show that Ã > 0 and D̃ > 0 in [−1, 1].

Lemma 3.4. There exists some constant M > 0, independent of λ, such that for
any 0 < λ ≤ 1 and any positive classical solution (Ã, C̃, D̃) of (26)–(29) we have

‖Ã‖L∞ + ‖C̃‖L∞ + ‖D̃‖L∞ ≤ M.(34)

The proof of Lemma 3.4 is postponed to the appendix. Lemmas 3.3 and 3.4 enable
us to define Leray–Schauder degree (see, e.g., [24]) for a certain operator whose fixed
points correspond to positive solutions of (26)–(29).

Set E = {C[−1, 1]}3 and C2
N [−1, 1] = {u ∈ C2[−1, 1] : u,x(−1) = u,x(1) = 0}. For

any positive constant γ, let L−1
γ denote the inverse of the operator Lγ := −γ d2

dx2 + I :
C2

N [−1, 1] → C[−1, 1], where I denotes the identity map from C[−1, 1] to itself.
For every λ ∈ [0, 1], define operator T (λ) : E → E by

T (λ)(Ã, C̃, D̃) =

⎛
⎝L−1

ρL
[Ã + λF+

1 (x, Ã, C̃, D̃)]

L−1
ρLS

[C̃ + λF2(x, Ã, C̃, D̃)]

L−1
ρS

[D̃ + λF3(x, Ã, C̃, D̃)]

⎞
⎠ ,(35)

where

F+
1 (x, Ã, C̃, D̃) =

−gLhLA

fL + gL + hLA+
− hLSAD + (fLS + τgLS)C + VL,(36)

A+ = max(A, 0). By standard regularity theory and the embedding theorem, we
see that T (λ) is well defined and continuous, and the operator T̃ : [−1, 1] × E → E,
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defined by T̃ (λ, Ã, C̃, D̃) = T (λ)(Ã, C̃, D̃), is continuous and compact. For M given
in (34), define

Ω =
{

(Ã, C̃, D̃) ∈ E : 0 < Ã(x), C̃(x), D̃(x) < M + 1 ∀x ∈ [−1, 1]
}
.

Ω is an open and bounded subset of E. By Lemmas 3.3 and 3.4, we see that for any λ ∈
(0, 1], [I − T (λ)]−1 {(0, 0, 0)} /∈ ∂Ω. Hence the Leray–Schauder degree, deg

(
I − T (λ),

Ω, (0, 0, 0)
)
, is well defined for 0 < λ ≤ 1. Moreover, by the homotopy invariance of

the Leray–Schauder degree [24], deg (I − T (λ),Ω, (0, 0, 0)) is a constant function for
0 < λ ≤ 1. To complete the proof of Theorem 3.1, we need the following result.

Proposition 3.5. There exists δ > 0 such that deg (I − T (λ),Ω, (0, 0, 0)) = 1
for λ ∈ (0, δ).

The detail of the proof of this proposition is not particularly relevant to the proof
of Theorem 3.1 and will be given in an appendix of this paper. Assuming Proposition
3.5, we can now complete the proof of Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.2, it suffices to establish the sufficiency
part. By Proposition 3.5, for every 0 < λ ≤ 1, deg (I − T (λ),Ω, (0, 0, 0)) = 1. In
particular, deg (I − T (1),Ω, (0, 0, 0)) �= 0. This implies that there exists (Ã, C̃, D̃) ∈ Ω
such that (I − T (1))(Ã, C̃, D̃) = (0, 0, 0). By standard regularity theory we see that
Ã, C̃, D̃ ∈ C2[−1, 1] and is thus a positive classical solution of (15)–(19).

Specific morphogen systems of interest include those with morphogen production
rates that are discontinuous in the spatial variable (see section 4). When VL and
VS are bounded and measurable, we will be seeking C1,1 solutions of (15)–(19), i.e.,
functions A,C,D that are differentiable in [−1, 1]; have derivatives A,x, C,x, and D,x

Lipschitz continuous in [−1, 1]; and satisfy (15) and for every x ∈ [−1, 1]

ρLA,x +

∫ x

−1

F1 = ρLSC,x +

∫ x

−1

F2 = ρSD,x +

∫ x

−1

F3 = 0.(37)

Theorem 3.6. Suppose that (A1) holds and that VL and VS are bounded mea-
surable. Then (15)–(19) has a positive C1,1 solution if and only if (20)–(21) holds.

Proof. Suppose that (15)–(19) has a positive C1,1 solution. Setting x = 1 in
(37) and applying the same argument as in the proof of Lemma 3.2, we see that
(20)–(21) must hold. On the other hand, if (20)–(21) holds, we can choose a uni-
formly bounded sequence of continuous positive functions V n

L (x) and V n
S (x) such that

V n
L (x) → VL and V n

S (x) → VS a.e., and 0 <
∫ 1

−1

[
V n
L − (1 − τ)V n

S

]
<

∫ 1

−1
gL. By

Theorem 3.1 (17)–(19), with VL and VS being replaced by V n
L and V n

S , respectively,
there is a sequence of positive classical solutions, denoted by An, Cn, and Dn. As
for Lemma 3.4, we can show that there exists some positive constant M , indepen-
dent of n, such that ‖An‖L∞ + ‖Cn‖L∞ + ‖Dn‖L∞ ≤ M . Furthermore, ‖An

,xx‖L∞ ,
‖Cn

,xx‖L∞ , and ‖Cn
,xx‖L∞ are uniformly bounded. By passing to a subsequence if nec-

essary, (An, Cn, Dn) converge to some functions (A,C,D) in C1, and A,C,D satisfy
(15) and are nonnegative solutions of (37). From (37) we see that A,x, C,x, D,x are
Lipschitz continuous in [−1, 1]. By similar argument as in Lemma 3.3 (but instead
using the maximum principle for weak solutions of (15)–(19)), we see that A,C,D are
all positive in [−1, 1]. This completes the proof of Theorem 3.6.

Remark 3.7. Note that C ∈ C2[−1, 1]. If VL and VS are piecewise continuous,
then A and D are also piecewise twice continuously differentiable in [−1, 1].

4. Approximate steady state solutions for VL � VS. In previous studies
[13], [14], the constant (in both space and time) Dpp production rate, v̄L, in the dorsal
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region was estimated to be significantly smaller than the constant Sog production rate,
v̄S , in the ventral region. In [14], the ratio of the two production rates, defined as
ε ≡ v̄L/v̄S , is 0.008 for its baseline study. The robustness of the solutions with respect
to variations of v̄S is studied for fixed v̄L [13].

For v̄L 
 v̄S , so that ε 
 1, we obtain below a perturbation solution for the
steady state of (15)–(19), with τ = 1 for simplicity. For τ < 1, perturbation solution
procedure applies only if (20)–(21) hold. Similar to [14], we assume

VL(x) = V̄LH

(
1

2
− x

)
, VS(x) = V̄SH

(
x− 1

2

)
,(38)

where (V̄L, V̄S) = (v̄L, v̄S)X2
max/(R0D0) and H(z) is the unit step function.

With V̄L 
 V̄S , we expect D(x), C(x) = O(V̄S), O(V̄S), although the latter may
be a smaller fraction of V̄S . On the other hand, we have A(x) = O(V̄L) at most, in
fact quite a bit smaller since free Dpp should eventually be bound to Sog or receptors,
given that Sog is produced at a much higher rate. For these reasons, we set

A(x) =
V L

μ2
L

a(x), C(x) =
V S

fLS + gLS
c(x), D(x) = V Sd(x),(39)

where μ2
L = gL/αL and αL = (fL + gL)/hL. Then (17)–(19) become

V L

V S

[
ρL
μ2
L

a′′ − a

1 + βLa
+ H

(
1

2
− x

)]
− μ2

Dad + c = 0,(40a)

ρLSc
′′ + (fLS + gLS)[μ2

Dad− c] = 0,(40b)

ρSd
′′ − [μ2

Dad− c] − (1 − σLS)c + H

(
x− 1

2

)
= 0,(40c)

where ()
′
= d()/dx, βL = V̄L/gL, σLS = fLS/(fLS+gLS) < 1, and μ2

D = hLSαLV̄L/gL.
Using symmetry about x = 0, we need only to consider solutions for 0 < x < 1 with
the boundary conditions at x = 0 being again no flux for all three unknowns a, b, and
c.

The form of (40a)–(40c) suggests that we seek a perturbation solution of {a, c, d}
in ε:

{a(x; ε), c(x; ε), d(x; ε)} =
∞∑

n=0

{an(x), cn(x), dn(x)} εn.(41)

For moderate values of V̄L so that μ2
D is not small compared to unity, the three leading

term coefficients are determined by

μ2
Da0d0 − c0 = 0,(42a)

ρLSc
′′
0 + (fLS + gLS)[μ2

Da0d0 − c0] = 0,(42b)

ρSd
′′
0 − [μ2

Da0d0 − c0] − (1 − σLS)c0 + H

(
x− 1

2

)
= 0.(42c)

The complementary case, μ2
D 
 1, can also be analyzed but is not relevant for our

biological system.
Upon combining (42a) and (42b) we get

ρLSc
′′
0 = 0.(43)
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The no flux boundary conditions at x = 0, 1 require c0(x) ≡ σ0 for some constant σ0.
To determine σ0, we note that (23) is still valid and requires

1
2V S =

∫ 1

0

Vs(x)dx = gLS

∫ 1

0

C(x)dx = V S
gLS

fLS + gLS

∫ 1

0

c(x)dx(44)

so that σ0 = 1/2(1 − σLS), i.e.,

(1 − σLS)c0(x) =
1

2
, 0 ≤ x ≤ 1.(45)

To determine d0(x), we use (42a) and (42c) to obtain

ρSd
′′
0 − (1 − σLS)c0 + H

(
x− 1

2

)
= 0.(46)

Upon integration and application of boundary conditions at x = 0, 1, as well as the
continuity condition at x = 1/2 for d0, we obtain

ρSd0(x) =

⎧⎪⎪⎨
⎪⎪⎩

δ0 +
x2

4

(
x ≤ 1

2

)
,

δ0 −
1

8
+

1

2

(
x− x2

2

) (
x ≥ 1

2

)
,

(47)

where δ0 is an undetermined constant. By (42a) we have also

1 − σLS

ρS
μ2
Da0(x) =

1 − σLS

ρS

c0(x)

d0(x)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2

1

(δ0 + 1
4x

2)

(
x <

1

2

)
,

1

2

1

[δ0 − 1
8 + 1

2x− 1
4x

2]

(
x >

1

2

)
.

(48)

It is rather fortuitous to have a0
′(0) = a0

′(1) = 0 because d0 and c0 satisfy no flux
conditions at the two end points so that there are no boundary layers adjacent to the
two ends.

It remains to determine δ0. We note that (24) still holds, particularly when τ = 1.
In that case, (24) becomes

G(δ0) ≡
∫ 1

0

a0(x)

1 + βLa0(x)
dx =

1

2
.(49)

It is easy to see that G(δ0) is strictly monotone decreasing in δ0 and that G(δ0) → 0
as δ0 → ∞. Hence G(δ0) = 1

2 has at most one positive root, and it has one positive
root if and only if G(0) > 1

2 . Note that G(0) can be explicitly computed, and thus
G(δ0) = 1

2 determines δ0.
Altogether, we have as the corresponding leading terms for the concentrations

A(x) ∼ (1 − σLS)μ2
Da0(x)/ρS

R0Jon,eff/(DS/X2
max)

,(50)

B(x) ∼ ΓLS(1 − σLS)μ2
Da0(x)/ρS

1 + ΓLS(1 − σLS)μ2
Da0(x)/ρS

,(51)
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Fig. 2. Comparisons between the numerical steady states (solid lines) and the perturbation
solutions (dashed lines). The parameters are v̄L = 8 × 10−4s−1μM , Kon = 0.4s−1, Koff =
4 × 10−6s−1, Kdeg = 3.2 × 10−3s−1, v̄S = 6 × 10−2s−1μM , Jon = 6s−1μM , Joff = 10−5s−1,
Jdeg = 6 × 10−2s−1, τ = 1.

C(x) ∼ 1

2

v̄S
JdegR0

,(52)

D(x) ∼ v̄S/R0

DS/X2
max

[ρSd0(x)],(53)

where

Kon,eff ≡ KdegKon

Kdeg + Koff
, Jon,eff ≡ JdegJon

Jdeg + Joff
, ΓLS =

Kon,eff

Jon,eff

DS

KdegX2
max

.

(54)

In Figure 2, the perturbation solutions (50)–(53) are plotted against the numerical
solutions obtained through temporal evolution (which will be discussed in the next
section). The relative difference between the two solutions is 1.5% for A, 1.4% for B,
4.3% for C, and 2.9% for D for ε = v̄L/v̄S = 0.0133 and μ2

D = 18.4. This illustrates
the approximation and accuracy of the perturbation solution for ε 
 1.

More interesting is the dependence of the leading term solutions (51)–(53) on the
biological parameters. The simplest of the four is the uniformly distributed concen-
tration of Dpp-Sog complexes in (53): it depends only on the production rate of Sog
per receptor, which is uniform in the ventral region. Free Sog D(x) is proportional
to the quadratic function defined in (47) with a magnitude of v̄S/R0 modified by the
diffusion coefficient of Sog. That D(x) is inversely proportional to DS is not sur-
prising, since faster diffusion of Sog would move more of it into the dorsal region for
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binding with the available Dpp there. Note that ρSd0(x) is independent of the choice
of normalizing diffusion coefficient D0 and the effects of all biological parameters are
felt by ρSd0(x) only implicitly through the parameter δ0.

Less expected is the dependence of A(x) and B(x) on the biological parameters.
From (51), we see that if ΓLS = O(1), the amplitude of B(x) is determined mainly
by ΓLS . For ΓLS  1, we have B(x) ∼ 1, except possibly for a region adjacent to
the ventral midline x = 1. In either case, the amplitude of B(x) does not depend
explicitly on either of the two production rate parameters v̄S/R0 or v̄L/R0; the effects
of these two parameters on B(x) are felt only through δ0.

The situation is similar for A(x). It seems unreasonable that A(x) does not tend
to zero with v̄L/R0 (with the same observation applied to B(x) as well). However,
we see from a closer examination of (40a) that μ2

D = hLSαLV̄L/gL tends to zero with
v̄L/R0. For sufficiently small v̄L/R0, the first approximation relation (42a) would
give c0(x) = 0. In that case, c(x) should be rescaled (by an additional factor μ2

D)
for a proper perturbation solution, while the solution of this section ceases to be
applicable. In other words, to apply the perturbation solution {a0(x), c0(x), d0(x)}
obtained above, we must have v̄L/R0 sufficiently small so that V̄L/V̄S = v̄L/v̄S 
 1
but not too small so that μ2

D = hLSαLV̄L/gL is not small compared to unity.

5. Numerical solutions for evolutions. The system (1)–(4) can be solved
by finite difference schemes [25]. The diffusion terms are approximated by the sec-
ond order central difference. The temporal evolution is approximated through the
fourth order Adams–Moulton predictor-corrector method. The overall accuracy for
the method is second order in space and fourth order in time.

For a typical calculation, the time step is chosen to be �t = 2 × 10−4 seconds,
and the number of points to discretize the entire dorsal and ventral region is N = 64.
Smaller time step and larger number of points have been used to check the accuracy
and convergence of the calculations.

Similar to [13], the span of both the dorsal region and the ventral region is chosen
to be 175μm, i.e., Xmax = 175μm. Unlike [13], the diffusion constants for Dpp, Sog,
and Dpp-Sog are taken to be the same with D0 = DL = DLS = DS = 20μm2/second
[4], so that ρL = ρS = ρLS = 1 (except for changes indicated in Figures 7 and 8).
In this study, the synthesis rates for Dpp and Sog remain the same for all time. In
particular, vL(X) is always chosen to be a nonzero constant, v̄L, in the dorsal region
and zero in the ventral region, while vS(X) is the opposite, with vS(X) = v̄S in the
ventral and zero in the dorsal region.

The dynamics of the system without Sog is very similar to that in [4], even though
the ligand is produced from a localized source in [4] while the ligand is produced in
the whole dorsal region for the system (1)–(4). For realistic ranges of the biological
parameters of the problem, this system typically evolves quickly and monotonically
to a steady state within a half hour, with the Dpp-receptor concentration almost
uniform around the dorsal region. This behavior is consistent with the experimental
observation of [8]. At x = 0 the steady state is approximately equal to v̄L/(KdegR0).

Without Sog, the solution at any fixed x is found to be an increasing function of
time. This feature is also observed for cases where Sog is synthesized at a slow rate
or at a rate comparable to the Dpp production rate. The situation is different if the
Sog production rate is significantly larger than the Dpp production rate, which is the
most biologically relevant case [13]. In Figure 3, time evolution of a typical system
for large v̄S is plotted. It is observed that the spatial distributions of Dpp and the
Dpp-receptor complex continue to have maximum concentrations at the middle of the
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Fig. 3. The dynamics of solutions with SOG at every 5 minutes; o in the left-hand panels
marks the steady-state solutions. All parameters are the same as for Figure 2.

dorsal region, x = 0, at any instance in time (see the left-hand panels). However,
the various morphogen concentrations at x = 0 (the center of the dorsal region) peak
at an early time, then oscillate, with the amplitude of oscillations decaying until the
concentrations reach their steady state (see the right-hand panels). Therefore we
record two interesting curves for Dpp-receptor concentration: the transient solution
with the largest value at the dorsal midline and the steady state solution.

In Figure 4(a), the steady state for Dpp-receptor concentration of our system
(from the same numerical simulations for Figure 3) are plotted. With Sog (v̄S �=
0), the Dpp-receptor in the dorsal region generally has sharper gradient and larger
concentration than those without Sog (v̄S = 0). For the transient solution at its
maximal peak magnitude, the concentration with Sog is at least double that without
Sog around the middle region. These are consistent with the experimental observation
in [8].

In steady state, the system with or without Sog has the same total amount of
Dpp-receptor complex for τ = 1. This can be shown by simply adding the right-hand
sides of (11)–(13) and (13)–(14), respectively, and then integrating them through the
whole domain: ∫ 1

−1

gLBdx =

∫ 1

−1

(VL(x) − (1 − τ)VS(x)) dx.(55)

This relationship is independent of the presence of Sog when τ = 1. In other words,
the effect of inhibitor on Dpp-receptor concentration in the steady state is a spatial
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redistribution, not an increase or decrease in total concentration aggregated over the
entire embryo if all degraded Dpp-Sog complexes, [LS], are cleaved to free up Dpp
and degrade only the Sog component.

For the transient solution, the presence of Sog clearly helps build up the Dpp-
receptor complexes in terms of both gradient and concentration, as shown in Figure
3. In Figure 4(b), we study how the transient peak of Dpp-receptor and the steady
state at the dorsal midline (x = 0) depend on v̄S . The steady state for B without
Sog at x = 0 is 0.25, and its value is plotted at the y-axis in Figure 4(b). For a
small amount of Sog, the transient peaks are not high, and the steady state has the
largest value at x = 0, as shown for v̄S/R0 < 0.01. Also, B(x = 0) at steady state
increases as v̄S increases, and the transient peak begins to deviate from the steady
state around v̄S/R0 = 0.01. As v̄S increases by one order of magnitude from 0.015 to
0.1, the transient peak increases from 0.34 to 0.99, while the steady state only from
0.32 to 0.34. Once v̄S/R0 becomes large enough, the variation of the transient peak
is more sensitively dependent on variation of v̄S/R0 than that of the steady state at
x = 0. The dependence of the transient peak on other parameters such as Jon and
Jdeg have been investigated previously in [17] for τ = 1.

When τ < 1, so that only a portion of the degraded Dpp-receptor complex is
cleaved to free up Dpp, the dynamics of the system strongly depends on the size
of τ when the steady state condition (20)–(21) holds. It is not surprising that for
smaller τ , i.e., less free Dpp released from the degraded [LS], the transient and steady
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peaks of Dpp-receptor complex are lower, as shown in Figure 5(a) for τ = 0.995 and
0.99. However, for τ = 0.99, the concentration of Dpp-receptor complex around the
dorsal region is much lower with Sog than without Sog, as shown in Figure 5(a). As
demonstrated in (55), a small change of τ will result in a large change of [LR] at steady
state for a large v̄S , which is the case for Figure 5(a). In essence, veff ≡ v̄L−(1−τ)v̄S
can be regarded as an effective production rate for Dpp.

When the effective production rate veff becomes negative, that is, the condition
(20)–(21) does not hold, then the system can no longer sustain a steady state. For
this situation, the concentrations of both free Dpp and the Dpp-receptor complex
are typically very low, and the Dpp-receptor complex reaches the peak before Sog
diffuses into the dorsal region from the ventral side and takes over the reaction with
Dpp. With the availability of a large amount of Sog and its fast association rate with
Dpp, Dpp-Sog reaction dominates. It is interesting to note in Figure 5(b) that as τ
varies from 0.98 to 0, the time for Dpp and Dpp-receptor complex to reach their peaks
barely changes. This critical time (to reach the peak) is mainly determined by the
coefficient of diffusion DS , which controls the speed of Sog movement into the dorsal
zone.

In [14] (hence also in [13]), degradation for [LR] is not allowed in the system
(Kdeg = 0); therefore the condition (20)–(21) does not hold for any v̄L > 0. In
order to achieve steady state in [13], [14], the models there turned off production
of Dpp after 10 minutes (T ∗ = 10 minutes). The effect of the choice of T ∗ and
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times of turning off v̄L, as shown in (a). Other parameters are as in Figure 3 except that Kdeg = 0.

the biological background for the choice T ∗ = 10 minutes were not discussed in
[13] and [14]. In Figure 6, we study how our system reacts to the choice of T ∗ if
Kdeg = 0. It is found that the evolution of [LR] at the dorsal midline becomes
monotone, unlike the case in Figure 3, and as expected, the time to reach steady
states strongly depends on the choice of T ∗. In Figure 6, the steady states for [LR]
are shown for T ∗ = 5, 8, 10, 12, 15, 20, 30, 45, 60 minutes. The concentration of [LR]
varies almost linearly with respect to T ∗ until the receptors are close to being fully
occupied when T ∗ is large.

Finally, we investigate the effect of diffusion. In Figure 7, Dpp-receptor complexes
as functions of time and space are shown for five different choices of diffusion constants.
Case (a) has all three diffusion constants the same as in Figure 3, cases (b)–(d) have
one of the diffusion constants being 1% of the corresponding value in case (a), and the
case (e) has two constants at 1% of the corresponding values in case (a). Similarly in
Figure 8, some of the diffusion constants are 10-fold larger than others.

As shown in case (b) of both Figures 7 and 8, the magnitude of the diffusion co-
efficient for Dpp has very little effect on the broadness and intensity of Dpp activity
at the dorsal midline. This is consistent with the behavior of the leading term pertur-
bation solution. A larger diffusion for Dpp reduces the peak of transient Dpp-activity
at the midline slightly and broadens it slightly. On the other hand, a decrease in
diffusion constant for Dpp-Sog complexes, as in cases (d) and (e), significantly broad-
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Fig. 7. Effect of smaller diffusion constants on the transient peak and steady state. For the
left-hand panels, solid line: transient peak; dotted line: steady state. Parameters are as in Figure 3
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ens the Dpp activity around the midline for both peak transient and steady state
distributions, with the height of only the transient peak reduced significantly but
with almost the same steady state at x = 0. The time to steady state and transient
peaks seems to be insensitive to the change of the diffusion constants for Dpp or the
Dpp-Sog complex.

As predicted by the perturbation solutions, varying the diffusion coefficient for
Sog changes the Dpp activity around the dorsal midline significantly. As shown in
Figure 7(c), a smaller diffusion of Sog relative to the diffusion of Dpp leads to more
concentrated transient Dpp activity around the dorsal midline, but it takes much
longer to reach the steady state, with a monotone increase of Dpp activity around the
dorsal midline (i.e., there is no transient peak). On the other hand, larger diffusion
of Sog relative to the diffusion of Dpp weakens and broadens the Dpp activity, as in
Figure 8(c).

6. Conclusions. The dynamics of Dpp activities in the presence of the inhibitor
Sog is analyzed herein to initiate a study of dorsal-ventral morphogen gradient for-
mation in vertebrates and Drosophila embryos. Here we investigate a prototype mor-
phogen system with typical ligand diffusion and degradation, but now with the ad-
ditional feature of cleavage of Dpp-Sog complexes by Tolloid to free up Dpp.Among
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the principal results of our investigation is the establishment of a simple and biologi-
cally meaningful necessary and sufficient condition for the existence of a steady state
gradient in the system. This condition requires a balance of the production rates of
ligands, degradation rate of ligand-receptor complex, and rate of cleavage of ligand-
inhibitor complex. For high Sog production rates (relative to the Dpp production
rate), a perturbation solution has been obtained in terms of elementary functions.
This solution exhibits an intense Dpp-receptor concentration near the dorsal midline.
Numerical simulations of the evolution of the system confirmed these features of the
steady state behavior. In addition, a transient peak of Dpp-receptor concentration at
the dorsal midline was found to be even more intense prior to steady state, reaching
more than twice the level of the steady state at its peak amount. This transient peak
is more sensitively dependent on variation of the production of Sog than the steady
state peak. The high Dpp-receptor concentration around the dorsal midline and other
features of the system are consistent with experimental observations.

Appendix A.

Proof of Lemma 3.4. We show that there exists M1 > 0 such that ‖C̃‖L∞ ≤ M1.
As in the proof of Lemma 3.3, ‖C̃‖L1 ≤ M2 for some constant M2 > 0. Integrating
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(27) in (−1, 1), we get

∫ 1

−1

hLSÃD̃ =

∫ 1

−1

(fLS + gLS)C̃,(56)

which implies that
∫ 1

−1
ÃD̃ ≤ M3

∫ 1

−1
C̃ ≤ M2M3 for some M3 > 0. Integrating (27)

from −1 to x, we get

ρLSC̃,x + λ

∫ x

−1

[hLSÃD̃ − (fLS + gLS)C̃] = 0, −1 < x < 1.(57)

Hence

ρLS‖C̃,x‖L∞ ≤ ‖hLS‖L∞

∫ 1

−1

ÃD̃ + ‖fLS + gLS‖L∞

∫ 1

−1

C̃ ≤ M4(58)

for some constant M4 > 0. This along with
∫ 1

−1
C̃ ≤ M2 implies the L∞ bound of C̃,

which is independent of λ.
Next we show that there exists some constant M5 > 0 such that ‖Ã‖L∞ ≤ M5.

To this end, adding up (26) and (27) and integrating from −1 to x, we get

ρLÃ,x + ρLSC̃,x = λ

∫ x

−1

[
gLhLÃ

fL + gL + hLÃ
+ (1 − τ)gLSC̃ − VL

]
,(59)

which implies that

‖Ã,x‖L∞ ≤ M6

(
‖C̃,x‖L∞ + ‖gL‖L∞ + ‖ρLS‖L∞

∫ 1

−1

C̃ + ‖VL‖L∞

)
:= M7.(60)

We claim that there exists some constant M8 > 0 such that
∫ 1

−1
Ã ≤ M8. To

establish this assertion, we argue by contradiction: if not, passing to a subsequence if

necessary, we may assume that
∫ 1

−1
Ã → +∞. This together with (60) implies that

∣∣∣∣∣ Ã(x)∫ 1

−1
Ã

− 1

∣∣∣∣∣ ≤ ‖Ã,x‖L∞∫ 1

−1
Ã

≤ M7∫ 1

−1
Ã

→ 0 ∀ − 1 ≤ x ≤ 1.(61)

Hence Ã → +∞ uniformly. Similar to (24) we have

∫ 1

−1

VL =

∫ 1

−1

gLhLÃ

fL + gL + hLÃ
+ (1 − τ)

∫ 1

−1

VS .(62)

By (61) we have
∫ 1

−1
gLhLÃ

fL+gL+hLÃ
→

∫ 1

−1
gL, which together with (62) implies that∫ 1

−1
VL =

∫ 1

−1
gL + (1 − τ)

∫ 1

−1
VS . However, this contradicts (21). Therefore

∫ 1

−1
Ã

is uniformly bounded for λ ∈ (0, 1]. This together with (60) yields ‖Ã‖L∞ ≤ M5 for
some M5 > 0.

Finally we show that there exists some constant M9 > 0 such that ‖D̃‖L∞ ≤ M9.
We argue by contradiction: suppose not; passing to a subsequence if necessary, we

may assume that ‖D̃‖L∞ → ∞ and λ → λ̂ ∈ [0, 1]. Set D̂(x) = D̃(x)

‖D̃‖L∞
.Then D̂
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satisfies D̂,x(−1) = D̂,x(1) = 0, ‖D̂‖L∞ = 1, and

ρLSD̂,xx + λ

[
−hLSÃD̂ +

fLSC̃ + VS

‖D̂‖L∞

]
= 0, −1 < x < 1.(63)

Since ‖Ã‖L∞ , ‖Ã,x‖L∞ are uniformly bounded, we may assume that Ã(x) →
A∗(x) uniformly in [−1, 1]. From (62) and (20) we see

∫ 1

−1
Ã ≥ M10 > 0 for some

constant M10. Hence A∗ �≡ 0 since
∫ 1

−1
A∗ ≥ M10 > 0. By standard regularity theory

we may assume that D̂(x) → D∗(x) in C1[−1, 1], and D∗ is a weak solution of

ρLSD
∗
,xx − λ̂hLSA

∗D∗ = 0, −1 < x < 1, D∗
,x(−1) = D∗

,x(1) = 0.(64)

Moreover, D∗ ≥ 0 in [−1, 1] and ‖D∗‖L∞ = 1. If λ̂ > 0, since A∗ �≡ 0, A∗ ≥ 0, by the

maximum principle we see that D∗ ≡ 0, which contradicts ‖D∗‖L∞ = 1; if λ̂ = 0, then
it follows from (64) that D∗ ≡ 1, i.e., D̂(x) → 1 uniformly. Dividing (56) by ‖D̃‖L∞ ,

we have
∫ 1

−1
hLSÃD̂ =

∫ 1

−1
(fLS + gLS)C̃/‖D̃‖L∞ . Then we obtain

∫ 1

−1
hLSA

∗ = 0,
which implies that A∗ ≡ 0. Contradiction! This completes the proof of (34).

When λ = 0, (Ã, C̃, D̃) is a solution of (26)–(29) if and only if Ã, C̃, and D̃ are
all constants. It turns out that a particular triple, denoted by (Â, Ĉ, D̂), is special,
where Â, Ĉ, D̂ are defined as follows: by (20)–(21) it is easy to see that there is a
unique positive constant, denoted by Â, such that

∫ 1

−1

gLhLÂ

fL + gL + hLÂ
=

∫ 1

−1

VL − (1 − τ)

∫ 1

−1

VS .(65)

Set

D̂ =

∫ 1

−1
(fLS + gLS)

∫ 1

−1
VS

Â
∫ 1

−1
hLS

∫ 1

−1
gLS

, Ĉ =

∫ 1

−1
VS∫ 1

−1
gLS

.(66)

Lemma A.1. Suppose that (20)–(21) holds. Let (Aλ, Cλ, Dλ) denote positive
solutions of (26)–(29). Then as λ → 0+, (Aλ, Cλ, Dλ) → (Â, Ĉ, D̂) uniformly.

Proof. By Lemma 3.4, (Aλ, Cλ, Dλ) are uniformly bounded. By standard regu-
larity theory and the embedding theorem, passing to a subsequence if necessary, we
may assume that (Aλ, Cλ, Dλ) → (A,C,D) uniformly, where A, C, and D satisfy
Axx = Cxx = Dxx = 0, and Ax = Cx = Dx = 0 at x = −1, 1. Therefore A, C, D
are all nonnegative constants. Passing to the limit in (62) (with Ã being replaced by
Aλ), we have A = Â. Similarly we can show that Ĉ = C and D̂ = D. Since the limit
(Â, Ĉ, D̂) is unique, the convergence (Aλ, Cλ, Dλ) → (Â, Ĉ, D̂) is true for the whole
sequence, and the limit is uniform in x.

Lemma A.2. There exists some constant δ1 > 0 such that if 0 < λ ≤ δ1,
(26)–(29) has a unique positive solution.

Proof. Set X = {u ∈ C[−1, 1] :
∫ 1

−1
u(x) dx = 0}, Z = {u ∈ X : u,x(−1) =

u,x(1) = 0}, and define the projection operator P : C[−1, 1] → X by Pu = u −∫ 1

−1
u(x) dx. For (λ,A0, a0, C0, c0, D0, d0) ∈ R1 × (Z × R1)3, define F : R1 × (Z ×
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R1)3 → (X ×R1)3 by

F (λ,A0, a0, C0, c0, D0, d0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρLA0,xx + λPF+
1 (x,A0 + a0, C0 + c0, D0 + d0)

∫ 1

−1
F+

1 (x,A0 + a0, C0 + c0, D0 + d0) dx

ρLSC0,xx + λPF2(x,A0 + a0, C0 + c0, D0 + d0)

∫ 1

−1
F2(x,A0 + a0, C0 + c0, D0 + d0) dx

ρSD0,xx + λPF3(x,A0 + a0, C0 + c0, D0 + d0)

∫ 1

−1
F3(x,A0 + a0, C0 + c0, D0 + d0) dx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(67)

By the definition of Â, Ĉ, D̂, F (0, Â, Ĉ, D̂, 0, 0, 0) = (0, 0, 0, 0, 0, 0). The Fréchet
derivative of F with respect to (A0, a0, C0, c0, D0, d0) at (λ,A0, a0, C0, c0, D0, d0) =
(0, Â, 0, Ĉ, 0, D̂, 0) is given by

D(A0,a0,C0,c0,D0,d0)F
∣∣
(0,Â,0,Ĉ,0,D̂,0)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρL
d2

dx2 0 0 0 0 0

0 ρLS
d2

dx2 0 0 0 0

0 0 ρS
d2

dx2 0 0 0
∗ ∗ ∗
∗ ∗ ∗ M3×3

∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(68)

where M3×3 is the 3 × 3 matrix

⎛
⎜⎜⎜⎜⎜⎝

∫ 1

−1

[
−gLhL(fL+gL)

(fL+gL+hLÂ)2
− hLSD̂

] ∫ 1

−1
(fLS + τgLS) −(

∫ 1

−1
hLS)Â

(
∫ 1

−1
hLS)D̂ −

∫ 1

−1
(fLS + gLS) (

∫ 1

−1
hLS)Â

−(
∫ 1

−1
hLS)D̂

∫ 1

−1
fLS −(

∫ 1

−1
hLS)Â

⎞
⎟⎟⎟⎟⎟⎠ .(69)

Since the operator d2

dx2 , subject to the no flux boundary condition, is an isomor-
phism from Z to X, we see that the operator D(A0,a0,C0,c0,D0,d0)F

∣∣
(0,Â,0,Ĉ,0,D̂,0)

is

invertible from (Z × R1)3 to (X × R1)3 if and only if the matrix M3×3 is invertible.
It is straightforward to check that the determinant of M3×3 is equal to

(∫ 1

−1

hLS

)
D̂ ·

∫ 1

−1

(fLS + gLS) ·
(∫ 1

−1

hLS

)
Â (1 − γ2)(−γ1),(70)

where γ1, γ2 are defined as

γ1 =

∫ 1

−1
gLhL(fL+gL)

(fL+gL+hLÂ)2(∫ 1

−1
hLS

)
D̂

, γ2 =

∫ 1

−1
fLS∫ 1

−1
(fLS + gLS)

.(71)
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Since γ1 > 0 and 0 < γ2 < 1, M3×3 is nondegenerate.
By the implicit function theorem, there exists δ2 > 0 such that if 0 < λ ≤ δ2, there

is a unique solution to F = 0, denoted by (Aλ(x), aλ(x), Cλ(x), cλ(x), Dλ(x), dλ(x)),
in some neighborhood of (Â, 0, Ĉ, 0, D̂, 0). As λ → 0+, (Aλ, aλ, Cλ, cλ, Dλ, dλ) →
(Â, 0, Ĉ, 0, D̂, 0) uniformly. In particular, for 0 < λ ≤ δ2, (Aλ+aλ, Cλ+cλ, Dλ+dλ) is
the unique positive solution of (26)–(29) in some neighborhood of (Â, Ĉ, D̂). This and
Lemma A.1 imply that, for 0 < λ 
 1, (26)–(29) has a unique positive solution.

Lemma A.3. Let (A∗, C∗, D∗) denote the unique positive solution of (26)–(29)
for 0 < λ 
 1. Then for 0 < λ 
 1, the Fréchet derivative of T (λ) with respect
to (Ã, C̃, D̃) at (A∗, C∗, D∗), denoted by D(Ã,C̃,D̃)T (λ)

∣∣
(A∗,C∗,D∗)

, has no eigenvalue

greater than or equal to 1.
Proof. By (35), D(Ã,C̃,D̃)T (λ)

∣∣
(A∗,C∗,D∗)

(ϕ1, ϕ2, ϕ3) is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

L−1
ρL

{[
1 + λ∂F1

∂Ã
(x,A∗, C∗, D∗)

]
ϕ1 + λ∂F1

∂C̃
ϕ2 + λ∂F1

∂D̃
ϕ3

}

L−1
ρLS

{
λ∂F2

∂Ã
ϕ1 +

[
1 + λ∂F2

∂C̃

]
ϕ2 + λ∂F2

∂D̃
ϕ3

}

L−1
ρS

{
λ∂F3

∂Ã
ϕ1 + λ∂F3

∂C̃
ϕ2 +

[
λ∂F3

∂D̃
+ 1

]
ϕ3

}

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where ∂Fi

∂Ã
, ∂Fi

∂C̃
, ∂Fi

∂D̃
(i = 1, 2, 3) are evaluated at (x,A∗, C∗, D∗).

We argue by contradiction: suppose that Lemma A.3 fails. Passing to a subse-
quence if necessary, we may assume that for 0 < λ 
 1 the operator
D(Ã,C̃,D̃)T (λ)|(A∗,C∗,D∗) has eigenvalue μ = μ(λ) ≥ 1, with the corresponding eigen-

function (ϕ1, ϕ2, ϕ3) normalized by ‖ϕ1‖L∞+‖ϕ2‖L∞+‖ϕ3‖L∞ = 1. Then (ϕ1, ϕ2, ϕ3)
satisfies

−μρL
d2ϕ1

dx2
+ (μ− 1)ϕ1 = λ

[
∂F1

∂Ã
ϕ1 +

∂F1

∂C̃
ϕ2 +

∂F1

∂D̃
ϕ3

]
,(72)

−μρLS
d2ϕ2

dx2
+ (μ− 1)ϕ2 = λ

[
∂F2

∂Ã
ϕ1 +

∂F2

∂C̃
ϕ2 +

∂F2

∂D̃
ϕ3

]
,(73)

−μρS
d2ϕ3

dx2
+ (μ− 1)ϕ3 = λ

[
∂F3

∂Ã
ϕ1 +

∂F3

∂C̃
ϕ2 +

∂F3

∂D̃
ϕ3

]
,(74)

(ϕ1),x = (ϕ2),x = (ϕ3),x = 0 at x = −1, 1,(75)

where ∂Fi

∂Ã
, ∂Fi

∂C̃
, ∂Fi

∂D̃
(i = 1, 2, 3) in (72)–(74) are evaluated at (Ã, C̃, D̃) = (A∗, C∗, D∗).

It is easy to see that μ(λ) → 1 as λ → 0+, and the corresponding eigenfunctions
(ϕ1, ϕ2, ϕ3) → (ϕ1, ϕ2, ϕ3) uniformly, where (ϕ1, ϕ2, ϕ3) are constants satisfying |ϕ1|+
|ϕ2|+|ϕ3| = 1. Set μ(λ) = 1+λμ1(λ). Since μ(λ) ≥ 1, we have μ1(λ) ≥ 0. Integrating
(72)–(74), we get

∫ 1

−1

[
∂F1

∂Ã
− μ1

]
ϕ1 +

∫ 1

−1

∂F1

∂C̃
ϕ2 +

∫ 1

−1

∂F1

∂D̃
ϕ3 = 0,(76)
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∫ 1

−1

∂F2

∂Ã
ϕ1 +

∫ 1

−1

[
∂F2

∂C̃
− μ1

]
ϕ2 +

∫ 1

−1

∂F2

∂D̃
ϕ3 = 0,(77)

∫ 1

−1

∂F3

∂Ã
ϕ1 +

∫ 1

−1

∂F3

∂C̃
ϕ2 +

∫ 1

−1

[
∂F3

∂D̃
− μ1

]
ϕ3 = 0.(78)

We first prove that μ1(λ) is uniformly bounded for all 0 < λ 
 1. If not, passing
to a subsequence if necessary, we may assume that as λ → 0+, μ1(λ) → +∞. Divide
(76) by μ1; passing to the limit, we find that ϕ1 = 0. Similarly, ϕ2 = ϕ3 = 0. However,
this contradicts |ϕ1| + |ϕ2| + |ϕ3| = 1. Therefore μ1(λ) is nonnegative and uniformly
bounded. Passing to a subsequence if necessary, we may assume that μ1(λ) → μ1 ≥ 0
as λ → 0+.

Passing to the limit in (76)–(78), by Lemma A.1, (M3×3 − μ1I3×3)(ϕ1, ϕ2, ϕ3) =
(0, 0, 0). Since (ϕ1, ϕ2, ϕ3) �= (0, 0, 0), |M3×3−μ1I3×3| = 0. However, direct calculation
yields that |M3×3 − μ1I3×3| is equal to

−
(∫ 1

−1

hLS

)
D̂ ·

∫ 1

0

(fLS + gLS) ·
(∫ 1

−1

hLS

)
Â

·
{(

γ1 +
μ1

(
∫ 1

−1
hLS)D̂

)
·
(

1 +
μ1∫ 1

−1
(fLS + gLS)

)
· μ1

(
∫ 1

−1
hLS)Â

+

[
(1 − τ)(1 − γ2) +

μ1∫ 1

−1
(fLS + gLS)

]
· μ1∫ 1

−1
hLSÂ

+

(
γ1 +

μ1

(
∫ 1

−1
hLS)D̂

)
·
(

1 − γ2 +
μ1∫ 1

−1
(fLS + gLS)

)}
,

which is negative since μ1 ≥ 0, γ1 > 0, 0 ≤ τ ≤ 1, and γ2 < 1. Contradiction! This
completes the proof of Lemma A.3.

Proof of Proposition 3.5. By Lemma A.2, for 0 < λ 
 1, T (λ) has a unique
fixed point. By Lemma A.3, 1 is not an eigenvalue of D(Ã,C̃,D̃)T (λ)|(A∗,C∗,D∗). Hence

deg
(
I − T (λ), Ω, (0, 0, 0)

)
= (−1)β , where β is the number of eigenvalues (counting

algebraic multiplicity) of D(Ã,C̃,D̃)T (λ)|(A∗,C∗,D∗), which is greater than 1. By Lemma

A.3 we see that β = 0. Hence deg(I − T (λ),Ω, (0, 0, 0)) = 1 for 0 < λ 
 1.
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Abstract. An asymptotic analysis of a quasi-geostrophic model is presented to investigate the
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requirement of appropriate interfacial conditions provides a general matching solution, available only
for a certain range of δ. In the presence of a turning-point, which describes the solution transition
from monotonic to oscillatory behavior or vice versa, three asymptotic forms of the solutions are
derived, even for small values of δ.
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1. Introduction. Internal waves are long waves, with large amplitudes within
several kilometers, which are generally produced in the upper layer of the sea surface
by tidal fluctuations, differences of density, and atmospheric conditions. Internal
waves increase the sea surface current and create a stormy current, which affects
fishing grounds, en route vessels, rigs, etc. They may generate slowly varying local
currents in open ocean or in fjords. Such induced currents are important factors to be
considered when determining the dimensions of offshore platforms operating in deep
water areas where internal waves might occur.

When there is a vertical density gradient with a thin density interface, the internal
waves can be limited in their spectral density by sporadic local instabilities, and
when the waves break, they produce turbulence (Fernando and Hunt [1] and Hannan,
Fernando, and List [4]). This process produces a turbulent mixing between fluids
of different densities, leading to the overturning of waves by static instability. In
environmental fluid mechanics, an understanding of these mixing processes is essential
in determining water quality and also the physical properties and concentrations of
chemical and biological constituents in the well-mixed layers.

Thus, there is a general need for mathematical models of large-amplitude internal
waves propagating along an arbitrary pycnocline or thermocline. In this paper we
present an analytical study, to deal with this kind of wave when the density is a
continuous function of depth in the presence of a very sharp gradient, taking viscous
dissipation into account.

Several attempts have been made to investigate internal waves with respect to
the interfacial thickness. Smith and Vallis [2] have presented work on using freely
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F-60205 Compiègne Cedex, France (ouahsine@utc.fr).
‡UFR Math Pures et Appliquées, LML-UMR CNRS-8107, B.D. Paul Langevin, F-59655 Vil-

leneuve d’Ascq, France (bois@univ-lille1.fr).

1772



INTERNAL OCEAN WAVES WITH A SHARP DENSITY INTERFACE 1773

decaying geostrophic turbulence to understand and explain the vertical and horizontal
flow of energy through a stratified horizontally homogeneous geostrophic fluid. They
found that the stratification profile, in particular the presence of a pycnocline, has
significant qualitative effects on the efficiency and spectral pathways of energy flow.
With uniform stratification, energy in high baroclinic modes transfers directly and
almost completely to barotropic mode. In contrast, in the presence of ocean-like
stratification, kinetic energy in high baroclinic modes transfers intermediately to the
first baroclinic mode, whence it transfers inefficiently to the barotropic mode. The
efficiency of transfer to the barotropic mode is reduced as the pycnocline is made
increasingly thin.

In his theoretical study, Phillips [5] investigated the degradation of the first inter-
nal wave mode and considered the possible occurrence of a dynamic instability in the
thermocline where the rate of shear U induced by internal waves reaches its maximum.
He postulated the possibility of the occurrence of similar interfacial instabilities when
the local gradient Richardson number Ri = ΔbL/U2 < 1

4 for the case of the first
internal wave mode at a sharp density interface, where Δb is the characteristic buoy-
ancy jump and L is the characteristic length scale. He added that if the energy supply
to the internal wave mode continues after the above limiting condition is reached, a
local instability may develop. The possibility of such an instability occurring will be
investigated in our study.

Thus, in this paper, in place of Ri we reorganize a critical value of the parameter
of varying stratification, namely δ. With further decreases in δ, we deal with a sharp
density interface, and hence with the generation of waves that grow until they break
and overturn.

The possibility of exponential growth of internal wave amplitudes in horizon-
tally inhomogeneous layers has been suggested by Navrotsky and Simonenko [16] and
Navrotsky [17]. They have analyzed the propagation of weakly nonlinear internal
waves with slowly varying amplitudes (compared to the wave period) in a layer with
a horizontal gradient of buoyancy frequency dN(z, x)/dx. They showed that such
waves could produce effective mixing within the thermocline. The horizontal varia-
tion of the vertical density gradient favorable for the amplification of high-frequency
propagating waves can be developed through the deformation of the density field by
long topographic or tidal internal waves.

In this analysis, we discuss a linear analysis for deriving the growth rate of the
wave amplitude. The instability described here can be interpreted as a criterion
in which the wave amplitude grows, according to the parameter δ (see Figure 3.2),
to a level such that δ drops below a critical value; then the disturbances can grow
exponentially, whence the primary wave amplitude exceeds a certain limiting value
to such an extent that an effective discontinuity or front may develop (Basovich and
Tsimring [3] and Badulin, Shrira, and Tsimring [6]).

The structure of this paper is as follows. In section 2 equations of motion with
continuous density with variable gradient stratification are introduced. The mathe-
matical problem with the asymptotic analysis is formulated, and the method of solving
it is discussed. Section 3 considers the development of the solution as the character-
istic scale of varying stratification decreases. Section 4 is devoted to the study of the
three-layer discontinuous gradient model and to giving stable solutions in the case of
the existence of turning-points. Section 5 extends this theory to seek stable solutions
in the case of no turning-points. Observational evidence of large-amplitude internal
waves and discussions are presented in section 6. Section 7 concludes the paper.
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2. Equations of motion and formulation of the problem. The set of di-
mensionless equations of incompressible stratified fluid dynamics can be written in
the Boussinesq approximation in a rotating flow (Ouahsine [8] and Bois [10]) as

�

(
Ro

(
St

∂v

∂t
+ v.Dv + w

∂v

∂z

)
+ (1 + Roβy)k ∧ v

)
+

Ro

Fr2
Dp = Ev

∂2v

∂z2
+ EhD

2v,

∂p

∂z
+ Bo� = 0,

D.v +
∂w

∂z
= 0,(2.1)

St
∂�

∂t
+ v.D�+w

∂ρ

∂z
= 0.

These equations are valid for long wave motions, say γ = H/L � 1, where
L and H are the horizontal and vertical characteristic scales, respectively, under
the Boussinesq approximation (Pedlosky [12]) and the hydrostatic balance assump-
tions. Vectors (i, j,k) are unit vectors eastwards, northwards, and locally upwards;
D = (∂/∂x , ∂/∂y) is the horizontal gradient; t is the time; p is the pressure; and
β = (L2/U) (df0/dy)y=0 is the beta-plane parameter, where f0 = 2Ω sinλ0 is the local

Coriolis parameter, λ0 is the latitude, Ω = 7.3 10−5 rad/s is the Earth’s rotation,
and a0 is the Earth’s radius. Additionally, v is the horizontal velocity vector (with
eastward and northward components u and v), and w is the vertical velocity.

Let T0, U0, �00,Π be the characteristic scales for time t, for the horizontal velocity
(u, v), for the density �, and for the pressure p, respectively. The nondimensional
parameters appearing in these equations are the Rossby number Ro = U0/f0L, the
Froude number Fr = U0/

√
gH, the Strouhal number St = L/U0T0, the number Bo =

�00gH/Π, and the Ekman numbers for vertical and horizontal kinematics viscosities,
respectively Ev = ν/f0H

2 and Eh = ν/f0L
2.

The boundary conditions at the bottom (on z = −1) are v = 0 and w = 0, and
the initial conditions (at t = 0) are v = v0 and p = p0, where v0 and p0 are known.

We assume that, at the sea surface (on z = 0), the steady state motion is driven
by the surface wind stress [τ ]w. It follows that the stress continuity at the ocean-
atmosphere interface may be given by (Gill [11])

[τ ]i = [−pnId + 2μnD]i and p = pa,(2.2)

where n is the unit normal vector to the interface, D is the symmetric part of the
deformation rate tensor, μ is the eddy viscosity, Id is the unit vector tensor, and pa is
the atmospheric pressure. The bracket [u]i denotes the jump of the function u across
the interface i. This last condition leads to the following surface boundary condition:[

−p + 2μ
U

L

∂w

∂z

]
i

= 0,

[
μ
U

L

∂v

∂z

]
i

= 0.(2.3)

As the parameters Ro, Ev, Eh, and Fr become too small, the initial condition
strategy fails, giving rise to a singular perturbation problem. Eliminating this singu-
larity requires the use of asymptotic analysis. To proceed further with this problem
we introduce the following assumptions:

Ro = O(Fr), ω =
Ro2

Fr2
, Eh = ÊhRo2, Ev = ÊvRo2,(2.4)
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and we next assume that the parameters (St, ω, Êh , Êv) are fixed and are of O(1).
Thus, the asymptotic expansion of v, w, p, ρ with respect to Ro provides, at the zeroth
order, expansions:

p0 = p0(z), �0 = �0(z), Dp0 = 0,

v0 =
ω

�0
kΛDp1,

dp0

dz
= −Bo�0.(2.5)

The last two equations are the geostrophic and the hydrostatic assumptions, re-
spectively.

Since the pressure fluctuation is the basic dynamical characteristic of the current,
we assume that the wave motion may be specified in terms of the perturbation p1

deduced, after some calculations from (2.1). Thus at the order R0 we obtain the
so-called quasi-geostrophic potential equation (Pedlosky [12]):

dh
dt

[
D2p1 +

ω

B0

{
∂

∂z

{
−�0(z)

�
′
0(z)

∂p1

∂z

}
+

∂p1

∂z

}
+ �0(z)βωy

]
= 0,(2.6)

where dh

dt = St ∂
∂t + v0.D and D = ∂

∂x i + ∂
∂y j.

The problem is now reduced to the study of the pressure perturbation p1 governed
by (2.6). The associate boundary conditions are determined supposing that there
exist two Ekman boundaries at the ocean-atmosphere interface and at the bottom.
To remain within the Ekman-layer thickness as Ev is small, the matching procedure
between layers leads, after some calculation, to the following boundary conditions:

dh
dt

(
∂p1

∂z

)
=

{
Γ(0)κ(0)�D2(�−1

0 p1)z=0,

κ(−1)�D2(�−1
0 p1)z=−1,

(2.7)

where

κ(z) =

(
Êv

2

) 1
2

�′0(z)�0(z)
− 1

2 ,

� =
Bo

ω
= O(1),(2.8)

Γ(z) = −1 +
μ�0(z)

1
2

μ�0(z)
1
2 + μa �a0(z)

1
2

< 0,

with μ the coefficient of the dynamic viscosity. The superscript “a” refers to the atmo-
spheric terms and indicates the signature of the atmospheric effects in the matching
procedure.

In order to analyze how the solution of (2.6) behaves in the presence of the density
gradient, we consider only the vertical structure of the pressure perturbation. The
study of the vertical structure of the upper ocean can be useful because pressure
and bulk temperatures or salinities tend to vary more along a vertical distance of
a hundred meters than along a horizontal distance of a thousand kilometers. This
holds true over many parts of the world’s oceans where it is the case that vertical
exchange processes within the water column are likely to affect local conditions much
more rapidly than horizontal advection and horizontal mixing. It follows that for our
purposes we treat the upper ocean layers as being homogeneous along the horizontal;
thus we consider the propagation of monochromatic waves in the form

p1(x, y, z, t) = P (z) exp {i(kx + ly − σt)} ,(2.9)
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where k and l are the characteristic wave numbers and σ is the frequency.
Substituting (2.9) into (2.6) and (2.7), we obtain

d

dz

(
1

ρ
′
0(z)

dP (z)

dz

)
+

λ

ρ0(z)
P (z) = 0,(2.10)

where

λ = K2
h +

kβ

σ
(2.11)

is a separation parameter to be determined in the analysis below. K2
h = k2 + l2 is the

horizontal wave number, and k and l are the wave numbers in the x- and y-directions;
σ is the frequency of the free harmonic waves.

This is an eigenvalue Sturm–Liouville problem for the vertical structure of the
pressure perturbation P (z), where λ, assumed to be function of the wave frequency
σ from (2.11), is the problem eigenvalue. The associated boundary conditions are

(−σSt + v0.∇)
dP (0)

dz
− α2P (0) = 0,

(−σSt + v0.∇)
dP (−1)

dz
− α1P (−1) = 0,(2.12)

where v0 is given by (2.5), ∇ = ki + lj, and α1 and α2 are given by

α2 = iK2
h

(
Êv

2

)1/2

Γ(0)�
′

0(0)�
−1/2
0 (0),

α1 = iK2
h

(
Êv

2

)1/2

�
′

0(−1)�
−1/2
0 (−1).

(2.13)

We note that the horizontal velocity v0 depends on the pressure perturbation p1

(2.5). Thus, its presence at the boundary conditions (2.12) is a nonlinear contribution
to the eigenvalue problem.

3. Vertical structure of monochromatic internal Rossby waves with the
stratification profile. In this section we deal with the set of equations (2.10) and
(2.12). The first fact which we must notice is that the solution P (z) depends on
the boundary conditions. In other words, we deal with the Sturm–Liouville problem,
which is essentially the problem of determining the dependence of the general behavior
of the solution P (z) on the parameter λ (or σ) and the dependence of the eigenvalues
of λ (or σ) on the complexity of the boundary conditions imposed on P (z). This
complexity is due, first, to the presence of the frequency σ in the boundary conditions
that render the set of eigenfunctions nonorthogonal. In order to overcome this diffi-
culty, the assumption St = ε � 1 is made, whereSt is the Strouhal parameter. This
assumption means that we consider a quasi-stationary flow.

3.1. Case of a variable gradient stratification profile. In the case of a non-
uniform density distribution along the vertical, we consider a density distribution in
tanh form, which may approximate a typical oceanic profile (see Figure 3.1):

ρ0(z) = ρ00

[
1 −N2

m tanh

(
z + h

δ

)]
,(3.1)
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Fig. 3.1. An example of a typical Brunt–Väisälä frequency profile (taken from [6]).

Fig. 3.2. Schematic presentation of the density distribution in tanh form.

where N2
m � 1 and ρ00 are constants. The parameter δ is the varying stratification

parameter, which varies in the range 0 < δ ≤ 1. It may roughly define the thickness
of the layer along which ρ0(z) steeply varies (see Figure 3.2). An experimental study
using a density distribution in a tanh profile was considered in Pawlak and Armi [9].

Following a classical procedure (see, for example, [13]), the wave equations (2.10)
and (2.12) may be transformed into a suitable form by introducing in place of z a new
variable ξ, defined as follows:

ξ =
1

J

∫ z

−1

(
−ρ0(t)

ρ
′
0(t)

)1/2

dt,(3.2)

with

J =

∫ 0

−1

(
−ρ0(t)

ρ
′
0(t)

)1/2

dt.(3.3)
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With this form of J , the new variable ξ evolves in the range [0, 1] as z evolves in
the range [−1, 0]. Next, in place of the function P (z) we introduce a new function:

X(ξ) = P (z) 4

√
−1

ρ0(z)ρ
′
0(z)

.(3.4)

This yields the following modified Sturm–Liouville problem for X(ξ):

d2X(ξ)

dξ2
−
(
η2
1 + V (ξ, δ)

)
X(ξ) = 0,(3.5)

with

dX(1)

dξ
− aX(1) = 0 and

dX(0)

dξ
− bX(0) = 0,

where η2
1 = λ.J2 (from (2.11) and (3.3)) and

V (ξ, δ) = (−ρ0(z)ρ
′
0(z))

1/4 d2

dξ2

[
4

√
−1

ρ0(z)ρ
′
0(z)

]
,

a =
−α2J

v0.∇
ρ0(0)

ρ
′
0(0)

− 1

4
(ρ0ρ

′
0)

[
d

dξ

(
−1

ρ0ρ
′
0

)]
ξ=1

,

b =
−α1J

v0.∇
ρ0(−1)

ρ
′
0(−1)

− 1

4
(ρ0ρ

′
0)

[
d

dξ

(
−1

ρ0ρ
′
0

)]
ξ=0

,(3.6)

where v0 is given by (2.5) and ∇ = ki + lj. At this stage of analysis, we note that
(2.10) and (2.12) correspond to the Sturm–Liouville eigenproblem, which is a problem
of determining the dependence of the behavior of the solution P (z) on the parameter
λ (or σ). Thus, the presence of the frequency σ in the boundary conditions renders
the set of eigenfunctions nonorthogonal. In order to overcome this difficulty, the
assumption St = ε � 1 is made, whereSt is the Strouhal parameter. This assumption
means that we consider a quasi-stationary flow.

To proceed further with this problem, we have to find nontrivial solutions of
the homogeneous set of equations (3.5), and we have to determine the values of the
separation parameter λ (eigenvalues) for these nontrivial solutions (eigenfunctions).
Thus, in the following analysis we consider only the case where η2

1 is negative: η2
1 =

−μ2
1. Since η2

1 is negative, we have

λJ2 = k2 + l2 +
kβ

σ1
< 0.(3.7)

Using a classical mathematical argument (see Ince [14]), the eigenfunctions X(ξ) of
the problem (3.5) can be given by

X(ξ) = c1 cos(μ1ξ) + c2 sin(μ1ξ) +
1

μ1

∫ ξ

ε

[V (t, δ) sin (μ1(ξ − t))X(t)] dt,(3.8)

where c1and c2 are arbitrary and 0 ≤ ε ≤ 1. Thus, from the first boundary condition
at ξ = 1, we deduce that

c2 =
c1b

μ1
,(3.9)
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and from the second condition at ξ = 0, we deduce the following eigenvalue equation:

tan g(μ1) =
c1(b− a) +

∫ 1

0
|V (t, δ)|

[
cos(μ1t) + a

μ1
sin(μ1t)

]
X(t)dt

c1

(
μ1 + b

μ1

)
−
∫ 1

0
|V (t, δ)|

[
sin(μ1t) − a

μ1
sin(μ1t)

]
X(t)dt

.(3.10)

The roots of this equation form a discrete spectrum (μ1k, k = 1, 2, . . . ). However,
X(ξ) is unknown; thus if μ1k are sufficiently large and on using (3.9), a simple estimate
of the solution (3.8) can satisfy an asymptotic form

X(ξ) = c1 cos(μ1ξ) +
g(μ1ξ)

μ1
,(3.11)

where g(μ1ξ) is a bounded function as μ1 −→ ∞. If we set this asymptotic form (3.11)
in (3.10), we obtain

tan(μ1k) ∼=
(b− a) + 1

2

∫ 1

0
|V (t, δ)| dt + O( 1

k )

μ1 + O( 1
k )

(k = 1, 2, . . . ).(3.12)

By using the fixed point method, we can estimate the solution of the above
equation. Thus, we obtain

μ1k
∼= kπ +

(b− a) + 1
2

∫ 1

0
|V (t, δ)| dt

kπ
+ O

(
1

k2

)
(k = 1, 2, . . . ).(3.13)

The solution of (3.8) can be obtained by successive approximations in the form

X(ξ, μ1) =

∞∑
k=0

xk(ξ, μ1),(3.14)

where

x0(ξ, μ1) = c1

(
cosμ1ξ +

b

μ1
sinμ1ξ

)
,(3.15)

xk+1(ξ, μ1) =
1

μ1

∫ ξ

ε

sinμ1(ξ − t)V (t)xk(t, μ1)dt.(3.16)

If |V (ξ)| ≤ A, where A is an upper bound, we can prove by induction that

|xk+1(ξ, t)| ≤
|c1| + |c1b/μ1|

k!

Ak |ξ − ε|k

μk
1

, k = 1, 2, . . . .(3.17)

The solution form, where k = 0, is given in (3.15).
We thus see from (3.17) that xk+1(ξ, t) is uniformly convergent in the interval ξ ∈

[0, 1] as A is a bounded number, and that xk+1(ξ, t) is also an asymptotic expansion
of X(t, ξ) as μ1 → ∞.

However, since the upper bound A becomes sufficiently large as δ diminishes, this
leads to the increasing of |xk+1(ξ, t)| to a large wave amplitude. The same increasing
feature may be derived from the Schwartz inequality. This establishes the existence
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Fig. 3.3. Variability in the structure eigenfunctions with the parameter δ for the eigenmode
k = 3. The plots correspond to the numerical solution.

of a fixed number such that |xk+1(ξ, t)| < M. It remains to show from (3.16) that the
solution amplitude verifies

|xk+1(ξ, t)| ≤ |c1|
(

1 +
b2

μ2
1

)1/2

+
M

μ1

1∫
0

|V (t, δ)| dt(3.18)

and hence

M ≤ |c1|
√

1 +
b2

μ2
1

1

1 − 1
μ1

∫ 1

0
|V (t, δ)| dt

.(3.19)

The validity of the last inequality depends on the behavior of the denominator. In
this situation two problems arise. The first of these is that the upper bound must
be positive; it follows that the expression in the denominator must be positive in
turn. The second problem is the finding of a critical value δcri to ensure a bounded
upper bound M. Then it will be necessary to impose restrictions on δ to prevent
the denominator of (3.19) from vanishing. This consists of discarding the condition

μ1 =
∫ 1

0
|V (t, δ)| dt. This requirement involves the fact that the solution may hold in

the interval δcri < δ < 1, while in the interval 0 < δ ≤ δcri the upper bound M
becomes sufficiently large so that the wave amplitude dominates the flow dynamics.
Thus a significant increase of the energy is acquired as the wave approaches the layer
of the maximum density gradient (Figure 3.3). The wave motion focuses at a certain
depth h (0 < h < 0.2). This depth is determined by the minimum of the characteristic
scale of the varying stratification parameter δ (Figure 3.4). The growth of the solution
amplitude is accompanied by the transformation of the vertical structure of internal
wave modes and renders the vertical wave propagation unstable. The same features
were also found in previous laboratory experiments (Stamp and Jacka [7] and Simpson
and Linden [15]).
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Fig. 3.4. Growth rate of the eigenmodes as a function of the varying stratification parameter δ.

The instability described here can be interpreted as a criterion in which the wave
amplitudes grow, according to the parameter δ, to a level such that δ drops below a
critical value δcri. Then the disturbances can grow exponentially, whence the primary
wave amplitude exceeds a certain limiting value to such an extent that an effective
discontinuity or front may develop (see Figures 3.3 and 3.4).

The exponential growth of internal wave amplitudes in horizontally inhomoge-
neous layers has been studied by Navrotsky and Simonenko [16] and Navrotsky [17].
They showed that such waves could produce effective mixing within the thermocline,
and higher modes of internal waves can also play an important role in turbulence
generation, especially in a multilayered stratification.

4. Finding the solutions for thin interface layers in the presence of
turning-points. In this section we seek to obtain eigenvalues, as the stratification
rate parameter δ is very small. For simplicity we proceed under the assumption that
Êv � 1 (Kraus [18]). Yet from the preceding section, the analysis of the vertical
structure of the pressure perturbation explicitly exploits the thinness of these layers
and does not reveal any particular problem due to the presence of the parameter Êv

at the boundary conditions.
In the following we deal with the set of equations (3.5), which can be written as

d2X(ξ)

dξ2
+ λ2q(ξ, δ)X(ξ) = 0,(4.1)

with the associated boundary conditions

dX(1)

dξ
− aX(1) = 0 and

dX(0)

dξ
− bX(0) = 0,(4.2)

where λ2 = 1/4δ4 with δ � 1 , and the function q(ξ, δ) reads

q(ξ, δ) = (ξ − ξ1)(ξ − ξ2)�(ξ1, ξ2),(4.3)

with

�(ξ1, ξ2) =
1

cosh2
(

ξ1−1+h
δ

)
cosh2

(
ξ2−1+h

δ

) ,
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Fig. 4.1. Schematic presentation of the solution behavior in presence of a turning-point ξ0.

Fig. 4.2. Three-layer schematic representation of the density, in the case when δ � 1.

ξ1 = 1 − h− δ argth
√

2 − 4μ2
1δ

2,(4.4)

ξ2 = 1 − h + δ argth
√

2 − 4μ2
1δ

2.(4.5)

The function q(ξ, δ) may vanish if the variable ξ is equal to ξ1 or ξ2, called turning-
points. The core of the problem is to seek a stable solution, for a given fixed value of μ1,
when the stratification parameter δ is very small and when the function q(ξ, δ) changes
the sign as ξ evolves from 0 to 1 on passing over the turning-points (see Figure 4.1).
Elsewhere, as δ → 0, we deal with three cases (Figure 4.2):

(i) as ξ > 1 − h, ξ−1+h
δ → +∞;

(ii) as ξ > 1 − h, ξ−1+h
δ → +∞;

(iii) as ξ = 1 − h, ξ−1+h
δ = 0.

Note that from (4.4) and (4.5), q(ξ, δ) may change the sign in the range

(μ1δ) ∈
]
−
√

2

2
,
−1

2

[
∪
]

1

2
,

√
2

2

[
.(4.6)

To further proceed with this problem we use the WKB approximation. We seek
solutions in the form

X(ξ) = exp±iφ(ξ) .(4.7)

Substituting the last equation into the wave equation (4.1), this yields the following
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dispersion equation:

iφ
′′
(ξ)

φ′2(ξ)
+

q(ξ)

φ′2(ξ)
− 1 = 0.(4.8)

If we choose φ such that

φ
′′
(ξ)

φ′2(ξ)
� 1 and

q(ξ)

φ′2(ξ)
− 1 = 0,(4.9)

we deduce from the first condition the inequality

q
′
(ξ)

2
√
q(ξ)

� q(ξ),(4.10)

which remains verified as δ → 0. From (4.8) and the second condition in (4.9), φ may
be approximated as

φ(ξ) ∼= ±
∫ √

q(ξ) +
i

4
ln q(ξ);(4.11)

then from (4.7), the approximate solution takes the form

X(ξ, δ) ∼=
1

4
√
q(ξ)

{
α exp

[
iλ

∫ √
q(ξ)dξ

]
+ β exp

[
−iλ

∫ √
q(ξ)dξ

]}
,(4.12)

where α and β are arbitrary and λ = 1/2δ2.
The validity of this asymptotic form given in (4.12) depends on the sign of the

function q(ξ). It has an oscillatory character if q(ξ) is positive and has a monotonic
character if q(ξ) is negative. Hence, there exists a point ξ0 such that, at the vicinity
of this point, the transition takes place from one type of behavior to the other (see
Figure 4.1).

Thus, if q(ξ) > 0, the solution is oscillatory, and may read

X1(out)(ξ, δ) ∼=
1

4
√
q(ξ)

a1 sin

[
λ

∫ √
q(ξ)dξ

]
+ b1 cos

[
−λ

∫ √
q(ξ)dξ

]
.(4.13)

If q(ξ) < 0, the solution is monotonic, and may read

X2(out)(ξ, δ) ∼=
1

4
√
−q(ξ)

a2 exp

[
λ

∫ √
−q(ξ)dξ

]
+ b2 exp

[
−λ

∫ √
−q(ξ)dξ

]
.(4.14)

The solutionsX1(out)(ξ, δ) and X2(out)(ξ, δ) are valid above and below the turning-
points and are called outer solutions. In the vicinity of the turning-points ξ1 and ξ2,
we use Langer’s transformation (see Nayfeh [19]):

x = ϕ(ξ), Φ = ψ(x)X.(4.15)

The transformation (4.15) carries (4.1) into

d2Φ

dx2
+

1

ϕ′2

(
ϕ

′′ − 2
ϕ

′
ψ

′

ψ

)
dΦ

dx
+

1

ϕ′2

(
λ2q + ψ

(
ψ

′

ψ2

)′ )
Φ = 0.(4.16)
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We determine ψ and ϕ so that

ϕ
′′ − 2ϕ

′
ψ

′

ψ = 0 ⇒ ψ =
√

ϕ′(4.17)

and

−q

ϕ′2
= ϕ,(4.18)

so that (4.16) becomes

d2Φ

dx2
− λ2xΦ = v(x)Φ,(4.19)

where

v(x) =
1

2

ϕ
′′′

ϕ′3
− 3

4

ϕ
′′2

ϕ′4
.(4.20)

At the vicinity of the turning-point ξ1 the solutions of (4.18) are

2

3
(ϕ1 )3/2 =

∫ ξ

ξ1

√
(t− ξ1)(ξ2 − t)�(ξ1, ξ2)dt if ξ > ξ1,(4.21)

2

3
(−ϕ1)

3/2 =

∫ ξ1

ξ

√
(ξ1 − t)(ξ2 − t)�(ξ1, ξ2)dt if ξ < ξ1.(4.22)

In the same manner, at the vicinity of the turning-point ξ2 the solutions of (4.18)
read

2

3
(−ϕ2)

3/2 =

∫ ξ2

ξ

√
(t− ξ1)(t− ξ2)�(ξ1, ξ2)dt if ξ > ξ2,(4.23)

2

3
(ϕ2 )3/2 =

∫ ξ

ξ2

√
(t− ξ1)(ξ2 − t)�(ξ1, ξ2)dt if ξ < ξ2.(4.24)

From (4.21) as ξ → ξ1, ϕ1 → 3
√

(ξ2 − ξ1)�(ξ1, ξ2).(ξ − ξ1); hence from (4.20) the
function v = O(1). Thus as λ is large, this leads to the approximated equation

d2Φ

dx2
− λ2xΦ = 0,(4.25)

whose solution is

Φ = c1Ai(λ2/3x) + c2Bi(−λ2/3x),(4.26)

where c1 and c2 are constants of integration. Ai and Bi are the Airy functions of
the first and second kind. Applying the previous results and (4.15), the asymptotic
solution for ξ > ξ1 reads

X1(in)(ξ, δ) ∼=
1√
ϕ

′
1

{
c
(1)
1 Ai

[
λ2/3ϕ1(ξ)

]
+ c

(1)
2 Bi

[
−λ2/3ϕ1(ξ)

]}
.(4.27)
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Fig. 4.3. Sketch of the matching procedure in the presence of turning-points.

Similarly, the asymptotic solution for ξ < ξ2 reads

X2(in)(ξ, δ) ∼=
1√
ϕ

′
2

{
c
(2)
1 Ai

[
λ2/3ϕ2(ξ)

]
+ c

(2)
2 Bi

[
−λ2/3ϕ2(ξ)

]}
.(4.28)

These solutions X1(in) and X2(in) (see Figure 4.3) are available for ξ in the range
ξ1 + ε < ξ < ξ2 − ε (ε � 1) and are called inner solutions. ϕ1 and ϕ2 are given by

(4.21) and (4.24); c
(1)
1 , c

(1)
2 , c

(2)
1 , c

(2)
2 are constants of integration.

The matching procedure (Figure 4.3) between the outer solutions given in (4.13)
and (4.14) and the inner solutions given in (4.27) and (4.28) may lead to the relation-

ship that exists between the constants c
(1)
1 , c

(1)
2 , c

(2)
1 , c

(2)
2 and a1, a2, b1, b2.

4.1. Matching procedure between inner solutions. To match the solutions
given in (4.27) and (4.28) we first use the asymptotic forms of large positive arguments
of the Airy functions (Nayfeh [19]) given by

Ai(z) =
1

2
√
π
z−1/4 exp

(
−2

3
z3/2

)[
1 + O

(
2

3
z3/2

)−1
]
,

Bi(z) =
1

2
√
π
z−1/4 exp

(
2

3
z3/2

)[
1 + O

(
2

3
z3/2

)−1
]
.(4.29)

These last assumptions transform (4.27) and (4.28) into

X1(in)(ξ, δ) ∼=
λ−1/6

4
√
−q(ξ)

√
π

{
c
(1)
1

2
exp

(
−2

3
λϕ

3/2
1

)
+ c

(1)
2 exp

(
2

3
λϕ

3/2
1

)}
,(4.30)

X2(in)(ξ, δ) ∼=
λ−1/6

4
√
−q(ξ)

√
π

{
c
(2)
1

2
exp

(
−2

3
λϕ

3/2
2

)
+ c

(2)
2 exp

(
2

3
λϕ

3/2
2

)}
.(4.31)
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Equating (4.30) and (4.31) gives

c
(1)
1

2
exp

(
−2

3
λϕ

3/2
1

)
+ c

(1)
2 exp

(
2

3
λϕ

3/2
1

)
=

c
(2)
1

2
exp

(
−2

3
λϕ

3/2
2

)
+ c

(2)
2 exp

(
2

3
λϕ

3/2
2

)
.

(4.32)

If we introduce

Δ =
2

3
λ(ϕ

3/2
1 + ϕ

3/2
2 ) =

∫ ξ2

ξ1

√
(t− ξ1)(ξ2 − t)�(ξ1, ξ2)dt,(4.33)

we obtain from (4.32)

c
(1)
1

2
+ c

(1)
2 =

c
(2)
1

2
exp(−Δ) + c

(2)
2 exp(Δ),

c
(1)
2 − c

(1)
1

2
=

c
(2)
1

2
exp(−Δ) − c

(2)
2 exp(Δ),(4.34)

so that

c
(1)
2 = c

(2)
1 exp(−Δ),

c
(2)
2 = c

(1)
1 exp(−Δ).(4.35)

Thus for (4.30) and (4.31) to have a bounded solution as λ is large, it is necessary

that c
(1)
2 and c

(2)
2 vanish. It follows that Δ must be strictly positive.

Thus, on using the ξ1 and ξ2 expressions given by (4.4) and (4.5), the integration
of (4.33) gives

Δ =
2

3
λ(ϕ

3/2
1 + ϕ

3/2
2 ) =

π

2

δ2argth2
√

2 − 4μ2
1δ

2

cosh( ξ1−1+h
δ ) cosh( ξ2−1+h

δ )
(4.36)

and shows that Δ is positive for all values of δ > 0.

4.2. Matching procedure between inner and outer solutions. To match
the outer solutions (4.13) and (4.14) with the inner solutions (4.27) and (4.28) (see
Figure 4.3), we use a method similar to that employed in subsection 4.1, the asymp-
totic forms of large but negative arguments of the Airy functions given by

Ai(−z) =
1√
π
z−1/4 sin

(
2

3
z3/2 +

π

4

)
,

Bi(−z) =
1√
π
z−1/4 cos

(
2

3
z3/2 +

π

4

)
.(4.37)

These last assumptions transform (4.27) and (4.28) into

X1(in)(ξ, δ) ∼=
λ−1/6

4
√
−q(ξ)

√
2π

(c
(1)
1 − c

(1)
2 ) sin

[
2

3
λ(−ϕ1)

2/3

]

+ (c
(1)
1 + c

(1)
2 ) cos

[
2

3
λ(−ϕ1)

2/3

]
,

(4.38)
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X2(in)(ξ, δ) ∼=
λ−1/6

4
√
−q(ξ)

√
2π

{
(c

(1)
3 − c

(1)
4 ) sin

[
2

3
λ(−ϕ2)

2/3

]

+ (c
(1)
3 + c

(1)
4 ) cos

[
2

3
λ(−ϕ2)

2/3

]}
.

(4.39)

We shall now connect these last asymptotic representations with those obtained in
the outer regions given by (4.13) and (4.14). We obtain the following relationships:

(a1, b1) =
λ−1/6

√
2π

{
(c

(1)
1 + c

(1)
2 ), (c

(1)
1 − c

(1)
2 )

}
,(4.40)

(a2, b2) =
λ−1/6

√
2π

{
(c

(2)
1 + c

(2)
2 ), (c

(2)
1 − c

(2)
2 )

}
,(4.41)

where c
(1)
2 and c

(2)
2 are given in (4.35)

5. Solving the solutions for thin interface without turning-points. From
(3.5) and from the density profile given by (3.1), the wave equation reads

d2X(η)

dη2
− 1

4

(
tanh2 η − [2 − 4δ2μ2

1]
)
X(η) = 0,(5.1)

where η = ξ−1+h
δ and δ � 1. The associated boundary condition with assumption

Êv � 1 reads

X(η) = 0 as η → ±∞.

Note that, for a given fixed value of μ1, the expression tanh2 η − (2 − 4δ2μ2
1) cannot

change sign in the range

(μ1δ) ∈
[
−1

2
,
1

2

]
.(5.2)

Using the transformation

X(η) =
1

cosha η
Φ(u),(5.3)

where a is a factor to be determined in what follows and u is given by

u =
1

2
(1 + tanh η),(5.4)

the substitution of these transformations into (5.1) leads to the following hypergeo-
metric differential equation for Φ:

u(u− 1)Φ
′′
(u) + (1 + a)(1 − 2u)Φ

′
(u) −

[
1

4
+ a(a + 1)

]
Φ(u) = 0,(5.5)

where u = 0 and u = 1 are singular points as η → ±∞ and a verifies

a = ±1

4

√
1 − 4μ2

1δ
2.(5.6)
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In the following we will keep only the negative sign of the parameter a to ensure
bounded solutions as u is equal to 0 or 1. Thus the analytical solution (Abramovitz
and Stegun [20] and Bender and Orzag [21]), which is finite at u = 0 (η → −∞)
satisfying the condition Φ(u = 0) = 0, is given by

Φ0(u) = Au−aF

(
1

2
,
1

2
; 1 − a;u

)
,(5.7)

where F is the hypergeometric function given by Gauss series

F (α, β; γ, z) =

N∑
n=0

(α)n(β)n
(γ)n

zn

n!
.(5.8)

The analytical solution, which is finite at u = 1 (η → +∞) satisfying the condition
Φ(u = 1) = 0, is given by

Φ1(u) = B(1 − u)−au−aF

(
1

2
+ a,

1

2
+ a; 1 − a; 1 − u

)
,(5.9)

where A and B are constants of integration. They may be determined using the

normalization formula
∫ 1

0
Φ2du = 1.

We note that the factor (−a) present in (5.7) and (5.9) must be positive, in order
that the solutions Φ0(u) and Φ1(u) be finite as u is equal to 0 or 1.

For the solution to be continuous at u = 1 , we shall transform (5.7) in the neigh-
borhood of u = 1 into two independent solutions, by using the linear transformation
formulas given in [20, p. 559]. This step is necessary to transform (5.7) in power of
(1 − u) into a convenient form for matching (5.7) with (5.9). We obtain

Φ01(u) = α
(1)
0

[
Au−aF

(
1

2
,
1

2
; 1 + a; 1 − u

)]
(5.10)

+ α
(2)
0

[
A(1 − u)−au−aF

(
1

2
− a,

1

2
− a; 1 − a; 1 − u

)]
,

with

α
(1)
0 =

Γ (1 − a) Γ(−a)

Γ( 1
2 − a)Γ( 1

2 − a)
,(5.11)

α
(2)
0 =

Γ (1 − a) Γ(a)

Γ( 1
2 )Γ( 1

2 )
,(5.12)

where Γ is the gamma function.
In order to determine a uniformly valid solution as u varies from 0 to 1, we must

connect the solutions given in (5.9) and (5.10).
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However, the matching will be valid only if the first term of (5.10) vanishes, i.e.,

α
(1)
0 = 0. It follows that, since the gamma function satisfies the property

1

Γ(−n)
= 0 for n ≥ 0,(5.13)

then for n any positive integer (n ≥ 0), the coefficient α
(1)
0 (see 5.11) may vanish by

setting

1

2
− a = −n (n = 0, 1, . . . ).(5.14)

On using (5.6), this leads to the following relationship between the parameters δ and
μ1:

(μ1δ)n = ±
√
n2 + n +

1

4
(n = 0, 1, 2, . . . ).(5.15)

As n � 1 the values of (μ1δ)n become much larger than the lowest and highest limits
of the interval given by (5.2). If this is the case, we have to deal with a turning-point
problem. It turns out that the last analysis falls down.

Thus, the criterion of our analysis validity given in (5.2) will be satisfied only for
the case n = 0. If this limiting requirement is met, then, from (5.15), the relationship
between the eigenvalue μ1 and the interface thickness δ takes the form (μ1δ)0 = ± 1

2 .
The associated solution Φ01(u) reads

Φ01(u) = α
(2)
0

[
A(1 − u)−au−aF (−n,−n; 1 − a; 1 − u)

]
.(5.16)

6. Observational evidence and discussion. Several of the characteristics of
large-amplitude internal waves in the presence of a strong stratification or of a thin
interface, as discussed in the previous sections, can be observed in the real ocean.

In the Strait of Gibraltar, experiments were conducted in 1985–1986 to examine
the structure of the interface layer between the inflowing Atlantic waters and the
outflowing Mediterranean waters in this strait [26]. It was found that the interface is
60–100 m thick, with a strong vertical salinity gradient identified by fitting individ-
ual salinity profiles to a piecewise-linear, three-layer model. The interface is deeper,
thicker, fresher, and colder on the west end of the strait than in the Narrows, where
there is a minimum in thickness and a maximum in salinity gradient. Property vari-
ations in all three layers are also cast in terms of the three principal water types
involved in the exchange. The complexity of interaction between the interface and
the upper and lower layers argues against the use of two-layer models to characterize
the exchange through the Strait of Gibraltar (see Bray, Ochoa, and Kinder [26] for
more details).

In the Mozambique Channel, internal waves were observed in the narrowest pas-
sage between Mozambique and Madagascar [27]. By using the ADCP-observations
and CTD-profiles,1 a strong pycnocline has been found. Below the pycnocline, this
is the cross-channel averaged value of N(z). For the upper layer the cross-channel
differences in pycnocline depth lead to smearing of the pycnocline when N(z) is av-
eraged. The pattern becomes particularly complicated due to beam scattering at the

1ADCP = acoustic Doppler current profiler; CTD = conductivity, temperature, and depth
recorder.
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Fig. 6.1. Measured mean buoyancy frequency profile N (cph) over the upper slope and shelf
during summer PRIMER (taken from [23]; reproduced/modified by permission of American Geo-
physical Union). Also shown are the maximum and minimum N values at each depth from the
horizontally averaged SeaSoar sections.

pycnocline and the multiple reflections back into the basin. The authors argue that
multiple reflections in a basin of sloping walls can in principle lead to the formation
of internal-wave attractors, as was shown in Maas et al. [28].

In several places, for example, in the Andaman Sea (Osborne and Burch [29]),
near a shelfbreak of the Sea of Japan (Navrotsky et al. [22]), in the Sulu Sea (Apel
et al. [24]), and at the Mascarene Ridge (Konyaev, Sabinin, and Serebryany [30]),
large-amplitude internal solitary waves are observed; that is, their amplitudes and
the typical length scale of the vertical stratification are of the same order.

Experimental work has been presented by Colosi et al. [23] to describe the internal
tide and high-frequency internal waves observed in the moored array data during
the summer Shelfbreak Primer study. The summer Shelfbreak Primer study was
conducted between July 26 and August 5, 1996. They found that in situ measurements
and synthetic aperture radar (SAR) imagery show that packets of high-frequency
nonlinear internal waves are generated near the shelfbreak during stratified conditions
(late spring to early fall) and tend to propagate onshelf, while the SeaSoar data
showed the presence of a shallow thermocline (pycnocline) over the shelf (see Figure
6.1), which allowed large-amplitude high-frequency internal waves of depression to
form and propagate onshelf. The internal waves within the packets tend to become
soliton-like, with large amplitudes, short wavelengths, and high frequencies near the
local buoyancy frequency N .

Large-amplitude internal waves were also observed by Yessy and Masaki [31].
They used the monitoring result of internal wave detection in ERS-1/2 SAR and
Topex/Poseidon (T/P) images over the southwest coast of Japan (see Figure 6.2).
The left panel of Figure 6.2 shows two packets of internal waves at the south coast of
Tsushima Island. In the right panel, the vertical transect of the internal wave clearly
identifies eight crests of waves. The internal waves were propagated southeastward
with lengths of wave crest around 17 km and length between crests from 375 m to
750 m.
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Fig. 6.2. Internal waves around the southwest coast of Japan observed using ERS-1/2 SAR
and T/P images (date: August, 1993). The right panel corresponds to the enlargement of rectangle
area in the left panel (image from [31] by permission, and courtesy of the European Remote Sensing
satellite).

Fig. 6.3. Radar image of a region south of the Strait of Messina, acquired by the SAR of the
ERS-2 on August 22, 1997. The image shows sea surface manifestations of a train of southward
propagating internal solitary waves (image taken from [32] and used by permission of the American
Meteorological Society).

Figure 6.3 presents a radar image showing sea surface manifestations of a train of
southward propagating internal solitary waves south of the Strait of Messina in the
Mediterranean Sea (see Vlasenko, Brandt, and Rubino [32] for details).

7. Conclusion. The primary purpose of this paper is to study the motion of
long internal waves in a density-stratified fluid even for a very thin density interface.
A theoretical model is then presented to establish stable solutions of these waves
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in the presence or absence of turning-points at the interfacial layer. A prominent
feature of our investigation is finding asymptotically stable and bounded solutions
as the density gradient is very large. The results show that, in the case of variable
stratification, a transformation of the vertical structure of internal wave occurs. This
structure transformation is accompanied by the growth of the wave amplitude and
steepness at the pycnocline. Here, there is a close similarity between this feature
and the phenomenon of trapping internal waves by inhomogeneity of stratification
discussed in [6]. Waves with the initial frequency σ0 are trapped by a layer with
the maximum effective Brunt-Väisälä frequency (Nef = N(z)/(1 − kU/σ0)) equal to
σ0. This trapping may concentrate the waves in a bandwidth in the vicinity of the
pycnocline and give rise to a triple-layered area.

The presented model takes into account this layering feature, and permits us to
obtain satisfactory results in the more complex situation even where turning-points
exist. The model takes advantage of the analysis of internal waves filtered in quasi-
geostrophic equations and based on Navier–Stokes equations under the Boussinesq
and hydrostatic assumptions, with vertically varying stratification. Successive esti-
mation of the velocity field and pressure leads to a single equation of the vertical
structure of the pressure perturbation. An eigenvalue problem of Sturm–Liouville
type is presented for the modal structures and frequencies of the eigenmode oscilla-
tions. The specification of these eigenmodes requires determination from boundary
conditions that are complicated by the presence of the eigenvalues. This complica-
tion gives rise to the nonorthogonality of the boundary value problem verified by the
pressure perturbation. Thus, to deal with this problem, an asymptotic analysis is
used. The results show that a significant growth of the solution amplitude appears
as the characteristic scale of a varying stratification parameter named δ approaches a
critical value δcri, giving rise to the formation of an interfacial wave that dominates
the flow. To deal with this interface, two cases are discussed of describing bounded
internal solutions even for a very thin interface. In the first case it is assumed that
the turning-points exist; thus we derive inner solutions at the vicinity of the turning-
points and outer solutions above and below these points. A requirement of appropriate
interfacial conditions provides a general stable matching solution, even for very small
values of the parameter δ. In the second case no turning-points are allowed, and a
two-layer discontinuous gradient system is examined. When matching solutions above
and below the interface, a critical value of the parameter δ is required to obtain a
uniform and valid solution in the entire domain.
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BIFURCATION ANALYSIS OF AN SIRS EPIDEMIC MODEL WITH
GENERALIZED INCIDENCE∗

M. E. ALEXANDER† AND S. M. MOGHADAS†

Abstract. An SIRS epidemic model, with a generalized nonlinear incidence as a function
of the number of infected individuals, is developed and analyzed. Extending previous work, it is
assumed that the natural immunity acquired by infection is not permanent but wanes with time.
The nonlinearity of the functional form of the incidence of infection, which is subject only to a few
general conditions, is biologically justified. The stability analysis of the associated equilibria is carried
out, and the threshold quantity (R0) that governs the disease dynamics is derived. It is shown that
R0, called the basic reproductive number, is independent of the functional form of the incidence.
Local bifurcation theory is applied to explore the rich variety of dynamical behavior of the model.
Normal forms are derived for the different types of bifurcation that the model undergoes, including
Hopf, saddle-node, and Bogdanov–Takens. The first Lyapunov coefficient is computed to determine
various types of Hopf bifurcation, such as forward or backward, subcritical or supercritical. The
existence of a saddle-node bifurcation, at the turning point of backward bifurcation, is established
by applying Sotomayor’s theorem. The Bogdanov–Takens normal form is used to formulate the local
bifurcation curve for a family of homoclinic orbits arising when a Hopf and a saddle-node bifurcation
merge. These theoretical results are detailed and numerically illustrated for two different kinds of
incidence, corresponding to unbounded and saturated contact rates. The coexistence of two limit
cycles, due to the occurrence of a backward subcritical Hopf bifurcation, is also demonstrated. These
results lead to the determination of ranges for the periodicity behavior of the model based on two
critical parameters: the basic reproductive number and the rate of loss of natural immunity.

Key words. epidemic models, nonlinear incidence, Hopf bifurcation, saddle-node bifurcation,
Bogdanov–Takens bifurcation
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1. Introduction. In modeling of communicable diseases, there are several fac-
tors that substantially affect the dynamical behavior of the models. Recent studies
have shown that the incidence rate is a major factor in producing the rich dynamics of
epidemic models [1, 8, 13, 16, 23, 24, 25, 30, 31]. These studies have described inter-
esting mathematical phenomena, such as bistability and periodicity, observed in data
for some infectious diseases. In the bistability phenomenon (backward bifurcation),
the model exhibits multiple endemic equilibria even when the classical requirement of
the basic reproductive number being less than unity is satisfied. Disease eradication
may then depend on other agents such as the initial conditions of the subpopula-
tions. In the other scenario (periodicity), the model exhibits oscillatory behavior
due to the existence of periodic solutions. This is an important dynamical feature
of the model, as it shows periodically high level of incidence with a large number of
infected individuals, which can be severely damaging to the population. Models with
bistability or periodicity are numerous in the literature, and the reader may consult
[1, 14, 15, 19, 21, 26, 30, 31].

In most classical models of epidemics, the incidence rate is taken to be mass
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action incidence with bilinear interactions i.e., βIS, where β is the probability of
transmission per contact and S and I represent the numbers of susceptible and in-
fected individuals, respectively. These models typically do not admit bistability or
periodicity, as they have at most one endemic equilibrium; the disease will be erad-
icated if the basic reproductive number is less than one, and will persist otherwise
[3, 23]. Although these simple models lead to general conclusions for long-term dis-
ease dynamics, they may not provide sufficient details of complexity in the population
behavior to contribute to a better understanding of epidemiological patterns and dis-
ease control. For instance, the nonlinearity in the incidence could lead to complex
dynamics of epidemic models. In a previous study [1], we have shown that simple
models with nonlinear incidence rates can exhibit periodic oscillations or backward
bifurcations without time-dependent coefficients or being cyclic.

There are reasons for using nonlinear incidence rates in the process of disease
modeling. Yorke and London [33] showed that the incidence rate β(1 − cI)IS with
positive c and time-dependent β is consistent with the results of the simulations for
measles outbreaks. Capasso and Serio [6] used a saturated incidence rate βIS/(1 +
βδI), δ > 0, to prevent the unboundedness of the contact rate. The effect of behavioral
changes has been incorporated by Liu and colleagues [24, 25] through the use of a
nonlinear incidence rate κI lS/(1 + αIh) with κ, l, α, h > 0. Recent studies have
also pointed out several reasons for the nonlinearity of the incidence rates, including
the change in the contact rate with increasing likelihood of infection from multiple
exposures, severity and stage of the infection, and recruitment of infected individuals
[13, 16, 30, 31].

This paper extends some previous studies [1, 30, 31] on the dynamics of simple
SIR (Susceptible-Infected-Recovered) epidemic models by incorporating a general-
ized incidence rate in an SIRS (Susceptible-Infected-Recovered-Susceptible) model
which satisfies some realistic assumptions. The transitions between subpopulations
are mathematically expressed by the following differential equations:

dS

dt
= Π − β[1 + f(I; ν)]

ISp

N
− μS + δR,(1.1)

dI

dt
= β[1 + f(I; ν)]

ISp

N
− (μ + α)I,(1.2)

dR

dt
= αI − (μ + δ)R,(1.3)

where p > 0; N ≡ S + I +R is the total population size; Π is the rate of recruitment
of individuals (including newborns and immigrants) into the susceptible class; μ is
the natural death rate; β is the probability of infection per contact per unit time; α
is the recovery rate; δ is the rate at which recovered individuals lose their immunity
(acquired by infection); and f(I; ν) ∈ C3(R) for I, ν ≥ 0, is a nonlinear function
which satisfies the following assumptions:

(A1) f(0; ν) = f(I; 0) = 0,
(A2) ∂f/(∂ν) > 0 for ν > 0,
(A3) ∂f/(∂I) > 0 for I > 0,
(A4) ∂2f/(∂I2) ≤ 0 for I > 0.

The term Sp in the infection rate β[1+f(I; ν)]ISp/N is a specific form of the general
case ψ(S) satisfying ψ(0) = 0 and ψ′(S) ≥ 0 for S ≥ 0 (see [27]). We note from (A1)
that, for ν and I small, the term βI/N (proportional mixing) in the infection rate
dominates, while for large enough ν and I, the nonlinear term f(I; ν)I/N dominates.
When ν = 0, the incidence rate reduces to the case of proportional mixing, in which
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case the model exhibits at most one endemic equilibrium; the disease dies out if the
basic reproductive number is less than unity and invades otherwise. Therefore, ν
may be considered as a parameter measuring departure from a proportional mixing
rate of incidence (see [1]). Under the assumptions (A1)–(A4), the nonlinear function
f(I; ν) covers both unbounded and bounded (saturated) cases that are frequently
used. The nonlinearity may be due to several factors, such as crowding of infected
individuals, multiple pathways to infection, stage of infection and its severity, or
protective measures taken by susceptible individuals [1, 30, 31]. Some of the specific
forms of f(I; ν) appearing in the literature and satisfying (A1)–(A4) are f(I; ν) = νIq;
f(I; ν) = νIq/(1+νIq) with 0 < q ≤ 1, ν > 0 [1, 31]; f(I, ν) = νIq(1+κI)p/(1+νIq)
with p + q = 1, p, κ ≥ 0 [1, 31]; and f(I; ν) = 1 − e−νI [17].

The model (1.1)–(1.3) is studied in [1] for the special case p = 1 and δ = 0. It
has been shown that this model not only exhibits backward bifurcation but also may
undergo a Hopf bifurcation leading to the appearance of two concentric limit cycles.
Similar models with nonlinear incidence rates have also been studied by a number
of authors. Ruan and Wang [30] analyzed an SIRS model with the incidence rate
κI lS/(1 + αIh) (introduced by Liu and colleagues [24, 25]), where l = h = 2, and
showed that it undergoes a Bogdanov–Takens bifurcation. The case where α = 0 was
discussed by Hethcote and van den Driessche [16], Liu, Hethcote, and Levin [24], and
Liu, Levin, and Iwasa [25]. Derrick and van den Driessche [8] discussed bifurcation
behavior of an SIRS model with the incidence rate βI2S/N2 [28]. Their study uses a
modification of the Bogdanov–Takens–Carr procedure to blow up a Bogdanov point,
and Melnikov’s method to determine a locus of approximate values along which a
homoclinic orbit can be perturbed. The uniqueness of periodic solutions for this
model has been shown by Alwash [2].

This paper focuses on the detailed dynamics analysis of the model (1.1)–(1.3).
We show that it may exhibit two endemic equilibria, giving rise to the phenomenon
of bistability, for some ranges of parameter values. The local stability of these equi-
libria is investigated, which enables us to classify the types of model equilibria (e.g.,
attractor, saddle, or repeller). The different kinds of bifurcation the model undergoes
for a general incidence rate f satisfying (A1)–(A4) are discussed. The normal form of
the model is derived and used to determine the conditions for the existence of various
types of Hopf bifurcation (sub- or supercritical, forward or backward). The existence
of multiple limit cycles is also discussed. A saddle-node bifurcation is analyzed using
Sotomayor’s theorem at the turning point of backward bifurcation, in which two en-
demic equilibria merge. Finally, the existence of a homoclinic orbit is proven by using
the Bogdanov–Takens normal form of the model which gives, among others, the local
representation of a homoclinic bifurcation curve. The results of our analysis are ap-
plied in detail to two different examples of the function f : unbounded and bounded.
Numerical simulations for these examples are presented to illustrate the theoretical
results.

The paper is organized as follows. The existence of the model equilibria is dis-
cussed in section 2. The stability analysis of the equilibria is carried out in section
3 by reducing the model to a two dimensional system. Bifurcation behavior of the
reduced model is analyzed in section 4. The results are detailed and numerically il-
lustrated for two examples in section 5. The paper ends with a brief discussion of the
results in section 6.

2. Model equilibria. In the absence of the disease (I = 0), the model has a
unique disease-free equilibrium (DFE), given by E0 = (Π/μ, 0, 0). In order to find the
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endemic equilibria in the presence of the disease (I �= 0), we note that the equation
for the total population is given by dN/dt = Π − μN . Since N → Π/μ as t → ∞, it
follows that at any equilibrium E ∗ = (S∗, I∗, R∗), N∗ = S∗ + I∗ + R∗ = Π/μ, and

Ω =

{
(S, I,R) : S, I,R ≥ 0, S + I + R =

Π

μ

}

is a positively invariant region for the model. Henceforth, we restrict our attention to
the dynamics of the model in Ω.

Solving equations (1.2) and (1.3) for S and R in terms of I gives, at equilibrium,

Sp =
μ + α

β[1 + f(I; ν)]

Π

μ
,(2.1)

R =
αI

μ + δ
.(2.2)

Substituting (2.1) and (2.2) into (1.1) leads to the following equation for I at
equilibrium:

Π − μ(μ + α + δ)

μ + δ
I − μ

(
μ + α

β[1 + f(I; ν)]

Π

μ

) 1
p

= 0.(2.3)

Defining

R0 =
β

μ + α

(
Π

μ

)p−1

,(2.4)

one can see that the roots of (2.3) are the fixed points of the equation:

φ(I; ν) ≡ κ

(
1 − 1

R
1
p

0 [1 + f(I; ν)]
1
p

)
= I,(2.5)

where κ = (μ + δ)Π/[μ(μ + α + δ)]. In order to determine the number of endemic
equilibria, we consider some properties of the function φ listed below:

(i) φ0 ≡ φ(0; ν) = κ

⎛
⎝1 − 1

R
1
p

0

⎞
⎠ .

(ii)
∂φ

∂I
=

κfI(I; ν)

pR
1
p

0 [1 + f(I; ν)]1+
1
p

> 0.

(iii)
∂2φ

∂I2
= κ

fII(I; ν)[1 + f(I; ν)] − (1 + 1/p)f2
I (I; ν)

pR
1
p

0 [1 + f(I; ν)]2+
1
p

< 0.

If R0 > 1, then φ0 > 0. It follows from (ii) that φ is an increasing function and
hence limI→∞ φ(I; ν) ≡ φ∞ is positive and finite. Since φ is concave down (by (iii)),
there exists a unique I∗ > 0 such that φ(I∗; ν) = I∗. If R0 = 1, then φ0 = 0 and
∂φ/(∂I)(0) > 1(≤ 1) if fI(0; ν) > p/κ(≤ p/κ). Thus, φ(I; ν) = I has a unique positive
root if fI(0; ν) > p/κ, and no positive root otherwise. Finally, suppose R0 < 1, so
that φ0 < 0. In this case, if limI→∞ f(I; ν) ≡ f∞(ν) ≤ 1/R0 − 1, then φ∞ < 0, and
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thus no positive roots of φ(I; ν) = I exist. If f∞(ν) > 1/R0 − 1, then depending on
the functional form of φ, the equation φ(I; ν) = I may have no, one, or two positive
roots (see [1, Figure 1]). Therefore, we have the following theorem.

Theorem 2.1. (a) If R0 > 1, then the model (1.1)–(1.3) has a unique endemic
equilibrium.

(b) If R0 = 1, then the model (1.1)–(1.3) has a unique endemic equilibrium if
fI(0; ν) > p/κ and no endemic equilibrium if fI(0; ν) ≤ p/κ.

(c) If R0 < 1, then
(i) the model (1.1)–(1.3) has no endemic equilibria whenever f∞(ν) ≤ 1/R0−

1;
(ii) the model (1.1)–(1.3) may have no, one, or two endemic equilibria if

f∞(ν) > 1/R0 − 1.
We now determine the conditions under which the model exhibits two endemic

equilibria when R0 < 1. Let G(I; ν) = φ(I; ν) − I, and suppose that fI(0; ν) >
p/κ, which implies (∂G/∂I)|I=0 > 0. Then limI→∞ ∂G/∂I = −1 and ∂2G/∂I2 =
∂2φ/∂I2 < 0 for I > 0. Hence ∂G/∂I is a monotone decreasing function of I, and
thus there exists a unique I∗0 > 0 such that (∂G/∂I)|I=I∗

0
= 0. This implies that G

is an increasing function on (0, I∗0 ] and decreasing on (I∗0 ,∞) with maximum value
at I∗0 . Since G(0) < 0 when R0 < 1, and G(0) = 0 when R0 = 1, by continuity,
it follows that there exists R∗ with R∗ < 1 for which ∂G/∂I has a unique root I∗0
with (∂G/∂I)|I=I∗

0
= G(I∗0 ) = 0. Then for some values of R0 ∈ (R∗, 1), G has two

roots I∗1 and I∗2 with I∗1 < I∗2 (corresponding to two endemic equilibria of the model).
Assuming (∂I/∂R0)|I=I∗

1
> 0 and taking into account that (∂φ/∂I)|I=I∗

1
> 1, we

have

∂I

∂R0

∣∣∣
I=I∗

1

>
∂I

∂R0

∣∣∣
I=I∗

1

+
κ

pR
1+ 1

p

0 [1 + f(I; ν)]
1
p

>
∂I

∂R0

∣∣∣
I=I∗

1

,

which is a contradiction. This implies that (∂I/∂R0)|I=I∗
1
< 0, and thus the number

of infected individuals at the low endemic equilibrium reduces when R0 increases.
Similarly, it can be shown that (∂I/∂R0)|I=I∗

2
> 0, and hence the number of infected

individuals at the high endemic equilibrium increases when R0 increases. Therefore,
the quantity R∗ for which (∂G/∂I)|I=I∗

0
= G(I∗0 ) = 0 is unique and we have the

following theorem.
Theorem 2.2. If fI(0; ν) > p/κ, then there exists a unique R∗ with R∗ < 1 such

that the model (1.1)–(1.3) has no endemic equilibrium if R0 < R∗, a unique endemic
equilibrium if R0 = R∗, and two endemic equilibria if R∗ < R0 < 1.

Remark 2.1. The case fI(0; ν) > p/κ in Theorem 2.2 corresponds to backward
(transcritical) bifurcation at E0, which leads to the existence of multiple endemic
equilibria for R0 ∈ (R∗, 1) (see Figure 4.1). There is also a forward transcritical
bifurcation at E0 (when R0 = 1) if fI(0; ν) < p/κ.

3. Reduced model and stability analysis. Since Ω is a positively invariant
region for the model (1.1)–(1.3), assuming that the size of the population has reached
its limiting value, i.e., N ≡ Π/μ = S + I + R, and using R = Π/μ − S − I in (1.1),
we can eliminate R from the equations. This gives the following reduced model:

dS

dt
= Π −

( μ

Π

)
β[1 + f(I; ν)]ISp − μS + δ

(
Π

μ
− S − I

)
,(3.1)

dI

dt
=

( μ

Π

)
β[1 + f(I; ν)]ISp − (μ + α)I.(3.2)
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The equilibria of the reduced model correspond to those of the model (1.1)–(1.3).
The DFE of (3.1)–(3.2), given by E0 = (Π/μ, 0), has the corresponding Jacobian

J0 =

(
−(μ + δ) −β

(
Π
μ

)p−1 − δ

0 (μ + α)(R0 − 1)

)
,

with the eigenvalues λ1 = −(μ+δ) and λ2 = (μ+α)(R0−1). Therefore, E0 is locally
asymptotically stable (LAS) if R0 < 1, and unstable if R0 > 1. The threshold quantity
R0 is called the basic reproductive number. Biologically, this quantity is defined to be
the average number of new infectious cases produced by one infected case introduced
into a wholly susceptible population [3]. Mathematically, it determines the condition
under which the DFE is LAS. In the following, we discuss how the critical threshold
R0 governs disease dynamics.

Suppose R0 < 1. If the model has no endemic equilibrium, then (from the
Poincaré–Bendixson theorem) no periodic orbits exist in Ω. Since Ω is a bounded
positively invariant region and E0 is the only equilibrium in Ω, the local stability of
E0 implies that every solution initiating in Ω approaches E0.

Theorem 3.1. Suppose R0 < 1. If the model has no endemic equilibrium, then
the DFE is globally asymptotically stable (GAS).

This theorem implies that E0 is GAS whenever R0 < R∗. Note that if f(I; ν) is
bounded and R0 < 1/[1+ f∞(ν)], then φ∞ < 0, and hence the model has no endemic
equilibrium. Thus, the DFE is GAS.

Now suppose that fI(0; ν) > p/κ and R∗ < R0 < 1 where the model exhibits two
endemic equilibria. Then, we have the following result.

Theorem 3.2. If R∗ < R0 < 1, then one of the endemic equilibria is a saddle
and the other is either an attractor or a repeller.

Proof. Let E∗
1 = (S∗

1 , I
∗
1 ) and E∗

2 = (S∗
2 , I

∗
2 ) denote the equilibria of the reduced

model with, respectively, low and high number of infected individuals when R∗ <
R0 < 1. We shall show that E∗

1 is always a saddle point. The corresponding Jacobian
of the reduced model at a typical endemic equilibrium E∗ = (S∗, I∗) is given by

J∗(ν) =

(
−a− (μ + δ) −b− δ

a b− (μ + α)

)
,

where

a = p
( μ

Π

)
β[1 + f(I∗; ν)]I∗S∗p−1,(3.3)

b =
( μ

Π

)
β[1 + f(I∗; ν) + I∗fI(I

∗; ν)]S∗p.(3.4)

The eigenvalues of J∗(ν) are the roots of the characteristic polynomial P (λ) = λ2 +
Bλ + C, with

B = a− b + 2μ + α + δ,(3.5)

C = a(μ + α + δ) − b(μ + δ) + (μ + α)(μ + δ).(3.6)

Using (2.1) for S∗, the expression for C can be reduced to

C = a(μ + α + δ)

(
1 − ∂φ

∂I

∣∣∣
I=I∗

)
.(3.7)
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Since ∂φ/(∂I) > 1 at E∗
1 , it follows that C|I=I∗

1
< 0, and hence P (λ) has two

real roots with opposite signs. This implies that E∗
1 is a saddle point. Noting that

∂φ/(∂I) < 1 at E∗
2 (for any R0 > R∗), it follows from (3.7) that C|I=I∗

2
> 0. This

implies that E∗
2 cannot be a saddle point. Therefore, the endemic equilibrium with

high number of infected individuals is either an attractor or a repeller.

4. Bifurcation analysis. In this section, different kinds of bifurcation will be
discussed. We will undertake the stability analysis of the equilibria to obtain normal
forms of the model for Hopf, saddle-node, and Bogdanov–Takens bifurcations.

4.1. Hopf bifurcation. Since C|I=I∗
2
> 0 at E∗

2 = (S∗
2 , I

∗
2 ), any exchange of

stability of E∗
2 corresponds to a Hopf bifurcation, which occurs when B|I=I∗

2
= 0 in

(3.5). Suppose there exists νc such that B(νc) ≡ B|I=I∗
2 (νc) = 0 and dB/(dν)|νc �= 0.

Then, the model undergoes a Hopf bifurcation in which the roots of P (λ) cross the
imaginary axis as ν passes through νc such that d(Re[λ(ν)])/(dν) = −(1/2)(dB/dν) �=
0 at νc. The kind of Hopf bifurcation will be determined by the sign of the first
Lyapunov coefficient of the normal form of the model. In the following, we will obtain
this normal form for a neighborhood of E∗

2 .
Consider the transformations S = S∗ +x and I = I∗ + y about a typical endemic

equilibrium E∗ = (S∗, I∗) (where C|I=I∗ > 0), as the origin of coordinates (x, y).
Using the expressions (2.1) and (2.5), the model (3.1)–(3.2) transforms to(

dx
dt
dy
dt

)
= J∗(ν)

(
x
y

)
+

(
−M(x, y, ν)
M(x, y, ν)

)
,(4.1)

where

M(x, y; ν) =
( μ

Π

)
β
{

[1 + f(I∗; ν)]I∗ + p[1 + f(I∗; ν) + I∗fI(I
∗; ν)]xyS∗p−1

+ [(I∗ + y)f2(y, I
∗; ν) + y2fI(I

∗; ν)](S∗p + pxS∗p−1)
} ∞∑
k=2

(
p
k

)
xkS∗p−k

and f2(y, I
∗; ν) denotes second and higher order terms in y of the expression

f(I∗ + y; ν) = f(I∗; ν) + yfI(I
∗; ν) + f2(y, I

∗; ν).

Note that trace(J∗(νc)) = −B(νc) = 0. Let u be an eigenvector of J∗(νc)
corresponding to the eigenvalue iωc, i.e., J∗(νc)u = iωcu, where u = (u1, u2)T ∈ C2

and ωc =
√
C(I∗(νc)). A simple calculation gives u = (b + δ,−b + μ + α − iωc)

T .
Letting u = Re(u) + iIm(u) and defining Q = [Re(u), Im(u)], it follows that

Q−1J∗(νc)Q =

(
0 ωc

−ωc 0

)
.

Defining (ξ, η)T = Q−1(x, y)T , the normal form of the system (4.1) is obtained as(
ξ̇
η̇

)
=

(
0 ωc

−ωc 0

)(
ξ
η

)
− 1

b + δ

(
1

μ+α+δ
ωc

)
M̃(ξ, η; ν),(4.2)

where M̃(ξ, η; ν) = M((b + δ)ξ, (−b + μ + α)ξ − ωcη; ν). Since

d

dν
trace(J∗(ν))

∣∣∣
ν=νc

= −dB

dν

∣∣∣
ν=νc

�= 0,(4.3)
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it follows that E∗ is LAS for ν < νc (respectively, ν > νc) and unstable for ν > νc

(respectively, ν < νc) if dB/(dν)
∣∣
ν=νc < 0 (respectively, dB/(dν)

∣∣
ν=νc > 0), and the

model undergoes a Hopf bifurcation at ν = νc [11, Theorem 8.6]. Evaluating the first
Lyapunov coefficient (σ) [11, 22] of system (4.2) at (0, 0, νc) gives

16(b + δ)2σ = −(b + δ)

[
M̃ξξξ + M̃ξηη +

μ + α + δ

ωc
(M̃ξξη + M̃ηηη)

]

− 1

ωc

{[
1 −

(
μ + α + δ

ωc

)2
]
M̃ξη(M̃ξξ + M̃ηη) −

μ + α + δ

ωc
(M̃2

ξξ − M̃2
ηη)

}
,(4.4)

where

M̃ξξξ(0, 0, ν
c) =

{
Q3

11Mxxx + 3Q2
11Q21Mxxy + 3Q11Q

2
21Mxyy + Q3

21Myyy

}∣∣
(0,0,νc)

,

M̃ηηη(0, 0; νc) = Q3
22Myyy

∣∣
(0,0,νc)

, M̃ξη(0, 0; νc) = Q22

{
Q11Mxy + Q21Myy

}∣∣
(0,0,νc)

,

M̃ξηη(0, 0; νc) = Q2
22

{
Q11Mxyy + Q21Myyy

}∣∣
(0,0,νc)

, M̃ηη(0, 0; νc) = Q2
22Myy

∣∣
(0,0,νc)

,

M̃ξξη(0, 0; νc) = Q22

{
Q2

11Mxxy + 2Q11Q21Mxyy + Q2
21Myyy

}∣∣
(0,0,νc)

,

M̃ξξ(0, 0; νc) =
{
Q2

11Mxx + 2Q11Q21Mxy + Q2
21Myy

}∣∣
(0,0,νc)

,

with Q11 = b + δ, Q21 = −b + μ + α, and Q22 = −ωc. Using these expressions in
(4.4), we have the following theorem.

Theorem 4.1. If σ �= 0, then a curve of periodic solutions bifurcates from the
endemic equilibrium E∗ such that

(a) for σ < 0, the model undergoes a supercritical Hopf bifurcation if dB/(dν)|ν=νc <
0 and a backward supercritical Hopf bifurcation if dB/(dν)|ν=νc > 0;

(b) for σ > 0, the model undergoes a subcritical Hopf bifurcation if dB/(dν)|ν=νc <
0 and a backward subcritical Hopf bifurcation if dB/(dν)|ν=νc > 0.

A supercritical (backward supercritical) Hopf bifurcation in case (a) of Theorem
4.1 leads to the appearance (disappearance) of a stable limit cycle when ν passes
through νc. In case (b), the model exhibits an unstable limit cycle around E∗ when
ν passes through νc. Thus, every solution starting inside the limit cycle approaches
E∗ (see [1, Figure 2]).

Remark 4.1. Note that E0 is unstable whenever R0 > 1, and the unique endemic
equilibrium is either stable or unstable. Since Ω is a bounded positively invariant
set, if the model undergoes a subcritical Hopf bifurcation, then (from the Poincaré–
Bendixson theorem) every solution initiating outside the limit cycle must approach
a stable limit cycle. This shows that when R0 > 1, two concentric limit cycles can
coexist: the inner one unstable and the outer one stable (see [1]). We shall discuss
the existence of multiple limit cycles in section 5.2.

4.2. Saddle-node bifurcation. In order to show that the model may undergo a
saddle-node bifurcation, we will take advantage of Sotomayor’s theorem [12, Theorem
3.4.1]. Considering R0 as the bifurcation parameter, it follows from Theorem 2.2 that
at R0 = R∗, the model has a unique endemic equilibrium E∗

0 = (S∗
0 , I

∗
0 ) for which the

Jacobian J∗
R∗(E∗

0 ) has a simple eigenvalue 0 and an eigenvalue λ = −BR∗(E∗
0 ). Note

that ∂φ/(∂I)
∣∣
I=I∗

0
= 1, and hence CR∗(E∗

0 ) = 0 (see (3.7)). Let V = (v1, v2)
T and

W = (w1, w2) be right and left eigenvectors of J∗
R∗(E∗

0 ), respectively, corresponding
to the zero eigenvalue. Then, a simple calculation yields

V =
[
b + δ,−a− (μ + δ)

]T
, W =

[
a, a + μ + δ

]
.(4.5)
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I

10

I0
*

R0 = R∗

Fig. 4.1. A backward bifurcation at R0 = 1 with a dashed curve for the location of the saddle
point and solid curve for the location of the other endemic equilibrium. The saddle-node bifurcation
occurs at E∗

0 = (S∗
0 , I

∗
0 ) when R0 passes through R∗.

Let G = (g1, g2), where g1 and g2 are, respectively, the right-hand sides of equations
in (3.1)–(3.2). By considering β as a function of R0, we have

L1 ≡ W · ∂G

∂R0

∣∣∣
(E∗

0 ,R
∗)

=
(μ + α)(μ + δ)I∗0

R∗ > 0.(4.6)

Using (2.1), it can be seen that

L2 ≡ W · [D2
(S,I)G (V,V)]

∣∣∣
(E∗

0 ,R
∗)

= (w1 − w2)

[
∂2g1

∂S2
v2
1 +

∂2g1

∂I2
v2
2 + 2

∂2g1

∂S∂I
v1v2

]

= −(μ + δ)
μβ

Π

{
− p(p− 1)[1 + f(I∗0 ; ν)]I∗0S

∗
0
p−2(b + δ)2

−
[
2fI(I

∗
0 ; ν) + I∗0fII(I

∗
0 ; ν)

]
(a + μ + δ)2S∗

0
p

+ 2p
[
1 + f(I∗0 ; ν) + I∗0fI(I

∗
0 ; ν)

]
(b + δ)(a + μ + δ)S∗

0
p−1

}
.

Then, since CR∗(E∗
0 ) = 0, after some manipulations, it follows from (A4) that

S∗
0L2 = −(μ + δ)

{
a(1 + p)(b + δ)2 −

(
μβ

Π

)
I∗0S

∗
0
p+1fII(I

∗
0 ; ν)(a + μ + δ)2

}
< −a(1 + p)(μ + δ)(b + δ)2 < 0.(4.7)

Thus, from Sotomayor’s theorem [12], there is a smooth curve of equilibria in R2

passing through E∗
0 , tangent to the line R0 = R∗ (see Figure 4.1). Since L1 > 0

and L2 < 0, there are no equilibria near E∗
0 when R0 < R∗ and two equilibria when

R0 > R∗. In fact, from (4.6) and (4.7), the local phase portraits of the model (3.1)–
(3.2) are topologically equivalent to those of v̇ = (R0 − R∗) − (v − I∗0 )2. Therefore,
we have the following theorem.

Theorem 4.2. If fI(0; ν) > p/κ, then the model undergoes a saddle-node bifur-
cation at E∗

0 when R0 passes through the critical value R∗.

4.3. Homoclinic bifurcation. In this section, the Bogdanov–Takens bifurca-
tions of the model (3.1)–(3.2) are discussed, from which the local representation of
a homoclinic bifurcation curve is derived. Let RBT and νBT denote the bifurcation
parameters at which the model simultaneously undergoes a saddle-node bifurcation
and a Hopf bifurcation. Here, we first consider the conditions for determining RBT
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and νBT . Using (3.3) and (3.4), it can be seen that

trace J∗(ν) = p(μ + α)(μ + δ)(u− 1)

(
1 − ∂φ

∂I

)
,(4.8)

det J∗(ν) = p(μ + α)(u− 1)
∂φ

∂I
− (μ + δ)

(
1 +

p(μ + α)(u− 1)

μ + α + δ

)
,(4.9)

where u = R
1/p
0 [1 + f(I; ν)]1/p. A simple calculation yields that if trace J∗(ν) =

det J∗(ν) = 0, then

u = 1 +
(μ + δ)(μ + α + δ)

pα(μ + α)
.(4.10)

Thus, it follows from (2.5) that I∗0 = κ(1 − 1/u). Noting that ∂φ/∂I = 1 at the
Bogdanov point (S∗

0 , I
∗
0 ), it can be seen that

I∗0fI(I
∗
0 ; νBT ) =

p(u− 1)up

RBT
.(4.11)

Therefore, for given functional form of f(I; ν), equations (4.10) and (4.11) provide
conditions for determining RBT and νBT . These general equations will be applied
to two specific forms of f(I; ν) in section 5, where closed form expressions for the
Bogdanov point(s) are given.

We continue the analysis of the homoclinic bifurcation by deriving the normal
form at the Bogdanov point. At this point, B = C = 0, and it follows from (3.5) and
(3.6) that

αa = (μ + δ)2.(4.12)

Using the transformations S = S∗
0 + ξ and I = I∗0 + η (at R0 = RBT , ν = νBT ),

the model (3.1)–(3.2) becomes(
ξ̇
η̇

)
= J(E∗

0 )

(
ξ
η

)
+

(
−M(ξ, η; νBT )
M(ξ, η; νBT )

)
,(4.13)

where, by (4.12),

J(E∗
0 ) =

1

α

(
−(μ + δ)(μ + α + δ) −(μ + α + δ)2

(μ + δ)2 (μ + δ)(μ + α + δ)

)
.

Since J(E∗
0 ) �= 0, there exist real linearly independent vectors x1 and x2 such

that J(E∗
0 )x1 = 0 and J(E∗

0 )x2 = x1. These vectors are given by

x1 = [−(μ + α + δ), μ + δ]T , x2 = [−1, 1]T .

Similarly, there exist vectors y1 and y2 such that [J(E∗
0 )]Ty1 = 0 and [J(E∗

0 )]Ty2 =
y1, where [J(E∗

0 )]T is the transposed matrix. These vectors may be expressed as

y1 =

(
1

α

)
[μ + δ, μ + α + δ]T , y2 =

(
1

α

)
[−1,−1]T .

It is easy to verify that x1 · y2 = x2 · y1 = 1 and x2 · y2 = x1 · y1 = 0. By defining
Q̃ = [x1,x2], any (ξ, η)T can be uniquely represented by (ξ, η)T = Q̃(θ1, θ2)

T , for
some real θ1, θ2 ∈ R, from which the new coordinates (θ1, θ2) are obtained as

θ1 = −ξ + η

α
, θ2 =

μ + δ

α
ξ +

μ + α + δ

α
η.
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Considering (4.1) for all R0 and ν with |R0 − RBT | and |ν − νBT | small (recall
that B = C = 0 at R0 = RBT , ν = νBT ), and expanding its right-hand side as a
Taylor series in (θ1, θ2) at (0, 0) gives

dθ1

dt
= θ2,(4.14)

dθ2

dt
= −Cθ1 −Bθ2

+
[
r2d11(I

∗, S∗) − rsd12(I
∗, S∗) + s2d22(I

∗, S∗)
]
θ2
1

+
[
d11(I

∗, S∗) − d12(I
∗, S∗) + d22(I

∗, S∗)
]
θ2
2

+
[
2rd11(I

∗, S∗) − (r + s)d12(I
∗, S∗) + 2sd22(I

∗, S∗)
]
θ1θ2

+ O(‖(θ1, θ2)‖3),(4.15)

where r = μ + α + δ, s = μ + δ, and

d11(I
∗, S∗) =

1

2

μβ

Π
p(p− 1)[1 + f(I∗; ν)]I∗S∗p−2,

d12(I
∗, S∗) =

μβ

Π
p[1 + f(I∗; ν) + I∗fI(I

∗; ν)]S∗p−1,

d22(I
∗, S∗) =

1

2

μβ

Π
[2fI(I

∗; ν) + I∗fII(I
∗; ν)]S∗p.

For the sake of convenience, we define

K11 = r2d11(I
∗, S∗) − rsd12(I

∗, S∗) + s2d22(I
∗, S∗),

K12 = 2rd11(I
∗, S∗) − (r + s)d12(I

∗, S∗) + 2sd22(I
∗, S∗),

K22 = d11(I
∗, S∗) − d12(I

∗, S∗) + d22(I
∗, S∗).

Assume that K12 �= 0 at the Bogdanov point. Then, there is a neighborhood of
(S∗

0 , I
∗
0 ; RBT , νBT ) in which K12 �= 0. By setting Θ1 = θ1 − χ, where χ = B/K12,

denoting Θ1 as θ1, and using a time reparametrization dt = (1−K22θ1)dτ , it is easy
to check that (4.14) and (4.15) become

dθ1

dτ
= (1 − K22θ1)θ2,(4.16)

dθ2

dτ
= (1 − K22θ1)

{
− χ(C − K11χ) − (C − 2K11χ)θ1

+K11θ
2
1 + K22θ

2
2 + K12θ1θ2 + O(‖(θ1, θ2)‖3)

}
.(4.17)

Introduce new variables Θ1 = θ1 and Θ2 = (1 − K22θ1)θ2 and rename Θ1, Θ2 as θ1,
θ2, respectively. Then, (4.16) and (4.17) become

dθ1

dτ
= θ2,(4.18)

dθ2

dτ
= −χ(C − K11χ) +

[
2χ(C − K11χ)K22 − (C − 2K11χ)

]
θ1 + K12θ1θ2

−
[
χ(C − K11χ)K 2

22 − 2(C − 2K11χ)K22 − K11

]
θ2
1 + O(‖(θ1, θ2)‖3).(4.19)

Let J = χ(C − K11χ)K 2
22 − 2(C − 2K11χ)K22 − K11. Since χ → 0, C → 0 as

R0 → RBT and ν → νBT , it follows from (A4) that

lim
R0 → RBT
ν → νBT

J >
1

2S∗
0

(μ + α + δ)
[
(μ + α + δ)a + p(μ + δ)(a + μ + δ)

]
> 0.
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Thus, since K12 �= 0, by making the change of variables Θ1 = K 2
12θ1/J , Θ2 =

K 3
12θ2/J2, and t = Jτ/K12 in a small neighborhood of the origin and renaming

Θ1, Θ2 as θ1, θ2, respectively, we have

(4.20)

dθ1

dt
= θ2,

dθ2

dt
= −K 4

12χ(C − K11χ)/J3 + K 2
12

[
2χ(C − K11χ)K22 − (C − 2K11χ)

]
θ1/J

2

−θ2
1 + θ1θ2 + O(‖(θ1, θ2)‖3).(4.21)

Therefore, from Theorem 8.4 and (8.52)–(8.54) in [22], the following theorem is es-
tablished.

Theorem 4.3. Assume K12 �= 0 at the Bogdanov point. Then, the reduced model
(3.1)–(3.2) has the following bifurcation behavior in a small neighborhood of E∗

0 :

(a) there is a saddle-node bifurcation curve

SN =
{

(R0, ν) : 4χ(C−K11χ)J+
[
2χ(C−K11χ)K22−(C−2K11χ)]2 = 0

}
;

(b) there is a Hopf bifurcation curve

H =
{

(R0, ν) : (χ = 0 ⇔ B = 0), C > 0
}

;

(c) there is a homoclinic bifurcation curve

P =
{

(R0, ν) : 2χ(C − K11χ)K22 < C − 2K11χ,

25χ(C − K11χ)J − 6
[
2χ(C − K11χ)K22 − (C − 2K11χ)]2

= o(‖(R0 − RBT , ν − νBT )‖2)
}
.

Remark 4.2. The Bogdanov–Takens normal form in (4.21)–(4.21) is based on the
assumption K12 �= 0 in a neighborhood of the Bogdanov point. It is worth noting
that

lim
R0 → RBT
ν → νBT

K12 =
1

αS∗
0

{
− (μ + α + δ)(μ + δ)2 − p[(μ + α + δ)2(μ + δ) − α2(μ + α)]

}

+
( μ

Π

)
β(μ + δ)I∗0S

∗
0
p+1fII(I

∗
0 ; νBT ).

Thus, for the parameter values for which

−(μ + α + δ)(μ + δ)2 − p[(μ + α + δ)2(μ + δ) − α2(μ + α)] < 0,

there is a neighborhood of E∗
0 = (S∗

0 , I
∗
0 ) in which K12 < 0.

5. Examples. In this section, we shall detail the results of our analysis for two
different forms of incidence rate. Numerical simulations are also presented to illustrate
these results.
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5.1. Unbounded case: f(I; ν) = νIq (ν > 0, 0 < q ≤ 1). In this case, if
p = 1, then it can be seen from (3.5) that at a positive endemic equilibrium,

B =
1

(μ + α + δ)(1 + f)
B̃,(5.1)

where

B̃ = (μ + α)(μ + δ)R0f
2 +

{
(μ + δ)[2(μ + α)R0 + δ] − q(μ + α)(μ + α + δ)

}
f

+(μ + δ)[(μ + α)R0 + δ].(5.2)

Thus, B(f) = 0 if and only if B̃(f) = 0 and has two real roots for f (including the
case of multiplicity 2) if and only if

R0 ≤ (z0 − 1)2

4z1
≡ �0,(5.3)

where

z0 =
δ(μ + δ)

q(μ + α)(μ + α + δ)
, z1 =

μ + α

δ
z0.(5.4)

These roots are positive if and only if z0 < 1, or equivalently,

q >
δ(μ + δ)

(μ + α)(μ + α + δ)
.(5.5)

Suppose now that (5.3) and (5.5) hold. Then, there are positive ν1, ν2 such that
B(ν1) = B(ν2) = 0. Differentiating B with respect to ν at νi and using (2.5) gives

dB

dν

∣∣∣
ν=νi

=
1

(μ + α + δ)(1 + f)

dB̃

dν

∣∣∣
ν=νi

, i = 1, 2,

where, after some calculations, it can be seen that

dB̃

dν

∣∣∣
ν=νi

=
{
2(μ + α)(μ + δ)R0(1 + f) − q(μ + α)(μ + α + δ) + δ(μ + δ)

} df

dν

∣∣∣
ν=νi

=
2δ(μ + δ)z2

1R0

z0

{
f + 1 − 1 − z0

2z1R0

}(
R0(1 + f)2fI∗

κν
[
R0(1 + f)2 − (1 + f) − qf

]
) ∣∣∣∣∣

ν=νi

.

Let h0 = (1 − z0)/(2z1R0) − 1 and g = R0(1 + f)2 − (1 + f) − qf . If R0 ≥ 1, then
g ≥ f2 + (1 − q)f > 0, and therefore,

sign

(
dB

dν

∣∣∣
ν=νi

)
= sign(f − h0)

∣∣
ν=νi

, i = 1, 2.(5.6)

Let f1 and f2 (with f1 < f2) be positive roots of (5.1) when (5.3) and (5.5) hold.
Then, if R0 < �0, it follows that

B̃(h0) = (μ + α)(μ + δ)

[
1 − (1 − z0)

2

4z1R0

]
< (μ + α)(μ + δ)

[
1 − (1 − z0)

2

4z1�0

]
= 0,



BIFURCATION ANALYSIS OF AN SIRS EPIDEMIC MODEL 1807

and hence f1 < h0 < f2. Therefore, from (5.6) it can be seen that dB/(dν) < 0 (> 0)
at ν1 (at ν2). Thus, Theorem 4.1 implies that at E∗

2 (where C > 0), the model
undergoes a Hopf bifurcation which is forward at ν1 and backward at ν2.

Theorem 5.1. Suppose 1 ≤ R0 < �0 and z0 < 1. Then the model undergoes a
forward (backward) Hopf bifurcation at ν1 (at ν2). This bifurcation is supercritical if
σ < 0 and subcritical if σ > 0.

Suppose now R0 < 1. Thus, g has a unique positive root, namely f0, such that
g < 0 for 0 < f < f0 and g > 0 for f > f0. Therefore, we have the following theorem.

Theorem 5.2. Suppose R∗ < R0 < min(�0, 1) and z0 < 1.
(a) If fi lies in the interval between f0 and h0, then dB/(dν) < 0, and the model

undergoes a forward supercritical (subcritical) Hopf bifurcation if σ < 0 (if σ > 0).
(b) If fi lies outside the interval between f0 and h0, then dB/(dν) > 0, and the

model undergoes a backward supercritical (subcritical) Hopf bifurcation if σ < 0 (if
σ > 0).

Remark 5.1. It can be seen, after some algebra, that for p > 0, B = 0 if and only
if

1 − 1

w
= z̃0 + z̃1u,(5.7)

where w = 1 + f , u = [R0(1 + f)]1/p, and

z̃0 =
(μ + δ)[δ − (p− 1)(μ + α)]

q(μ + α)(μ + α + δ)
, z̃1 =

p(μ + δ)

q(μ + α + δ)
.(5.8)

Note that for the case p = 1, z̃0 and z̃1 reduce to z0 and z1, respectively, in
(5.4). Equation (5.7) has a positive root of multiplicity 2 if and only if the tangency
condition z̃1u = p/w is satisfied. Then, it follows from (5.7) that there is a unique
positive root u∗ given by

u∗ =
p(1 − z̃0)

z̃1(1 + p)
,(5.9)

as long as z̃0 < 1. This corresponds to a unique critical value of Rcrit = z̃1u
p+1
∗ /p

such that there is no Hopf bifurcation point if R0 > Rcrit, and two Hopf bifurcation
points if R0 < Rcrit and sufficiently close to Rcrit. These bifurcation points merge at
the critical value Rcrit. Note that if p = 1, the threshold Rcrit reduces to �0 in (5.3).

In the following, we consider the case where the model simultaneously undergoes
a saddle-node and a Hopf bifurcation. It is easy to see that IfI(I; νBT ) = qf(I; νBT ),
and hence from the definition of u and (4.11), we have

q

(
up

RBT
− 1

)
=

p

RBT
(u− 1)up,(5.10)

which implies that

RBT =
up

q
(p + q − pu).(5.11)

Thus, using the expression I = κ(1 − 1/u) (see equation (2.5)), we find

νBT =
f(I; ν)

Iq
=

1

Iq

(
up

RBT
− 1

)
.(5.12)
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Fig. 5.1. (A) Phase portrait for the stable endemic equilibrium in Example 1 with the parameter
values Π = 1050, μ = 0.02, α = 26, q = 0.05, δ = 0.1, and (R0, ν) = (0.95, 0.08). (B) Phase portrait
for a stable periodic orbit in Example 1 with the parameter values: Π = 1050, μ = 0.02, α = 26,
q = 0.05, δ = 0.1, and (R0, ν) = (0.95, 7).
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Fig. 5.2. (A) Phase portrait for the stable endemic equilibrium in Example 1 with the parameter
values Π = 1050, μ = 0.02, α = 26, q = 0.05, δ = 0.1, and (R0, ν) = (0.95, 8). (B) Phase portrait at
the Bogdanov point in Example 1 with the parameter values Π = 1050, μ = 0.02, α = 26, q = 0.05,
δ = 0.1, and (RBT , νBT ) = (0.9115413570, 0.1015835081).

It is worth noting that from (4.10), (5.11), and (5.12) it follows that the Bogdanov
point for this example is unique.

To numerically illustrate the results of this bifurcation analysis, the model was
simulated with parameter values estimated for a measles infection [1, 5]: Π = 1050,
μ = 0.02, α = 26, δ = 0.1, q = 0.05, and p = 1. With these values and R0 = 0.95, we
have ν1 = 9.49167 × 10−2 and ν2 = 7.14126, corresponding to two Hopf bifurcation
points. Numerical calculations show that dB/dν < 0, σ < 0 at ν1, and dB/dν > 0,
σ < 0 at ν2, so that the Hopf bifurcation is supercritical at ν1 and backward super-
critical at ν2. Figures 5.1(A)-(B) and 5.2(A) show phase portraits of the model for
ν = 0.08 < ν1 (with the stable endemic equilibrium), ν1 < ν = 7 < ν2 (with the
stable limit cycle), and ν = 8 > ν2 (with a stable endemic equilibrium), respectively.
The limit cycle created by the Hopf bifurcation at ν1 shrinks and disappears when
ν passes through ν2 (see Figure 5.3(A)). Figure 5.2(B) shows the phase portrait at
the Bogdanov point with (RBT , νBT ) = (0.9115413570, 0.1015835081), which geomet-
rically has cusp orbits. Homoclinic orbits exist as a codimension-1 family in every
neighborhood of the Bogdanov point in parameter space.

In order to provide more intuition into the theoretical analysis of the model,
bifurcation curves are displayed in Figure 5.4, with the same parameter values as used
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Fig. 5.3. Bifurcation diagrams for (A) a supercritical Hopf bifurcation at ν1 and a backward
supercritical Hopf bifurcation at ν2; (B) a supercritical Hopf bifurcation at ν1 and a backward sub-
critical Hopf bifurcation at ν2. In (A), the second Hopf bifurcation at ν2 causes the limit cycle
created by the first Hopf bifurcation at ν1 to shrink and disappear. In (B), the second Hopf bifurca-
tion at ν1 leads to the appearance of an unstable limit cycle in the presence of the stable limit cycle
created by the first Hopf bifurcation at ν1. These limit cycles merge at a critical value of ν = ν∗ and
disappear for ν > ν∗. Solid lines and curves denote stable branches, and dashed lines and curves
denote unstable branches.
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Fig. 5.4. Bifurcation curves of the model for Example 1, with the parameter values Π = 1050,
μ = 0.02, α = 26, q = 0.05, δ = 0.1, p = 1, and 0 ≤ ν ≤ 1.5. Solid curve shows RH(ν) corresponding
to the Hopf bifurcation along which B = 0, where B is defined in (3.5). Dashed curve shows R∗(ν)
corresponding to the saddle-node bifurcation along which C = 0, where C is defined in (3.6). These
two curves meet at the unique Bogdanov point (νBT ,RBT ) = (0.1015835081, 0.9115413570). A
saddle-node bifurcation occurs on the R∗(ν) curve for any ν, while a Hopf bifurcation occurs on the
RH(ν) curve (at the endemic equilibrium with high number of infected individuals) only for ν > νBT .
Above the RH(ν) curve, the model exhibits no Hopf bifurcation. In the grey area (B < 0, C > 0)
between the two curves, no bifurcation behavior occurs, and below the R∗(ν) curve, E0 is GAS.

above. This figure shows the R∗(ν) and RH(ν) curves for a range of values of the
bifurcation parameter ν, along which saddle-node and Hopf bifurcations, respectively,
occur. Figure 5.4 also shows the saddle-node and Hopf bifurcation branches, locally
described in parts (a) and (b) of Theorem 4.3, passing through the (unique) Bogdanov
point.

5.2. Bounded case: f(I; ν) = νIq/(1 + νIq) (ν > 0, 0 < q ≤ 1). With
this function, if p = 1, then at a positive endemic equilibrium

B =
1

(μ + α + δ)(1 + h)(1 + 2h)
˜̃B,(5.13)
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where

˜̃B = (μ + δ)
[
(μ + α)R0 + δ

]
+

{
(μ + δ)[4(μ + α)R0 + 3δ] − q(μ + α)(μ + α + δ)

}
h

+ 2(μ + δ)
[
2(μ + α)R0 + δ

]
h2,(5.14)

and h ≡ νIq. A simple calculation shows that ˜̃B(h) = 0 has two real roots h (including
the case of multiplicity 2) if and only if

R0 ≤
[
(3 − 2

√
2)z0 − 1

][
(3 + 2

√
2)z0 − 1

]
8z1

,(5.15)

where z0 and z1 are defined in (5.4). If (5.15) holds, then the roots of ˜̃B(h) = 0 are
positive if and only if z0 < 3 − 2

√
2, or equivalently,

q >
(3 + 2

√
2)δ(μ + δ)

(μ + α)(μ + α + δ)
.(5.16)

Suppose (5.15) and (5.16) hold and ν1 and ν2 correspond, respectively, to the two

positive roots of ˜̃B(h) = 0, namely h1 and h2 (with h1 < h2). Then,

dB

dν

∣∣∣
ν=νi

=
1

(μ + α + δ)(1 + h)(1 + 2h)

d ˜̃B

dν

∣∣∣
ν=νi

,

where

d ˜̃B

dν

∣∣∣
ν=νi

= δ(μ + δ)

{(
8z1R0

z0
+ 4

)
h +

4z1R0

z0
− 1

z0
+ 3

}

× h(1 + 2h)

ν

( (2R0 − 1)h + R0 − 1

R0(1 + 2h)2 − (1 + h)(1 + 2h) − qh

)
︸ ︷︷ ︸

Δ

∣∣∣
ν=νi

.

Let h̃0 = (1 − z0)/[4(2z1R0 + z0)] − 1/2. If R0 ≥ 1, then Δ > 0, and thus,
sign(dB/dν|ν=νi) = sign(h − h̃0)|ν=νi , i = 1, 2. A simple calculation shows that
˜̃B(h̃0) < 0 and hence h1 < h̃0 < h2. Therefore, sign(dB/dν) = (−1)i at νi, i = 1, 2.
Consequently, the model undergoes a forward (backward) Hopf bifurcation at ν1 (at
ν2). Whether these bifurcations are sub- or supercritical is determined by the sign of
σ.

Suppose now R∗ < R0 < 1. From (2.5) and ∂φ/∂I
∣∣
I=I∗

0
= 1, it is easy to see

that R∗ > 1/2. Note that if R0 ≤ 1/2, then the model has no endemic equilibrium
and the DFE is GAS. Let L(h) = R0(1 + 2h)2 − (1 + h)(1 + 2h) − qh. Then L(h)

has a unique positive root
˜̃
h0 such that L(h) < 0 for 0 < h <

˜̃
h0 and L(h) ≥ 0

for h ≥ ˜̃
h0. Defining hc = (1 − R0)/(2R0 − 1), it can be shown that, regardless of

whether hc is less than or greater than
˜̃
h0, Δ < 0 in the interval between hc and

˜̃
h0,

and Δ > 0 outside this interval (see [1, Figure 9]). Therefore, sign(dB/dν|ν=νi) =
sign(h− h̃0) sign(Δ)|ν=νi , i = 1, 2.

Remark 5.2. It can be seen, after some manipulations, that for p > 0, B = 0 if
and only if

−w + 3 − 2

w
= z̃0 + z̃1u,(5.17)
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Fig. 5.5. (A) the coexistence of two limit cycles in Example 2 with the parameter values
Π = 1050, μ = 0.02, α = 26, q = 0.05, δ = 0.1, R0 = 1.05 > 1, and ν = 1.2 > ν2. The
limit cycle with large amplitude is stable, and the one with small amplitude is unstable, both
surrounding the stable endemic equilibrium. (B) Phase portrait at the Bogdanov point in Ex-
ample 2 with the parameter values Π = 1050, μ = 0.02, α = 26, q = 0.05, δ = 0.1, and
(RBT , νBT ) = (0.5612316061, 3.743081478).

where w = 1 + f , u = [R0(1 + f)]1/p, and z̃0 and z̃1 are defined in (5.8). Equation
(5.17) has a positive root of multiplicity 2 if and only if the tangency condition

(p− 1)w2 + (3 − z̃0)w − 2(p + 1) = 0(5.18)

is satisfied. If p < 1, then (5.18) has two positive roots w1, w2 whenever z̃0 < 3 −
2
√

2(1 − p2), with w1+w2 = (3−z̃0)/(1−p) and w1w2 = 2(1+p)/(1−p). Substituting
these into (5.17) gives u1 + u2 = −2p2(3 − z̃0)/[z̃1(1 − p2)] and z̃2

1u1u2 = p2[8 − (3 −
z̃0)

2]/(1 − p2). Therefore, if z̃0 ∈ (3 − 2
√

2, 3 − 2
√

2(1 − p2)), then u1u2 > 0, so that

u1 and u2 are both negative even though w1, w2 > 0. If 0 < z̃0 < 3 − 2
√

2, then
u1u2 < 0, and thus there is a unique positive root u satisfying (5.17). In summary,
from equations (5.17), (5.18), and the above discussion, we have

(i) for p < 1, there is a unique positive root u, provided 0 < z̃0 < 3 − 2
√

2;
(ii) for p = 1, there is a unique positive root u, provided z̃0 < 3;
(iii) for p > 1, there is always a unique positive root u.

The conditions for the uniqueness of u provide a unique critical value of R̃crit = up
∗/w∗

(where u∗ and w∗ are the unique solutions of (5.17) and (5.18)) such that there is no

Hopf bifurcation point if R0 > R̃crit and two Hopf bifurcation points if R0 < R̃crit

and sufficiently close to R̃crit. These bifurcation points merge at the critical value
R̃crit.

The simulations were also run with the same parameter values as used in Example
1. With these values and R0 = 1.05 > 1, we have Hopf bifurcations at ν1 = 0.147656
and ν2 = 1.12033. Numerical calculations show that dB/dν < 0 (> 0), σ < 0 (> 0) at
ν1 (at ν2), so that the Hopf bifurcation is supercritical at ν1 and backward subcritical
at ν2 (Figure 5.3(B)). The bifurcation at ν2 leads to the appearance of an unstable
limit cycle in the presence of the stable limit cycle created by the Hopf bifurcation
at ν1 (see Remark 4.1). Figure 5.5(A) shows the phase portrait of the model for the
coexistence of two limit cycles for ν = 1.2 > ν2; the limit cycle with large amplitude
is stable, and the one with small amplitude is unstable. Similar results were obtained
for R0 = 0.95 < 1 with ν1 = 0.127445 (σ < 0) and ν2 = 1.36961 (σ > 0).
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Fig. 5.6. Homoclinic branches (R0 vs ν) of the Bogdanov–Takens bifurcation for Example 2,
as described in Theorem 4.3(c).

We now consider the case where the model undergoes a Bogdanov–Takens bifur-
cation. It is easy to see that IfI(I; νBT ) = qf(I; νBT )[1− f(I; νBT )], and hence from
the definition of u and (4.11), we have

q

(
up

RBT
− 1

)(
2 − up

RBT

)
=

p

RBT
(u− 1)up,(5.19)

which leads to the following quadratic equation:

q℘2 + [p(u− 1) − 3q]℘ + 2q = 0,(5.20)

where ℘ = up/RBT . Let

γ ≡ p(u− 1) =
(μ + δ)(μ + α + δ)

α(μ + α)
.

Then, Δ ≡ γ2 − 6γq + q2 = [γ − (3 + 2
√

2)q][γ − (3− 2
√

2)q] > 0 if γ > (3 + 2
√

2)q or
γ < (3 − 2

√
2)q. Therefore, (5.20) has two positive roots if Δ > 0 and γ < 3q, which

reduce to the following condition:

(μ + δ)(μ + α + δ)

α(μ + α)
< (3 − 2

√
2)q.(5.21)

The roots of (5.20) are given by

℘± =
3q − γ ±

√
[(3 + 2

√
2)q − γ][(3 − 2

√
2)q − γ]

2q
,

and thus R±
BT = up/℘±, where u is given by (4.10). Finally, using I = κ(1 − 1/u)

(see (2.5)), the expression for νBT is obtained:

ν±BT =
1

Iq

(
℘± − 1

2 − ℘±

)
.

A simple calculation yields that ν±BT > 0 for both positive roots of (5.20) given by
℘±, provided that (5.21) is satisfied. This analysis shows that, in general, the values
of the parameters in the parameter space (R0, ν) for which the model undergoes the
Bogdanov–Takens bifurcation may not be unique. Figure 5.5(B) illustrates the phase
portrait at the Bogdanov point with (RBT , νBT ) = (0.5612316061, 3.743081478). Fig-
ure 5.6(A)–(B) representsbifurcation curves along which a homoclinic orbit exists in
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Fig. 5.7. Bifurcation curves of the model for Example 2, with the parameter values Π = 1050,
μ = 0.02, α = 26, q = 0.05, δ = 0.1, p = 1, and 0 ≤ ν ≤ 4. Solid curve shows RH(ν) corresponding
to the Hopf bifurcation along which B = 0, where B is defined in (3.5). Dashed curve shows
R∗(ν) corresponding to the saddle-node bifurcation along which C = 0, where C is defined in (3.6).

These two curves meet at the Bogdanov points (ν
(1)
BT ,R

(1)
BT ) = (0.1321652741, 0.8991721941) and

(ν
(2)
BT ,R

(2)
BT ) = (3.743081478, 0.5612316061). A saddle-node bifurcation occurs on the R∗(ν) curve

for any ν, while a Hopf bifurcation occurs on RH(ν) curve (at the endemic equilibrium with high

number of infected individuals) only for ν
(1)
BT < ν < ν

(2)
BT . Above the RH(ν) curve, the model exhibits

no Hopf bifurcation. There are two Hopf bifurcation points for ν ∈ (ν
(1)
BT , ν0), a unique point for

ν ∈ (ν0, ν
(2)
BT ), and no points outside of these ranges. In the grey area (B < 0, C > 0) between the

two curves, no bifurcation behavior occurs, and below the R∗(ν) curve E0 is GAS.

neighborhoods of the two Bogdanov points (RBT , νBT ) = (0.8991721941, 0.1321652741)
and (RBT , νBT ) = (0.5612316061, 3.743081478). As for Example 1, a diagram show-
ing saddle-node and Hopf bifurcation curves for Example 2 is given in Figure 5.7. In
this case, the two bifurcation curves merge at each of the Bogdanov points.

6. Discussion. In this paper, we focused on the bifurcation analysis of an SIRS
epidemic model with generalized nonlinear incidence. This study extends our previous
work on the Hopf bifurcation analysis of a similar model when p = 1 and δ = 0 [1].
Stability analysis of the model equilibria enabled us to completely analyze their local
bifurcation behavior, such as Hopf, saddle-node, and Bogdanov–Takens bifurcations.
We computed the first Lyapunov coefficient to determine the various types of Hopf
bifurcation the model undergoes. A saddle-node bifurcation at the threshold R∗ of
the bistability region was established by applying Sotomayor’s theorem. Using the
Bogdanov–Takens normal form in the parameter space (R0, ν), the local represen-
tation of a homoclinic bifurcation curve was also derived. Finally, we detailed and
numerically illustrated our results with two examples (bounded and unbounded) of
the nonlinear function f(I; ν). These results provide the conditions for the occurrence
of Hopf bifurcations in terms of two major parameters: the basic reproductive number
(R0) and the rate of loss of immunity acquired by infection (δ).
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The parameter δ is biologically important, as its inverse represents the mean pe-
riod of natural immunity following recovery. Although this parameter may change
due to several factors, such as age and the response of the immune systems of re-
covered individuals, in general it depends on the type of the disease being modeled.
For example, natural measles infection induces life-long immunity [4, 32], while nat-
ural immunity following recovery from influenza is temporary and extremely variable
among different age-categories in a population [7, 9]. Here, we would like to explore
the effect of this factor in producing oscillatory behavior of the model. Let us first
consider Example 1. From (5.5), it can be seen that there is a critical rate (δmax) such
that if δ > δmax, then no Hopf bifurcation occurs, and therefore the model exhibits
no periodicity behavior. This critical rate is given by

δmax =
1

2

(
α +

√
α2 + 4(μ + α)2

)
.

If δ > δmax, then no value of q ∈ (0, 1] satisfies (5.5). By making the assumption α � μ
(which is reasonable for most curable diseases), δmax ≈ 1.618α. The corresponding
maximum rate for Example 2 can be obtained from (5.16) as

δmax =
1

2(3 + 2
√

2)

(
α− (2 + 2

√
2)μ +

√
[α− (2 + 2

√
2)μ]2 + 4(3 + 2

√
2)(μ + α)2

)
,

with δmax ≈ 0.509α for α � μ. As an immediate consequence of these approximations,
it can be seen that not only does δmax depend on the type of the disease, but also
it depends greatly on the factors affecting the magnitude of the incidence rate, and
hence on the functional form of f(I; ν).

Our illustrations, based on the parameter values estimated for measles infection
(see [1, 5] and the references therein), have been verified by many clinical studies. For
instance, a clinical study of measles in Poland reports an epidemic outbreak between
November, 1997, and July, 1998 (with 2255 cases), despite high vaccination coverage
(95%) since the 1980s [18]. The results of this study confirm that reducing R0 to
values less than unity may fail to control the spread of the disease, which is associated
with the mathematical phenomenon of backward bifurcation. Furthermore, our model
exhibits oscillatory behavior, which is consistent with what has been observed for some
infectious diseases such as measles, whooping cough, and rubella [10, 20, 29]. This
is due to the fact that the immunity acquired following recovery from these diseases
is long-lasting (δ ≈ 0), so that δ < δmax. This prediction is confirmed by numerical
experiments (using data from England) in [29], demonstrating periods of 2 and 2–3
years for measles and whooping cough dynamics, respectively.

This study has further epidemiological implications by providing a threshold
quantity R∗ < 1 (where a saddle-node bifurcation occurs at R0 = R∗) such that
the disease dies out if R0 < R∗. Unlike the basic reproductive number, the threshold
R∗ depends on the functional form of the incidence rate as well as other parameters.
If R∗ < R0 < 1, then the model exhibits two endemic equilibria which may compete
with the stable disease-free equilibrium. Therefore, the long-term disease dynamics
may depend on the initial values of the subpopulations. In both Examples 1 and
2, we showed that for R0 > R∗ there exists a unique threshold Rcrit such that if
R0 > Rcrit, no Hopf bifurcation occurs. Combining the above discussion for the rate
of loss of immunity, the ranges for the feasibility of periodicity behavior of the model
are obtained as δ < δmax and R∗ < R0 < Rcrit.
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Abstract. The total variation–based image denoising model of Rudin, Osher, and Fatemi [Phys.
D, 60, (1992), pp. 259–268] has been generalized and modified in many ways in the literature; one of
these modifications is to use the L1-norm as the fidelity term. We study the interesting consequences
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1. Introduction. Variational models for image reconstruction have had great
success. One of the best known and influential examples is the total variation–based
model of Rudin, Osher, and Fatemi (ROF) [22]. This model and its variants have been
a very active research topic. The idea behind the model is to exhibit the reconstructed
image as the minimizer of the following energy:∫

D

|∇u| + λ

∫
D

(f − u)2 dx.(1.1)

The functional is to be minimized over all u ∈ L2(D). Here D is a domain in RN ,
N ≥ 2, with Lipschitz boundary; it represents, for example, the computer screen. In
this paper, we will work with D = RN for convenience. The function f(x) represents
the observed and possibly degraded image and is taken to be in L2(D). The second
integral in the functional is the fidelity term; it encourages the solution u(x) that
is being sought to approximate the observed image f(x). The first integral in the
functional is the regularization term; it is the essential novelty of the ROF model, as
it allows for the reconstruction of images with discontinuities across hypersurfaces.
Nevertheless, it disfavors oscillations and is responsible for the elimination of noise in
applications to noisy images.

The standard ROF model (1.1) is well known to have certain limitations. One
important issue is the loss of contrast in solutions even for noise-free observed images.
For example, Strong and Chan studied in [25] the case when the observed image f(x)
is a disk and showed that the solution to (1.1), for any given λ, is of the form cf(x),
where c ∈ [0, 1) is a constant. We never get c = 1, no matter how large the constant
λ is chosen. More generally, given any observed image f(x) and λ > (2‖f‖∗)−1, it
can be shown [15] for the corresponding solution u(x) that ‖f −u‖∗ = 1

2λ . Here, ‖ · ‖∗
denotes the dual norm of total variation. (See [15] for definition of the dual norm and
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proofs of the statements just mentioned.) It is in general desirable for image denoising
algorithms to have a large class of “noise-free” images that they leave invariant. For
the standard ROF model, as these results show, that class consists of only the trivial
image f(x) := 0.

Recently, work of Meyer inspired research into understanding the role of the
fidelity term better. It highlighted the fact that the choice of a suitable fidelity term
can have far reaching consequences. For example, following up on Meyer’s ideas,
Vese and Osher [27] and then Osher, Sole, and Vese [21] came up with variants of
the original model that replace the fidelity term with weaker norms. It is shown
in these works that this modification allows for much better separation of the high
frequency component of images, such as noise and texture, from the piecewise smooth
or “cartoon” part.

In this paper, we ask related but rather different questions. We study a version of
the ROF model that uses the L1-norm as a measure of fidelity between the observed
and denoised images. Given an observed image f(x) ∈ L1(RN ), this model is based
on the following variational problem:

inf
u(x)∈BV (RN )

∫
RN

|∇u| + λ

∫
RN

|u(x) − f(x)| dx.(1.2)

Our goal in this paper is to explore the consequences of this modest modification
on the standard ROF model. In particular, we shall obtain some results that allow
us to contrast the modified model (1.2) with the standard one (1.1). Also, the new
understanding we develop about the nature of the scale space, lack of uniqueness
of solutions, and lack of continuous dependence on data will suggest applications
beyond mere removal of noise for the modified model: We will argue that some of
these ordinarily undesirable characteristics can be real assets. Indeed, it turns out that
the L1 fidelity-based model has many desirable, and some unexpected, consequences
in applications such as multiscale image decomposition and data-driven parameter
selection.

Some distinctions between the modified model (1.2) and the standard ROF model
(1.1) are immediate:

• The way the fidelity and regularization terms scale with respect to each other
in the modified and standard models is different. In particular, unlike the
standard model, the modified model is contrast invariant in the following
sense: If u(x) is a solution of the modified model for the observed image
f(x), then cu(x) is a solution of the modified model for the observed image
cf(x).

• The original model is strictly convex, and therefore its solution (the minimizer
of the functional) is unique. The modified model is not strictly convex, leading
to nonuniqueness of minimizers. This makes the scale space generated by the
modified model qualitatively very different—and, as explained in sections 6
and 7, for certain purposes more suitable—than that of the standard ROF
model.

We concentrate especially on the scale space and geometric features of the de-
composition technique derived from this model. The analytical and numerical results
presented in this paper suggest the following major advantages of the L1 fidelity-based
model over the standard one:

• The regularization imposed on solutions by the L1 model is more geomet-
ric. By “more geometric” we mean that the regularization process has less
dependence on the contrast of image features than on their shapes. Indeed,
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as some of our analytical results show, the L1 model almost decouples the
level sets of the given image from each other and treats them independently
of their associated level (grayscale value).

• As distinct from the standard model, small features in the image maintain
their contrast even as the fidelity parameter λ is lowered, maintaining good
contrast until they suddenly disappear.

• An unexpected consequence of the modification is that it suggests a data-
driven scale selection technique: It seems possible to identify certain critical
values of the parameter λ at which features at the corresponding scale go
through a discontinuous change.

Using the ROF model with L1 fidelity is a natural idea, and was introduced and stud-
ied in the context of image denoising and deblurring by previous authors [1, 3, 4, 16,
17, 18, 8]. Among these, Alliney and Nikolova’s works are relevant to ours. Alliney’s
previous work involves the variational model (1.2) in only one space dimension; more-
over, his results are restricted to the discrete versions of the energy. Nevertheless,
many of his observations are directly relevant to our results (see, for instance, Propo-
sition 4.2 that we quote from his work), and some of our results (for instance part
of Theorem 5.2) can be thought of as continuum analogues of his results in arbitrary
dimensions. In [16] Nikolova shows that for certain types of noise the total variation
regularization with L1 fidelity outperforms the standard model. And [17] contains
many impressive numerical results that clearly demonstrate the advantages of using
the L1 norm for a fidelity term in some applications. In fact, the analysis presented
in [16] applies more generally to fidelity terms that are, like the L1 fidelity term and
unlike the L2 fidelity term, nondifferentiable at the origin. The techniques of Nikolova
also allow her to study certain typical properties of minimizers to the ROF model and
its variants with different types of fidelity terms. For example, among the results is
a characterization of the staircasing effect. Moreover, she calls attention to the fact
that, with L1-type fidelity terms, the solution reconstructs the given image exactly
at some pixels; this relates to the contrast preserving property we touched on above.
However, unlike the focus of this paper, results in [16, 17] mostly concern discrete
versions of the denoising energies and depend on the discretization size; continuum
analogues are not treated. Our focus in this paper is squarely on the continuum en-
ergies so that we can study geometric properties of their minimizers independently of
the discretization.

We conclude the introduction with an outline of the remaining sections. Section
2 introduces the notation that is used throughout the paper. Section 3 works out the
solution to minimization problems (1.1) and (1.2) in the simple case when the observed
image f(x) is the characteristic function of a disk in two dimensions. This illustrates
some of the results obtained in subsequent sections for more general types of images.
Section 4 consists of a collection of simple but useful facts that follow immediately
from the definitions of section 2; these are used in the following sections of the paper.
Section 5 deals with properties of minimizers of energy (1.2). In particular, it considers
the case where the observed image is the characteristic function of a bounded set. It
recalls the known results for the standard ROF model in this case and uses them for
comparison. Section 6 elaborates on the differences between the scale spaces generated
by the two models given by (1.1) and (1.2); it shows that the model based on L1 fidelity
makes it possible to determine special values of the parameter λ completely from the
given observed image. Finally, section 7 presents numerical experiments and gives
some implementation details. The numerical results corroborate the overall picture
suggested by the analytical results of the previous sections.



1820 TONY F. CHAN AND SELIM ESEDOḠLU

2. Notation. In this section we introduce notation that will be used throughout
the paper to compare the original ROF model (1.1) with the modified one (1.2) that
uses an L1 fidelity term. First, we recall the standard definitions of total variation
of a function and the perimeter of a set [11, 12]. The total variation of a function
u(x) ∈ L1

loc(R
N ) is defined to be∫

RN

|∇u(x)| := sup
φ∈C1

c (RN ;RN )

|φ(x)|≤1∀x∈RN

−
∫
RN

u(x) div φ(x) dx.

The perimeter of a set Σ ⊂ RN is defined in terms of the above definition to be

Per(Σ) :=

∫
RN

|∇1Σ(x)|.

For a given possibly noisy image f(x) ∈ L1(RN ), we will denote the energy of the
total variation model with L1 fidelity as E1(u, λ):

E1(u, λ) :=

∫
RN

|∇u| + λ

∫
RN

|f − u| dx.

It will be compared, for f ∈ L1(RN )∩L2(RN ), with the energy of the standard ROF
model, which we denote by E2(u, λ):

E2(u, λ) :=

∫
RN

|∇u| + λ

∫
RN

(f − u)2 dx.

Of particular interest are the minimum values of these energies as a function of the
parameter λ:

E1(λ) := min
u∈L1(RN )

E1(u, λ),

E2(λ) := min
u∈L2(RN )

E2(u, λ).

Minimizers of the standard ROF energy E2(·, λ) for a fixed λ are unique; this is
a consequence of the energy’s strict convexity. Minimizers of the modified energy
E1(·, λ) need not be unique in general. We therefore introduce the following notation
to denote the set of minimizers of E1(·, λ) at a given λ ≥ 0:

M(λ) :=
{
u ∈ L1(RN ) : E1(u, λ) = E1(λ)

}
.

For any given f(x) ∈ L1(RN ) and λ ≥ 0, the set M(λ) is nonempty: A standard
argument shows the existence of minimizers. Because of nonuniqueness, M(λ) can
have several elements. Different elements of M(λ) can stand at different distances
from the observed image f(x). This motivates the following notation:

μ+(λ) := sup
{
‖f − u‖L1(RN ) : u ∈ M(λ)

}
,

μ−(λ) := inf
{
‖f − u‖L1(RN ) : u ∈ M(λ)

}
.

The values of the parameter λ at which M(λ) contains elements whose distances to
the given image f(x) are different turn out to be special. We therefore adopt the
following notation to denote this set of special λ values:

S(f) :=
{
λ ∈ R+ : μ−(λ) �= μ+(λ)

}
.
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To emphasize the dependence of Ei(·, λ), Ei(λ),M(λ), and μ±(λ) on the observed
image f(x) in addition to λ, we will write Ei(·, λ, f), Ei(λ, f), M(λ, f), and μ±(λ, f)
whenever necessary.

3. An example. In this section we consider a very simple but illustrative ex-
ample. Namely, we work out explicitly the solution to the problem of minimizing the
two dimensional version of E1(·, λ) in the case when the observed image f(x) is given
by the characteristic function 1Br(0)(x) of a disk Br(0) that is centered at the origin
and with radius r. It is important to compare the result with the one for the standard
ROF model, which—as we noted in the introduction—was calculated in [25].

We start by recalling the calculation of [25]. For λ ≥ 0 and the observed image
given by f(x) = 1Br(0)(x), the unique minimizer uλ(x) of E2(·, λ) is given by

uλ(x) ≡

⎧⎪⎨
⎪⎩

0 if 0 ≤ λ ≤ 1

r
,(

1 − 1

λr

)
1Br(0)(x) if λ >

1

r
.

Turning now to the case of E1(·, λ), one can reason (for example with the help of some
of the results presented in sections 5 and 6 of this paper) that for each λ ≥ 0 every
minimizer has to be of the form c1Br(0)(x) for some constant c ∈ [0, 1]. We therefore
need to minimize the function

E1(c1Br(0)(x), λ) = 2πrc + λπr2|1 − c|

over c ∈ [0, 1]. We get

M(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{0} if 0 ≤ λ <
2

r
,

{
c1Br(0)(x) : c ∈ [0, 1]

}
if λ =

2

r
,

{
1Br(0)(x)

}
if λ ≥ 2

r
.

Thus, we see that the solution is unique for all except one special value of the param-
eter λ. The special value is related to radius of the disk; for more general images we
would expect such special values of the parameter λ to be related to the geometric
scale of distinct objects contained in the scene.

The difference between scale spaces generated by the standard ROF model and
the one with L1 fidelity is made abundantly clear by this simple example. When L1

fidelity is used, unlike in the standard ROF model, the scale space is mostly constant;
it only makes a sudden transition at a special value of the scale parameter. This
difference can also be manifested by plotting the “fidelity of minimizer” as a function
of the parameter λ for each model and comparing the qualitative properties. Figure
1 shows the plots obtained based on the minimizers calculated above.

This example brings out another elementary aspect of using an L1 fidelity term
with total variation regularization. Fix a λ > 0. Then the unique minimizer of E1(·, λ)
with the observed image f(x) = 1Br(0)(x) is identically 0 if r < 2

λ , but 1Br(0)(x) if

r > 2
λ . Thus the dependence of the solution to the L1 model on the observed image

is not continuous with respect to, say, the L1-norm. This is clearly related to the lack
of uniqueness in solutions to the model, and is a price to pay for having solutions in
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Fig. 1. Left: Plot of ‖uλ(x) − f(x)‖2
L2 vs. λ−1 for the example of section 3, where uλ(x)

denotes the unique minimizer of E2(·, λ). Right: Plot of μ+(λ) vs. λ−1 for the ROF model with L1

fidelity, using the example of section 3.

which features of interest maintain good contrast until they are completely eliminated.
However, sections 6 and 7 explain some applications for which such a discontinuity
can actually be desirable, and Proposition 6.4 shows that certain important features
of the scale space are continuous as a function of observed signal.

4. Basic facts. In this section, we collect a number of elementary facts that
follow immediately from the definitions introduced in the previous section. These
results will be useful in the subsequent sections.

The following claim shows that the minimum energies Ei(λ) are well-behaved
functions of the parameter λ.

Claim 1. For any given observed image f(x) ∈ L1(RN ) the function E1(λ), and
for any given observed image f(x) ∈ L2(RN ) the function E2(λ), satisfy the following
properties:

1. Ei(λ) for i = 1, 2 are increasing and concave.
2. Ei(0) = 0 for i = 1, 2.
3. 0 ≤ E1(λ) ≤ ‖f‖L1λ and 0 ≤ E2(λ) ≤ ‖f‖2

L2λ for all λ ∈ [0,∞).
4. Ei(λ) are Lipschitz continuous for i = 1, 2.

Proof. Ei(λ) are defined as pointwise infima of a collection of linear functions
that are increasing in λ; this makes them increasing and concave. Statements 2 and 3
follow from the trivial fact that Ei(λ) ≤ Ei(0, λ) for i = 1, 2. Statement 4 now follows
from the first three.

Claim 2. The set M(λ) is closed and convex.
Proof. This follows from convexity of the energy E1.
The following claim, which must be a well-known fact, shows that the fidelity

of the minimizer to the original ROF model varies continuously as a function of λ.
This should be contrasted with the results for the L1 model that are obtained in the
subsequent sections. We include its proof for completeness.

Claim 3. Given f(x) ∈ L2(RN ), for each λ ≥ 0 let uλ(x) denote the unique
minimizer of E2(·, λ). Then the function λ → ‖f − uλ‖L2 is continuous.

Proof. Fix λ∗ ≥ 0 and let uλ∗(x) be the unique minimizer of E2(·, λ∗). Let
{λj}∞j ⊂ R+ converge to λ∗. Consider the sequence of corresponding minimizers:

{uλj}. The obvious relation E2(uλj , λj) ≤ E2(0, λj) = λj‖f‖2
L2 implies that the

sequence has uniformly bounded total variation and L2-norm. It also implies that
‖uλ − f‖L2 ≤ ‖f‖L2 for every λ ≥ 0. Applying the standard compactness prop-
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erty (for functions with uniformly bounded total variation) on compact sets, we can
find a subsequence, also denoted {uλj}, such that uλj (x) → v(x) ∈ L1

loc(R
N ) in L1

on any bounded set. We may then pass to another subsequence to make sure that
uλj (x) → v(x) pointwise a.e. as well. Fatou’s lemma then shows that ‖v − f‖L2 ≤
lim infj→∞ ‖uλj − f‖L2 , so that in fact v ∈ L2(RN ). Also, the standard lower semi-
continuity result for total variation implies that

∫
|∇v| ≤ lim infj→∞

∫
|∇uλj

|. Hence
we get that E2(v, λ∗) ≤ lim infj→∞ E2(uλj , λj).

On the other hand, E2(uλ∗ , λ∗) ≥ lim supj→∞ E2(uλj
, λj). To see this, sup-

pose not. Then there is ε > 0 and arbitrarily large j such that E2(uλ∗ , λ∗) ≤
E2(uλj , λj) − ε. But also, limj→∞ E2(uλ∗ , λj) = E2(uλ∗ , λ∗). These two statements
mean E2(uλ∗ , λj) < E2(uλj , λj) for some large j, which is a contradiction, since uλj

are supposed to be minimizers of E2(·, λj). This, along with the remarks of the
previous paragraph, adds up to the following conclusion:

lim sup
j→∞

E2(uλj , λj) ≤ E2(uλ∗ , λ∗) ≤ E2(v, λ∗) ≤ lim inf
j→∞

E2(uλj , λj).

We thus see that v is a minimizer of E2(·, λ∗); by uniqueness of minimizers of E2(·, λ∗),
we get that v = uλ∗ .

If λ∗ = 0, then uλ∗ = 0 and so ‖uλ∗ − f‖L2 = ‖f‖L2 . Recalling from above that
‖uλ − f‖L2 ≤ ‖f‖L2 for all λ, we see that in this case

lim sup
j→∞

‖uλj − f‖L2 ≤ ‖uλ∗ − f‖L2 ≤ lim inf
j→∞

‖uλj − f‖L2 ,

which establishes continuity of the map in question at λ = 0.
If λ∗ > 0, we reason as follows: We must once again have lim supj→∞ ‖uλj −

f‖L2 ≤ ‖uλ∗ − f‖L2 , which immediately leads to the conclusion of the claim. To see
this, we suppose that it is false and proceed as we did in the previous paragraphs.
There is then arbitrarily large j and an ε > 0 such that ‖uλ∗ −f‖L2 ≤ ‖uλj −f‖L2 −ε.
But then

E2(uλ∗ , λ∗) ≤ lim inf
j→∞

E2(uλj
, λj) − ελj .

Also, E2(uλ∗ , λj) → E2(uλ∗ , λ∗) as j → ∞. These last two statements lead as before
to the contradictory statement that E2(uλ∗ , λj) < E2(uλj

, λj).
We will see whether the analogue of Claim 3 holds for E1. In that regard, we first

make the following basic observation.
Claim 4. Let λ2 > λ1 ≥ 0, and assume that uλ1 and uλ2

are any two minimizers
of E1(·, λ1) and E1(·, λ2), respectively. Then

‖uλ1 − f‖L1(RN ) ≥ ‖uλ2
− f‖L1(RN ).

Proof. Suppose ‖uλ2 − f‖L1 > ‖uλ1 − f‖L1 . Then, since uλ1 ∈ M(λ1), we have
E1(uλ1 , λ1) ≤ E1(uλ2 , λ1). We then have

E1(uλ1
, λ2) = E1(uλ1

, λ1) + (λ2 − λ1)‖uλ1
− f‖L1

≤ E1(uλ2 , λ1) + (λ2 − λ1)‖uλ1 − f‖L1

< E1(uλ2
, λ1) + (λ2 − λ1)‖uλ2

− f‖L1

= E1(uλ2 , λ2),

which is a contradiction, since uλ2
∈ M(λ2) by hypothesis.
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Corollary 4.1. The functions μ±(λ) are decreasing. In fact,

μ−(λ1) ≤ μ+(λ1) ≤ μ−(λ2) ≤ μ+(λ2)

whenever λ1 > λ2 ≥ 0.
The functions μ±(λ) are the analogue for E1 of ‖uλ − f‖L2 in Claim 3. These

functions in general can be discontinuous; in fact, their set of discontinuity is precisely
S(f) according to our notation. The corollary above allows us to make the following
simple statement about the discontinuities of these functions.

Claim 5. For any given f ∈ L1(RN ), the set S(f) is at most countable.
Proof. If λ ∈ S(f), then μ−(λ) < μ+(λ). By the corollary above, at such a λ

both μ− and μ+ have a jump discontinuity. The set of discontinuities of a monotone
function are at most countable.

Finally, for completeness let us state the following rather obvious fact about the
asymptotic value of the functions μ±(λ) as λ → ∞.

Claim 6. Given f(x) ∈ L1(RN ), we have limλ→∞ μ±(λ) = 0.
Proof. Given ε > 0, we can find fε(x) ∈ BV (RN ) such that ‖fε − f‖L1 ≤ ε

2 . If
uλ(x) ∈ M(λ) with μ+(λ) = ‖uλ − f‖L1 , then

μ−(λ) ≤ μ+(λ) ≤ 1

λ
E1(uλ, λ) ≤ 1

λ
E1(fε, λ) ≤ 1

λ

∫
|∇fε| +

ε

2
.

Hence, for all large enough λ we have μ±(λ) ≤ ε.
The following fact is taken directly from [3]. It says that any image u∗(x) which

arises as the solution to model (1.2) for some observed image f(x) is in fact also the
solution to model (1.2) with observed image f(x) taken to be u∗(x) itself, provided
that the parameter λ is taken large enough. We include it as a good way to emphasize
the difference of model (1.2) from (1.1) in regard to the loss of contrast in solutions.

Proposition 4.2. Let λ∗ ≥ 0, f(x) ∈ L1(RN ), and u∗(x) ∈ M(λ∗, f). Then for
every λ ≥ λ∗ we have u∗(x) ∈ M(λ, u∗).

Proof. For the proof of this claim, see [3].

5. Minimizers of E1. In this section, we study the behavior of the ROF model
with L1 fidelity on simple images. Our motivation is twofold. First, studying the be-
havior of image denoising models on simple images is a first step towards understand-
ing the type of images they can successfully process. Second, this type of question
allows us to compare different models. In fact, we will stress the difference of these
results from the analogous ones obtained for the standard ROF model by previous
authors. In particular, our results will bolster the intuitive observation that the L1

fidelity term leads to more geometric regularizations.
The following proposition constitutes our starting point. It shows that the ROF

model with L1 fidelity term almost decouples the level sets of the given image from
each other; it almost becomes a geometry problem for each level set, independent of
the level. This idea of writing total variation–based optimization problems in terms
of level sets appears previously in the works [23, 24] of Strang, and is used to show
the existence of binary solutions, as we do in Theorem 5.2.

Proposition 5.1. The energy E1(u, λ) can be rewritten as follows:

(5.1) E1(u, λ) =

∫ ∞

−∞
Per

(
{x : u(x) > γ}

)
+λ

∣∣{x : u(x) > γ} � {x : f(x) > γ}
∣∣ dγ.
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Proof. Recall the coarea formula for functions of bounded variation (see [12] or
[11]):

∫
RN

|∇u| =

∫ ∞

−∞
Per

(
{x : u(x) > γ}

)
dγ.(5.2)

Also, there is the following “layer cake” formula:∫
RN

|u− f | dx =

∫
{u>f}

|u− f | dx +

∫
{f>u}

|u− f | dx

=

∫
{u>f}

∫ u(x)

f(x)

dγ dx +

∫
{f>u}

∫ f(x)

u(x)

dγ dx

=

∫
RN

∫
R

1{u>f}(x)1[f(x),u(x))(γ) + 1{f>u}(x)1[u(x),f(x))(γ) dγ dx

=

∫
R

∫
RN

1{u>f}(x)1[f(x),u(x))(γ) + 1{f>u}(x)1[u(x),f(x))(γ) dx dγ,

where we simply changed the order of integration in the last step. But now we have

1{u>f}(x)1[f(x),u(x))(γ) = 1 iff x ∈ {u > f} ∩ {u > γ} ∩ {f > γ}c

and 0 otherwise, and

1{f>u}(x)1[u(x),f(x))(γ) = 1 iff x ∈ {f > u} ∩ {u > γ}c ∩ {f > γ}

and 0 otherwise. That means

1{u>f}(x)1[f(x),u(x))(γ) + 1{f>u}(x)1[u(x),f(x))(γ) = 1{u>γ}�{f>γ}(x).

Therefore ∫
RN

|u− f | dx =

∫ ∞

−∞
|{x : u(x) > γ} � {x : f(x) > γ}| dγ.

Putting these formulas together gives the one in the statement of the claim.
We now explore some consequences of Proposition 5.1. First, we consider what

happens when the observed image is binary. In other words, we assume that f(x) is
the characteristic function of a domain. We assume that the domain is bounded, but
for now make no assumptions about the boundary of the domain.

Theorem 5.2. If the observed image f(x) is the characteristic function of a
bounded domain Ω ⊂ RN , then for any λ ≥ 0 there is a minimizer of E1(·, λ) that is
also the characteristic function of a (possibly different) domain. In other words, when
the observed image is binary, then for each λ ≥ 0 there is at least one u(x) ∈ M(λ)
which is also binary.

In fact, if uλ(x) ∈ M(λ) is any minimizer of E1(·, λ), then for almost every
γ ∈ [0, 1] we have that the binary function

1{x:uλ>γ}(x)

is also a minimizer of E1(·, λ).
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Proof. Let f(x) := 1Ω(x), where Ω is a bounded domain in RN . It can be easily
seen that any minimizer u(x) of E1 satisfies u(x) ∈ [0, 1] for almost every x ∈ RN .
Formula (5.1) of Proposition 5.1 above becomes, in this case,

E1(u, λ) =

∫ 1

0

Per
(
{x : u(x) > γ}

)
+ λ

∣∣ {x : u(x) > γ} � Ω
∣∣ dγ.

This suggests that we consider for each level set of u(x) the following geometry prob-
lem:

min
Σ⊂RN

(
Per(Σ) + λ

∣∣Σ � Ω
∣∣).(5.3)

Standard compactness and lower semicontinuity facts show the existence of mini-
mizers; let Σ∗ ⊂ RN be one of them. Let uλ(x) be any minimizer of E1(·, λ), i.e.,
uλ(x) ∈ M(λ). Set

Σ(γ) :=
{
x : uλ(x) > γ

}
.

Then

Per
(
Σ(γ)

)
+ λ

∣∣Σ(γ) � Ω
∣∣ ≥ Per(Σ∗) + λ

∣∣Σ∗ � Ω
∣∣(5.4)

for almost every γ ∈ [0,∞). This now immediately implies that

E1(uλ(x), λ) ≥ E1(1Σ∗(x), λ),

which means that 1Σ∗(x) is also a minimizer of E(·, λ).
Furthermore, since uλ(x) is a minimizer, the inequality of (5.4) is in fact an

equality for almost every γ ∈ [0, 1]. Thus, Σ(γ) is a minimizer of the geometry
problem (5.3), and 1Σ(γ)(x) is a minimizer of E1(·, λ) for almost every γ.

Remark. A version of the first statement of Theorem 5.2 was obtained for the
discrete analogue of model (1.2) in one space dimension by Alliney in [4].

Remark. The claim leaves open the possibility that for a given λ ≥ 0 there might
be a u ∈ M(λ) that takes more than two values.

Remark. The conclusion of Theorem 5.2 is interesting because it establishes the
equivalence of a nonconvex problem (the geometry problem of minimizing over only
binary images, which is encountered in many applications such as improving the
appearance of fax documents) to a convex problem (minimizing over all images).
Indeed, it follows from the corollary that to obtain a solution to (5.3), one can first
minimize E1(·, λ), taking f(x) = 1Ω(x) as the observed image, and then look at a level
set of the solution obtained. The resulting algorithm would be very different from the
standard level set method of Osher and Sethian [19, 20]. Whether this observation
can be turned into a useful computational tool needs to be explored, but this question
will not be pursued any further here.

Theorem 5.2 highlights an important qualitative difference of the L1 model from
the standard ROF model. In contrast to the content of these claims, it is easy to show
that for certain types of binary images (even with smooth edge sets) the minimizer of
the standard ROF model takes more than two values for every large enough choice of
the parameter λ.

We do not know whether the following comparison principle holds for the geom-
etry problem (5.3): If Ω1 ⊂ Ω2 and Σ1,Σ2 are minimizers of (5.3) with Ω = Ω1 and
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Ω = Ω2, respectively, then do we necessarily have Σ1 ⊂ Σ2? If true, this would imply,
in particular, uniqueness for solutions of (5.3). In any case, we can make the following
statement.

Corollary 5.3. If the observed image f(x) is the characteristic function of
a bounded convex domain Ω ⊂ RN , then for almost every λ ≥ 0 the minimizer of
E1(·, λ) is unique and is the characteristic function of a set contained in Ω.

Proof. Let λ ∈ [0,∞) \ S(f), and let uλ(x) ∈ M(λ). We recall from the proof of
Theorem 5.2 that, using the same notation as in that proof, the set Σ(γ) minimizes
the geometry problem (5.3) for almost every γ ∈ [0, 1]. Let 1 ≥ γ1 > γ2 ≥ 0, and
assume that Σ(γ1) �= Σ(γ2) both minimize the geometry problem. By definition, we
have Σ(γ1) ⊂ Σ(γ2). Furthermore, convexity of Ω implies that

Per(Σ(γi) ∩ Ω) ≤ Per(Σ(γi)) for i = 1, 2.

Since 1Σ(γ1)(x) and 1Σ(γ2)(x) are minimizers, it follows that Σ(γ1) ⊂ Σ(γ2) ⊆ Ω.
Hence, |Σ(γ1) � Ω| �= |Σ(γ2) � Ω|. But then λ ∈ S(f), which is a contradiction.
We have thus reached the conclusion that if λ ∈ [0,∞) \ S(f), then any minimizer of
E1(·, λ) is necessarily binary (i.e., the characteristic function of a set). Now suppose
that u1(x) and u2(x) are two binary minimizers of E1(·, λ). By convexity of E1(·, λ),
we then have that 1

2 (u1(x) + u2(x)) is also a minimizer, and thus binary. But the
average of two binary functions is binary only if the two functions are identical.

Thus, whenever λ ∈ [0,∞) \ S(f), the minimizer of E1(·, λ) is unique and is
binary: It is of the form 1Σ(x) for some set Σ. The argument above shows that
Σ ⊆ Ω. And Claim 5 says that S(f) is at most countable and thus negligible. That
proves the claim.

As an aside, we note the following result about problem (5.3) that follows immedi-
ately from the previous corollary (perhaps it can be obtained also in a less roundabout
way).

Corollary 5.4. Let Ω be a bounded convex domain in RN . Then, for almost
every λ ≥ 0, the solution of problem (5.3) is unique.

Proof. If Σ1 and Σ2 are solutions to (5.3), then 1Σ1(x) and 1Σ2(x) are minimizers
of E1(·, λ) with the observed image given by f(x) = 1Ω(x). Conditions on Ω imply
that Corollary 5.3 applies so that Σ1 = Σ2. That proves the claim.

We will next consider some simple images f(x) for which the minimizer of E1(·, λ)
turns out to be precisely the image f(x) itself for every large enough λ. In section 1,
we recalled a result from Meyer’s lecture notes [15] which says that for the standard
ROF model given by E2(·, λ) the only such image is f(x) := 0. For E1, however,
there are many such images, as shown by Proposition 4.2, which we quoted in section
4 from [3]. The following lemma will be instrumental in establishing whether certain
simple observed images f(x) have this property.

Lemma 5.5. Given an observed image f(x) ∈ BV (RN ), assume that there is a
vector field φ(x) with the following properties:

1. φ(x) ∈ C1
c (RN ;RN ),

2. |φ(x)| ≤ 1 for all x ∈ RN ,
3.

∫
RN f(x) div φ(x) dx =

∫
RN |∇f |.

Then there exists a threshold λ∗ ≥ 0 such that M(λ) = {f(x)} for all λ > λ∗. In
other words, the unique minimizer of E1(·, λ) is given by the observed image f(x).

Proof. Set λ∗ := maxx∈RN |div φ(x)|. Take any λ > λ∗. Then, given any
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u(x) ∈ BV (RN ), we have

E1(u, λ) =

∫
|∇u| + λ

∫
|u− f | dx

≥
∫

u div φdx + λ

∫
|u− f | dx

=

∫
f div φdx + λ

∫
|u− f | dx +

∫
(u− f) div φdx

≥ E1(f, λ) +
(
λ− max

x∈RN
|div φ(x)|

)∫
|u− f | dx.

Since λ > λ∗ := max |div φ(x)|, the last inequality shows that E1(u, λ) > E1(f, λ)
unless u ≡ f . Since u is a minimizer, it must in fact be the case that u ≡ f .

Lemma 5.5 can now be applied, for example, to binary images to obtain an
important class of exact solutions. This requires making some smoothness assumption
about the interface between then two values of the binary function.

Theorem 5.6. Let Ω ⊂ RN be a bounded domain with C2 boundary. Let the
observed image f(x) be given by f(x) = 1Ω(x). Then there exists a threshold λ∗ ≥ 0
such that whenever λ > λ∗, the unique minimizer of E1(·, λ) is the observed image
f(x) = 1Ω(x) itself.

Proof. Since the boundary ∂Ω of the bounded domain Ω is assumed to be C2,
the outward unit normal vector field n(x) : ∂Ω → SN−1 of ∂Ω can be extended
in a C1 manner to a tubular neighborhood of ∂Ω, so that one gets a vector field
φ(x) ∈ C1

c (RN ;RN ) such that φ(x)
∣∣
x∈∂Ω

= n(x), and |φ(x)| ≤ 1 for all x ∈ RN . But
then ∫

RN

f div φdx =

∫
Ω

div φ(x) dx =

∫
∂Ω

φ(x) · n(x) dσ

= Per(∂Ω) =

∫
RN

|∇f | dx.

Hence, the vector field φ(x) satisfies all the requirements of Lemma 5.5, from which
the conclusion of the present claim follows.

At this point it is worth recalling the behavior of the standard ROF model on
binary images of the form f(x) = 1Ω(x). As we noted above, simple considerations
show that the minimizer of the standard ROF model almost never turns out to be
u(x) = f(x) = 1Ω(x). A related question is whether the solution u(x) has at least the
correct “set of edges”; see [10]. In case Ω is a ball, one can calculate the minimizer

explicitly [25]; it turns out to be u(x) = c1Ω(x), where c = 1 − Per(Ω)
2λ|Ω| . In particular,

u(x) has the same set of edges as f(x). The results of [5] generalize the results of [25]
but also show that the class of binary images that have this weaker property (i.e.,
images for which the solution to the standard ROF model turns out to be a constant
multiple of the observed image) is still rather limited; for example, there are smooth
but nonconvex shapes that lack this property.

Remark. Theorem 5.6 can easily be extended to images of a more general form.
Indeed, if the level sets {x : f(x) = γ} of the given image f(x) are smooth and vary
smoothly with respect to γ, the same conclusion holds. We also see, among other
things, that such an image f(x) cannot have strict local extrema, for at a strict local
extremum the level sets shrink to a point. Moreover, there are also binary images that
lack this property (i.e., which are not exactly recovered for any λ ≥ 0, no matter how
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large). In fact, a repetition of some of the arguments of Meyer given in his lecture
notes [15] on the standard ROF model show that the characteristic function of, say,
a square cannot arise as the solution to the ROF model with L1 fidelity either, no
matter what the observed image f(x) ∈ L1 is, and no matter how large the parameter
λ is chosen.

Remark. A discrete version of Theorem 5.6 is proved in [17] for denoising models
with nonsmooth (including L1) fidelity terms and smooth regularization terms. In
those results, unlike ours, the threshold value for the parameter λ necessarily involves
the grid size.

The last few claims dealt with the behavior of the L1 fidelity-based model for
large values of the parameter λ. Next, we consider what happens when λ ≥ 0 is
small enough. The following claim is a very simple application of the isoperimetric
inequality.

Proposition 5.7. Let R > 0. Then there exists a threshold λ∗ = λ∗(R,N) such
that if f ∈ L1(RN ) with supp(f) ⊂ BR(0), then M(λ) = {0} for any λ < λ∗. In
other words, the unique minimizer of E1(·, λ) is given by u(x) ≡ 0.

Proof. Let C = C(N) be the isoperimetric constant∫
RN

|∇u| ≥ C(N)‖u‖
L

N
N−1 (RN )

for all u ∈ BV (RN ).

Then we set

λ∗(R,N) :=
C(N)

Rω
1
N

N

,

where ωN is the volume of the unit ball in RN . Take a λ > λ∗ and let u(x) ∈ M(λ).
Then E1(u, λ) ≤ E1(0, λ). By the isoperimetric inequality, that means

C(N)‖u‖
L

N
N−1 (RN )

+ λ‖u− f‖L1(RN ) ≤ λ‖f‖L1(RN ) = λ‖f‖L1(BR(0)).

We apply Holder’s inequality to the first term on the left-hand side after splitting it
into integrations over BR(0) and Bc

R(0). That gives

C(N)

Rω
1
N

N

‖u‖L1(BR(0)) + λ‖u− f‖L1(BR(0)) + C(N)‖u‖
L

N
N−1 (Bc

R(0))
≤ λ‖f‖L1(BR(0)),

which shows that if λ < C(N)/Rω
1
N

N = λ∗, then

‖u‖L1(BR(0)) = ‖u‖
L

N
N−1 (Bc

R(0))
= 0.

In other words, u ≡ 0.
Remark. This behavior of the L1 model is to be expected, based on its contrast

invariance, as we have already noted in the introduction. It differs from the behavior
at small λ values of the standard ROF model, which, according to [15], entails not
just the support of a given compactly supported image f(x) but its ‖ · ‖∗-norm.

6. Scale space and the set S(f). The set S(f) of discontinuities of the func-
tions μ± play a distinguished role in the scale space generated by varying the param-
eter λ in the L1 model. As the value of λ is gradually decreased, minimizers of the
image models become coarser as small scale objects in the image merge to form larger



1830 TONY F. CHAN AND SELIM ESEDOḠLU

scale structures. Intuitively, for the L1 model we can expect the values of λ ∈ S(f) to
correspond to scales of distinct objects that make up the image. These are the values
of λ at which the scale space makes a rapid and drastic transition.

We would first like to prove that the set S(f) is nonempty for the kind of images
we have been considering in the previous sections, namely images of the form f(x) =
1Ω(x), where Ω is a bounded domain. Our arguments are based on verifying this
claim for the special case where the given image is the characteristic function of a
ball, and then generalizing the result to f(x) = 1Ω(x) by comparing Ω with a ball
that is contained in Ω.

Lemma 6.1. Let Ω be a bounded domain in R2, and assume that BR(p) ⊂ Ω.
Consider the observed image given by f(x) = 1Ω(x). Then for any λ ≥ 0 and r ∈
(0, R) we have

E1(1Br(p)(x), λ) > min
{
E1(0, λ), E1(1BR(p)(x), λ)

}
.

Proof. Since Br(p) ⊂ BR(p) ⊂ Ω for each r ∈ (0, R), we have

‖1Ω(x) − 1Br(p)(x)‖L1(R2) = |Ω| − πr2.

That means

E1(1Br(p)(x), λ) = λ
(
|Ω| − πr2

)
+ 2πr.

Considering E1(1Br(p)(x), λ) as a function of r, we see that it achieves its minimum
on [0, R] strictly at the end points of the interval.

In order to show that μ±(λ) is a discontinuous function, we will show that its
range omits a full interval of values but does include certain values on either side of
that interval. The next claim exhibits such an omitted interval.

Lemma 6.2. Let Ω be a bounded domain in R2, and let BR(0) ⊂ Ω. Consider
the observed image given by f(x) = 1Ω(x). There is no λ ∈ R+ such that

|Ω| − πR2 < μ+(λ) < |Ω|.

Proof. Suppose there is a λ ≥ 0 such that |Ω| − πR2 < μ+(λ) < |Ω|. There
exists u(x) such that u(x) ∈ M(λ) and ‖u − f‖L1(RN ) = μ+(λ). As before, let
Σ(γ) := {x : u(x) > γ}. By Proposition 5.1, we have 1Σ(γ)(x) ∈ M(λ) for almost
every γ ∈ (0, 1). Therefore, for almost every γ we have

‖1Σ(γ)(x) − f‖L1(R2) < |Ω|

(otherwise μ+(λ) ≥ |Ω|). It also cannot be the case that |Σ(γ) � Ω| ≤ |Ω| − πR2 for
almost every γ ∈ (0, 1) since we know that∫ 1

0

|Σ(γ) � Ω| dγ = ‖u− f‖L1(R2) = μ+(λ) > |Ω| − πR2.

Thus, there exists γ∗ ∈ (0, 1) such that

1Σ(γ∗)(x) ∈ M(λ) and |Ω| − πR2 < ‖1Σ(γ∗)(x) − f(x)‖L1(R2) < |Ω|.

Case 1. |Σ(γ∗)| ≥ πR2. But then Per(BR(0)) ≤ Per(Σ(γ∗)), and

|Ω � BR(0)| = |Ω| − πR2 < ‖1Σ(γ∗)(x) − f(x)‖L1 .
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Hence, E1(1BR(0)(x), λ) < E1(1Σ(γ∗)(x), λ). This is a contradiction, since 1Σ(γ)(x)
was supposed to be a minimizer.

Case 2. |Σ(γ∗)| < πR2. In this case, take r = 1√
π
|Σ(γ∗)|

1
2 . Since r ∈ (0, R), we

have that Br(0) ⊂ Ω. This implies

‖1Br(0)(x) − f(x)‖L1(R2) ≤ ‖1Σ(γ∗)(x) − f(x)‖L1(R2).

Moreover, as before, Per(BR(0)) ≤ Per(Σ(γ∗)). Therefore,

E1(1Br(0)(x), λ) ≤ E1(1Σ(γ∗)(x), λ) = E1(u(x), λ).

On the other hand, by Lemma 6.1 we have

E1(1Br(0)(x), λ) > min
{
E1(0, λ), E1(1BR(0)(x), λ)

}
.

This is a contradiction, since u(x) ∈ M(λ).
Theorem 6.3. Let Ω be a nonempty bounded domain in R2. Consider the

observed image given by f(x) = 1Ω(x). Then the functions μ±(λ) are discontinuous.
Proof. By Proposition 5.7, we have that μ+(λ) = ‖f‖L1 = |Ω| for all small enough

λ. On the other hand, by Claim 6 we have that μ±(λ) → 0 as λ → ∞. However,
by Lemma 6.2, there is a range of values near |Ω| that the function μ+ cannot take.
It therefore has to be discontinuous. Discontinuity of μ− follows from that of μ+ via
Claim 4.

Remark. This should be contrasted with the situation for the standard total
variation model (with L2 fidelity), which is explained in Claim 3.

We thus see that the scale spaces generated by the two models, the standard ROF
model and the one with L1 fidelity, are very different. With the standard ROF model,
pronounced objects of distinct scale with sharp edges in the image gradually lose their
contrast and merge with their neighbors as the parameter λ is lowered. With the L1

model, such objects maintain their contrast with respect to their neighbors—however,
their boundaries might be gradually smoothed out. This goes on until a critical value
of λ is reached—one that belongs to the set S(f), at which point the object suddenly
merges with a neighboring one.

At this point, it is also worth comparing the scale space generated by the L1

model with that generated by anisotropic diffusion via motion by mean curvature
of level sets. The two are drastically different. This can be seen most easily in the
case when f(x) is the characteristic function of a disk. The scale space generated by
motion by curvature consists of a family of concentric disks shrinking gradually to a
point. Hence the same feature, i.e., the original disk, appears at many intermediate
scales, albeit in different sizes. On the other hand, the scale space generated by the
total variation model with L1 fidelity term consists of either the original disk or the
constant background at any given scale.

Finally, we return to the topic of continuous dependence on the observed signal
for the L1 model. Despite our remarks in section 3, we show in the next claim that
the fidelity of minimizer versus λ graph depends on the observed image continuously.

Proposition 6.4. Let {fj(x)}∞j=1 be a sequence in L1(RN ) that converges to

f(x) in the L1-norm. Then, for almost all λ ≥ 0, μ±(λ, fj) converges to μ±(λ, f) as
j → ∞.

Proof. Let S := S(f) ∪ (∪∞
j=1S(fj)). According to Claim 5, S(f) and each S(fj)

are countable. Therefore, S is countable and thus negligible. Fix λ ∈ [0,∞) \ S. For
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each j, take uj ∈ M(λ, fj). The sequence {uj}∞j=1 is bounded in total variation norm

and hence is precompact in L1 on compact sets. Passing to a subsequence if necessary,
we may assume that uj → u∞ pointwise a.e. as j → ∞.

We must have u∞ ∈ M(λ, f). To see this, assume otherwise. M(λ, f) is nonempty,
so take a u ∈ M(λ, f). By lower semicontinuity we have

E1(u, λ, f) < E1(u∞, λ, f) ≤ lim inf
j→∞

E1(uj , λ, fj).

However, E1(u, λ, fj) → E1(u, λ, f) as j → ∞. Therefore, for large enough j, we get
E1(u, λ, fj) < E1(uj , λ, fj). This gives a contradiction, since uj ∈ M(λ, fj).

Now that we know u∞ ∈ M(λ, f), recall next that λ �∈ S. Therefore,

μ±(λ, f) = ‖u∞ − f‖L1 = lim
j→∞

‖uj − fj‖L1 = lim
j→∞

μ±(λ, fj).

That proves the claim.

7. Computation. In this section, we show numerical examples that bring out
unique features of the total variation–based denoising model with L1 fidelity term.
We also give some details on the numerical schemes used to obtain these results.

Our computations are based on gradient descent schemes for decreasing the en-
ergies involved. The nondifferentiability of the terms involved in the energies calls for
some sort of regularization. The regularized versions of energies E1(·, λ) and E2(·, λ)
used in our numerical experiments are the following:

Eε,δ
1 (u, λ) :=

∫
RN

√
|∇u|2 + ε + λ

∫
RN

√
(f − u)2 + δ dx,

Eε
2(u, λ) :=

∫
RN

√
|∇u|2 + ε + λ

∫
RN

(f − u)2 dx.

This type of approximation to total variation–based models is very standard. The dis-
crete versions of these energies lead to the following equally standard explicit gradient
descent schemes in two space dimensions:

un+1
i,j − un

i,j

δt
= D−

x

⎛
⎝ D+

x u
n
i,j√

(D+
x un

i,j)
2 + (D+

y un
i,j)

2 + ε

⎞
⎠

+ D−
y

⎛
⎝ D+

y u
n
i,j√

(D+
x un

i,j)
2 + (D+

y un
i,j)

2 + ε

⎞
⎠ + λ

(f − un
i,j)(

(f − un
i,j)

2 + δ
)α ,

where α = 1
2 for Eε,δ

1 and α = 0 for Eε
2 . Here, D+ and D− denote forward and

backward difference quotients, respectively, in the direction of their subscript.
We note that efficient numerical minimization of energies considered in this work

is a topic unto itself; no doubt there are better ways to do it than the gradient descent
approach taken and the specific choice of scheme made above. In particular, it is better
to use algorithms that do not need to regularize the nondifferentiable terms appearing
in the energy. Such an algorithm is presented by Alliney in [2] with applications to
one dimensional signals in the context of an objective functional with mixed l1,l2

norms. Also, Chambolle recently developed an efficient algorithm for minimizing
the standard ROF model for images without regularizing the total variation term
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500=λ 300=λ 200=λ

100=λ 80=λ 60=λ

50=λ 40=λ 30=λ

Fig. 2. Example of scale space generated by the standard total variation model. Compare with
the same example for the model with L1 fidelity, shown in Figure 3.

[7]. Further alternative numerical approaches to total variation–based models can be
found in [6, 9]. Whether these algorithms can be adapted to our setting is a very
interesting question that will be explored elsewhere.

An important point that we need to clarify is the following. Although, as we
already noted several times, the energy E1(·, λ) is not strictly convex and its minimiz-

ers in general lack uniqueness, for any given δ > 0 the approximate energy Eε,δ
1 (·, λ)

is strictly convex so that its minimizers enjoy uniqueness. It is these minimizers
that we have computed. Moreover, it is a very routine matter to verify that a se-
quence of minimizers of Eε,δ

1 (·, λ) converges to the set of minimizers M(λ) of E1(·, λ)
as ε, δ → 0+. The analogous convergence statement is, of course, true also for a
sequence of minimizers of Eε

2(·, λ).
Figures 2 and 3 compare the scale spaces generated by the standard total variation

model and the one with L1 fidelity on a synthetic image. This experiment makes
the more geometric nature of the L1 model abundantly clear. The observed image
consists of squares of various sizes and gray levels. In the scale space generated by
the standard total variation model, the squares gradually lose their contrast (while at
the same time their geometries get regularized) and gradually disappear. Moreover,
some large squares with low contrast against the background—namely the square
near the upper right corner—disappear before some smaller squares that have higher
contrast against the background—namely the two intermediate sized squares along
the diagonal. On the other hand, in the scale space generated by the model with
L1 fidelity, the squares get processed only in terms of their geometry: They preserve
their contrast very well until all of a sudden they disappear. (They should, in fact,
preserve their contrast perfectly, but because our numerical scheme regularizes the L1

fidelity term to make it differentiable, in practice there is some loss of contrast.) In
principle, the contrast of the squares plays no role in determining the order in which
they are removed; that order is determined completely in terms of the geometry of
the features.

Figure 4 shows the graph of the fidelity of the minimizer versus λ for the standard
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Fig. 3. Example of scale space generated by the total variation model with L1 fidelity. Compare
with Figure 2.
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Fig. 4. Plot of the fidelity of minimizer (i.e., ‖uλ(x) − f(x)‖2
L2) versus λ−1 for the standard

ROF model (top graph) and of the fidelity of minimizer (i.e., ‖uλ(x)− f(x)‖L1) versus λ−1 for the
ROF model with L1 fidelity (bottom graph).

total variation model and for the model with L1 fidelity. An important ambiguity
that we need to resolve is how the nonuniqueness of minimizers of E1(·, λ) affects the
fidelity-versus-λ plot for E1(·, λ). To answer this question, recall that the fidelity of
various minimizers of E1(·, λ) differs from each other at only countably many values
of λ. In particular, all ways of obtaining the second graph in Figure 4 yield plots that
are identical up to a set of measure 0. Hence, there is no ambiguity in the results
shown.

Discontinuities in the minimizer’s fidelity-versus-λ graph for the L1 model corre-
spond to distinguished values of the parameter λ. As can be seen from the results,
these are the values of λ at which a drastic change in the scale space takes place.
Namely, at such values of λ one of the “features” (squares in this example) gets elim-
inated. There is no such distinguished value of λ in the plot for the standard ROF
model at which the graph becomes discontinuous (as shown both by our theoretical
results and by the numerical example shown). However, the graph in that case might
have kinks, which are of course harder to detect than discontinuities. Thus, unlike
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Original Image λ=1000 λ=750

λ=500 λ=375 λ=250

Fig. 5. Scale space generated by the standard ROF model.

the standard total variation model, the model with L1 fidelity thus suggests a method
for data-driven parameter selection.

For those familiar with the notion of an L-curve [13, 14] (which is a technique for
choosing regularization parameters in ill-posed inverse problems), let us point out that
from the point of view of this paper there is no apparent useful connection between
the fidelity-versus-λ graph and the L-curve. According to the L-curve method, to
determine a distinguished value of the regularization parameter λ, one should find
the corner (point of maximum curvature) in the

∫
|∇uλ| versus ‖uλ − f‖L1 graph.

However, for instance in the case of the example of section 3 (i.e., with f(x) =
1Br(0)(x)), the curvature of this graph is easily seen to be independent of the radius
r; thus, the L-curve method does not yield any scale information.

The special values of parameter λ obtained from the fidelity-of-minimizer graph
via the L1 model can be used in many ways. For example, denoising models are
sometimes used for generating multiscale decomposition of images, as in [26]. In such
applications, it is necessary to select a schedule for the parameter λ a priori. In [26],
this schedule is chosen in the form λ = 2jλ0, with j = 1, 2, 3, . . . , and the initial
value λ0 is arbitrarily chosen by the user. The L1 scale space suggests a more natural
data-driven way to select these parameters using the discontinuities in the fidelity-of-
minimizers graph. Moreover, even if one opts to use a λ-schedule of the form used in
[26], the theoretical results and preliminary numerical examples of this paper suggest
that one might obtain a much cleaner decomposition using the ROF model with L1

fidelity in place of the standard ROF model. All these ideas pertaining to multiscale
decomposition of images using the L1 fidelity-based model will be explored elsewhere.

Finally, Figures 5 and 6 illustrate the differences between the standard ROF
model and the one with L1 fidelity on a real medical image. In this example also, one
can see that the small scale features in the observed image, such as these indicated
by the arrow on the lower-left-hand-side image of Figure 6, maintain their contrast
much better in the L1 fidelity model than in the standard ROF model, even as the
parameter λ is gradually decreased to very low values.

8. Conclusion. We have considered the total variation–based image denoising
model of Rudin, Osher, and Fatemi with the L1-norm as the fidelity term. Our
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Original Image λ=150 λ=125

λ=100 λ=75 λ=50

Fig. 6. Scale space generated by the ROF model with L1 fidelity term.

results highlight that this modification leads to many interesting qualitative differences
in the behavior of the modified model from the standard one. These differences
have important consequences for image denoising. They also suggest interesting new
research directions into applications to data-driven parameter selection and multiscale
image decomposition.
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CHANNEL FORMATION IN GELS∗

N. G. COGAN† AND JAMES P. KEENER‡

Abstract. We derive and give an analysis of a model of gel dynamics based on a two-phase
description of the gel, where one phase consists of networked polymer and the second phase is the
fluid solvent. It is found that for the gel to maintain an edge in a poor solvent, the function describing
the osmotic pressure must be of a particular form. The model is used to study the behavior of a gel
forced by a pressure gradient to move between two flat plates. The distribution of the network phase
under these conditions is found to be nonuniform and dependent on the pressure gradient. There
is a range of pressure gradients for which the network has regions of high and low volume fraction
separated by a sharp boundary, indicative of a channel. We provide the bifurcation analysis of how
these novel, singularly perturbed, channeled solutions occur.

Key words. gel, model, viscoelasticity, osmotic pressure, biofilm
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1. Introduction. There are numerous biological and biotechnological examples
where the structure and dynamics of polymer gels regulates the local environment.
Biological examples include maintenance of structural integrity in biofilms [8], cellu-
lar cytoplasm [3], force generators in myxobacteria [14], and chemical diffusion and
adsorption mediation in biofilm clusters [12]. Gel patches and ingestible pills used
to regulate the diffusion and adsorption of drugs are examples of bioengineered gels.
Quantifying the role of the polymer gel in such diverse systems requires understand-
ing the effect of the physical and chemical structure of the polymers on the material
properties of the system.

Gels are composed of a polymer network and a fluid solvent. This composition
endows gels with properties different than those of viscous materials for two primary
reasons. First, the polymeric structure induces viscoelastic behavior. Second, the
chemical structure of the polymer induces force, causing gel swelling and deswelling.
In this paper we first introduce a two-phase description of gel dynamics that em-
phasizes these two important differences between gels and Newtonian fluids. The
behavior of a pressure driven gel between two flat plates is analyzed in a manner
similar to the standard Poiseulle flow problem. Results from this analysis indicate
that the steady-state network profile depends on the pressure gradient in a relatively
complicated manner. There is an intermediate range of pressure gradients for which
the majority of the network is compressed and located near the plates, creating a
channeled region which is relatively free of polymer. This channeled solution arises
via a novel bifurcation mechanism from a nearly uniform network distribution by
forming a deep, narrow channel.

2. A model of gel dynamics. Gels consist of two materials, networked poly-
mer and fluid solvent, where the network encapsulates the solvent. The polymer
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network can be formed by several different interactions between the polymers them-
selves including covalent bonding, coulombic bonding, hydrogen bonding, and physical
entanglement.

In response to external conditions, gel networks absorb or expel solvent, causing
swelling or contraction, respectively. Thus the structure of the gel depends on the
temperature, solvent composition, pH, hydrostatic pressure, and ionic concentrations.
The potential which is responsible for the swelling properties of the gel is referred to
as osmotic or swelling pressure.

Forces due to osmotic pressure are not the only forces acting on the polymer net-
work. Deformation of the gel induces forces due to the elastic nature of the polymer
network. The elasticity is caused by both the elasticity of the polymers themselves and
polymer interactions. That is, a single polymer acts as a spring for small deformations,
while entanglement and cross-linking cause the network to resist deformations. The
behavior is in general not well described by a simple linear relationship between dis-
placement (strain) and stress primarily because the deformations are typically large.

Because the cross-links may be broken, a strain imposed on the gel and held
induces a stress which dissipates, a process referred to as relaxation. Further, if a
fixed stress is imposed on the gel, the gel will continue to displace, which is referred to
as creep. The two behaviors of creep and relaxation indicate that gels are viscoelastic
materials; therefore the constitutive relationship between stress and strain is typically
more complicated than for viscous materials.

Here we assume that a gel is composed of two immiscible materials, polymer
network and fluid solvent. The resulting model is similar to other models [3, 6, 9,
11, 13] that describe the gel as a two-phase material. The primary variation among
models in the literature results from the treatment of the viscoelastic stress and the
swelling pressure. In this study, we will neglect the relaxation of the network and
assume that the gel is composed of an elastic solid (network) embedded in a viscous
fluid (solvent). The swelling pressure is specified to ensure that physically reasonable
swelling/deswelling is reflected in the deformation process.

In the following sections we describe a general model of gel dynamics and specify
the forms of the viscoelastic stress and osmotic pressure used in this investigation.
The resulting model is then used to study the distribution of the polymer network
when the gel is forced to move between two flat plates by a pressure gradient.

2.1. Model derivation. We consider a region of space that contains networked
polymer and solvent, where the volume fraction of network, θn, and the volume frac-
tion of solvent, θs, sum to one. The network is assumed to act as a constant density
viscoelastic material, while the solvent acts as a Newtonian fluid of much less viscosity
than the networked material. The velocities of network and solvent are denoted �Un

and �Us, respectively.

The equation describing the momentum of the polymer network is given by the
balance of four forces that act on the network. Surface forces are given by ∇· (θnσn),
where σn is the network stress tensor. We assume that σn = σv+σe, where the viscous
and elastic stresses are denoted σv and σe, respectively. The viscous stress tensor is
proportional to the velocity gradient, σv = η

2 (∇�Un+∇�UT
n ). The non-Newtonian stress

tensor is given by constitutive relations which depend on the material and flow regimes
[1]. Here we take the elastic stress to be proportional to the elastic strain, which is
determined by the displacement gradient. We do not allow for creep or relaxation of
stress. Thus, we are describing the deformation process of the moving gel. Since the
displacements are not small, we use a finite strain tensor. The displacement of a fluid
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particle relative to fixed Eulerian coordinates is determined by

�x′ = �x + �D(�x, t),

where �x′ denotes the past position of the fluid particle and the components of the
vector �D are the displacements.

Following the development given in [1], the stress is related to the strain through

σe = γC,(1)

where C is the relative Cauchy strain tensor

C(�x, t)i,j = FjiFij − δij ,

with Fij =
∂x′

i

∂xj
= ∂Di

∂xj
+ δij the deformation gradient tensor and δij = 0 if i �= j,

δii = 1.
We must also specify equations describing the change in displacements due to

advection. The time derivative is measured in convected coordinates (i.e., relative
to a fixed coordinate system). We assume that the gel is an elastic solid with rest
position at which there is no network strain, while displacements from rest induce
a strain on the network. Relaxation of the network has been ignored since we are
primarily interested in coupling between elastic stress and network motion. Thus

∂

∂t
�D + ∇ · ( �D�Un) = �Un.(2)

The motion of the solvent influences the network through frictional drag, which
we model by hfθnθs(�Un− �Us), where �Un and �Us are the network and solvent velocities
and hf is the constant coefficient of friction.

The third force is induced by the chemically active nature of the polymers within
the gel. To model this force, we assume that there exists an osmotic pressure, Ψ(θ),
gradients of which induce force on the polymers. Additional description of this term
is provided below.

The final force that is included is due to hydrostatic pressure, P . Balancing all
these forces yields

∇ · (θnσn) − hfθnθs(�Un − �Us)(3)

− ∇Ψ(θn) − θn∇P = 0.

The equation governing the solvent momentum is derived in a similar manner.
However, the fluid is chemically passive so there is no osmotic force on the solvent
and the stress is Newtonian. Force balance yields

∇ · (θsσs) + hfθnθs(�Un − �Us) − θs∇P = 0,(4)

where σs = ηs

2 (∇�Us + ∇�UT
s ).

Notice that (3) and (4) are very similar to the Stokes equation for incompressible
flows at zero Reynolds number. In particular, by neglecting the inertial terms, we are
assuming that the system responds instantaneously to applied forces.

The redistribution of the polymer network is governed by the conservation equa-
tion

∂

∂t
θn + ∇ · (θn�Un) = 0,(5)
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and a similar equation governs the conservation of solvent, namely,

∂

∂t
θs + ∇ · (θs�Us) = 0.(6)

Assuming that θn+θs = 1, we combine (5) and (6) to conclude that the divergence

of the average flow, θn�Un + θs�Us, is zero; i.e.,

∇ · (θn�Un + θs�Us) = 0.(7)

Equations (2), (3), (4), (5), and (7) govern the gel dynamics, subject to boundary
conditions which depend on the specific problem. Throughout this paper, it will
be useful to allow for diffusive smoothing of the network. This can be motivated
physically by the fact that there is probably a small amount of polymeric diffusion
within the gel. It is also useful from a mathematical perspective because it guarantees
that solutions are smooth, even if there are sharp transitions. This modification yields
the equation

∂

∂t
θn + ∇ · (θn�Un) = ε∇2θn(8)

for the redistribution of polymer network, and

∇ · (θn�Un + θs�Us) = ε∇2θn(9)

for the incompressibility condition.

2.2. Osmotic pressure. Although there are many models of gel dynamics in
the literature which include terms representing osmotic pressure [2, 3, 6, 7, 10, 11, 13],
there is little agreement on either the definition or the derivation of this term. The
treatment of this term varies from qualitative [3, 6] to quantitative [13]. In [7, 10, 11]
a specific functional form of the osmotic pressure is not given. In fact, there has
been little investigation of the dynamic behavior using different forms of the swelling
pressure. Therefore our first task is to determine a model of swelling pressure which
reflects some experimental results. Specifically, in many experiments a blob of gel
is suspended in a solvent, causing the gel to swell. The amount of swelling is a
measure of the effectiveness of the solvent. In general, the gel does not completely
dissolve; instead, the blob swells a certain amount and then persists with a lower
volume fraction, maintaining a distinct interface between the gel and the surrounding
solvent.

We wish to determine what choice of Ψ, if any, allows for the existence of an edge
between the gel and the surrounding solvent. To do so, we examine the solution of
a simplified one-dimensional model of network redistribution due to swelling pressure
alone. In the absence of elastic restoring force (σe = 0), network motion is governed by
the balance of forces due to viscous stress, osmotic pressure, and hydrostatic pressure.
Considering the steady-state problem implies that �Us = 0 (from (5)). Using (4)
to eliminate P from (3), the time independent one-dimensional equations governing
network distribution are

η
d

dx

(
θn

dVn

dx

)
= hfθnVn +

d

dx
Ψ(θn),(10)

d

dx
(θnVn) = ε

d2θn
dx2

,(11)
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where Vn is the x-component of �Un. To be physically relevant, the solution should
persist in the limit ε → 0.

The boundary conditions for this system are that Vn = 0 and there is no network
flux εdθndx = θnVn at x = 0 and x = L, where L is the length of the one-dimensional
spatial domain. This second condition allows us to integrate (11) and then substitute
the result into (10), and also integrate this to find the second order system of equations

η
dVn

dx
= εhf +

Ψ(θn)

θn
+

k

θn
,(12)

ε
dθn
dx

= θnVn.(13)

This is a singularly perturbed system. We want there to be solutions θn = 0
and θn = θref which exist in the limit ε → 0 and which also can be connected by a
transition layer. For θn = θref to be a solution, it must be that k + Ψ(θref ) = 0, and
for θn = 0 to be a solution, it must be that

lim
θn→0

Ψ(θn)

θn
+

k

θn
= 0.(14)

It follows that

Ψ(θn) = −k + θ2
nf(θn),(15)

where f(θref ) = 0. Of course, we can take k = 0, since only the gradient of Ψ appears
in the governing equations.

Now we seek a transition layer that connects the two solutions θn = 0 and θn =
θref . In this transition layer it must be that (ignoring the term εhf )

η

ε

dVn

dθn
=

f(θn)

Vn
,(16)

from which it follows that

η

ε
V 2
n = −

∫ θref

θn

f(θ)dθ,(17)

implying that f(θn) < 0 on the interval 0 ≤ θn ≤ θref . In the special case that
f(θn) = γos(θn − θref ), we find that

Vn = ±
√

γosε

η
(θn − θref ),(18)

with transition layer trajectory satisfying

dθn
dx

= ±
√

γos
εη

θn(θn − θref ),(19)

a hyperbolic tangent solution with boundary layer width the order of
√
ε.

It follows that, for a gel to hold an edge, Ψ must be of the form (up to an arbitrary
additive constant) Ψ(θn) = θ2

nf(θn) with f(θref ) = 0 and f(θn) ≤ 0 for 0 < θn < θref .
A specific example of such a function that we use throughout the rest of this paper is
Ψ(θn) = γosθ

2
n(θn − θref ).
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Having determined the form of the osmotic pressure that allows transition layers
between θn = 0 and θn = θref , we now wish to determine the stability of steady
solutions. Notice that any constant θn = θ0 is a solution of (3), (4), (8), and (9) with
�Un = �Us = 0 (provided σe = 0). To study its stability, we linearize the governing

equations about this uniform solution (setting �Un = u, �Us = v, θn = θ0 + φ, θs =
1 − θ0 − φ.), to find

∂φ

∂t
+ ∇ · (uθ0) = ε∇2φ,(20)

∇ · (uθ0 + v(1 − θ0)) = ε∇2φ,(21)

1

2
∇ · (θ0η(∇u + ∇uT )) − hfθ0(u− v) − Ψ′(θ0)∇φ = 0.(22)

To find the dispersion relation for this problem, we try a solution of the form φ =
A(t)eiω·x, u = B(t)eiω·x, v = C(t)eiω·x, and obtain equations for A, B, and C:

dA

dt
+ iω(Bθ0) = −ω2εA,(23)

iω(Bθ0 + C(1 − θ0)) = −ω2εA,(24)

−ω2θ0ηB − hfθ0(B − C) − Ψ′(θ0)iωA = 0.(25)

We solve for B and C and substitute into (23) to find

C =
iωεA−Bθ0

1 − θ0
,(26)

B =
εhfθ0 − (1 − θ0)Ψ

′(θ0)

ω2θ0η(1 − θ0) + hfθ0
iωA,(27)

dA

dt
= ω2 εhfθ0 − (1 − θ0)Ψ

′(θ0)

ω2η(1 − θ0) + hf
A− ω2εA.(28)

In the limit ε → 0 this is

dA

dt
= −ω2 (1 − θ0)Ψ

′(θ0)

ω2η(1 − θ0) + hf
A.(29)

Clearly, this is stable if ψ′(θ0) > 0 and unstable if ψ′(θ0) < 0.

Thus, for the function Ψ(θn) = γosθ
2
n(θn−θref ), a uniform gel with θn < γos

2
3θref

is unstable, while a uniform gel with θn > γos
2
3θref is stable. Thus, very low density

gels are not stable and will tend to form deswelled spatially localized aggregates.
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3. Channeling behavior. We now turn to a simple problem illustrating one
difference between gel dynamics and Newtonian fluid dynamics. We consider the
deformation of the network component of a gel which is forced to move between two
flat plates due to a constant imposed pressure drop. We make one further assumption
that the viscosity of the system is dominated by the network viscosity (θnη � θsηs),
and thus, following [13], we neglect the solvent viscosity. Notice that although the
solvent is inviscid, the frictional interaction between the solvent and the network still
renders the entire system viscous.

The motion is assumed to be two-dimensional, where x, y and �U∗ = (V∗,W∗)
denote the horizontal and vertical coordinates and velocities, respectively. For New-
tonian fluids the steady-state x independent velocity profile is parabolic in y for all
pressure drops. This is not the case for the gel-Poiseulle flow. Instead, the steady-
state profile of the network volume fraction undergoes a large change as the magnitude
of the pressure gradient varies.

To demonstrate this, we seek a solution of (3)–(7) that is the analogue of Poiseulle
flow—the horizontally independent steady velocity profile for a fluid forced between
two flat plates by a pressure drop.

Under the assumption that D1 and D2 are independent of x, the elements of the
deformation gradient tensor Fij are

∂x′

∂x
= 1,

∂x′

∂y
=

∂D1

∂y
,

∂y′

∂x
= 0,

∂y′

∂y
= 1 +

∂D2

∂y
,

and the stress tensor becomes

σe = γ

[
0 ∂D1

∂y
∂D1

∂y
∂D1

∂y

2
+ 2∂D2

∂y + ∂D2

∂y

2

]
.

We change from vector to component notation here, so that the following simplifi-
cations are more apparent. In component form the steady-state equations for the
gel-Poiseulle flow are

η
∂

∂y

(
θn

∂

∂y
Vn

)
− ∂P

∂x
+ γ

∂

∂y

(
θn

∂

∂y
D1

)
= 0,(30)

η
∂

∂y

(
θn

∂

∂y
Wn

)
− ∂

∂y
Ψ(θn) − ∂P

∂y

+ γ
∂

∂y

(
θn

(
∂D1

∂y

2

+ 2
∂D2

∂y
+

∂D2

∂y

2))
= 0,(31)

hfθn(Vn − Vs) −
∂P

∂x
= 0,(32)

hfθn(Wn −Ws) −
∂P

∂y
= 0,(33)

∂

∂y
(θnWn + (1 − θn)Ws) = ε

∂2θn
∂y2

,(34)
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∂

∂y
(θnWn) = ε

∂2θn
∂y2

,(35)

∂

∂y
(D1Wn) = Vn,(36)

∂

∂y
(D2Wn) = Wn.(37)

Here we allow for network diffusion, with diffusion coefficient ε, but our goal is to
solve the system in the limit ε → 0.

The distance between the two plates is taken to be L; hence the domain of the
problem consists of an infinite strip (−∞ < x < ∞) × (0 < y < L). The boundary
conditions are D1 = D2 = 0 and ε∂θn∂y = θnWn at y = 0, L, implying that there is
neither network displacement nor network flux at the boundary.

We can simplify these equations substantially. Integrating (35) and solving for
the vertical velocity of the network, we find

Wn = ε

∂θn
∂y + c1

θn
,(38)

which, combined with (34), yields

(1 − θn)Ws = c2.(39)

These can be used in (33) to solve for the ∂P
∂y as

∂P

∂y
= hfθn

(
Wn − c2

1 − θn

)
.(40)

The boundary conditions imply that c1 = c2 = 0; hence Ws = 0 and ∂P
∂y = hf ε

∂θn
∂y .

Because Vn = 0 at steady state, and because the equations are independent of x, ∂P
∂x

is independent of x. That is, (32) implies that P = Gx + P̂ (y).
Integrating (30) and solving for ∂D1

∂y yields

∂D1

∂y
=

Gy + a

γθn
.(41)

We specify a by assuming that the steady-state profiles are symmetric about the
center line, y = 1

2 . We also relate the vertical displacements to the network volume
fraction using the Jacobian of the transformation

θ̂n = θn

(
1 +

∂D2

∂y

)
,

where θ̂n is the original homogeneous unstressed distribution of the network.
Finally, (31) reduces to an ordinary differential equation (ODE) relating the vol-

ume fraction of the network to y and parameters G, γ, hf , etc.:

εη
d

dy

(
θn

d

dy

(
dθn
dy

θn

))
− εhf

dθn
dy

− dΨ

dy
+ γ

d

dy

⎛
⎝θn

⎛
⎝(

Gy −GL/2

γθn

)2

+

(
θ̂n
θn

)2

− 1

⎞
⎠
⎞
⎠ = 0.(42)
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We nondimensionalize (42) by defining the nondimensional variable y∗ = y
L and

the nondimensional parameters ε∗ = η
L2γ ε and h∗

f =
L2hf

η , G∗ = L
γG; substituting

these into (42); and dropping the ∗-notation. Integrating once yields

(43)

ε

(
θn

d

dy

(
dθn
dy

θn

))
− εhfθn − 1

γ
Ψ(θn) +

⎛
⎝θn

⎛
⎝G2

(
y − 1/2

θn

)2

+

(
θ̂n
θn

)2

− 1

⎞
⎠
⎞
⎠= k,

which must be solved subject to the constraint that mass is conserved,∫ 1

0

θn dy = θ̂n.(44)

Although simpler than the original system, there remains quite a lot of interesting
structure in (43). In particular, (43) is a second order ODE which is singular in the
limit ε → 0. In the following section, we describe the singular perturbation analysis
of this problem, revealing the existence of channels, i.e., solutions with sharp interior
transition layers.

3.1. The channeling bifurcation. In this section we analyze the bifurcation
structure of channels by examining the solutions of (43) in the singular limit ε → 0.

We assume that the initially uniform gel at θ̂n is stable so that Ψ′(θ̂n) > 0.
The reduced equation (ε = 0) is an algebraic equation relating the network volume

fraction to the location between the plates. The steady state network profile is given
by the solution of the algebraic equation

H(y, θn) = G2

(
y − 1

2

)2

+ h(θn) = 0,(45)

where

h(θn) = −θnΨ(θn) + θnΨ(θ̂n) + θ̂2
n − θ2

n − kθn,(46)

and

Ψ(θn) = κθ2
n(θn − θref ),(47)

where κ = γos

γ represents the strength of osmosis compared to the elastic modulus.

Here k has been redefined so that H(θ̂n) = 0 when k = 0. The solution profile θn(y)
must also satisfy the integral constraint 44.

By virtue of the form of Ψ, the gel is capable of supporting an edge. In many
hydrogels, the polymer network is of very low density and is highly charged [5]. This
suggests that the strength of the osmotic pressure is large compared to the magnitude
of the elastic modulus, so that κ is large.

This problem can be viewed as a nonlinear eigenvalue problem: “For each value
of G determine the value(s) of k for which the solution of (45) satisfies the integral
constraint (44).” However, it turns out that it is easier to view the problem as follows:
“For each value of k find the value(s) of G for which the solution of (45) satisfies the
integral constraint (44).” We explain below why this is the case.

First we make some observations about the function h(θ). Because h(0) = θ̂2
n > 0,

and h(θ) < 0 for large θ, h(θ) always has at least one positive and one negative root.
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Fig. 1. Plot of h(θ) as a function of θ for k = 0, 2, 3.5, 5. Other parameter values are κ = 20,000

and θref = θ̂n = 0.1.

Since h(θ) is a quartic polynomial in θ, there can be as many as three positive roots
of H(y, θn) = 0, depending on the value of k. To see this, in Figure 1 are shown four
different plots of h(θ) for four values of k = 0, 2, 3.5, 5 (top to bottom). If 3κθ2

ref > 8,
the function h(θ) has two positive inflection points. Thus, if κ is sufficiently small,
the function h(θ) is monotone for positive θ, whereas, if κ is sufficiently large, it is
possible that h(θ) is nonmonotone.

We seek solutions of (45) that are of the form θn = Θn(y). However, because
h(θ) need not be monotone, such solutions do not always exist. However, it is always
possible to write the solution implicitly for y as function of θn,

y =
1

2
± 1

G

√
−h(θn).(48)

Thus, one can visualize solutions by turning the plots in Figure 1 “on their side.”
If the resulting solution is single-valued, there is little more to do. If the resulting
solution is multivalued, then one must determine which pieces of the multivalued
function should be used to construct a single-valued function.

To construct admissible single-valued solutions from multivalued ones, we look for
interior transition layers that connect different branches of the multivalued solution.
Suppose that at y = y0, H(y0, θn) = 0 has three positive roots, θ− ≤ θ0 ≤ θ+. We
introduce an inner scaling of (43) defining Y = y−y0

ε1/2 . Substituting this into (43) and
retaining the leading order terms in ε, we obtain

d

dY

(
dθn
dY

θn

)
+

H(y0, θn)

θ2
n

= 0.(49)

With the change of variable w = ln(θn), we can rewrite this as

d2w

dY 2
+ F (w, y0) = 0,(50)
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where F (w, y0) = H(y0, e
w)e−2w. Clearly, the function F (w, y0) has three roots,

w± = ln(θ±), w0 = ln(θ0). It is well known [4] that there is a solution to the inner-
layer (50) that provides a transition between w− and w+ if∫ w+

w−

F (w, y0)dw = 0.(51)

Inverting the transformation yields an equivalent requirement in the variable θn. An
interior layer providing a transition between θ− and θ+ can be fit at y = y0 if

∫ θ+

θ−

H(y0, θn)

θ3
n

dθn = 0.(52)

There is another interior layer solution that can be used to construct solutions.
If y0 = 1

2 and there are three positive roots of H( 1
2 , θ) = 0, and if

∫ θ+

θ−

H( 1
2 , θ)

θ3
dθ < 0,(53)

then there is a homoclinic orbit of (49) that approaches θ+ asymptotically as Y → ±∞
and has as its minimal value θ = θ∗, where θ− < θ∗ < θ0 and

∫ θ+

θ∗

H( 1
2 , θ)

θ3
dθ = 0.(54)

The first integral for this trajectory is

1

2

(
dθn
dY

)2

− θ2
n

∫ θ+

θn

H( 1
2 , θ)

θ3
dθ = 0.(55)

Now we use this information to construct all the possible single-valued solutions.
To do this we pick a value of k, determine the possible single-valued solutions, and
then find the appropriate value of G (and y0 if any) for this solution. There are three
different types of solutions.

If h(θ) = 0 has only one positive root and if and h(θ) is monotone decreasing for
θ larger than this root, then the solution of H(y, θn) = 0 is unique, for any value of G,
as seen in Figure 1 for the curves with k = 2 and for k = 5. In Figure 2 the solution
profiles θn(y) for k = 5 are shown for three different values of G.

Since G acts as a y-axis scale factor for these profiles, it is apparent that
∫ 1

0
θn(y)dy

is a monotone decreasing function of G. Thus, there is a unique value of G for which∫ 1

0
θn(y)dy = θ̂n. For the profiles shown in Figure 2, this unique value of G is 4.022.
Similarly, for small values of k, unique solutions can be obtained. For example,

Figure 3 shows the solution profile for k = 2. Again, since the y-axis for this profile

is scaled by G, the unique value of G for which
∫ 1

0
θn(y)dy = θ̂n is easily determined.

For the profile in Figure 3, this value is G = 1.74.
If the function h(θn) is not monotone decreasing, then there is the possibility of

nonunique solutions of H(y, θn) = 0. If a (positive) level x can be found so that

∫ θ+

θ−

x + h(θn)

θ3
n

dθn = 0,(56)
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Fig. 2. Plot of θn(y) for k = 5 and G = 2, 4.022, 6. Other parameter values are κ = 20,000 and

θref = θ̂n = 0.1.
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Fig. 3. Plot of θn(y) for k = 2 and G = 1.74. Other parameter values are κ = 20,000 and

θref = θ̂n = 0.1.

then a boundary layer can be inserted into the profile at y0 = 1
2 ±

√
x

G , and this
boundary layer can be used to connect the largest solution of H(y0, θn) = 0 with the
smallest. A plot of a profile that results is shown in Figure 4.

Notice that for this value of k (=2), there are three possible solution profiles,
one with no interior layer (shown in Figure 3), one with a boundary layer (shown in
Figure 4), and one with a symmetric boundary layer located at y0 = 1

2 . In the limit
that ε → 0, the third of these looks identical to the profile shown in Figure 3, with
the exception that θn is discontinuous at y = 1

2 , with θn( 1
2 ) = θ∗ defined in (54). The
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Fig. 4. Plot of θn(y) for k = 2 and G = 2.47 with a boundary layer inserted at y0 = 0.46. The
dashed curves show all possible solutions of H(y, θn) = 0. Other parameter values are κ = 20,000

and θref = θ̂n = 0.1.
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Fig. 5. Plot of θn(y) for k = 3.5 and G = 3.39 with a boundary layer inserted at y0 = 0.43. The
dashed curves show all possible solutions of H(y, θn) = 0. Other parameter values are κ = 20,000

and θref = θ̂n = 0.1.

value of G for the first and third solution profiles is the same, but it differs from the
value of G for the second transition-layer profile. For some values of k, the boundary
layer profile is the only possible solution. A profile of this type occurs for k = 3.5 and
is shown in Figure 5.

In this way, for each value of k we determine all possible solutions and their
corresponding values of G. A plot of the relationship between k and G is shown
in Figure 6. Here we see two curves. The lower curve that extends from k = 0 to
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Fig. 6. Plot of G versus k for the solutions of the gel-flow problem. For this plot, κ = 20,000
and θref = θ̂n = 0.1.

k = 2.9 corresponds to solutions like those shown in Figure 3 , with no boundary layer.
The upper curve that extends from the lower curve at about k = 1.4 (with y0 = 1

2 )
corresponds to channeled solutions, with a boundary layer as shown in Figures 4 and 5
for k < 5. These solutions merge smoothly into non–boundary layer solutions, such
as those shown in Figure 2, as k increases.

The nature of the bifurcation structure of these solutions is not apparent from
Figure 6. This is because, for values of k larger than the merger point, the lower branch
corresponds to two different solutions. The easier way to visualize this difference is
seen in Figure 7, where θn( 1

2 ) is plotted as a function of G. Here, the upper solution
branch corresponds to those solutions with no boundary layers, the lower solution
branch corresponds to those with interior transition layers, and the middle branch
(shown dashed) gives the solutions with a symmetric boundary layer at y = 1

2 . In
the limit ε → 0, this boundary layer has no thickness and so has no influence on the
integral of θn. Here we see that the solution is an S-shaped curve, and the bifurcations
are via limit points.

The physically significant feature of these curves is that for some values of G
there are two physically realizable solutions, a boundary layer, or channeled, solution
and a nonchanneled solution. The solution with a boundary layer at y = 1

2 is tran-
sitional between the two and is interesting for mathematical reasons but is unstable
and hence not physically realized. Thus, the solution of the gel-flow problem is not
unique and exhibits hysteretic behavior, with a hysteresis loop between channeled and
nonchanneled solutions, governed by the pressure gradient G.

The behavior of the fluid flow through these two different solution types is un-
derstandably different, as the channeled solution permits a higher flux for the same
cost. This is illustrated by Figure 8, where the flux of solvent,

J =

∫ 1

0

Vsdy =
1

hf

∫ 1

0

1 − θn
θn

dy,(57)
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Fig. 7. Plot of θn( 1
2
) versus G for the solutions of the gel-flow problem. For this plot, κ = 20,000

and θref = θ̂n = 0.1.
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Fig. 8. Plot of solvent flux as a function of G. For this plot, κ = 20,000 and θref = θ̂n = 0.1.

is plotted as a function of G for the two different solution types. Not surprisingly, if
two solutions are possible for the same value of G, the boundary layer solution permits
a larger solvent flux than the non–boundary layer solution.

4. Discussion. From this analysis we can deduce the physical mechanism that
underlies the formation of channels in a gel. If the osmotic force is sufficiently strong
compared to the elastic restoring force, then under a sufficiently high pressure gradi-
ent, it is energetically favorable to compress the gel near the wall and swell the gel in
the interior, thereby forming a low-resistance channel.

This same conclusion is correct for all gels for which there are two stable gel
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concentrations. That is, if Ψ(θn) is such that Ψ′(θn) < 0 for 0 ≤ θ∗ < θn < θ∗ < 1

and is positive elsewhere, then if the uniform gel distribution has θ̂n > θ∗ and if the
osmotic force is sufficiently strong compared to the elastic force, channels will form
under sufficiently high pressure gradient flows. This follows from the analysis of the
previous section, which relied entirely upon the generic “cubic” shape of the function
Ψ(θn) and not on its details. Any function Ψ(θn) with similar structure will lead to
the same bifurcation channeling behavior.
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FORCE DENSITY FUNCTION RELATIONSHIPS IN 2-D
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Abstract. An integral transform relationship is developed to convert between two important
probability density functions (distributions) used in the study of contact forces in granular physics.
Developing this transform has now made it possible to compare and relate various theoretical ap-
proaches with one another and with the experimental data, despite the fact that one may predict the
Cartesian probability density and another the force magnitude probability density. Also, the trans-
forms identify which functional forms are relevant to describing the probability density observed in
nature, and so the modified Bessel function of the second kind has been identified as the relevant
form for the Cartesian probability density corresponding to exponential forms in the force magnitude
distribution. Furthermore, it is shown that this transform pair supplies a mathematical framework
sufficient for describing the evolution of the force magnitude distribution under shearing. Apart from
the choice of several coefficients, whose evolution of values must be explained in the physics, this
framework successfully reproduces the features of the distribution that are taken to be an indicator
of jamming and unjamming in a granular packing.
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1. Introduction. A central topic within modern granular physics research is
the study of intergranular force probability densities [1, 2, 3, 4, 5, 6]. The goal being
to develop theory—from simplest assumptions—predicting the force density functions
seen in simulations and experimental measurements. However, this goal is complicated
by the differing forms for the force density functions presented in the literature, two
of which are often treated as fundamental.

The first of these force density functions is dependent upon the magnitude and
angle of the contact forces between grains. It predicts force chains, the onset of
granular jamming [7], strain hardening [1], and fracture of the individual grains. It
has several odd and unexplained features, such as a finite, but nonzero, probability at
zero force, followed by a probability increasing to a peak near the average value of the
force. It has attracted scientific attention because its exponential tail at high forces
and power law at weak forces are reminiscent of the Maxwell–Boltzman distribution
of velocities from statistical mechanics. However, its overall form is unlike any of the
known statistical mechanics distributions, and there have been numerous attempts to
derive it [8, 9, 10, 11, 12, 13].

The second type of distribution that has been treated as fundamental in the
physics literature is a force density function dependent upon the Cartesian components
of the contact force vectors. This type of distribution is appealing because it relates to
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the following conservation law: If external forces are ignored and if the arrangement
of grains is static, then the total Cartesian force perpendicular to a plane cutting
through the medium is conserved for any translation of the plane. Consequently,
granular thermodynamic theories have been developed based on this conservation of
the total Cartesian forces [14, 15].

The problem addressed by this paper is to clearly define these two types of force
density functions and then to establish relationships between them. At first glance
this seems straightforward, and it would be if in the literature these densities were
handled as functions of two dimensions for two-dimensional media and three dimen-
sions for three-dimensional media, but this is usually not the case. Probability force
distributions are typically expressed using one of the following variables: the force
magnitude, the force angle, or a selected Cartesian component. Because of this con-
traction to a single variable, pertinent information is not available, and converting
between the two types of densities is not possible. Yet this conversion is important.
Analytical theories usually favor one distribution or the other, and empirical inves-
tigations typically collect only one type of distribution. Without a well established
conversion it is not possible to compare the competing theories and their data against
one another.

The paper is organized as follows. Random variables are chosen such that the
two two-dimensional probability force densities can be defined and the probability
theory relations between them shown. In particular, an integral relation is developed
whereby the two-dimensional polar force probability density can be converted to a
Cartesian force density. From probability theory alone this relationship cannot be
inverted, but the integral relation can be recast as a set of Fourier transforms. Doing
this allows an inverse relation to be found such that if the one-dimensional Cartesian
force density function is known for all rotations of the axes, then the two-dimensional
polar force probability function can be found. This inversion allows, for the isotropic
case, the two force distributions to be treated as a transform pair. The properties
of this transform relationship are discussed and significant solutions provided. An
example is provided along with data generated from a Monte Carlo process. Then,
an example of a pair of force density functions for the anisotropic case is given and
compared with published results.

2. Two-dimensional force probability density functions. Suppose that a
large number of grains are placed randomly into a two-dimensional container and that
the edges of the container push the grains against each other. These grains are not
idealized and may be compressible, have arbitrary shape, be attracted or repulsed by
each other, or have frictional contacts. The only restrictions on the grains are that
they be static and that at each grain-to-grain contact a force vector be identifiable.
Thus, the development presented here is applicable to a wide range of granular media
and could be extended to other discrete, static media such as intertwined fibers, foams,
glass, and emulsions. Also, the contact forces between the grains and walls may be
included in the density functions provided below, as long as identifiable force vectors
exist and both force vectors, the grain on the wall and the wall on the grain, are
counted in the statistics.

At each grain-to-grain or grain-to-wall contact there are two force vectors, of
equal magnitude and opposite direction, according to Newton’s third law, as shown
in Figure 2.1. Assign the random variable F , where 0 ≤ F < ∞, to the magnitude of
these force vectors and the angle θ, where 0 ≤ θ < 2π, to the angle between them and
the x-axis. A two-dimensional “polar” force probability density can then be defined
in terms of the random variables, F and θ, and expressed as PF,θ(F, θ), describing
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Fig. 2.1. A sketch showing intergrain forces and the associated random variables.

the probability of finding a granular contact force with magnitude F and angle θ. An
immediate attribute of this function is that

PF,θ(F, θ) = PF,θ(F, θ + π),(2.1)

a result of there being equal and opposite forces at each granular contact. (It is
implied in the definition of PF,θ(F, θ) that the angle θ is modulo 2π.)

A one-dimensional force magnitude probability density function, PF (F ), can be
defined by integrating over all values of θ, as shown in (2.2) below. This equation
also shows that the symmetry relation given by (2.1) allows the θ integration to occur
over any contiguous arc of length π radians:

PF (F ) ≡
∫ 2π

0

PF,θ(F, θ)dθ = 2

∫ π

0

PF,θ(F, θ)dθ = 2

∫ φ+π/2

φ−π/2

PF,θ(F, θ) dθ.(2.2)

By integrating over all values of the force magnitude variable, a one-dimensional force
angle probability density function, Pθ(θ), is defined by

Pθ(θ) ≡
∫ ∞

0

PF,θ(F, θ) dF.(2.3)

From (2.1) and (2.3) the equal and opposite force result, i.e., Pθ(θ) = Pθ(θ + π), can
be shown. For frictionless grains (often studied in the physics literature) the direction
of the force vector is normal to the contacting surfaces of the grains. In that special
case the density function of (2.3) is identical to the distribution of contact angles,
referred to in the literature as the fabric of the granular material [16].

Not unexpectedly, there exists an alternative pair of random variables, Fx =
F cos(θ) and Fy = F sin(θ), that can be used to describe a Cartesian force probability
density function, PFx,Fy (Fx, Fy), which describes the probability of finding a granular
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contact force with Cartesian components Fx and Fy, where 0 ≤ Fx, Fy < ∞. The
polar and Cartesian force probability densities are related through their corresponding
Jacobians, yielding

PF,θ(F, θ) = PFx,Fy (F cos(θ), F sin(θ))F(2.4)

and

PFx,Fy
(Fx, Fy) =

PF,θ((F
2
x + F 2

y )1/2, arctan(Fy/Fx))

(F 2
x + F 2

y )1/2
.(2.5)

In (2.5), care should be taken to ensure that the arctangent returns an angle in the
proper quadrant. Using (2.1) and (2.4), a Cartesian force density analogue for the
existence of equal and opposite forces is found,

PFx,Fy (Fx, Fy) = PFx,Fy
(−Fx,−Fy).(2.6)

Also, by integrating over either of the two Cartesian random variables, a one-
dimensional Cartesian force density can be defined. Without loss of generality, inte-
grating over Fy yields PFx(Fx), which, as shown in (2.7) below, can also be found by
integrating the polar two-dimensional density function expression from (2.5),

PFx
(Fx) =

∫ ∞

−∞
PFx,Fy

(Fx, Fy) dFy

=

∫ ∞

−∞

PF,θ((F
2
x + F 2

y )1/2, arctan(Fy/Fx))

(F 2
x + F 2

y )1/2
dFy.(2.7)

Changing variables from Fy to θ via tan θ = Fy/Fx yields the following integral rela-
tionship between the polar force density function and the one-dimensional Cartesian
force density:

PFx(Fx) =

(∫ π/2

0

+

∫ 2π

3π/2

)
PF,θ(Fx sec θ, θ) sec θ dθ if Fx ≥ 0,

PFx(Fx) =

∫ 3π/2

π/2

PF,θ(Fx sec θ, θ) sec θ dθ if Fx ≤ 0.(2.8)

Equations (2.6) and (2.7) imply that only one of the integrals in (2.8) needs to be
calculated.

A more general form for the Cartesian density function can be defined that will
prove useful in the analysis that follows. Figure 2.1 shows a coordinate system rotated
by angle φ, yielding new random variables Fx′ and Fy′ . Recalling that rotation does
not stretch space, the Jacobian of the transformation between the random variables
Fx′ , Fy′ and Fx, Fy is unity, so their respective probability density functions are equal;
i.e., PFx′ ,Fy′ (Fx′ , Fy′) = PFx,Fy (Fx(Fx′ , Fy′), Fy(Fx′ , Fy′)). Using this result, a one-
dimensional Cartesian force density along the x′-axis, PFx′ (Fx′), can be defined as

PFx′ (Fx′) =

∫ ∞

−∞
PFx′ ,Fy′ (Fx′ , Fy′) dFy′

=

∫ ∞

−∞

PF,θ((F
2
x′ + F 2

y′)1/2, arctan(Fy′/Fx′) + φ)

(F 2
x′ + F 2

y′)1/2
dFy′ ,(2.9)
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similar to the result in (2.7). Now, changing variables from Fy′ to θ via arctan(Fy′/Fx′)+
φ = θ yields a result similar to that shown in (2.8) except that the additional φ angle
appears in the integrand and in the limits of integration. The variable transformation
yields

PFx′ (Fx′) =

(∫ φ+π/2

φ

+

∫ φ+2π

φ+3π/2

)
PF,θ(Fx′ sec(θ − φ), θ) sec(θ − φ) dθ (if Fx′ ≥ 0)

=

∫ φ+3π/2

φ+π/2

PF,θ(Fx′ sec(θ − φ), θ) sec(θ − φ) dθ (if Fx′ ≤ 0).(2.10)

Even though the density function PFx′ (Fx′) is well defined by the above equations,
it suffers from two shortcomings. First, it is an explicit function of the angle φ, and
this should be reflected in the notation chosen. Second, if the angle φ is allowed to
range from zero to 2π radians, there is an ambiguity in the choice of how to represent
the domain of this function. Specifically, choosing a rotation angle φ and a random
variable Fx′ is identical to rotating by φ + π radians and choosing a value for the
random variable of −Fx′ . We choose to resolve the second issue by allowing the angle
φ to range from zero to 2π radians and defining a new random variable Fφ, which is
equal to Fx′ but is always positive, i.e., 0 ≤ Fφ < ∞. The first issue above can then
be resolved by adopting the notation PFφ

(Fφ, φ) for the density function associated
with this new random variable. The single variable subscript indicates that this is a
one-dimensional density function, but the two-dimensional domain shows that it is an
explicit function of the two variables Fφ and φ. Thus the function PFφ

(Fφ, φ) has the
same “polar” domain as the density function PF,θ(F, θ). It can be explicitly expressed
using the first integral expression above—where Fx′ > 0—and merging the integrals
by using the 2π periodic nature of the variable θ:

PFφ
(Fφ, φ) = 2

∫ φ+π/2

φ−π/2

PF,θ(Fφ sec(θ − φ), θ) sec(θ − φ) dθ,(2.11)

where a factor of 2 has been added for normalization. Also, note that the function
PFφ

(Fφ, φ), in order to be a density function, must be normalized at each angle φ. In
other words, the total number of forces does not change with the choice of φ, so the
integral of PFφ

(Fφ, φ) over all Fφ must always equal 1.
Equation (2.11) is a general integral relation allowing integration of the “polar”

two-dimensional probability force density function to yield any desired Cartesian pro-
jection density function. This is a useful relationship within granular physics research
in that it allows the calculation of a Cartesian density function from a force magni-
tude density function, but it is not a surprising result. Once the proper definitions are
made, the derivation is straightforward. The more difficult result is to perform the
inverse operation, namely, to find the polar form from the Cartesian form, but this is
not possible within the realm of probability theory because the function PFφ

(Fφ, φ)
is not a two-dimensional probability density function. Even so, the inverse operation
can be performed as demonstrated in the next section.

Finally, by using the variable transformation θ′ = θ + π, it can be shown that

PFφ
(Fφ, φ + π) = PFφ

(Fφ, φ).(2.12)

3. Fourier transform representation of force density integrals. In this
section it will be shown that (2.11) above can be represented as a set of Fourier
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transforms. Accomplishing this allows (2.11) to be inverted by utilizing the Fourier
transform inversion properties. This approach is similar to the mathematics used in
tomography [17], but the development presented here is distinct for two reasons. First,
the symmetry relations of (2.1) and (2.3) provide simplification that does not occur in
tomography. Second, the emphasis in tomography is on generating three-dimensional
functions from a set of two-dimensional images, while in the present development the
goal is to obtain two- or, in a future work, three-dimensional representations of the
force density functions from one-dimensional Cartesian projections.

As a result of the symmetries obtained above in (2.1) and (2.12), we will require
only restricted forms of the Fourier transforms. For example, we require only the
Fourier cosine transform instead of the full exponential form. The Fourier cosine
transform of a function f(x) is expressed as

Fc[f(x);u] =

√
2

π

∫ ∞

0

f(x) cos(ux) dx,

which has the same form as the inverse cosine transform [18]. The Fourier transform
representations are written out in detail in order to resolve notational and normal-
ization variations that appear in the literature. In addition to this one-dimensional
transform, we will require a two-dimensional Fourier transform. In Cartesian form
this is written as

F2D[f(x, y); (u, v)] =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(x, y) exp (i(ux + vy)) dx dy,(3.1)

but since the density functions are in polar form, this transform will need to be
expressed in polar form also. Using the change of variables x = F cos(θ), y =
F sin(θ), u = G cos(φ), v = G sin(φ), the following form for the two-dimensional,
polar, Fourier transform is found,

F2D[f(F, θ); (G,φ)]

=
1

2π

∫ ∞

0

∫ 2π

0

f(F, θ) exp (iFG(cos(θ) cos(φ) + sin(θ) sin(φ)))F dF dθ

=
1

2π

∫ ∞

0

∫ 2π

0

f(F, θ) exp (iFG cos(θ − φ))F dF dθ,

but we will only be transforming functions where f(F, θ) = f(F, θ + π). Using this
symmetry simplifies this to a two-dimensional form of the Fourier cosine transform,

F2D,c[f(F, θ); (G,φ)] =
1

2π

∫ ∞

0

∫ 2π

0

f(F, θ) cos(FG cos(θ − φ))F dF dθ.(3.2)

Having established the above notation, now consider the following lemma which
is the key result of this paper.

Lemma 1. The projected force density function is given by

PFφ
(Fφ, φ) = 2

√
2πFc

[
F2D,c

[
PF,θ(F, θ)

F
; (G,φ)

]
;Fφ

]
.(3.3)
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Proof. Note that

2
√

2πFc

[
F2D,c

[
PF,θ(F, θ)

F
; (G,φ)

]
;Fφ

]

= 2
√

2π

√
2

π

∫ ∞

0

[
1

2π

∫ ∞

0

∫ 2π

0

PF,θ(F, θ) cos(FG cos(θ − φ)) dF dθ

]
cos(GFφ) dG

=
2

π

∫ 2π

0

∫ ∞

0

PF,θ(F, θ)

(∫ ∞

0

cos(FG cos(θ − φ)) cos(GFφ) dG

)
dFdθ

=

∫ 2π

0

∫ ∞

0

PF,θ(F, θ) (δ(F cos(θ − φ) − Fφ)) dFdθ.

Changing the argument of the Dirac delta function, δ(x), is done using

δ(F cos(θ − φ) − Fφ) =
δ(F − Fφ sec(θ − φ))

| cos(θ − φ)| .

Thus integration with respect to F is well defined. The limits of integration with
respect to θ can be compacted and shifted so that cos(θ − φ) is always positive,
removing the need for the absolute value and introducing a factor of two. Then

2
√

2πFc

[
F2D,c

[
PF,θ(F, θ)

F
; (G,φ)

]
;Fφ

]

= 2

∫ φ+π/2

φ−π/2

PF,θ(Fφ sec(θ − φ), θ) sec(θ − φ) dθ

= PFφ
(Fφ, φ).

The benefit of this form is that (3.3) can be immediately inverted because each of
the Fourier transforms is its own inverse, yielding the second key result of this paper,
as follows.

Lemma 2. The two-dimensional polar probability force density may be expressed
as a function of the projected Cartesian force density by

PF,θ(F, θ) =
F

2
√

2π
F2D,c[Fc[PFφ

(Fφ, φ); (G,φ)]; (F, θ)].(3.4)

Equivalently,

PF,θ(F, θ)

=
F

(2π)2

∫ ∞

0

∫ 2π

0

∫ ∞

0

PFφ
(Fφ, φ) cos(FφG) cos(FG cos(φ− θ))G dG dφ dFφ.(3.5)

This integral can be integrated immediately with respect to the variable G, but
this leads to an awkward functional form that is not amenable to solution using the
standard look-up tables. Instead, we choose to leave it in this form, allowing the order
of integration to be carried out on a case-by-case basis. This integral can be further
integrated with respect to either F or θ to yield the single variable force density
functions, demonstrating that knowledge of the projected Cartesian force density
function can yield an explicit form for the force magnitude density.

Furthermore, for a frictionless packing, in which the force angles are the same as
the contact angles, as discussed above, one may integrate out F from (3.5) according
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to (2.3) to obtain the fabric of the packing. This result is striking because it begins
with a knowledge of only PFφ

(Fφ, φ), which is a set of contact force distributions that
on the surface appear to have no contact angle information. This is the first time that
force distributions, alone, have been directly related to the fabric of a packing, and
this may be important to developing a theory of granular rheology in which changes
in the fabric and the forces are coupled. Also, if the empirical studies can determine
a simple φ-dependence for PFφ

(Fφ, φ), then it may be possible to discern the fabric
of a frictionless packing simply by sampling PFφ

at only a few orientations of φ, or
maybe only along the principle stress axes.

4. Force density integrals for isotropic material. In this section the two
integral equations derived above, (2.11) and (3.5), are simplified for the isotropic
case, yielding a pair of integral transform equations. Some of the properties of this
transform pair are presented, and a list of useful solutions is shown. We start with
the following definition.

Definition 3. An isotropic medium is one in which PF,θ(F, θ) = PF (F )/(2π).
Thus, an isotropic medium implies a force density with no angular dependence.

As an immediate consequence of this definition, (2.11) can be simplified to show
that an isotropic material also has no φ-dependence on its Cartesian projected force
density,

PFφ
(Fφ, φ) =

1

π

∫ π/2

−π/2

PF (Fφ sec(θ)) sec(θ) dθ.(4.1)

Thus, for the rest of this section we will use the notation PFφ
(Fφ) for the Cartesian

projected force density, since the function is no longer dependent upon the angle φ.
Equation (4.1) can be put into a more useful form by changing variables from

the angle θ back to the force magnitude using F = Fφ sec(θ). This yields the integral
equation

PFφ
(Fφ) =

2

π

∫ ∞

Fφ

PF (F )

(F 2 − F 2
φ)1/2

dF.(4.2)

Equation (3.5) can be simplified as well. Since neither of the density functions has an-
gular dependence, the φ integration on the right-hand side can be performed, yielding
the result

PF (F ) = F

∫ ∞

0

∫ ∞

0

PFφ
(Fφ) cos(FφG)J0(FG)G dFφ dG,(4.3)

where J0 is the zero-order Bessel function [18, eqn. 3.715.18], where we choose to
perform the integration with respect to Fφ before G.

Equations (4.2) and (4.3) are inverse transform relations relating the force magni-
tude probability density, PF (F ), to the projected Cartesian force probability density,
PFφ

(Fφ), for isotropic two-dimensional granular materials. Such materials are of cur-
rent theoretical and experimental interest, and these equations apply to any such
material as long as an identifiable force can be assigned to the grain-to-grain, and, if
included, grain-to-wall contacts. Consequently, a wide variety of force distributions
are expected to result from current research, making it beneficial to discuss some of
the properties of this transform pair as well as to present some of the more significant
solution pairs. In the discussion below we will use the symbol ↔ to link transform
pairs, and we will not always normalize the pairs.
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Equations (4.2) and (4.3) are clearly linear in that if PFφ
(Fφ) ↔ PF (F ) and

RFφ
(Fφ) ↔ RF (F ) are two sets of solutions, then

aPFφ
(Fφ) + bRFφ

(Fφ) ↔ aPF (F ) + bRF (F )(4.4)

is a solution pair, where a and b are arbitrary constants. Another method for gener-
ating new solutions is to note that if PFφ

(Fφ) ↔ PF (F ) is a solution pair, then

Fφ

∂PFφ
(Fφ)

∂Fφ
↔ F

∂PF (F )

∂F
(4.5)

is also a solution pair, as a result of properties of the transform. By combining this
result with the linearity result, it can be shown that

F 2
φ

∂2PFφ
(Fφ)

∂F 2
φ

↔ F 2 ∂
2PF (F )

∂F 2
(4.6)

is also a solution pair and more generally that

Fn
φ

∂nPFφ
(Fφ)

∂Fn
φ

↔ Fn ∂
nPF (F )

∂Fn
(4.7)

is a solution pair. This result is very useful for obtaining sets of similar solutions when
trying to fit experimental or simulation data.

A set of Bessel function integral equations [18, eqns. 6.592.10, 6.592.12–15], pro-
vides a method for obtaining useful solution pairs. Let Zν represent any of the Bessel
functions, first kind Jν , second kind Yν , third kind Hν , or modified second kind Kν .
Then after appropriate changes of variable the referenced integral equations can be
put into the form of (4.2), yielding the following transform pair:√

2

πα

Zν−1/2(αFφ)

F
ν−1/2
φ

↔ Zν(αF )

F ν−1
.(4.8)

Using this result and the differential generation result of (4.7), the solution pairs
listed in Table 4.1 can be found. Not unexpectedly, since the transforms derived
above are between polar and Cartesian representations, the solution pairs are often
a Cartesian function (i.e., a sine, cosine, or exponential) and a polar function (i.e., a
Bessel function). Probability densities are positive functions with finite total integrals,
so the exponential and modified Bessel function pairs are especially useful. Since the
transform relationships are linear, it is worthwhile to show the cosine and sine solutions
(both as PF (F ) and PFφ

(Fφ)) so that, if desired, the Fourier components of a solution
can be considered.

Other solution pairs to (4.2) and (4.3) exist and can be found in the standard
integral tables, but many of them cannot be normalized. Table 4.2 shows five nor-
malized solution pairs involving modified Bessel functions and Gaussians, which may
be useful in granular physics applications.

To close this section a normalized pair of solutions is shown that has been fit
to the results of a discrete element model (DEM) of a granular packing. DEM is a
well-established technique which solves Newton’s laws numerically grain-by-grain. It
was implemented in the commercially available software package “Particle Flow Code
in Two Dimensions” (PFC2D) by HCItasca (http://www.hcitasca.com/pfc.html). In
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Table 4.1

Solution pairs for Cartesian and force magnitude functions in isotropic packings generated from
(4.8).

PFφ
(Fφ) PF(F)

1. 2α
π
K0(αFφ) α exp (−αF )

2. 2α2

π
FφK1(αFφ) α2F exp (−αF )

3. (−Fφ)n 2α
π

∂n

∂Fn
φ

(K0(αFφ)) αn+1Fn exp (−αF )

4. 2α3

π
F 2
φK2(αFφ) α2F (1 + αF ) exp (−αF )

5. −Y0(αFφ) cos(αF )

6. J0(αFφ) sin(αF )

7. α exp (−αFφ) α2FK0(αF )

8. α2Fφ exp (−αFφ) α2F (αFK1(αF ) −K0(αF ))

9. αn+1Fn
φ exp (−αFφ) α2(−F )n ∂n

∂Fn (FK0(αF ))

10. 2
π

cos(αFφ) αFJ0(αF )

11. 2
π

sin(αFφ) αFY0(αF )

Table 4.2

More solution pairs for Cartesian and force magnitude distributions in isotropic packings.

PFφ
(Fφ) PF(F)

1. 2
√

α/π exp (−αF 2
φ) 2αF exp (−αF 2)

2. 2αFφ exp (−αF 2
φ) 2αF (2αF 2 − 1) exp (−αF 2)

3. 2
√

α/π3 exp (−αF 2
φ/2)K0(αF 2

φ/2) 2
√

α/π exp (−αF 2)

5. (2α/π)K2
0 (αFφ/2) (2α/π)K0(αF )

6. (2α2Fφ/π
2)K0(αFφ/2)K1(αFφ/2) (2α2F/π)K1(αF )

this case, the grains are round, hard, frictionless disks with a linear spring contact law
implemented at the disk contacts. The disk diameters were distributed uniformly over
the range 1.0 to 1.5 length units and were deposited randomly into a rectangular cell
with flat, rigid, frictionless walls. Their diameters were then increased by rescaling
until the disks jammed together across the span of the container. At each step of
the incremental rescaling the grains were allowed to push each other around within
the cell until every grain obtained static equilibrium. This incrementally dynamic
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Fig. 4.1. (Left) Graph of the Cartesian distribution from a DEM with an analytical fit. (Right)
Graph of the force magnitude distribution from a DEM with an analytical fit.

rescaling method naturally produces a disordered but statistically homogeneous and
isotropic fabric within the bulk of the packing. Over 55,000 grain forces in the bulk
of the packing were calculated, and the Cartesian force density function and the
force magnitude density function were found. Grains within four grain diameters of
the walls were excluded from these statistics. A fit to the Cartesian force density
function was then found using a three-term modified Bessel function summation, as
shown below. The solution pairs given above were then used to determine the force
magnitude density function. The expansion coefficients can be chosen so that both
distributions provide a good fit to the empirical data, as seen in Figure 4.1, thus
demonstrating the success of the transformation developed in this paper. The plotted
density functions are

PFφ
(Fφ) = C

[
11F 2

φK2

(π
2
Fφ

)
− 2FφK1

(π
2
Fφ

)
+ 3K0

(π
2
Fφ

)]
(4.9)

and

PF (F ) = C

[(
11π

2

)
F 2 + (11 − π)F +

3π

2

]
exp

(
−π

2
F
)
,(4.10)

where the normalization constant C = π2/(132 − 4π + 3π2).
It should be helpful to the field of granular research that the modified Bessel

function of the second kind has been identified as the naturally occurring form for the
Cartesian distribution, corresponding to the exponential forms of the polar distribu-
tions. The two “knees” in the curve that are visible in the Cartesian distribution of
Figure 4.1 seem to be indicated in the Cartesian distributions of Bagi [14], as well,
although this identification has not been previously made.

5. An example of an anisotropic solution pair. In most real world cases,
granular media are subjected to greater total compressional force along one axis
than the other, for example, in a gravity-dominated situation. Consequently, the
anisotropic case is of interest, although it is significantly more complicated. Fur-
thermore, the physics of jamming and unjamming have emerged as possibly the key
concepts in granular media. The anisotropic case is relevant to this because shear
stress (an aspect of anisotropy in the stress state) is one of the three ways to unjam
granular media, as represented by the jamming phase diagram [19]. It has been pro-
posed that the evolution of PF (F )—from having a peak, as shown in Figure 4.1, to
being monotonically decreasing—serves as an indicator of unjamming [7]. Numerical
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simulations have indeed shown that this evolution occurs when the material is un-
jammed through stress anisotropy [1]. Therefore, an explanation for the evolution of
PF (F ) is central to the aims of granular physics. In this section a reasonable form is
selected for the density function PFφ

(Fφ, φ) for a sample anisotropic case and then the
integrals evaluated to yield PF (F ). This solution is discussed and compared against
published data [1]. The purpose is to demonstrate that this mathematical framework
is a sufficient framework to include the evolution of PF (F ).

The reason we start with PFφ
(Fφ, φ) instead of PF,θ(F, θ) in this demonstration

is because the Cartesian distribution is the one associated with the force conservation
law, and it is through that conservation law that the anisotropy is injected into the
problem. It is well known that the normal components (diagonal elements) in the
stress tensor scale according to σxx = a+b cos(2φ) as the coordinate system is rotated
through angle φ. Hence, the quantity of conserved force normal to the layers of a
granular material will also scale according to this form when the layer is oriented
at angle φ. The values of a and b are determined by the forces applied along the
principal stress axes of the system. Based on the successful fits presented at the end
of the previous section, we choose to let PFφ

(Fφ, φ) be represented as a sum of the
first three modified Bessel functions, but where this explicit angular dependence is
added.

PFφ
(Fφ, φ) =

2∑
n=0

an

(
a− b

a + b

)n−1

(a+b cos(2φ))n+1Fn
φKn((a+b cos(2φ))Fφ).(5.1)

The parameter b determines the amount of variation in force with angle, equaling zero
for the isotropic case and approaching a for extreme anisotropy. Thus the force density
is shifted towards higher forces along the y-axis with b nonzero. The (a+b cos(2φ))n+1

factor has been included to normalize the distribution at every particular value of φ,
as required from the discussion above. The (a + b)/(a − b) factor is conjectural but
it, or something similar to it, is necessary. Without this weighting, the resultant
force density functions change only minimally with increasing anisotropy and do not
agree with published literature. Including it yields results that correspond to dynamic
simulations [1], as seen in Figure 5.1, but whose basis is unclear. The point is that
the framework developed above allows choices to be made for the Cartesian form of
the force density functions, which can then be converted to force magnitude or force
angle density functions (i.e., fabric) and compared to published data.

The force magnitude density function is found by using this form for PFφ
(Fφ, φ)

in (3.5) and integrating with respect to θ (see (2.2)), yielding

PF (F ) =
F

(2π)2

2∑
n=0

an

(
a− b

a + b

)n−1 ∫ 2π

0

∫ 2π

0

∫ ∞

0

∫ ∞

0

(a + b cos(2φ))n+1Fn
φ

·Kn((a + b cos(2φ))Fφ) cos (FφG) cos(FG cos(φ− θ))G dG dFφ dφ dθ.

The integration with respect to θ can be performed immediately, yielding 2πJ0(FG),
and the integration with respect to Fφ can be performed via [18, eqn. 6.699.12]. Then
the integration with respect to G can be performed via [18, eqn. 6.565.4], yielding the
partial result

PF (F ) =

2∑
n=0

anF
n+1/2

4

√
2

π

(
a− b

a + b

)n−1

·
∫ 2π

0

(a + b cos(2φ))n+3/2Kn−1/2(F (a + b cos(2φ))) dφ.
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Fig. 5.1. Evolution of force magnitude distribution with increasing anisotropy. The curve with
the lowest probability density for F = 0 is the b = 0 isotropic case. The other curves, in order,
correspond to b = 0.3, 0.6, 0.9, and 1.57.

Using the identities for the half-order modified Bessel functions, the integrations with
respect to φ can be made, yielding the result

PF (F ) =
π

2
exp (−aF )

(
a0

(
a + b

a− b

)
(aI0(bF ) − bI1(bF ))

+ a1((a
2 + b2)FI0(bF ) − (b + 2abF )I1(bF ))

+ a2

(
a− b

a + b

)
(F (a2 + 2b2 + a3F + 3ab2F )I0(bF )

− (3b + 5abF + 3a2bF 2 + b3F 2)I1(bF ))

)
,(5.2)

where the exponential dependence on the force is expected from the isotropic case,
but the Bessel function dependence on the parameter b is novel. (I(x) is the modified
Bessel function of the first kind.) Using the values a0 = 3π2/4, a1 = −π, a2 = 11,
and a = π/2, Figure 5.1 shows a plot of (5.2) for various degrees of anisotropy (these
plots have been normalized).

For b = 0, the isotropic case, the plot is identical to that shown in Figure 4.1, and
(5.2) reduces (with the addition of a normalization term) to (4.10), but as b increases,
the shape of the curve changes, slowly moving towards a pure exponential. This
is in agreement with published simulation data, where the force magnitude density
function evolves in a similar fashion with increasing anisotropy [1]. This demonstrates
that the mathematical framework can produce this evolution naturally; nothing more
exotic than the relative weighting of the Bessel terms need be invoked to produce it.

6. Summary and conclusions. It is possible within the straightforward tech-
niques of probability theory to convert from PF,θ(F, θ) to PFφ

(Fφ, φ). Unfortunately,
those techniques cannot provide a conversion in the opposite direction. However, we
may recognize that the conversion in the forward direction is equivalent to the compo-
sition of Fourier cosine transforms of the function. Since these transforms have their
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own well-defined inverses, the conversion from PFφ
(Fφ, φ) to PF,θ(F, θ) can likewise

be expressed.
This inverse conversion is interesting for several reasons. First, it allows theo-

retical models that only predict Cartesian force distributions (such as the q model
[15]) to be directly compared against the force magnitude distributions, which have
been more important to granular physics. Second, the inverse conversion indicates a
previously unrecognized relationship between the Cartesian force component distri-
butions PFφ

(Fφ, φ) and the fabric of the granular packing, which may be important
in future theoretical developments. Third, for the special case of isotropic granular
packings in which the φ and θ dependencies may be eliminated, the transform pair
reduces to a simple form that can be solved for a wide range of functions. This indi-
cates which functional forms for the Cartesian components correspond to particular
functional forms for the force magnitudes. Since it is well known that the distribution
of the latter has an exponential tail, the corresponding form for PFX

(FX) ought to be
modified Bessel functions of the second kind. Expansions in a series of such functions
(of increasing order) display two characteristic “knees” when graphed, and indeed
it turns out that such knees are observed in the empirical Cartesian distributions.
Thus, the natural form for PFX

(FX) appears to have been identified, and this should
provide insight into the physical mechanisms that produce the distributions. Fourth,
treating these modified Bessel functions with increasing anisotropic stress naturally
produces an evolution of PF (F ) that depends upon the choice of coefficients in the
series expansion. Prior research has associated this evolution with the occurrence
of jamming and unjamming in granular packings, and so the inverse transform indi-
cates that jamming may be described as an increase in weighting of the zeroth-order
modified Bessel function. This insight should be helpful to explain the physics of
jamming and unjamming, which are important concepts in granular physics. Because
this inverse conversion identifies these relationships and natural functional forms for
granular force distributions, its derivation should be a helpful contribution in future
research into the physics of granular jamming and unjamming.
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A SCHOOL-ORIENTED, AGE-STRUCTURED EPIDEMIC MODEL∗

VIGGO ANDREASEN† AND THOMAS FROMMELT†

Abstract. A model of childhood epidemics focusing on the impact of the school-year is pre-
sented. At the onset of the epidemic season, a new cohort of susceptible students enter the school,
all other age-classes advance one year, while the oldest age-group leaves the mixing pool. If the
susceptible pool is sufficiently large at the onset of the season, an epidemic will arise and run to its
conclusion prior to the end of the school-year. The system is expressed in terms of a discrete dynam-
ical system giving the changes in the age-dependent immunity structure on a year-to-year basis. If
disease transmission is independent of age, the system settles at epidemics of constant size in each
season. If disease transmission is age-dependent, more complicated dynamics may occur, including
multiple stable states and chaos.

Key words. epidemic model, seasonal forcing, discrete map, closed epidemic, age-structure
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1. Introduction. Disease transmission in schools played a central role in main-
taining the regularly recurring epidemics of childhood diseases during the prevaccina-
tion era. In particular the summer break with low transmission, the annual infusion
of a new cohort of (susceptible) first-year students, and the progression of students
through the school system contributed substantially to the external forcing and the
well-known two-year cycle in measles epidemics [42, 18, 38, 3]. The aim of this paper is
to include this pulsed forcing in a mathematically tractable, age-structured epidemic
model.

From an analytical viewpoint, the discontinuous nature of student admission and
class-progression makes it rather awkward to incorporate the phenomenon into an
epidemic model describing disease transmission dynamics in terms of the flow of hosts
from the susceptible through the infected to the recovered class (SIR-model). Con-
sequently the previous models of childhood epidemics with annual updates of the
host structure have not been amenable to analytic methods. However, these “real-
istic age-structured” models (RAS-models) reflect quite accurately the prevaccina-
tion measles epidemics in England [42, 10, 23, 28], although recent results suggest
that a detailed description of the seasonal variation in contact rates—rather than
age-structure—is essential for matching the observed pattern of childhood diseases
in England [16, 8, 18, 29, 41]. To simplify the analysis most mathematical studies
of seasonally driven childhood epidemics have assumed that transmission strength
varies sinusoidally with a period of one year, neglecting the details of the school-year
[13, 31, 7, 33, 37]. Recently Billings and Schwartz [9] have provided a detailed de-
scription of the Poincaré return map associated with a forced SIR-model and showed
how noise may lead to stochastic chaotic dynamics in such models.
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In Schenzle’s original model [42] as well as in other RAS-models, the host popu-
lation is divided into cohorts, where new susceptible hosts are recruited continuously
into the youngest age-class, age-classes in the school-age are updated annually, and
hosts in adult age-classes continuously move through a fixed number of classes (one
class in Schenzle’s final formulation) and all mortality is concentrated in the adult
age-classes. Thus the demographic structure is a discretization of the “von Forester
model,” which is often used in conjunction with epidemic models (see [26]). However,
the original partial differential equation model as well as the age-group formulation
of Tudor [44] describe a continuous flow through the age-classes, in contrast to the
discrete annual progression through the school-system. See [25] for a recent review.

In this paper we will take an approach that allows us to account for the summer
break and the annual infusion of new susceptible hosts into the mixing pool. In order
to obtain an analytically tractable model, we will neglect the fine-scale variation
in the school-year, assuming that the year can be divided into a (long) period of
high disease transmission and a period where no transmission takes place. The basic
idea is to completely separate the time scale of the epidemic from that of the school
demographics by assuming that the duration of an epidemic is short compared to the
length of the school-year. Thus each school-year starts with the introduction of a new
cohort of susceptible hosts, one-year progression of all cohorts, and removal of the
oldest age-class. We will assume that if the susceptible pool at the beginning of the
school-year is large enough to support an epidemic, then an epidemic will occur that
year, and this epidemic will run to its conclusion before the end of the school-year.
This allows us to describe the epidemics only in terms of their size, i.e., the fraction
of susceptible hosts that get infected during the season in question. Once the size of
the epidemic is known, we can update the age-dependent immunity structure at the
end of the school year, and we are ready to start the next season.

Clearly the model will not account for pathogen persistence over the summer
period with low disease activity. Therefore the model cannot describe the exact
inoculum at the onset of the subsequent season, and consequently the timing of the
epidemic within the season cannot be determined. We shall return to these issues in
the discussion.

Models of annual epidemics combined with interseasonal updating of the host
population was first used by Gillespie [20] in his description of disease-induced natural
selection in an (annual) insect population, and by May [32] and Dwyer et al. [15], who
described disease-induced regulation of an insect population. Recently Andreasen
and coworkers [6, 11] used the same modeling approach to describe the transmission
dynamics of influenza under drift.

In the next section we derive a map connecting the age-distribution of suscep-
tible hosts at the onset of one epidemic season to the age-distribution at the onset
of the subsequent season. The dynamics of the season-to-season map can be quite
complicated, and only a partial analysis is presented. In section 3 we show that
the season-to-season model has a unique equilibrium. The case of age-independent
susceptibility is studied in section 4, and in particular we shall show that when dis-
ease transmission is completely age-independent, the endemic equilibrium is locally
asymptotically stable. In section 5 we give examples where the size of the annual epi-
demic changes in an irregular manner, with some years totally lacking an epidemic,
indicating that the dynamics of the model may in fact be quite complicated.

2. The model. The separation of time scales naturally breaks the dynamics
into two steps. The first step describes the demographic and school class dynamics
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of the population, which is updated once a year at the beginning of the school-year,
while the second step will describe disease transmission during a school-year in the
closed population.

Reflecting the structure of school-classes, the population is divided into m cohorts,
one for each year from introduction into the mixing-pool until removal from the pool,
and we denote by NT

k the number of hosts who are in the kth cohort during season
T . At the onset of an epidemic season, M new (susceptible) hosts are introduced
into the first cohort: NT+1

1 (season-start) = M ; cohorts k = 1, . . . ,m − 1 move
one age-class up: NT

k (season-end) → NT+1
k+1 (season-start), while the oldest cohort

is removed. We will assume that the population is closed in the sense that all new
hosts enter through the first cohort at the onset of a season and that hosts leave only
by the removal of the oldest cohort at end of the season. Thus, provided that the
population is at demographic equilibrium, all cohorts are of the same size throughout
the epidemic season. This corresponds to an extreme case of type I mortality [34, 2].
Since the population size remains constant, it turns out to be convenient to describe
the population structure in terms of nT

k , the fraction of the host population that is in
cohort k during season T . We note that nk = 1/m for all k.

To determine disease transmission dynamics during the season, we assume that
the epidemic can be described by an SIR-epidemic model. Thus we subdivide the
kth cohort of the host population into susceptible, infectious, and immune hosts and
denote by sk, ik, and rk the fraction of the total population in age-class k that is
currently susceptible, infected, and recovered, respectively. During the season the
dynamics become

dsk
dt

= −σkΛsk,(2.1)

dik
dt

= σkΛsk − νik,(2.2)

drk
dt

= νik,(2.3)

where Λ = c
∑

τjij gives the force of infection that would be experienced by a totally
susceptible host; ν denotes the rate of recovery, while c is the contact rate. To
account for age-dependence in disease transmission, each age-class is assigned two
factors: σk and τk, denoting, respectively, the susceptibility and infectivity of hosts in
age-class k relative to the maximal values. Thus by definition we have 0 ≤ σk, τk ≤ 1.
This description of age-dependent transmission corresponds to the “proportionate
mixing” assumption in the continuous age-structured epidemic model [14]. Although
it is straightforward to include more complicated mixing patterns in (2.1)–(2.3), such
mixing patterns are not easily amenable to the analysis we shall apply below.

Initial conditions for the seasonal dynamics are determined by the demographic
model, so that at the onset of the season, sk(0) and rk(0) are known. Since the
epidemic from the previous season has run to its conclusion, we have sk(0) + rk(0) =
nk = 1/m and ik(0) � 1. At the beginning of the epidemic season a few infectious
individuals are introduced into the population, so that 0 < Λ(0) � 1. As we shall see
it suffices to assume that Λ(0) > 0 rather than specifying the age-distribution of the
initial infectious cases.

The description of the seasonal epidemic model can be simplified substantially.
Since immune hosts play no role in the transmission dynamics, the rk-equations are
redundant and may be omitted. Furthermore by introducing the force of infection
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as a dynamic variable, we can eliminate direct reference to the infectious classes ik.
Summing over all age-classes, one finds that Λ follows the equation

dΛ

dt
=

(
c
∑

σkτksk − ν
)

Λ.(2.4)

The transmission dynamics during the epidemic season is therefore captured by (2.1)
and (2.4).

These equations can be solved explicitly by Gart’s modification to the analysis
of the single epidemic [30]. We first introduce a reference age-class sf , namely an
age-class for which σf = 1. Eliminating time, we find that dsk/dsf = σksk/sf , so
that

sk(t) = sk(0)

(
sf (t)

sf (0)

)σk

.(2.5)

By substituting these values for sk into (2.4), we obtain

dΛ

dsf
=

cΛ
∑

σkτksk − νΛ

−Λsf
= −c

∑
σkτk

(
sf

sf (0)

)σk−1
sk(0)

sf (0)
+

ν

sf
,

which may be solved to yield

Λ(t) − Λ(0) = −c
∑

τk

(
sf (t)

sf (0)

)σk

sk(0) + ν log(sf (t)) + c
∑

τksk(0) − ν log(sf (0)).

We are now ready to apply our separation of time scales, in that we express the
final size of the epidemic in terms of θ = sf (∞)/sf (0).

Provided that the threshold condition

dΛ

dt |t=0
= c

(∑
τkσksk(0) − ν

)
Λ > 0(2.6)

is satisfied, an epidemic will occur. Since the epidemic will eventually die out, we
have that Λ(t) → 0 for t → ∞. By assumption, Λ(0) � 1, so we find that if the
threshold condition (2.6) holds, then θ satisfies the equation

G(θ) = Λ(∞) − Λ(0) = log θ + γ
∑

τksk(0)(1 − θσk) = 0,

where γ = c/ν.
It is straightforward to show that if G′(1) < 0, this equation has exactly one

solution in the interval (0, 1), and none if G′(1) > 0; for details see [6]. Clearly
the condition on G′(1) is identical to the threshold condition (2.6). If the threshold
condition does not hold, no epidemic can occur, and consequently we set θ = 1.

These observations lead to the following statement.
Definition of θ. If the threshold condition

γ
∑

τkσksk > 1(2.7)

holds, then 0 < θ < 1 is the unique solution to

log θ + γ
∑

τksk(1 − θσk) = 0;(2.8)
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if the threshold condition is not satisfied, then

θ = 1.

Notice that, by (2.5), θ now determines the changes in all susceptible classes,
since we have

sk(∞) = θσksk(0).(2.9)

Thus the entire outcome of the epidemic season is captured in a single (implicit)
function θ of the initial conditions.

Since we no longer will be concerned with the dynamics within a season, we use
the notation sk = sk(0) here and for the remainder of this paper. The definition of θ
generalizes the concept of the final size of an epidemic in a closed population (cf. [12,
p. 10]) to a closed structured population.

The quantity γ
∑

τkσksk gives the number of secondary infections per primary
infection at the onset of the epidemic, and it may therefore be thought of as the
effective replacement number, Re, at the onset of the epidemic.

We are now ready to describe the complete dynamics over a full year, from
the beginning of one epidemic season to the beginning of the next season. Since
sk + rk = nk = 1/m, it suffices to specify the age-distribution of susceptible hosts
(s1, s2, . . . , sm), and the process taking the susceptible population from the onset of
one school-year to the onset of the next year is described by the following two steps:

Start of year: (s1, s2, . . . , sm)

Epidemic season: ↓
End of year: (θσ1s1, θ

σ2s2, . . . , θ
σmsm)

Change of school class: ↓
Start of next year: (1/m, θσ1s1, θ

σ2s2, . . . , θ
σm−1sm−1),

where the first step is given by (2.9) and the second step by the cohortwise age-
progression. The long-term behavior of the epidemics is now determined by this map
connecting the age-distribution of susceptible hosts from one year to the next. To
facilitate the analysis of the system we introduce the following notation. Since at
the beginning of each season s1 = 1/m, the population structure is characterized
by the m − 1 values of S = (s2, . . . , sm). The size of a susceptible cohort can only
decrease, so we have 0 ≤ sk ≤ 1/m for all k. Thus the state space for the system is
B = [0, 1/m]m−1. With this notation the season-to-season map F : B → B can be
written in the form

F :

⎛
⎜⎝

s2

...
sm

⎞
⎟⎠ �→

⎛
⎜⎝

θσ1/m
...

θσm−1sm−1

⎞
⎟⎠ ,(2.10)

where the value of θ is defined above with the understanding that s1 = 1/m.
The definition makes θ a continuous function θ : B → [0, 1], which is nondif-

ferentiable on the hyperplane where the threshold quantity equals unity. To get an
impression of the function θ, let us for a moment set σk = 1 and define w as the
weighted sum of all susceptibles w =

∑
τksk. We can now consider θ as a composite
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Fig. 2.1. The function θ(w). The function is continuous but not differentiable at w = 1/γ and
has no inverse.

function S �→ w �→ θ, where θ is determined as function of w by

θ(w) =

⎧⎨
⎩

the solution to
0 = log θ + γw(1 − θ) if γw > 1;

1 otherwise.

Figure 2.1 shows the graph of θ(w) and its two unusual features. The function

θ(w) is continuous but not differentiable at w = γ—in fact, we have θ′(1/γ
−
) = 0

and θ′(1/γ
+

) = −2γ. Furthermore, for w ≤ 1/γ the function is a constant, so no
inverse map exists. The constant section of θ(w) introduces a “folding” where a
whole line-segment is mapped into the same point; this folding turns out to play a
major role in the long-term dynamics of the system for some parameter values. The
nondifferentiability of θ(w) leads to some technical (but less significant) complications
in the mathematical analysis.

3. Repeated epidemics. The map (2.10) describes how the age-structure of
susceptible hosts changes from the beginning of one school-year to the next, and we
now turn our attention to the dynamics on the slow season-to-season time scale.

We first determine equilibria Ŝ ∈ B of the system in terms of ϑ = θ(Ŝ), noting
that an equilibrium F (Ŝ) = Ŝ with ϑ < 1 corresponds to a situation where an epidemic
of the same size occurs in all seasons.

If F (Ŝ) = Ŝ and ϑ = θ(Ŝ), it follows that

ŝk = ϑσk−1 ŝk−1 =
ϑuk−1

m
, k = 2, . . . ,m,

where uk =
∑k

j=1 σj and u0 = 0. Equilibria of the model are therefore characterized
by those ϑ ∈ (0, 1] that solve the equation

H(ϑ) = log ϑ +
γ

m

∑
τkϑ

uk−1(1 − ϑσk) = 0.(3.1)

Using the method in [6, Proposition 1], we have that the following properties hold
for H and σ∗ = min{σk |σk > 0 }:

(1) H(0+) = −∞.
(2) H(1) = 0.
(3) H ′(1) = 1 − γ

m

∑
τkσk.

(4) The function H(ϑ)/(1 − ϑσ∗
) is increasing on the interval (0, 1).

Property (2) ensures that H is positive to the left of ϑ = 1 if H ′(1) < 0, and in
combination with property (1), this shows that H(ϑ) has a zero on the interval (0, 1),
while property (4) shows that this zero is unique. If H ′(1) > 0, the function must
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have an even number to zeroes on (0, 1), and from property (4) we conclude that no
zeroes exist in (0, 1).

Since H(1) = 0, ϑ = 1 will always satisfy (3.1). However, because of our assump-
tion that an epidemic occurs if the threshold condition (2.7) is satisfied, θ evaluated at
the disease-free state S0 = (1, . . . , 1)/m equals unity only if condition (2.7) does not
hold at S0. Therefore the disease-free state is an equilibrium only when the effective
replacement number at S0 is below 1.

We summarize our observations in the following claim.
Proposition 3.1. The model (2.10) has exactly one equilibrium. If the threshold

condition

R0 =
γ

m

m∑
k=1

τkσk > 1(3.2)

holds, then the equilibrium is endemic, corresponding to an annual epidemic. If the
threshold condition does not hold, then the equilibrium is disease-free, i.e., sk = 1/m,
k = 1, . . . ,m.

The quantity R0 gives the basic replacement number, i.e., the number of secondary
infections per primary infection in a totally susceptible population, and Proposi-
tion 3.1 therefore shows that the model has an endemic equilibrium exactly when
R0 exceeds unity, as one expects in epidemic models [12]. However, in contrast to
most epidemic models, there is no (unstable) disease-free equilibrium when condition
(3.2) holds. This is due to our basic assumption that an infection from an external
source will cause an epidemic in every season where it is possible.

The present model can exhibit quite complicated dynamics, including multiple
steady states, chaos, and cycles where epidemics occur only in some seasons. We
cannot provide a complete analysis of the model, but in the following section we ana-
lyze the stability of the endemic equilibrium for a particularly simple mixing structure,
and in the subsequent section we provide some numerical examples of the complicated
dynamics that can arise.

4. Local stability. From the previous section we know that for R0 > 1 there
exists a unique endemic equilibrium. In this section we will determine the local stabil-
ity of this equilibrium for the case where disease susceptibility is independent of age,
σk = 1, k = 1, . . . ,m. This structure is chosen for its mathematical convenience rather
than for its epidemiological interest, but it suffices when demonstrating the possibil-
ity of destabilization of the endemic equilibrium through variation in infection rates.
Assuming constant susceptibility σk = 1 (but age-dependent infectivity τk) simplifies
the analysis considerably, especially because θ(S), the size of the epidemic, can be
treated as a composite map consisting of a linear map followed by a (complicated)
one-dimensional (1-D) map, as discussed in section 2.

The endemic equilibrium now takes the form

Ŝ = (ŝ2, ŝ3, . . . , ŝm) =
1

m
(ϑ, ϑ2, . . . , ϑm),

where ϑ is the fraction of hosts that get infected during a season at equilibrium. It
turns out that it is more convenient to use ϑ, rather than γ = c/ν as a (bifurcation)
parameter. To see that this is possible we start by proving that the equilibrium
condition expressed in terms of ϑ can be used to define a one-to-one map between γ
and ϑ.
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Lemma 4.1. For fixed age-specific infectivity (τ1, . . . , τm) the implicit equation

log ϑ +
γ

m

m∑
k=1

τkϑ
k−1(1 − ϑ) = 0

defines a one-to-one map γ �→ ϑ from (m/
∑

τk,+∞) onto (0, 1).
Proof. According to Proposition 3.1, the map is well defined, and the inverse map

ϑ �→ γ is given explicitly as

γ =
−m log ϑ̂∑m

k=1 τkϑ
k−1(1 − ϑ)

,(4.1)

showing that the map is one-to-one. Clearly γ(ϑ) is positive on (0, 1) and γ(0+) =
+∞, while γ(1−) = m/

∑
τk.

The stability of the equilibrium Ŝ is determined by the Jacobian of F , given by
(2.10) evaluated at Ŝ. A straightforward computation yields

DF =

⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0
ϑ 0 . . . 0 0
0 ϑ 0 0
...

...
. . .

. . .
...

0 0 . . . ϑ 0

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝

ŝ1

ŝ2

ŝ3

...
ŝm−1

⎞
⎟⎟⎟⎟⎟⎠

(
θ′2 θ′3 . . . θ′m

)
,

where

θ′k =
∂θ

∂sk |ŝ
=

γτk(1 − ϑ)

γ
∑m

1 τj ŝj − ϑ−1
= −γτk(1 − ϑ)

log ϑ
1−ϑ + 1

ϑ

=
τkm∑m

1 τjϑj−1
ψ(ϑ) < 0

denotes the partial derivative of θ after sk evaluated at the equilibrium. The third
equality is obtained by using the equilibrium condition

log ϑ + γ
∑

τkŝk(1 − ϑ) = 0,

while the subsequent equality follows from (4.1).
The elementary function

ψ(ϑ) =
log ϑ

log ϑ
1−ϑ + 1

ϑ

will play a central role in the analysis, and we note the following claim.
Lemma 4.2. The function ψ satisfies the inequality

0 > ϑ + ψ(ϑ) > −1

on the interval (0, 1), and ψ(0+) = 0, while ψ(1−) = −2.
Proof. We find

1 + ϑ + ψ(ϑ) = 1 + ϑ +
log ϑ

1
ϑ + log ϑ

1−ϑ

= 1 − ϑ− 1 − log ϑ

ϑ−1 − 1 − log ϑ−1
(4.2)

=
ϑ−1 − ϑ + 2 log ϑ

ϑ−1 − 1 − log ϑ−1
.(4.3)
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By applying the elementary inequality y − 1 − log y > 0 to the numerator and the
denominator in expression (4.2), we observe that ϑ + ψ(ϑ) < 0. To see that ϑ +
ψ(ϑ)+ 1 > 0, apply the same inequality to the denominator of (4.3) and observe that
t(ϑ) = ϑ−1 − ϑ + 2 log ϑ > 0 since t(1) = 0 and t′(ϑ) = −(1 − ϑ−1)2.

In principle, the characteristic polynomial can be determined by a straightforward
computation of the determinant of DF − zE. However, the following two lemmas
considerably simplify the computation.

Lemma 4.3. For an n× n-matrix M and (column) vectors c1, c2, and d we have

det(M + d(c1 + c2)
T ) = det(M + dcT1 ) + det(M + dcT2 ) − detM.

Proof. The proof follows from Theorem 8.4.3 in [22].
Lemma 4.4. Let Pnj(a) denote the determinant of the n× n matrix

L =

⎛
⎜⎜⎜⎜⎜⎝

−z 0 . . . 0 0
u −z . . . 0 0
0 u 0 0
...

...
. . .

. . .
...

0 0 . . . u −z

⎞
⎟⎟⎟⎟⎟⎠ + a

⎛
⎜⎜⎜⎜⎜⎝

1
u
u2

...
un−1

⎞
⎟⎟⎟⎟⎟⎠ eTj ,

where ej denotes the jth unit vector; then

Pnj(a) = detL = (−1)n
(
zn − auj−1(zn−1 + . . . + zn−j)

)
.

Proof. Expansion of the determinant after the first row of L gives the recursion
formula

Pnj(a) = −zPn−1j−1(au) + (−1)j+1uj−1(−z)n−j ,

and the result follows by induction.
Combining the two lemmas, we find that the characteristic polynomial of DF (Ŝ)

is

p(z) = (−1)m−1

(
zm−1 − 1

m

m∑
k=2

θ′kϑ
k−2(zm−2 + · · · + zm−k)

)

= (−1)m−1

(
zm−1 − 1

m

m∑
k=2

θ′kϑ
k−2zm−k z

k−1 − 1

z − 1

)
.(4.4)

Here the reader should bear in mind that since the first age-class is omitted, DF
is in fact an (m − 1) × (m − 1)-matrix, where θ′j appears in the (j − 1)th column.
Since θ′k < 0, the penultimate expression is a polynomial where all coefficients are
nonnegative, showing that the polynomial cannot have positive real zeroes. Therefore
the last expression may be used to determine the eigenvalues of DF .

The polynomial (4.4) is too complex to allow for a general analysis, and we will
study only a—somewhat artificial—situation where infected hosts in age-class j, j ≥ 2,
can infect with full strength τj = 1, while hosts in other age-classes infect with reduced
strength τk = τ ≤ 1, for k 
= j. In particular, for τ = 1 we obtain as a special case
the homogeneous model where all hosts infect equally well, and we shall analyze this
case in some detail below.
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Since θ′k = τθ′j , k 
= j, we set θ′j = θ′ and find that

θ′ =
ψ(ϑ)

τ ϑm−1
ϑ−1 + (1 − τ)ϑj−1

.

The characteristic polynomial takes the form

p(z) = (−1)m−1

(
zm−1 − 1 − τ

m
θ′ϑj−2zm−j z

j−1 − 1

z − 1
− τ

m

m∑
k=2

θ′ϑk−2zm−k z
k−1 − 1

z − 1

)

=
(−z)m−1

z − 1

(
(z − 1) − (1 − τ)θ′

m
ϑj−2(1 − z−j+1)

− τθ′

m

(
ϑm−1 − 1

ϑ− 1
− z

(
ϑ
z

)m−1 − 1
ϑ
z − 1

))
.

Thus eigenvalues of DF will satisfy the equation

0 = p(z) =
zm+1 + azm + bzm−1 − (c + dzm−j + fzm−j+1)

(z − 1)(ϑ− z)
,(4.5)

where

a = −
(

1 + ϑ + τ
θ′

m

ϑm−1 − 1

ϑ− 1
+ (1 − τ)

θ′

m
ϑj−2

)
,

c = τ
θ′

m
ϑm−1,

d = (1 − τ)
θ′

m
ϑj−1,

f = −(1 − τ)
θ′

m
ϑj−2,

b = −1 − a + c + d + f = ϑ + ψ(ϑ).

From Lemma 4.2 we have that 0 > b > −1.
We now describe the eigenvalues of DF by analyzing the roots of

h(z) = p(z)(z − 1)(ϑ− z) = zm+1 + azm + bzm−1 − (c + dzm−j + fzm−j+1),

noticing that we have introduced artificial roots at z = ϑ, 1, which do not correspond
to eigenvalues of DF . Since DF cannot have positive real eigenvalues, double roots
at these two values of z cannot occur.

The equation h(z) = 0 is not amenable to analytic solution, and we first study the
two extreme cases τ = 1, corresponding to homogeneous disease spread, and τ = 0,
corresponding to the situation where only age-class j can spread the disease.

4.1. Homogeneous disease transmission. For homogeneous disease trans-
mission, σk = τk = 1, the reproduction ratio simplifies to R0 = γ, and from Proposi-
tion 3.1, we know that an internal (endemic) equilibrium exists exactly when R0 > 1,
while a disease-free equilibrium exists only when R0 < 1. The picture is clear in that
we can prove the following result.

Proposition 4.5. When disease spread is age-independent and γ > 1, the en-
demic equilibrium is always locally stable.
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The proof naturally breaks into two lemmas.
Lemma 4.6. If disease transmission is independent of age σk = τk = 1, then the

eigenvalues of the Jacobian DF cannot lie on the unit circle.
Proof. When τ = 1, the coefficients d and f vanish, and the equation h(z) = 0

simplifies to

z + a + bz−1 = cz−m,(4.6)

where the coefficients a and c are

a = −
(

1 + ϑ + ψ(ϑ)
ϑm−1 − 1

ϑm − 1

)
,

c = ψ(ϑ)
ϑm − ϑm−1

ϑm − 1
.

Taking the absolute value of both sides of the equation, we find that roots of unit
length z = eiω must satisfy the equation

((1 + b) cosω + a)2 + (1 − b)2 sin2 ω = c2.

Using the fact that a + b + 1 = c, the equation simplifies to

(cosω − 1)[2a(1 + b) + 4b(1 + cosω)] = 0.

Clearly z = 1 solves (4.6). However, (4.6) was obtained by multiplying the char-
acteristic equation by (z − 1) to simplify the expression. We have already observed
that DF has no positive real eigenvalues, excluding the possibility of an eigenvalue
at z = 1. Characteristic roots of unit length z = eiω are therefore possible only if

cosω = −1 − a(b + 1)

2b
,

and thus it suffices to show that

a(b + 1)

2b
> 0.

Since we know that 0 > b > −1, we need only show that a < 0.
To see that a < 0, observe that

−a = 1 + ϑ + ψ(ϑ)
1 − ϑm−1

1 − ϑm

> 1 + ϑ + ψ(ϑ) > 0.

We conclude that roots of the characteristic polynomial cannot cross the unit circle
in the case of homogeneous mixing, completing the proof of Lemma 4.6.

Lemma 4.7. If disease transmission is independent of age τk = σk = 1, then for
large epidemics (ϑ � 1) all eigenvalues of DF lie within the unit circle.

Proof. At ϑ = 0, the characteristic polynomial (and, in fact, the entire model!)
is singular in the sense that 0 is a root of multiplicity m, and we apply a singular
perturbation analysis to the characteristic equation. For ϑ small, ψ(ϑ) ≈ ϑ log ϑ, so
that (4.6) may be written in the form

zm+1 − (1 − ϑ log ϑ)zm + ϑ log ϑzm−1 − ϑm−1 log ϑ = 0,(4.7)
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where we have retained only the terms of leading order. By inspection, it is clear that
the equation has the following m + 1 approximate solutions: z = 1, z = ϑ log ϑ, and
z = wkϑ, k = 1, . . . ,m − 1, where wk denotes the m − 1 roots of unity solving the
equation wm−1 = 1. Since (4.7) must have exactly m+1 complex solutions, our list is
exhaustive. During our simplification of the characteristic polynomial we introduced
additional roots at z = 1 and z = ϑ, and we conclude that the remaining m − 1
solutions are in fact the eigenvalues of DF , all of which lie well within the unit circle.

Since, by the implicit function theorem, solutions of the characteristic equation
are continuous in ϑ, Lemmas 4.6 and 4.7 immediately give us Proposition 4.5.

4.2. Age-dependent transmissibility. We now return to the situation where
age-class j, j ≥ 2, can infect at full strength τj = 1, while all other age-classes infect
with reduced strength τk = τ , k 
= j. We first study the extreme case of τ = 0 and
show the following result.

Proposition 4.8. If only age-class j, j ≥ 2, can infect, then the endemic
equilibrium is always unstable.

From an intuitive viewpoint the proposition is quite simple. Since all hosts are
equally susceptible, an epidemic will reduce the susceptible population in all age-
classes by the same amount, and since the infective age-class j can no longer support
an epidemic, neither can younger age-classes. Thus a new epidemic cannot arise before
a new cohort has been born and has lived for j seasons, bringing it into the age-class
where it is capable of infecting others. We now offer a formal proof.

Proof of Proposition 4.8. The proof follows the same method as that of Proposition
4.5, and we first show that roots of the characteristic polynomial cannot cross the
unitcircle. For τ = 0, the equation h(z) = 0 simplifies to

z + a + bz−1 = z−j(d + zf),

where a = − (1 + ϑ + ψ(ϑ)/ϑ) , b = ϑ + ψ(ϑ), d = ψ(ϑ), and f = −ψ(ϑ)/ϑ. Since
age-classes j + 1, . . . ,m do not contribute to disease transmission, the corresponding
variables span an (m−j)-dimensional generalized nullspace, so that we need to identify
only j − 1 eigenvalues (plus the two roots at z = 1, ϑ). As in Lemma 4.6, we can
derive a necessary condition for the existence of roots of unit length z = eiω and find
that ω must satisfy the equation

cosω = −1 − a(b + 1) − df

2b

= −1 +

(
1 + ϑ + ψ(ϑ)

ϑ

)
(1 + ϑ + ψ(ϑ)) − ψ(ϑ)2

ϑ

2(ϑ + ψ(ϑ))

= −1 +
(1+ϑ)2

ϑ

2
> 1,

excluding the existence of such roots.
It remains to see that there exists one value of ϑ for which the equation has solu-

tions outside the unit circle. This may be done by studying small ϑ, as in Lemma 4.7.
One finds that the leading terms of the j + 1 nonzero roots of h(z) are ϑ, log ϑ, and
the j − 1 roots of unity solving wj−1 = 1. Clearly the root near log ϑ lies outside the
unit circle.

For fixed ϑ, the endemic equilibrium is stable for τ = 1 and unstable for τ = 0, so
by the continuity of the characteristic roots, destabilization occurs for an intermedi-
ate value of τ = τB . Our analysis cannot exclude the possibility of multiple stability
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Fig. 4.1. The location of the critical value τ = τB for which the endemic equilibrium loses
its stability. The parameter τ gives the strength of disease transmission from all age-classes except
the highly infective age-class j. The value of τB is determined by numerically solving the modified
characteristic equation h(z) = 0 using Laguere’s method [36], excluding the artificial solutions at
z = 1 and applying a bisection method (in τ-space) to locate the value for which the largest solution
is of unit length. The number of age-classes is fixed at m = 10. The left-hand panel shows the
diagram in (τ, ϑ)-space, which is used in the analysis. The right-hand panel shows the diagram in
(τ,R0)-space, which is more natural for biological interpretation.

switches, but numerical investigations of the equation h(z) = 0 indicate that such
switches do not occur. Figure 4.1 shows τB for various j and m = 10. Clearly odd
and even j lead to qualitatively different stability regions; furthermore, for odd j the
bifurcation seems to be always a Hopf-type bifurcation through a pair of complex
eigenvalues, while the bifurcation for even j is a flip bifurcation through an eigenvalue
of −1. Since the age-structure of disease transmission is chosen for its mathemati-
cal convenience rather than for biological reasons, the phenomenon probably has no
biological significance.

5. Nonequilibrium dynamics. In addition to the endemic equilibrium, more
complicated dynamics may occur, and we finish our discussion of the school model
with some examples of these complications.

For m = 3, i.e., three age-classes, the underlying dynamics is 2-D. Using the
methods of [6], we have studied in some detail the case of age-independent suscepti-
bility for τ3 = 1 and γ = 5. The analysis is quite similar to that of [6], so we only
sketch the results; details of the analysis and the exact location of the bifurcations
may be found in [19].

Figure 5.1 shows the main features of the bifurcations for τ1 = 0.1. The structure
is most easily explained by starting at high values of τ2, i.e., with the lower right-
hand panel of Figure 5.1. For τ2 = 0.60 the endemic equilibrium is stable. When τ2 is
decreased, the equilibrium undergoes a Hopf bifurcation, giving rise to a stable limit-
cycle, e.g., for τ2 = 0.53. As τ2 decreases further, the limit-cycle degenerates, in that
a segment of the limit-cycle meets the region of state space where no epidemic occurs,
and three “arms” are created, τ2 = 0.32. Numerical simulations suggest that the
dynamics on this attractor is chaotic, in that the trajectories of neighboring points
diverge. In addition, the third iterate of F undergoes a saddle-node bifurcation,
creating a stable and an unstable 3-cycle. As τ2 decreases even more, the unstable
3-cycle meets the three “arms” on the chaotic attractor; a segment of the “arms” now
lies in the basin of attraction for the stable triennial-annual cycle, and the chaotic
attractor loses its stability.
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Fig. 5.1. Trajectories and equilibria for the map F , showing the bifurcations that give rise to
the complicated dynamics for m = 3. In all panels γ = 5, τ1 = 0.1, and τ3 = 1. For τ2 = 0.60
the endemic equilibrium is stable. For τ = 0.53 the endemic equilibrium is unstable, and a stable
periodic (or quasi-periodic) cycle is created through a Hopf bifurcation. For τ2 = 0.32 the limit
cycle has met the boundary, and “arms” appear on the cycle. In addition, a stable and an unstable
3-cycle have appeared through a saddle-node bifurcation of the third iterate F 3. Notice that the
“arms” of the attractor almost touch the unstable 3-cycle. The stable attractor will disappear in
a global bifurcation for slightly smaller τ2, and for τ2 = 0.20 the stable 3-cycle is globally stable.
Other symbols: ◦ endemic equilibrium; � three-cycle. Filled marks indicate that the point is stable;
open marks indicate that the point is unstable. For τ2 = 0.32 the shaded area indicates the basin of
attraction for the stable 3-cycle.

The dynamics of the model appears to be similar—but not identical—to those of
the “realistic age-structured models” based on Schenzle’s approach where the transfer
of infection from season to season is accounted for explicitly [42, 10]. Figure 5.2 shows
the bifurcation diagrams for model (2.10) and for a modified version of Schenzle’s
model. Schenzle’s original model does not assume proportionate mixing in disease
transmission, so it is not directly comparable to the present model. In addition,
Schenzle assumes that births and deaths are distributed evenly over the year, and he
accounts in detail for changes in disease transmission in response to school closure
during weekends and breaks. In the modified model we neglect the seasonal variation
in transmission and set the transmission coefficient from cohort j to cohort k to

βjk = R0bjbkNν,
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Fig. 5.2. Bifurcation diagram showing the fraction of the host population that is infected in a
season as a function of the basic reproduction number R0. Crosses: model (2.10); dots: a modified
version of Schenzle’s “realistic age-structured model,” where the size of the infection is carried over
between seasons; for details see the text.

where

bk =

⎧⎪⎪⎨
⎪⎪⎩

√
0.5 for 1 ≤ k ≤ 6,
1 for 7 ≤ k ≤ 10,√

3.5/9.0 for 11 ≤ k ≤ 20,√
1/3 for k = 21.

Here k = 21 is Schenzle’s adult age-class. The strange values of bk are chosen to ensure
that the values of βkk = b2k are identical to those used by Schenzle. Following Schenzle,
we assume that new individuals are born susceptible and at a constant rate during the
year, while deaths occur only in the adult class and at a constant rate corresponding
to a mean residence time of 55 years. To compare this “Schenzle” model to model
(2.10), we have set τk = σk = bk and included a total of m = 75 cohorts. Clearly
the carry-over of infection from one season to the next has significant impact on the
dynamics for small values of R0, suggesting that stochastic effects during the summer
break may play a role in this situation.

6. Discussion. The school model gives a somewhat different picture of disease
transmission dynamics than that of the well-known SIR-model [24, 3]. In the present
model the disease appears after the introduction of a new susceptible cohort, it pro-
duces an epidemic, and disappears, quite similarly to our everyday experience of
epidemic diseases such as measles and influenza. The role of the school-year, class-
progression, and admission of new students is quite explicit. The emphasis is on the
dynamics of the age-specific herd immunity rather than on the virus population as
such. Consequently the model does not address the question of disease persistence
during periods of low disease transmission. In fact, we are assuming that the virus
population will survive between epidemics in some unspecified reservoir. The model,
for example, could describe transmission dynamics in a medium-sized town or island
that is fairly well connected to a large city. This suggests a way to separate the non-
linear transmission dynamics during periods of high transmission from the persistence
problem where the stochastic effects due to the finite population size may play a sig-
nificant role [21]. In the case of isolated island populations it will allow us to separate
the (stochastic) arrival of an index case from the subsequent transmission dynamics
during the epidemic; we are currently exploring this issue.
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Since the endemic equilibrium appears to be stable unless the age-dependent
variation in transmissibility is unrealistically pronounced, our findings do not corrob-
orate Schenzle’s [42] suggestion that the remarkably stable two-year cycle of measles
epidemics in many urban areas is caused by the uptake of new susceptible hosts im-
mediately after the summer break. Still we have not explored the entire parameter
space, and in particular we have not studied the effect of age-dependent susceptibility
in any detail, so a final conclusion awaits further investigations.

In the model, focus is on the slow year-to-year time scale, neglecting the details
within the epidemic season, and the model does not give information about the precise
onset of the epidemic. In some way this may be an advantage, since the exact timing
of the epidemics may depend on specific geographic details of the meta-population in
question [17]. However, measles epidemics tend to last several months, and it has been
suggested that the exact timing of school breaks may in fact influence the dynamics
of childhood diseases [41]. The present model, of course, is not designed to capture
such subtleties.

Similarly to other epidemic models, we identified a basic reproduction number
R0 giving the number of secondary infections per primary infection in a susceptible
population and showed that when R0 > 1 there exists an endemic equilibrium. When
disease transmission is independent of age, this equilibrium is always stable, but when
infectivity is concentrated in just one age-class, the equilibrium is unstable. These
results parallel those for the SIR-model with continuous aging of the host population,
where the endemic equilibrium is stable for homogeneous disease transmission and
short duration of infection [4] but may lose stability when disease transmission is age-
dependent [5, 43, 27]. It is remarkable that the stability results are considerably easier
to obtain for the present model than they were for the PDE model with continuous
age-progression.

In the unstable region of parameter-space, the dynamics can be quite complicated,
with multiple stable states, complicated attractors, and an unusual global bifurcation.
These features are due to the model formulation in which the dynamics are governed
by a differential equation for a period followed by a discrete map. Such hybrid models
have become increasingly common in biology and epidemiology [35, 39, 40], and also
general results on “time scale calculus” are available [1]. Usually the models do
not exhibit as complicated behavior as the present model. However, in time scale
calculus—as in most specific applications—one assumes that the dynamics follows the
differential equation model for a finite time, ensuring that the composite map is in fact
smooth. In contrast, for our epidemic model the fast time scale in effect runs over the
entire time interval (−∞,+∞). Smoothness of the map is no longer guaranteed, and
in fact our map is continuous but nondifferentiable along the hyperplane defining the
epidemic threshold. In addition, our map is constant below the threshold, allowing
for a “folding” that seems to be responsible for the observed chaotic dynamics. It is
unclear how one might extend time scale calculus to include such dynamics.
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WAVELET MIE REPRESENTATIONS FOR SOLENOIDAL VECTOR
FIELDS WITH APPLICATIONS TO IONOSPHERIC
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Abstract. A wavelet technique, the wavelet Mie representation, is introduced for the analysis
and modeling of the earth’s magnetic field and corresponding electric current distributions from
geomagnetic data obtained within the ionosphere. The considerations are essentially based on two
well-known geomathematical keystones, (i) the Helmholtz decomposition of spherical vector fields
and (ii) the Mie representation of solenoidal vector fields in terms of poloidal and toroidal parts. The
wavelet Mie representation is shown to provide an adequate tool for geomagnetic modeling in the
case of ionospheric magnetic contributions and currents which exhibit spatially localized features.
An important example is ionospheric currents flowing radially onto or away from the earth. To
demonstrate the functionality of the approach, such radial currents are calculated from vectorial
data of the MAGSAT and CHAMP satellite missions.
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1. Introduction. Macroscopic electrodynamics is the theoretical basis for deal-
ing with the subject of satellite magnetometry in geomagnetism. The fundamental
equations governing that branch are Maxwell’s equations for polarizable media. Since
typical time-scales in satellite magnetometry are on the order of days and typical
length-scales are on the order of the earth’s radius, the typical system velocities are
much smaller than the speed of light, and therefore the quasi-static (or stationary)
approximations of Maxwell’s equations (i.e., the pre-Maxwell equations) can be used
(cf., e.g., [2]). As far as the magnetic field is concerned, these equations read

∇ · b = 0,

∇∧ b = μ0j,

where b (in classical geophysical notation usually denoted by �B) is the magnetic
induction, i.e., the magnetic field; j is the electric current density; and μ0 is the
vacuum permeability, μ0 = 4π · 10−7VsA−1m−1. Note that, in this approximation,
the electric current density j is also of zero divergence, i.e.,

∇ · j = 0.

Many concepts in geomagnetic modeling assume that the geomagnetic data are
solely collected within a spherical shell Ω(R1,R2) around the origin—with inner radius
R1 and outer radius R2—between the earth’s surface and the ionosphere, so that the
current density j can be neglected. This results in ∇∧ b = 0, ∇ · b = 0, which implies
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that there exists a scalar potential U in Ω(R1,R2) such that b = −∇U and ΔU = 0
in Ω(R1,R2). In order to model the magnetic field b the potential is expanded into a
Fourier series of (scalar) spherical harmonics and the expansion coefficients are chosen
such that the gradient of the potential fits—in the sense of a least-square metric—
the given vectorial data as well as possible. This method, which is known as Gauss
representation, has been used and constantly improved for more than 150 years now,
so that profound numerical and theoretical techniques exist (see, e.g., [23]).

Satellite missions (like MAGSAT, Oersted, and CHAMP) collect their data within
the ionosphere. Due to the intense solar radiation on the earth’s dayside (i.e., the
hemisphere directed to the sun), the electric conductivity of the ionosphere is in-
creased, and tidal forces, due to solar heating as well as solar and lunar attraction,
can drive large electric current systems. Among the most important ionospheric cur-
rent systems are the so-called equatorial electro jet (EEJ) and the polar electro jets
(PEJ), as well as the so-called field aligned currents that are flowing radially towards
and away from the geomagnetic poles. In connection with polarization effects in the
ionospheric plasma, the geomagnetic field produces an enhanced Hall conductivity
(Cowling effect) in the vicinity of the geomagnetic equator. This increased conduc-
tivity results in an amplified current system—the EEJ—flowing roughly along the
magnetic equator. With regard to our later considerations, it is worth mentioning
that the EEJ, though mainly tangential, also provides a notable radial current den-
sity, which is known as the radial contribution of the meridional current system of
the EEJ. The PEJ is mainly due to an increased conductivity and large horizontal
electric field contributions in the polar ionosphere. Currents flowing along the geo-
magnetic field lines—the field aligned currents—are caused by magnetospheric and
ionospheric coupling or imbalances of Sq-current systems (see, e.g., [29] and the refer-
ences therein). In the polar regions field aligned currents flow onto or away from the
earth’s body, thus contributing large radial current densities confined to these areas.
The radial currents and the resulting magnetic effects, as well as the correspond-
ing modeling approaches, are increasingly the focus of research (see, for example, in
chronological order, [30], [34], [9], [23], [29], [11], [4], [27], [31], and [35]). The numer-
ical examples presented in this article also deal with the determination of such radial
ionospheric currents from geomagnetic vectorial satellite data.

Due to the electric currents, the magnetic field measured by satellites in the iono-
sphere is no longer a gradient-field. In fact, it now contains magnetic contributions
from current densities on the satellite’s track. But this means that new vectorial
methods, not based on the existence of a scalar potential, must be derived in close
orientation on a (quasi-static) formulation of Maxwell’s equations. The authors of
[1], [2], [18], [34] suggest the resolution of the magnetic field by means of the Mie
representation as an adequate replacement of the Gauss approach. The Mie repre-
sentation, i.e., splitting the magnetic field into poloidal and toroidal parts, has the
advantage that it can equally be applied in regions of vanishing as well as nonvanish-
ing electric current densities. The poloidal fields are due to toroidal current densities
below and above the satellite’s track, whereas the toroidal fields are created by the
radial currents which are crossing the satellite’s orbit. It is this characteristic that
makes the Mie approach a powerful tool for dealing with geomagnetic source prob-
lems, i.e., the problems of calculating magnetic effects due to given electric currents
(direct source problem) and, conversely, determining those current distributions that
produce a predefined magnetic field (inverse source problem).

There remains the question of how to computationally obtain, in terms of suit-
able trial functions, the Mie representation from a given set of vectorial data. Most
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of the considerations in [1], [2] and all the results in [11], [25], [29] are based on a
spherical harmonic parametrization; i.e., the starting points of the considerations are
expansions of the poloidal and toroidal scalars in terms of spherical harmonics. On
the one hand, this approach is advantageous since it admits the possibility of incor-
porating radial dependencies of magnetic fields and electric currents in a natural way.
On the other hand, the global support of the spherical harmonics limits the practica-
bility of this technique since it cannot cope with electric currents (and corresponding
magnetic effects) that vary rapidly with latitude or longitude or that are confined to
certain regions. In fact, Backus [1] states that it might be advantageous to find a
field parametrization in terms of functions that take efficient account of the specific
concentration of the current densities in space. The uncertainty principle (see the
scalar theory by Freeden and Windheuser [17] and their generalization to the vector
case by Beth [5]) provides an adequate tool for the classification of (spherical restric-
tions of) poloidal and toroidal vector fields by determining a trade-off between two
“spreads,” one for the position (space) and the other for the momentum (frequency).
The main statement is that sharp localizations in space and in frequency are mu-
tually exclusive. The varieties of space/frequency localization can be illustrated by
considering different poloidal and toroidal trial fields on the sphere as suitable for
constructive approximation. Vector (spherical) harmonics show an ideal frequency
localization but no space localization. The spectrum of (band-limited and non–band-
limited) kernel functions known from harmonic and vectorial spline theory (cf. [12],
[33], [14], [15]) shows all intermediate cases of space/frequency localization. But in
view of the amount of space/frequency localization, it is also worth distinguishing
band-limited from non–band-limited kernels. As a matter of fact, it turns out that
non–band-limited kernels show a much stronger space localization than their com-
parable band-limited counterparts. Roughly speaking, this is due to the fact that
band-limited kernels can be represented as finite sums of polynomials and therefore—
though strongly smoothed compared to polynomial functions—tend to oscillate. In
contrast, non–band-limited kernels cannot be displayed as finite sums of polynomi-
als and hence yield a stronger space localization. Finally, the Dirac kernels show
ideal space localization but no frequency localization. Thus they provide the final
stage in the spatial resolution of the magnetic field by trial functions. In conclusion,
vector harmonics and Dirac kernels are “extreme trial functions” for purposes of geo-
mathematical modeling. These facts help us to find a suitable characterization and
categorization of the trial functions for modeling and approximation: Fourier meth-
ods (in terms of scalar/vector spherical harmonics, for example) are the canonical
starting point for obtaining an approximation of low frequency contributions (global
modeling), while band-limited kernel functions can be used for the intermediate cases
between long and short wavelengths (global to regional modeling). Due to their ex-
treme space localization, non–band-limited kernels can be utilized to deal with short
wavelength phenomena (local modeling). Most data show correlation in space as well
as in frequency, and the kernel functions with their simultaneous space and frequency
localization allow for the efficient detection and approximation of essential features
in the data by using only a fraction of the original information (decorrelation). Us-
ing kernels at different scales (multiscale modeling), the corresponding approximation
techniques can be constructed so as to be suitable for the particular data situation.

In this article we are concerned with wavelet techniques for the parametrization of
the Mie representation, i.e., methods based on certain classes of kernel functions, the
scaling functions and wavelets. Suitably constructed wavelets admit a basis property
in certain function spaces, the elements of which—the data functions—admit a series
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representation in terms of a structured sequence of kernels at different positions and at
different scales (multiscale approximation). It is thus possible to break up complicated
functions like the geomagnetic field, electric current densities, or geopotentials into
different pieces and to study these pieces separately. Consequently, the efficiency of
wavelets lies in the fact that only a few wavelet coefficients are needed in areas where
the data are smooth, and in regions where the data exhibit more complicated features,
higher resolution approximations can be derived by “zooming-in” with more and more
wavelets of higher scales and consequential stronger space localization.

The outline of the paper is as follows. In section 2 the fundamentals, such as
necessary notation and representation theorems for vector fields (the Helmholtz de-
composition theorem for spherical and the Mie representation theorem for solenoidal
vector fields) are presented. In section 3 we recapitulate how the Mie representation
can be applied in satellite magnetometry in order to interpret different source terms
and their geomagnetic effects. In section 4 scalar and vectorial scaling functions and
wavelets for the analysis of square-integrable scalar and vectorial spherical functions
are introduced. In section 5 the Helmholtz decomposition theorem is utilized to com-
bine the wavelet techniques and the Mie representation of the geomagnetic field into
what is called the wavelet Mie representation. The resulting method of data analysis
is illustrated in section 6, where the wavelet Mie representation is used to calculate
radial ionospheric current distributions from the toroidal geomagnetic contributions
extracted from MAGSAT and CHAMP vectorial data sets.

2. Fundamentals.

2.1. Notation and preliminaries. In order to avoid notational complications
we will, unless stated otherwise, use the following scheme: Scalar fields will be denoted
by capital roman letters (F,G, etc.), while vector fields are symbolized by lower-case
roman letters (f, g, etc.).

A sphere of radius R centered in the origin, i.e., the set
{
x ∈ R3 : |x| = R

}
, will

be denoted by ΩR. In particular, Ω(= Ω1) is the unit sphere in R3. A spherical
shell with inner radius R1 and outer radius R2, R2 > R1 > 0, is given by Ω(R1,R2) ={
x ∈ R3 : R1 ≤ |x| ≤ R2

}
. Any element x ∈ R3 with |x| �= 0 may be written in

the form x = rξ, where r = |x| and ξ = x
r ∈ Ω, ξ = (ξ1, ξ2, ξ3)

T , is the uniquely
determined directional unit vector of x. Using this separation, the gradient ∇ in R3

reads

∇x = ξ
∂

∂r
+

1

r
∇∗

ξ ,

where the horizontal part ∇∗ is the surface gradient on the unit sphere Ω. Moreover,
the Laplace operator Δ = ∇ · ∇ in R3 has the representation

Δx =

(
∂

∂r

)2

+
2

r

∂

∂r
+

1

r2
Δ∗

ξ ,

where Δ∗ is the Beltrami operator on the unit sphere Ω. The surface curl gradient
L∗ on Ω can be calculated from ∇∗ by the relation L∗

ξ = ξ ∧ ∇∗
ξ , ξ ∈ Ω (where “∧”

denotes the usual cross product).
A function is said to be of class C(k) (ΩR), 0 ≤ k < ∞, if it possesses k continuous

derivatives on ΩR. The set c(k)(ΩR), 0 ≤ k < ∞, denotes the space of k-times
continuously differentiable vector fields on ΩR. The Hilbert spaces of measurable
square-integrable scalar and vector fields on the sphere ΩR are denoted by L2(ΩR)
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and l2(ΩR), respectively. Let Hn : R3 → R be a homogeneous harmonic polynomial
of degree n; then the restriction Yn = Hn|Ω is called a (scalar) spherical harmonic of
degree n. The space of all spherical harmonics of degree n is of dimension 2n + 1.
Spherical harmonics of different degrees are orthogonal in the sense of the L2(Ω)-inner
product

(Yn, Ym)L2(Ω) =

∫
Ω

Yn(ξ)Ym(ξ)dω(ξ) = 0, n �= m.

Throughout the remainder of this work, we denote by {Yn,k}, n = 0, 1, . . . , k =
1, . . . , 2n+1, a complete orthonormal system in the Hilbert space L2(Ω). It is obvious
that {Y R1

n,k}, n = 0, 1, . . . , k = 1, . . . , 2n+1, with Y R1

n,k = 1
R1

Yn,k denotes an L2(ΩR1)-

orthonormal system. Let F ∈ C(0i)(Ω); then the operators o
(i)
ξ : C(0i)(Ω) → c(Ω) are

given by

o
(1)
ξ F (ξ) = ξF (ξ), ξ ∈ Ω,

o
(2)
ξ F (ξ) = ∇∗

ξF (ξ), ξ ∈ Ω,

o
(3)
ξ F (ξ) = L∗

ξF (ξ), ξ ∈ Ω,

where 0i is an abbreviation given by 01 = 0 and 0i = 1 for i ∈ {2, 3}. Clearly, o
(1)
ξ F (ξ)

is a radial field. From the definitions of the operators ∇∗ and L∗ it is easy to see

that o
(2)
ξ F (ξ) and o

(3)
ξ F (ξ) are purely tangential. Furthermore, o

(2)
ξ F (ξ) is curl-free,

whereas o
(3)
ξ F (ξ) is divergence-free, which is clear from ∇∗

ξF (ξ) being a gradient- and
L∗
ξF (ξ) being a curl-field. Additionally, it is not difficult to see that

o
(i)
ξ F (ξ) · o(j)

ξ F (ξ) = 0 for all i �= j, i, j ∈ {1, 2, 3} .

Using a complete system of scalar spherical harmonics, we are able to introduce a

complete orthonormal set {y(i)
n,k} of vector spherical harmonics in l2(Ω) (e.g., see [15]):

y
(i)
n,k = (μ(i)

n )−1/2o(i)Yn,k,(2.1)

i = 1, 2, 3, n ∈ N0i
, k = 1, . . . , 2n + 1. The normalization factor is chosen to be

μ(i)
n =

{
1 if i = 1,
n(n + 1) if i = 2, 3.

2.2. Helmholtz decomposition and Mie representation. The wavelet Mie
representations are based on two main results for the decomposition of vector fields:
the Helmholtz decomposition of spherical vector fields and the Mie representation of
solenoidal vector fields. We start with the Helmholtz decomposition theorem (cf. [15]),
as follows.

Theorem 2.1. Let f ∈ c(1)(Ω). Then there exist uniquely determined scalar
functions F1 ∈ C(1)(Ω) and F2, F3 ∈ C(2)(Ω) satisfying∫

Ω

Fi(ξ)dω(ξ) = 0, i = 2, 3,

such that

f =

3∑
i=1

o(i)Fi.
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It should be mentioned that F1 is just the radial projection of f , while representa-
tions for the Helmholtz scalars F2 and F3 are available in terms of the Green function
with respect to the Beltrami operator (cf. [15]). Note that the above theorem is also
valid for vector fields on ΩR, since they are isomorphic to those on Ω.

In addition to the Helmholtz representation presented above, we will make use
of the so-called Mie representation for solenoidal vector fields. A vector field f on an
open subset U ⊂ R3 is called solenoidal if and only if the integral

∫
S
f(x) · ν(x)dω(x)

vanishes for every closed surface S lying entirely in U (ν denotes the outward normal
of S). Every such solenoidal vector field admits a representation in terms of two
uniquely defined scalar functions by means of the Mie representation theorem (e.g.,
[1, 2, 18, 32]), which follows.

Theorem 2.2. Let 0 < R1 < R2, and let f : Ω(R1,R2) → R3 be a solenoidal
vector field in the spherical shell Ω(R1,R2). Then there exist unique scalar functions
Pf , Qf : Ω(R1,R2) → R such that

(1)
∫
Ωr

Pf (x)dωr(x) =
∫
Ωr

Qf (x)dωr(x) = 0,

(2) f = ∇∧ LPf + LQf

for all r ∈ (R1, R2) with the operator L given by Lx = x ∧∇x.
Vector fields of the form ∇ ∧ LPf are called poloidal, while vector fields of the

form LQf are denoted toroidal. For the sake of completeness we present the following
theorem (cf. [2]).

Theorem 2.3. Let 0 < R1 < R2, and let f : Ω(R1,R2) → R3 be a solenoidal
vector field in the spherical shell Ω(R1,R2). Then there exist a unique poloidal field p
as well as a unique toroidal field t such that

f = p + t

in Ω(R1,R2).
For our further considerations it is important that, for each x = rξ with R1 <

r < R2 and ξ ∈ Ω, the Mie representation f = ∇∧ LPf + LQf can be rewritten as

f(rξ) = ξ
Δ∗

ξPf (rξ)

r
−∇∗

ξ

∂rrPf (rξ)

r
+ L∗

ξQf (rξ)(2.2)

(cf., e.g., [1, 2, 25, 29]), where we have used the abbreviation ∂r = ∂/∂r. (Actually,
with regard to the second term, it is mathematically correct to write(

∂

∂r̃
r̃Pf (r̃ξ)

)∣∣∣∣
r̃=r

.

We avoid this awkward notation, however, and stick to the easy nomenclature.) Note
that (2.2) is the Helmholtz decomposition of the Mie representation of f and links
the previously defined vector spherical harmonics to the Mie representation of vector
fields.

Finally, we mention the following last result, which is concerned with the curl of
a Mie representation.

Corollary 2.4. Let f, g : Ω(R1,R2) → R3 be two solenoidal vector fields with
representations

f = ∇∧ LPf + LQf ,

g = ∇∧ LPg + LQg,
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and which are connected via ∇∧f = λg, λ ∈ R\{0}. Then the Mie scalars are related
via

Pg =
1

λ
Qf ,

Qg = − 1

λ
ΔPf .

This shows us that the curl of a poloidal field is a toroidal field, and vice versa.

3. The (geo)magnetic field in Mie representation. If we assume the typical
length- and time-scales of the magnetic field b and the electric current densities j to
be such that retarding effects (and displacement currents) are negligible, then we
can consider the quasi-static approximation of Maxwell’s equations, the pre-Maxwell
equations, to be valid:

∇ · b = 0,

∇∧ b = μ0j,

where μ0 is the vacuum permeability. Since the magnetic field is divergence-free
everywhere, it can be split up into a poloidal and a toroidal part (see Theorem 2.2):

b = bpol + btor = ∇∧ LPb + LQb.(3.1)

The quasi-static approximation being true is equivalent to the current densities be-
ing divergence-free everywhere. Consequently the electric currents also admit a Mie
representation:

j = jpol + jtor = ∇∧ LPj + LQj .(3.2)

According to Corollary 2.4 the Mie scalars of the magnetic field and the electric
currents are related via

Pj =
1

μ0
Qb,(3.3)

Qj = − 1

μ0
ΔPb.(3.4)

Using (2.2), we can, for each x = rξ with r �= 0 and ξ ∈ Ω, rewrite (3.1) and (3.2) as

b = ξ
Δ∗

ξPb

r
−∇∗

ξ

∂rrPb

r
+ L∗

ξQb(3.5)

and

j = ξ
Δ∗

ξPj

r
−∇∗

ξ

∂rrPj

r
+ L∗

ξQj .(3.6)

The first two terms in (3.5) and (3.6) can be interpreted as the restriction of the
poloidal magnetic field bpol and the poloidal currents jpol, respectively, to the sphere
Ωr. The last terms represent the toroidal field btor and currents jtor on Ωr. These
equations will serve as a starting point for the wavelet Mie representations in section 5.

Following Backus [1], Engels and Olsen [11], and Maus [25], we assume either
the geomagnetic field b or the electric current distributions j to be sampled within
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a spherical shell Ω(R1,R2), 0 < R1 < R2 < ∞. This assumption takes into account
elliptical satellite orbits as well as the decrease in altitude with the lifetime of the
satellite. The geomagnetic field within the shell Ω(R1,R2) consists of four different
parts (cf. [29]), i.e.,

b = bintpol + bextpol + bshpol + btor.

bintpol denotes the poloidal magnetic field due to internal toroidal currents in the region

with r < R1. bextpol is the poloidal part caused by external toroidal current densities

in the region with r > R2, and bshpol is the poloidal magnetic field due to the toroidal
electric currents within Ω(R1,R2). Finally, btor is the toroidal part of b generated by
poloidal currents in Ω(R1,R2). If there are no currents in the shell Ω(R1,R2), then

bshpol = btor = 0, and b can be represented as the gradient-field of a scalar harmonic
potential or by means of the Mie representation equivalently. If only the toroidal
currents vanish within the shell, then bshpol = 0, and the magnetic field within the shell
can be represented by

b = bintpol + bextpol + btor.(3.7)

The situation changes if the toroidal currents within the shell Ω(R1,R2) do not
vanish. Let us suppose that the radii of the shell satisfy

R2 −R1 
 R2 + R1

2
,

i.e., the thickness of the shell is small compared to the mean radius. Such a shell
is called a thin shell. As pointed out by Backus [1] and Olsen [29], even for non-
vanishing (toroidal) current densities in the shell, the magnetic field within a thin
shell can (approximately) be represented by (3.7), i.e., the poloidal field bshpol tends
to zero in thin shells, while the toroidal part btor remains finite. Actually, for thin
shells, it holds that bshpol → 0 as (R2 − R1)/H → 0, where H is a reference length
characterizing the vertical scale of the current density (e.g., [1], [29]). In more detail,
if in a thin shell,

R2 −R1 
 H � R2 + R1

2
,

i.e., the current density changes significantly on vertical scales that can be compared
to the mean radius and that are much larger than the thickness of the shell, then the
thin shell approximation (3.7) is surely valid. If, in a thin shell,

R2 −R1 � H 
 R2 + R1

2
,

i.e., the currents change significantly on vertical length scales that are small compared
to the mean radius but that can be compared to the thickness of the shell, then the
thin shell approximation can fail as well. For more details the interested reader is
directed to [1]. In what follows we assume the thin shell approximation to be valid
(which is a reasonable assumption for the examples presented in section 6; see, e.g.,
[29] and [25]).

At this point, there remains the question of how to numerically obtain—in terms
of suitable trial functions—the Mie representation of a given set of vectorial data.
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As we have already mentioned, the global support of the spherical harmonics limits
the practicability of spherical harmonic parametrizations since most of the relevant
ionospheric currents vary rapidly with latitude and longitude and/or are confined to
certain regions. Consequently, it seems reasonable to find a field parametrization
in terms of functions that take efficient account of the specific concentration of the
current densities in space. In [4] we have already presented first methods to deal with
the Mie representation in terms of space-localizing trial functions, so-called spherical
vectorial wavelets, which are able to reflect various levels of space localization (see
also [3]). The techniques developed in section 5 are generalizations and enhancements
of this approach. For a complete and comprehensive description, the interested reader
is directed to the thesis [24].

4. Scaling functions and wavelets in L2(Ω) and l2(Ω). As far as this article
is concerned, it suffices to introduce scaling functions and wavelets for the spaces of
square-integrable scalar and vector fields on the unit sphere, i.e., L2(Ω) and l2(Ω).
This theory is well known since, starting from classical wavelet theory (see, e.g., [7]
and [6] for an overview), the concept of multiresolution has been adapted to spherical
geometries for scalar fields by, e.g., Freeden and Windheuser [16], [17] and, for vector
fields, by Bayer, Beth, and Freeden [3] and Freeden, Gervens, and Schreiner [15],
for example. We therefore just repeat some results which are useful for our further
considerations as follows.

Definition 4.1. A real sequence {(ΦJ)∧(n)}, J ∈ Z, n ∈ N0, is called a genera-
tor (or symbol) of an L2(Ω)-scaling function if it satisfies

(i)
∑∞

n=0 ((ΦJ)∧(n))
2
< ∞,

(ii)
∑∞

n=0 ((ΦJ)∧(n)Yn,k(ξ))
2
< ∞ for all ξ ∈ Ω,

(iii) limJ→∞ ((ΦJ)∧(n))
2

= 1, n ∈ N,

(iv) ((ΦJ)∧(n))
2 ≥ ((ΦJ−1)

∧(n))
2
,

(v) limJ→−∞ ((ΦJ)∧(n))
2

= 0,

(vi) ((ΦJ)∧(0))
2

= 1, J ∈ Z.
The corresponding family {ΦJ} of kernels given by

ΦJ(ξ, η) =

∞∑
n=0

2n+1∑
k=1

(ΦJ)∧(n)Yn,k(ξ)Yn,k(η), ξ, η ∈ Ω,

is called L2(Ω)-scaling function.
Wavelets come into play via the refinement equation, as in the following.
Definition 4.2. The real sequence {(ΨJ)∧(n)}, J ∈ Z, n ∈ N0, defined via the

refinement equation

(ΨJ)∧(n) =
(
((ΦJ+1)

∧(n))
2 − ((ΦJ)∧(n))

2
) 1

2

,

is called the generator (or symbol) of the L2(Ω)-wavelet {ΨJ} given as

ΨJ(ξ, η) =

∞∑
n=0

2n+1∑
k=1

(ΨJ)∧(n)Yn,k(ξ)Yn,k(η), ξ, η ∈ Ω.

The concept of scaling functions and wavelets can also be carried over to the
vectorial case as in the following.
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Definition 4.3. Let, for i ∈ {1, 2, 3}, the real sequence {(ϕ(i)
J )∧(n)}, J ∈ Z,

n ∈ N0i
, be generators of L2(Ω)-scaling functions; then the vectorial kernels

ϕ
(i)
J (ξ, η) =

∞∑
n=0i

2n+1∑
k=1

(ϕ
(i)
J )∧(n)Yn,k(ξ)y

(i)
n,k(η)(4.1)

are called l2(Ω)-scaling functions of type i. The l2(Ω)-wavelets of type i are given by

ψ
(i)
J (ξ, η) =

∞∑
n=0i

2n+1∑
k=1

(ψ
(i)
J )∧(n)Yn,k(ξ)y

(i)
n,k(η),(4.2)

with generators {(ψ(i)
J )∧(n)} satisfying the refinement equation

(ψ
(i)
J )∧(n) =

((
(ϕ

(i)
J+1)

∧(n)
)2

−
(
(ϕ

(i)
J )∧(n)

)2
) 1

2

.

With these definitions at hand, we can find approximations of L2(Ω) and l2(Ω)
functions in terms of the respective scaling functions and wavelets (e.g., [16]).

Theorem 4.4. Let the families {ΦJ}, {ΨJ} be L2-scaling functions and wavelets.
For any F ∈ L2(Ω) it holds that

F = ΦJ′ ∗ ΦJ′ ∗ F +

∞∑
J=J′

ΨJ ∗ ΨJ ∗ F(4.3)

= Φ0 ∗ Φ0 ∗ F +

∞∑
J=0

ΨJ ∗ ΨJ ∗ F,(4.4)

where the convolution operator “∗” for scalar kernels and functions is defined by

K ∗ F =

∫
Ω

K(·, η)F (η) dω(η).

In the case of vector fields f ∈ l2(Ω) it is possible to show the following (cf. [3]).

Theorem 4.5. Let the families {ϕ(i)
J }, {ψ(i)

J } be vectorial scaling functions and
wavelets. Then, for f ∈ l2(Ω),

f =
3∑

i=1

ϕ
(i)
J′ � ϕ

(i)
J′ ∗ f +

∞∑
J=J′

3∑
i=1

ψ
(i)
J � ψ

(i)
J ∗ f(4.5)

=

3∑
i=1

ϕ
(i)
0 � ϕ

(i)
0 ∗ f +

∞∑
J=0

3∑
i=1

ψ
(i)
J � ψ

(i)
J ∗ f,(4.6)

where the convolution “∗” of a vectorial kernel against a vector field is given as

k ∗ f =

∫
Ω

k(·, η) · f(η) dω(η),

and the convolution “�” of a vectorial kernel against a scalar field is

k � F =

∫
Ω

k(η, ·)F (η) dω(η).
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The representations of square-integrable scalar and vectorial functions in terms
of scaling functions and wavelets build one of the fundamentals for our considera-
tions in the next section. It is noteworthy that the vectorial wavelets are defined in
correspondence to the vector spherical harmonics in section 2.1 and can therefore be
linked to the Mie representation via (2.2), (3.5), and (3.6), which is the task of the
next section.

It should be remarked that, in the case of F being one of the Mie-scalars, the first
term in (4.4) vanishes, since the Mie-scalars have vanishing zeroth order moment. A
similar argument holds true for the case of f being the magnetic field or the electric
current density; i.e., since both are of zero divergence, the first term in (4.6) vanishes.

Before we go on, we mention some properties of the above kernel functions (scaling
functions and wavelets) which are important from a numerical point of view. Let K
and k(i) be either scalar scaling functions or wavelets, or vectorial scaling functions
or wavelets, respectively. Using the addition theorem for spherical harmonics, each
scalar kernel K admits the following representation:

K(ξ, η) =

∞∑
n=0

2n+1∑
k=1

(K)∧(n)Yn,k(ξ)Yn,k(η)

=

∞∑
n=0

(K)∧(n)
2n + 1

4π
Pn(ξ · η),

where Pn is the Legendre polynomial of degree n. For the evaluation of such series of
Legendre polynomials there exist fast and stable recursive algorithms (e.g., [8]).

In the case of vectorial kernels, the situation is only slightly more complicated.
From the definition of the vector spherical harmonics and the vectorial kernel functions
(see (2.1), (4.1), and (4.2)) we see that

k(i)(ξ, η) =

∞∑
n=0i

2n+1∑
k=1

(k(i))∧(n)Yn,k(η) (μ(i)
n )−

1
2 o

(i)
ξ Yn,k(ξ)(4.7)

= o
(i)
ξ

∞∑
n=0i

2n+1∑
k=1

(k(i))∧(n)Yn,k(η) (μ(i)
n )−

1
2 Yn,k(ξ)(4.8)

= o
(i)
ξ

∞∑
n=0i

2n + 1

4π
(k(i))∧(n) (μ(i)

n )−
1
2 Pn(ξ · η).(4.9)

For η ∈ Ω fixed, the Legendre polynomials are isotropic functions on the unit sphere
and the o(i) can be applied. This results in

o
(1)
ξ Pn(ξ · η) = ξPn(ξ · η),(4.10)

o
(2)
ξ Pn(ξ · η) = (η − (ξ · η) ξ) P ′

n(ξ · η),(4.11)

o
(3)
ξ Pn(ξ · η) = (ξ ∧ η)P ′

n(ξ · η) .(4.12)

Using this, the kernels in (4.9) admit the representation

k(1)(ξ, η) = ξ

∞∑
n=0

2n + 1

4π
(k(i))∧(n) (μ(i)

n )−
1
2 Pn(ξ · η),(4.13)
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Fig. 1. Left: Generators of CuP wavelets of scales 3 and 4. Right: Cross section through the
corresponding CuP wavelets of scales 3 and 4. Note that an increasing scale leads to a decreasing
localization in the Fourier domain (generator) but to an increasing localization in the space domain.

k(2)(ξ, η) = (η − (ξ · η) ξ)
∞∑

n=1

2n + 1

4π
(k(i))∧(n) (μ(i)

n )−
1
2 P ′

n(ξ · η),(4.14)

k(3)(ξ, η) = (ξ ∧ η)

∞∑
n=1

2n + 1

4π
(k(i))∧(n) (μ(i)

n )−
1
2 P ′

n(ξ · η)(4.15)

such that the fast and stable one-dimensional recursive algorithms can also be used
for calculating the vectorial kernels. It should be noted that, if the kernel functions
are non–band-limited (nondegenerate), the sums in the above equations need to be
truncated if no analytic representations for the kernels are known.

For later use we present, as a certain choice of possible kernels, the vectorial cubic
polynomial (CuP) wavelets, which can be derived by using a generator of the form

ϕ
(i)
0 (x) =

{
(1 − x)2(1 + 2x), x ∈ [0, 1),

0, x ∈ [1,∞).

The left-hand side of Figure 1 shows generators of CuP wavelets of scales 3 and 4,
while the right-hand side presents cross sections of the corresponding CuP wavelets. It
is obvious that—with increasing scale—the localization in the Fourier domain (genera-
tors) decreases, while the localization in the space domain (wavelets) increases. Figure
2 provides illustrations of tangential CuP vectorial wavelets in the longitude-latitude
plane. Note again that the significant support of the wavelets decreases with increas-
ing scale, a feature typical for wavelets. It is this property that, via the wavelet Mie
representation, allows for the analysis and modeling of spatially confined structures
in the geomagnetic field and the corresponding current distributions.

5. Wavelet Mie parametrizations. In what follows we restrict ourselves to
the wavelet parametrization of toroidal magnetic fields and the corresponding poloidal
electric current densities in the spherical shell Ω(R1,R2). This case is sufficient for the
applications presented in section 6. For details on the wavelet parametrization of
poloidal magnetic fields, the reader may consult our treatise in [24]. This approach,
however, requires the introduction of inner and outer harmonic wavelets (e.g., [13]),
which is beyond the scope of this article.

The starting point for our considerations is a separation of variables for the
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Fig. 2. CuP wavelets in the longitude-latitude plane. Arrows indicate direction and shading
indicates magnitude. Top: Curl-free (i = 2, left) and divergence-free (i = 3, right) CuP wavelets at
scale j = 2. Bottom: Curl-free (i = 2, left) and divergence-free (i = 3, right) CuP wavelets at scale
j = 3. Note how the increasing scale leads to a sharper localization in the space domain.

toroidal field scalar Qb; i.e., we assume that

Qb(rξ) = Qb,1(r)Qb,2(ξ) in Ω(R1,R2).(5.1)

Relation (3.3) suggests proceeding likewise in the case of the scalar Pj for the poloidal
currents, and hence we suppose that

Pj(rξ) = Pj,1(r)Pj,2(ξ)

=
1

μ0
Qb,1(r)Qb,2(ξ) in Ω(R1,R2).

The results of section 4 yield that the angular parts Qb,2 and Pj,2 can be expanded
in terms of scalar spherical L2(Ω)-wavelets {ΨJ}; i.e.,

Qb,2 =

∞∑
J=0

ΨJ ∗ ΨJ ∗Qb,2,(5.2)

Pj,2 =

∞∑
J=0

ΨJ ∗ ΨJ ∗ Pj,2.(5.3)

Combining this with (3.1)–(3.2) and (3.5)–(3.6), we can come up with the following
representations for the toroidal magnetic field and the corresponding poloidal current
density.
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Theorem 5.1. Let, for J ∈ Z, {ΨJ} be an L2(Ω)-wavelet. Under the assump-
tions above, the toroidal magnetic field in Ω(R1,R2) can be represented via

btor(r·) =Qb,1(r)

(
ϕ̄

(3)
J′ � ΦJ′ ∗Qb,2 +

∞∑
J=J′

ψ̄
(3)
J � ΨJ ∗Qb,2

)
(5.4)

=Qb,1(r)

(
ϕ̄

(3)
0 � Φ0 ∗Qb,2 +

∞∑
J=0

ψ̄
(3)
J � ΨJ ∗Qb,2

)
(5.5)

=Qb,1(r)

∞∑
J=0

ψ̄
(3)
J � ΨJ ∗Qb,2,(5.6)

where the vectorial kernels ϕ̄
(3)
J and ψ̄

(3)
J are given via ϕ̄

(3)
J (ξ, η) = L∗

ξΦJ(ξ, η) and

ψ̄
(3)
J (ξ, η) = L∗

ξΨJ(ξ, η). The corresponding poloidal current density in Ω(R1,R2) is
given by

μ0jpol(r·) =
1

r
Qb,1(r)

(
ϕ̃

(1)
J′ � ΦJ′ ∗Qb,2 +

∞∑
J=J′

ψ̃
(1)
J � ΨJ ∗Qb,2

)
(5.7)

+

(
∂r +

1

r

)
Qb,1(r)

(
ϕ̂

(2)
J′ � ΦJ′ ∗Qb,2 +

∞∑
J=J′

ψ̂
(2)
J � ΨJ ∗Qb,2

)
(5.8)

=
1

r
Qb,1(r)

(
ϕ̃

(1)
0 � Φ0 ∗Qb,2 +

∞∑
J=0

ψ̃
(1)
J � ΨJ ∗Qb,2

)
(5.9)

+

(
∂r +

1

r

)
Qb,1(r)

(
ϕ̂

(2)
0 � Φ0 ∗Qb,2 +

∞∑
J=0

ψ̂
(2)
J � ΨJ ∗Qb,2

)
(5.10)

=
1

r
Qb,1(r)

∞∑
J=0

ψ̃
(1)
J � ΨJ ∗Qb,2(5.11)

+

(
∂rQb,1(r) +

1

r
Qb,1(r)

) ∞∑
J=0

ψ̂
(2)
J � ΨJ ∗Qb,2,(5.12)

where the kernel functions ϕ̃
(1)
J and ϕ̂

(2)
J as well as ψ̃

(1)
J and ψ̂

(2)
J are defined to

be ϕ̃
(1)
J (ξ, η) = ξΔ∗

ξΦJ(ξ, η) and ϕ̂
(2)
J (ξ, η) = −∇∗

ξΦJ(ξ, η), as well as ψ̃
(1)
J (ξ, η) =

ξΔ∗
ξΨJ(ξ, η) and ψ̂

(2)
J (ξ, η) = −∇∗

ξΨJ(ξ, η).
Proof. Equation (5.4) follows from (3.1), (3.5), and (5.2). Theorems 4.4 and

4.5 lead to (5.5). The fact that the magnetic field is of zero divergence everywhere
implies—via the Gauss theorem—that the magnetic field has vanishing zeroth order
moment (i.e., the magnetic field is solenoidal), which means that

Qb,1(r)
(
ϕ̄

(3)
0 � Φ0 ∗Qb,2

)
= 0.

Equations (5.7) and (5.8) follow from (3.2), (3.6), and (5.3) in combination with
(3.4). Theorems 4.4 and 4.5 then imply (5.9) and (5.10). Since in the pre-Maxwell
approximation the current density is solenoidal, too, it follows that

1

r
Qb,1(r)

(
ϕ̃

(1)
0 � Φ0 ∗Qb,2

)
= 0
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and (
∂r +

1

r

)
Qb,1(r)

(
ϕ̂

(2)
0 � Φ0 ∗Qb,2

)
= 0.

Note that all of the kernel functions that appear in Theorem 5.1 can be calculated
using the rules and results of (4.10)–(4.15), as well as the fact that scalar spherical
harmonics of degree n are eigenfunctions of the Beltrami operator with respect to
eigenvalues −n(n + 1).

Theorem 5.1 presents the wavelet Mie representation of the toroidal magnetic
field and the corresponding poloidal electric currents in the spherical shell Ω(R1,R2).
Due to the space localization of the ansatz functions, this representation yields the
possibility of using or deriving different models of Qb in different regions, depending
on the underlying physical effects and, of course, the data situation.

The ansatz (5.1) is quite simple and might fail if the radial dependency is very
complex (see also the considerations in [25]). Nevertheless, assumption (5.1) is rea-
sonable as long as the data situation is such that the radial behavior of the field is
difficult to extract. This is arguably the case when using data from single satellite
missions. (See also the comments in [1], [29], and [25] concerning time-variations and
single satellite missions.) Nevertheless, if the data situation allows for determina-
tion of higher order radial dependencies (e.g., if data from multisatellite missions are
used, or if measurements from satellites are combined with terrestrial observations),
we might expand our ansatz by adding further toroidal scalars with different radial
behavior (cf. [24]).

The product ansatz for the toroidal field scalar Qb is reflected in the corresponding
toroidal magnetic field as well as in the representation of the corresponding poloidal
current density. As regards the poloidal current, both its radial and its tangential parts
admit a product representation, too. In more detail, let jrad and j∇∗ be the radial
and the tangential parts, respectively, of jpol. Then (5.11) and (5.12) of Theorem 5.1
show that jrad and j∇∗ can be represented as

jrad(rξ) = Jrad,1(r)jrad,2(ξ)

and

j∇∗(rξ) = J∇∗,1(r)j∇∗,2(ξ),

where the scalar functions Jrad,1(r) and J∇∗,1(r) are given via

μ0Jrad,1(r) =
1

r
Qb,1(r),

μ0J∇∗,1(r) =

(
∂rQb,1(r) +

1

r
Qb,1(r)

)

and the vectorial parts are

μ0jrad,2 =

∞∑
J=0

ψ̃
(1)
J � ΨJ ∗Qb,2,

μ0j∇∗,2 =

∞∑
J=0

ψ̂
(2)
J � ΨJ ∗Qb,2.
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Using the ansatz (5.1) together with (3.6) immediately leads us to the same results
for Jrad,1 and J∇∗,1 but, with regard to jrad,2 and j∇∗,2, we end up with

μ0jrad,2(ξ) = ξΔ∗
ξQb,2(ξ),

μ0j∇∗,2(ξ) = −∇∗
ξQb,2(ξ),

which is independent from any parametrization of Qb. Nevertheless, we know from
section 4 that we can expand the radial vector field μ0jrad,2 and the tangential vector
field μ0j∇∗,2 using vectorial l2(Ω)-wavelets {ψ(i)

J } of type i = 1 and i = 2, respectively.
Consequently we are led to the following alternative representation in terms of l2(Ω)-
wavelets.

Corollary 5.2. Let the families {ϕ(i)
J }, {ψ(i)

J }, i = 1, 2, be vectorial scaling
functions and wavelets. The radial part jrad and tangential part j∇∗ of the poloidal
current density can be represented via

jrad(r·) = ϕ
(1)
J′ �

(
ϕ

(1)
J′ ∗ jrad

)
(r) +

∞∑
J=J′

ψ
(1)
J �

(
ψ

(1)
J ∗ jrad

)
(r)(5.13)

= ϕ
(1)
0 �

(
ϕ

(1)
0 ∗ jrad

)
(r) +

∞∑
J=0

ψ
(1)
J �

(
ψ

(1)
J ∗ jrad

)
(r)(5.14)

=

∞∑
J=0

ψ
(1)
J �

(
ψ

(1)
J ∗ jrad

)
(r)(5.15)

=
1

r
Qb,1(r)

∞∑
J=0

ψ
(1)
J � ψ

(1)
J ∗ jrad,2(5.16)

=

∞∑
J=0

ψ
(1)
J �

(
ψ

(1)
J ∗ j

)
(r)(5.17)

and

j∇∗(r·) = ϕ
(2)
J′ �

(
ϕ

(2)
J′ ∗ jrad

)
(r) +

∞∑
J=J′

ψ
(2)
J �

(
ψ

(2)
J ∗ jrad

)
(r)(5.18)

= ϕ
(2)
0 �

(
ϕ

(2)
0 ∗ jrad

)
(r) +

∞∑
J=0

ψ
(2)
J �

(
ψ

(2)
J ∗ jrad

)
(r)(5.19)

=

∞∑
J=0

ψ
(2)
J �

(
ψ

(2)
J ∗ j∇∗

)
(r)(5.20)

=

(
∂r +

1

r

)
Qb,1(r)

∞∑
J=0

ψ
(2)
J � ψ

(2)
J ∗ j∇∗,2(5.21)

=

∞∑
J=0

ψ
(2)
J �

(
ψ

(2)
J ∗ j

)
(r).(5.22)

Note that (5.17) and (5.22) are true since only the poloidal current density
contains a radial or ∇∗-contribution (see (3.6)). In other words, on each Ωr with
R1 < r < R2, the radial current density can be derived from expanding the total cur-
rent density in terms of spherical vectorial wavelets of type i = 1, while the tangential
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part of the poloidal current density can be calculated via spherical vectorial wavelets
of type i = 2. Equations (5.15)–(5.22) can therefore be used to determine the toroidal
field scalar or, of course, the corresponding toroidal magnetic field.

A similar approach can be applied in order to determine the poloidal current
density jpol in Ω(R1,R2) from the corresponding toroidal field btor. Assuming the
product ansatz for Qb and applying (3.5), we see that the toroidal magnetic field
admits a product representation as well, i.e.,

btor(rξ) = Btor,1(r)btor,2(ξ),

where btor,2 = L∗Qb,2 can be expressed in terms of spherical vectorial l2(Ω)-wavelets

{ψ(3)
J } of type i = 3 as follows:

btor,2 =

∞∑
J=0

ψ
(3)
J � ψ

(3)
J ∗ btor,2.

From our previous results we know that the scalar Btor,1 is just given by

Btor,1(r) = Qb,1(r).

Since the toroidal magnetic field btor is the only part of b that contributes an L∗-
portion, it is clear that

btor(r·) =

∞∑
J=0

ψ
(3)
J �

(
ψ

(3)
J ∗ btor

)
(r)

=

∞∑
J=0

ψ
(3)
J �

(
ψ

(3)
J ∗ b

)
(r)

on any sphere Ωr with R1 < r < R2. Summarizing the above considerations, we are
led to the following claim.

Corollary 5.3. Let the families {ϕ(3)
J } and {ψ(3)

J } be vectorial scaling functions
and wavelets of type 3. The toroidal magnetic field btor can be represented via

btor(r·) = Qb,1(r)

(
ϕ

(3)
J′ � ϕ

(3)
J′ ∗ btor,2 +

∞∑
J=J′

ψ
(3)
J � ψ

(3)
J ∗ btor,2

)
(5.23)

= Qb,1(r)

(
ϕ

(3)
0 � ϕ

(3)
0 ∗ btor,2 +

∞∑
J=0

ψ
(3)
J � ψ

(3)
J ∗ btor,2

)
(5.24)

= Qb,1(r)

∞∑
J=0

ψ
(3)
J � ψ

(3)
J ∗ btor,2(5.25)

=

∞∑
J=0

ψ
(3)
J �

(
ψ

(3)
J ∗ b

)
(r)(5.26)

on any sphere Ωr with R1 < r < R2.
This yields one possible way of determining the poloidal field scalar (and conse-

quently the corresponding poloidal electric current density) from magnetic measure-
ments in Ω(R1,R2).

Assuming that the data are given only at constant altitude (or with negligible
radial dependencies), the previous approach can be easily applied to calculate radial
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current densities on a sphere Ωr, with R1 < r < R2, from measurements of the
magnetic field on that very sphere. We assume that the magnetic field b is sampled
on a dense grid on the sphere Ωr. We make use of the fact that, with a suitably
chosen maximum scale Jmax, we can approximate the toroidal part btor on Ωr via a
series expansion in terms of l2(Ω)-wavelets (see Corollary 5.3):

btor(rξ) �
(

Jmax∑
J=0

ψ
(3)
J �

(
ψ

(3)
J ∗ b

)
(r)

)
(ξ).

Using the fact that btor(r, ·) = L∗Qb, we immediately get an approximation for the
toroidal scalar, i.e.,

Qb(rξ) �
(

Jmax∑
J=0

Ψ̃J ∗
(
ψ

(3)
J ∗ b

)
(r)

)
(ξ),(5.27)

where the kernel Ψ̃J is given such that the relation ψ
(3)
J (η, ξ) = L∗

ξΨ̃J(η, ξ) holds true.
Using (5.27) together with (3.6), we arrive at an approximation of the radial current
density on Ωr corresponding to the toroidal magnetic field there:

μ0jrad(rξ) =
1

r
ξΔ∗

ξQb(rξ)

� 1

r

(
Jmax∑
J=0

ψ̃
(1)
J �

(
ψ

(3)
J ∗ b

)
(r)

)
(ξ),(5.28)

with ψ̃
(1)
J (η, ξ) = ξΔ∗

ξΨ̃J(η, ξ). Note that this equation is just a different expression
of a well known fact; i.e., the toroidal magnetic field at a certain altitude is solely due
to the radial current distributions at that very height. Equation (5.28) is the starting
point of the examples in the next section. It is noteworthy that, from a practical point
of view, (5.28) can successfully be applied if the geomagnetic measurements available
are sampled within a comparatively short period of time; i.e., the time-scale under
consideration is such that the variations in the satellite’s altitude can be neglected
to some extent (cf. [27] and [24] for first applications). If the radial variations start
to play a role, one can still neglect these variations if the data are appropriately
preprocessed, i.e., if suitable geomagnetic field models are subtracted prior to the
numerical applications (see, e.g., [28]).

6. Applications to geomagnetic satellite data. As examples of the wavelet
Mie representation of the magnetic field, electric current distributions at satellite
altitudes are determined from data sets of vectorial MAGSAT and CHAMP data.
The method is based on our considerations in section 5, especially (5.28). The current
distributions under consideration are due to ionospheric F region currents, which are
extensively treated in the literature (see [29] and the references therein).

The data sets used in the first example are similar to those used by Olsen [29]
for a spherical harmonic approach to the Mie representation and have kindly been
made available by him. MAGSAT was orbiting the earth in a sun-synchronous orbit,
thus acquiring data only at dawn and dusk local times. Neglecting the variations in
altitude of the MAGSAT satellite, one month of MAGSAT data (centered at March 21,
1980) is transformed to geomagnetic components and is averaged onto the equiangular
longitude-latitude grid (90 × 90 grid points) proposed in [10], which is then used to
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Fig. 3. Radial current density during evening local time obtained from a wavelet Mie represen-
tation of MAGSAT data with vectorial CuP wavelets up to scale 5. [nA/m2]

discretize the convolution integrals. This averaging process is performed using a
robust Tuckeys biweight method (cf. [19]). The dusk and dawn data are treated
separately such that two separate data sets are obtained. Prior to the averaging
process, a geomagnetic field model (GSFC(12/83) up to degree and order 12) due to
[21] is subtracted from the measurements in order to avoid spurious effects due to the
neglected altitude variations (cf. [29]).

According to (5.28), the radial current distribution at a fixed height can be calcu-

lated from the wavelet coefficients of the toroidal field at that altitude, i.e., (ψ
(3)
J ∗b)(r).

With regard to the present example, we calculate these coefficients by means of spher-
ical vectorial CuP wavelets up to scale 5 from the evening data set. Then, in a
second step, these coefficients are utilized to calculate the corresponding radial cur-
rent distribution. Figure 3 shows the reconstruction of the radial current density
Jrad = (ξ · jrad(ξ)). (Note that, for enhancing the visible features, the color scale has
been driven in saturation; i.e., although there are currents with absolute values larger
than 100 nano-Amperes per square meter (nA/m2), we use a color bar ranging from
−100 to 100 nA/m2.)

The largest radial current densities (|Jrad| � 150 nA/m2) are present in the polar
regions. In agreement with the results in [29], the main current flow in the polar cap
is directed into the ionosphere (Jrad > 0) during evening. At the poleward boundary
of the polar oval the currents flow out of the ionosphere, while the main current direc-
tion is into the ionosphere at the equatorward boundary. At the magnetic dip equator
one realizes comparatively weak upward currents (|Jrad| � 25 nA/m2) accompanied
by even weaker downward currents at low latitudes. These current distributions are
the radial components of the so-called meridional current system of the EEJ. Figure
4 presents the same results as Figure 3 but in a different projection, thus enabling a
better view of the meridional currents. As can be expected from theoretical consid-
erations, the corresponding signatures follow the geomagnetic dip equator.
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Fig. 4. Radial current density during evening local time obtained from a wavelet Mie represen-
tation of MAGSAT data with vectorial CuP wavelets up to scale 5. [nA/m2]

With regard to the convergence of our approach, there remains the question of
how to find a suitable maximum scale Jmax where the calculations should be stopped.
Thus far, we have not investigated this matter in mathematical detail; nevertheless,
our numerical results hint at a reasonably good convergence rate (see [16] for a first
theoretical discussion). In this study, we use a heuristic way of determining a suitable
maximum scale: Wavelet-approximations of the poloidal and toroidal parts of the
magnetic field are calculated, added up, and then compared to the input magnetic
field. As long as increasing the wavelet-scale reduces the residual, we have not yet
reached the suitable maximum scale and, consequently, the corresponding toroidal
coefficients should be used to calculate the associated details of the current distribu-
tion. In our numerical example this leads to a maximum wavelet-scale Jmax = 5. If
a wavelet-scale higher than 5 is chosen, one immediately realizes numerical artifacts
in the detail information; e.g., the magnetic field and the electric currents reach un-
reasonably high peak values all along the satellite’s tracks, and the detail information
is dominated by spiky features. Though this method of determining the maximum
scale is quite heuristic, we can also estimate a reasonable maximum scale using the
Shannon sampling theorem. The Shannon sampling theorem tells us that the reso-
lution of the features detectable in the data is limited, depending on the sampling
rate of the data set. In the example above, we have used a 90× 90 point equiangular
grid. This corresponds to a resolvable horizontal wavelength of approximately 898
kilometers. In terms of spherical harmonics, this yields a maximum of approximately
43. Since our wavelets are constructed as linear combinations of spherical harmonics,
the maximum scale of the wavelets is determined by this maximum degree. In the
present example this estimated maximum wavelet-scale turns out to be 5, which is
in accordance with our numerical results. Figures 5 and 6 show a multiresolution of
the radial currents and illustrate the convergence of the approximation process up
to wavelet-scale 5. The upper rows show the scale information of consecutive scales
(J = 0, 1, 2, 3 in Figure 5, J = 4, 5, 6 in Figure 6), while the lower rows present the
respective detail information. Note that adding the scale information and the details
of corresponding scales leads to the scale information of the next higher scale, and
so on. Though the typical structures of the polar field aligned currents and the EEJ
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Fig. 5. Multiscale reconstruction of the radial current density from MAGSAT data using CuP
kernels. Upper row: approximations ϕ̃J � ϕJ ∗ b from scaling functions of scales J = 0, 1, 2, 3; lower
row: corresponding detail information ψ̃J �ψJ ∗b with J = 0, 1, 2, 3. Note that adding the information
of an upper image to the detail information contained in the corresponding subjacent image results
in the next upper image. [nA/m2]

Fig. 6. Multiscale reconstruction of the radial current density from MAGSAT data using CuP
kernels. Upper row: approximations ϕ̃J � ϕJ ∗ b from scaling functions of scales J = 4, 5, 6; lower
row: corresponding detail information ψ̃J � ψJ ∗ b, with J = 4, 5. Note that adding the information
of an upper image to the detail information contained in the corresponding subjacent image results
in the next upper image. [nA/m2]

gradually start to become visible in the detail information of scale 3, it is obvious
from the magnitude of the respective currents that the contributions of scales 4 and
5 are predominant.

In order to demonstrate the possibility of regional calculations, Figure 7 presents
a reconstruction of the radial current systems during dusk local times over the polar
region. These results are obtained using vectorial CuP wavelets of scales 4 and 5 (recall
the predominance of these scales in Figures 5 and 6) and a data window centered at the
geographic north pole with a half angle of 60◦ as well as an integration window with
the same center but a half angle of 55◦ (the white border approximately illustrates
the extent of the calculation region). The visualization window is a little smaller than
the calculation window in order to suppress Gibbs phenomena. Comparing Figure
7 with Figure 3 shows that the structures of the radial currents are clearly visible



WAVELET MIE REPRESENTATIONS 1909

Fig. 7. Local reconstruction of radial current density during evening local time obtained from
a wavelet Mie representation of MAGSAT data with vectorial CuP wavelets at scales 4 and 5. The
white area corresponds to the calculation region. [nA/m2]

though slightly weaker in magnitude. This slight difference is due to the fact that we
have omitted the contributions of wavelet-scales up to 3, i.e., features of coarse spatial
resolution. The signatures seen in our results are the effects of higher wavelet-scales
(4 and 5) and consequently are of more or less confined spatial extent. As might be
expected from the physical point of view, these are clearly the main radial current
contributions in the polar region. The effects of lower scales can be neglected. This,
however, demonstrates the regional character of the radial current distributions and
suggests the use of space-adaptive methods like the one presented here.

The results of the previous example illustrate the geometry of the ionospheric
currents at a fixed (magnetic) local time, i.e., the Earth-satellite-Sun geometry was
fixed during the process of data accumulation. The reader should be aware of the fact
that the current distributions presented in Figures 3–7 do not illustrate the global
distribution of the radial currents but show a small strip of the currents moving over
the earth (along longitude) during the course of the day. This is because ionospheric
current systems are not properly described in earth-fixed coordinate systems like
geographic longitude and latitude. Since the conductance of the ionosphere is varying
with the influence of the sun, the magnetic field induced by ionospheric currents is
linked to the position of the sun and the distance of the observing satellite to the
geomagnetic equator. Consequently, a sun-fixed reference frame should rather be
used to parameterize ionospheric currents. Very advantageous, in that sense, is the
coordinate system of magnetic local time MLT ∈ [0, 24] (instead of longitude) and
quasi-dipole latitude QDlat ∈ [−90, 90]. The magnetic local time thereby denotes
the relative position of the satellite with respect to the magnetic field and the sun,
while the quasi-dipole latitude gives the relative position of the satellite with respect
to the geomagnetic equator. For more information on these coordinate systems, the
reader might consult [22] and the references therein. In order to use MLT and QDlat
as a parametrization, one needs to utilize geomagnetic data from satellites with polar
but not sun-synchronous orbits thus covering the whole span of magnetic local times
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Fig. 8. Local reconstruction of radial current density from a wavelet Mie representation of
CHAMP data in MLT and QDlat, calculated with a CuP scaling function of scale 6. [nA/m2]
Figure courtesy of Carsten Mayer [26]; used by permission.

(i.e., from 0 h to 24 h). The German geoscientific satellite CHAMP, operated by
the GeoForschungsZentrum in Potsdam, Germany, is such a satellite. Among other
instruments, the CHAMP satellite is equipped with high precision vector and scalar
magnetometers and, in contrast to MAGSAT, covers all magnetic local times within
four months. In what follows we present a result calculated by Mayer [26] analyzing a
CHAMP data set via a wavelet Mie representation parameterized in QDlat and MLT.
Three days of CHAMP vector data (September 10, 16, and 17, 2001) are used. In
polar regions these data suffice to cover the whole span of magnetic local times (see
[26]). The polar data are transformed to the QDlat-MLT coordinate system and then
averaged to an equiangular integration grid using a robust method. A wavelet Mie
representation is performed over the geomagnetic north pole, and the radial current
distributions are calculated via (5.28) from the toroidal magnetic field contribution.
Figure 8 shows the resulting radial currents in the northern polar region, which are in
accordance with the physical models presented in [20] and [11]. This result can now
be interpreted as the evolution of the currents’ morphology in magnetic local time; for
example, it is clearly visible how the currents’ polarity changes at the noon-midnight
plane.

7. Summary and outlook. The Mie representation for the geomagnetic field
has the advantage that it can equally be applied in regions of vanishing as well as
nonvanishing electric current densities. The standard method of deriving the Mie rep-
resentation is given by a spherical harmonic parametrization, i.e., by expanding the
corresponding Mie scalars in terms of spherical harmonics. Considering the measure-
ments (magnetic field or currents) to be given in a spherical shell, we have presented
a wavelet parametrization of the magnetic field and the corresponding electric current
densities in Mie representation, i.e., a wavelet Mie representation. The use of wavelets
as trial functions for field parametrization enables us to cope with electric currents
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(and corresponding magnetic effects) that vary rapidly with latitude or longitude, or
that are confined to certain regions. Consequently, we are able to reflect the vari-
ous levels of space localization in the form of a vectorial multiresolution analysis and
can thus take efficient account of the specific concentration of the current densities
in space. Using our approach, the direct as well as the inverse geomagnetic source
problem now admit a treatment within a vectorial multiscale framework.

Neglecting variations in altitude, we have provided numerical examples that illus-
trate the multiscale approximation of radial current distributions from sets of vectorial
geomagnetic field data from the MAGSAT as well as the CHAMP satellite. Global
as well as regional reconstructions of the radial current densities are calculated and
demonstrate the functionality of the approach. With regard to future studies, the next
reasonable step is to incorporate the variations in altitude of the satellite—at least
to some extent—since this would allow for the determination of horizontal current
distributions, too. Additionally—in studies using synthetic data, based on satellite
data sampled over large time intervals, or using data from multisatellite missions—
a simultaneous wavelet parametrization of the poloidal and toroidal magnetic fields
from the corresponding electric currents (or vice versa) should be derived in future
works.
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RETRIEVING TOPOLOGICAL INFORMATION
FOR PHASE FIELD MODELS∗
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Abstract. The phase field approach has become a popular tool in modeling interface motion,
microstructure evolution, and more recently the shape transformation of vesicle membranes under
elastic bending energy. While it is advantageous to employ phase field models in numerical simu-
lations to automatically handle topological changes to the microstructures or the configurations of
vesicle membranes, detecting topological events may also become important for many applications
such as those in the simulation of blood cells. Motivated by such considerations, a new quantity
is formulated to retrieve some topological information based on the phase field formulation and to
capture the occurrence of topological events. It can also be used as a control method to avoid unphys-
ical changes of topology due to the numerical methods, should it become necessary for particular
practical applications. Through numerical experiments, we demonstrate the effectiveness and the
robustness of the new quantity in detecting the topology of fluid bubbles and vesicle membranes.
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1. Introduction. Phase field modeling of mezoscopic morphology and micro-
structure evolution has become popular in recent years (see [6, 7, 8, 9, 12, 13, 21,
22, 24, 34, 35, 38, 39] and the references therein). These phase field approaches
are usually combined with energetic variational formulations that lead to a diffuse
interface modeled by a mixing energy. This allows topological changes of the interface
to take place naturally [28, 31, 37]. Such a feature gives such approaches many
advantages in numerical simulation of the interface variation and the interfacial motion
(cf. [11]). More recently, we have given another successful application of the phase
field model for computing the equilibrium configurations of vesicle membranes that
minimize the bending elastic energy [19, 18]. The methods developed in [19] can
be very useful in morphological studies of vesicle membranes under elastic bending
energy, which has many interesting applications.

In this paper, we continue the study of the phase field model but from a different,
and perhaps also very novel, point of view. We are motivated by the fact that in
many engineering and biological applications, such as the modeling of blood cells in
vascular systems, topological information about the vesicle membranes is of critical
value. Thus, how to detect and control the topological change of the interface in the
phase field modeling and numerical simulation becomes an important issue. Partly
due to the nature of the phase field method (and all other level set methods) in their
standard formulation, there is no mechanism preventing the topological change of the
membranes or other interfaces. In fact, some of the topological changes are due purely
to the formulations, instead of the underlying physics. To our knowledge, there has not
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been any discussion in the literature on how to recover relevant topological information
from the phase field simulations, nor to address further control mechanisms.

The general phase field model is based on the introduction of a phase function (or
order parameter) φ = φ(x), defined on the physical (computational) domain Ω that
encloses Γ. The function φ is used to label the inside and the outside of the vesicle
Γ: the level set {x : φ(x) = 0} gives the membrane, while {x : φ(x) > 0} represents
the interior of the membrane and {x : φ(x) < 0} the exterior. A transition thickness
parameter is also chosen to characterize the typical length scale of the transition layer
(or the thickness of the regularized diffuse interface). For time dependent problems,
it is natural to allow φ = φ(x, t). The objective of our study here is to propose
some robust and efficient methods for retrieving or recovering interesting topological
information within the phase field framework. In particular, we will develop some
robust formulae for computing the Euler number for the modeled interface based on
order parameter φ.

We expect that our study here has the potential of opening up a host of exciting
new applications of phase field modeling, including the use of the topological quan-
tities in a control setting. Our numerical simulation indicates that the generalized
Euler number (χ2 in three dimensions and χ in two dimensions) not only is a better
indicator of topological changes than the energy functional we had been using in our
previous paper [19], but in fact, gives a quantized jump upon a completion of the
topological change (a direct consequence of the Gauss–Bonnet formula) for regular
surfaces. Moreover, when the computed surface passes singularity, the new formula
for χ based on the phase field formulation gives a fractional interpolation of the usual
Euler number.

The study of the Euler number in terms of χ, or the Euler–Poincaré index number
η, may provide guidance for the study of other topological quantities within the phase
field framework. The ideas proposed in this paper may be equally applicable to other
simulation methods for free boundary and interface problems such as the level set
methods. Our work here is also likely to shed light on the study of many geometrical
modeling problems, where providing topological information or controlling topological
changes may be highly desirable.

The rest of the paper is organized as follows. In section 2, we briefly recall
the phase field model, and we discuss a formulation of the Euler number (in terms
of χ) within the phase field framework that can be used to recover some topological
information. We present a set of formulae in various three-dimensional (3-D) and two-
dimensional (2-D) cases. We also discuss the Euler–Poincaré index number η when the
surfaces involve singularities. In section 4, we illustrate the method of computing the
quantity χ in two applications and demonstrate the effectiveness and the robustness
of the our formulation. Finally, some concluding remarks are given in section 5.

2. The Euler number. Given an oriented (regular) compact (i.e., without
boundary) surface Γ, the well-known Gauss–Bonnet formula states that

∫
Γ

K ds = 2πχ,(2.1)

where K = k1k2 is the Gaussian curvature of the surface in R3, ds is the area element,
and χ

2 in three dimensions (χ in two dimensions) is the Euler number [16]. The number
χ is a commonly used topological quantity. For some frequently encountered surfaces,
we have χ = 2 for a sphere, χ = 0 for a torus, and χ = −2 for a torus with two holes.
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For 2-D curves, K is the curvature and χ = 1 for a circle. For convenience, in this
paper we call χ

2 the Euler number in 3-D cases and χ in 2-D cases.
In this section, it is our goal to find a suitable expression of the Euler number

when the surface is implicitly defined by a phase field formulation. We first give the
general formula of the Euler number under a general phase field definition for both
2-D and 3-D spaces. Then we give some simplified formulae under some specific ansatz
assumptions corresponding to our applications. For simplicity, we focus on only the
static case when deriving the formulae. In the time dependent case, since we are
mostly interested in the topological information of a spatially distributed interface at
a fixed time stance, the generalizations to time dependent problems are obvious.

We note that many of our derivations are through formal asymptotics, though
more detailed and more rigorous justifications will be provided in our subsequent work
[17].

2.1. The 3-D case. Let Γ be a smooth oriented compact surface in a domain
Ω in R3; we note that Γ is allowed to have multiple disconnected pieces. Let p be a
monotone increasing function defined from R to R with p(0) = 0. For each function
p, we take a phase field function φ = φ(x) of Ω as φ(x) = p(d(x,Γ)) where the signed
distance function d = d(x,Γ) is defined to be positive inside Ω and negative outside
Ω. The level sets of φ are denoted by Γμ = {x ∈ Ω|φ(x) = μ}. In particular, we
have Γ = Γ0. We also define Ω(a, b) = {x ∈ Ω | b < φ(x) < a}, which forms a banded
(layered) neighborhood around the surface for b < 0 < a.

Define Λ(M) = Tr(Adj(M)) for a matrix M . Clearly, Λ(M) is the coefficient of
the linear term of the characteristic polynomial of M . In particular, for the singular
matrix M = ∇2d we have Λ(M) = λ1(M)λ2(M), with λ1 and λ2 being the two
nonzero eigenvalues of M .

Theorem 2.1. Using the notation above, for any monotone increasing function
p there exists b < 0 < a such that the matrix M , defined by

M(x)ij =
1

2
√
π(a− b)|∇φ|

(
∇i∇jφ− ∇|∇φ|2 · ∇φ

2|∇φ|4 ∇iφ∇jφ

)
,(2.2)

is a singular matrix for any x ∈ Ω(a, b) and the Euler number of Γ is given by

χ

2
=

∫
Ω(a,b)

Λ(M(x)) dx.(2.3)

Proof. Since φ depends only on the distance d, and p is monotone increasing,
there exist real numbers a and b, with b < 0 < a, sufficiently close to 0 such that Γμ

are close to the parallel translations of Γ in the normal direction for all b ≤ μ ≤ a,
and all Γμ have the same topology as Γ.

Direct computation shows

∇i∇jd =
∇2φ

p′
− p′′

p′
∇id∇jd =

1

p′
[∇i∇jφ− p′′∇id∇jd].

The matrix ∇2d, with d = d(x,Γ) being the signed distance from x to the surface Γ,
always has a zero eigenvalue with ∇d as the eigenvector. This is due to the fact that
∇2d is symmetric and |∇d| = 1. On the surface Γ, the two other eigenvalues are actu-
ally the two principle curvatures of Γ (k1 and k2 in this case). The Gaussian curvature
K is of course the product of these two eigenvalues, while the mean curvature H is
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given by the mean of the two eigenvalues. Both quantities can in fact be defined and
computed on all the level sets in Ω(a, b). For instance, the Gaussian curvature K can
be conveniently computed from Tr(Adj(∇2d)) (the sum of the three principal 2 × 2
minors of ∇2d; see section 2.6 for an example in the cylindrically symmetric case).

Assuming that k1and k2 remain constant along the normal directions in Ω′, we
have

χ

2
=

1

4π

∫
Γ

k1(x)k2(x) ds

=
1

4π(a− b)

∫ p−1(a)

p−1(b)

p′(τ)dτ

∫
Γ

k1(x)k2(x) ds

=
1

4π(a− b)

∫
Ω(a,b)

p′(d(x,Γ))k1(x)k2(x) dx(2.4)

=
1

4π(a− b)

∫
Ω(a,b)

p′(d(x,Γ))Λ(∇2d(x,Γ)) dx

=
1

4π(a− b)

∫
Ω(a,b)

1

p′(d(x,Γ))
Λ(∇2φ− p′′∇id∇jd) dx.(2.5)

Now, since p is monotone increasing, we have p′(d(x,Γ)) = |∇φ(x)| and

p′′(d(x,Γ)) = ∇|∇φ| · ∇φ

|∇φ| (x) =
∇|∇φ|2 · ∇φ

2|∇φ|2 (x).

Hence we get the general formula for the Euler number in three dimensions:

χ

2
=

1

4π(a− b)

∫
Ω(a,b)

1

|∇φ|Λ
(
∇i∇jφ− ∇|∇φ|2 · ∇φ

2|∇φ|4 ∇iφ∇jφ

)
dx(2.6)

=
1

4π(a− b)

∫
Ω(a,b)

1

|∇φ|Λ(M(x)) dx.

From the definitions of M and Λ(M), we know that M(x) is singular for any
x ∈ Ω(a, b) in the sense that it always has a zero eigenvalue, and (2.3) holds.

The formula (2.3) forms the basis for our efforts to recover topological information,
in particular the Euler number.

2.2. The 2-D case.
Theorem 2.2. If Ω ∈ R2, with the same notation as in Theorem 2.1, for any

monotone increasing function p there exists b < 0 < a such that

χ =
1

2π(a− b)

∫
Ω(a,b)

(
−�φ +

∇|∇φ|2 · ∇φ

2|∇φ|2

)
dx.(2.7)

Proof. Using the same argument as above, this can be derived as follows:

χ =
1

2π

∫
Γ

K(x) ds

=
1

2π(a− b)

∫
Ω(a,b)

p′(d(x,Γ))K(x) dx

=
1

2π(a− b)

∫
Ω(a,b)

(−�φ + p′′(d(x,Γ))) dx

=
1

2π(a− b)

∫
Ω(a,b)

(
−�φ +

∇|∇φ|2 · ∇φ

2|∇φ|2

)
dx.(2.8)



RETRIEVING TOPOLOGICAL INFORMATION 1917

Fig. 2.1. Singular 2-D cases.

Fig. 2.2. Singular 3-D cases.

Fig. 2.3. Singular 2-D cases. The inner intersect angles are π, 0, π/2 for cases a, b, and c,
respectively.

2.3. Cases involving singularities on the interfaces. Both Theorems 2.1
and 2.2 require that Γ be a smooth oriented compact surface. However, in realistic
physical applications, we always encounter the singular cases where either the curves
or the surfaces intersect or have some sharp angles or cones. Figure 2.1 illustrates
several simple singular cases in two dimensions, while Figure 2.2 shows two singular
shapes in three dimensions.

With the possible occurrence of the singularities, we will employ the general
Gauss–Bonnet formula. In the 2-D case, suppose that the curves are piecewise smooth
with n vertices (sharp corners) and that the inner angles for each vertices are {αi, i =
1, . . . , n}. The Gauss–Bonnet formula reads as

2πη =

∫
Γ

K ds +

n∑
i=1

(π − αi) = 2πχ +

n∑
i=1

(π − αi),

where η, the Euler–Poincaré index number, is the topological integer, the genus of
the surface [16].

We give illustrations, in Figures 2.1 and 2.3, of the values of χ defined by 2πχ =∫
Γ
K ds in the singular cases. For configurations such as the third image in Figure
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Fig. 2.4. Γ0, Γa, and Γb have different topologies but the same Euler number.

Fig. 2.5. By getting rid of the singular complement, Γ0, Γa, and Γb have the same Euler number.

2.1, 2πη =
∫
Γ
K ds + 2(π − α). In particular, for the cases in Figure 2.3, α = π, 0, π

2
for the cases a, b, and c, respectively. In all of these cases, the Euler–Poincaré index
number η is always 2, representing the number of bubbles.

On the other hand, the value of χ can be used to detect the change of topology
even with the presence of the singular cases. Again, using the example in Figure 2.3,
the Euler numbers χ are 2, 1, and 1.5, respectively, with the singularity being signaled
by the fractional value. We want to point out that in the first case, the Euler number
χ is still equal to the Euler–Poincaré index number η, even with the singularity.

When we consider the definition of χ for the 3-D singular cases, we may also get a
fractional Euler number when singularity appears. For example, for the configuration
in the first picture of Figure 2.2, suppose that the angle of the tangent cone is α;
the Euler number can be derived from the following explicit analytic formula by
calculating the ratio between the spherical cap cut by the α-cone and the total area
of the sphere:

χ

2
=

1

4π

∫
Γ

K ds = 1 − 1

4π
(2π(1 − sinα)) =

1

2
+

1

2
sinα.(2.9)

Finally, we discuss the validity of formulae (2.3) and (2.7) in singular cases. Figure
2.4 shows that Γμ seem to have (visual) topology different from that of Γ for some
b < μ < a.

However, in reference to Figure 2.4, because each Γμ has a singular vertex with
angle either α or β = π − α, the Euler number ξ for every Γμ is the same as that
of Γ0. Thus Theorems 2.1 and 2.2 still hold for this singular case where the Euler
number is a fractional number.

One will encounter the issue of a singular complement in the numerical simulations
of the interfaces involving singularities. This is crucial in calculating the fractional
Euler number correctly. To clarify this phenomenon, let us examine Figure 2.5.
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Fig. 2.6. An illustration of the choice of a and b. Γ0, Γa, and Γb have the same Euler number.

Fig. 2.7. Γ0, Γb have different Euler numbers.

Because of the elbow shape associated with Γa, Γa has a different Euler number
from Γ0. This phenomenon, hereafter referred to as the singularity compensation,
occurs in all numerical experiments involving interfacial singularities due to the nu-
merical smoothing of the surfaces. This appears to introduce difficulties into the
application of Theorems 2.1 and 2.2. However, noticing that the elbow has very large
curvature, if a method can be designed to filter out such an elbow, the Euler num-
ber calculated for the remaining Γa would remain the same as that of Γ0. Such a
technique will be introduced and developed later in section 3.

2.4. Stability and autoselection of parameters. Although the proofs of
Theorems 2.1 and 2.2 are given under the condition that for every b < μ < a, Γμ

has the same topology as Γ0, to correctly identify the Euler number, one can relax
such a condition to requiring that the Euler number of Γμ be the same as that of Γ0.
By the analysis of section 2.3, it is desirable that the parameters a and b are chosen
to be quite different from 0. Figure 2.6 gives an illustration of such a case.

The advantage of choosing a and b some distance away from 0 is to ensure that
Ω(a, b) contains plenty of grid points, which in turn makes the integration for the
Euler number more accurate and stable.

However, in general, it is not true that all the neighboring curves or surfaces
always share the same Euler number. In Figure 2.7, Γ0 and Γb clearly have different
Euler numbers. The largest b can be selected only where the two circles of Γb are
tangent to each other. How to choose the value of b in such situations becomes a very
relevant issue in our computation of the Euler numbers.

On the other hand, in Figure 2.7, we may notice that Γa always has the same
Euler number as Γ0, and a can be very different from 0. Thus the selection of a and
b may be problem dependent. In some cases, we can select the integration area to be
either Ω(0, a) or Ω(b, 0) in order to get the correct Euler number.
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Denote the Euler number as E(b, a), corresponding to the integration region
Ω(a, b); in order to see the impact of a and b, we employ the following algorithm
in our numerical simulations.

Algorithm: Parameter autoselection for a. Given a phase field function
φ defined on region Ω, select a relatively far away from 0 (for instance, a = 1). Select
a tolerance number ν (for instance, ν = 0.1) and a small step h (we can use, as an
example, h = a/50).

• Step 1. If |E(0, a) − E(0, a/2)| < ν, exit; else set a = a− h.
• Step 2. If a < h, exit with a = 0; else loop back to Step 1.

The above algorithm is used to select the best a. A similar algorithm can be used
to select the best b. A bisection method can be adopted to make the autoselection
more efficient. The resulting a and b are used to compute the correct Euler numbers.
As verified in the earlier theorems, the above algorithm is assured to terminate with
suitable a and b if the step size h and the tolerance ν are chosen to be reasonably
small.

2.5. Formula simplification. The formulae given in the above discussion of
the Euler number are computable numerically, but for many practical situations they
can be further simplified if some appropriate ansatz can be taken. We now discuss
some of these simplifications.

First let us take the ansatz

φ = tanh

(
d√
2ε

)
= p

(
d√
2ε

)
,(2.10)

which is actually an accurate description of the phase field function in many models
such as the basic Allen–Cahn (Ginzburg–Landau) equations, which are popular pro-
totype phase field models for interface and microstructure evolution. Such an ansatz
also captures well the phase field function in our energetic phase field model of the
vesicle membranes under bending elastic energy.

With such an ansatz, we have the following theorem.
Theorem 2.3. As in Theorem 2.1, if φ = tanh( d√

2ε
) = p( d√

2ε
), we have the

following:
3-d case: Let

Mij =

√
3ε

8
√

2π

(
∇2

ijφ +
2φ

1 − φ2
∇iφ∇jφ

)
(2.11)

and Λ(M) be defined as before. The Euler number of Γ is given by

χ

2
= lim

ε→0

∫
Ω

Λ(M(x)) dx.(2.12)

2-d case: The Euler number of Γ is given by

χ = lim
ε→0

1

4π

∫
Ω

(
−�φ +

1

ε2
(φ2 − 1)φ

)
dx.(2.13)

Remark 2.4. Based on the ansatz (2.10), we have that

p′ = 1 − p, p′′ = (p− 1)p.(2.14)
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Hence each term in the matrix M is in fact nonsingular.
Proof. A direct calculation shows that

∇φ = p′
1√
2ε

∇d, ∇2
ijφ = p′′

1

2ε2
∇id∇jd + p′

1√
2ε

∇2d,

and

∇2d =

√
2ε∇2φ

p′
− p′′√

2εp′
∇id∇jd.

Several elementary facts are in order:

p′(x) = tanh′(x) = 1 − tanh2(x) = 1 − p2(x), p′′ = −2p(1 − p2), p′′ = −2pp′.

Since ∇d =
√

2ε∇φ/p′, we have

∇2d =

√
2ε∇2φ

p′
− p′′√

2εp′
∇id∇jd =

√
2ε

∇2φ

p′
+
√

2ε
2p

(1 − p2)2
∇iφ∇jφ

=

√
2ε

1 − p2

(
∇2φ +

2p

1 − p2
∇iφ∇jφ

)
=

√
2ε

1 − φ2

(
∇2φ +

2φ

1 − φ2
∇iφ∇jφ

)
.

Simple calculation yields that∫ +∞

−∞
(1 − φ2)2dx =

√
2ε

∫ +∞

−∞
(1 − tanh2(x))2dx =

4
√

2ε

3
.

With sufficiently small ε, the function φ goes to 1 or −1 very quickly (exponen-
tially) away from Γ. Thus, we can just take a = −b = 1 with ε → 0, and the matrix
in the formula (2.2) becomes

M =

√
3ε

8
√

2π

(
∇2φ +

2φ

1 − φ2
∇iφ∇jφ

)
,

and (2.12) holds.
For the 2-D cases, by taking a similar ansatz and putting

|∇φ|2 =
1

2ε2
(1 − φ2)2

into formula (2.7), we finally have (2.13).
More simplifications can be made for problems where periodic boundary condi-

tions are used, since
∫
Ω
�φ = 0; the above formula can be further simplified to

χ ≈ 1

4πε2

∫
Ω

(φ2 − 1)φ dx.(2.15)

The above formula can be compared with the formula (2.7) (with a = −b = 1) applied
to the periodic boundary condition case:

χ =
1

4π

∫
Ω

∇|∇φ|2 · ∇φ

2|∇φ|2 dx =
1

8π

∫
Ω

∇ ln |∇φ|2 · ∇φ dx

= − 1

8π

∫
Ω

�φ ln |∇φ|2 dx,(2.16)
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where we need only p being monotone from −1 to 1 in Ω instead of being a strictly
tanh function.

The previous formula (2.15) has no derivative terms, while the latter one in (2.16)
involves no bulk part.

We note that the approximations in (2.12), (2.13), and (2.15) are of spectral
accuracy with ε → 0.

Remark 2.5. We note that it is possible to get simplified formulae of other types
with the ansatz (2.10). For instance, in the 3-D case, let

M̃ij(φ) =

√
35ε

64
√

2π

(
(1 − φ2)∇2φ + 2φ∇iφ∇jφ

)
.(2.17)

Then, the Euler number of the surface Γ in the phase field formulation can also be
given by

χ

2
= lim

ε→0

∫
Ω

Λ(M̃(φ)) dx.(2.18)

Note that the change of the constant factors in front of the matrices in (2.11) and (2.17)
are due to the use of different weight functions (1 − tanh2(x))2 and (1 − tanh2(x))4

in the derivation.

2.6. Formulae for cylindrically symmetric membranes. In [19], we have
used the energetic phase field models to compute 3-D vesicle membranes minimizing
the bending elastic energy. The numerical examples are for cylindrically symmet-
ric membranes with various different topologies. We now present the Euler number
computation in such situations.

In the numerical simulations given in [19], where φ(x) → tanh(d(x,Γ)√
2ε

) as ε → 0,

the conventional cylindrical coordinates (r, θ, z) are used. Suppose that the membrane
is rotationally invariant with respect to the z-axis, i.e., φ = φ(z, r, θ) = φ(z, r); then

∇φ =

⎛
⎝ ∂zφ

∂rφ
0

⎞
⎠ , ∇iφ∇jφ =

⎛
⎝ (∂zφ)2 ∂zφ∂rφ 0

∂zφ∂rφ (∂rφ)2 0
0 0 0

⎞
⎠ ,(2.19)

and

∇2φ =

⎛
⎝ ∂2

zzφ ∂2
zrφ 0

∂2
zrφ ∂2

rrφ 0
0 0 1

r∂rφ

⎞
⎠ .(2.20)

If we substitute (2.19) and (2.20) into (2.11), we have that

M =

√
3ε

8
√

2π

⎛
⎜⎝ ∂2

zzφ + 2φ
1−φ2 (∂zφ)2 ∂2

zrφ + 2φ
1−φ2 ∂zφ∂rφ 0

∂2
zrφ + 2φ

1−φ2 ∂zφ∂rφ ∂2
rrφ + 2φ

1−φ2 (∂rφ)2 0

0 0 1
r∂rφ

⎞
⎟⎠ .

Hence F , the sum of the determinants of all principal 2 × 2 minors, is equal to

F (r, z) =
3ε

8
√

2πr
∂rφ

{
∂2
zzφ + ∂2

rrφ +
2φ

1 − φ2
[(∂zφ)2 + (∂rφ)2]

}
,(2.21)
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and

χ

2
≈

∫ ∫
2πrF (r, z) drdz

≈ 3ε

4
√

2

∫ ∫
∂rφ

{
∂2
zzφ + ∂2

rrφ +
2φ

1 − φ2
[(∂zφ)2 + (∂rφ)2]

}
drdz

≈ 3ε

4
√

2

∫ ∫
∂rφ

{
�φ +

2φ

1 − φ2
|∇φ|2

}
drdz,(2.22)

where the operators ∇ and � are taken in the r-z plane.
If we do not take the ansatz φ = tanh( d√

2ε
), but simply take (2.19) and (2.20)

into the formula (2.2), we get a similar formula in the more general case:

χ

2
=

1

4π(a− b)

∫
Ω(a,b)

1

r

1

|∇φ|∂rφ
{
∂2
zzφ + ∂2

rrφ− ∇|∇φ|2 · ∇φ

2|∇φ|4 [(∂zφ)2 + (∂rφ)2]

}
dx,

or

χ

2
=

1

2(a− b)

∫ ∫
Ω(a,b)

1

|∇φ|∂rφ
{
�φ− ∇|∇φ|2 · ∇φ

2|∇φ|2

}
drdz.(2.23)

We remark here that in the 3-D cylindrically symmetric case, the two curvatures
can be calculated by

k1 = �φ− ∇|∇φ|2 · ∇φ

2|∇φ|2 ,(2.24)

k2 =
∂rφ

r|∇φ| ,(2.25)

respectively. One can also use them to derive the formula for the Euler number
directly.

Using the partial derivatives, (2.23) can be written as

χ

2
=

∫ ∫
Ω(a,b)

∂rφ
(
∂2
rrφ(∂zφ)2 + ∂2

zzφ(∂rφ)2 − 2∂rφ∂zφ∂
2
rzφ

)
2(a− b)((∂rφ)2 + (∂zφ)2)

3
2

drdz.(2.26)

Using the difference approximation as described in [19], the above integrals can
be readily evaluated numerically on a spatial grid.

3. Numerical realizations. In section 2, various formulae were presented for
calculating the Euler number in two and three dimensions under different kinds of
conditions. In general, we can apply finite difference or spectral methods directly to
those formulae to calculate the Euler number. However, as discussed in section 2.3,
the singular cases often happen in the process with topology changes, such as surface
entanglement. When we apply the Euler number formulae to those singular cases, the
numerical values at the singular vertices are always very large, which make the final
results inaccurate.

Figure 3.1 illustrates a 3-D singular case. The right-most panel shows the func-
tion F (r, z) in formula (2.21) with the r and z coordinates. From the right-most
graph, we see the numerical value may even go up to 10, 000. If the Euler number
is calculated directly by formula (2.23), although the theoretical value for this shape
is 0.7500, we get 1.0671 which is close to the value 1, the Euler number of a sphere.
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Fig. 3.1. Singular values at the singular vertex. From left to right: the 3-D picture, the 2-D
axis symmetrical r-z planar section, and the singular value around the singular vertex.

This phenomenon is due to the so-called singularity compensation discussed earlier.
Because of the finite discrete grid adopted in the numerical scheme, the curvature
value at a singular vertex is always regularized from ∞ to a finite number. And in
our case, such a change to the finite number provides certain compensation to the total
Euler number, which can be viewed as putting a small elbow with a large curvature
to complement the shape so that the singular shape changes to a regular shape.

A simple but effective way for getting rid of this singularity compensation is to
avoid integrating over those singular vertices which are easy to detect, because the
numerical values of the integrand at those locations are very big relative to other
points. From the formula (2.4), we know that

Λ(M(x)) =
1

4π(a− b)
p′(d(x,Γ))K(x),

where K(x) is the Gaussian curvature at a point x. If p(x) = tanh(x/(
√

2ε)),
p′(d(x,Γ)) = (1 − p2(d(x,Γ)))/(

√
2ε), then

|Λ(M(x))| ≤ 1

4
√

2πε(a− b)
K(x).

In most cases, it is easy to estimate the possible largest Gaussian curvature value. In
the phase field models, the radius of the smallest ball should be at least larger than the
band width ε. Thus it is natural to choose K < 1/ε2 for the regular points and regard
the singular points as those satisfying the condition Λ(M(x)) > 1/(4ε3

√
2π(a− b)).

We verify the above argument using the examples shown in Figure 3.2, which
represent the same cylindrically symmetric membrane with a singularity at the upper
tip whose Euler number can be calculated by formula (2.26). By excluding the singular
points with Λ(M(x)) > 200, based on a 100 × 200 grid with h = 0.01, ε = 2h = 0.02,
and α = π

6 , the computed Euler number we get is 0.7498, which is a very good
approximation of the theoretical value 0.7500 obtained from formula (2.9). For α =
π
4 , the computed Euler number 0.8534 is again an accurate approximation of the
theoretical value 0.8536.

In the following section, we apply this technique to all our experiments.

4. Applications to some phase field models. In this section, we present
two applications of the Euler number developed in the earlier sections for general
phase field models. The special examples include the deformation of vesicle mem-
brane configurations minimizing the bending elastic energy and the coarsening of two
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Fig. 3.2. A special cylindrically symmetric membrane with a singular point.

Newtonian bubbles in another Newtonian fluid. We expect that our formula can be
equally applied to other more complicated and physical examples involving the phase
field models as well.

4.1. The model for membranes minimizing the bending elastic energy.
We now consider the problem of minimizing the bending elastic energy:

Eelastic =

∫
Γ

k

2
H2 ds,(4.1)

with area and volume constraints. Here, H = (k1 + k2)/2 is the mean curvature of
the membrane surface, with k1 and k2 as the principal curvatures. k is the bending
rigidity, which can depend on the local heterogeneous concentration of the species
(such as protein molecules on the blood cells).

The energetic phase field model studied in [19] is given by the solution of the
following modified elastic energy:

W (φ) =

∫
Ω

kε

2

∣∣∣∣Δφ− 1

ε2
(φ2 − 1)φ

∣∣∣∣
2

dx.(4.2)

As ε is taken asymptotically to zero, the minimum of the energy W approaches the
original energy (4.1). Moreover, at least when the membrane Γ, viewed as a surface
in Ω, is regular enough, we have

φ(x)=̃ tanh

(
d(x,Γ)√

2ε

)
+ O(ε2)(4.3)

approximately satisfied for all x ∈ Ω. Here, d = d(x,Γ) is the distance of the point
x ∈ Ω to the surface Γ. Furthermore, the functional

A =

∫
Ω

φ(x) dx(4.4)

goes to the difference of interior volume and exterior volume, and the function

B =

∫
Ω

[
ε

2
|∇φ|2 +

1

4ε
(φ2 − 1)2

]
dx(4.5)

approaches 2
√

2 area(Γ)/3, or about 0.94 times the area of Γ. We note that for energy
minimizing functions, ∫

Ω

ε

2
|∇φ|2dx ≈

∫
Ω

1

4ε
(φ2 − 1)2 dx.
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Fig. 4.1. Deformation of a gourd (top) and a torus (bottom) with areas at 5.834, 6.258, 6.682,
and 7.000. Pictures are displayed in different scales for best view.

Thus, it is also convenient to take

B =

∫
Ω

ε|∇φ|2dx

as the constraint for numerical purposes. For a more detailed asymptotic analysis and
a more rigorous convergence analysis, including the convergence of the Euler Lagrange
equation, we refer to our subsequent work [17].

It has come to our attention recently that the unconstrained variational approach
of using (4.2) to approximate the 2-D Willmore functional (4.1) was also previously
used, by the name of a relaxed formulation, in the application of image inpainting (see
[23, 10, 32] and the references cited therein). This relaxed formulation was motivated
by the Γ-convergence framework of De Giorgi [14] (see also [32]) for general variational
problems, although the convergence of such a formulation remains to be rigorously
justified.

The numerical simulations in [19] were aimed at the study of the minimizers of
the elastic energy W (φ) under given surface area and volume. By scaling invariance,
the volume can be fixed to be a constant, while the area is changed continuously to
probe the energy landscape. A set of bubble shapes was discovered, and topological
changes were observed along the way only when the configurations were visualized.
Our objective here is to show that the Euler number formula (2.26) can be used as
an effective tool to automatically detect the topological changes.

The detailed numerical algorithms and numerical simulations of the branches of
membrane shape deformations have been presented in [19].

Figure 4.1 shows the deformation of a gourd (the first row, computed with a
40 × 375 grid and ε = 1.5h = 0.03) and a torus (the second row, 100 × 100 grid,
ε = 1.5h = 0.03) with increasing surface areas, with volumes fixed at 1.1000. The
gourd becomes thinner, and the torus moves further away from its axis. It is obvious
that there is no topological change for both the gourd and the torus. This can be seen
from the graph of the Euler numbers (Figure 4.2) with the value being kept at 1 for
the gourd and 0 for the torus. On the other hand, in the same figure, the graphs of
their energy are two intersecting curves, which illustrates the existence of two shapes
with totally different topologies but the same energy.
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Fig. 4.2. The energy (left) and the computed Euler number (right) of gourd and torus shapes.

Fig. 4.3. Deformation of a shell to a pitomba, a bangle, a torus, a longan and finally a ball
(cross section view) with areas valued at 9.811, 9.546, 8.485, 6.894, 6.364, 5.515, 5.303, and 5.091.

In the next set of numerical simulations, a rectangular domain with a 100 × 200
Cartesian grid, with h = 0.01, is used and ε = 2h = 0.02. Figure 4.3 shows the
shape deformations with a decreasing area from 11.2960 to 5.0912 while fixing the
volume at 1.1000. The left picture in Figure 4.4 shows the corresponding change of
the bending energy with different surface areas. Good resolutions of the interfaces
based on the above choices of the computational grid and the parameter values have
been demonstrated in [19] for such a solution branch.

In the whole energy minimizing process, the shape always jumps from one branch
to another, which results in a discontinuous energy curve. Here the shape of the
vesicle changes from a shell to a bangle (with no obvious energy jump), then to a
torus (with a noticeable energy jump at the surface area β = 6.6822), then a longan
(with an energy jump at around β = 5.3563), and finally to a spherical ball (an energy
jump at around β = 5.1442). There are three topological changes during the shape
deformation: (1) from shell to a bangle, (2) from torus to a longan, and (3) from
longan to a spherical ball. The energy can hardly detect the change from shell to
bangle, despite the occurrence of the topology change.

The right picture in Figure 4.4 shows the change of the computed Euler numbers.
The graph has exactly three jumps corresponding to the three topological changes.
We can see the corresponding Euler numbers 2, 0, 2, and 1 for shell, torus, longan,
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Fig. 4.4. The energy (left) and the computed Euler number (right) for the deformation of a
shell shape with decreasing area.

and ball shapes, respectively.

The calculation of the Euler numbers used the autoselection algorithm for the
best parameters a and b. Observing the second, third, and sixth graphs of Figure 4.3
carefully, it is not hard to understand why we need such an algorithm here, based
on the theory stated in section 2.4. As different shapes have different best values of
a and b, we thus have different integration areas for the Euler numbers. It may be
noticeable that some values are not exactly 0 when the vesicle surface area belongs to
the interval [5.3, 9.8]. Such small errors are mainly due to the approximation errors
of the finite difference scheme and the integration scheme. Fortunately, those errors
are always sufficiently small (less than 0.1 in this case) to be distinguishable from the
Euler number jumps, which are at least 1. This makes our method very stable and
sensitive in detecting the topology changes.

In summary, the above experiments demonstrate that our formula for the Euler
number can be successfully used to retrieve topological information and to capture
topological events. Of course, the Euler number alone does not completely determine
the topology of the interface.

4.2. The phase field model of fluid bubble motion. In the study of the
coarsening of the Newtonian bubbles in another Newtonian fluid, the following 2-D
simple problem has been considered:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u

∂t
+ (u · ∇)u− ν∇ ·D(u) + ∇p + λ∇ · (∇φ
∇φ) = 0, (x, t) ∈ QT ,

∇ · u = 0, (x, t) ∈ QT ,
∂φ

∂t
+ (u · ∇)φ− γΔ(Δφ + f(φ)) = 0, (x, t) ∈ QT ,

(4.6)

with the initial values u(x, 0) = u0(x), d(x, 0) = d0(x) and periodic boundary condi-
tions. Here f(φ) = (1 − φ2)φ/ε2, D(u) = (∇u + (∇u)T )/2, ∇φ 
∇φ is the induced
elastic tensor, with the (j, k)th entry being ∂xjφ∂xk

φ. The above equations have been
used in [28] to analyze the motion of bubbles in a Newtonian fluid. These phase field
models are also very similar to the liquid crystal model studied in [20, 27, 29].

The above simple system was used to study the free interface motion under the
surface tension in the mixture of two Newtonian fluids with the same density and
viscosity constants [1, 2, 3, 4, 5, 15, 21, 25, 26, 28, 30, 31, 33, 36, 40]. The system
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Fig. 4.5. Deformation of two bubbles in a Newtonian fluid with the time valued at 0.00, 0.10,
0.18, 0.22, 0.24, 0.28.

satisfies the following energy law:

d

dt

∫
Ω

{
1

2
|u|2 +

λ

2
|∇φ|2 + λF (φ)

}
dx = −

∫
Ω

{ν|∇u|2 + γλ|∇(Δφ− f(φ))|2} dx.

(4.7)

Moreover, the whole system can be viewed as the approximation of the classical sharp
interface model with the kinematic and traction-free boundary condition on the free
interface [28]. As the transition width ε approaches zero, the induced bulk elastic
stress term converges to the corresponding surface tension.

To test our formula for computing the Euler number, we solve the above system
in two space dimensions via a spectral spatial discretization coupled with a second
order semi-implicit-in-time scheme for φ and a semi-implicit projection scheme for the
Navier–Stokes equations, such as those in [20, 28].

Figure 4.5 shows a special example of the deformation of two Newtonian bubbles
in another Newtonian fluid. In this experiment, we take the 128 × 128 grid, period
boundary condition on area [0, 2π]× [0, 2π], and ε = 2.5h = 0.1227, λ = 10.0, γ = 3.0,
ν = 1.0. In the simulation, the larger bubble grows at the expense of the shrinkage of
the smaller one. In fact, the smaller bubble dissolves into the fluid, while the bigger
bubble absorbs from the fluid, similar to the well-known Oswald ripening effects (due
to the Cahn–Hillard effect of the phase equation in (4.6)). The total volume of these
two bubbles remains constant in time.

The topology change in this simulation can be characterized by the Euler number
of the whole configuration. At the beginning, the Euler number of the configuration
with the two bubbles is 2. And finally, after the smaller bubble is totally absorbed by
the larger bubble, the Euler number of the bubble configuration becomes 1. Figure
4.6 shows the sharp change in the Euler number in this procedure using the formula
(2.16).
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Fig. 4.6. A plot of the Euler number in time with the annihilation of the small bubble.

5. Conclusion. While an important advantage of phase field modeling of the
interface variation and the interfacial motion is its ability to handle the change of
interface topologies in natural and physically meaningful ways, it has also come to
our attention that in many practical problems, useful topological information may be
needed, and the effective control of the topological transformations may be impor-
tant. In this paper, mechanisms to retrieve relevant topological information based
on the phase field formulations are discussed. In particular, some robust formulae
for computing a generalized Euler number of the interface are proposed based on the
phase field order parameter φ. Using a special ansatz, we also get further simplified
formulae. For smooth interfaces, our formulae give desired quantized characterization
of the interface genus. When passing through singularities, they give fractional values
that generalize the notion of the genus.

As a demonstration, numerical experiments are performed for the cases of a static
deformation of a 3-D axial symmetric membrane as well as a time dependent annihi-
lation of fluid bubbles in 2-D space. The experimental results show that the proposed
methods for computing the Euler number are very effective and robust in detecting
the topological changes. The ideas presented in this paper are very natural and easy
to implement for other phase field models and may also be equally applicable to other
simulation methods for free boundary and interface problems including the standard
level set methods. Rigorous analysis of the formulae derived here based on formal
asymptotic analysis are currently underway [17]. We are also working on the prob-
lem of taking the Euler number as a constraint within the phase field framework to
study and analyze mechanisms in a physical system for controlling and preventing
topological changes, should they become desirable.
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THE FOCUS-CENTER-LIMIT CYCLE BIFURCATION IN
SYMMETRIC 3D PIECEWISE LINEAR SYSTEMS∗
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Abstract. The birth of limit cycles in 3D (three-dimensional) piecewise linear systems for the
relevant case of symmetrical oscillators is considered. A technique already used by the authors in
planar systems is extended to cope with 3D systems, where a greater complexity is involved.

Under some given nondegeneracy conditions, the corresponding theorem characterizing the bi-
furcation is stated. In terms of the deviation from the critical value of the bifurcation parameter,
expressions in the form of power series for the period, amplitude, and the characteristic multipliers
of the bifurcating limit cycle are also obtained.

The results are applied to accurately predict the birth of symmetrical periodic oscillations in a
3D electronic circuit genealogically related to the classical Van der Pol oscillator.
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1. Introduction and main results. Piecewise linear modeling of nonlinear
dynamical systems is especially successful in some engineering problems, such as the
analysis and design of electronic oscillators or control systems (see, e.g., [CFPT02]).
However, in the framework of piecewise linear systems, there are no general bifurcation
results explaining the appearance or disappearance of self-sustained oscillations, as is
the case for the Hopf bifurcation theorem in the context of differentiable systems.
Thus, the authors gave in [FPR99] a complete characterization of the focus-center-
limit cycle bifurcation for symmetric planar piecewise linear systems. Now we show
how the corresponding result can be extended to the 3D case.

We consider a common situation in applications, namely, dynamical systems de-
fined by piecewise continuous vector fields with three linear zones and two parallel
frontiers. Furthermore, it is assumed that such systems show symmetry with respect
to the origin; that is, if we put them in the form dx/dτ = f(x) with x ∈ R3, they
satisfy f(−x) = −f(x). In particular, f(0) = 0, and so the origin is an equilibrium
point for all values of the parameters. By means of a linear change of variables, it is
always possible to suppose that the frontiers are the planes Σ1 = {x ∈ R3 : x1 = 1}
and Σ−1 = {x ∈ R3 : x1 = −1}. We denote by L (left), C (central), and R (right)
the regions of R3 at which x1 < −1, |x1| ≤ 1, and x1 > 1, respectively, hold.

To be more precise, we consider systems expressed as follows:

ẋ =

⎧⎨
⎩

ALx − b if x1 < −1,
ACx if |x1| ≤ 1,
ALx + b if x1 > 1,

(1.1)
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T>TT<Tc T=Tc c

Fig. 1. The focus-center-limit cycle bifurcation in the case D > 0, γ > 0. The focal plane and
the complementary one-dimensional invariant manifold at the origin are shown, along with the two
parallel planes which separate the three linear regions. In the situation sketched, as deduced from
Theorem 1.1, the bifurcating limit cycle is of saddle type.

where we have taken advantage of the continuity and symmetry of the vector field
involved; in particular, the matrices AL and AC differ only in their first columns.

From Proposition 16 of [CFPT02], under the generic condition of observability,
every system (1.1) can be written in the generalized Liénard form

d

dτ

⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣ t −1 0

m 0 −1
d 0 0

⎤
⎦
⎡
⎣ x1

x2

x3

⎤
⎦+

⎡
⎣ T − t

M −m
D − d

⎤
⎦ sat(x1),(1.2)

where sat(x1) is the normalized saturation

sat(x1) =

⎧⎨
⎩

−1, x1 ≤ −1,
x1, |x1| < 1,
1, x1 ≥ 1,

so that, regarding system (1.1), we have

AL =

⎡
⎣ t −1 0

m 0 −1
d 0 0

⎤
⎦ , AC =

⎡
⎣ T −1 0

M 0 −1
D 0 0

⎤
⎦ , b =

⎡
⎣ T − t

M −m
D − d

⎤
⎦ .

Note that system (1.2) is a particular instance of the more general Lur’e form

dx

dτ
= Ax + b sat(cTx)

for the case A = AL and c = e1, where e1 stands for the first vector of the canonical
basis.

Clearly, the parameters t, m, d and T , M , D stand for the trace, the sum of prin-
cipal minors of order two, and the determinant of each matrix, and they completely
determine the dynamics of the system.

Choosing T as the bifurcation parameter, for the critical value Tc = D/M with
M > 0, system (1.2) has a linear center in the zone C (see Figure 1); that is, the
matrix AC has a pair of pure imaginary eigenvalues. We want to analyze whether a
limit cycle bifurcates from this configuration as the bifurcation parameter T varies.
Note the similarities with the classical Hopf bifurcation scenario.
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It will be useful, in order to know the stability of such a limit cycle, to estimate the
characteristic multipliers of the limit cycle, that is, the eigenvalues of the derivative
of a Poincaré return map defined in an adequate section of the phase space. We will
denote the logarithms of these characteristic multipliers by μr and μa, from radial
and axial, respectively. Our main result is the following.

Theorem 1.1. Let us consider system (1.2) with M > 0, Tc = D/M , and
γ = DM −Dm + dM − tM2 �= 0. For T = Tc the system undergoes a focus-center-
limit cycle bifurcation; that is, from the lineal center configuration in the central zone,
which exists for T = Tc, one limit cycle appears for γ(T − Tc) > 0 and T − Tc

sufficiently small.
The amplitude “a” (measured as the maximum of |x1|), the period Per, and the

logarithms of characteristic multipliers μr and μa of the periodic orbit are analytic

functions at 0, in the variable (T − Tc)
1/3

; namely,

a = 1 +
(6π)2/3M4/3

8γ2/3
(T − Tc)

2/3
+

(6π4)1/3a4

960M1/3γ7/3
(T − Tc)

4/3
+ O (T − Tc)

5/3
,

Per =
2π√
M

+
π(M −m)

√
M

γ
(T − Tc) −

62/3π5/3M5/6P5

20γ8/3
(T − Tc)

5/3
+ O (T − Tc)

2
,

μr = − (48π)
1/3

M7/6γ2/3

D2 + M3
(T − Tc)

1/3
+ O (T − Tc)

2/3
,

μa =
2πD

M3/2
+

(48π)
1/3

M5/6

(
Mt−D

γ1/3
+

M2γ2/3

D2 + M3

)
(T − Tc)

1/3
+ O (T − Tc)

2/3
,

where

a4 = −120tM5 +
(
120D + 2t3 + 21mt + 72d

)
M4

+
[
−
(
93m + 27t2

)
D +

(
27m− 2t2

)
d
]
M3 +

(
2t2m + 25dt− 27m2

)
DM2

+
[
25D3 + 23 (mt− d)D2

]
M − 25mD3,

P5 = [M (M −m)
2

+ (Mt− d)
2
] (Mt−D) .

In particular, if γ > 0 and D < 0, then the limit cycle bifurcates for T > Tc and is
orbitally asymptotically stable.

This theorem describes a codimension-one bifurcation, similar to the Hopf bifur-
cation of differentiable dynamics (see [CH82]), but some differences should be noted.
In particular, the expressions characterizing the bifurcation are in terms of the pa-
rameter to the one third power instead of the one half power, and, more important,
the limit cycle amplitude’s leading order is O(1). Thus, the stability change of the
origin is accompanied by the abrupt appearance of a limit cycle of significant size.
This comment also applies to the planar case, as appeared in [Kr87] and [FPR99].

When the coefficient γ is not equal to zero, it allows a complete characterization
of the bifurcation criticality. Its role is analogous to the coefficient of the cubic term in
the Poincaré–Andronov–Hopf normal form. When γ = 0, the bifurcation is of higher
codimension, requiring a specific treatment that will appear elsewhere.

We want to remark that it is possible, with the same techniques, to obtain sim-
ilar bifurcation results for the asymmetric case of single-sided saturation. Thus, the
proposed methodology is able to cope with a wider class of piecewise linear systems.

The rest of the paper is structured as follows. In section 2, we show how the
above result can be useful for accurately predicting the birth of symmetrical periodic



1936 EMILIO FREIRE, ENRIQUE PONCE, AND JAVIER ROS

oscillations in a tridimensional electronic circuit, which can be built by taking a Van
der Pol oscillator as starting point. The proof of Theorem 1.1 is given in section 3.

2. Predicting the onset of symmetrical periodic oscillations in a 3D
electronic circuit. In this section, we consider the electronic circuit of Figure 2(a),
genealogically related with the classical Van der Pol oscillator, in order to show the
applicability of our results. Regarding this circuit, the nonlinear conductance NL is its
active element, implemented by means of an operational amplifier with the feedback
structure of Figure 2(b), and the current-voltage characteristic is shown in Figure
2(c). Note that we are dealing with a nonlinearity characteristic qualitatively similar
to the cubic one appearing in the classical Rayleigh–Van der Pol oscillator. In fact, if
we eliminate the capacitor C2 and make R = R0 = 0, then the resulting planar circuit
could be thought of as a modern electronic realization of such classical oscillators; see
[Kr87] and [FPR99].

Thus, the 3D circuit of Figure 2 can be built by adding the capacitance C2 to
a bidimensional oscillator circuit. In the context of chaotic circuits, such topology
was originally proposed in [SYM81], and was studied afterwards in [FGA84] and
[FRGP93] in the case R0 = 0 and assuming a nonlinear positive conductance for the
resistor R. With slight modifications, this circuit has been extensively studied in the
last two decades; see [GK92] or [HBCJM91]. Taking R0 = 0 and substituting the
nonlinear element by the so-called Chua diode, many papers have also been written;
see [CWHZ93], [Ma93], and references therein. Anyway, the onset of symmetrical
periodic oscillations was never accurately predicted, since in most cases the circuit
was analyzed by taking polynomial approximations. Thus, the rapid bifurcation for
the limit cycle observed in practice was never justified.

It should be remarked that the characteristic of Chua’s diode is qualitatively sim-
ilar to the one presented in Figure 2(c) but the zone of negative slope is made up by
three pieces with two different slopes. For that, at least two subcircuits with opera-
tional amplifiers like those shown in Figure 2(b) are needed. Thus, the Chua circuit
characteristic has five linear segments instead of only three, as in our case. However,
in modeling Chua’s circuit, usually only the three innermost pieces are represented,
since the two outermost pieces of positive slope are not physically used; see [Ke93].

As stated in [Kr87] and [FPR99], there exists an excellent agreement between the
actual response of the nonlinear device NL in the circuit and its symmetric piecewise

C2

R

L

R0

NL

R3

R1

R2

i

v

(b) (c)

C1

(a)

iLi

Fig. 2. (a) The 3D electronic circuit. (b) Implementation of the nonlinear conductance NL.
(c) Piecewise linear current-voltage characteristic of NL.
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linear mathematical model. Therefore, we are led to consider the piecewise linear
dynamical system

C1
dv1

dτ
=

v2 − v1

R
− i(v1),

C2
dv2

dτ
=

v1 − v2

R
− iL,(2.1)

L
diL
dτ

= v2 −R0iL,

where v1 and v2 are the voltages across the capacitors C1 and C2, respectively, while
iL is the current through the inductance. The nonlinear current-voltage characteristic
is

i(v1) =
v1 − f (v1)

R1
with f (v1) =

{
E sign (v1) , |v1| > E/σ,
σv1, |v1| ≤ E/σ,

where

σ = 1 +
R2

R3

is the gain of the operational amplifier configured (using feedback) as a noninverting
amplifier and E is its saturation voltage.

With the following linear change of variables and time rescaling,

v1 =
E

σ
y1, v2 =

E

σ
y2, iL =

E

σ

√
C2

L
y3, τ = RC1τ̄ ,(2.2)

and defining the following five nonnegative dimensionless parameters,

r =
R

R1
, c =

C1

C2
, μ = (σ − 1)

R

R1
=

RR2

R1R3
, ρ =

R2C2
1

LC2
, κ =

RR0C1

L
,(2.3)

we can express system (2.1) as follows:

d

dτ̄

⎡
⎣ y1

y2

y3

⎤
⎦ =

⎡
⎣ −r − 1 1 0

c −c −√
ρ

0
√
ρ −κ

⎤
⎦
⎡
⎣ y1

y2

y3

⎤
⎦+

⎡
⎣ μ + r

0
0

⎤
⎦ sat (y1) .(2.4)

For the subsequent analysis, we will choose μ and ρ as the main bifurcation parame-
ters. In practice, to detect the bifurcation in a experimental way, it is better to tune
the parameter μ by means of a variable resistor R2, which is equivalent to varying the
gain σ.

The observability matrix for system (2.1) is

O =

⎡
⎣ eT1

eT1 A
eT1 A

2

⎤
⎦ =

⎡
⎣ 1 0 0

−r − 1 1 0
(r + 1)2 + c −c− r − 1 −√

ρ

⎤
⎦ ,

which has full rank for all the values of components of the circuit. From Proposition
16 of [CFPT02], system (2.1) can be expressed in Liénard’s generalized form (1.2)
with the following values:

T = μ− c− κ− 1, t = −r − c− κ− 1 < 0,
M = (c + 1)κ− (c + κ)μ + ρ, m = (c + 1)κ + (c + κ)r + ρ > 0,
D = (cκ + ρ)μ− ρ, d = − (cκ + ρ) r − ρ < 0.

(2.5)
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M = 0

D = 0

MT = D

–0.05

0

0.05

0.1

0.15

0.2

0.25

ρ

0.2 0.4 0.6 0.8 1

μ

Fig. 3. The parabolic arc (thick line) in the plane (μ, ρ) corresponding to the bifurcation locus
of Proposition 2.1 for c = 0.2 and κ = 0.05. The horizontal line indicates the path followed as μ
varies for a fixed value of ρ. The dashed line represents points with D = 0, so that above it we have
D < 0. At the dotted straight line we have M = 0, and above this line we have M > 0. The vertical
line corresponds to μ = μ∗.

Note that these coefficients are the linear invariants of the two matrices involved, so
that their computation is straightforward, and that it is not necessary to explicitly
compute the linear change of variables required to get the Liénard form for applying
Theorem 1.1.

The equation MT −D = 0 leads to

(c + κ)μ2 −
[
(c + κ)2 + c + 2κ

]
μ + ρ(c + κ) + κ (c + 1) (c + κ + 1) = 0,(2.6)

which can be rewritten as (μ− μ∗)
2 + ρ− ρ∗ = 0, where

μ∗ = 1 +
(c + κ)2 − c

2(c + κ)
,

ρ∗ = μ∗
2 − κ(c + 1)

(
1 +

1

c + κ

)(2.7)

represent the coordinates in the (μ, ρ)-plane of the vertex of the quadratic (2.6); see
Figure 3. Now the application of Theorem 1.1 allows us to state the following result.

Proposition 2.1. Let us consider system (2.4) and assume that c > 0 and the
parameter κ satisfies

0 < κ < κmax(c) =

√
c2 + c− c

2
.(2.8)

Then the system undergoes the focus-center-limit cycle bifurcation described in Theo-
rem 1.1 at the points of the (μ, ρ)-plane belonging to the parabolic arc defined by the
quadratic equation

(μ− μ∗)
2 + ρ− ρ∗ = 0(2.9)
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1

κ

κ

MAX

κ

=0.25κ

0

0.1
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0.3

0.5 1 1.5 2

c

Fig. 4. The graphs of the functions κmax(c) and κ1(c), which determine different regions in the
plane (c, κ) as described in statements (a) and (b) of Proposition 2.1. Note the horizontal asymptote
at κ = 1/4.

and satisfying

ρ > (c + κ)μ− (c + 1)κ.(2.10)

The endpoints of the above parabolic arc are

(μ1, ρ1) =

(
1 − c + c

2(c + κ)
,
c(1 − 2κ) − c

2

)
, (μ2, ρ2) =

(
1 − c− c

2(c + κ)
,
c(1 − 2κ) + c

2

)
,

where

c =
√
c2(1 − 2κ)2 − 4c(c + 1)κ2.

In the points of the above parabolic arc, the inequality D < 0 holds, and the following
cases arise:
(a) If 0 < c < 1 and 0 < κ < κ1, where κ1 = κ1(c) is the only positive root of the

quartic

(c + κ)4 + 4cκ(c + κ) − c2 = 0,(2.11)

then μ1 < μ∗ < μ2 and two subcases appear; see Figure 4.
(a.1) If μ1 < μ < μ∗, then at the bifurcation points of the parabolic arc given by

(2.9)–(2.10) one has γ > 0. Consequently, when ρ varies, the bifurcation is
supercritical and the limit cycle is orbitally asymptotically stable.

(a.2) If μ∗ < μ < μ2, then γ < 0 at the bifurcation points of the parabolic arc. Here,
when ρ varies, the bifurcation is subcritical and the limit cycle is unstable.

(b) If 0 < c < 1 and κ ≥ κ1, or c ≥ 1, then all the bifurcation points of the parabolic
arc (2.9)–(2.10) satisfy γ > 0. Therefore, the bifurcation is supercritical and
the bifurcating limit cycle is orbitally asymptotically stable.
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Table 2.1

List of components for the circuit.

C = C1 = C2 100 nF
L 220 mH
R1 10 kΩ
R3 2200 Ω
R 1 kΩ
R0 220 Ω

Proof. Conditions T = Tc and M > 0 of Theorem 1.1 lead to MT −D = 0, which
is equivalent to (2.9), and to (2.10). After some manipulations, we get the inequality

(c + κ)μ2 − (c + 2κ)μ + (c + 1)κ < 0,

whose discriminant, namely c2 − 4c2κ − 4cκ2, is positive due to (2.8). In fact, this
expression coincides with c2. The endpoints of the parabolic arc can be obtained by
solving the equation M = 0 and (2.9).

To show that D < 0 at the bifurcation values, as we are working at points where
MT −D = 0 along with M > 0, it suffices to show that T < 0, which is a trivial task.

To prove statements (a) and (b), it is enough to study the sign of the coefficient
γ in Theorem 1. Using the condition MT −D = 0, we have

γ = MT (M −m) + M(d− tM) = M [T (M −m) + d− tM ],

and with M > 0 we get sign (γ) = sign [T (M −m) + d− tM ]. Thus, using (2.5),
(2.6), and canceling a factor r + μ > 0, we conclude that

sign (γ) = sign
[
(c + κ)2 + c + 2κ− 2(c + κ)μ

]
= sign (μ∗ − μ) .(2.12)

Assume now that 0 < c < 1 and 0 < κ < κ1. Thus, the left-hand side of (2.11) is
negative, which implies (c + κ)2 < c. Then μ1 < μ∗ < μ2, and statement (a) follows.

When c ≤ 1 and κ ≥ κ1, we have (c + κ)2 ≥ c. If c > 1, then we have (c + κ)2 >
c > c. In both cases, we conclude that μ∗ ≥ μ2, and statement (b) follows.

For the sake of completeness, if we define, for 0 < c < 1, the constants

q1 =
3

√
27c + 26 + 3

√
81c2 + 156c + 75 > 0, q2 = q1 +

1

q1
− 4 > 0,

we obtain

κ1(c) =

√
c

6
q2 +

√
c

√
6c

q2
− cq2

6
− 2c− c,

which is represented for 0 < c < 1 in Figure 4.
The above proposition enables us to design the electronic oscillator by choosing

adequately the component values of the circuit. In particular, in order to minimize
the signal distortion from the sinusoidal wave form, one must select parameters not far
from the bifurcation curve where the onset of periodic oscillations has been predicted.

To assess the accuracy of piecewise linear modeling for this circuit, a SPICE
implementation of the circuit was made; see [QNPS93]. The values chosen for the
components are in Table 2.1, while the operational amplifier used was an LM324,
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Fig. 5. The parabolic arc (thick line) in plane (μ, ρ) predicted by Proposition 2.1 for κ = 0.1.
The horizontal line indicates the path followed as μ varies for the fixed value of ρ used in the
simulations. The dashed line represents points with D = 0, so that above it we have D < 0. The
dotted straight line indicates points with M = 0, and above it we have M > 0.

with a supply voltage of 9V and a measured saturation voltage of 8.5V (with slight
variations around).

For these values, we have

c =
C1

C2
= 1, κ =

RR0C

L
= 0.1 <

√
2 − 1

2
≈ 0.2071,

so that we can apply Proposition 2.1 and, in particular, its statement (b). Note that

μ =
RR2

R1R3
≈ R2

22000
, ρ =

R2C

L
≈ 0.4545,

so that by varying R2 we move μ, describing a horizontal path that crosses the curve
corresponding to the locus of bifurcation points, as shown in Figure 5. For the above
value of ρ, the bifurcation takes place for the value μ̄ ≈ 0.4924, in accordance with
(2.6), that corresponds with the value R2 ≈ 10833Ω, and oscillations will appear by
increasing R2 above this critical value.

In Figures 6 and 7, we show the comparison between some experimental results
taken from a SPICE simulation, once put into dimensionless form, and the predictions
of Theorem 1.1 for the amplitude and the period of the bifurcating limit cycle. The
excellent agreement achieved validates the piecewise linear model assumed for the
operational amplifier nonlinear characteristic.

3. Proof of Theorem 1.1. In this section we provide the results necessary to
prove Theorem 1.1.

For the critical value of the bifurcation parameter Tc = D/M , the matrix AC has
a pair of imaginary eigenvalues, so that for T in a neighborhood of Tc the eigenvalues
of AC will be α± iβ and δ ∈ R. The characteristic polynomial of AC is

p(λ) = det (AC − λI) = −λ3 + Tλ2 −Mλ + D,
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Fig. 6. Comparison for amplitude between SPICE simulation data (× × ×), the expression
corresponding to the two first non-null terms of Theorem 1.1 (—), and three non-null terms (-·-).
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Fig. 7. Comparison for period between SPICE simulation data (× × ×), the expression cor-
responding to the two first non-null terms of Theorem 1.1 (—), and three non-null terms (-·-).

and thus

T = δ + 2α,

M = 2αδ + α2 + β2,(3.1)

D = δ(α2 + β2).

When α = 0 and β > 0, or equivalently D = MT and M > 0, system (1.2)
has a linear center contained in an invariant plane given by δ2x1 − δx2 + x3 = 0.
Additionally, the outermost periodic orbit of the center is tangent to the planes Σ1

and Σ−1 at the points [1, δ, 0]
T

and [−1,−δ, 0]
T
, respectively. Consequently, the time
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Fig. 8. Sketch of a symmetrical periodic orbit which uses the three linear zones of system (1.2).

spent by this orbit in going from x0 to x1 is τC = π/β in the zone C, and obviously
τL = 0 in the zone L.

We want to analyze the possible bifurcation of a limit cycle from the linear center
in the zone C. (Obviously, it should be born from the outermost periodic orbit of the
center.) As system (1.2) is linear in every zone, it is possible to obtain its solutions
explicitly, and to identify symmetrical periodic solutions of the system living in the
three zones with the solutions of the equations

eACτCx0 − x1 = 0,

eALτLx1 −
∫ τL

0

eAL(τL−s)b ds + x0 = 0,
(3.2)

where τC and τL are the times spent by the semiorbit in each zone, and

x0 =

⎡
⎣ 1

x0
2

x0
3

⎤
⎦ , x1 =

⎡
⎣ −1

x1
2

x1
3

⎤
⎦ ,

are two intersection points of the orbit with the planes Σ1 and Σ−1, respectively (from
the symmetry, there will be two more, x2 = −x0 and x3 = −x1); see Figure 8. We
will refer to the system formed by (3.2) as the closing equations. The use of these
equations goes back to Andronov and coworkers [AVK66], and it was exploited by
Kriegsmann [Kr87] in the context of limit cycle bifurcations. This author studied the
rapid bifurcation in the Wien bridge oscillator, later revisited in [FPR99].

Starting from the critical value T = Tc and considering the outermost periodic
orbit of the corresponding center configuration, we want to use the closing equations
to analyze what happens with such periodic orbit as T varies, keeping M and D
constant and always assuming M > 0. To achieve this goal, it is more convenient to
vary the eigenvalues of AC in a neighborhood of (α, β, δ) = (0,

√
M,D/M), adding to

the closing equations (3.2) the last two equations of (3.1), to impose that M and D
are fixed.
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The sorted set formed by (3.2) and the last two equations of (3.1) will be denoted
by

F(z) = 0,(3.3)

where z = (α, β, δ, τC , τL, x
0
2, x

0
3, x

1
2, x

1
3), which constitutes a nonlinear system of eight

equations and nine unknowns, to be studied in a neighborhood of the point

z̄ =

(
0,
√
M,

D

M
,

π√
M

, 0,
D

M
, 0,−D

M
, 0

)
.

Obviously, we are interested in a branch of solutions of (3.3) passing through z̄, and
leading to positive values of τL. It turns out that system (3.3) has a trivial branch of
solutions that passes through z̄ and can be parameterized as

z(μ) =

(
0,
√
M,

D

M
,

π√
M

, 0,
D

M
+ μ, μ

D

M
,−D

M
− μ,−μ

D

M

)
(3.4)

for every real μ. This trivial branch will be called the spurious branch because, for
μ �= 0, these solutions do not correspond to periodic orbits of the system (1.2). The
Jacobian matrix of F in z̄ does not have full rank; in fact, as the following result shows,
the point z̄ is a branch point where two branches intersect each other. Moreover, we
obtain a new set of equations for which z̄ is nonsingular.

Lemma 3.1. For the closing equations (3.3) with M > 0, the following statements
hold:

(a) The fourth equation of (3.3), namely

F4(z) = 0,

is satisfied for every z with τL = 0.
(b) The function F̃4(z) such that F4(z) = τLF̃4(z) is an analytic function in a

neighborhood of z̄.
(c) If we define the modified closing equations

G(z) = 0,(3.5)

where G4 = F̃4 and Gi = Fi for i �= 4, then the solution set of (3.5) in a
neighborhood of z̄ is the solution set of (3.3) excepting the spurious branch
(3.4).

(d) For system (3.5) the point z̄ is a nonsingular point. Moreover, the solutions of
(3.5) are analytic functions of τL at 0, and their corresponding Taylor series
are

α =
M5/2γ

12π(D2 + M3)
τ3
L +

M1/2ξ1
720 pi(D2 + M3)

τ5
L + O

(
τ6
L

)
,(3.6)

β =
√
M − DMγ

12π(D2 + M3)
τ3
L − Dξ1

720πM(D2 + M3)
τ5
L + O

(
τ6
L

)
,(3.7)

δ =
D

M
+

D2γ

6πM1/2(D2 + M3)
τ3
L +

D2ξ1
360πM5/2(D2 + M3)

τ5
L + O

(
τ6
L

)
,(3.8)

τC =
π√
M

− τL +
M −m

12
τ3
L +

ξ2
720πM2

τ5
L + O

(
τ6
L

)
,(3.9)
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x0
2 =

D

M
+

M

2
τL +

Mt−D

12
τ2
L +

4Mγ + π
√
Mξ3

24πM3/2
τ3
L − ξ4

720M2
τ4
L

+

[
Dξ3 −M3d

24M2
(
eπD/M3/2 + 1

) − DM3/2γ

12π(D2 + M3)

]
τ4
L + O

(
τ5
L

)
,(3.10)

x1
2 = −D

M
+

M

2
τL − Mt−D

12
τ2
L − 4Mγ − π

√
Mξ3

24πM3/2
τ3
L +

ξ4
720M2

τ4
L

−
[
eπD/M3/2

(Dξ3 −M3d)

24M2
(
eπD/M3/2 + 1

) +
DM3/2γ

12π(D2 + M3)

]
τ4
L + O

(
τ5
L

)
,(3.11)

x0
3 =

D

2
τL +

(Mt−D)D

12M
τ2
L +

[
DM3/2γ

6π(D2 + M3)
+

Dξ3
24M2

]
τ3
L

− Dξ3 −M3d

12M2
(
eπD/M3/2 + 1

)τ3
L − Dξ4

720M3
τ4
L + O

(
τ5
L

)
,(3.12)

x1
3 =

D

2
τL − (Mt−D)D

12M
τ2
L −

[
DM3/2γ

6π(D2 + M3)
+

Dξ3
24M2

]
τ3
L

+
Dξ3 + eπD/M3/2

M3d

12M2
(
eπD/M3/2 + 1

)τ3
L +

Dξ4
720M3

τ4
L + O

(
τ5
L

)
,(3.13)

where

γ = DM −Dm + dM − tM2,(3.14)

ξ1 = 5D3M − 5D3m− 15D2M2t + 11D2Md + 4D2Mmt− 15DM4

+ 21DM3m + 9DM3t2 − 10DM2dt− 6DM2m2 + DM2mt2 + 15M5t

− 9M4d− 12M4mt + M4t3 + 6M3dm−M3dt2,

ξ2 = 5D2M − 5D2m− 10DM2t + 6DMd + 4DMmt− 9M4

+ 15M3m + 5M3t2 − 6M2dt− 6M2m2 + M2mt2,

ξ3 = D (D −Mt) + M2m,

ξ4 = 15D3 − 20D2Mt + 16DM2m + 4DM2t2 − 9M3d− 7M3mt + M3t3.

Proof. Statements (a) and (b) come from a direct inspection of (3.3).
Recalling (3.2), from statement (b) and (3.3) we conclude that

F̃4(z)
∣∣∣
τL=0

= lim
τL→0

1

τL
F4(z) = eT1 AL

⎡
⎣ −1

x1
2

x1
3

⎤
⎦+ eT1

⎡
⎣ t− 2α− δ

m−M
d−D

⎤
⎦ = −x1

2 − 2α− δ.

The above computation shows that F̃4 (z(μ)) = μ, so that the spurious branch (3.4)

does not belong to the solution set of F̃4 (z) = 0. Besides, every solution z of (3.3)
with τL �= 0 is a solution of (3.5), and statement (c) is proven.

For the computation of the Jacobian matrix ∂G/∂z|z=z̄ and the series (3.6)–
(3.13), we have used the following approach. For the first three rows of the closing
equations, we work with the equivalent expression

μ0e
δτCv + eατC cos (βτC) v̂+eατC

sin (βτC)

β
(AC − αI) v̂ − x1 = 0,
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where v =
[
1, 2α, α2 + β2

]T
is a right eigenvector of AC associated with the real

eigenvalue δ, and

v̂ = x0 − μ0v

is the projection (following the direction of v) of the vector x0 onto the invariant
plane associated with the complex eigenvalues of AC . Consequently, the coefficient
μ0 is

μ0 =
wTx0

wTv
=

δ2 − δx0
2 + x0

3

(δ − α)
2

+ β2
,

where wT =
[
δ2,−δ, 1

]
is a left eigenvector of AC associated with the eigenvalue δ.

Regarding the next three rows of the closing equations, it is useful to write the
matrix exponentials in series of τL. Then, in computing partial derivatives with
respect to the variables other from τL, one only needs to consider the terms of degree
zero in τL. This comment is also useful for obtaining F̃4 from F4.

Thus, the Jacobian matrix ∂G/∂z|z=z̄ is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− π√
M

0 DMK 0 0 −DMK M2K 0 0

− πD
M3/2 −π 0 −M 0 −1 0 −1 0

0 −πD
M DM2K −D 0 −DM2K M3K − 1 0 −1

−2 0 −1 0 M
2 0 0 −1 0

0 0 0 0 −M 1 0 1 0
0 0 0 0 −D 0 1 0 1

2D
M 2

√
M 0 0 0 0 0 0 0

0 2D√
M

M 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

K =
eπD/M3/2

+ 1

D2 + M3
.(3.15)

If we remove the fifth column (corresponding to τL), the determinant of the resulting
matrix is equal to

−2πM2
(
eπD/M3/2

+ 1
)
�= 0,

and hence the matrix has full rank. From the implicit function theorem for ana-
lytic functions (see [CH82]) we obtain statement (d). All the computations of the
above series expansions have been checked with the symbolic manipulator Maple; see
[MGHLVM03].

In what follows, we give an auxiliary result to analyze the stability of the bifurcat-
ing limit cycle. First, we must study the behavior of the return map near a periodic
orbit of three zones. Due to the symmetry, we need to use only the semiorbit that
starts from x0 ∈ Σ1, crosses Σ−1 at the point x1, and returns to this section at the
point x2 = −x0 ∈ Σ−1. We denote by p0, p1 ∈ R2, the coordinates of x0 and x1

restricted to their respective sections. From the transition maps associated with the
flow, locally defined at the points x0 and x1, it is possible in adequate neighborhoods
at the sections to define the functions providing the corresponding restricted coordi-
nates. Let us denote by πC , πL such functions, satisfying πC(p0)=p1, πL(p1) = −p0,
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and let πLC = πL ◦ πC . We will let τC(p0) and τL(p1) denote the times spent by the
semiorbit in passing from x0 to x1 and from x1 to x2, respectively, and write Dp(·)
to indicate the derivative with respect to the restricted coordinates. The next result
shows how to compute the derivative DpπLC , intimately related to the monodromy
matrix associated with the periodic orbit.

Proposition 3.2. Consider a symmetrical periodic orbit of system (1.2) that
uses the three zones, starting from x0 ∈ Σ1 with coordinates p0 ∈ R2, passing through
x1 ∈ Σ−1 with coordinates p1 ∈ R2, and transversal to both sections. Then, the
product of the two matrices[

1 DpτL(p1)
0 DpπL(p1)

] [
−1 DpτC(p0)
0 DpπC(p0)

]
=

[
−1 DpτC(p0) + DpτL(p1)DpπC(p0)
0 DpπLC(p0)

]

is similar to

eALτL(p1)eACτC(p0).(3.16)

Proof. It is enough to use the explicit expressions of the solutions of system (1.2)
at every zone and the continuity of the vector field; see [Ro03] for more details.

The following lemma deals with a technical result that allows us to invert certain
power series; see [FPR99] for a proof.

Lemma 3.3. Let be η = ξnρ(ξ) with n odd, where ρ is a real function analytic at
0 and such that ρ(0) = ρ0 �= 0. Then there exists a real function χ analytic at 0, with

χ(0) �= 0 and such that ξ = η
1
nχ(η

1
n ).

If we select only the solutions of the closing equations with τL > 0 but sufficiently
small, and 0 < τC < π/

√
M but sufficiently close to π/

√
M , then we can assure that

such solutions correspond to symmetrical and transversal periodic orbits; see [Ro03]
for more details. Reciprocally, if we take a symmetrical periodic orbit that uses the
three zones and is sufficiently close to the outermost periodic orbit of the center that
exists for the critical values of parameters, then its corresponding values τC > 0,
τL > 0, x0, x1, and remaining parameters determine a point z satisfying the closing
equations. Therefore, we can establish with the above restrictions a correspondence
between solutions z of closing equations and symmetrical periodic orbits. This corre-
spondence, along with the uniqueness of the solution obtained in Lemma 3.1, ensures
that the corresponding bifurcating periodic is an isolated periodic orbit, that is, a
limit cycle.

Coming back to the statements of Theorem 1.1, we begin by using statement (d)
of Lemma 3.1. We can compute T (τL) using that T = 2α + δ and the corresponding
expansions (3.6) and (3.8) for α and δ, obtaining

T =
D

M
+

γ

6πM1/2
τ3
L +

ξ1
360πM5/2

τ5
L + O

(
τ6
L

)
,(3.17)

where γ and ξ1 are given in the statement of Lemma 3.1. From (3.17) and taking into
consideration that τL must be positive, it is obvious that MT − D and γ have the
same sign, and so the condition γ(MT −D) > 0 holds.

Now, if we apply Lemma 3.3 to (3.17), taking n = 3, η = MT −D, and ξ = τL,

we conclude that τL is an analytic function at the origin in the variable (MT −D)
1/3

.
A standard computation leads to the expansion

τL =
(6π)

1/3
(MT −D)

1/3

M1/6γ1/3
+

πξ1
30M5/2γ2

(MT −D) + O (MT −D)
4/3

.(3.18)
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Due to the symmetry of the orbit, its period is equal to 2(τC + τL). Substituting
expansion (3.18) into (3.9), and computing the above expression for the period, we
get the expansion given for Per.

We will now determine the amplitude of the periodic orbit. By using the variation
of parameters formula, the solution of system (1.2) in zone R is

x(τ) = eALτx3(τL) +

∫ τ

0

eAL(τ−s)b(τL) ds,(3.19)

so that its first component is

x1(τ) = eT1

⎧⎨
⎩eALτ

⎡
⎣ 1

−x1
2 (τL)

−x1
3 (τL)

⎤
⎦+

( ∞∑
i=0

Ai
L

τ i+1

(i + 1)!

)
b(τL)

⎫⎬
⎭ .(3.20)

Let τ∗ be the time when |x1| attains its maximum value in zone R. Taking
derivatives with respect to τ in (3.20), and imposing that it must vanish at τ∗, we get

G(τL, τ
∗) =

dx1(τ)

dτ

∣∣∣∣
τ=τ∗

= eT1 e
ALτ∗

⎡
⎣ x1

2 (τL) + T (τL)
x1

3 (τL) + M
D

⎤
⎦ = 0.(3.21)

Now using expressions (3.11) and (3.13) and computing the power series of G in
(τL, τ

∗) at (0, 0), we obtain

G(τL, τ
∗) =

M

2
τL −Mτ∗ +

D −Mt

12
τ2
L +

Mt−D

2
τLτ

∗ +
D −Mt

2
τ∗2 + O(τL, τ

∗)3.

Hence, (3.21) defines implicitly in a neighborhood of (0, 0) a function τ∗ = ψ(τL) such
that G(τL, ψ(τL)) = 0, namely,

τ∗ =
1

2
τL +

Mt−D

24M
τ2
L + O(τ4

L).

Substituting the above expansion together with (3.11), (3.13), and (3.17) into the
expression (3.20), we get

a = x1(τ
∗) = 1 +

M

8
τ2
L +

1

1152M
(13D2 − 11DMt + 15M2m− 2M2t2)τ4

L + O(τ5
L).

Using expression (3.18) for τL, we obtain the final expression for the amplitude a.
Let us now compute the characteristic multipliers of the bifurcating limit cycle.

Due to the similarity relationship established in Proposition 3.2, we conclude that the
product exp(ALτL) ·exp(ACτC) corresponding to a solution of (3.5) has an eigenvalue
equal to −1. We will denote by λr and λa the other two eigenvalues that correspond
to the eigenvalues of the derivative DpπLC(p0) of the transition map associated with
the semiorbit. The product of the three eigenvalues is then equal to

−λrλa = det
(
eALτL

)
det
(
eACτC

)
.

Using that det(eAτ ) = exp(τ trace(A)), we get

−λrλa = eτLt+τCT .(3.22)
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The expansion of the product of exponentials in (3.16) leads to an expression of
the form

eALτLeAC(τL)τC(τL) = H0 + τLH1 + τ2
LH2 + · · · .(3.23)

To compute the above matrices Hi, we write(
I + ALτL + A2

L

τ2
L

2!
+ · · ·

)

×
(
eAC(0)τC(0) + τL

d

dτL
eAC(τL)τC(τL)

∣∣∣∣
τL=0

+
τ2
L

2!

d2

dτ2
L

eAC(τL)τC(τL)

∣∣∣∣
τL=0

+ · · ·
)
.

From expansions (3.6)–(3.13), we obtain τC(0) = π/M1/2, τ ′C(0) = −1, τ ′′C(0) = 0,
A′

C(0) = A′′
C(0) = 0, and using these values in the above expression, we finally get

H0 = eAC(0)τC(0) =

⎡
⎣ D2K − 1 −DMK M2K

0 −1 0
D2MK −DM2K M3K − 1

⎤
⎦ ,

H1 =

⎡
⎣ t−D/M

m−M
d−D

⎤
⎦ [ D2K − 1 −DMK M2K

]

and

H2 =
Mt−D

2M
H1,

where K has been defined in (3.15), and it is emphasized that H1 and H2 are rank-one
matrices.

The matrix H0 has eigenvalues −1 (double) and λ0 = exp(πD/M3/2). For the
single eigenvalue λ0, we select a right eigenvector v0 = [1, 0,M ]T and a left eigenvector
wT

0 = [D2/M2,−D/M, 1]. We will denote by λa the eigenvalue of DπLC(p0) that
for τL = 0 is equal to λ0. Since the eigenvalue λ0 of H0 is simple, we can apply
perturbation theory (see section 2.8 of [Wi65]) to assure that the equality(

H0 + τLH1 + τ2
LH2 + · · ·

) (
v0 + τLv1 + τ2

Lv2 + · · ·
)

= (λ0 + τLλ1 + τ2
Lλ2 + · · · )

(
v0 + τLv1 + τ2

Lv2 + · · ·
)

holds for certain vectors v1, v2 . . . . As a consequence of Proposition 3.2 and (3.23),
we get

λa = λ0 + τLλ1 + τ2
Lλ2 + · · · .

After some computations, we arrive at

λ1 =
wT

0 H1v0

wT
0 v0

=

(
Mt−D

M
+

γM

D2 + M3

)
λ0,

λ2 =
wT

0 (H2v0 + (H1 − λ1I)v1)

wT
0 v0

=
(Mt−D)

(
D2 + M3

)
+ γ

2M2 (D2 + M3)
2
(λ0 + 1)

×
[
(Mt−D)

[(
D2 + M3

)
λ0 + D2 −M3

]
+ 2M2 (dM −Dm)

]
λ0.
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The logarithms μr and μa of characteristic multipliers of the complete periodic
orbit must satisfy

eμr = λ2
r, eμa = λ2

a,(3.24)

while from (3.22) we get the relationship

μr + μa = 2tτL + 2TτC .(3.25)

From (3.24) and using the computed simple eigenvalue λa, we obtain

μa = 2 log
[
λ0 + λ1τL + λ2τ

2
L + O(τ3

L)
]

= 2 log λ0 + 2 log

[
1 +

λ1

λ0
τL +

λ2

λ0
τ2
L + O(τ3

L)

]

= 2λ0 + 2
λ1

λ0
τL +

[
2
λ2

λ0
− λ2

1

λ2
0

]
τ2
L + O(τ3

L).

Substituting here λ1 and λ2, and using expansion (3.18) of τL, we finally get the
expression for μa that appears in Theorem 1.1. Using in (3.25) the expansions (3.9)
for τC and (3.18) for τL, we compute μr.

Since the last assertion of Theorem 1.1 is a direct consequence of previous state-
ments, its proof is now completed.
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[FGA84] E. Freire, L. Garćıa-Franquelo, and J. Aracil, Periodicity and chaos in an
autonomous electronic oscillator, IEEE Trans. Circuits Systems, 31 (1984),
pp. 237–247.
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ON A MATHEMATICAL MODEL OF THE PRODUCTIVITY INDEX
OF A WELL FROM RESERVOIR ENGINEERING∗
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Abstract. Motivated by the reservoir engineering concept of the productivity index of a produc-
ing oil well in an isolated reservoir, we analyze a time dependent functional, diffusive capacity, on the
solutions to initial boundary value problems for a parabolic equation. Sufficient conditions providing
for time independent diffusive capacity are given for different boundary conditions. The dependence
of the constant diffusive capacity on the type of the boundary condition (Dirichlet, Neumann, or
third boundary condition) is investigated using a known variational principle and confirmed numer-
ically for various geometrical settings. An important comparison between two principal constant
values of a diffusive capacity is made, leading to the establishment of criteria when the so-called
pseudo-steady-state and boundary-dominated productivity indices of a well significantly differ from
each other. The third boundary condition is shown to model the thin skin effect for the constant
wellbore pressure production regime for a damaged well. The questions of stabilization and unique-
ness of the time independent values of the diffusive capacity are addressed. The derived formulas are
used in numerical study of evaluating the productivity index of a well in a general three-dimensional
reservoir for a variety of well configurations.
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1. Introduction. In many applied problems, where the modeled processes are,
in general, transient, it is important to define such functionals on the solutions, which
are, in a sense, time invariant. Existence of such property is important from both
practical and theoretical points of view. An important such example to petroleum
reservoir engineering, the productivity index (PI), is studied here.

It was long ago observed by petroleum engineers that if a bounded reservoir is
depleted by a well, then the ratio of the flow rate to the pressure drawdown (the
pressure drop between the reservoir and the wellbore) stabilizes to a constant value.
This constant value seems to depend only on the geometrical and hydrodynamical
characteristics of the reservoir. In particular, it appears to be independent of the
pressure drawdown in the reservoir or the flow rate from the well [23].

The first concise description of this fact was formulated in the classical book by
Muskat [23]. The ratio of the rate of flow from the well to the difference between the
average pressure on the wellbore and the average pressure in the reservoir is called
the productivity index of the well [23]. There are two idealized production regimes
considered most frequently for the purpose of analysis in engineering practice: the
well can be produced either with a constant flow rate or with a constant wellbore
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pressure. In a bounded reservoir depleted in either of the two regimes, the PI of a
well stabilizes and remains constant in a long time asymptote.

To analyze the productivity of the well we consider three initial boundary value
problems (IBVPs) that correspond to current engineering practice. However, while
two of the formulated problems corresponding to the constant pressure production
regime are well-posed, the problem modeling the regime with a constant rate of pro-
duction is ill-posed in the sense of nonuniqueness of solution.

Field operations often reduce the permeability of the region adjacent to the
wellbore—the so-called skin zone. Disregarding the skin effect leads to overestimation
of the PI of the damaged well [30, 15]. One of the IBVPs considered in this article
models the skin effect in the constant pressure production regime.

The objective for this paper is to build a rigorous mathematical frame for studying
the PI. In this respect, it proves useful to introduce the concept of diffusive capacity
for a well-reservoir system. The diffusive capacity is an integral type characteristic of
the solution of an IVBP. To address the issue of nonuniqueness of solution of the ill-
posed IBVP, we impose restrictions defining a class of solutions in which the diffusive
capacity is unique. The inflicted restrictions are motivated by physical considerations
as well as traditional engineering practice.

An important property of the PI to stabilize with time regardless of the production
regime is then analyzed in terms of the diffusive capacity. Sufficient conditions for the
diffusive capacity to be time independent are given for different boundary conditions;
through a variational approach to studying the diffusive capacities, its dependence on
different boundary conditions is revealed. The obtained theoretical results are then
illustrated by numerical computations of the constant diffusive capacities for processes
with different boundary conditions in various geometrical settings.

1.1. PI of a well in a bounded reservoir. Reservoir engineering ap-
proach: Shape factors. Consider a bounded hydrocarbon reservoir with a flowing
fluid (oil) and a well produced with either constant wellbore pressure or constant
production rate. The PI of a well is defined as [26]

PI(t) =
q(t)

pw(t) − pa(t)
,(1)

where q(t) is the rate of flow from the well, pw(t) is the flowing bottomhole pressure,
and pa(t) is the average pressure of the fluid in the reservoir. When the well is
produced with a constant wellbore pressure, its value is taken as pw(t) in (1). The
concept of the PI of a well facilitates reservoir engineering methods of estimation of
the available reserves and, consequently, helps to optimize the recovery efficiency.

About a century ago it was empirically observed that under either of the two
recovery regimes, the PI of a well stabilizes and remains almost constant in a long
time asymptote [26]. When the PI of a well is constant, the production regimes
have traditionally accepted names: the production regime with the constant rate and
constant PI is called a pseudo-steady-state (PSS), and the production regime with
the constant wellbore pressure and the constant PI is called a boundary-dominated
(BD) state.

The first analytical formula for representation of the PI of a well for a PSS regime
was obtained by Muskat [23] for an isolated cylindrical reservoir and a given constant
production rate on the fully penetrated vertical well. The IBVPs with the constant
rate well boundary condition for a number of typical drainage shapes were first solved



1954 IBRAGIMOV, KHALMANOVA, VALKO, AND WALTON

by Matthews, Brons, and Hazebroek in [21] in connection to the analysis of the build-
up wellbore pressure after well shut-in. Using the result of Matthews, Brons, and
Hazebroek, an approximate formula for a PSS PI (with skin s) can be written as

JDietz =
1

1
2 ln 4V

γCAr2
w

+ s
,(2)

where V is the area of the two-dimensional reservoir (a three-dimensional reservoir
with a uniform thickness), rw is the radius of the circular well, and γ is Euler’s
constant. Equation (2) uses the solution for the dimensionless PSS wellbore pressure
first derived by Ramey and Cobb in [27]. The values of the so-called shape factor CA

were first presented in [6] and are usually referred to as Dietz’s shape factors in the
petroleum engineering literature. Positive skin captures the damage to the skin zone,
while the negative skin was shown to model a stimulated well [12, 15, 4, 8, 14, 19].

The approximate formula (2) is also used to estimate the productivity of a well
produced with a constant bottomhole pressure. However, it is known that the BD
state PI of a well is, in general, different from the PSS PI. In particular, the empirical
evidence is that the PSS PI is always greater than or equal to the BD PI.

In 1998 Wattenbarger and Helmy derived an algorithm and computed the values
of shape factors in (2) for the typical shapes of the drainage area for BD state, using
a method of images, Laplace transform, and a fundamental relationship between the
images in Laplace space of the cumulative production and the production rate. The
applicability of (2) is contingent on the method of images—a drainage area to which
the method of images can be applied must be of a shape, which, when translated
infinitely many times in all directions, can cover the entire two-dimensional plane.

Most solutions for evaluating the PI in three-dimensional reservoirs, i.e., for di-
rectionally drilled wells, follow the same principle as the two-dimensional methods in
that they are based on a semianalytical solution for a particular case, from which one
finds a convenient approximate formula which is then applied to similar reservoir/well
configurations. The semianalytical solution is often based on the superposition of an-
alytical solutions for a transient problem in an unbounded reservoir. For the solution
of the problem to be unique, additional assumptions must be made. Usually the
restrictions are imposed on the distribution of the pressure on the wellbore. Under
one such restriction, the wellbore is assumed to have infinite conductivity, i.e., the
wellbore pressure is assumed to be constant on the wellbore at each moment of time.
Under another restriction the pressure flux through the wellbore surface is constant
at all times.

The solution in a bounded reservoir is then expressed in terms of an infinite time
dependent series, similar to the technique used in [21, 16]. Then a comprehensive com-
puting procedure is applied to determine the stabilized values of the time dependent
series in the obtained solution [20, 25, 29, 17, 3, 28].

In most cases the methods for computing the PI of a deviated or horizontal well in
a three-dimensional reservoir are aimed at obtaining an appropriate value of a shape
factor CA and skin factor s in (2). The effects associated with the deviation of the well
from a fully penetrated vertical one are included in the skin s. A vertical well is called
fully penetrated if its penetration length is equal to the thickness of the reservoir. A
vertical fully penetrated well corresponds to s = 0. The effects of the geometry of the
external boundaries of the reservoir are included in the shape factor CA [20, 7].

As seen from this brief review, the existing methods and techniques of evaluation
of the PI impose serious restrictions on the geometry of the reservoir. In particular,
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the vertical dimension of the reservoir has to be small in comparison to its lateral
dimensions to allow one to neglect the flow in the vertical direction or include its effect
in the geometrical skin, sg. Another restriction is due to the use of the method of
images, which requires the drainage area shape to be convex and suitable for covering
the whole plane when translated infinitely many times.

One should also note that very little attention has been paid to methods for
evaluating a BD PI. For instance, all works mentioned above are concerned only with
evaluating the PSS PI in three-dimensional reservoirs. In practice, the BD PI values
are taken to be equal to the PSS PI, although it has been shown that the difference
between these two values of PI can be up to 10% even for horizontal flow in simple
drainage shapes [13, 16].

2. Statement of the problem. Let a point in Rn be denoted by x = (x1, . . . , xn),
n = 2, 3. Let Ω be an open domain in Rn which is bounded by the two disjoint piece-
wise smooth surfaces Γw and Γe. Let u(x, t), t ∈ R, be a solution of the equation

∂u

∂t
= Lu,(3)

where L = ∇ · (A(x)∇), A is a symmetric positive definite matrix with smooth
components and ∇ = ( ∂

∂x1
, . . . , ∂

∂xn
) is the usual gradient operator.

Let u(x, t) be subject to the homogeneous Neumann boundary condition on Γe:

∂u

∂�ν
= (A(x)∇u) · �n = 0,(4)

where �n is the outward normal to Γe. On the remaining part of the boundary, Γw,
three types of boundary conditions will be considered:

(a) constant total flux
∫
Γw

∂u
∂�ν dS = −q, q being a real positive constant;

(b) constant Dirichlet condition u|Γw = uw2, uw2 being a real positive constant;
(c) mixed boundary condition

(
(u− uw3)|Γw + α∂u

∂�ν

)
|Γw = 0, where α and uw3

are real constants, uw3 > 0.
For simplicity, we assume that the components of the coefficient matrix A and the
domain boundary are smooth, so solutions of the IBVPs I, II, and III (stated below)
are understood in a classical sense. In (b), uw2 > 0 is a given constant; in (c), uw3 > 0
and α are given constants.

This leads to three IBVPs:
Problem I.

Lu =
∂u

∂t
, x ∈ Ω, t > 0,

∂u

∂�ν
|Γe = 0,

∫
Γw

∂u

∂�ν
dS = −q,

u(x, 0) = f1(x).

Remark 1. As mentioned in the introduction, Problem I is ill-posed: there are
infinitely many solutions. The PI will be modeled as an integral characteristic of
a solution and hence will be lacking uniqueness of definition. Therefore, we will
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consider two classes of solutions in each of which the solution is unique up to an
additive constant. These two classes will be described in detail in sections 3 and 4.
Each class has a clear physical meaning. The integral characteristic modeling the PI
will be shown to be unique in each class.

Problem II.

Lu =
∂u

∂t
, x ∈ Ω, t > 0,

∂u

∂�ν
|Γe = 0,

u|Γw
= uw2,

u(x, 0) = f2(x).

Problem III.

Lu =
∂u

∂t
, x ∈ Ω, t > 0,

∂u

∂�ν
|Γe = 0,(

α
∂u

∂�ν
+ (u− uw3)

)
|Γw = 0,

u(x, 0) = f3(x).

Remark 2. Physically, u(x, t) is interpreted as the fluid pressure in the reservoir,
and hence, we will restrict our attention only to positive solutions of Problems I, II,
and III. Moreover, a solution to Problem I is not necessarily positive on Ω for all
t > 0, even if the initial function f1(x) is positive on Ω. It will be shown that for
positive q, there exists a solution to Problem I which is positive on Ω for t ∈ (0, T )
for some positive T .

Remark 3. The maximum principle for a parabolic equation implies that the
solution of Problem II is unique and positive if the initial condition f2 is positive on
Ω [10]. The uniqueness, existence, and regularity of the solutions of Problem III with
respect to the sign of the coefficient α in the boundary condition on Γw are discussed,
for example, in [10]. Formally, Problem III is a generalization of Problem II. However,
we consider Problem II separately in light of its importance for applications in the
reservoir engineering.

Remark 4. The obtained results can be extended to a generalized Wiener solution
of an IBVP in a locally smooth domain [18]. We will not present it in this work to
preserve the original engineering statement of the problem.

2.1. Definition of diffusive capacity. Let us introduce the following notation.
If v is a function defined on Ω, then let v̄w and v̄Ω denote the average of v on Γw and
Ω, respectively, defined by

v̄w =
1

W

∫
Γw

vdS

and

v̄Ω =
1

V

∫
Ω

vdx,

where V = mesnΩ, W = mesn−1Γw.
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Definition 1. Let u(x, t) be a classical solution [10] of the parabolic equation
Lu = ∂u

∂t in Ω× (0,∞) with boundary condition ∂u
∂�ν |Γe = 0 and (a), (b), or (c) on Γw.

Let T > 0 be such that u(x, t) > 0 for all x ∈ Ω and t ∈ (0, T ). The diffusive capacity
of Γw with respect to Γe (or simply diffusive capacity) corresponding to the solution
u(x, t) is the ratio

J(u, t) =

∫
Γw

∂u
∂�ν dS

ūw − ūΩ
,(5)

where t ∈ (0, T ).
Remark 5. For fixed boundary and initial conditions in Problem II (III), the

diffusive capacity J(u, t) corresponding to the solution u of Problem II (III) is a
function of time only. However, for fixed boundary and initial conditions in Problem
I, the diffusive capacity J(u, t) is a time dependent functional on the set of solutions
{u} to Problem I.

Remark 6. The corresponding diffusive capacity corresponding to a solution of
Problem III is defined as

J(u, t) =

∫
Γw

∂u
∂�ν dS

uw3 − ūΩ
.(6)

Such correction to the general definition is based on the physical assumption that uw3

is an average wellbore pressure, measured inside the wellbore.
In our intended application, Ω represents a hydrocarbon reservoir with a flowing

fluid (oil) with the outer boundary Γe and a well with boundary Γw. The outer
boundary of the reservoir is assumed impermeable to the flowing fluid. It is assumed
that the fluid is slightly compressible and its flow in the reservoir is governed by
Darcy’s law relating the gradient of pressure in the reservoir to the filtration velocity
[23, 26]. Then u(x, t) corresponds to the pressure in the reservoir and the three types of
boundary conditions specified on the well Γw correspond to different recovery regimes.
Boundary condition (a) models the recovery regime with constant production rate,
(b) models the recovery regime with constant wellbore pressure, and (c) models the
constant wellbore pressure regime of production from a well with nonzero skin [26].
The initial conditions f1, f2, and f3 take on a meaning of the pressure distribution
in the reservoir Ω; hence, we will require that fi ≥ 0 on Ω, i = 1, 2, 3. IBVP III will
be discussed in greater detail in section 5. The diffusive capacity J(u, t) takes on the
meaning of the PI of the well.

3. Time independent diffusive capacity. In this section we show that for
each of the IBVP (I, II, and III) there exist initial distributions f1(x), f2(x), and
f3(x), respectively, such that the diffusive capacity with respect to the corresponding
problem is constant [16]. For Problem I, we describe the class of solutions to IBVP I
on which the diffusive capacity takes a unique value. In the last subsection, the time
independent values of the diffusive capacity for Problems I, II, and III are compared
to each other.

3.1. IBVP I. All solutions of Problem I, for which the diffusive capacity is
independent of time, possess the following property.

Remark 7. If u(x, t) is a solution of Problem I and J(u, t) = J(u) is constant for
all t > 0, then there exist real constants C and B such that

ūw =
1

W

∫
Γw

udS = C + Bt.(7)
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This can be seen from the following argument. From the definition of the diffusive
capacity (5), it follows that ūw = − q

J(u) + ūΩ. Hence, ∂ūw

∂t = ∂ūΩ

∂t . The divergence

theorem implies that

∂ūΩ

∂t
=

1

V

∫
Ω

Ludx =
1

V

∫
Γw

∂u

∂�ν
dS.(8)

Consequently,

∂ūw

∂t
= − q

V
,(9)

from which (7) easily follows.
The “infinite conductivity of the well” assumption asserts that at each instant

of time, the pressure on the wellbore is constant. Together with the latter remark,
this motivated us to study the diffusive capacity on the class of solutions of Problem
I, defined by Υ = {u | ∃C and B are constants, such thatu(x, t) = C + Bt for x ∈
Γw and for t ≥ 0 }.

Proposition 1. Problem I has a unique solution in class Υ.
Proof. Assume that u ∈ Υ and v ∈ Υ are solutions of Problem I. Let C1, B1, C2,

and B2 be such that for t > 0,

u(x, t)|Γw = C1 + B1t

and

v(x, t)|Γw
= C2 + B2t.

Then the difference g(x, t) = u(x, t) − v(x, t) is the solution of the following IBVP:

Lg =
∂g

∂t
, x ∈ Ω, t > 0,(10)

∂g

∂�ν
|Γe = 0,(11)

g|Γw = (C1 − C2) + (B1 −B2)t,(12)

g(x, 0) = 0.(13)

In addition, ∫
Γw

∂g

∂�ν
= 0.(14)

Condition (13) immediately implies that C1 = C2.
The function h = ∂g

∂t is a solution of the following problem:

Lh =
∂h

∂t
, x ∈ Ω, t > 0,(15)

∂h

∂�ν
|Γe = 0,(16)



MATHEMATICAL MODEL OF THE PRODUCTIVITY INDEX 1959

h|Γw
= B1 −B2,(17)

h(x, 0) =
∂g

∂t
(x, 0).(18)

In addition, from the boundary condition on Γw of Problem I and the divergence
theorem it follows that for t > 0,∫

Ω

hdx =
∂

∂t

∫
Ω

gdx =

∫
Ω

Lgdx ≡ 0.(19)

As a solution of the parabolic equation (15) with the Dirichlet condition (17) on one
part of the boundary ∂Ω and Neumann condition (16) on the remaining part of ∂Ω,
h will converge to a constant B1 − B2 on Ω as t → ∞ [18]. Together with condition
(19) this implies that

(B1 −B2)V = lim
t→∞

∫
Ω

h(x, t)dx = 0.(20)

Thus, u = v.
For purposes that will become clear from Proposition 2, let us introduce the

following auxiliary steady-state boundary value problem. Let u1(x) be such that

Lu1 = − 1

V
,(21)

u1|Γw
= 0,(22)

∂u1

∂�ν
|Γe

= 0.(23)

Then the following proposition gives a sufficient condition providing for time inde-
pendent unique diffusive capacity J(u, t) = J(u).

Proposition 2. If the initial condition in Problem I is given by f1(x) = qu1(x)+
C where u1 is the solution of (21)–(23) and C is an arbitrary constant such that
f1(x) > 0 for all x ∈ Ω, then the diffusive capacity corresponding to a solution u ∈ Υ
of Problem I is independent of time and determined by

JI := J(u, t) =
V∫

Ω
u1(x)dx

.(24)

Proof. Let the initial condition in Problem I be f1(x) = qu1(x) and

u(x, t) = qu1(x) − q

V
t.(25)

By virtue of the divergence theorem,∫
Γw

∂u

∂�ν
dS = −q.

Consequently, u is a solution of IBVP I with the initial distribution f1(x) = qu1(x).
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Note that u, defined by (25), belongs to class Υ. In addition, it is clear that the
diffusive capacity J(u, t) on u(x, t) is constant and is given by

J(u, t) =
V∫

Ω
u1(x)dx

= JI.

Remark 8. Function u, defined by (25), is positive on Ω only for t ∈ (0, T ), where

T =
minx∈Ω u1(x)

V
.(26)

Solutions of Problem I represent the pressure distribution in the reservoir at time
t; hence, we are interested in the positive on Ω solutions only. Therefore, the diffusive
capacity (as a model of a PSS PI) J(u, t) = JI is defined only for t ∈ (0, T ), where T
is given by (26).

The necessary condition for the time independent diffusive capacity on the solu-
tions of Problem I in class Υ is given by the following proposition.

Proposition 3. If the diffusive capacity J(u, t), corresponding to a solution
u ∈ Υ of Problem I, is constant for all t > 0, then∫

Ω

(u(x, 0) − qu1(x))dx + C∗ = 0,(27)

where constant C∗ is independent of q and u1 is the solution of the problem (21)–(23).
Proof. Let u ∈ Υ be a solution of Problem I such that J(u, t) = J(u) is constant

for all t > 0. Let

g(x, t) = u(x, t) −
(
qu1(x) − q

V
t
)
.(28)

There exist constants C and B such that u|Γw = C +Bt. Moreover, by (9), B = − q
V .

Hence, g is a solution of the problem

Lg =
∂g

∂t
, x ∈ Ω, t > 0,(29)

∂g

∂�ν
|Γe

= 0,(30)

g|Γw
= C,(31)

g(x, 0) = u(x, 0) − qu1(x).(32)

In addition, g is subject to the following condition:∫
Γw

∂g

∂�ν
dS = 0.(33)

As a solution of the parabolic equation (29) with the boundary conditions (30) and
(31), g(x, t) → C as t → ∞. Together with (33), the latter implies that ḡΩ = C for
all t > 0. Therefore,

∫
Ω
g(x, 0)dx =

∫
Ω
(u(x, 0) − qu1(x))dx = CV = C∗.

Remark 9. By Proposition 3, the initial distribution providing for the time in-
dependent diffusive capacity is unique up to an additive function of zero average on
Ω and an additive constant independent of the geometry of the domain or boundary
conditions.

Remark 10. The integral of the solution of Problem I at t = 0 represents the
initial reserves in the reservoir [9, 2]. The main physical consequence of Proposition 3
is that the diffusive capacity as a model of the PI uniquely determines the average
initial amount of the reserves in the reservoir.
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3.2. IBVP II. Let

∂u2

∂t
= Lu2,(34)

∂u2

∂�ν
|Γe = 0,(35)

u2|Γw = 0,(36)

u2(x, 0) = f2(x) − uw2.(37)

Obviously, u(x, t) = u2(x, t) + uw2 solves Problem II. Then the diffusive capacity for
Problem II can be expressed in terms of u2(x, t), namely,

J(u, t) := J(u2, t) =

∫
Γw

∂u2

∂�ν dS

− 1
V

∫
Ω
u2(x, t)dx

.(38)

Consider the related Sturm–Liouville problem for the elliptic operator L and the
first eigenpair of the latter; i.e., let λ0 and φ0(x) be the first eigenvalue and first
eigenfunction, respectively, of the problem

Lφ0 = −λ0φ0,(39)

φ0|Γw
= 0,(40)

∂φ0

∂�ν
|Γe = 0.(41)

Let u2(x, t) be a solution of the IBVP (34)–(37) with the initial distribution u2(x, 0)
equal to φ0(x). Then u2(x, t) = φ0(x)e−λ0t is a solution of the IBVP (34)–(37). The
diffusive capacity is constant and is equal to

JII := J(u2, t) =
λ0

∫
Ω
φ0(x)dxe−λ0t

1
V

∫
Ω
φ0(x)dxeλ0t

= λ0V.(42)

This leads to the next proposition.
Proposition 4. If the initial condition of Problem II is given by f2(x) = φ0(x)+

uw2, where φ0 is the eigenfunction of problem (39)–(41) corresponding to the minimal
eigenvalue λ0, then the diffusive capacity on the solution u of Problem II is constant
and is given by

J(u, t) = JII = λ0V.

In fact, the diffusive capacity is constant provided that the initial distribution
u2(x, 0) is equal to any eigenfunction φi(x), i = 1, 2 . . . . However, only the eigenfunc-
tion corresponding to the minimal eigenvalue does not change sign on Ω; therefore,
in terms of the pressure distribution in the hydrocarbon reservoir, φ0(x) is the only
physically realistic initial distribution.
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3.3. IBVP III. Let u3(x, t) = u(x, t)− uw3, where u solves (III) and uw3 is the
given average value of u on Γw (see Remark 6). Then u3(x, t) is a solution of the
reduced problem

Lu3 =
∂u3

∂t
,(43)

∂u3

∂�ν
|Γe

= 0,(44)

(
α
∂u3

∂�ν
+ u3

)
|Γw

= 0,(45)

u3(x, 0) = f3(x) − uw3.(46)

Diffusive capacity J(u, t) corresponding to Problem III is expressed in terms of
J(u3, t) in the following way:

J(u, t) = J(u3, t) =

∫
Γw

∂u3

∂�ν dS

− 1
V

∫
Ω
udx

.(47)

Physically, the Robin boundary condition on Γw in Problem III corresponds to pro-
duction from a well with a thin-skin zone with constant wellbore pressure (constant
ū3|Γw

) [26]. A sufficient condition for the diffusive capacity to be constant is similar
to that for Problem II.

In particular, consider the related Sturm–Liouville problem. Let λα
k and φα

k (x)
be an eigenpair of the problem

Lφα
k = −λα

kφ
α
k ,(48)

∂φα
k

∂�ν
|Γe = 0,(49)

φα
k + α

∂φα
k

∂�ν
|Γw = 0.(50)

Here, the superscript α is intended to emphasize that the solution and, hence, the
diffusive capacity of Problem III depend on the value of parameter α. This dependence
will be analyzed in subsequent sections. Let u3(x, t) be a solution of the IBVP (43)–
(46) with the initial distribution u3(x, 0) = φα

k (x). Then u3(x, t) = φα
k (x)e−λα

k t solves
(43)–(46) and the diffusive capacity is time independent.

When parameter α in Problem III is positive, then the minimal eigenvalue λα
0 is

positive and the corresponding eigenfunction φα
0 (x) does not change sign on Ω.

In section 5 we will show that the boundary condition on Γw of Problem III
models skin effect for a damaged well produced with a constant wellbore pressure.
As mentioned in section 1, the production from a stimulated well is modeled by a
negative skin factor s; therefore, we will analyze the behavior of the diffusive capacity
on the solutions of Problem III for negative values of parameter α. The latter case
will be discussed in more detail in section 5. For the purposes of this section, it is
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sufficient to note that when α < 0, the minimal eigenvalue and hence the constant
diffusive capacity may be negative. Negative PI is an indication of injection into the
well; therefore, to avoid the contradiction, our attention will be restricted to positive
eigenvalues only. The analysis of the first eigenfunction will be given in section 5.

Regardless of the sign of α, let λα
0 be the first nonnegative eigenvalue. If the initial

distribution in (43)–(46) is equal to the corresponding eigenfunction, the constant
diffusive capacity is given by

JIII(α) := J(u3, t) = λα
0V.(51)

Therefore, we have shown the following proposition.
Proposition 5. If the initial condition of Problem III is given by f3(x) =

φα
0 (x) + uw3, where φα

0 is the eigenfunction of problem (48)–(50) corresponding to
the minimal positive eigenvalue λα

0 , then the diffusive capacity on the solution u of
Problem III is constant and is given by

J(u, t) = JIII(α) = λα
0V.

3.4. Comparison of the time independent diffusive capacities for Prob-
lems I, II, and III. The steady-state auxiliary problem (21)–(23) introduced earlier
has a convenient variational formulation which facilitates deriving an important re-
lation between the time independent diffusive capacities of Γw with respect to Γe in
Ω.

Assume that solutions of Problems I, II, and III satisfy the conditions in Propo-
sitions 2, 4, and 5, respectively. Then the diffusive capacities for Problems I, II, and
III (JI, JII, and JIII(α)) are time independent and their values are given by (24), (42),
and (51), respectively.

Let H1,2(Ω) be the Sobolev space [1]. Denote by
◦

H1,2 (Ω,Γw) the closure in the

H1,2(Ω) norm of smooth functions that vanish on Γw, and denote by
◦

H1,2 (Ω,Γw, α)
the closure in the H1,2(Ω) norm of smooth functions such that (u + α∂u

∂�ν )|Γw = 0 [1].
The following are well-known variational principles yielding the first eigenvalues

λ0 and λα
0 of the problems (39)–(41) and (48)–(50), respectively (see [5]):

λ0 = inf
u∈

◦
H1,2(Ω,Γe)

∫
Ω
A∇u · ∇udx∫

Ω
u2dx

,(52)

λα
0 = inf

u∈
◦

H1,2(Ω,Γwα)

∫
Ω
A∇u · ∇udx + 1

α

∫
Γw

u2dS∫
Ω
u2dx

.(53)

These two principles imply that for any positive α1 and α2 such that (see [5]) α1 > α2,
λα1

0 < λα2
0 . Moreover, λα

0 ↗ λ0 as α ↘ 0. This leads to the next proposition.
Proposition 6. If the initial conditions in Problems II and III are such that JII

and JIII(α) are time independent and α ↘ 0, then JIII(α) ↗ JII.
Another important comparison can be made between the time independent ca-

pacities for Problems I and II.
Theorem 1. If the initial conditions in Problems I and II are such that the

diffusive capacities JI and JII are time independent, then

JII ≤ JI ≤ CΩJII,(54)
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where CΩ = maxΩ φ0

φ̄0
.

Proof. Let u1 ∈
◦
H1

2 (Ω,Γw) be a solution of the problem (21)–(23). We need to
show that

1∫
Ω
u1(x)dx

≥ λ0.

From (52) it follows that

λ0 ≤
∫
Ω
(∇u1) · (A∇u1)dx∫

Ω
u2

1dx
.(55)

Using the identity

∇ · (u1A∇u1) = (∇u1) · (A∇u1) − u1∇ · (A∇u1),

applying the divergence theorem to the numerator, and making use of (21)–(23), we
obtain

λ0 ≤ 1

V

∫
Ω
u1dx∫

Ω
u2

1dx
.(56)

The last inequality can be rewritten as

λ0 ≤ 1

V

(∫
Ω
u1dx

)2∫
Ω
u2

1dx

1∫
Ω
u1dx

.(57)

The first part of (54) now follows from Hölder’s inequality.
Let u1(x) be a solution of (21)–(23) and φ0 of (39)–(41). After multiplication of

both sides of (21) by φ0, using the symmetry of A in the identity

(∇ · (A∇u1))φ0 = ∇ · (φ0A∇u1) −∇ · (u1A∇φ0) + ∇ · (A∇φ0)u1,(58)

followed by integration over Ω, from the divergence theorem one concludes that

λ0 max
Ω

φ0

∫
Ω

u1dV ≥ λ0

∫
Ω

u1φ0dV =
1

V

∫
Ω

φ0dV = φ̄0.(59)

The latter can be recast as the second part of (54), using the positivity of u1 and
φ0.

Remark 11. The constant CΩ is a peak-to-average ratio and has a clear physical
meaning [24].

4. Transient diffusive capacity. In section 3 it was shown that the PI of a well
in a reservoir is constant for all t > 0 provided that the pressure distribution at t = 0
satisfies certain conditions. The PI is known to stabilize in a long time asymptote
regardless of the initial pressure distribution. In this chapter we will consider a tran-
sient diffusive capacity and investigate questions related to its stabilization. Thus, we
will analyze Problems I and II with arbitrary initial conditions. The only restriction
that is imposed on the initial conditions f1 and f2 of Problems I and II, respectively,
is motivated by physical considerations: we require that f1 and f2 be positive smooth
functions on Ω.
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4.1. IBVP I: Constant production rate regime. In section 1 it was men-
tioned that the constant rate regime is usually modeled with one of two assumptions:
at each time t > 0 either the pressure or the pressure flux is assumed to be constant on
the wellbore. Proposition 2 shows that the condition of a constant wellbore pressure
at each time t > 0 (infinite conductivity condition) is equivalent to the conditions of
the PSS, i.e., the PI of a well is time independent. In this section we will show that
the diffusive capacity on the class Υ of solutions of Problem I (defined in section 3)
is stable with respect to small perturbations of boundary conditions. Recall that Υ
is the class of solutions u of Problem I such that at each time t > 0, u is constant on
Γw. Then the stability of J is established by the following proposition.

Proposition 7. Let v(x, t) be a solution of Problem I such that v(x, t) = Bt+C
for all x ∈ Γw. Let u(x, t) be a solution of Problem I such that u(x, t) = Bt +
C + h(x, t) for all x ∈ Γw, where h(x, t) is a smooth, bounded function. For any
ε > 0, there exists δ > 0 such that if for all t > 0, |h(x, t)| ≤ δ for all x ∈ Γw, then
|J(u, t) − J(v, t)| ≤ ε for all t > 0.

Proof. Function ṽ(x, t) = u(x, t) − v(x, t) is a solution of the following problem:

Lṽ =
∂ṽ

∂t
, x ∈ Ω, t > 0,(60)

∂ṽ

∂�ν
|Γe = 0,(61)

ṽ|Γw = h(x, t),(62)

ṽ(x, 0) = 0.(63)

The maximum principle for parabolic equation (60) implies that |ṽ(x, t)| ≤ δ for
all x ∈ Ω and t ≥ 0. Since

∫
Γw

∂u
∂ν dS =

∫
Γw

∂u
∂ν dS = −q for t ≥ 0,∣∣∣∣ 1

J(v, t)
− 1

J(u, t)

∣∣∣∣ ≤ 1

q

∣∣∣∣ 1

W

∫
Γw

(u− v)dS +
1

V

∫
Ω

(u− v)dx

∣∣∣∣ .
Hence, | 1

J(v,t) −
1

J(u,t) | ≤ δ.

One should note that JI is shown to be a PSS PI of a well only for solutions
of Problem I that belong to class Υ. The extent to which the assumption of the
infinite conductivity of the well is realistic for various reservoir-well configurations
will be discussed in more detail in section 7. Below we investigate the question of the
uniqueness of the PSS PI. Recall that the PSS PI is a constant value of the diffusive
capacity on the solutions to Problem I.

Remark 12. JI is not necessarily a unique constant value of the diffusive capacity
on the solutions to Problem I.

This is established by the following argument. Consider solutions to Problem I
with a constant flux on Γw; i.e., let u(x, t) be a solution of the following problem:

Lu =
∂u

∂t
, x ∈ Ω, t > 0,(64)

∂u

∂�ν
|Γe = 0,(65)



1966 IBRAGIMOV, KHALMANOVA, VALKO, AND WALTON

∂u

∂�ν
|Γw

= − q

W
,(66)

u(x, 0) = f1(x).(67)

The solution to (64)–(67) is given (up to an additive constant) by u(x, t) = qv− q
V t+

h(x, t), where v(x) is a solution of the steady-state problem

Lv = − 1

V
, x ∈ Ω,(68)

∂v

∂�ν
|Γe

= 0,(69)

∂v

∂�ν
|Γw

= − 1

W
,(70)

and h(x, t) is a solution of the corresponding problem with homogeneous boundary
conditions:

Lh =
∂h

∂t
, x ∈ Ω, t > 0,(71)

∂h

∂�ν
|Γe = 0,(72)

∂h

∂�ν
|Γw

= 0,(73)

h(x, 0) = f1(x) − qv(x).(74)

The solution to (71)–(74) is given by h(x, t) =
∑∞

n=0 cnφn(x)e−λnt, where φn(x) and
λn are solutions of the related Sturm–Liouville problem and cn are the coefficients of
the Fourier expansion of h(x, 0) in terms of φn. The diffusive capacity J(u, t) is given
by

J(u, t) =
−q

v̄w − v̄Ω + h̄w − h̄Ω
.(75)

Note that v̄w and v̄Ω are constant, while h̄w and h̄Ω are functions of time. Clearly, the
difference h̄w − h̄Ω =

∑∞
n=0 cn(φ̄nw − φ̄nΩ)e−λnt converges to a constant as t → ∞.

Therefore, J(u, t) converges to a constant value Ĵ as t → ∞. However, Ĵ is not
necessarily equal to JI.

Henceforth, we do not address the uniqueness of the constant diffusive capacity
on the solutions of Problem I and, consequently, of the PSS PI. In the subsequent
sections we will refer to JI as the value of the PSS PI, thus implicitly assuming that
the wellbore has an infinite conductivity.
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4.2. IBVP II: Constant wellbore pressure regime. For simplicity, consider
the following problem for a parabolic equation. Let u(x, t) be a solution of

Lu =
∂u

∂t
, x ∈ Ω, t ≥ 0,(76)

∂u

∂�ν
|Γe = 0,(77)

u|Γw = 0,(78)

u(x, 0) = u0(x),(79)

where u0(x) > 0. Then the diffusive capacity is simply

J(u, t) = V

∫
Γw

∂u
∂�ν dS∫

Ω
udx

.(80)

Along with (76)–(79), consider the related Sturm–Liouville problem for the oper-
ator L,

Lφk = −λkφk, x ∈ Ω, t ≥ 0,(81)

∂φk

∂�ν
|Γe

= 0,(82)

φk|Γw = 0.(83)

Let {φk(x)}∞k=0 be an orthonormal family of solutions of (81)–(83) with respect to
the usual inner product in L2(Ω). Define dk =

∫
Ω
φk(x)dx and ck =

∫
Ω
u0(x)φk(x)dx.

Then the diffusive capacity can be written as

J(u, t) = V

∑∞
k=0 ckλkdke

−λkt∑∞
k=0 ckdke

−λkt
.

The latter can be recast into

J(u, t) = V λ0

⎡
⎣1 +

∑∞
k=1

ck
c0

dk

d0

(
λk

λ0
− 1

)
e−(λk−λ0)t

1 +
∑∞

k=1
ck
c0

dk

d0
e−(λk−λ0)t

⎤
⎦ .(84)

Since λ0 < λ1 < λ3 < · · ·, as t → ∞, J(u, t) → λ0V . This proves the following.
Proposition 8. If u is a solution of IBVP II, then the diffusive capacity J(u, t)

converges to the constant value JII as t → ∞ for any initial condition f2.
In terms of the PI, Proposition 8 can be rephrased in the following way: if a well

is produced with a constant wellbore pressure, the PI stabilizes to constant value JII

as t → ∞ regardless of the initial pressure distribution.
Note that since the initial condition u0(x) is positive on Ω, c0 > 0 and d0 > 0.

From the maximum principle for parabolic equation (76) it follows that u(x, t) ≥ 0
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for all t > 0. Consequently, the denominator in (84), equal to
∫
Ω
u(x, t)dx/c0d0e

−λ0t,
is positive for all t > 0. Therefore, from (84) follows the next remark.

Remark 13. If in (84) ckdk > 0 for any k, then J(u, t) ↘ λ0V .
The last observation allows one to analyze several physically important examples

of the transient PI in terms of the diffusive capacity on the solutions of the IBVP for
a parabolic equation.

Example 1. Suppose that a well is produced with constant rate, the PI is constant,
and the well has infinite conductivity. Then the pressure in the reservoir u(x, t) is
determined (up to an additive constant) by u(x, t) = qu1(x)− q

V t (see Proposition 2),
where u1(x) is a solution of the auxiliary steady-state problem

Lu1(x) = − 1

V
, x ∈ Ω,

∂u1

∂�ν
|Γe = 0,

u1|Γw = 0.

Suppose that at some time t0 > 0, the production regime was changed to a
constant wellbore pressure production. Then the pressure in the reservoir u(x, t) for
t > t0 is defined by u(x, t) = v(x, t− t0)− q

V (t− t0), where v(x, t) is a solution of the
problem

Lv(x) = −∂v

∂t
, x ∈ Ω, t > 0,

∂v

∂�ν
|Γe = 0,

v|Γw = 0,

v(x, 0) = qu1(x).

The diffusive capacity J(u, t) = J(v, t), where v(x, t) is defined by

v(x, t) =

∞∑
n=0

ckφk(x)e−λkt,

where ck = q
∫
Ω
u1(x)φkdx. Using integration by parts, we obtain

∫
Ω

Lu1φk =

∫
Ω

u1Lφk.

Hence,

1

V

∫
Ω

φk = λk

∫
Ω

u1φk.
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Fig. 1. Radial profile of an initial distribution yielding small diffusive capacity.

Thus, for any k = 1, 2 . . . , dkck > 0 and (84) implies that J(u, t) ↘ JII. In other
words, when the regime of production changes from PSS, i.e., constant flow rate, to
constant wellbore pressure, the PI monotonically decreases to the BD PI.

Example 2. For the purpose of analysis it is frequently assumed that at t = 0
the pressure in the reservoir is distributed uniformly, i.e., u0(x) = ui, where ui is a
positive constant. Then ck = uidk and the PI is monotonically decreasing to the BD
PI.

Finally, consider an example of the initial pressure distribution yielding the PI
which is less than the BD PI.

Example 3. Let u0(x) = 100φ0(x)−3φ1(x). Then the diffusive capacity J(u, t) <
λ0V .

An example of such initial distribution for an ideal cylindrical reservoir with
vertical fully penetrated well is given in Figure 1, where the radial profile of u0(r) is
given. The dimensionless radius of the reservoir is equal to RD = 1000. Physically this
example may be interpreted as follows. Assume that the reservoir has been depleted
by a set of wells. Suppose that the old wells are shut down and a new well is drilled
and produced. Then the PI of the new well will monotonically increase to the BD PI
value.

5. Model of the skin effect. Stabilized production with constant rate is char-
acterized by the PSS PI. When the well is damaged, the value of the PI is less than
what is predicted by the model. As described in section 1, such effect is called thin-
skin effect. To take into account the skin effect, the PSS PI is corrected according to
the equation

PIPSS,skin =
1

1
PIPSS

+ s
,(85)

where s is the so-called skin factor or simply skin. The skin factor concept was
originally introduced to describe the behavior of damaged wells. Others have extended
the idea to stimulated wells which have a higher PI than the PSS PI of an ideal well.
In [15] it was shown that a negative skin s corresponds to a stimulated well.

All existing results on modeling the skin effect pertain to the constant rate produc-
tion regime. In this section it will be shown that for the constant wellbore pressure
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production regime, the skin effect can be modeled by a third boundary condition
specified on the well boundary.

5.1. Diffusive capacity for IBVP III in an annulus. Let u(r, t) be a solution
of the problem

∂

∂r

(
r
∂u

∂r

)
=

∂u

∂t
, 1 < r < RD, t > 0,(86)

∂u

∂r
|r=RD

= 0,(87)

(
u + α

∂u

∂r

)
|r=1 = 0,(88)

u(r, 0) = u0(r).(89)

Problem (86)–(89) models the axisymmetric flow of oil in an ideal isolated cir-
cular reservoir with a perfect circular well situated in the center. Here, u(r, t) is the
dimensionless pressure in the reservoir, the dimensionless formation permeability is 1,
and the dimensionless outer radius is equal to RD. The dimensionless wellbore radius
is equal to 1. Constant wellbore pressure production is assumed. The thin skin zone
adjacent to the well has a permeability below than that of the formation.

We will call a production regime for a well with a thin skin zone characterized
by a constant PI a generalized BD state. When α = 0 (no damaged zone around the
well), it is a BD regime.

Along with problem (86)–(89), consider a related Sturm–Liouville problem:

∂

∂r

(
r
∂φα

k

∂r

)
= −λα

k∂φ
α
k , 1 < r < RD, t > 0,(90)

∂φα
k

∂r
|r=RD

= 0,(91)

(
φα
k + α

∂φα
k

∂r

)
|r=1 = 0.(92)

Let λα
0 be the minimal nonnegative eigenvalue of the problem (90)–(92). If the

initial condition u0(r) = φα
0 is the eigenfunction corresponding to λα

0 , then by Proposi-
tions 5 and 6 the generalized BD PI is determined by JIII(α) = λα

0V and JIII(0) = JII.
In analogy to (85), we define the skin factor s by

s = s(α) :=
1

JIII(α)
− 1

JII
=

1

JIII(α)
− 1

JIII(0)
.(93)

Positive skin defined by (93) is evidence of a damaged well. By analogy, the generalized
BD index of a stimulated well should be greater than the BD index, yielding negative
skin s.
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Fig. 2. Graph of s(α) for RD = 1000 (left panel) and for RD = 10, 000 (right panel).

When α < 0, λα
0 is the first positive eigenvalue. The eigenpair solves known

equations involving Bessel functions of the first and the second kind. Using known
facts from the theory of Bessel functions, it is not hard to show the following.

Proposition 9. As α → ∞, λα
0 → 0. As α → −∞, λα

0 → λ
(N)
0 , where λ

(N)
0 is

the minimal nontrivial eigenvalue of the following problem:

∂

∂r

(
r
∂u

∂r

)
=

∂u

∂t
, 1 < r < RD, t > 0,(94)

∂u

∂r
|r=RD

= 0,(95)

∂u

∂r
= 0,(96)

u(r, 0) = u0(r).(97)

This implies, in particular, that s(α), defined by (93), is bounded from below,

since λ
(N)
0 is bounded from above. The relation between s and α for RD = 1000

and RD = 1000 is shown in Figure 2 for a range of values of α. Figure 2 illustrates
that when α > 0, skin s = α, i.e., the positive skin can be successfully modeled by
the third boundary condition, in perfect agreement with the constant rate case. To
analyze the case of α < 0, additional considerations are necessary.

Eigenfunctions φα
0 corresponding to the minimal positive eigenvalue λα

0 of the
problem (90)–(92) for two sample positive and negative values of α are pictured in
Figure 3. As seen in Figure 3, for negative α the corresponding eigenfunction φα

0

changes sign on the interval 1 < r < RD. Recall that the initial condition of the
problem (86)–(89) u0 is equal to φα

0 . Consequently, the sufficient condition for the
generalized BD state is such that the initial pressure distribution in the reservoir is
not everywhere positive. Thus, a negative value of the skin factor s creates a physical
contradiction, and problem (86)–(89) with α < 0 cannot serve as an appropriate
model for a stimulated well.
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Fig. 3. Eigenfunctions for negative α (left panel) and positive α (right panel). RD = 1000.

6. PI in a two-dimensional reservoir. In this chapter we present a numerical
study of the diffusive capacity/PI in two-dimensional domains. We will restrict our
attention to PSS and BD productivity indices only, that is, we will consider only
IBVPs I and II.

If the thickness of the reservoir is uniform, then for a fully penetrated vertical well
the three-dimensional problem reduces to a two-dimensional one. Since the radius of
wellbore is small compared to the dimensions of the reservoir, we can assume that the
pressure is uniformly distributed on the wellbore. Therefore, for a two-dimensional
problem, the PSS PI is equal to JI given by (24).

Under the assumption that the reservoir is ideal and the well is perfectly circular,
vertical, and fully penetrated, the IBVPs I and II can be formulated in terms of
dimensionless variables as follows. Let Ω ∈ R2 be the horizontal cross-section of
such a reservoir. Let {r, θ} be a polar coordinate system specified on Ω along with
the Cartesian coordinate system {x, y}. The origins of both coordinate systems are
located at the center of the well, which is represented by a circle with equation r = 1.
Let RD be the radius of the circle of the same area as Ω. Then the dimensionless
area V of Ω is equal to (R2

D − 1)/2. As before, let Γe denote the exterior boundary
of Ω. The auxiliary steady-state problem (21)–(23) and the Sturm–Liouville problem
(39)–(41) can be written as

∂2u1

∂x2
+

∂2u1

∂y2
= − 1

V
,(98)

u1|r=1 = 0,(99)

∂u1

∂�n
|Γe = 0,(100)

and

∂2φ0

∂x2
+

∂2φ0

∂y2
= −λ0φ0,(101)

φ0|r=1 = 0,(102)

∂φ0

∂�n
|Γe = 0,(103)
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respectively. By Propositions 2 and 4, the values of the PSS and BD PIs are given by
the following equations, respectively:

JI =
V∫

Ω
u1dx

(104)

and

JII = λ0V.(105)

As the first stage, JI and JII values were compared to the values obtained by
Dietz’s equation (2) for domains in which (2) can be applied, that is, for domains
with polygonal exterior boundaries: rectangle, triangle, circle, romb, and hexagon.
Value JI was compared to the value of the PSS PI JPSS computed by (2) with the
shape factors CA taken from [6] for every considered shape. The constant diffusive
capacity JII, given by (105), was compared to the PI JBD computed by (2) with the
BD shape factors CA provided in [13]. The results were obtained for two values of
the dimensionless radius RD of the drainage area, RD = 1000 and RD = 10, 000.

The obtained results are not presented here due to limited space, but (104) and
(105) closely agree to the corresponding existing formulas. The largest difference
between the corresponding values is the one between JI and JII in the drainage areas
where the well is located far from the center of symmetry of the domain.

As noted, one of the disadvantages of (2) is that it cannot be applied to the
drainage area shapes that do not satisfy the requirements of the method of images.
On the other hand, (104) and (105) are valid for all drainage area shapes and can
be applied to a general reservoir without the usual assumptions of the homogeneity
and isotropy of the media. Below we exploit these useful features of the new formulas
for PI to analyze its behavior in more complex geometries and for anisotropic media.
Then, using the new method we will evaluate the diffusive capacity in domains with
more complex geometry, revealing some geometric characteristics of the domain that
lead to the nonnegligible difference between JI and JII.

6.1. PI in domains violating isoperimetric inequality. Theorem 1 of sec-
tion 3 gives the means to investigate more deeply the effects on the difference between
JI and JII of the shape of the exterior boundary of the domain. The difference between
JI and JII is expected to be greater when the constant CΩ on the right-hand side of
inequality (54) is much greater than 1. The constant CΩ is, in its turn, determined
by the minimal eigenvalue λ0 and the behavior of the corresponding eigenfunction φ0

of the elliptic problem (101)–(103).
The first eigenpair of the problem is directly related to the geometry of the do-

main, namely, to the symmetry and curvature of the exterior boundary and the shape
of the well boundary. To illustrate the effect of the curvature and the symmetry of
the exterior boundary, consider domains in Figure 4 (A) and (B). If the domain does
not satisfy the classical isoperimetric inequality, the first eigenvalue of the problem
(101)–(103) can be small enough in comparison to CΩ to make the difference between
JI and JII significant [22]. It is not hard to show that for 0 < ε < 1, both domains pic-
tured in Figure 4 violate the classical isoperimetric inequality [22]. For either shape,
the domain parameters b and ε change so that the ratio of the area of the domain to
the radius of the well is held constant and corresponds to R = 1000. The circular
well is located in the center of the area. The results of the numerical investigation for
domains violating the classical isoperimetric inequality [22] are collected in Table 1.
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Fig. 4. Domains violating isoperimetric inequality.

Table 1

The difference between JI and JII in domains violating the isoperimetric inequality.

Shape ε JI JII

∣∣JI−JII
JII

∣∣,
percent

0.0 0.1227 0.1065 4.69
0.4 0.0539 0.4370 23.34
0.6 0.0137 0.0100 37.00

see Figure 4 (A) 0.8 0.0071 0.005 39.22

0.8 0.0990 0.1222 19.00
see Figure 4 (B) 0.95 0.0056 0.0311 82.00

The symmetrical domain is presented to illustrate the importance of symmetry: the
difference between JI and JII for a symmetrical domain is significantly less than for a
nonsymmetrical domain with the same curvature of the exterior boundary.

7. PI in a three-dimensional reservoir. As described in the introduction,
the existing methods for evaluating the PI have two major drawbacks. First, the
evaluation of a PI requires solving a transient problem in a period long enough for
the pressure to reach a PSS. When the well is not fully penetrated or directionally
drilled (deviated or horizontal), the period necessary for the pressure to stabilize
may become excessively long, creating difficulties for computational procedures. To
address the problem of excessively long computations, some simplifying assumptions
are made. Most of the methods are based on the assumption that the thickness of
the reservoir is small enough to make the flow in the vertical direction negligible or so
insignificant that its impact on the distribution of pressure can be included in a skin
factor [20, 11]. With the restriction on the reservoir thickness, the problem reduces
to a two-dimensional one. Then the techniques for two-dimensional reservoirs can be
applied. The majority of such techniques utilize the method of images, creating the
second drawback—restrictions on the geometry of the domain.

With this in mind, a number of numerical experiments were conducted for various
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well configurations in three-dimensional domains. Here we illustrate the behavior of
the PIs in a general homogeneous three-dimensional reservoir/well system. Equations
(24) and (42) are convenient to use in such settings, since they require only solution
of steady-state three-dimensional problems. Note that the use of (24) implies that
in a constant rate of production regime, the pressure is uniformly distributed on the
wellbore at each t > 0. One can argue that this assumption is physically realistic for
horizontal wells of any length, if we assume that the wellbore has infinite conductivity
so that the pressure of the fluid entering the wellbore instantly equalizes at every point
of the wellbore. For vertical or slanted wells, the assumption of uniform pressure
distribution on the wellbore at each t > 0 implies that we neglect gravity effects.
Certainly, for long vertical or slanted wells, this assumption is not physically realistic.

Fig. 5. Schematic representation of domain D1.

Fig. 6. Schematic representation of domain D2.

Two domains modeling three-dimensional reservoirs that were considered for the
numerical study are depicted in Figures 5, 6, and 7. Domain D1 is a cylindrical
reservoir of uniform thickness h and the dimensionless radius RD. Analogously to the
two-dimensional definition, RD is defined as the ratio of the radius of the horizontal
cross-section (in this case, circle) to the well radius. The value of RD is set to 1000
for all settings. For consistency of comparisons made below, the radius of the circle
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Fig. 7. Schematic representation of horizontal projection of domain D2.

Fig. 8. Schematic representation of the vertical cross-section for well configuration (C).

of the cross-section of the domain D2 is chosen so that the remaining area is equal to
the area of the cross-section of domain D1; i.e., the dimensionless radius associated
with the horizontal cross-section of D2 is RD = 1000.

Two well configurations were considered for both reservoir models. For domain
D2, the direction of any considered well was such that its projection on the top of the
reservoir corresponded to the schematic configuration shown in Figure 7. A well is
modeled by a circular cylinder with the dimensionless radius rw = 1. Then for both
domains D1 and D2, the cross-section by the plane containing the well is a rectangle.
Figures 8 and 9 show such cross-sections for every well configuration considered in
the computational experiments. In configuration (E), the center of symmetry of the
well coincides with the center of symmetry of the cross-section. In configuration (C),
the well is drilled from the middle of the top side of the reservoir cross-section.

7.1. Directionally drilled wells. Effect of vertical flow. Productivity in-
dices for well configuration (C) for domains D2 and D1 are given in Tables 2 and 3,
respectively. In all cases, the penetration length of the well is equal to h so that for
θ = 0, the vertical well fully penetrates the reservoir. The graphs of JI and JII as
functions of the angle θ of the well direction, shown in Figures 10 and 11, reveal that
the optimal direction of a well of the fixed penetration length is not the vertical one.
It is a clear indication of the effect of the vertical flow of fluid from the bottom of
the reservoir toward the slanted well. This effect cannot be quantified by a reduced
two-dimensional problem for a fully penetrated vertical well.

7.2. Horizontal well. Methods presented in [20, 11] rely heavily on the assump-
tion that the vertical dimension of the reservoir is small compared to the penetration
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Fig. 9. Schematic representation of the vertical cross-section for well configuration (E).

Table 2

PIs for domains D2, well configuration (C).

θ 0 15 30 45 60 75
JI 0.1597 0.1714 0.1673 0.1634 0.1586 0.1529
JII 0.1587 0.1704 0.1662 0.1623 0.1576 0.1520∣∣JI−JII

JII

∣∣, 0.60 0.64 0.64 0.67 0.61 0.59

percent

Table 3

PIs for domain D1, well configuration (C).

θ 0 8 15 30 45 60 75
JI 0.1629 0.1705 0.1765 0.1718 0.1691 0.1680 0.1662

h = 100 JII 0.1623 0.1696 0.1758 0.1710 0.1683 0.1672 0.1655∣∣JI−JII
JII

∣∣, 0.36 0.50 0.37 0.50 0.48 0.46 0.47

percent

JI 0.1629 0.1665 0.1697 0.1611 0.1426 0.1315 0.1199
h = 200 JII 0.1623 0.1658 0.1689 0.1605 0.1422 0.1312 0.1196∣∣JI−JII

JII

∣∣, 0.36 0.41 0.43 0.38 0.30 0.27 0.28

percent

length of the well. Moreover, as noted in [20], the precision of the evaluation of the
PI for horizontal wells decreases drastically as the distance from the well to vertical
boundaries of the reservoir becomes comparable to the distance to the top and/or
the bottom of the reservoir, if the reduction to the two-dimensional problem is used.
This section presents computational results for such settings when the assumption of
the small reservoir thickness and the well being clearly inside the drainage area are
relaxed.

The setting considered is a horizontal well with configuration (E), located at
distance d below the plane of symmetry of domain D1. The graphs of the computed
PSS PI JI as a function of distance d from the center of the reservoir for various
penetration lengths L are shown in Figure 12.

For all practical purposes, one can conclude that the optimal location of a hori-
zontal well in a cylindrical reservoir D1 is in the horizontal plane of symmetry of the
reservoir. Note that for long wells, however, the PSS PI slightly increases for small
values of d. This may be an indication of an interesting feature of the diffusive capac-
ity as a geometrical characteristic defined through the first eigenvalue λ0. The latter
is sensitive to the location of the well relative to the planes and lines of symmetry
of the domain, as it is comprehensively illustrated in section 6. In three-dimensional
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domains, there are more such planes and lines of symmetry and, therefore, there may
be several well configurations yielding maximal PI.
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Abstract. The problem of low-frequency sound propagation in slowly varying ducts is system-
atically analyzed as a perturbation problem of slow variation. Webster’s horn equation and variants
in bent ducts, in ducts with nonuniform soundspeed, and in ducts with irrotational mean flow, with
and without lining, are derived, and the entrance/exit plane boundary layer is given. It is shown
why a varying lined duct in general does not have an (acoustic) solution.
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1. Introduction. Sound of long wavelength, propagating in ducts of varying
diameter like horns, is suitably described by an approximate equation, known as
Webster’s horn equation or just Webster’s equation. This is an ordinary differential
equation in the axial coordinate, and therefore forms a significant simplification of
the problem [1, 2, 3].

The usual derivation is based on the assumption of a crosswise uniform acoustic
pressure field, such that, by averaging over a duct cross section, the spatial dimensions
of the problem are reduced from three to one.

Although it shows a remarkable evidence of ingenuity and physical insight, this
derivation is mathematically unsatisfying. It is not clear (i) what exactly is the small
parameter underlying the approximation, (ii) why the pressure may be assumed to be
uniform, (iii) what the error is of the approximation, (iv) what the conditions are on
the duct geometry and on the frequency of the field, (v) how to generalize to similar
problems, (vi) how to generate higher order corrections, and (vii) what happens near
the source or duct entrance or exit plane.

An asymptotically systematic derivation of the three-dimensional (3D) classic
problem was given by Lesser and Crighton [4], extending the derivation of Lesser and
Lewis in [5, 6]. They also showed for a number of 2D configurations how abrupt
changes of the geometry (open end, slit in the wall) can be incorporated as boundary
layer regions in a setting of matched asymptotic expansion. Their approach, based on
introducing different longitudinal and lateral scales, is a special case of the method of
slow variation put forward by Van Dyke [7]. Although only an asymptotically sound
derivation is able to indicate the range of validity and the order of the error of the
approximation, we found in the literature no variants of this problem (e.g., with mean
flow [8, 9, 10, 11, 12]) that strictly follow that approach.

Particularly interesting would be an investigation of the related problems of lined
ducts without and with flow, as this would form a natural long wavelength closure of
the multiple scales theory of sound propagation in slowly varying ducts [13, 14, 15, 16].
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Another problem of practical interest that is directly related to a systematic set-
up is the entrance problem for a 3D duct of arbitrary cross section. The structure of
the boundary layer was indicated by Lesser and Crighton [4], but they gave explicit
examples only for 2D geometries.

All in all, while the problem of long wave sound propagation in slowly varying
ducts, in various generalizations, is practically important, it still has a lot of open
ends.

We will consider various cases in detail. First, we show how a systematic ap-
proach, known as the method of slow variation coupled with ideas of matched asymp-
totic expansions, leads to the classic Webster equation for hard-walled ducts with the
entrance boundary layer. The small parameter ε is equal to the Helmholtz number,
the ratio between a typical wavelength and the duct diameter, while a typical length
scale of duct variation is of the same order of magnitude as the wavelength. Using
similar results for the related problem of heat conduction [17], this entrance problem
will be solved explicitly. It leads via matching conditions to conclusions about the
way that the O(1) duct field error (O(ε) or O(ε2)) depends on the source.

Then we will show that our problem is not essentially different in other coordinate
systems (like spherical coordinates), although special coordinates may be helpful in
obtaining a more efficient approximation. Curved ducts, with a curvature radius of
no more than the typical length scale of diameter variation, are shown to still produce
the same equation.

The same type of analysis can be applied to ducts with lined walls of, say, im-
pedance Z. It is found that for Z = O(1) only the trivial solution exists, while for
Z = O(ε) there are only nontrivial solutions possible for certain geometry-dependent
values of the wall impedance. As these impedance values vary along the duct, there
are in general no solutions possible for the full duct. A subtle functional analytic
result is used, due to Professor Jan de Graaf (TU Eindhoven), which is not available
in the literature; therefore, Prof. de Graaf was kind enough to attach his derivation
as an appendix to this paper.

We continue with more general analyses of the problem in a stagnant medium
with slowly varying sound speed, and of sound in an irrotational isentropic mean
flow, leading to generalized forms of Webster’s horn equation.

We finish with the same problem with mean flow but now extended to ducts with
lined walls. Using a recent result obtained for the related problem for high-frequency
sound propagation in lined flow ducts [16], we are able to show for Z = O(1) that
also here only a special hydrodynamic (nonacoustic) wave is possible.

2. The physical models.

2.1. The equations. In the acoustic realm of a perfect gas that we will consider,
we have for pressure p̃, velocity ṽ, density ρ̃, entropy s̃, and soundspeed c̃

dρ̃

dt
= −ρ̃∇·ṽ, ρ̃

dṽ

dt
= −∇p̃,

ds̃

dt
= 0,

ds̃ = CV
dp̃

p̃
− CP

dρ̃

ρ̃
, c̃2 =

γp̃

ρ̃
, γ =

CP

CV
,

(1)

where γ, CP , and CV are gas constants. When the flow originates from a thermo-
dynamically uniform state and consists of a stationary mean flow, with unsteady
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time-harmonic perturbations of frequency ω given, in the usual complex notation, by

ṽ = V + Re(v eiωt), p̃ = P + Re(p eiωt), ρ̃ = D + Re(ρ eiωt), s̃ = S + Re(s eiωt)

(2)

(ω > 0), we obtain for the mean flow, upon linearization for small amplitude,

∇·(DV ) = 0, D(V ·∇)V = −∇P,

(V ·∇)S = 0, S = CV logP − CP logD, C2 =
γP

D
,

(3)

and for the perturbations

iωρ + ∇·(V ρ + vD) = 0,(4a)

D
(
iω + V ·∇)v + D

(
v·∇)V + ρ(V ·∇)V = −∇p,(4b)

(iω + V ·∇)s + v·∇S = 0,(4c)

while

s =
CV

P
p− CP

D
ρ =

CV

P

(
p− C2ρ

)
.(4d)

Without mean flow, such that V = ∇P = 0, the equations may be reduced to (see
section 8)

∇·(C2∇p
)

+ ω2p = 0.(5)

If, in addition, the ambient medium is uniform, with a constant soundspeed C and
density D, the acoustic field becomes isentropic and irrotational, and we may intro-
duce a potential v = ∇φ. Furthermore, (5) reduces to the Helmholtz equation. After
introducing the free field wave number k = ω/C, we have (see sections 3, 4, 6, 7)

∇2φ + k2φ = 0.(6)

If the original flow field ṽ is irrotational and isentropic everywhere (homentropic), we
can introduce a potential for the velocity, where ṽ = ∇φ̃, and express p̃ as a function
of ρ̃ only, such that we can integrate the momentum equation (Bernoulli’s law, with
constant E) to obtain for the mean flow

1
2V

2 +
C2

γ − 1
= E, ∇·(DV ) = 0,

P

Dγ
= constant,(7)

and for the acoustic perturbations

(
iω + V ·∇)ρ + ρ∇·V + ∇·(D∇φ

)
= 0, D

(
iω + V ·∇)φ + p = 0, p = C2ρ.

(8)

These last equations are further simplified (eliminate p and ρ and use the fact that
∇·(DV ) = 0) to the rather general convected wave equation (see section 9)

D−1∇·(D∇φ
)
−
(
iω + V ·∇)[C−2

(
iω + V ·∇)φ] = 0.(9)
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Fig. 1. Sketch of geometry.

2.2. Nondimensionalization. Without further change of notation, we will as-
sume throughout this paper that the problem is made dimensionless: lengths on a
typical duct radius, time on typical sound speed / typical duct radius, etc.

2.3. The geometry. The domain of interest consists of a duct V of arbitrary
cross section, slowly varying in axial direction (see Figure 1). For definiteness, it is
given by the function Σ in cylindrical coordinates, as follows:

Σ(X, r, θ) = r −R(X, θ) ≤ 0,(10)

where X = εx � 0 is a so-called slow variable, while ε is small. A cross section A(X)
at axial position X has surface area A(X). Whenever relevant,1 we assume lengths
made dimensionless such that

A(0) = 1.

At the duct surface Σ = 0, the gradient ∇Σ is a vector normal to the surface (i.e.,
∇Σ ∝ n), while the transverse gradient ∇⊥Σ,

∇⊥ = er
∂

∂r
+ eθ

1

r

∂

∂θ
, with ∇⊥Σ = er − eθ

1

r
Rθ,(11)

(where Rθ denotes the partial derivative of R to θ) is directed in the plane of a cross
section A(X) and normal to the duct circumference ∂A. Thus if n⊥ is the component
of the surface normal vector n in the plane of a cross section, we have ∇⊥Σ ∝ n⊥.

2.4. Frequency. The frequencies considered are low, such that the correspond-
ing typical wave number is of the same order of magnitude as the length scale of the
duct variations, i.e., dimensionless O(ε−1). In order to quantify this, we will rescale
k = εκ and ω = εΩ.

3. The classical problem.

3.1. Equations and boundary conditions. The duct is semi-infinite and
hard-walled. The solution is determined by a source at entrance plane x = 0, and
radiation conditions for x → ∞. Other conditions, like a reflecting impedance plane
at some exit plane x = L (e.g., modeling a radiating open end [5] or a slit in the wall
[4]), are also possible, but they do not essentially alter the present analysis.

Inside V we have for acoustic potential φ (see (6))

∇2φ + ε2κ2φ = 0 if x ∈ V, with ∇φ·n = 0 at x ∈ ∂V.(12)

1In particular, in section 4.
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At the entrance interface x = 0 we have a suitable boundary condition, say,

φ(0, r, θ) = F (r, θ).(13)

The boundary condition of hard walls at r = R(X, θ) may be given by

∇⊥φ·∇⊥Σ = φr −
Rθ

R2
φθ = εRXφx.(14)

Except for the immediate neighborhood of the entrance plane, the typical axial vari-
ations of the acoustic field scale on the slow variable X, so we rewrite the equations
and boundary conditions as

ε2φXX + ∇2
⊥φ + ε2κ2φ = 0,(15)

with ∇φ·∇Σ = −ε2φXRX + ∇⊥φ·∇⊥Σ = 0 at r = R.

This rewriting in a slow variable is known as the method of slow variation [7]. Note
that this equation has a small parameter multiplied by the highest derivative in the
X-direction, suggesting a singular perturbation problem [4, 18, 19, 20] with boundary
layers in X.

3.2. Asymptotic analysis: Outer solution. The following outer solution
analysis will largely follow Lesser and Crighton [4], but we will give it in some detail
for two reasons. First, we will have to define the solution for the inner solution at the
entrance boundary layer to be discussed later. Second, it explicates the method of
integration along a cross section that will be used in the various other configurations
later.

Based on the observation that ε2 is the only small parameter that occurs, we
might be tempted to expand the solution in a Poincaré asymptotic power series in
ε2. However, we will see that this is not exactly true. Depending on the behavior
of the solution near the entrance, the correction term should in general be O(ε) for
matching. Nevertheless, the leading and first order equations will be equivalent. With
the assumed Poincaré expansion of φ, expressed in X,

φ(X, r, θ; ε) = φ0(X, r, θ) + εφ1(X, r, θ) + ε2φ2(X, r, θ) + · · · ,(16)

we obtain to leading order

∇2
⊥φ0 = 0, with ∇⊥φ0·n⊥ = 0 at r = R,(17)

with a solution φ0 = 0. As the solution of a Neumann problem is unique up to a
constant, φ0 = φ0(X), a function to be determined. To first order we have

∇2
⊥φ1 = 0, with ∇⊥φ1·n⊥ = 0 at r = R,(18)

also with a constant solution, and so φ1 = φ1(X), a function to be determined. To
second order we now have

∇2
⊥φ2 + φ0,XX + κ2φ0 = 0, with ∇⊥φ2·n⊥ = φ0,X

RRX√
R2 + R2

θ

at r = R.(19)

The assumption (16) that there exists a Poincaré expansion for φ, expressed in this
slow variable X, is not trivial. (Poincaré expansions are critically dependent on the
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variables chosen!) It requires certain solvability conditions for, e.g., φ2, yielding an
equation for φ0. To obtain this, we integrate along a cross section A(X) and apply
Gauss’ theorem∫∫

A
∇2
⊥φ2 dσ =

∫
∂A

∇⊥φ2·n⊥ d� =

∫
∂A

φ0,X
RRX√
R2 + R2

θ

d� = · · · .

Then we parametrize ∂A with θ such that d� =
√
R2 + R2

θ dθ, and we continue

=

∫ 2π

0

φ0,XRRX dθ = φ0,X

∫ 2π

0

RRX dθ = φ0,XAX .(20)

On the other hand, we also have∫∫
A

[
φ0,XX + κ2φ0

]
dσ = A

(
φ0,XX + κ2φ0

)
.(21)

Altogether we have for φ0 the equation

A−1
(
Aφ0,X

)
X

+ κ2φ0 = 0,(22)

which is indeed Webster’s horn equation [1, 2] in properly scaled coordinates.
Evidently, the first order solution follows the same pattern and also satisfies

A−1
(
Aφ1,X

)
X

+ κ2φ1 = 0.(23)

For completeness we note from [21, 22, 23, 24, 3] that Webster’s equation can be
recast into a more transparent form by the transformation

A(X) = d(X)2, φ = d−1ψ,(24)

leading to

ψ′′ +
(
κ2 − d′′

d

)
ψ = 0.(25)

Depending on the sign of κ2 − d′′/d, the solutions behave like propagating or expo-
nentially decaying waves. Elementary solutions are readily found for geometries with
d′′/d = m2, a constant, yielding Salmon’s family of exponential and conical horns
[21, 22].

3.3. Boundary conditions in X. The above equation for φ0 and φ1 is of
second order, and therefore two boundary conditions are required to determine the
solution. For X → ∞ we have the condition of radiation. At X = 0 (Figure 2),
φ0 and φ1 cannot satisfy the (r, θ)-dependent boundary condition (13). Indeed, as
anticipated before, near x = 0 there is a boundary layer of X = O(ε), i.e., x = O(1),
which determines the (outer) solutions φ0 and φ1 via conditions of matching. This
will be considered in the next section.

4. Entrance boundary layer. Near the entrance, for X = O(ε), i.e., x = O(1),
we have of course equation (12)

∇2φ + ε2κ2φ = 0 if x ∈ V, with ∇⊥φ·n = 0 at x ∈ ∂V.(12)
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Fig. 2. The entrance.

Up to O(ε2), this Helmholtz equation is equivalent to the Laplace equation. There-
fore, the boundary layer analysis is essentially similar to that for the heat equation,
discussed in Chandra [17]. Expand

φ(X, r, θ; ε) = Φ0(x, r, θ) + εΦ1(x, r, θ) + O(ε2)(26)

so that we have inside V to leading and first order,

O(1) : ∇2Φ0 = 0,(27a)

O(ε) : ∇2Φ1 = 0.(27b)

At x = 0 we have from (13) the initial conditions

Φ0(0, r, θ) = F (r, θ), Φ1(0, r, θ) = 0.(28)

For x → ∞ conditions of matching with the outer solution φ0 + εφ1 apply. For the
boundary condition at r = R we have to expand R(εx, θ). Note that for any function
f

f(R(εx); ε) = f(R + εxRX + O(ε2); ε) = f0(R) + ε
(
f1(R) + xf0,r(R)RX

)
+ O(ε2),

(29)

where R without any argument denotes the value at X = 0. Furthermore, we have

Rθ(X, θ)

R2(X, θ)
=

Rθ

R2
+ εx

(RX

R2

)
θ

+ O(ε2).(30)

Thus at the boundary

∇⊥φ·∇⊥Σ = φr −
Rθ

R2
φθ

(31)

= Φ0,r −
Rθ

R2
Φ0,θ + ε

[
Φ1,r −

Rθ

R2
Φ1,θ + xΦ0,rrRX − x

Rθ

R2
RXΦ0,rθ − x

(RX

R2

)
θ
Φ0,θ

]

= εRXΦ0,x,
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which means that at r = R(0, θ) for the leading and first order,

∇⊥Φ0·∇⊥Σ0 = Φ0,r −
Rθ

R2
Φ0,θ = 0,(32a)

∇⊥Φ1·∇⊥Σ0 = Φ1,r −
Rθ

R2
Φ1,θ(32b)

= RXΦ0,x − xΦ0,rrRX + x
Rθ

R2
RXΦ0,rθ + x

(RX

R2

)
θ
Φ0,θ,

where Σ0 = Σ(0, r, θ).
It is important for the subsequent matching to note that the solutions of (27) with

(32) are defined only up to a linear term Kx. For Φ0, however, this would result in
terms of O(ε−1) if x = O(ε−1), which do not match with an outer solution φ0 = O(1).
Therefore, we will not include this extra term. For Φ1, on the other hand, we will
have to retain the possibility, and in the end a linear term K1x will be added, where
K1 must be determined by the matching.

From the identity at r = R,

d

dθ
Φ0,θ = Φ0,rθRθ + Φ0,θθ,(33)

and with the defining equation applied at r = R while using relation (32a),

−Φ0,rr =
1

R
Φ0,r +

1

R2
Φ0,θθ + Φ0,xx =

Rθ

R3
Φ0,θ +

1

R2
Φ0,θθ + Φ0,xx,(34)

it follows that (32b) is equivalent to

∇⊥Φ1·∇⊥Σ0 = Q0(x, θ)(35)

def
== RXΦ0,x

∣∣
r=R

+
x

R

{
RRXΦ0,xx

∣∣
r=R

+
d

dθ

(RX

R
Φ0,θ

∣∣
r=R

)}
.

4.1. Leading order. The right-running solution Φ0 (only nonincreasing expo-
nentials are allowed for matching) may be expressed by the eigenfunction expansion

Φ0(x) =

∞∑
n=0

Fnψn(r, θ) e−λnx,(36)

where

∇2
⊥ψn + λ2

nψn = 0, ∇⊥ψn·∇⊥Σ0 = 0,(37)

with λ0 = 0, ψ0 a constant (normalized to 1), the other eigenvalues2 λn real positive,
and the eigenfunctions ψn real, orthogonal, and assumed normalized. In general these
eigenfunctions are to be determined numerically. However, if the duct is cylindrical
(i.e., R is independent of θ), we have

ψn(r, θ) := ψνμ(r, θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Jν
(
j′νμr/R

)
√

π
2

(
1 − ν2

j′νμ
2

)
RJν(j′νμ)

{
cos νθ

sin νθ

}
for ν �= 0,

J0

(
j′0μr/R

)
√
πRJ0(j′0μ)

for ν = 0,

(38)

2Strictly speaking, the numbers −λ2
n are the eigenvalues of operator ∇2

⊥.
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where the index n is more practically changed into the double index (νμ). Jν is the νth
order ordinary Bessel function of the first kind [25], and j′νμ is the μth (real-valued,
positive) zero of J ′

ν . The corresponding eigenvalue is thus λn := j′νμ/R.
The amplitudes are determined from the entrance interface x = 0 as follows:

Fn =

∫∫
A(0)

F (r, θ)ψn(r, θ) dσ.(39)

Note that, as ψn are orthonormal, the axial flux is, to leading order, proportional to
the imaginary part of∫ 2π

0

∫ R

0

Φ0Φ
∗
0,xr drdθ = −

∞∑
n=1

λn|Fn|2 e−2λnx .(40)

As this expression is real, its imaginary part is zero, and thus the axial flux vanishes
to leading order. Indeed, the outer solution is a slowly varying function of X, and
therefore the flux, proportional to the axial derivative, is O(ε).

For x → ∞, the exponential terms in Φ0(x) vanish and we have

Φ0(x) 
 F0.(41)

4.2. First order. With the found expression for Φ0, the right-hand side of (35),
Q0, may be written as

Q0(x, θ) =

∞∑
n=1

Fn e−λnx

[
−RXλnψn

∣∣
r=R

+ xRXλ2
nψn

∣∣
r=R

+
x

R

d

dθ

(RX

R
ψn,θ

∣∣
r=R

)]

= R−1
∞∑

n=1

Fn

[
−λnRRX

(
x e−λnx

)
x
ψn

∣∣
r=R

+ x e−λnx
d

dθ

(RX

R
ψn,θ

∣∣
r=R

)]
.(42)

To solve the problem for Φ1, we introduce a Green’s function G(x; ξ) with x = (x, r, θ)
and ξ = (ξ, ρ, η) satisfying

∇2
⊥G +

∂2

∂x2
G = −δ(x − ξ),

∂

∂n
G = 0 at r = R(0, θ), G(x; ξ) = 0 at x = 0,

G(x; ξ) → a constant for x → ∞, x
∂

∂x
G(x; ξ) → 0 for x → ∞.

(43)

We determine the Green’s function by applying the Fourier sine transform3 with
respect to x (x → α) to (43), to obtain

∇2
⊥Ĝ− α2Ĝ = −

√
2

π
sin(αξ)δ(x⊥ − ξ⊥),(44)

where x⊥ denotes the transverse component of x, i.e., x⊥ = (r, θ) (similarly for ξ⊥).
We assume that the Green’s function can be expanded by the same basis function as
has been used for Φ0,

Ĝ(α, r, θ; ξ) =

∞∑
m=0

am(α, ξ)ψm(r, θ).

3Here f̂(α) =
√

2
π

∫∞
0 sin(αx)f(x) dx, f(x) =

√
2
π

∫∞
0 sin(αx)f̂(α) dα.
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Therefore

∇2Ĝ = −
∞∑

m=0

amλ2
mψm(r, θ).

Substituting this into (44) yields

∞∑
m=0

amψm(λ2
m + α2) =

√
2

π
sin(αξ)δ(x⊥ − ξ⊥).(45)

Next, we multiply (45) with ψn and integrate over the cross section A(0) to obtain∫∫
A(0)

∞∑
m=0

amψnψm(λ2
m + α2) dσ =

√
2

π

∫∫
A(0)

ψn(r, θ) sin(αξ)δ(x⊥ − ξ⊥) dσ.(46)

Orthonormality of the basis functions yields

am =

√
2

π

(
sin(αξ)

λ2
m + α2

)
ψm(ρ, η).(47)

Therefore,

Ĝ(α, r, θ; ξ, ρ, η) =

√
2

π

∞∑
m=0

sin(αξ)

λ2
m + α2

ψm(ρ, η)ψm(r, θ).(48)

The inverse Fourier sine transform yields

G(x; ξ) =
2

π

∞∑
m=0

ψm(ρ, η)ψm(r, θ)

∫ ∞

0

sin(αx) sin(αξ)

λ2
m + α2

dα,(49)

where [25] for λ0 = 0, ∫ ∞

0

sin(αx) sin(αξ)

α2
dα =

1

2
πmin(x, ξ),(50)

and for λm > 0,∫ ∞

0

sin(αx) sin(αξ)

λ2
m + α2

dα =
1

2
π e−λm max(x,ξ) 1

λm
sinh(λm min(x, ξ)).(51)

Therefore, the m = 0 term can be taken apart, and the Green’s function becomes

G(x; ξ) = x +

∞∑
m=1

ψm(ρ, η)ψm(r, θ) e−λmξ sinh(λmx)

λm
if 0 ≤ x ≤ ξ(52a)

= ξ +

∞∑
m=1

ψm(ρ, η)ψm(r, θ) e−λmx sinh(λmξ)

λm
if 0 ≤ ξ ≤ x.(52b)

Note that as x → ∞, G tends to ξ and ∂G
∂x tends to zero exponentially.

Using this Green’s function, we obtain for Φ1 the following relation, to be inte-
grated over domain V:

Φ1δ(x − ξ) = G∇2Φ1 − Φ1∇2G.(53)
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However, since Φ1 ∼ K1ξ for large ξ (see the remark below (32)), this yields a di-
vergent integral as the domain here is a semi-infinite duct. Therefore, we consider a
region V ′ with a finite length 0 ≤ x ≤ x0, where x0 is small compared to ε−1 but large
enough for all exponential terms to practically vanish. Integrate (53) along domain
V ′ and by using Green’s second identity we get

Φ1(ξ) =

∫∫∫
V′

(
G∇2Φ1 − Φ1∇2G

)
dx =

∫∫
x=0

(
−G

∂Φ1

∂x
+ Φ1

∂G

∂x

)
dσ

+

∫∫
r=R(0,η)

(
G∇⊥Φ1 − Φ1∇⊥G

)·n⊥ dσ +

∫∫
x=x0

(
G
∂Φ1

∂x
− Φ1

∂G

∂x

)
dσ

=

∫∫
r=R(0,η)

GQ0(x, θ)

|∇⊥Σ| d�dξ + K1ξ.(54)

Since |∇⊥Σ| = 1
R

√
R2 + R2

θ and d� =
√

R2 + R2
θ dθ, we obtain

Φ1(ξ) =

∫ 2π

0

∫ ∞

0

Q0(x, θ)G(x; ξ)|r=RR dxdθ + K1ξ.(55)

As we have Q0 in the form of a series expansion, we can write

(56) Φ1(ξ) = K1ξ +

∞∑
n=1

Fn

∫ 2π

0

[
−RRXλnψn

∣∣
r=R

∫ ∞

0

e−λnx G(x; ξ)
∣∣
r=R

dx

+

{
RRXλ2

nψn

∣∣
r=R

+
d

dθ

(RX

R
ψn,θ

∣∣
r=R

)}∫ ∞

0

x e−λnx G(x; ξ)
∣∣
r=R

dx

]
dθ.

As the series for Q0 converges uniformly for x > 0, we may exchange summation
and integration. On the other hand, the fact that all basis functions have vanishing
normal derivatives at the wall, i.e., ∇⊥ψn·n⊥ = 0, whereas ∇⊥Φ1·n⊥ �= 0, suggests
that this series does not converge uniformly near the wall.

The expression for Φ1 is further specified by removing the x-integration:

∫ ∞

0

e−λnx G(x; ξ)
∣∣∣
r=R

dx =
1 − e−λnξ

λ2
n

−
∞∑

m=1

ψm(R, θ)ψm(ρ, η)
e−λnξ − e−λmξ

λ2
n − λ2

m

,

(57)

(58)

∫ ∞

0

x e−λnx G(x; ξ)
∣∣∣
r=R

dx =
2 − (2 + λnξ) e−λnξ

λ3
n

−
∞∑

m=1

ψm(R, θ)ψm(ρ, η)
2λn(e−λnξ − e−λmξ) + ξ(λ2

n − λ2
m) e−λnξ

(λ2
n − λ2

m)2
.

If m = n, the limit λm → λn should be taken. Now we are better able to recognize
the nature of the nonuniform convergence. The dominating term is (we ignore for the
moment the θ-integration)

Φ1(ξ) ∼
∞∑

m=1

ψm(R, θ)ψm(ρ, η)

λ2
m

.
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For a circular duct this may be compared, near ρ = R, to the prototype series

∼
∞∑

m=1

cos(2πmρ/R)

m2
.

The normal derivative yields the well-known saw-tooth function that vanishes (point-
wise) at ρ = R but converges to a finite nonzero value for any ρ �= R.

For x → ∞, the exponential terms in Φ1(x) vanish and we have (we exchange the
variables x and ξ)

Φ1(x) 
 K1x +

∞∑
n=1

Fn

∫ 2π

0

[
RRXλ−1

n ψn

∣∣
ρ=R

+
2

λn

d

dη

(RX

R
ψn,η

∣∣
ρ=R

)]
dη.

By using the periodicity of ψn in its circumferential argument η, we have finally

Φ1(x) 
 K1x +

∞∑
n=1

Fn

λn

∫ 2π

0

RRXψn

∣∣
ρ=R

dη for x → ∞.(59)

4.3. Matching. Both the initial conditions for φ0 and φ1 and the constant K1

are determined from matching with the outer solution. From (41) and (59) we have

φ0(0) + Xφ0,X(0) + εφ1(0) ∼ F0 + εK1x + ε

∞∑
n=1

Fn

λn

∫ 2π

0

RRXψn

∣∣
ρ=R

dη,(60)

and so we find ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ0(0) = F0,

K1 = φ0,X(0),

φ1(0) =

∞∑
n=1

Fn

λn

∫ 2π

0

RRXψn

∣∣
ρ=R

dη.

(61)

This determines the outer solution φ0 + εφ1 (together with the radiation condition).
It wouldn’t be too difficult to guess that φ0 depends on the average source excitation
F0, but the initial value for φ1 is really subtle. The constant term in (59) is therefore
probably the most important result of this tour de force to determine Φ1.

An interesting question is then when φ1 is present at all in the outer solution (or
put in another way: what the error is if we only consider φ0). For example, φ1 is zero
when the source consists of a simple piston with just F (r, θ) = F0, or when the duct
entrance starts smoothly with RX = 0, or when RRXψn for all n > 0 are periodic
along the circumference.

Although this last condition is not very likely to be possible, for a cylindrical duct
at least the nonsymmetric modes vanish. In this case the eigenfunctions are given by
(38). The integrals in (59) vanish for all ν �= 0. As a result we have

φ1(0) = 2
√
πRRX

∞∑
μ=2

F0μ

j′0μ
.(62)

In other words, the first constant mode determines φ0, while only the nonconstant
symmetric modes determine φ1. For example, a piston tilting along a diagonal like
F ∼ r sin θ would produce a field vanishing to O(ε2), while a “piston” that is sym-
metrically folded like F ∼ r2 would produce both O(1) and O(ε) terms.
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5. Other coordinate systems. It was shown by Agullo, Barjau, and Keefe
[26] that if the shape of the hard-walled duct is described in an orthogonal coordinate
system (u, v, w) by the surface Σ(v, w) = 0, while the Helmholtz equation allows sepa-
rable solutions of the form φ(u, v, w) = F (u)G(v, w), then there exist unidimensional
(i.e., self-similar) waves in u of the type φ(u, v, w) = F (u). In this way it is possible
to produce exact solutions of certain horn shapes, like the straight and exponential
cone and others.

Although these solutions are interesting on their own, they have little to do with
the present low k asymptotic problem, where the duct wall is never outside the lateral
near field of the wave. Without this, there is no built-in mechanism that enforces the
self-similarity, so any defect of symmetry in source or surface will produce deviations
in the wave field that propagate without attenuation in other directions. Also the
generalizations that will be discussed below are not possible at all or only in very
limited form.

On the other hand, if the duct shape considered is close to one that allows such
an exact solution, it may be advantageous, in terms of practical accuracy of the final
result, to reformulate the problem in the other set of coordinates. The essence of the
asymptotic problem remains the same.

We will illustrate this for spherical coordinates (r, θ, ϕ), where we temporarily
redefine x = r cosϕ, y = r sinϕ cos θ, z = r sinϕ sin θ. (Note that we will use these
coordinates only in this section.) A circular cone around the positive x-axis is given
by ϕ = constant, and a general cone of constant cross section by ϕ = f(θ).

In order to maintain the slender shape, necessary for the asymptotics, the duct
will be long in r, compensated by a small opening angle in ϕ. We therefore introduce
the scaled variables

τ =
2 sin 1

2ϕ

ε
, R = εr(63)

and write the general duct geometry as

Σ̃(R, τ, θ) = τ − T (R, θ) = 0,(64)

where T is, by assumption, independent of ε. By this choice the surface area, Ã(R) of
any spherical cross section R = constant is now exactly (i.e., independent of ε) equal
to

Ã(R) =

∫ 2π

0

∫ ϕ(R,θ)

0

r2 sinϕdϕdθ =

∫ 2π

0

∫ T

0

r2ε2τ dτdθ

=
1

2
R2

∫ 2π

0

T 2(R, θ) dθ.(65)

Other choices for describing the duct shape are not essentially different, other than
T , and therefore Ã, becoming dependent on ε. This gives complications in the form
of extra asymptotic terms in the higher orders, which are irrelevant now.

The Helmholtz equation is given by

ε2

R2

∂

∂R

(
R2 ∂φ

∂R

)
+

1

R2τ

∂

∂τ

(
τ

(
1 − 1

4
ε2τ2

)
∂φ

∂τ

)
+

1

R2τ2(1 − 1
4ε

2τ2)

∂2φ

∂θ2
+ ε2κ2φ = 0,

(66)
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while the hard-wall boundary condition becomes

∇φ·∇Σ̃ =
1 − 1

4ε
2T 2

R2

∂φ

∂τ
− ε2 ∂T

∂R

∂φ

∂R
− 1

R2T 2(1 − 1
4ε

2T 2)

∂T

∂θ

∂φ

∂θ
= 0.(67)

We expand, as before,

φ(R, τ, θ; ε) = φ0(R, τ, θ) + ε2φ2(R, τ, θ) + · · ·

(skipping for now the O(ε)-term) to obtain to leading order

φ0,ττ +
1

τ
φ0,τ +

1

τ2
φ0,θθ = 0, with φ0,τ − Tθ

T 2
φ0,θ = 0 at τ = T.(68)

If τ and θ are read as polar coordinates, this problem is qua form the same as (17),
and thus we have the solution φ0 = φ0(R) to be determined at the next order. We
have

φ2,ττ +
1

τ
φ2,τ +

1

τ2
φ2,θθ +

(
R2φ0,R

)
R

+ R2κ2φ0 = 0,

with φ2,τ − Tθ

T 2
φ2,θ = R2TRφ0,R at τ = T.

This can be written as

∇̃2φ2 +
(
R2φ0,R

)
R

+ R2κ2φ0 = 0, with ∇̃φ2· ñ = R2φ0,R
TTR√
T 2 + T 2

θ

,(69)

where ∇̃ and ñ denote gradient and normal, respectively, in the (τ, θ)-plane. As
a result we have virtually the same equation as (19), and after integration along a
spherical surface Ã(R) in (τ, θ) and using (65), we obtain

− Ã

R2

(
R2φ0,R

)
R
− Ãκ2φ0 =

1

2
R2φ0,R

d

dR

∫ 2π

0

T 2(R, θ) dθ = R2φ0,R

( Ã

R2

)
R

or

Ã−1
(
Ãφ0,R

)
R

+ κ2φ0 = 0.(70)

We see that changing from the axial coordinate X to R and from the transverse cross
section A to the spherical cross section Ã leaves the final equation for φ0 unchanged.
Indeed, to the order considered, X and R and A and Ã are the same.

6. Curved ducts. The present results remain valid for the slightly more general
problem of curved ducts (like certain musical instruments) if the curvature of the duct
axis (and its derivative) is O(ε). Together with the assumed slow variation in the axial
coordinate, the associated orthogonal coordinate system (based on the tangent and,
possibly, the normal and binormal of the curve that describes the duct axis) leave the
Laplacian unchanged up to O(ε3).

A simple example is the inside of a perturbed torus, described by a fixed torus
radius ε−1 and slowly varying tube radius R. With local (polar-type) coordinates
ξ, r, ϕ, we define

x = ε−1(1 + εr cos θ) cos(εξ), y = ε−1(1 + εr cos θ) sin(εξ), z = r sin θ,(71)
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Fig. 3. The torus coordinates.

where 0 ≤ r ≤ R(εξ, θ), 0 ≤ θ < 2π, 0 ≤ εξ < 2π (see Figure 3). If we write X = εξ,
we get (cf. (6))

(72) ∇2φ + ε2κ2φ

= ∇2
⊥φ+ε2

(
1+εr cos θ

)−2 ∂2

∂X2
φ+ε
(
1+εr cos θ

)−1
[
cos θ

∂

∂r
φ− 1

r

∂

∂θ
φ

]
+ε2κ2φ = 0.

Boundary conditions at Σ = r −R(X, θ) = 0 are

∇⊥φ·∇⊥Σ − ε2RXφX

(1 + εr cos θ)2
= 0.(73)

If we expand φ = φ0 + εφ1 + ε2φ2 + · · · , we get to leading order

∇2
⊥φ0 = 0, with ∇⊥φ0·n⊥ = 0,(74)

and so φ0 = φ0(X). Then ∂
∂rφ0 = ∂

∂θφ0 = 0, and we also have

∇2
⊥φ1 = 0, with ∇⊥φ1·n⊥ = 0,(75)

leading to φ1 = φ1(X). Thus again ∂
∂rφ1 = ∂

∂θφ1 = 0, and we again obtain

∇2
⊥φ2 + φ0,XX + κ2φ0 = 0, with ∇⊥φ2·∇⊥Σ = φ0,XRX ,

yielding thus, after a similar argument as before, Webster’s horn equation.

7. Impedance walls. If the duct walls is equipped with an impedance-type
acoustic lining of complex impedance Z, we will in general (at least if Re(Z) > 0)
expect solutions that decay exponentially in the axial direction. Therefore, in the
compressed variable X, only trivial (i.e., zero) solutions will exist. We will see that
this is by and large the case, not only for dissipative walls with Re(Z) > 0, but for
any |Z| < ∞. Only for a purely imaginary impedance in a straight duct are there
exceptions.

The impedance-wall boundary condition at r = R is given by

∇φ·n = − iεκ

Z
φ = ζφ(76)

with specific impedance Z. As before, we assume the Poincaré expansion φ = φ0 +
εφ1 + ε2φ2 + · · · . First we note that it is easily verified that if Z = 0, only the trivial
solutions φ0 = φ1 = 0 occur. Then we consider two possibilities: Z = O(1) and
Z = O(ε).
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7.1. Z = O(1). As ζ = O(ε), we write ζ = εζ1. In this case we have only
trivial solutions. Expand equations and boundary conditions as before, to get to
leading order

∇2
⊥φ0 = 0, with ∇⊥φ0·n⊥ = 0,(77)

with solution φ0 = φ0(X), a function to be determined. To first order we have

∇2
⊥φ1 = 0, with ∇⊥φ1·n⊥ = ζ1φ0.(78)

Since ∫∫
A
∇2
⊥φ1 dσ = ζ1φ0

∫
∂A

d� = 0,(79)

we must have φ0 = 0, and so φ1 = φ1(X). Nothing changes when we continue, and
so all terms of the expansion vanish. Note that this is true for any Z.

7.2. Z = O(ε). Now we have ζ = O(1), which changes the boundary condition
expansion. To leading order we have

∇2
⊥φ0 = 0 in A, with ∇φ0·n⊥ = ζφ0 at ∂A.(80)

We would be tempted to assume that this problem has a solution or solutions for
any given Z, but this is not true. Nontrivial solutions exist only for certain ζ. From
Green’s second identity applied to φ0 and its complex conjugate, it can be deduced
that any possible ζ is real. Furthermore, from Green’s first identity applied to φ0, it
follows that any possible ζ is positive, and Z is thus negative imaginary.

But even with ζ real positive, there are only certain discrete values that allow a
solution. This is best seen as follows. The problem described in (80) is an eigenvalue
problem for the Dirichlet-to-Neumann operator Ξ: f �→ g, which maps a given Dirich-
let boundary value f to the normal derivative g of f ’s harmonic extension into A (see
[17]). In other words, Ξ(f) = ∂

∂nψ
∣∣
∂A, where ψ is the solution of

∇2ψ = 0 in A, with ψ = f at ∂A.(81)

As we are looking for Ξ(φ0) = ζφ0, equation (80) corresponds to the eigenvalue
problem of Ξ. For the present discussion it is most relevant to know that this spectrum
of eigenvalues of Ξ is discrete. As this result, due to Prof. Jan de Graaf, appears not
to be available in the literature, it is considered concisely, but in great depth, in the
appendix.

An example that illustrates this behavior explicitly is the circular duct r = R(X),
where

φ0 = f(X)
( r

R(X)

)m{cosmθ

sinmθ

}
, with ζ =

m

R(X)
,(82)

and m is a nonnegative integer. As the shape of the cross section A(X) changes with
X, the discreteness of the spectrum of Ξ implies that the values of ζ that allow a
solution also change with X, and in general there are no (nonzero) solutions possible
along a varying duct for a fixed given ζ.

This is of course not true for a duct of constant cross section, r = R(θ), although
now the asymptotics for small ε loses its meaning because there is no axial length
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scale for the acoustic wave to be compared with. The problem simplifies further for
the circular duct r = R, where (without approximation)

φ(x, r, θ) = Jm(αr) e−imθ−iγx, α2 + γ2 = k2(83)

and the boundary condition requires

αRJ ′
m(αR)

Jm(αR)
= m− αRJm+1(αR)

Jm(αR)
= ζR.(84)

This equation has infinitely many solutions, but the wave is guaranteed unattenuated
(γ real) if α is imaginary, say α = iτ . Such solutions exist for real ζ ≥ m/R, because

ζR = m− iτRJm+1(iτR)

Jm(iτR)
= m +

τRIm+1(τR)

Im(τR)
≥ m(85)

(see [27]). Note that for small k, γ, α solutions we recover (82)

ζ =
m

R
− α2R

2m + 2
+ O(α4).(86)

In other words, only solutions of this type exist near special values of ζ.

8. Variable mean soundspeed and density. If soundspeed C = C(X, r, θ)
and mean density D = D(X, r, θ) are not uniformly constant, but vary in r, θ, and
slowly in x, we have the reduced wave equation (5), rewritten in slowly varying coor-
dinates as

ε2 ∂

∂X

(
C2pX

)
+ ∇⊥·(C2∇⊥p

)
+ ε2Ω2p = 0,(87)

where the dimensionless frequency ω = εΩ is small. The hard-wall boundary condition
is the same as (14). When we expand p = p0 + εp1 + ε2p2 + · · · , we get to leading
order

∇⊥·(C2∇⊥p0

)
= 0, with ∇⊥p0·n⊥ = 0,(88)

which has a constant as the solution, so p0 = p0(X), a function to be determined.
We can derive the same equation for p1, to get the same result p1 = p1(X). For the
second order we have

∇⊥·(C2∇⊥p2

)
+

∂

∂X

(
C2p0,X

)
+ Ω2p0 = 0, with ∇⊥p2·n⊥ = p0,X

RRX√
R2 + R2

θ

.

(89)

We go on to find a solvability condition for p2 by integrating this equation along a
cross section A. Utilizing the following identity for any differentiable function f ,

d

dX

∫∫
A
f(X) dσ =

d

dX

∫ 2π

0

∫ R

0

f(X, r, θ)r drθ

=

∫ 2π

0

∫ R

0

fXr drdθ +

∫ 2π

0

f(X,R, θ)RRX dθ,(90)



1998 SJOERD W. RIENSTRA

we have ∫∫
A
∇⊥·(C2∇⊥p2) dσ = p0,X

∫ 2π

0

C2RRXdθ

= p0,X

[
d

dX

∫∫
A
C2 dσ −

∫∫
A

∂

∂X
C2 dσ

]
.(91a)

Furthermore, we have∫∫
A

∂

∂X

(
C2p0,X

)
dσ = p0,X

∫∫
A

∂

∂X
C2 dσ + p0,XX

∫∫
A
C2 dσ,

and

∫∫
A

Ω2p0 dσ = Ω2p0A.(91b)

Then, after introducing the cross-sectional averaged squared soundspeed

C2 =
1

A

∫∫
A
C2 dσ,(92)

a generalization of Webster’s horn equation is obtained:

A−1
(
AC2p0,X

)
X

+ Ω2p0 = 0.(93)

This may be further simplified by the transformation

A(X)C2(X) = d(X)2, p0 = d−1ψ(94)

into

ψ′′ +

(
Ω2

C2
− d′′

d

)
ψ = 0.(95)

9. Irrotational and isentropic mean flow. To analyze asymptotically low-
frequency acoustic perturbations in a slowly varying duct with an irrotational isen-
tropic mean flow, as described by (7) and (9), we need to approximate both mean
flow and acoustic field to the same order of accuracy.

We start here with the mean flow. In the dimensionless variables used, we have
C2 = Dγ−1, so equations (7) simplify to

1
2V

2 +
Dγ−1

γ − 1
= E, ∇·(DV ) = 0.(96)

The mass flux at any cross section A is given by∫∫
A
DU dσ = F .(97)

Due to the nondimensionalization, U , D, A, F , and E are O(1). Introduce the slow
variable X = εx, and assume that V and D depend essentially on X, rather than x.
We write the velocity as

V = Uex + V⊥(98)
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to distinguish between axial and crosswise components. If flux F and thermodynam-
ical constant E are given and independent of ε, we can expand U = U0 + O(ε2) and
D = D0 +O(ε2). As the flow is a potential flow, we can derive, in the same way as in

Rienstra [14, 16], that D0 = D0(X), U0 = U0(X), and V⊥ = εṼ⊥0 +O(ε3), satisfying
the equations (to be solved numerically)

D0U0A = F ,
F2

2D2
0A

2
+

Dγ−1
0

γ − 1
= E.(99)

9.1. Mean flow and hard walls. Next we consider the acoustic field. Using
the above results for the mean flow, (9) becomes to leading order

∇2
⊥φ + ε2D−1

0

(
D0φX

)
X

= ε2

(
iΩ + U0

∂

∂X
+ Ṽ⊥0·∇⊥

)[
C−2

0

(
iΩ + U0

∂

∂X
+ Ṽ⊥0·∇⊥

)
φ

]
,

with hard wall boundary condition

∇φ·n = 0 at r = R.

We expand φ = φ0 + εφ1 + ε2φ2 + · · · . To leading order we have

∇2
⊥φ0 = 0, ∇⊥φ0·n⊥ = 0,(100)

yielding the constant solution, i.e., φ0 = φ0(X).
To first order we have the same equation. To second order we have

∇2
⊥φ2 + D−1

0

(
D0φ0,X

)
X

=

(
iΩ + U0

∂

∂X
+ Ṽ⊥0·∇⊥

)[
C−2

0

(
iΩ + U0

∂

∂X
+ Ṽ⊥0·∇⊥

)
φ0

]
,

with boundary conditions given by (19). After integration across a cross section A(X),
we obtain, similar to before, Webster’s horn equation generalized for irrotational
isentropic mean flow:

(D0A)−1(D0Aφ0,X)X =

(
iΩ + U0

∂

∂X

)[
C−2

0

(
iΩ + U0

∂

∂X

)
φ0

]
.(101)

This result seems to be equivalent to equations given by [8, 9, 10, 11, 12] and (apart
from a factor 1

2 ) [3, p. 422].

9.2. Mean flow and impedance walls. The problem with mean flow and an
impedance wall is more intricate. Instead of the duct wall boundary condition given
in (76), we have Myers’ condition [28], rewritten (see [29, 30]) as follows:

iωD
(
v·n) =

iωDp

Z
+ M

(DV p

Z

)
,(102)

where impedance Z = Z(X, θ) may be function of position, and operator M is defined
by

M(F ) = ∇·F − n·(n·∇F ).(103)
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Since M(DV p
Z ) = O(ε), we write M(DV p

Z ) = εM̃(DV p
Z ). After expanding φ =

φ0 + εφ1 + · · · and p = εp0 + · · · with

p0 = −D0

(
iΩ + U0

∂

∂X
+ Ṽ⊥0·∇⊥

)
φ0,(104)

we get

iΩD0

(
∇⊥φ0·n⊥) + iεΩD0

(
∇⊥φ1·n⊥) = ε

iΩD0p0

Z
+ εM̃

(D0V 0p0

Z

)
+ O(ε2),

(105)

where V 0 = U0ex + εṼ⊥0.

9.2.1. Z = O(1). As before, we get to leading order

∇2
⊥φ0 = 0, with ∇⊥φ0·n⊥ = 0,

so φ0 = φ0(X) and therefore p0 = p0(X). To first order we have the same equation
∇2
⊥φ1 = 0 for φ1, but the boundary condition is now

iΩD0

(
∇⊥φ1·n⊥) =

iΩD0p0

Z
+ M̃

(D0V 0p0

Z

)
.(106)

In order to continue, we need from [16] the following property of the operator M.
For any sufficiently smooth vectorfield with f ·n = 0 at r = R, we
have∫

∂A

[
∇·f − n·(n·∇f

)] ∥∥∥∥∂r

∂x
×∂r

∂�

∥∥∥∥ d� =
d

dx

∫
∂A

(
f×n

)·d�,

where (x, �) �→ r(x, �) is a parameterization of the surface.
Since ∥∥∥∥∂r

∂x
×∂r

∂�

∥∥∥∥ =

√
1 + ε2

R2R2
X

R2 + R2
θ

= 1 + O(ε2),

we have as a result∫
∂A

M̃
(D0V 0p0

Z

)
d� =

d

dX

∫
∂A

D0U0p0

Z
d� + O(ε).

We apply this to the equation for φ1, in order to obtain an equation for φ0. From∫∫
A
∇2
⊥φ1 dσ =

∫
∂A

∇⊥φ1·n⊥ d� = 0,

together with (106) and noting that most functions depend on X only, it follows that

iΩD0p0L +
d

dX

(
U0D0p0L

)
= 0, where L(X) =

∫
∂A

1

Z
d�

(L may be interpreted as the “total admittance” at X), with solution

p0 = constant
1

U0D0L
exp

(
−i

∫ X Ω

U0(ξ)
dξ

)
.

Here φ0 follows from (104) but is more difficult to obtain in explicit form. Note that
this pressure field is not an acoustic wave, but it is of hydrodynamic nature. It does
not propagate with the soundspeed, but with the mean flow velocity.
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9.2.2. Z = O(ε). When Z = εZ0, we get for φ0 the apparently difficult bound-
ary condition

iΩD0

(
∇⊥φ0·n⊥) =

iΩD0p0

Z0
+ M̃

(D0V 0p0

Z0

)
,

which is, analogous to the no-flow case, likely to be an eigenvalue problem with
discrete eigenvalues Z0 (apart from the trivial solutions p0 = 0, φ0 = φ0(X) ∝
exp(−iΩ

∫X
U0(ξ)

−1dξ), i.e., hydrodynamically convected pressureless perturbations).
If this conjecture is true, the possible eigenvalues vary with the geometry, and no other
than the trivial solution is possible in a varying duct.

10. Conclusions. Generalizations of Webster’s classic horn equation for non-
uniform media, lined walls, and mean flow have been derived systematically, as an
asymptotic perturbation problem for low Helmholtz number and slowly varying duct
diameter. The conditions on frequency, acoustic medium, and duct geometry are
explicitly indicated in terms of small parameter ε, the ratio between a typical length
of duct variation and the duct diameter. The error and higher order corrections are
also explicitly stated.

The presence of lining in a varying duct is shown to allow in general only trivial
or merely hydrodynamic solutions. A curved duct is shown to produce the same
equation if the radius of curvature is not smaller than the typical wavelength or duct
length scale.

The approximation is nonuniform near a source or entrance. The prevailing
boundary layer solution for an arbitrary duct cross section is given, together with
the O(1) and O(ε) matching conditions to the outer (“Webster”) region. From these
expressions conditions are derived for which the O(ε)-outer field is absent.

Appendix. On the spectrum of the Dirichlet-to-Neumann operator Ξ
on smooth bounded domains in R

2. We will show that the Dirichlet-to-Neumann
operator Ξ, introduced in section 7 (see (80)), has a discrete spectrum of finite multi-
plicity. The basic idea is to relate the problem for the general simply connected open
domain Ω ⊂ R

2 (which has apparently no explicit solution), via conformal mapping,
to the corresponding problem for the unit disk D, which does have a simple explicit
solution.

Note that the related result for an annular domain is entirely analogous.

Step 1. Consider the open unit-disk D ⊂ R
2. Its boundary ∂D, the unit circle, is

parametrized by the angle θ, with 0 ≤ θ < 2π. The set of functions

en : θ �→ en(θ) =
1√
2π

einθ, n ∈ Z,(A.1)

establishes an orthonormal basis in L2(∂D; dθ).4 We introduce for real a the linear
operator Na in L2(∂D,dθ), defined via the way it acts on the basis {en},

Na : en �→ Naen, with Naen(θ) = (|n| + a)en(θ),(A.2)

followed by linear extension and closure.

4L2(U ;w(x)dx) denotes the space of square integrable functions, defined on U , with inner product∫
U f(x)g(x)w(x) dx.
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Let u : ∂D → C be a sufficiently smooth function. Let uH, the harmonic
extension of u, denote the (unique) solution of the Dirichlet problem

∇2uH(x) = 0 for x ∈ D, while uH(x) = u for x ∈ ∂D.(A.3)

The normal derivative at the boundary ∂D produces a function

∂

∂n
uH : ∂D → C.(A.4)

Altogether this defines the linear mapping u �→ ∂
∂nuH, which is called the Dirichlet-to-

Neumann operator in L2(∂D; dθ). By noting that enH(x) = (x± iy)|n| = r|n| e±i|n|θ,
and hence ∂

∂nenH = |n|en at ∂D, it is easily verified that this operator is just equal
to N0.

Step 2. Consider the bounded open domain Ω ⊂ R
2 with piecewise smooth

boundary ∂Ω. Let v : ∂Ω → C be a sufficiently smooth function. As in the previous
section (just replace D by Ω), we introduce

Ξ : v �→ Ξv =
∂

∂n
vH,(A.5)

the Dirichlet-to-Neumann operator in L2(∂Ω; dθ). Thus Ξ = N0 if Ω = D. We
want to show that Ξ is nonnegative self-adjoint with a pure point spectrum of finite
multiplicity. In the previous paragraph we showed this to be true in L2(∂D; dθ).

The self-adjointness and nonnegativity follows, formally, from Green’s first and
second identities (see section 7). In order to achieve some spectral results, we invoke
the Riemann mapping theorem and consider a conformal mapping β :D→Ω. The
supposed smoothness of ∂Ω implies that the parametrization θ �→ β(eiθ) for ∂Ω is
such that both |β′(eiθ)| and its reciprocal are bounded.

Standard results from conformal mapping theory and harmonic functions on R
2

lead to

Ξv
(
β(eiθ)

)
=

(
∂

∂n
vH

)(
β(eiθ)

)
=
∣∣β′(eiθ)

∣∣−1 ∂

∂n
(v◦β)H(eiθ).(A.6)

This means that, instead of the original problem, we could study the eigenvalue prob-
lem

BN0u = λu(A.7)

in L2(∂D,dθ), with B the multiplication operator defined by

(Bw)(θ) = B(θ)w(θ) =
∣∣β′(eiθ)

∣∣−1
w(θ).(A.8)

(Although the inverse B−1 involves no more than division by the function B(θ), we
retain for clarity the operator symbolism.)

Step 3. In order to turn the operator BN0 into a self-adjoint one, we consider
the eigenvalue problem in L2(∂D;B−1(θ)dθ), which is topologically equivalent to
L2(∂D; dθ). Note that

{
θ �→ u(θ)

}
�→
{
θ �→ B− 1

2 (θ)u(θ)
}

(A.9)
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furnishes a unitary transformation from L2(∂D;B−1(θ)dθ) to L2(∂D; dθ), because

∫ 2π

0

u(θ)v(θ)B−1(θ) dθ =

∫ 2π

0

(
B− 1

2 (θ)u(θ)
)(
B− 1

2 (θ)v(θ)
)
dθ.(A.10)

At the same time this implies that the eigenvalue problem (A.7) is unitary equivalent
to the eigenvalue problem

B 1
2N0B

1
2ϕ = λϕ,(A.11)

with ϕ = B− 1
2u.

Step 4. If we can show that (I+B 1
2N0B

1
2 )−1 (where I is the identity) is a compact

self-adjoint operator, we are ready. In that case it has a discrete spectrum with finite
multiplicity [31], and the same holds, a fortiori, for B 1

2N0B
1
2 .

Take a positive and sufficiently small such that θ �→ B−1(θ)−a is still positive
and uniformly bounded away from zero. By noting that Na = N0+aI, we can rewrite

I + B 1
2N0B

1
2 = B 1

2N
1
2
a

{
N− 1

2
a (B−1 − aI)N− 1

2
a + I

}
N

1
2
a B 1

2 .(A.12)

The operator between brackets, { }, is bounded, positive, and self-adjoint and has an
inverse with the same properties. We thus find

(
I + B 1

2N0B
1
2

)−1
= B− 1

2N− 1
2

a

{
N− 1

2
a (B−1 − aI)N− 1

2
a + I

}−1N− 1
2

a B− 1
2 ,(A.13)

which is a composition of operators. Since the factor N− 1
2

a is compact, also (I +

B 1
2N0B

1
2 )−1 is a compact operator.
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REVEALING PAIRWISE COUPLING IN LINEAR-NONLINEAR
NETWORKS∗

DUANE Q. NYKAMP†

Abstract. Through an asymptotic analysis of a simple network, we derive an estimate of the
coupling between a pair of units when all other units are unobservable. The analysis is based on
a model where the response of each unit is a linear-nonlinear function of a white noise stimulus.
The results accurately determine the coupling when all unmeasured units respond to the stimulus
differently than the measured pair. To account for the possibility of unmeasured units similar to
the measured pair, we cast our results in the framework of “subpopulations,” which are defined as a
group of units who respond to the stimulus similarly. We demonstrate that we can determine when
correlations between two units are caused by a connection between their subpopulations, although
the precise identity of the units involved in the connection may remain ambiguous. The result is
rigorously valid only when the coupling is sufficiently weak to justify a second-order approximation
in the coupling strength. We demonstrate through simulations that the results are still valid even
with stronger coupling and in the presence of some deviations from the linear-nonlinear model. The
analysis is presented in terms of neuronal networks, although the general framework is more widely
applicable.

Key words. neural networks, correlations, Weiner analysis, white noise
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1. Introduction. This analysis of coupling within networks is motivated by
neuroscience, and we use the vocabulary of neuroscience throughout. The measured
response properties of a neuron arise from the structure of the neural network in
which the neuron is embedded. To understand the relationship between these response
properties and the neural network structure, one would like to simultaneously measure
the response of neurons and estimate their connectivity. However, it has proven
difficult to estimate the connectivity from measurements of neural activity because
only a small subset of neurons can be monitored simultaneously.

In particular, a direct connection between two measured neurons is difficult to
distinguish from a connection onto both neurons that originates from a third, unmea-
sured neuron. We refer to the latter configuration as the common input configuration.
We address the case where one simultaneously measures two neurons in a network and
attempts to distinguish the direct connection configuration from the common input
configuration.

This distinction is especially difficult because when studying a network, one typ-
ically does not directly measure the internal state of neurons, but records only their
discrete output events, called spikes. From simultaneous recordings of two neurons’
spike times, one can analyze the joint statistics of the two spike trains in hopes of
detecting a direct connection. Two widely used tools are the joint peristimulus time
histogram (JPSTH) and its integral, the shuffle-corrected correlogram [14, 1, 13]. Un-
fortunately, inferences from the JPSTH or correlogram about the connections between
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1 2longer delay1 2
1 2longer delay

Fig. 1. To determine “subpopulation connectivity,” one needs to distinguish a direct connection
from only certain kinds of common input. Three sample network configuration are shown, where
neurons one and two are measured and the unlabeled neuron is not measured. The subpopulation
of each neuron, which is defined within the context of a model, is indicated by the shading (white,
gray, or black.) To determine subpopulation connectivity, as we have defined it, one must be able
to distinguish the right configuration from the left two configurations. In both of the left configura-
tions (but not in the right configuration), there is a connection from a neuron within neuron two’s
subpopulation (white) onto a neuron within neuron one’s subpopulation (gray). Hence, we do not
need to distinguish the left two configurations from each other in order to determine subpopulation
connectivity.

the two measured neurons are ambiguous because these measures cannot distinguish
a direct connection from common input.

The joint statistics of the two spike trains alone may be insufficient to distinguish
a direct connection from common input. If one could measure the neurons inducing
the common input effects, then the joint statistics of all the measured spike trains
would be sufficient, and one could use analysis tools such as partial coherence [15]
to distinguish a direct connection from common input. However, when one cannot
measure all possible sources of common input, one cannot rule out common input
through partial coherence.

Our approach is to analyze the joint statistics, not just of the measured spike
trains, but also of an experimentally controlled stimulus. The idea motivating this
approach is that the joint stimulus-spike statistics may be sufficient to distinguish
the direct connection configuration from the common input configuration even if the
neurons inducing the common input are unmeasured.

It turns out that we cannot distinguish a direct connection from all possible
cases of common input. Instead, we can characterize connectivity only in terms of
certain subpopulations of neurons, defined so that each neuron in a subpopulation
responds to the stimulus in a similar manner (the definition of responding “similarly”
is made in the context of a model). The concept of subpopulation connectivity is
illustrated in Figure 1. Imagine that the spikes of neuron one are correlated with a
delayed version of the spikes of neuron two, consistent with a direct connection from
neuron two onto neuron one. Our central result is that we can distinguish between
(A) a direct connection from neuron two onto neuron one and (B) common input
that does not originate from neuron two’s subpopulation. On the other hand, if the
common input does originate from neuron two’s subpopulation, the common input
may not be distinguishable from a direct connection. However, in this latter case,
the common input does contain a connection from neuron two’s subpopulation onto
neuron one. Consequently, the identification of a direct connection from neuron two
onto neuron one must be interpreted as the identification of a connection from neuron
two’s subpopulation onto neuron one. The precise identity of the neuron originating
the connection remains ambiguous (it could be neuron two or another neuron in
neuron two’s subpopulation). To summarize this ambiguity, we say we can determine
connectivity only at the level of subpopulations (and not at the level of individual
neurons).

Our analysis is fundamentally model-driven. The structure imposed by an explicit
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model gives the framework necessary for making the subtle distinction between a di-
rect connection and most cases of common input. In this paper, we analyze a network
modeled as interacting linear-nonlinear systems responding to a white noise stimulus.
Clearly, this choice limits the applicability of this implementation to networks that
can be approximated by this simple model. Our motivation for using this model is
the ability to compute analytic expressions for necessary stimulus-spike statistics. We
mention possible generalizations in the Discussion.

In section 2, we describe the model network and the assumptions required for the
analysis. In section 3, we derive analytic expressions for measurable stimulus-spike
statistics and solve the resulting system of equations for the coupling strength. We
test our findings via simulations in section 4, and discuss the results in section 5.

2. The model.

2.1. The model network. We base our analysis on a model network of linear-
nonlinear neurons that builds on the models we have presented previously [12, 10, 11,
9]. Let n be the (presumably unknown) number of neurons in the network. Let the
random vector1 X denote the stimulus. The components of X represent the spatio-
temporal sequence of stimulus values, such as the pixel values for each refresh of a
computer monitor.

The response of neuron q = 1, 2, . . . , n will depend on the convolution of the
stimulus with a spatio-temporal kernel2 h̄q, normalized so that ‖h̄q‖ = 1. To make
later notation simpler, we view the kernel h̄q as sliding along the stimulus with time,
and denote by h̄i

q the kernel shifted for the discrete time point i. We implicitly
view the temporal index of the stimulus as going backward in time, and write the
convolution of the kernel with the stimulus as the dot product h̄i

q · X.

Let the binary vector R represent the spike times of neurons in the network. A
component Ri

q = 1 indicates that neuron q spiked at time i; otherwise, Ri
q = 0. When

neuron p spikes, the probability that neuron q spikes j time steps later is modified
by the connectivity factor W̄ j

pq. The quantity W̄ j
pq is simply added to the convolution

h̄i
q · X.

The only nonlinear part of the linear-nonlinear model is that the above linear sum
is composed with a static monotonically increasing nonlinearity ḡq(·). This output
nonlinearity represents, for example, the neuron’s spike generating mechanism and
ensures that spiking probabilities stay between zero and one. The resulting linear-
nonlinear network model is the following expression for the probability of a spike of
neuron q at time i, conditioned on the stimulus and previous spikes (denoted R<i):

Pr
(
Ri

q = 1
∣∣X = x,R<i = r<i

)
= ḡq

⎛
⎝h̄i

q · x +

n∑
p=1

∑
j>0

W̄ j
pqr

i−j
p

⎞
⎠ .(2.1)

We let the recent stimulus X be a discrete approximation to temporal or spatio-
temporal Gaussian white noise. For the analysis, we need to estimate stimulus-spike
statistics conditioned on the stimulus. The estimation of these statistics implicitly
assumes that we repeat each realization of the white noise stimulus multiple times.

1With the exceptions of W̄ , we will use capital variables to denote random quantities.
2We use overbars (e.g., h̄) to indicate original model parameters, and will remove the bars (e.g.,

h) to indicate their estimates from data. In addition, we use subscripts to denote neuron index, and
superscripts to denote temporal indices.
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2.2. The weak coupling assumption. To facilitate our analysis, we make a
weak coupling assumption, which asserts that the coupling W̄ j

pq is sufficiently small to

justify a second-order approximation in W̄ . This assumption is really an assumption
on how W̄ scales with the number of neurons n. As one expands equations such as
(2.1) in powers of W̄ , one obtains terms that are kth-order in W̄ summed over the
population k times. Hence, one obtains terms of the magnitude (n〈W̄ 〉)k, where 〈W̄ 〉
is an average of n values of W̄ . To truncate this series at finite k, one at minimum
needs n〈W̄ 〉 < 1. For a densely coupled large network, the coupling strength must,
on average, scale at most like 1/n. (Individual connections could be stronger, as long
as the average scales like 1/n.) We compute an approximation of order k = 2, and
we ignore all terms that are third-order or higher in W̄ .

In our analysis, we go one step further. We ignore all second-order terms that
are not summed over the population. Since, in this case, we are not summing over
the population, it is no longer a scaling argument. This approximation simply asserts
than any one connection cannot be too large. We will use ≈ to indicate equality
within this modified second-order approximation in W̄ .

We use this approximation out of necessity, not because we believe it is justified
by the biology. However, we demonstrate with simulations that the results often still
hold even for larger coupling than needed for the analytic results.

2.3. Effective uncoupled neuron model. Our first step is to fit the spikes of
each neuron separately to an uncoupled linear-nonlinear model of the form3

Pr
(
Ri

q = 1
∣∣X = x

)
= gq

(
hi
q · x

)
,(2.2)

where ‖hi
q‖ = 1. For the purpose of subpopulation definitions, below, we imagine we

can do this for all neurons. In practice, of course, we can fit uncoupled models only to
the two measured neurons. Fitting the uncoupled model (2.2) when the spikes were
actually generated by the network model (2.1) defines the effective nonlinearities gq(·)
and kernels hi

q.

We derive expressions for the effective parameters in terms of the original param-
eters plus coupling effects. We simply need to calculate Pr(Ri

q = 1
∣∣X = x) from the

network model (2.1). Because we assume a second-order approximation in coupling
strength W̄ , it turns out that a first-order approximation in W̄ is sufficient for the
effective single-neuron parameters.4

From a trivial generalization of the calculation in Appendix A.1 of [11], we can
average the network model (2.1) over all spikes before time i to conclude that the
probability of a spike at time i is

Pr
(
Ri

q = 1
∣∣X = x

)
= ḡq(h̄

i
1 · x) +

n∑
p=1

∑
j>0

W̄ j
pq ḡ

′
q(h̄

i
1 · x)ḡp(h̄

i−j
p · x) + O(W̄ 2).(2.3)

Combining this expression with the uncoupled model (2.2), we obtain the following
relationship between the effective kernels hi

q and nonlinearities gq(·), on one hand,

3Note the absence of bars to indicate effective parameters that can be estimated from data (at
least for the measured neurons).

4We will show that all terms for the spike-pair statistics will be first- or second-order in W̄ (all
zero-order terms cancel out), and thus approximating the single-neuron parameters to first order is
sufficient to retain a second-order approximation for the spike-pair statistics.
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and the original model kernels h̄i
q and nonlinearities ḡq(·), on the other hand:

gq(h
i
q · x) = ḡq(h̄

i
q · x) +

n∑
p=1

∑
j>0

W̄ j
pq ḡ

′
q(h̄

i
q · x)ḡp(h̄

i−j
p · x) + O(W̄ 2).(2.4)

Since gq(h
i
q · x) and ḡq(h̄

i
a · x) differ by only a first-order correction, and we are

computing only to first order, we can simply erase the bars from ḡ and h̄ in the W̄ j
pq

term (creating a second-order error) to obtain

ḡq(h̄
i
q · x) = gq(h

i
q · x) −

n∑
p=1

∑
j>0

W̄ j
pqg

′
q(h

i
q · x)gp(h

i−j
p · x) + O(W̄ 2).(2.5)

This effective parameter relationship will be used in the following analysis to express
all equations in terms of the effective parameters.

2.4. Subpopulation definition. A subpopulation is a group of neurons that
respond to the stimulus in a similar manner. The effective kernel h derived from
fitting a neuron’s spikes to the uncoupled model (2.2) describes the relationship of
neuronal spikes to the stimulus. (In some contexts, this kernel would be referred
to as the neuron’s receptive field.) We base our subpopulation definitions on this
effective kernel. We define the similarity between two neurons based on the correlation
coefficient between the linear components from the uncoupled model (2.2):

cckpq = cor(hi
p · X,hi−k

q · X),(2.6)

where

cor(A,B) =
cov(A,B)√

var(A) var(B)
.

Note that −1 ≤ cckpq ≤ 1. In fact, since each component of X is a unit normal
random variable, the correlation coefficient is simply the cosine of the angle between
the kernels:

cckpq =
hi
p · hi−k

q

‖hi
p‖‖hi−k

q ‖
= hi

p · hi−k
q .(2.7)

(The last equality results because the kernels are normalized to be unit vectors.)

Define the maximum correlation coefficient as

ccmax
pq = max

k
cckpq.(2.8)

If ccmax
pq is large, then neurons p and q respond to the stimulus similarly, and we

consider the neurons as part of the same subpopulation. On the other hand, if ccmax
pq

is small, then we consider the neurons as parts of different subpopulations. For the
analysis, when we assume that neurons p and q are from different subpopulations,
we will effectively assume that each cckpq is O(W̄ ). We show via simulations that, in
practice, we can relax this condition somewhat.
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3. The analysis.

3.1. Overview of the analysis. We assume we have access to only the spikes of
neuron one and two (Ri

1 and Ri
2) as well as the discrete white noise stimulus X. Given

the stimulus, the probability of spikes from the network is specified by the network
model (2.1). We initially assume that all unmeasured neurons (with index p > 2) are
from different subpopulations than those of neurons one or two (in particular, that
cckp1 and cckp2 for all k are O(W̄ )). Using this assumption, we can solve for the direct

connection (W̄ j
21 and W̄ j

12) in terms of the joint statistics of the random variables Ri
1,

Ri
2, and X.

When we allow unmeasured neurons from the same subpopulations as the mea-
sured neurons, we do not change the algorithm to determine a direct connection.
We demonstrate that, with this algorithm, common input from neuron one’s sub-
population may be identified as a direct connection from neuron one onto neuron
two. Similarly, common input from neuron two’s subpopulation may be identified
as a direct connection from neuron two onto neuron one. Although this results in a
misidentification at the level of individual neurons, it still accurately identifies connec-
tivity at the level of subpopulations (since, for example, common input from neuron
two’s subpopulation does contain a connection from neuron two’s subpopulation onto
neuron one’s subpopulation).

For this analysis, we assume that we have an infinite dataset, so we can estimate
the expected values of functions of the random variables. Since in practice, we will
have much smaller datasets, we must reduce the bias in estimations from finite datasets
using a procedure such as that outlined in [12, 11, 8]. We do not address such bias
reduction here.

We give a brief overview of the analysis here and give more details of each step
in the following sections. In the first step, we analyze the spikes of neuron one and
neuron two separately. From their stimulus-spike statistics, we fit uncoupled linear-
nonlinear models (2.2) as if we were using standard white noise analysis methods such
as those outlined in [12]. This calculation is based on the mean spike rates5 (E{Ri

1}
and E{Ri

2}) and the stimulus-spike correlations (E{XRi
1} and E{XRi

2}). Since the
spike times are really given by the network model (2.1), the effective kernels (hi

q and

hi
2) and nonlinearities (g1(·) and g2(·)) are functions of network model parameters

(including coupling and parameters from other neurons), as given by (2.4).

Next, we calculate the spike rates conditioned on a particular realization of the
stimulus6 (E{Ri

1|X} and E{Ri
2|X}). These statistics are equivalent to the peristim-

ulus time histogram (PSTH) commonly used in the neuroscience literature.

We look at spike pairs, where neuron two spikes k units of time before neuron
one (note that k could be positive or negative). We subtract off the product of the
PSTHs from the rate of spike pairs conditioned on the stimulus, forming

E{Ri
1R

i−k
2 |X} − E{Ri

1|X}E{Ri−k
2 |X}.

The result is the JPSTH cast into the notation of the model.

If we take the expected value of the JPSTH over all realizations of the stimulus,

5Note that, due to the stationarity of the stimulus and model, many stimulus-spike statistics do
not depend on time, despite the notation. The mean rates E{Ri

q}, for example, do not depend on
the time point i.

6Here we assume that each realization of the stimulus is repeated multiple times.
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we obtain the shuffle-corrected correlogram or covariogram

Ck
21 = E{Ri

1R
i−k
2 } − E

{
E{Ri

1|X}E{Ri−k
2 |X}

}
.(3.1)

Here we have used the fact that E{E{Ri
1R

i−k
2 |X}} = E{Ri

1R
i−k
2 }. For a given value

of k, Ck
21 is effectively a sum over the diagonal of the JPSTH corresponding to the

delay k. From analysis of the network model (2.1), we derive an equation for Ck
21 in

terms of model parameters.
As we argued in the introduction, the covariogram alone is insufficient to distin-

guish common input from a direct connection. In terms of the model parameters,
there are too many unknowns to solve for W̄ k

21 (or W̄−k
12 if k < 0). To obtain more

equations, we combine white noise analysis methods with the JPSTH.
The key of the approach is to calculate the correlation7 of the JPSTH with the

stimulus:

Dki
21 = E{XRi

1R
i−k
2 } − E

{
XE{Ri

1|X}E{Ri−k
2 |X}

}
.(3.2)

Note that the stimulus-spike correlations (e.g., E{XRi
1}) were calculated by corre-

lating the stimulus with a binary vector (e.g., the Ri
1). The above statistic Dki

21 is a
correlation of the stimulus not with a spike vector, but with the vector composed of
values from the diagonal of the JPSTH corresponding to delay k. This vector is, of
course, not binary, but the correlation can be computed nearly identically. For a fixed
k, the result Dki

21 will be a vector of the same dimension as the correlations E{XRi
1}

and E{XRi−k
2 } and hence the same dimension as the kernels hi

1 and hi−k
2 .

Consequently, for a given k, we can decompose Dki
21 into components parallel to

the kernels hi
1 and hi−k

2 , calculating the coefficients Ak
1 and Ak

2 for which

Dki
21 = Ak

1h
i
1 + Ak

2h
i−k
2 + Oki,(3.3)

where Oki is perpendicular to hi
1 and hi−k

2 . By analyzing the network model (2.1),
we calculate expressions for Ak

1 and Ak
2 in terms of model parameters. From Ck

21, A
k
1 ,

and Ak
2 , we have three equations for each delay k.

If one compares the number of unknown parameters with the number of equations,
the situation still looks hopeless. Assume that we calculate the statistics for the delays
k = ±1,±2, . . . ,±M , so that we have 2M×3 = 6M equations.8 Assume also that the
coupling is zero for delays longer than M time units. Then the coupling parameters
are W̄ j

pq for j ∈ {1, 2, . . . ,M} and p, q ∈ {1, 2, . . . , n}, where n is the (presumably
unknown) number of neurons, for a total of Mn2 parameters.

If the number of neurons is more than two, the system appears vastly underdeter-
mined. This limitation make sense. If we were sufficiently audacious as to claim that
we could reconstruct the coupling of the entire network based on measures of just two
neurons, our absurdity would be exposed by this reality check. Our goal is simply to
estimate the direct connection W̄ j

21 and W̄ j
12 between the two measured neurons.

As demonstrated below, if we assume that unmeasured neurons are from different
subpopulations than the measured neurons, all the coupling terms involving unmea-
sured neurons appear in the same combination9 in all three sets of equations. We
denote this combination by Ûk, and refer to Ûk as the common input contribution10

7We use the term “correlation” loosely.
8We ignore the single-neuron statistics and single-neuron parameters for this rough calculation.
9For this overview, we ignore the presence of indirect connections (see section 3.3).

10It turns out that Ûk contains only combinations of coupling terms that correspond to common
input.
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to delay k. This notation makes it clear there are really only two unknowns per de-
lay k (Ûk and either W̄ k

21 or W̄−k
12 , depending on whether k is positive or negative,

respectively). We have a total of 2M × 2 = 4M parameters for 6M equations.11 The
system is actually overdetermined. Moreover, due to the weak coupling assumption
of section 2.2, the system is linear in Ûk, W̄ k

21, and W̄−k
12 . We can easily solve it via

least squares and estimate the direct connection between neurons one and two as well
as the effective common input.

This estimate is, of course, valid only when unmeasured neurons are from different
subpopulations than the measured neurons. We address the case of unmeasured neu-
rons from the same subpopulations as the measured neurons in section 3.4. There we
argue that our estimate of W̄ k

21 or W̄−k
12 accurately reconstructs connectivity between

the subpopulations of neuron one and neuron two.

3.2. Single-neuron statistics. In the following sections, we present more de-
tails of the analysis outlined above. As many of the calculations are long, we present
only the key details, referring where possible to similar calculations from previous
papers.

For each of the measured neurons q = 1, 2, we analyze its spikes Ri
q and the

stimulus X as though the uncoupled model (2.2) held. We view the parameters from
the uncoupled model (2.2) as effective parameters that can be estimated from the
stimulus-spike statistics. We have already calculated the effective parameter relation-
ship (2.5) that relates effective parameters to the original model parameters.

In terms of the effective parameters, the stimulus-spike correlation is

E{XRi
q} = E{XPr(Ri

q = 1
∣∣X)}

= E{Xgq(h
i
q · X)}

= E{g′q(hi
q · X)}hi

q,(3.4)

and the mean rate is

E{Ri
q} = E{Pr(Ri

q = 1
∣∣X)}

= E{gq(hi
q · X)},(3.5)

where we used the integration-by-parts formula (A.3) to obtain the final expression
for E{XRi

q}.
Given (3.4) and the normalization ‖hi

q‖ = 1, the effective kernel can be calculated
from the stimulus-spike correlation as

hi
q =

E{XRi
q}

‖E{XRi
q}‖

.(3.6)

If we assume a two-parameter family of nonlinear functions for gq(·), we can calculate
those parameters from E{Ri

q} and ‖E{XRi
q}‖ (see [12]).

3.3. Neuron pair statistics. We repeat the calculations of Appendices A and B
of [11], computing terms only up to the modified second-order approximation in W̄ ,
described above in section 2.2. To simplify the notation, we define W̄ k

pq = 0 for k ≤ 0.

11Although we could, in principle, look for higher-order corrections by retaining higher-order
terms in W̄ , the system would not collapse to 4M parameters, and we would have to look for more
equations.
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After long, tedious calculations and use of the effective parameter relationship (2.5),
most of the terms cancel out, and we are left with

Pr
(
Ri

1 = 1 &Ri−k
2 = 1

∣∣X = x
)
− Pr(Ri

1 = 1|X = x) Pr(Ri−k
2 = 1|X = x)

≈
[
W̄ k

21 +

n∑
p=3

∑
j>0

W̄ k−j
2p W̄ j

p1g
′
p(h

i−j
p · x)

]
g′1(h

i
1 · x)g2(h

i−k
2 · x)[1 − g2(h

i−k
2 · x)]

+

[
W̄−k

12 +

n∑
p=3

∑
j>0

W̄ j
1pW̄

−k−j
p2 g′p(h

i+j
p · x)

]
g1(h

i
1 · x)[1 − g1(h

i
1 · x)]g′2(h

i−k
2 · x)

+

n∑
p=3

∑
j>max(0,k)

W̄ j
p1W̄

j−k
p2 g′1(h

i
1 · x)g′2(h

i−k
2 · x)gp(h

i−j
p · x)[1 − gp(h

i−j
p · x)],

(3.7)

where ≈ indicates equality within our modified second-order approximation in W̄ .
Note that if k ≤ 0, then W̄ k

21 = 0 and W̄ k−j
2p = 0, and the first expression in square

brackets is zero. On the other hand, if k ≥ 0, then W̄−k
12 = 0 and W̄−k−j

p2 = 0, and
the second expression in square brackets is zero. Consequently, either the first or the
second term is zero for any given k.

This expression is the expected value of the JPSTH, given that the stimulus
X = x. Note that the first term is a direct connection with delay k from neuron two
to neuron one, combined with an indirect connection through neuron p of total delay
k. The second term is a direct connection, combined with an indirect connection,
from neuron one to neuron two (of total delay −k, which is positive when this term is
nonzero). The last term is due to common input from neuron p onto both neuron one

and neuron two. (The expression W̄ j
p1W̄

j−k
p2 is nonzero only if neuron p is connected

to both neuron one and neuron two.)
The covariogram (3.1) is the expected value of the JPSTH (3.7), and the statistic

D (3.2) is the expected value of the JPSTH (3.7) times the stimulus X. Without
further assumptions on the unmeasured neurons, we cannot dissociate the contribution
of unmeasured neurons from the contribution of measured neurons. In order to solve
the equations, we assume that we can factor each expected value into (A) the expected
value of an expression involving unmeasured neuron parameters multiplied by (B) the
expected value of an expression involving measured neuron parameters. Note that
unmeasured neuron parameters appear only in those terms that are second-order in
W̄ . Given our second-order approximation in W̄ , this step assumes that, to zeroth
order in W̄ , the gp(h

i−j
p · X) are independent of g1(h

i
1 · X) and g2(h

i−k
2 · X) (i.e.,

the effective uncoupled models (2.2) for unmeasured neurons are independent of the
effective uncoupled models for measured neurons). In particular, we are assuming

that ccjp1 and ccj−k
p2 are O(W̄ ), which means that the unmeasured neurons are from

different subpopulations than the measured neurons (as defined in section 2.4).
Under this assumption the covariogram (3.1) (i.e., the expected value of the

JPSTH (3.7)) becomes12

Ck
21 ≈ Ŵ k

21E{g′1(hi
1 · X)g2(h

i−k
2 · X)[1 − g2(h

i−k
2 · X)]}

+ Ŵ−k
12 E{g1(h

i
1 · X)[1 − g1(h

i
1 · X)]g′2(h

i−k
2 · X)}

+ Ûk
21E{g′1(hi

1 · X)g′2(h
i−k
2 · X)},(3.8)

12Recall that stationarity of the stimulus and model imply that the statistics in the equation for
Ck

21 (as well as Ak
1 and Ak

2) do not depend on time point i, despite the notation.
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where ≈ indicates equality within our modified second-order approximation in W̄ and

Ŵ k
21 = W̄ k

21 +

n∑
p=3

∑
j>0

W̄ k−j
2p W̄ j

p1E{g′p(hi−j
p · X)},

Ŵ−k
12 = W̄−k

12 +

n∑
p=3

∑
j>0

W̄ j
1pW̄

−k−j
p2 E{g′p(hi+j

p · X)},

Ûk
21 =

n∑
p=3

∑
j>max(0,k)

W̄ j
p1W̄

j−k
p2 E{gp(hi−j

p · X)[1 − gp(h
i−j
p · X)]}.(3.9)

The new parameters Ŵ k
21 and Ŵ−k

12 are the effective direct connections between neu-

rons one and two. (By definition, Ŵ k
21 = 0 for k ≤ 0 and Ŵ−k

12 = 0 for k ≥ 0.) Note

that this effective direct connection factor Ŵ is a combination of both the direct con-
nections and the indirect connections through any unmeasured neuron p. This fact
indicates that we cannot distinguish between direct connections and indirect connec-
tions through unmeasured neurons. Our goal is to distinguish these effective direct
connections Ŵ from the effective common input Û , which is the sum total effect from
all unmeasured neurons p that project to both neuron one and neuron two.

We multiply the JPSTH (3.7) by X, take the expected value, and use the inte-
gration-by-parts formula (A.3) to obtain an expression for Dki

21 (given by (3.2))

Dki
21 ≈ Ak

1h
i
1 + Ak

2h
i−k
2 + Oki,(3.10)

where Oki is an expression that is O(W̄ 2) and involves the kernels of the unmeasured
neurons. Since we are assuming that the unmeasured neurons are from different
subpopulations than the measured neurons, Oki can be viewed as orthogonal to13 hi

1

and hi−k
2 . The components of Dki

21 parallel to hi
1 and hi−k

2 are

Ak
1 = Ŵ k

21E{g′′1 (hi
1 · X)g2(h

i−k
2 · X)[1 − g2(h

i−k
2 · X)]}

+ Ŵ−k
12 E{g′1(hi

1 · X)[1 − 2g1(h
i
1 · X)]g′2(h

i−k
2 · X)}

+ Ûk
21E{g′′1 (hi

1 · X)g′2(h
i−k
2 · X)},

Ak
2 = Ŵ k

21E{g′1(hi
1 · X)g′2(h

i−k
2 · X)[1 − 2g2(h

i−k
2 · X)]}

+ Ŵ−k
12 E{g1(h

i
1 · X)[1 − g1(h

i
1 · X)]g′′2 (hi−k

2 · X)}
+ Ûk

21E{g′1(hi
1 · X)g′′2 (hi−k

2 · X)}.(3.11)

From measuring the spikes of neuron one and two (Ri
1 and Ri

2) in response to
the stimulus X, we can calculate the effective uncoupled model parameters (g1(·),
g2(·), hi

1, and hi−k
2 ), the covariogram Ck

21 (via (3.1)), the statistic Dki
21 (via (3.2)),

and consequently its components Ak
1 and Ak

2 . The nine expected values in (3.8) and
(3.11) are simply Gaussian integrals of known functions that can be calculated. The
only unknown quantities are the Ŵ−k

12 , Ŵ k
21, and Ûk

21.

To emphasize that the direct connection is simply one variable per delay, we define

13Since, for any p > 2 and any j, the correlation coefficients ccjp1 and ccj−k
p2 are assumed to be

O(W̄ ), the component of hi−j
p parallel to hi

1 or hi−k
2 is O(W̄ ). Hence, the component of Oki parallel

to these kernels must be O(W̄ 3), which we can ignore.



REVEALING PAIRWISE COUPLING 2015

1 2
p

longer delay

A

1 2longer delay
p

B

Fig. 2. Schematic of common input from unmeasured neuron p onto measured neurons one and
two. The gray shading indicates which neurons are from the same subpopulation. The connection
from neuron p to neuron one is delayed, so the common input introduces a correlation between
the spikes of neuron one and two that is similar to the correlation induced by a connection from
neuron two to neuron one. (A) Neuron p is within neuron two’s subpopulation. In this case, the
common input may appear as a direct connection from neuron two onto neuron one. (B) Neuron p
is within neuron one’s subpopulation. In this case, the common input will not be confused with a
direct connection.

a new direct connection variable

Ŵ k =

⎧⎪⎨
⎪⎩
Ŵ−k

12 for k < 0,

0 for k = 0,

Ŵ k
21 for k > 0.

(3.12)

Note that the equations for different delays k are uncoupled. For each k 	= 0, equations
(3.8) and (3.11) are three linear equations for the two unknowns Ûk

21 and Ŵ k. This
system is easily solved for the two unknowns using linear least squares. For k = 0,
the only unknown is Û0

21, for which we solve using (3.8).

3.4. Common input from the measured neurons’ subpopulations. To
complete the above analysis, we assumed that the unmeasured neurons were from dif-
ferent subpopulations than the measured neurons. In particular, we assumed that the
correlation coefficients between the measured neurons and the unmeasured neurons
(cckp1 and cckp2 for p > 2 and all k) were small.

In the brain, one typically finds groups of neurons that respond to a stimulus in a
similar way and hence would be from the same subpopulation, as we defined them in
section 2.4. Consequently, one would anticipate the presence of unmeasured neurons
from the subpopulations of both neuron one and neuron two. Since such measured
neurons could be the source of common input, we must address the case of common
input from the neurons within the measured neurons’ subpopulations. (With the
exception of common input and indirect connection effects, all effects of unmeasured
neurons had already been canceled in the analysis leading to the JPSTH (3.7), before
we made any assumptions about subpopulations.)

We examine networks with a common input configuration where an unmeasured
neuron p has a connection onto neuron two, and, with a longer delay, a connection onto
neuron one, as schematized in Figure 2. To implement this, we let the connection onto
neuron one have a delay of j time steps (W̄ j

p1 	= 0) and the connection onto neuron

two have a delay of j − k time steps (W̄ j−k
p2 	= 0), with j > k > 0. With this set of

delays, the common input will introduce correlations between the measured neurons
that mimic a direct connection from neuron two onto neuron one with a delay of k
time steps.

We first show how common input from neuron two’s subpopulation (Figure 2(A))
can be misidentified as a direct connection from neuron two onto neuron one. (Note
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that this results in a correct identification of a connection from neuron two’s sub-
population onto neuron one’s subpopulation.) Since the connection from neuron p

onto neuron two is due to the term W̄ j−k
p2 	= 0, the correlation coefficient ccj−k

p2 will
determine whether the neuron p acts as a member of neuron two’s subpopulation
(this inference comes from inspection of the last term in the JPSTH (3.7)). If ccj−k

p2

is large, neuron p will act as a member of neuron two’s subpopulation.
We examine the extreme case where neuron p responds to nearly the same stim-

ulus features as neuron two does j − k time steps later; i.e., hi−j
p = hi−k

2 + O(W̄ ).

Consequently, ccj−k
p2 = 1+O(W̄ ). Then, the contribution of this neuron to the JPSTH

(3.7) is

W̄ j
p1W̄

j−k
p2 g′1(h

i
1 · x)g′2(h

i−k
2 · x)gp(h

i−k
2 · x)[1 − gp(h

i−k
2 · x)].

The contribution of neuron p to the covariogram is

Ck
21 = W̄ j

p1W̄
j−k
p2 E{g′1(hi

1 · X)g′2(h
i−k
2 · X)gp(h

i−k
2 · X)[1 − gp(h

i−k
2 · X)]}.(3.13)

Since the kernel hi−j
p is identical to hi−k

2 , an additional term will appear in Ak
2 after

the integration by parts, so that the contribution of neuron p to Ak
1 and Ak

2 is

Ak
1 = W̄ j

p1W̄
j−k
p2 E{g′′1 (hi

1 · X)g′2(h
i−k
2 · X)gp(h

i−k
2 · X)[1 − gp(h

i−k
2 · X)]},

Ak
2 = W̄ j

p1W̄
j−k
p2 E{g′1(hi

1 · X)g′′2 (hi−k
2 · X)gp(h

i−k
2 · X)[1 − gp(h

i−k
2 · X)]}

+ W̄ j
p1W̄

j−k
p2 E{g′1(hi

1 · X)g′2(h
i−k
2 · X)g′p(h

i−k
2 · X)[1 − 2gp(h

i−k
2 · X)]}.(3.14)

Compare this contribution to the effect of a direct connection from neuron two
to neuron one at a delay of k units of time (the W̄ k

21 terms from (3.8) and (3.11)):

Ck
21 = Ŵ k

21E{g′1(hi
1 · X)g2(h

i−k
2 · X)[1 − g2(h

i−k
2 · X)]},

Ak
1 = Ŵ k

21E{g′′1 (hi
1 · X)g2(h

i−k
2 · X)[1 − g2(h

i−k
2 · X)]},

Ak
2 = Ŵ k

21E{g′1(hi
1 · X)g′2(h

i−k
2 · X)[1 − 2g2(h

i−k
2 · X)]}.(3.15)

Ignoring the first term of Ak
2 in (3.14), we observe that the relationship among Ck

21,
Ak

1 , and Ak
2 in (3.13) and (3.14) is nearly identical to their relationship in (3.15). For

the case gp = g2, the only difference is the additional common factor of g′2(h
i−k
2 · X)

in the expected value.
If the second term of Ak

2 in (3.14) does dominate the first term, then the common
input from neuron two’s subpopulation leads to a relationship among the statistics
Ck

21, Ak
1 , and Ak

2 that mimics a direct connection from neuron two to neuron one.
Consequently, we would expect that applying the results of section 3.3 would indicate
the presence of a direct connection. Simulations confirm that the second term of Ak

2

in (3.14) does indeed dominate, as network configurations such as Figure 2(A) are
categorized as direct connection configurations.

We next consider the case where neuron p is from neuron one’s subpopulation
(Figure 2(B)). If neuron p responds to the stimulus almost exactly as neuron one
does, j time steps later, the analysis does not give a clear answer. If we assume hi−j

p =

hi
1 + O(W̄ ) so that ccjp1 = 1 + O(W̄ ), we do not obtain a relationship among Ck

21,

Ak
1 , and Ak

2 that mimics their relationship in (3.15). In this case, simulations indicate
that this configuration appears as common input. (Of course, if the connection from
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neuron p to neuron two had the longer delay, the network would be equivalent to
Figure 2(A) with the roles of neuron one and two reversed. In this case, the network
would mimic a direct connection from neuron one to neuron two.)

We conclude that we cannot distinguish between a direct connection from neu-
ron two onto neuron one and common input from neuron two’s subpopulation. (An
equivalent statement holds with the roles of neuron one and neuron two reversed.)
Since common input from neuron two’s subpopulation does contain a connection from
neuron two’s subpopulation onto neuron one, we conclude that the connectivity is cor-
rectly identified at the level of subpopulations. In applications where the distinction
among particular neurons within a subpopulation is unimportant, the ambiguity in
the precise identification of the connection is not problematic. See the Discussion for
more details.

4. Tests via simulation.

4.1. Simulations of small linear-nonlinear networks. We tested our ana-
lytic results with simulations of networks of linear-nonlinear neurons given by (2.1).
We used kernels h̄i

q that capture some features of the responses of neurons in visual
cortex [6]. For spatial grid point j = (j1, j2) and time t, the kernels were of the form

h̄q(j, t) = (t− bq) exp

(
− t− bq

τh
− |j|2

10

)
sin((j1 cosψq + j2 sinψq)fq + φq)(4.1)

for t > bq and h̄q(j, t) = 0 otherwise. We sampled h̄q(j, t) on a 10 × 10 × 10 grid and
normalized it to the unit vector h̄i

q. For the analysis, the only important geometry

is the inner product between the kernels, h̄i
q · h̄i−j

p , which is the correlation between

normal random variables h̄i−j
p · X and h̄i

q · X.
For each example, we simulated the network response to 500,000 units of time,

adjusting the nonlinearities ḡq(·) to obtain between 10,000 and 15,000 spikes from
each neuron. Each simulation was composed of 100 trials, each lasting 5,000 units of
time. For ten trials, the stimulus was independent realizations of the Gaussian white
noise. We repeated each realization ten times to form the 100 trials. The repetitions
allowed estimation of the spiking probabilities Pr(Ri

1|X = x) and Pr(Ri−k
2 |X = x)

needed for the JPSTH (3.7) by averaging over the ten repetitions (equivalent to a
shuffle correction).

The analysis was based on expected values of stimulus-spike statistics. Naive
estimates of products of these statistics, including the shuffle correction, from finite
datasets can be highly biased. We reduced these biases using techniques described
elsewhere [12, 11, 8]. From the independent trials, we estimated confidence intervals
as described in Appendix C.

To compute the Gaussian integrals in (3.8) and (3.11), we needed to choose a form
for the nonlinear functions gq(y). To allow us to compute the integrals analytically,
we assume that the nonlinear functions are error functions of the form

ḡq(y) =
1

2

[
1 + erf

(
y − ȳq

ε̄q
√

2

)]
,(4.2)

where ȳq is the threshold, ε̄q defines the steepness of the nonlinearity, and the error

function is erf(y) = 2√
π

∫ y

0
e−t2dt. Note that limy→∞ gq(y) = 1 and limy→−∞ gq(y) =

0. The expressions for Ck
21, A

i
1, and Ai−k

2 for the case of an error function nonlinearity
are given in Appendix B. We demonstrate below that the results are not sensitive to
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Fig. 3. Results from sample simulations showing successful distinction between (A) the direct
connection configuration and (B) the common input configuration, using only the spike times from
neurons one and two. The top panels are schematics of the network architecture, with grayscale
plots of the time slice in which each kernel (h1, h2, or h3, labeled by neuron number) reached
its maximal value. (The spikes of neuron three were used to calculate h3 for this illustration.
The remaining analysis used only the spikes of neuron one and two.) The bottom three panels
plot with black lines the covariogram C, direct connection measure W, and common input measure
U . The gray lines estimate confidence intervals of one standard error. Delay is the spike time of
neuron one minus the spike time of neuron two. (A) The direct connection from neuron two onto
neuron one creates a positive covariogram C around a delay of four units of time. The significantly
positive direct connection measure W at that delay indicates that the correlation was due to a direct
connection. The negative common input measure U , though indicating departure from the weak
coupling assumption, does not confuse the direct connection interpretation. The direct connection
was given by W̄ 4

21 = 0.8, W̄ 3
21 = W̄ 5

21 = 0.4. (All other W̄ were zero.) Parameters used: τh = 2,
ψ1 = π/8, ψ2 = −π/4, φ1 = 0, φ2 = π, f1 = 1.0, f2 = 0.3, b1 = b2 = 0, T̄1 = 2.3, T̄2 = 2.8, ε̄1 = 0.5,
ε̄2 = 1.0. (B) For the network with common input from unmeasured neuron three, the covariogram
C is nearly identical to the direct connection case from panel A. The fact that the correlation was
due to common input is revealed by the positive U (and negative W). The common input to neuron
one was delayed four more units of time compared with that to neuron two: W̄ 6

31 = W̄ 2
32 = 1.8,

W̄ 5
31 = W̄ 7

31 = W̄ 1
32 = W̄ 3

32 = 0.8. Parameters as in (A) except ψ3 = 0, φ3 = −π/3, f3 = 0.6,
b3 = 0, T̄1 = 2.6, T̄2 = 3.0, T̄3 = 2.4, ε̄3 = 0.7.

this particular choice of nonlinear function. One could perform a similar analysis for
other nonlinear functions, although then one would presumably need to compute the
integrals numerically.

We denote by Ck the covariogram Ck
21 (3.1) estimated from a dataset. Similarly,

we denote by Wk and Uk estimates of the direct connection Ŵ k (3.12) and common
input Ûk

21 (3.9), respectively.

To illustrate the method, we looked at minimal networks containing two or three
neurons. First, we simulated a pair of neurons, where neuron two has a direct connec-
tion onto neuron one. The results are shown in Figure 3(A). The covariogram C shows
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a peak at the delay corresponding to the connection. However, the covariogram does
not indicate whether this spike correlation is due to a direct connection or common
input from an unmeasured neuron.

This ambiguity is resolved by the measures W and U . The direct connection
measure W is significantly positive at the delay corresponding to the connection. On
the other hand, the common input measure U is negative at that delay. Hence, W
and U indicate that the spike correlation was caused by a direct connection rather
than by a common input.

Note that the noise in W and U is dramatically greater than in the covariogram C.
This increase is presumably due to the subtlety of the distinction we are attempting
to make. For this reason, we required long simulations with up to 15,000 spikes to
obtain good results.

The reciprocal behavior observed between W and U is not predicted by the analy-
sis. According to the analysis, U should be flat in the presence of a direct connection.
The fact that U is negative is surprising. Simulations indicate that this behavior is
a result of a breakdown in the weak coupling assumption. For a weaker direct con-
nection (and much longer simulation to compensate for noise), the reflection in U
disappears (not shown). The combination of a positive W and a negative U could
theoretically be caused by either a positive direct connection or a negative common
input. The ambiguity is removed by the positive C, indicating that we indeed have a
positive direct connection.

We next simulated three neurons, where the unmeasured neuron three was a
source of common input to neurons one and two. In this example, neuron three was
from a different subpopulation than neuron one or two, as defined in section 2.4.
Figure 3(B) shows the results obtained from analyzing the spikes of neurons one
and two. The covariogram C is essentially identical to the direct connection case
in Figure 3(A). The covariogram cannot be used to distinguish this common input
configuration from the direct connection configuration. This distinction can be made
from the measures W and U . In this case, the common input measure U is significantly
positive, while the direct connection measure W is negative. Since C is positive, this
combination correctly indicates the common input configuration.

We demonstrate in Figure 4 two simulations to confirm our analysis, with com-
mon input from neurons within the subpopulation of neuron one or neuron two (sec-
tion 3.4). We retain the same common input configuration of Figure 3(B), but change
the kernel of the unmeasured neuron three to match the kernel of either neuron two
or neuron one.

For the case when the unmeasured neuron three was in neuron two’s subpopu-
lation (Figure 4(A)), the common input appears as a direct connection from neuron
two onto neuron one, because W is significantly positive. The results fail to correctly
identify that neuron two does not have a direct connection onto neuron one. If one
cares about the distinction between neuron two and neuron three, then this result is
unacceptable. If, on the other hand, the precise of identity of neurons within a sub-
population is unimportant, the results are adequate, as they correctly indicate that a
neuron from neuron two’s subpopulation has a direct connection onto neuron one.

For the case when the unmeasured neuron three was in neuron one’s subpopulation
(Figure 4(B)), the results correctly indicate the common input configuration. In this
network, there was no direct connection from neuron two’s subpopulation onto neuron
one’s subpopulation. Fortunately, the similarity between neuron three and neuron one
does not affect the results.
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Fig. 4. Tests of the effect of common input from an unmeasured neuron within the subpopulation
of neuron one or neuron two. Panels as in Figure 3. (A) The network configuration is identical
to the common input of Figure 3(B) except that the kernel of neuron three is similar to that of
neuron two (ccmax

32 > 0.9; see (2.8)), so that neuron three is in neuron two’s subpopulation. In
this case, the common input is misidentified as a direct connection (W is positive). W can be
interpreted as indicating a direct connection from a neuron within neuron two’s subpopulation onto
neuron one. The connectivity W̄ and the parameters are identical to those of Figure 3(B) except
b2 = 2, ψ3 = −3π/8, φ3 = 7π/8, f3 = 0.4, T̄2 = 3.4. (B) When the kernel of neuron three is
similar to that of neuron one (ccmax

31 > 0.9) so that neuron three is in neuron one’s subpopulation,
the common input is correctly identified (U is positive). In this case, there is no connection from
neuron two’s subpopulation to neuron one. The connectivity W̄ and the parameters are identical to
those of Figure 3(B) except b1 = 6, ψ3 = π/8, φ3 = 0.0, f3 = 0.8, T̄1 = 3.0.

As indicated by the analysis, our approach cannot distinguish a direct connection
from an indirect connection via a third intermediate neuron. An example of an indirect
connection is shown in Figure 5(A). Since the direct connection measure W is positive,
the indirect connection is classified as a direct connection.

Although the analysis was based on an error function nonlinearity (4.2), the re-
sults are not sensitive to small changes in nonlinearity shape. In Figure 5, we demon-
strate a simulation with a (truncated) power law nonlinearity: ḡq(y) = min{Aqy

βq , 1}
for y > 0, and ḡq(y) = 0 otherwise. This example includes both a direct connection
from neuron one onto neuron two (we use the sign convention where this is a negative
delay) and common input from an unmeasured neuron three (with a positive net de-
lay, so that it mimics a connection from neuron two onto neuron one). We analyzed
the spike responses from neurons one and two (Ri

1 and Ri
2) and the stimulus X just

as we did in the previous examples; i.e., we used the results of Appendix B, in which
the nonlinearities ḡq(·) are assumed to be error functions.

The covariogram contains two similar peaks at a positive and negative delay and
therefore cannot distinguish the two type of connections. The measures W and U
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Fig. 5. Further demonstrations of the approach. Panels as in Figure 3. (A) An indirect
connection from neuron two onto neuron one through an unmeasured neuron three. This connection
appears as a direct connection (W is positive). As shown by the analysis, we cannot distinguish such
an indirect connection from a direct connection. The indirect connection is given by W̄ 2

23 = W̄ 2
31 =

1.6, W̄ 1
23 = W̄ 3

23 = W̄ 1
31 = W̄ 3

31 = 0.8. Parameters are identical to Figure 3(B) except T̄1 = 2.5,
T̄2 = 2.8, T̄3 = 2.6. (B) A simulation with nonlinear functions ḡq(·) given by power laws. In this
case, the network contains a direct connection from neuron one onto neuron two (corresponding
to a negative delay) and common input from unmeasured neuron three onto neurons one and two
(with a longer delay to neuron one to give a positive delay). The spikes of neuron one and two
were analyzed as though the nonlinearities were error functions. Although the covariogram contains
two virtually identical peaks, the measures W and U successfully identify the direct connection at
negative delay and the common input at positive delay. The connections were given by W̄ 4

12 = 0.6,
W̄ 3

12 = W̄ 5
12 = 0.4, W̄ 6

31 = W̄ 2
32 = 1.8, W̄ 5

31 = W̄ 7
31 = W̄ 1

32 = W̄ 3
32 = 0.8. Kernel parameters are as

in Figure 3(B). Power law parameters: A1 = 0.02, A2 = 0.035, A3 = 0.05, β1 = 2.6, β2 = 2.0,
β3 = 2.3.

differentiate between the origins of these peaks. Since W is positive at a negative
delay, it indicates a direct connection from neuron one onto neuron two. On the other
hand, since U is positive at a positive delay, it indicates a common input from a third
neuron rather than any direct connection from neuron two onto neuron one. The
method correctly identifies the circuitry of the model network even with a power law
nonlinearity.

4.2. Simulation of integrate-and-fire networks. To test the robustness of
the method to deviations from the linear-nonlinear model, we simulated a system of
integrate-and-fire neurons. In this case, we viewed each time step as corresponding to
a millisecond. The evolution of the voltage of neuron q in response to input Gq(t) is

given by τm
dVq

dt + Vq + Gq(t)(Vq − Es) = 0. The spike times T j
q of neuron q are those

times when Vq(T
j
q ) reaches 1. After each spike, the voltage was reset to 0 and held

there for an absolute refractory period of length τref . Each neuron was driven by the
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input conductance Gq(t), which we specified by

Gq(t) = 0.05
∑
j>0

f(t− T ext,j
q ) +

n∑
p=1

∑
j>0

Wpqf(t− T j
p − dpq),

where the first term is the response to external input events at times T ext,j
p and the

second term is due to internal coupling. The function f(t) = e2

4

(
t
τs

)2
e−t/τs for t > 0,

and f(t) = 0 otherwise. Here, Wpq specifies the strength of coupling from neuron p
onto neuron q, and dpq is the delay of that connection.

We set the external input to be a linear-nonlinear function of the stimulus. Ac-
cordingly, the T ext,j

q were drawn from a modulated Poisson process with rate given

by αq

[
hi
q · X

]
+
, where [x]+ = x if x > 0 and is zero otherwise.

We first simulated a network of three neurons that contained both a direct con-
nection from neuron one onto neuron two and common input from neuron three onto
neurons one and two (just as in Figure 5(B)). We used the same linear kernels (4.1)
as before, sampling them on an 80 × 10 × 10 grid in time and space. For realism, we
sampled the white noise stimulus every ten units of time (i.e., every 10 ms). We sim-
ulated the network to 5,000 simulated seconds (nearly 1.4 simulated hours), recording
30,000 to 40,000 spikes per neuron. We needed such long simulations to obtain good
results.

Figure 6(A) demonstrates that our analysis can distinguish common input from a
direct connection even with integrate-and-fire neurons. The results are equivalent to
Figure 5(B). The covariogram C show peaks corresponding to the direct connection
and the common input. The source of these correlations is distinguished by the
measures W and U . The correlation at a negative delay is identified as a direct
connection from neuron one onto neuron two; the correlation at a positive delay is
identified as common input from a third neuron.

Since the integrate-and-fire neurons are driven by the stimulus in a fairly linear
fashion, the basic relationship of neural response to the stimulus is similar to that
assumed in the linear-nonlinear model (2.1). However, unlike model (2.1), the prob-
ability of a spike does depend strongly on previous spike times. The presence of a
refractory period prevents the neuron from firing a spike immediately after spiking.
Even after the refractory period, the voltage must integrate up to threshold, fur-
ther increasing dependence among spike times. Figure 6(A) demonstrates that our
approach can still work in the presence of these deviations from model assumptions.

As a final test of our approach, we simulated a slightly larger network of 20
integrate-and-fire neurons. The network included a direct connection from neuron
one onto neuron two. In addition, four of the unmeasured neurons (neurons 3–20)
were randomly selected to give common input onto both neurons one and two, where
the connection onto neuron one had a delay that was 30 ms longer than the delay to
neuron two. In this case, the measured spike trains had a correlation at a negative
delay due to the direct connection and a correlation at a positive delay due to the
common input, just as in the previous example. We randomly added additional
connections to the network so that any given neuron had a 10% chance of connecting
onto any given unmeasured neuron.

We simulated this network to 5,000 simulated seconds (nearly 1.4 simulated
hours), measuring approximately 10,000–40,000 spikes per neuron. We discarded
the spikes of all neurons except neurons one and two. The results from analyzing
just these spikes are shown in Figure 6(B). In this case, the direct connection and
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Fig. 6. Demonstration of the results applied to networks of integrate-and fire neurons. Panels
as in the bottom panels of Figure 3. (A) Results from a simulation of three neurons with network
architecture identical to that pictured at the top of Figure 5(B). (The network contained both a
direct connection at negative delay and common input at positive delay.) The direct connection
measure W correctly identifies the direct connection from neuron one onto neuron two (appearing
with negative delay). The common input measure U correctly identifies the common input at positive
delay. Parameters: W12 = 0.1, W31 = W32 = 0.15 (all other Wpq = 0), d12 = 20 ms, d31 = 40 ms,
d32 = 10 ms, α1 = α2 = 0.25 ms−1, α3 = 0.3 ms−1, τm = 5 ms, Es = 6.5, τs = 2 ms, τref = 2 ms.
Parameters for h̄ are the same as those in Figure 3(B) except that τh = 20 ms. (B) Results
from a simulation of a random network of twenty neurons. The measure W correctly identified
the direct connection from neuron one onto neuron two at negative delay (established by setting
W12 = 0.12, d12 = 20 ms). The measure U correctly identified the common input at positive
delay. Four neurons with index p > 2 were randomly selected to give this common input. For
these p, the connection strength was randomly selected from Wp1 ∈ (0.05, 0.15), and Wp2 = Wp1.
For these four neurons, the delays were coordinated so that the delay to neuron one was 30 ms
longer: dp2 = 2 ms, dp1 = 32 ms. The remaining connections were randomly generated as follows.
For any p > 0 and q > 2, Wpq = 0 with 90% probability; otherwise the parameters Wpq and
dpq were randomly generated with Wpq ∈ (0.05, 0.15) and dpq ∈ (1, 40) ms. Parameters for h̄1

and h̄2 are as in Figure 3(A), except that τh = 20 ms and b2 = 2 ms. The remaining kernels
with p > 2 were randomly generated with ψp ∈ (0, 2π), φp ∈ (0, 2π), and fp ∈ (0.2, 1.0). We set
α1 = α2 = 0.25 ms−1 and, for p > 2, randomly generated αp ∈ (0.15, 0.3) ms−1. We set τm = 5 ms,
Es = 6.5, τs = 2 ms, and τref = 2 ms.

common input are correctly identified by the measures W and U , respectively. We
did not constrain the unmeasured neurons to be from different subpopulations than
the measured neurons. For the four common input neurons p, the maximal correla-
tion coefficient ccmax

p2 (see (2.8)) between neuron p and neuron two ranged from 0.0
to 0.7. Since the common input correlations mimicked a connection from neuron two
to neuron one, these ccmax

p2 were the critical measures for determining whether the
common input would be identified as a direct connection. The simulation indicates
that the common input neurons (at least on average) were considered to be from
subpopulations different from that of neuron two.

5. Discussion. The results demonstrate that we can correctly identify subpop-
ulation connectivity when neural response can be captured by the linear-nonlinear
model (2.1), the coupling is not too strong, and we have a lot of data. Before we focus
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Fig. 7. Schematic summary of the determination of subpopulation connectivity that we are able
to achieve. Each pictured network configuration leads to a correlation between the spikes of neuron
one and a delayed version of the spikes of neuron two. If one analyzed the joint statistics of the
spikes of neurons one and two (e.g., with a covariogram), each example would appear to involve
a direct connection from neuron two onto neuron one. (The unlabeled neuron is not measured.)
Our result is that we can distinguish (A) network configurations in the top row from (B) network
configurations in the bottom row using our analysis of the joint statistics of the stimulus and the
spikes of neurons one and two. The subpopulation of each neuron is indicated by the shading (white,
gray, or black). (A) We consider the network configurations in the top row to belong to the “direct
connection class,” as each configuration will be identified as a direct connection by our analysis. We
cannot distinguish among the configurations in the direct connection class. Nonetheless, since each
configuration contains a causal connection from neuron two’s subpopulation (white) onto neuron
one’s subpopulation (gray), our analysis can still accurately determine connectivity at the level of
subpopulations. From left to right, the configurations are a direct connection from neuron two onto
neuron one, an indirect connection through an unmeasured neuron, and common input from neuron
two’s subpopulation. (B) We consider network configurations in the bottom row to belong to the
“common input class,” as each configuration will be identified as common input by our analysis.
Since these configurations have no causal connection from neuron two’s subpopulation (white) onto
neuron one’s subpopulation (gray), it is important that our analysis can distinguish them from the
direct connection configurations (A). From left to right, the configurations are common input from
a different subpopulation (black) and common input from neuron one’s subpopulation (gray).

on the limitations caused by these conditions, we discuss the significance of subpop-
ulation connectivity and the relationship between this approach and other works.

5.1. Identification of subpopulation connectivity. Recall that two neurons
are in the same subpopulations if their effective kernels hq (defined by fitting the
uncoupled model (2.2)) are similar. In some contexts, neuroscientists would refer to
these kernels as the neurons’ receptive fields; in this case, a subpopulation would be
a group of neurons with similar receptive fields.

We have shown that common input originating from within one neuron’s sub-
population could appear like a direct connection from that neuron onto the other
measured neuron. Hence, when we identify a direct connection between neurons, we
can only conclude that there is a connection between those neurons’ subpopulations.

We summarize our conclusions in Figure 7. The direct connection measure W
and the common input measure U effectively divide network configurations into two
classes; we will call these a direct connection class and a common input class. The
top row (A) shows network configurations that would be classified as having a direct
connection from neuron two onto neuron one. Besides the actual direct connection,
this direct connection class contains an indirect connection through an unmeasured
neuron and common input from neuron two’s subpopulation. All three network con-
figurations contain a causal connection from neuron two’s subpopulation (white) onto
neuron one’s subpopulation (gray).

The bottom row (B) shows network configurations that would be classified as hav-
ing common input. When the delay onto neuron one is longer (so that the correlations



REVEALING PAIRWISE COUPLING 2025

mimic a direct connection from neuron two onto neuron one), the common input class
contains networks with common input from different subpopulations and networks
with common input from neuron one’s subpopulation. In neither of these cases is
there a connection from neuron two’s subpopulation onto neuron one. Consequently,
in order to accurately identify subpopulation connectivity, these configurations must
be distinguished from the direct connection class of the first row. We have shown
that, subject to the limitations mentioned above, we can make this distinction.

We argue that, in some experimental contexts, determining subpopulation connec-
tivity is as informative as determining the actual connectivity between two measured
neurons. In many experiments, electrodes are “blindly” inserted into the brain, and
the precise identity of measured neurons remains unknown. In this situation, neurons
are simply characterized by their response properties (e.g., their receptive fields), such
as those captured by the effective kernels hi

q.

Since the precise identify of measured neurons is unknown, the best conclusion
one can make about connectivity is that a neuron with response properties “A” is
connected to a neuron with response properties “B.” In other words, the best one can
say is that a neuron from the subpopulation characterized by response properties “A”
is connected to a neuron from the subpopulation characterized by response proper-
ties “B.” This is the best possible conclusion even if we didn’t have to worry about
ambiguity introduced by connections from unmeasured neurons. Our central result is
that we have developed an approach to achieve this best possible conclusion even in
the presence of common input from unmeasured neurons.

5.2. Precise identity of subpopulations. The above discussion assumes the
presence of discrete subpopulations. If this were the case, the statement that two neu-
rons are from the same subpopulation would be unambiguous. Of course, in general,
this is not the case. The response properties of neurons across a large population
may be better modeled as a continuum, where the correlation coefficients ccmax

pq of

(2.8) could be any value between 0 and 1. (Since cckpq tends to zero for large |k|,
the maximum is always nonnegative.) In order to make our subpopulation definition
precise, we would like to have some cutoff value of ccmax

pq , above which we could say
that neurons p and q are from the same population and below which we could say
they are from different subpopulations.

To explore this issue, we simulated the common input network of Figures 3(B) and
4 and the integrate-and-fire network of Figure 6(A), varying the model parameters
to change14 ccmax

32 . Although there was no clean cutoff, the cutoff value was around
ccmax

32 = 0.6. If ccmax
32 was near 0.6, the results were mixed, and the subpopulation of

neuron three seemed to depend on model parameters. But for larger ccmax
32 , neuron

three acted like a member of neuron two’s subpopulation because the common input
appeared as a direct connection in measure W (as in Figure 4(A)). Similarly, for ccmax

32

much smaller than 0.6, neuron three acted like a member of a different subpopulation
because the common input was correctly identified as common input (as in Figures
3(B) and 4(B)). Hence, at least for these coupling strengths and roughly equivalent
firing rates, neurons p and q were effectively in the same subpopulation when ccmax

pq

was well above 0.6. (See section 5.5 for examples of how strong coupling and disparity
in firing rates can further complicate the picture.)

14To keep the discussion as simple as possible, we ensured that the maximum of cck32 occurred

at the delay k = 2, since W̄ j
32 was maximal at j = 2. Section 3.4 shows why cc232 is the important

correlation coefficient for this case.
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5.3. Heuristic explanation for results. To provide some intuition into how
our approach successfully determines subpopulation connectivity, we give a heuristic
explanation of why one should be able to distinguish subpopulation connectivity by
analyzing the joint statistics of the measured spikes and the stimulus. We claim that
one should expect that the relationship between the measured neurons’ spikes and
the stimulus will differ between the direct connection class of Figure 7(A) and the
common input class of Figure 7(B).

For example, when the stimulus sequence happens to be optimal for neuron two
and subsequently optimal for neuron one, the effectiveness of a connection from neuron
two’s subpopulation onto neuron one’s subpopulation will be enhanced. (In this case,
a spike from neuron two’s subpopulation is likely to reach the neuron from neuron
one’s subpopulation when it is ready to fire.) Since in each network configuration
in the direct connection class (Figure 7(A)) the correlation between neuron one and
neuron two depends on a connection from neuron two’s subpopulation onto neuron
one, we expect the correlation to be especially strong for this particular stimulus
sequence.

On the other hand, we would not expect the correlations in the common input
class (Figure 7(B)) to be especially strong when the stimulus happens to be optimal
for neuron two and subsequently optimal for neuron one. None of the connections
leading to the correlation will be enhanced for this stimulus sequence, since no connec-
tion exists from neuron two’s subpopulation onto neuron one’s subpopulation. This
example of an extreme stimulus sequence illustrates one case where the joint stimulus
spike statistics will differ depending on subpopulation connectively. One might ex-
pect the differences to be evident even with other stimuli. Our results show that, at
least for a simple model, one can exploit this difference to determine subpopulation
connectivity.

5.4. Comparison to other approaches. Our approach succeeds in recon-
structing subpopulation connectivity by combining spike correlation analysis [14, 1, 13]
with white noise analysis [7, 5, 4]. It builds on previous work [10, 11] that did not
address the presence of unmeasured neurons. We have previously reported [9] on our
early attempts to address the unmeasured neurons where, since we did not require
stimulus repeats, we had to assume that all unmeasured neurons had dissimilar kernels
(effectively, that every unmeasured neuron was in its own subpopulation).

Our approach differs from the partial coherence of Rosenberg et al. [15] because
it does not require measurement of the neuron producing the common input. In
cases where one monitors multiple neurons simultaneously, partial coherence can rule
out common input from the other measured neurons without appealing to the model
assumptions underlying our analysis. Although there is a large literature in which
researchers have developed methods to reconstruct the connectivity among measured
neurons, we are unaware of others that explicitly account for unmeasured neurons.
Without accounting for unmeasured neurons, common input from unmeasured neu-
rons would be erroneously identified as a direct connection.

5.5. The weak coupling assumption. The analysis underlying the measures
W and U relied on the assumption that the coupling W̄ was small. The simulations
demonstrate that one can obtain correct results even when the coupling is not weak.
We used values of W̄ j

pq as large as 1.8 and values of
∑

j W̄
j
pq as large as 3.4. For

this parameter range, the weak coupling assumption is not justified, yet the results
successfully determined subpopulation connectivity.
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At this point, we lack an analysis of the effects of strong coupling. We have discov-
ered through simulations that violations of the weak coupling assumption can cause
invalid results when the firing rates of the two measured neurons are greatly different.
For example, if E{Ri

1} � E{Ri
2}, strong coupling can cause a direct connection from

neuron one to neuron two to appear as common input. The same situation can also
cause common input to appear as a direct connection from neuron two to neuron one.
In other words, there is a bias for a faster neuron appearing to have a connection from
a slower neuron and a bias against a slower neuron appearing to have a connection
from a faster neuron. The strength of coupling at which the misidentification occurs
depends on the degree of inequality between the firing rates.

For example, we analyzed a sequence of simulations of the direct connection of
Figure 3(A) where we increased the disparity between the firing rate of neurons one
and two. By the time neuron two fired ten times faster than neuron one, the direct
connection was misidentified as common input, and we failed to reconstruct the sub-
population connectivity. On the other hand, when we halved the strength of the direct
connection (and ran very long simulations), a direct connection was still accurately
identified even when neuron two fired more than fifty times faster than neuron one.

We also analyzed a similar sequence of simulations of the common input con-
figuration of Figure 3(B). The common input appeared as a direct connection from
neuron two onto neuron one when neuron one fired over 20 times faster than neu-
ron two. Because neuron three was not in neuron two’s subpopulation (cmax

32 < 0.2),
this misidentification is a failure in reconstructing subpopulation connectivity. When
we increased the connection strengths by 50% (adjusting kernel parameters to keep
cmax
32 < 0.2), the misidentification began when neuron one fired only eight times faster

than neuron two. (As one might infer from the observations of section 5.2, when we
changed the kernels to increase ccmax

32 , the common input was identified as a direct
connection with lower disparities in firing rate.)

5.6. Improving statistical efficiency. Our reconstruction is based on an anal-
ysis of just a few stimulus-spike moments. We employed this moment-based approach
because our intuition on such moments’ behavior could guide development of this
initial implementation of our subpopulation connectivity approach. One important
demerit of this choice was made clear in our simulations, where we needed long simula-
tions to obtain good results. To apply this approach to realistic neuroscience data, we
will presumably need more statistically efficient techniques, such as maximum like-
lihood estimators, which will yield reliable estimates of subpopulation connectivity
with less data.

5.7. Validations. Clearly, the assumptions of the analysis are idealizations that
will never be satisfied by biological neuronal networks. The approach is viable only
because accurate results can be obtained outside the strict assumptions (as demon-
strated throughout section 4). However, section 5.5 demonstrated some violations
of the assumptions that do lead to inaccurate results. Another possible source of
inaccuracies is covariation in latency or excitability, as discussed by Brody [2]. Since
such covariation is not addressed by the network model (2.1), this covariation could
invalidate our results. To address possible sources of error, we must develop valida-
tion methods that can identify critical violations of assumptions that may skew the
results. Such validations will allow one to trust that the results are accurate.

Ideally, one would like to test the accuracy of these results with in vitro exper-
iments, where the actual connectivity can be determined by other means (such as
with electrodes that enter neurons). Unfortunately, our approach depends on having
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an experimentally controlled stimulus X, where the relationship between the firing
probabilities is given by (2.1). Given that in vitro preparations are typically severed
from sensory receptors, this requirement may be difficult to achieve. A more promis-
ing testbed may be a lower organism, where the connectivity is known and neurons
can be driven by a stimulus.

5.8. Extensions to other models. The model (2.1) was made as simple as
possible to facilitate the analysis. It assumes, for example, that the response is an
approximately linear function of the stimulus, that the network is in an asynchronous
state, and that the internal dynamics of the neuron can be neglected. The results
are valid only when the network is stimulated by white noise. An extension to more
general elliptically symmetric stimuli should be possible. Since in this case, a linear-
nonlinear model can be reconstructed (see, for example, [3]), the results should be
attainable if one replaces the integration-by-parts formula (A.3) with a more general
version.

We view the implementation presented in this paper simply as an example of a
new framework of network analysis. The principle of analyzing joint input-output
statistics may be generalized to reveal pairwise coupling in other network models.
The current version should have only limited applicability to neuroscience experi-
ments because the relationship of neural response to a stimulus will in most cases be
more fundamentally nonlinear than the linear-nonlinear model (2.1). Extension of the
results to more complicated models and stimuli will increase the range of applicability,
allowing the approach to evolve into a useful tool for analyzing neuronal networks and
other stimulus-driven networks.

Appendix A. Integration-by-parts formula. In our notation, we do not
explicitly distinguish spatial versus temporal components of the stimulus, but rather
let time be represented only by the temporal index of the kernels h̄i

q and the spikes

Ri
q. We let each of the m components of X be independent standard normal variables,

so that the probability density function of X is

ρX(x) =
1

(2π)m/2
e−

‖x‖2

2 .(A.1)

To assist the reader, we derive an integration-by-parts formula (A.3), although
such a formula is not new. Let hk for k = 1, 2, . . . ,K be linearly independent unit
vectors corresponding to K kernels. We wish to compute

E{XF (h1 · X, . . . ,hK · X)},

where F is some smooth function with K arguments. Given the probability density
function (A.1) for X, this expected value is

1

(2π)m/2

∫
xF (h1 · x, . . . ,hK · x)e−

‖x‖2

2 dx.

Denote the standard unit vectors by ej , so that we can write the kernel hk and
the dot product hk · x in component form as

hk =
∑
j

hkjej and hk · x =
∑
j

hkjxj ,

where hkj is the jth component of hk.
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We calculate the components of E{XF (h1 ·X, . . . ,hK ·X)}. Through integration
by parts with respect to xj , the jth component is

E{XjF (h1 · X, . . . ,hK · X)}

=
1

(2π)m/2

∫
xjF

(∑
k

h1kxk, . . . ,
∑
k

hKkxk

)
e−

‖x‖2

2 dx

=
1

(2π)m/2

∑
i

hij

∫
Fi

(∑
k

h1kxk, . . . ,
∑
k

hKkxk

)
e−

‖x‖2

2 dx

=
∑
i

hijE{Fi(h1 · X, . . . ,hK · X)},

where Fi indicates the partial derivative of F with respect to the ith variable.

Putting the components together, we conclude that

E{XF (h1 · X, . . . ,hK · X)} =
∑
j

E{xjF (h1 · X, . . . ,hK · X)}ej

=
∑
i

E{Fi(h1 · X, . . . ,hK · X)}
(∑

j

hijej

)

=
∑
i

E{Fi(h1 · X, . . . ,hK · X)}hi.(A.2)

The special case we need for our derivation is

E{Xgp(h
i
p · X)gq(h

i−j
q · X)gr(h

i−k
r · X)}

= E{g′p(hi
p · X)gq(h

i−j
q · X)gr(h

i−k
r · X)}hi

p

+ E{gp(hi
p · X)g′q(h

i−j
q · X)gr(h

i−k
r · X)}hi−j

q

+ E{gp(hi
p · X)gq(h

i−j
q · X)g′r(h

i−k
r · X)}hi−k

r(A.3)

and the equivalent for fewer factors.

Appendix B. Equations for error function nonlinearity. The analysis
for error function ḡq(·) (see (4.2)) mirrors the derivations outlined in [11]. In this
appendix, we summarize the intermediate steps and then give the error function
result for (3.8) and (3.11).

We define the effective error function parameters (εq, yq) from the spikes of each
neuron q by fitting to these spikes the uncoupled model (2.2) with nonlinearity,

gq(y) =
1

2

[
1 + erf

(
y − yq

εq
√

2

)]
.

Denote the inner product between kernels by cos θjpq = hi
p · hi−j

q . (Note that for

Gaussian white noise cos θjpq = ccjpq; see (2.7).) Define the following expressions as
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functions of the parameters εq, yq, and cos θjpq:

δq =
1√

1 + ε2q
,

λj
qp =

δqyq − δ2
pδqyp cos θjqp√

2(1 − δ2
pδ

2
q cos2 θjqp)

,

μj
qp =

δpδq

2π
√

1 − δ2
pδ

2
q cos2 θjqp

exp

(
−
δ2
py

2
p − 2δ2

pδ
2
qypyq cos θjqp + δ2

qy
2
q

2(1 − δ2
pδ

2
q cos2 θjqp)

)
,

ξjqp =
δ2
q (1 − δ2

p cos2 θjqp)

1 − δ2
pδ

2
q cos2 θjqp

.

Define a double complementary error function

derfc(a, b, c) =
4

π

∫ ∞

a

dy e−y2

∫ ∞

b−cy√
1−c2

dz e−z2

.(B.1)

The function derfc is a two-dimensional analogue of the complementary error function
(see [10]).

Using the fact that hi
p · X and hi−j

q · X are joint unit normal random variables

with correlation cos θjqp, we compute the following expected values:

E{g′p(hi
p · X)gq(h

i−j
q · X)} =

δp

2
√

2π
exp

(
−
δ2
py

2
p

2

)
erfc(λj

qp),

E{g′p(hi
p · X)(gq(h

i−j
q · X))2} =

δp

4
√

2π
exp

(
−
δ2
py

2
p

2

)
derfc(λj

qp, λ
j
qp, ξ

j
qp),

E{g′p(hi
p · X)g′q(h

i−j
q · X)} = μj

qp,

E{g′p(hi
p · X)g′q(h

i−j
q · X)gq(h

i−j
q · X)} =

μj
qp

2
erfc

(
λj
qp(1 − ξjqp)√
1 − (ξjqp)

2

)
,

E{g′′p (hi
p · X)gq(h

i−j
q · X)} =

δ3
pyp

2
√

2π
exp

(
−
δ2
py

2
p

2

)
erfc(λj

qp) − δ2
p cos θjqpμ

j
qp,

E{g′′p (hi
p · X)(gq(h

i−j
q · X))2} =

δ3
pyp

4
√

2π
exp

(
−
δ2
py

2
p

2

)
derfc(λj

qp, λ
j
qp, ξ

j
qp)

− δ2
p cos θjqpμ

j
qp erfc

(
λj
qp(1 − ξjqp)√
1 − (ξjqp)

2

)
,

E{g′′p (hi
p · X)g′q(h

i−j
q · X)} =

δ2
p[yp − δ2

qyq cos θjqp]μ
j
qp

(1 − δ2
pδ

2
q cos2 θjqp)

.

We rewrite (3.8) and (3.11) in terms of the above quantities:

Ck
21 = Ŵ k

21

δ1

2
√

2π
exp

(
−δ2

1y
2
1

2

)[
erfc(λk

21) −
1

2
derfc(λk

21, λ
k
21, ξ

k
21)

]

+ Ŵ−k
12

δ2

2
√

2π
exp

(
−δ2

2y
2
2

2

)[
erfc(λ−k

12 ) − 1

2
derfc(λ−k

12 , λ−k
12 , ξ−k

12 )

]
+ Ûk

21μ
k
21,(B.2)
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Ak
1 = Ŵ k

21

{
δ3
1y1

2
√

2π
exp

(
−δ2

1y
2
1

2

)[
erfc(λk

21) −
1

2
derfc(λk

21, λ
k
21, ξ

k
21)

]

− δ2
1 cos θk21μ

k
21

[
1 − erfc

(
λk

21(1 − ξk21)√
1 − (ξk21)

2

)]}

+ Ŵ−k
12 μ−k

12

[
1 − erfc

(
λ−k

12 (1 − ξ−k
12 )√

1 − (ξ−k
12 )2

)]

+ Ûk
21

δ2
1 [y1 − δ2

2y2 cos θk21]μ
k
21

(1 − δ2
1δ

2
2 cos2 θk21)

,(B.3)

Ak
2 = Ŵ k

21μ
k
21

[
1 − erfc

(
λk

21(1 − ξk21)√
1 − (ξk21)

2

)]

+ Ŵ−k
12

{
δ3
2y2

2
√

2π
exp

(
−δ2

2y
2
2

2

)[
erfc(λ−k

12 ) − 1

2
derfc(λ−k

12 , λ−k
12 , ξ−k

12 )

]

− δ2
2 cos θ−k

12 μ−k
12

[
1 − erfc

(
λ−k

12 (1 − ξ−k
12 )√

1 − (ξ−k
12 )2

)]}

+ Ûk
21

δ2
2 [y2 − δ2

1y1 cos θ−k
12 ]μ−k

12

(1 − δ2
2δ

2
1 cos2 θ−k

12 )
.(B.4)

The key point of these long formulas is that, with the exception of Ŵ k
21, Ŵ

−k
12 , and

Ûk
21, all expressions are functions of the error function parameters of the measured

neurons (ε1, ε2, y1, and y2) and cos θk21 = cos θ−k
12 . The kernels (and hence cos θk21) are

computed from (3.6). The parameters εq and yq, for q = 1, 2, can be calculated from
(3.4) and (3.5) with the use of the formulas

E{gq(hi
q · X)} =

1

2
erfc

(
δqyq√

2

)
,

E{g′q(hi
q · X)} =

δq√
2π

exp

(
−
δ2
qy

2
q

2

)
.

Appendix C. Estimating confidence intervals. We estimate the confidence
interval of our measures using essentially the procedure outlined in Appendix B of
[10]. Besides changing the base variables to those needed for the current analysis,
we make the following two minor changes. First, we calculate the covariances of
inner products accurately using the covariances among all the factors in the product.
Second, since the statistics from different delays are uncoupled in our equations, we
ignore covariances among statistics from different delays.
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MATHEMATICAL ANALYSIS OF THE GENERALIZED NATURAL
MODES OF AN INHOMOGENEOUS OPTICAL FIBER∗

E. M. KARTCHEVSKI† , A. I. NOSICH‡ , AND G. W. HANSON§

Abstract. The eigenvalue problem for generalized natural modes of an inhomogeneous optical
fiber without a sharp boundary is formulated as a problem for the set of time-harmonic Maxwell
equations with the Reichardt condition at infinity in the cross-sectional plane. The generalized
eigenvalues (including, as subsets, the well-known guided and leaky modes) of this problem are
the complex propagation constants on a logarithmic Riemann surface. A theorem on spectrum
localization is proved, and then the original problem is reduced to a nonlinear spectral problem with
a compact integral operator. It is proved that the set of all eigenvalues of the original problem can
only be a set of isolated points on the Riemann surface, and it is also proved that each eigenvalue
depends continuously on the frequency and refraction index and can appear and disappear only at
the boundary of the Riemann surface.

Key words. electromagnetic theory, optical fiber, waveguides, eigenvalue problem, guided
modes
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1. Introduction. Optical fibers are dielectric waveguides (DWs), i.e., regular
dielectric rods, having various cross sectional shapes, and where generally the re-
fractive index of the dielectric may vary in the waveguide’s cross section. Although
existing technologies often result in a refractive index that is anisotropic, frequently
it is possible to assume that the fiber is isotropic, which is the case investigated in
this work. The study of the source-free electromagnetic fields, called natural modes,
that can propagate on DWs necessitates that longitudinally the rod extend to in-
finity. Since often DWs are not shielded, the medium surrounding the waveguide
transversely forms an unbounded domain, typically taken to be free space. This fact
plays an extremely important role in the mathematical analysis of natural waveguide
modes, and brings into consideration a variety of possible formulations. Each differ-
ent formulation can be cast as an eigenvalue problem for the set of time-harmonic
Maxwell equations, but they differ in the form of the condition imposed at infinity
in the cross-sectional plane, and hence in the functional class of the natural-mode
field. As we discuss below, this also restricts the localization of the eigenvalues in the
complex plane of the eigenparameter.

Historically, the first DWs to be studied were step-index waveguides having cir-
cular cross section; interior to the waveguide, the refractive index was either homo-
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geneous or coaxial-layered. In these cases, by using separation of variables, modal
eigenvalue problems are easily reduced to families of transcendental dispersion equa-
tions associated with the azimuthal indices (see, e.g., [1], [2]). All questions concerning
discreteness and existence of the natural-mode spectrum are settled “automatically”
due to general results from the theory of complex variables and the analytic properties
of cylindrical functions with integer indices and complex arguments.

For these circular cross section DWs the first class of natural modes to be stud-
ied were purely guided modes, which have real-valued wavenumbers. The fields of
the guided modes are confined near to the waveguide, decaying exponentially trans-
versely away from the waveguide, so that they belong to the space L2 in the whole
cross-sectional plane. Corresponding eigenvalue problems are self-adjoint. Later it
was discovered that the guided modes of a circular DW can turn into (i.e., be analyt-
ically continued as) so-called leaky-wave modes, existing on the “improper” sheet of a
square-root Riemann surface, with the wavenumbers migrating off the real axis of the
“proper” sheet onto the “improper” sheet as some parameters of the structure vary
[3]. It was noticed that leaky modes can be studied as solutions of a more general
eigenvalue problem, without cross-sectional field confinement, due to some relaxed,
although never explicitly formulated, condition at infinity.

Although leaky waves exist on an “improper” Riemann sheet, they have consid-
erable physical importance in wave excitation and fiber discontinuity problems. In
particular, it is known that the electromagnetic fields existing on a dielectric wave-
guide can be represented as a discrete sum of bound modes (which are the mentioned
guided modes generated by the eigenvalues of the propagation constant on the real
axis of the “proper” sheet) and a continuous sum (i.e., integral) of so-called radiation
modes (whose physical sense still causes discussions) [1], [2], [4]. It has been shown
that, although leaky waves are not themselves a part of a “proper” spectral field repre-
sentation, in many cases the continuum of the radiation modes may be approximated
by a discrete sum of leaky modes [5], representing the near field of a source-excited
fiber. Often the leaky-wave sum can be reduced to a single term, providing a concise
analytical form for the near-zone radiation field. Furthermore, various features in
the far-field radiation pattern of a real, finite-length, source-driven fiber can be in-
terpreted in terms of leaky-wave excitation. In addition to source-driven waveguides,
leaky modes on longitudinally invariant fibers are important in the analysis of radi-
ation and mode-conversion effects associated with waveguide discontinuities such as
fiber splices [6], radiation from waveguide bends [7], and radiation from anisotropic
fibers [8], [9]. Some properties of leaky modes on dielectric waveguides, and, in par-
ticular, dielectric fibers, are presented in [2], [3], [5], [6], [7], [8], [9], [10], [11], [12].

In addition to leaky modes, it was discovered that on the “proper” sheet, but
off its real axis, one can also find other generalized eigenvalues (modal wavenum-
bers) [13] known as complex modes. Analogous results were obtained numerically for
gradient-index DWs of arbitrary cross section [14]. These complex modes are often
important in near-field fiber discontinuity problems and mode-matching analysis. It
is important to note that all of these known types of natural modes can transform (be
continued) one into another, following variation of some geometrical or material pa-
rameter or frequency. Due to the presence of the two-dimensional unbounded domain
and the resulting Green’s functions represented as Hankel functions, it is easy to see
that the dispersion equations contain logarithmic as well as square-root–type branch
points.



GENERALIZED NATURAL MODES OF AN OPTICAL FIBER 2035

If the cross section is not circular, the study of the natural modes encounters
both methodological and numerical problems. In [15] an elliptic DW was studied
by using expansions in terms of Mathieu functions. However, in that work as well
as in other studies of waveguides having complicated cross sections, or of multirod
waveguides, the modal problems are reduced not to transcendental equations but to
infinite matrix equations or integral equations (IEs). Hence, it is necessary to base the
analysis on the theory of operator-functions depending on parameters. Once again,
by restricting the desired field behavior in the cross-sectional plane, one arrives at
different formulations of the eigenvalue problem in terms of the transverse condition
at infinity; eigenvalue localization and the function class of the natural mode field are
tied up with this condition.

In recent years, research on the natural modes of arbitrarily shaped DWs has
been focused on the development of efficient and reliable computational methods. For
instance, in [16] the eigenvalue problem for the natural modes of arbitrary DWs was
studied by splitting the differential operator into self-adjoint and perturbation parts
and using a discretization in terms of the eigenfunctions of the self-adjoint operator.
This enabled the authors to develop a very efficient numerical technique, although its
convergence was not proven.

In the papers on numerical methods for DWs, the mathematical grounding of the
methods was frequently neglected; however, useful insight into the encountered diffi-
culties and modal behavior has been discussed (e.g., see [17], [18]). The most rigorous
efforts were connected with IE formulations. Within this class the domain IE method
has the attractive advantage of being applicable to cross-sectionally inhomogeneous
(and, in fact, anisotropic) DWs [19], [20]. A problem with domain IEs is that they
are strongly singular, which previously prevented their use in a mathematical study
of the spectrum of the eigenvalues, with the exception of [21] for the purely guided
modes of an inhomogeneous DW. For real-valued propagation constants it was proven
in [21] that the operator of the domain IE is semi-Fredholm.

A rigorous mathematical study of an arbitrary-shaped DW was performed in [22]
within the guided (proper) mode formulation. This enabled the authors to make
extensive use of the theory of unbounded self-adjoint operators. For example, by
using the min-max principle, they proved the existence of guided modes, the number
of which is finite and depends on frequency. However, generalized natural modes
having complex valued propagation constants cannot be studied by this approach.

The above considerations give a new thrust to the idea of elaborating a general-
ized formulation of the modal eigenproblem in order to bring together all the possible
natural-mode solutions. All of the known natural-mode solutions (i.e., guided modes,
leaky modes, complex modes) satisfy the Reichardt condition [23] at infinity. The
wavenumbers may be generally considered on the appropriate logarithmic Riemann
surface. The Reichardt condition in this problem is connected with the fact that
the wavenumber may be complex. For real wavenumbers on the principal (“proper”)
sheet of this Riemann surface, one can reduce the Reichardt condition to either the
Sommerfeld radiation condition or to the condition of exponential decay. The Re-
ichardt condition may be considered as a generalization of the Sommerfeld radiation
condition and can be applied for complex wavenumbers. This condition may also be
considered as the continuation of the Sommerfeld radiation condition from a part of
the real axis of the complex parameter (wavenumber) to the appropriate logarithmic
Riemann surface.
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During recent years the Reichardt condition has been widely used for statements
of various wave propagation problems [24], [25], [26]. By using the Reichardt condi-
tion, the problems on generalized modes of microstrip and slot lines on a cylindrical
substrate were investigated in [27], [28], [29]. Tensor Green’s functions of generic open
waveguides with compact cross sections were analyzed in [30] by using Fourier trans-
forms and IE techniques in the transform domain. It was shown that the complex-
valued poles of analytic continuations of the Green’s functions satisfy a certain eigen-
value problem. Their residues can be interpreted as the generalized natural modes. In
this case, the eigenvalue problem should be formulated with the Reichardt condition
at infinity. Reducing Maxwell’s equations to an IE and converting the latter to a
Fredholm second kind equation enabled the proof of some important properties of the
spectrum of the generalized modes. Furthermore, in [31], [32] a similar formulation
was applied to study generalized guided modes in DWs, and a numerical algorithm
was developed based on a Galerkin discretization in terms of a trigonometric basis.

In this paper we extend the approach of [30], [31], [32] to the analysis of general-
ized natural modes of arbitrary-cross-section DWs having inhomogeneous (although
continuous) refractive index. Here, we use the model of DW without a sharp bound-
ary, as was proposed in [33]. Such an approach enables one to reduce the original
problem to a nonlinear spectral problem with a compact integral operator, and was
originally introduced in [34] and used in [35]. We present a unified and rigorous theory
of generalized natural modes in terms of the Reichardt condition at infinity.

The rest of this paper is organized as follows. Physical assumptions, basic equa-
tions, and notation are presented in section 2. In section 3 we formulate the modal
eigenvalue problem as a problem for the set of time-harmonic Maxwell equations
with the Reichardt condition at infinity in the cross-sectional plane. The eigenvalues
of this problem are the complex propagation constants of the natural modes, and
we introduce a classification of modal eigenvalues in terms of their location on the
logarithmic Riemann surface. In section 4 we prove a theorem on localization of
eigenvalues, where it is established that there exists a domain free of eigenvalues on
this surface. In section 5 we investigate the eigenvalues as functions of frequency and
refractive index, and we reduce the original problem to a nonlinear spectral problem
with a compact integral operator. Using general results from the spectral theory of
operator-valued functions [36], we prove that the set of all eigenvalues of the original
problem can only be a set of isolated points on the logarithmic Riemann surface, and
also we prove that each eigenvalue depends continuously on frequency and refrac-
tive index, and can appear and disappear only at the boundary of the logarithmic
Riemann surface.

2. Basic relations. We consider the generalized natural modes of the regu-
lar DW shown in Figure 1. Let the three-dimensional space {(x1, x2, x3) : −∞ <
x1, x2, x3 < ∞} be occupied by an isotropic source-free medium, and let the refrac-
tive index be prescribed as a positive real-valued function n = n(x1, x2) independent
of the longitudinal coordinate x3 and equal to a constant n∞ outside a cylinder. The
axis of the cylinder is parallel to the x3-axis, and its cross section is a bounded do-
main Ω with a Lipschitz boundary on the plane R2 = {(x1, x2) : −∞ < x1, x2 < ∞}.
Denote by Ω∞ the unbounded domain Ω∞ = R2 \Ω, and denote by n+ the maximum
of the function n in the domain Ω, where n+ > n∞. Let the function n belong to the
space of real-valued twice continuously differentiable functions in R2.

The modal problem can be formulated as a vector eigenvalue problem for the
set of harmonic Maxwell equations, assuming that electric and magnetic field vectors
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Fig. 1. Geometry of a dielectric waveguide.

have the form

E(x, x3, t) = Re (E(x) exp (iβx3 − iωt)) ,(1)

H(x, x3, t) = Re (H(x) exp (iβx3 − iωt)) .(2)

Here x = (x1, x2), ω > 0 is the radian frequency, β is the complex-valued modal
wavenumber (or propagation constant), and E and H are complex amplitudes of E
and H. For the sake of clarity, we note that, unlike in [22], we consider the propagation
constant β as an unknown complex parameter and ω > 0 as a given parameter. Such
a choice seems to be commonly adopted in the fiber optics and microwave research
communities due to the easy control of frequency.

For the fields of the form (1), (2), the set of Maxwell equations becomes

RotβE = iωμ0H, x ∈ R2,(3)

RotβH = −iωε0n
2E, x ∈ R2.(4)

Here ε0, μ0 are the free-space dielectric and magnetic constants, respectively, and

RotβE =

⎡
⎣ ∂E3/∂x2 − iβE2

iβE1 − ∂E3/∂x1

∂E2/∂x1 − ∂E1/∂x2

⎤
⎦ .(5)

By C2(R2) denote the space of twice continuously differentiable in R2 complex-valued
functions. We shall be seeking nonzero solutions [E,H] of set (3), (4) in the space
(C2(R2))6.

Let F be a three-dimensional vector-function,

F =

⎡
⎣ F1

F2

F3

⎤
⎦ ∈

(
C2(R2)

)3
,
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and let u ∈ C2(R2) be a scalar function. By definition, set

DivβF =
∂F1

∂x1
+

∂F2

∂x2
+ iβF3,(6)

Δu =
∂2u

∂x2
1

+
∂2u

∂x2
2

,(7)

Gradβu =

⎡
⎣ ∂u/∂x1

∂u/∂x2

iβu

⎤
⎦ , gradu =

⎡
⎣ ∂u/∂x1

∂u/∂x2

0

⎤
⎦ ,(8)

grad2u =

[
∂u/∂x1

∂u/∂x2

]
, F =

[
F1

F2

]
.(9)

By direct calculation it is easy to obtain the following equations:

Divβ (Gradβu) = Δu− β2u,(10)

Divβ (RotβF) = 0,(11)

Divβ (uF) = uDivβF+ (F, gradu) ,(12)

Rotβ (Gradβu) = 0,(13)

Rotβ (RotβF) = −ΔF+β2F + Gradβ (DivβF) ,(14)

where

(F,L) =

3∑
i=1

FiLi.(15)

Lemma 2.1. If [E,H] is a solution of the set (2.3), (2.4), then for x ∈ R2

Rotβ (RotβE) = k2n2E,(16)

Rotβ
(
n−2RotβH

)
= k2H,(17)

Divβ

(
n2E

)
= 0,(18)

Divβ (H) = 0,(19)

where k2 = ε0μ0ω
2.

Proof. Applying the Rotβ operator to both sides of (3) and (4), we obtain (16),
(17). Applying the Divβ operator to both sides of (3) and (4) and using (11), we
obtain (18), (19).

Lemma 2.2. If [E,H] is a solution of the set (2.3), (2.4), then

Divβ

((
n2 − n2

∞
)
E
)

= n2
∞(E, n−2gradn2), x ∈ R2.(20)

Proof. Using (12) leads to

Divβ

((
n2 − n2

∞
)
E
)

=
(
n2 − n2

∞
)
DivβE +

(
E, grad

(
n2 − n2

∞
))

, x ∈ R2.(21)

Taking into account (18) and (12), we arrive at

−DivβE = (E, n−2gradn2), x ∈ R2.(22)

Combining (21) and (22), we obtain (20).
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Lemma 2.3. If [E,H] is a solution of the set (2.3), (2.4), then

[
Δ +

(
k2n2

∞ − β2
)] [ E

H

]
= 0, x ∈ Ω∞.(23)

Proof. The function n is equal to a constant n∞ in the domain Ω∞. Therefore
we obtain (23) from (16)–(19) and (14).

3. Reichardt condition. Because the domain Ω∞ is unbounded, to have the
problem formulation complete we have to specify the behavior of E and H at infinity.
This can be done in various ways; for the problem under consideration the most
general condition is the Reichardt condition [23], as discussed below. Denote by ΩR

a circle ΩR =
{
x ∈ R2 : |x| ≤ R

}
, and by ΓR the boundary of ΩR.

Definition 3.1. Let R0 be a large positive constant such that Ω ⊂ ΩR0 . We say
that functions E and H satisfy the Reichardt condition if the functions E and H can
be represented for all x ∈ R2 \ ΩR0

as

[
E
H

]
=

∞∑
l=−∞

[
Al

Bl

]
H

(1)
l (χr) exp (ilϕ) ,(24)

where H
(1)
l is the Hankel function of the first kind and index l (see, e.g., [37]), (r, ϕ)

are the polar coordinates of the point x, and χ =
√
k2n2

∞ − β2. The series in (3.1)
should converge uniformly and absolutely.

Definition 3.2. By Λ denote the Riemann surface of the function lnχ(β). A
nonzero vector [E,H] ∈ (C2(R2))6 is referred to as a generalized eigenvector (or
eigenmode) of the problem (2.3), (2.4), and (3.1) corresponding to an eigenvalue β ∈ Λ
if the relations of problem (2.3), (2.4), and (3.1) are valid.

In order to discuss the Reichardt condition in more detail, we need to analyze the
Riemann surface Λ and consider the different types of modes that are possible.

3.1. Riemann surface Λ. The Hankel functions H
(1)
l (χ(β)r) are many-valued

functions of the variable β. If we want to consider these functions as holomorphic
functions, it is seen that β should be considered on the set Λ, which is the Riemann
surface of the function lnχ(β). This is due to the fact that Hankel functions can be
represented as

H
(1)
l (χr) = c

(1)
l (χr) ln (χr) + R

(1)
l (χr) ,(25)

where c
(1)
l (χr) and R

(1)
l (χr) are holomorphic single-valued functions (see, e.g., [37]).

The Riemann surface Λ is infinitely sheeted, with each sheet having two branch points,
β = ±kn∞. More precisely, due to the branching of χ(β) itself, we consider an infinite
number of logarithmic branches Λm, m = 0,±1, . . . , each consisting of two square-

root sheets of the complex variable β: Λ
(1)
m and Λ

(2)
m . By Λ

(1)
0 denote the principal

(“proper”) sheet of Λ, which is specified by the conditions

−π/2 < argχ(β) <
3π

2
, Im (χ(β)) ≥ 0, β ∈ Λ

(1)
0 .(26)

The “improper” sheet Λ
(2)
0 is specified by the conditions

−π2 < argχ(β) <
3π

2
, Im (χ(β)) < 0, β ∈ Λ

(2)
0 .(27)
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Denote also the whole real axis of Λ
(1)
0 as R

(1)
0 , and that of Λ

(2)
0 as R

(2)
0 . All the other

pairs of sheets Λ
(1),(2)
m�=0 differ from Λ

(1),(2)
0 by a shift in argχ(β) equal to 2πm, and

satisfy the conditions

−π/2 + 2πm < argχ(β) <
3π

2
+ 2πm, Im (χ(β)) ≥ 0, β ∈ Λ(1)

m ,

−π/2 + 2πm < argχ(β) <
3π

2
+ 2πm, Im (χ(β)) < 0, β ∈ Λ(2)

m .

(28)

Hence, on Λ
(1)
0 there is only a pair of branch-cuts dividing it from Λ

(2)
0 ; they run

along the real axis at |β| < kn∞ and along the imaginary axis. On Λ
(2)
0 , additionally,

there is a pair of branch-cuts dividing it from Λ
(2)
±1; they run along the real axis at

|β| > kn∞.

3.2. Purely guided, complex, and leaky-wave modes. Denote a set of

points on the real axis R
(1)
0 of the sheet Λ

(1)
0 by G, that is, the union of two intervals:

G = {β ∈ R
(1)
0 : kn∞ < |β| < kn+}.(29)

By C
(1)
0 denote the set

C
(1)
0 = {β ∈ Λ

(1)
0 : Reβ �= 0} \R(1)

0 .(30)

Propagation constants β of purely guided modes, complex modes, and leaky-wave

modes belong to sets G ⊂ Λ
(1)
0 , C

(1)
0 ⊂ Λ

(1)
0 , and Λ

(2)
0 \R(2)

0 , respectively.
If −π/2 < argχ < 3π/2, then the large-argument asymptotic forms of the Hankel

functions of the first kind are known (see, e.g., [37]) to be

H
(1)
l (χr) =

√
2

πχr
exp

[
i

(
χr − lπ

2
− π

4

)][
1 + O

(
1

χr

)]
, r → ∞.(31)

Hence, if −π/2 < argχ < 3π/2, Im(χ) �= 0, and a function [E,H] satisfies the Re-
ichardt condition, then this function satisfies the following condition at infinity:[

E
H

]
= exp (iχr)O

(
1√
r

)
, r → ∞.(32)

It is easy to see that for purely guided and complex modes, Im(χ) > 0. Therefore cor-
responding eigenmodes [E,H] decay at infinity as exp (−Im(χ)r)r−1/2. Eigenvectors
[E,H] of leaky-wave modes grow at infinity as exp (−Im(χ)r)r−1/2 because Im(χ) < 0
for them.

3.3. Radiation modes. By D denote the set

D = {β ∈ Λ
(1)
0 : Reβ = 0}

⋃
{β ∈ R

(1)
0 : |β| < kn∞}.(33)

The continuous spectrum of radiation modes belongs to domain D, and each radiation
mode can be expressed as (see [1])

[
E
H

]
=

∞∑
l=−∞

[
Al

Bl

]
H

(1)
l (χr) exp (ilϕ) +

∞∑
l=−∞

[
Cl

Dl

]
H

(2)
l (χr) exp (ilϕ) ,(34)
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where x ∈ R2 \ ΩR0
and H

(2)
l is the Hankel function of the second kind and index l

(see, e.g., [37]).
If −π/2 < argχ < 3π/2, then the large-argument asymptotic forms of the Hankel

functions of the second kind are known (see, e.g., [37]) to be

H
(2)
l (χr) =

√
2

πχr
exp

[
−i

(
χr − lπ

2
− π

4

)][
1 + O

(
1

χr

)]
, r → ∞.(35)

It is easy to see that for radiation modes Im(χ) = 0, and that the radiation modes
satisfy the following condition at infinity:[

E
H

]
= O

(
1√
r

)
, r → ∞.(36)

The Reichardt condition (24) for all functions which satisfy (23) and all β ∈ D is
equivalent to the Sommerfeld condition(

∂

∂r
− iχ

)[
E
H

]
= o

(
1√
r

)
, r → ∞,(37)

a fact which was proven in [38]. Therefore, radiation modes do not satisfy the Re-
ichardt condition (24). In section 4 we will prove that the set D is free of the eigen-
values of problem (3), (4), and (24). In section 5, using the Reichardt condition (24),
we will reduce problem (3), (4), and (24) to a problem with a purely point spectrum.
Therefore, in this work we will not investigate the continuous spectrum of radiation
modes.

3.4. Mode notation. The eigenvectors corresponding to the eigenvalues β ∈
R

(1)
0 such that |β| < kn∞ and satisfying the Sommerfeld condition (37) do not exist

in a “passive” DW (i.e., when Imn2 = 0), which we investigate in this paper. However,
if the waveguide is “active,” i.e., if Imn2 < 0, then such modes, radiating to r → ∞
(i.e., satisfying the Sommerfeld condition (37)) and propagating along x3 without
attenuation, may exist. In contrast, the eigenvectors corresponding to the eigenvalues

β ∈ G ⊂ R
(1)
0 satisfy the condition of exponential decay at infinity. We suggest

calling all natural modes generated by the real-axis eigenvalues eigenmodes, and, to
distinguish between them, calling the first ones radiating eigenmodes and the second
guided-wave eigenmodes. Note, however, that our radiating eigenmodes should not
be confused with the “radiation modes” discussed in the previous section. Note that
the condition (24) leads to a non–self-adjoint problem in general, which becomes
self-adjoint if β ∈ G, i.e., for the guided-wave eigenmodes.

If β ∈ Λ
(1),(2)
0 but off R

(1)
0 , then the corresponding modes will be called quasi

eigenmodes: they consist of the exponentially decaying “proper” complex quasi eigen-

modes if β ∈ C
(1)
0 , the exponentially growing leaky-wave quasi eigenmodes if β ∈

Λ
(2)
0 \R(2)

0 , and the exponentially growing “anti-guided” quasi eigenmodes if β ∈ R
(2)
0

such that |β| > kn∞.

For all m �= 0, l = 0,±1,±2, . . . , and β ∈
⋃

m�=0 (Λ
(1)
m

⋃
Λ

(2)
m ) we have

H
(1)
l (χ exp(i2πm)r) = α

(m)
l H

(1)
l (χr) + γ

(m)
l H

(2)
l (χr) , α

(m)
l , γ

(m)
l �= 0.(38)

All of the modes whose wavenumbers are located on the higher-order pairs of sheets

Λ
(1),(2)
m�=0 will be collectively called pseudoeigenmodes because, according to (31), (35),
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and (38), they are composed of a sum of incoming and outgoing cylindrical waves.
Another justification of this terminology is that all of the possible eigenmodes in a
“passive” DW are solutions of a self-adjoint problem, whereas quasi eigenmodes and
pseudoeigenmodes satisfy non–self-adjoint problems.

The eigenvalues β on Λ possess a symmetry which is a consequence of equivalency
between positive and negative directions along the longitudinal axis x3 and time t
(see [33]). Namely, if β is an eigenvalue and [E,H] is a corresponding generalized
eigenvector, then −β is also an eigenvalue, with the generalized eigenvector given by
[−E,H]. Further, because Imω = 0 and Imn = 0, the complex-conjugate numbers
±β are eigenvalues as well, with the eigenvectors given by

[
∓E,−H

]
. All these facts

can be easily verified by direct substitution into (3), (4), and (24). We shall call the
above-mentioned modes forward, backward, conjugate, and backward-conjugate modes,
respectively.

4. Localization of the eigenvalues.

Theorem 4.1. The sets B = {β ∈ R
(1)
0 : |β| ≥ kn+} and D are free of the

eigenvalues of problem (2.3), (2.4), and (3.1).
Proof. Suppose that conditions (3), (4), and (24) are satisfied for some [E,H] ∈

(C2(R2))6 and β ∈ B. Multiplying both sides of (17) by H, integrating over R2, and
using (31), we obtain

k2

∫
R2

|H|2dx =

∫
R2

(
Rotβ

(
1

n2
RotβH

)
,H

)
dx(39)

=

∫
R2

(
1

n2
RotβH,RotβH

)
dx

≥ 1

n2
+

∫
R2

(
RotβH,RotβH

)
dx

=
1

n2
+

∫
R2

(
Rotβ (RotβH) ,H

)
dx.

Combining this with (19) and (14), we obtain

k2

∫
R2

|H|2dx ≥ 1

n2
+

∫
R2

(
−ΔH + β2H,H

)
dx(40)

=
1

n2
+

∫
R2

|gradH|2dx +
β2

n2
+

∫
R2

|H|2dx.

Therefore, we have

(
β2 − k2n2

+

) ∫
R2

|H|2dx +

∫
R2

|gradH|2dx ≤ 0.(41)

Hence, if β ∈ B and |β| > kn+, then H = 0 for x ∈ R2, and

E =
−1

(iωε0n2)
RotβH = 0(42)

for x ∈ R2. If β ∈ B and |β| = kn+, then the function H is equivalent to a constant
in R2, but if H satisfies (24), then it must vanish at infinity for all β ∈ B. Therefore,
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if β ∈ B and |β| = kn+, then H = 0 for x ∈ R2, and E = 0 for x ∈ R2. Therefore the
vector [E,H] is not an eigenvector of problem (3), (4), and (24) if β ∈ B.

Now suppose that conditions (3), (4), and (24) are satisfied for some [E,H] ∈
(C2(R2))6 and β ∈ D. Multiplying both sides of (16) by E, integrating over ΩR

where R ≥ R0, and using (14) and (18), we obtain

k2

∫
ΩR

n2 |E|2dx =

∫
ΩR

(
Rotβ (RotβE) ,E

)
dx(43)

=

∫
ΩR

(
−ΔE + β2E + Gradβ (DivβE) ,E

)
dx

=

∫
ΩR

|gradE|2dx−
∫

ΓR

(
∂E

∂ |x| ,E
)
dx + β2

∫
ΩR

|E|2dx

−
∫

ΩR

|DivβE|2 dx.

For all β ∈ D the number β2 is real, and therefore we have

Im

∫
ΓR

(
∂E

∂ |x| ,E
)
dx = 0, R ≥ R0.(44)

If we combine this with (24), we obtain

2πχR

∞∑
l=−∞

Im
[
H

(2)
l (χR)H

(1)′

l (χR)
]
|Al|2 = 0, R ≥ R0.(45)

We also have

Im
[
H

(2)
l (χR)H

(1)′

l (χR)
]

=
2

πχR
, l = 0,±1,±2, . . . ,(46)

which leads to Al = 0 for all l and any R ≥ R0. Hence E = 0 for r ≥ R0. Under the
assumption of the smoothness of the function n, we have E = 0 for x ∈ ΩR0 (see [39,
p. 190]) and

H =
1

(iωμ0)
RotβE = 0(47)

for x ∈ R2. Therefore the vector [E,H] is not an eigenvector of problem (3), (4), and
(24) if β ∈ D. The proof of the theorem is complete.

5. Discreteness and dependence of the eigenvalues on parameters. Now
we shall prove that the set of all eigenvalues of problem (3), (4), and (24) can be only
a set of isolated points on Λ. We shall also investigate the behavior of eigenvalues β
of the problem (3), (4), and (24) as functions of parameters n∞ ∈ R+ and ω ∈ R+,
where R+ is the set of all positive numbers, R+ = {x > 0}. We will use general results
of the theory of operator-valued functions [36]. The results in [36] were obtained for
operators of the form I+ B(β), where I is the identity operator and the operator B(β)
is compact for all β. Therefore we shall reduce the problem (3), (4), and (24) to a
nonlinear spectral problem with a compact integral operator.
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Lemma 5.1. Suppose that [E,H] is an eigenvector of the problem (2.3), (2.4), and
(3.1) corresponding to an eigenvalue β ∈ Λ. Then

E(x) = (B(β)E) (x), x ∈ R2,(48)

where

(B(β)E) (x) = k2

∫
Ω

(
n2(y) − n2

∞
)
Φ(β;x, y)E(y)dy(49)

+ Gradβ

∫
Ω

(E, n−2gradn2)(y)Φ(β;x, y)dy,

Φ (β;x, y) =
i

4
H

(1)
0 (χ(β) |x− y|) .(50)

Proof. For all β ∈ Λ and x ∈ R2 we have

E(x) =
(
k2n2

∞ + GradβDivβ

) 1

n2
∞

∫
Ω

(
n2(y) − n2

∞
)
Φ(β;x, y)E(y)dy.(51)

This result is well known for β ∈ G (see, e.g., [40]). The desired assertion for all
β ∈ Λ is obtained by applying the method of Green functions to the vector Helmholtz
equation for the electric field with the use of the relation∫

ΓR

(
∂E(y)

∂|y| Φ(β;x, y) − ∂Φ(β;x, y)

∂|y| E(y)dy

)
= 0, R ≥ R0,(52)

which is valid for any β ∈ Λ and an arbitrary function E satisfying the Reichardt
condition (24). The validity of relation (52) was proved in [38], [23].

By the supposition of the lemma, E ∈ (C2(R2))3. The function n is twice contin-
uously differentiable in R2 too. Therefore, the following divergence relation is valid:

Divβ

∫
Ω

(
n2(y) − n2

∞
)
Φ(β;x, y)E(y)dy(53)

=

∫
Ω

Divβ

[(
n2(y) − n2

∞
)
E(y)

]
Φ(β;x, y)dy, x ∈ R2.

Taking into account (53) and (20), we obtain the assertion of the lemma.
For all β ∈ Λ the operator B(β) determined by (49) will be considered as an

operator in the space of complex-valued functions [L2(Ω)]3. By definition, set

A(β) = I − B(β),

where I is the identity operator in [L2(Ω)]3. The kernel of the integral operator B(β) is
weakly singular for all β ∈ Λ, and the domain Ω has a Lipschitz boundary. Therefore,
the operator B(β) is compact for all β ∈ Λ (see, e.g., [41]).

Definition 5.2. A nonzero vector F ∈ [L2 (Ω)]3 is called an eigenvector of an
operator-valued function A(β) corresponding to an eigenvalue β ∈ Λ if the relation

A(β)F = 0(54)

is valid. The set of all β ∈ Λ for which the operator A(β) does not have the bounded
inverse operator in [L2(Ω)]3 is called the spectrum of problem (5.7)
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Next we shall prove a theorem on the spectral equivalence of the problem (3),
(4), and (24) and the problem (54), but before doing this we consider the following.

Definition 5.3. A nonzero vector u ∈ C2(R2) is called a generalized eigenvector
of the problem

[
Δ +

(
k2n2 − β2

)]
u = 0, x ∈ R2,(55)

u =

∞∑
l=−∞

alH
(1)
l (χr) exp (ilϕ) for all r ≥ R0(56)

(where the series is supposed to converge uniformly and absolutely), corresponding to
an eigenvalue β ∈ Λ if the relations (5.8) and (5.9) are valid.

Lemma 5.4. The set of all eigenvalues of problem (5.8) and (5.9) can only be a set

of isolated points on Λ. The sheet Λ
(1)
0 , except for the set G, is free of the eigenvalues

of the problem (5.8) and (5.9).
The proof is found in [42]. Note that the solutions of problem (55) and (56)

represent the solutions of the weak-guidance approximation of the original problem
(3), (4), and (24).

Theorem 5.5. Suppose that [E,H] ∈ (C2(R2))6 is an eigenvector of the problem
(2.3), (2.4), and (3.1) corresponding to an eigenvalue β0 ∈ Λ. Then F = E ∈ [L2(Ω)]3

is an eigenvector of the operator-valued function A(β) corresponding to the same
eigenvalue β0. Suppose that F ∈ [L2(Ω)]3 is an eigenvector of the operator-valued
function A(β) corresponding to an eigenvalue β0 ∈ Λ, and also suppose that the
same number β0 is not an eigenvalue of the problem (5.8) and (5.9). Let E =
B(β0)F and H = (iωμ0)

−1Rotβ0
E for x ∈ R2. Then [E,H] ∈ (C2(R2))6, and [E,H]

is an eigenvector of the problem (2.3), (2.4), and (3.1) corresponding to the same
eigenvalue β0.

Proof. From Lemma 5.1 we obtain the first assertion of the theorem. Now we shall
prove the second assertion of the theorem. Suppose that F ∈ [L2(Ω)]3 is an eigenvector
of the operator-valued function A(β) corresponding to an eigenvalue β ∈ Λ. Assume
E = B(β)F for x ∈ R2. The kernel of the integral operator B(β) is weakly singular for
any β ∈ Λ. By virtue of the well-known property of the integral operator with weakly
singular kernel on the domain with a Lipschitz boundary (see, e.g., [41]), we have
E ∈ [C(Ω)]3. The function n belongs to the space of twice continuously differentiable
functions in R2. By virtue of the well-known properties of the area potential (see,

e.g., [41]), we have E ∈ [C
2
(R2)]3.

Applying the operator Divβ to both sides of (48), and using (10) and (53), we
obtain

DivβE(x) = k2

∫
Ω

Divβ

[(
n2(y) − n2

∞
)
E(y)

]
Φ(β;x, y)dy(57)

+
(
Δ − β2

) ∫
Ω

(E, n−2gradn2)(y)Φ(β;x, y)dy

for all x ∈ R2. If we combine this with Poisson’s formula

(
Δ + k2n2

∞−β2
) ∫

Ω

(
n2(y) − n2

∞
)
Φ(β;x, y)E(y)dy = −

(
n2(x) − n2

∞
)
E(x),(58)
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we get

DivβE(x) = k2

∫
Ω

Divβ

[(
n2(y) − n2

∞
)
E(y)

]
Φ(β;x, y)dy(59)

− k2n2
∞

∫
Ω

(E, n−2gradn2)(y)Φ(β;x, y)dy

− (E, n−2gradn2)(x)

for all x ∈ R2. Using (12), we have

Divβ

[(
n2 − n2

∞
)
E
]

= Divβ

(
n2E

)
− n2

∞DivβE,(60)

(E, n−2gradn2) = n−2Divβ

(
n2E

)
− DivβE.(61)

If we combine this with (59), we see that the function u = n−2Divβ

(
n2E

)
satisfies

u =

∫
Ω

k2
(
n2(y) − n2

∞
)
Φ(β;x, y)u(y)dy, x ∈ R2.

If the number β is not an eigenvalue of the problem (55) and (56), then this equation
has only the trivial solution (see [42]). Therefore, we have

Divβ

(
n2E

)
= 0, x ∈ R2.(62)

Using this, (48), and (61), for x ∈ R2, we obtain

E(x) = k2

∫
Ω

(
n2(y) − n2

∞
)
Φ(β;x, y)E(y)dy(63)

− Gradβ

∫
Ω

Φ(β;x, y)DivβE(y)dy.

Assume H = (iωμ0)
−1RotβE, x ∈ R2; i.e., [E,H] satisfies (3). Combining (63) and

(13), we have

H(x) = −iωε0Rotβ

∫
Ω

(
n2(y) − n2

∞
)
Φ(β;x, y)E(y)dy, x ∈ R2.(64)

Therefore, if E ∈ [C2(R2)]3, then H ∈ [C2(R2)]3.
Now we shall prove that [E,H] satisfies (4). Multiplying both sides of (63) by

iωε0n
2
∞, applying the operator Rotβ to both sides of (64), and combining the results,

we obtain

RotβH + iωε0n
2
∞E = − iωε0RotβRotβ

∫
Ω

(
n2(y) − n2

∞
)
Φ(β;x, y)E(y)dy(65)

+ iωε0n
2
∞k2

∫
Ω

(
n2(y) − n2

∞
)
Φ(β;x, y)E(y)dy

− iωε0n
2
∞Gradβ

∫
Ω

Φ(β;x, y)DivβE(y)dy

for all x ∈ R2. If we combine this with (14) and (53), we obtain

RotβH + iωε0n
2
∞E = iωε0

[
Δ + (k2n2

∞ − β2)
] ∫

Ω

(
n2(y) − n2

∞
)
Φ(β;x, y)E(y)dy

− iωε0Gradβ

∫
Ω

Divβ

[(
n2(y) − n2

∞
)
E(y)

]
Φ(β;x, y)dy

− iωε0n
2
∞Gradβ

∫
Ω

Φ(β;x, y)DivβE(y)dy
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for all x ∈ R2. Using this, (62), and (58), we have

RotβH + iωε0n
2
∞E = −iωε0

(
n2 − n2

∞
)
E, x ∈ R2.(66)

Therefore [E,H] satisfies (4).
Using the Bessel function addition theorem (see, e.g., [37]), we can readily prove

that the number β and the vector [E,H] satisfy condition (24). The proof of the
theorem is complete.

Theorem 5.6. The set of all eigenvalues of the problem (2.3), (2.4), and (3.1)
can be only a set of isolated points on Λ. Each eigenvalue β of the problem (2.3),
(2.4), and (3.1) depends continuously on (ω, n∞) ∈ R2

+ and can appear and disappear
only at the boundary of Λ, i.e., at β = ±kn∞ and at infinity on Λ.

Proof. For any (x, y) ∈ Ω2 and any (ω, n∞) ∈ R2
+ the kernel of the operator A(β)

is analytic in β ∈ Λ. Hence, the operator-valued function A(β) is holomorphic in β ∈ Λ
for any (ω, n∞) ∈ R2

+. The operator-valued function A(β;ω, n∞) is jointly continuous
in (β;ω, n∞) ∈ Λ × R2

+. For all (β;ω, n∞) ∈ Λ × R2
+ the operator B(β;ω, n∞) is

compact. Therefore, using Theorems 4.1 and 5.5 and Lemma 5.4, we see that the
operator A(β;ω, n∞) has a bounded inverse operator in [L2(Ω)]3 for all β ∈ B

⋃
D

and (ω, n∞) ∈ R2
+. Hence, for each (ω, n∞) ∈ R2

+ the spectrum of problem (54)
can be only a set of isolated points on Λ, which are the eigenvalues of the operator-
valued function A(β); each eigenvalue β of the operator-valued function A(β) depends
continuously on (ω, n∞) ∈ R2

+ and can appear and disappear only at the boundary
of Λ, i.e., at β = ±kn∞ and at infinity on Λ (see [36]). Using Theorem 5.5, we obtain
the assertion of the current theorem, which is now complete.
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INVERSE MEDIUM SCATTERING PROBLEMS FOR
ELECTROMAGNETIC WAVES∗

GANG BAO† AND PEIJUN LI†

Abstract. Consider a time-harmonic electromagnetic plane wave incident on a medium enclosed
by a bounded domain in R3. In this paper, existence and uniqueness of the variational problem for
forward scattering are established. An energy estimate for the scattered field with a uniform bound
with respect to the wavenumber is obtained in the case of low frequency on which the Born approxima-
tion is based. A continuation method for the inverse medium scattering problem, which reconstructs
the scatterer of an inhomogeneous medium from boundary measurements of the scattered wave, is
developed. The algorithm requires multifrequency scattering data. Using an initial guess from the
Born approximation, each update is obtained via recursive linearization on the wavenumber k by
solving one forward problem and one adjoint problem of Maxwell’s equations.

Key words. inverse medium scattering, Maxwell’s equations, recursive linearization
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1. Introduction. Consider the systems of time-harmonic Maxwell’s equations
in three dimensions

∇× Et = iωμ∗Ht,(1.1)

∇×Ht = −iωε∗Et,(1.2)

where Et and Ht are the total electric field and magnetic field, respectively; ω> 0 is
the frequency; and ε∗ and μ∗ are the electric permittivity and the magnetic permeabil-
ity, respectively. Denote by ε0 > 0, μ0 > 0 the permittivity and permeability of the
vacuum. The fields are further assumed to be nonmagnetic; i.e., μ∗ = μ0. Rewriting
ε∗ = ε0ε, ε= 1 + q(x) is the relative permittivity, where q(x) is the scatterer, which is
assumed to have a compact support, and R(q(x)) > −1.

Taking the curl of (1.1) and eliminating the magnetic field Ht, we obtain the
uncoupled equation for the electric field Et:

∇× (∇× Et) − k2εEt = 0,(1.3)

where k = ω
√
ε0μ0 is called the wavenumber, satisfying 0 < kmin ≤ k ≤ kmax < ∞.

The total electric field Et consists of the incident field Ei and the scattered field E:

Et = Ei + E.

Assume that the incident field is a plane wave of the normalized form [5]

Ei = ik�p eikx·�n,(1.4)
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where �n ∈ S2 is the propagation direction and �p ∈ S2 is the polarization satisfying
�p · �n = 0. Evidently, such an incident wave satisfies the homogeneous equation

∇× (∇× Ei) − k2Ei = 0.(1.5)

It follows from (1.3) and (1.5) that the scattered field satisfies

∇× (∇× E) − k2εE = k2q(x)Ei.(1.6)

In addition, the scattered field is required to satisfy the following Silver–Müller radi-
ation condition:

lim
r→∞

r
[
∇× E × x

r
− ikE

]
= 0,

where r = |x|. In practice, it is convenient to reduce the problem to a bounded domain
by introducing an artificial surface. Let Ω be the compact support of the scatterer
q(x). Assume that R > 0 is a constant such that the support of the scatterer, Ω, is
included in the ball B = {x ∈ R3 : |x| < R}. Let S be the sphere of the ball, i.e.,
S = {x ∈ R3 : |x| = R}. Denote by ν the outward unit normal to S. A suitable
boundary condition then has to be imposed on S. For simplicity, we employ the first
order absorbing boundary condition (impedance boundary condition) [12] as

ν × (∇× E) + ikν × (ν × E) = 0 onS.(1.7)

Given the incident field Ei, the forward problem is to determine the scattered field
E for the known scatterer q(x), which is assumed further to be in L∞(B). Based on
the Helmholtz decomposition and a compact imbedding result, the forward problem
is shown to have a unique solution for all but possibly a discrete set of wavenumbers.
Furthermore, an energy estimate for the scattered field, with a uniform bound with
respect to the wavenumber, is given in the low frequency case. The estimate provides
a theoretical basis for our linearization algorithm. For numerical solution of the for-
ward scattering problem in an open domain, the reader is referred to [14, 15, 16, 21]
and references therein. The inverse medium scattering problem is to determine the
scatterer q(x) from the measurements of near field current densities, the tangential
trace of the scattered field ν × E|S , given the incident field. Although this is a clas-
sical problem in inverse scattering theory, little is known on reconstruction methods,
especially in the three dimensional case, due to the nonlinearity, ill-posedness, and
large scale computation associated with the inverse scattering problem. We refer the
reader to [1, 6, 10, 11, 23] for related results on the inverse medium problem. See [5]
for an account of recent progress on the general inverse scattering problem.

The goal of this work is to present a recursive linearization method that solves
the inverse medium scattering problem of Maxwell’s equations in three dimensions.
The reader is referred to [2, 4] for recursive linearization approaches for solving the
inverse medium scattering problems in two dimensions. Our algorithm requires multi-
frequency scattering data, and the recursive linearization is obtained by a continuation
method on the wavenumber. It first solves a linear equation (Born approximation)
at the lowest wavenumber, which may be done by using the fast Fourier transform
(FFT). Updates are subsequently obtained by using higher and higher wavenumbers.
Following the idea of the Kaczmarz method [6, 18, 19], we use partial data to per-
form the nonlinear Landweber iteration at each wavenumber. For each iteration,
one forward and one adjoint state of Maxwell’s equations are solved, which may be
implemented by using the symmetric second order edge (Nédélec) elements.
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The plan of this paper is as follows. Analysis of the variational problem for for-
ward scattering is presented in section 2. Based on the Helmholtz decomposition, a
compact imbedding result, and the Lax–Milgram lemma, the well-posedness of the
forward scattering is proved. An important energy estimate is given. Section 3 is
devoted to the numerical study of inverse medium scattering. Using the initial guess
of the reconstruction derived from the Born approximation, a regularized iterative
linearization algorithm is proposed. Numerical examples are presented in section 4.
The paper is concluded with some remarks and future directions in section 5.

2. Analysis of the variational problem for forward scattering. In this
section, the variational formulation for the forward scattering problem is discussed.
The analysis provides a criterion for weak scattering, which plays an important role
in the inversion algorithm.

To state our boundary value problem, following [17], we first introduce the stan-
dard Sobolev spaces:

L2
t (S) = {u ∈ (L2(S))3 : ν · u = 0 onS},

H1
0 (B) = {u ∈ H1(B) : u = 0 onS},

H(curl, B) = {u ∈ (L2(B))3 : ∇× u ∈ (L2(B))3},
Himp(curl, B) = {u ∈ H(curl, B) : ν × u ∈ L2

t (S)},

where Himp(curl, B) is an appropriate subspace of H(curl, B) for solving problems
involving the impedance boundary condition. Correspondingly, these spaces are
equipped with the norms

‖u‖L2
t (S) = ‖u‖(L2(S))3 ,

‖u‖2
H1(B) = ‖u‖2

L2(B) + ‖ ∇u ‖2
(L2(B))3 ,

‖u‖2
H(curl,B) = ‖u‖2

(L2(B))3 + ‖ ∇ × u ‖2
(L2(B))3 ,

‖u‖2
Himp(curl,B) = ‖u‖2

H(curl,B) + ‖ ν × u ‖2
L2

t (S) .

For convenience, denote the (L2(B))3 and (L2(S))3 inner products by

(u, v) =

∫
B

u · vdx and 〈u, v〉 =

∫
S

u · vds,

respectively, where the overline denotes the complex conjugate. Introduce the bilinear
form a : Himp(curl, B) ×Himp(curl, B) → C,

a(E, φ) = (∇× E,∇× φ) − k2(εE, φ) + ik〈ν × E, ν × φ〉,

and the linear functional on Himp(curl, B),

b(φ) = k2(qEi, φ).

Then we have the weak form of the boundary value problem (1.6) and (1.7): find
E ∈ Himp(curl, B) such that

a(E, φ) = b(φ) ∀φ ∈ Himp(curl, B).(2.1)

Throughout the paper, C stands for a positive generic constant, whose value may
change step by step but should always be clear from the context.
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Before presenting the main result for the variational problem, we state several
useful lemmas. The reader is referred to [17] for detailed discussions and proofs.

Lemma 2.1 (Helmholtz decomposition). The spaces X and Y are closed sub-
spaces of Himp(curl, B), which is the direct sum of the spaces X and Y; i.e.,

Himp(curl, B) = X ⊕ Y.

Here

X = {u ∈ Himp(curl, B) : div(εu) = 0 inB}

and

Y = {∇ξ : ξ ∈ H1
0 (B)}.

Lemma 2.2 (compact imbedding). The space X is compactly imbedded into the
space (L2(B))3.

Lemma 2.3 (Friedrichs inequality). There exists a positive constant C, indepen-
dent of the wavenumber, such that for all u ∈ X

‖u‖(L2(B))3≤ C
(
‖ ∇ × u ‖(L2(B))3 + ‖ ν × u ‖(L2(S))3

)
.

Next we prove the well-posedness of the variational problem (2.1) and obtain
an energy estimate for the scattered field with a uniform bound with respect to the
wavenumber in the case of low frequency.

Theorem 2.1. If the wavenumber is sufficiently small, the variational problem
(2.1) admits a unique weak solution in Himp(curl,B) given by E = u + ∇p, while
u ∈ X, p ∈ H1

0 (B). Furthermore, we have the estimate

‖E ‖Himp(curl,B)
≤ Ck|Ω|1/2 ‖ q ‖L∞(B),(2.2)

where the constant C is independent of k and Ω is the compact support of the scatterer.
Proof. Using the Helmholtz decomposition, we take E = u+∇p and φ = v+∇ξ,

for any v ∈ X, ξ ∈ H1
0 (B). Observe that a(u,∇ξ) = 0, for any ξ ∈ H1

0 (B), by the
definition of X. Therefore, we decompose the variational equation (2.1) into the form

a(u, v) + a(∇p, v) + a(∇p,∇ξ) = b(v) + b(∇ξ) ∀ v ∈ X, ξ ∈ H1
0 (B).(2.3)

First, we determine p ∈ H1
0 (B) by the solution of

a(∇p,∇ξ) = b(∇ξ) ∀ ξ ∈ H1
0 (B),

which gives explicitly

−(ε∇p,∇ξ) = (qEi,∇ξ) ∀ ξ ∈ H1
0 (B).

The existence and uniqueness of the solution p in H1
0 (B) may be proved by a direct

application of the Lax–Milgram lemma with the estimate

‖∇p ‖(L2(B))3≤ Ck|Ω|1/2 ‖q‖L∞(B).(2.4)

Rewrite (2.3) as

a(u, v) = b(v) − a(∇p, v) ∀ v ∈ X,(2.5)
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and decompose the bilinear form a into a = a1 + k2a2, where

a1(u, v) = (∇× u,∇× v) + ik〈ν × u, ν × v〉,
a2(u, v) = −(εu, v).

Using the inequality of arithmetic and geometric means, we conclude from Lemma
2.3 that a1 is coercive:

|a1(u, u)| ≥ Ck(‖ ∇ × u ‖2
(L2(B))3 + ‖ ν × u ‖2

(L2(S))3) ≥ Ck ‖ u ‖2
Himp(curl,B)

∀u ∈ X.

The continuity of the bilinear form a1 follows from the Cauchy–Schwarz inequality.
Next we prove the compactness of a2. Define an operator A : (L2(B))3 → X by

a1(Au, v) = a2(u, v) ∀ v ∈ X,

which gives

(∇×Au,∇× v) + ik〈ν ×Au, ν × v〉 = −(εu, v) ∀ v ∈ X.

Using the Lax–Milgram lemma again, it follows that

‖ Au ‖Himp(curl,B)≤
C

k
‖ u ‖(L2(B))3 ,(2.6)

where the constant C is independent of k. Thus A is bounded from (L2(B))3 to X,
and X is compactly imbedded into (L2(B))3. Hence A : (L2(B))3 → (L2(B))3 is a
compact operator.

Define a function w ∈ (L2(B))3 by requiring w ∈ X and satisfying

a1(w, v) = b(v) − a(∇p, v) ∀ v ∈ X.

More specifically, we have by using the Stokes formula that

a1(w, v) = k2(qEi, v) + k2(ε∇p, v) ∀ v ∈ X.

It follows from the Lax–Milgram lemma that

‖w‖Himp(curl,B)≤ C(k2|Ω|1/2 ‖ q ‖L∞(B) +k ‖ ∇p ‖(L2(B))3).

An application of (2.4) yields

‖w‖Himp(curl,B)≤ Ck2|Ω|1/2 ‖ q ‖L∞(B) .(2.7)

Using the operator A, we can see that the problem (2.5) is equivalent to finding
u ∈ (L2(B))3 such that

(I + k2A)u = w.(2.8)

When the wavenumber k is small enough, the operator I + k2A has a uniformly
bounded inverse. We then have the estimate

‖u‖(L2(B))3≤ C ‖w‖(L2(B))3 ,(2.9)
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where the constant C is independent of k. However, rearranging (2.8), we have u =
w − k2Au, so u ∈ X and, by the estimate (2.6) for the operator A, we have

‖u‖Himp(curl,B) ≤ ‖w‖Himp(curl,B) +Ck ‖u‖(L2(B))3 .

Combining the estimates (2.9) and (2.7) leads to

‖u‖Himp(curl,B) ≤Ck2|Ω|1/2 ‖q‖L∞(B) .(2.10)

Finally, it follows from the definition of the norm in Himp(curl, B) that

‖E ‖Himp(curl,B) ≤ ‖u‖Himp(curl,B) + ‖ ∇p ‖(L2(B))3 .

The proof is complete by noting the estimates (2.10) and (2.4) for sufficiently small
wavenumbers.

Remark 2.1. The energy estimate of the scattered field (2.2) provides a criterion
for weak scattering. From this estimate, it is easily seen that, fixing any two of the
three quantities, i.e., the wavenumber, the compact support of the scatterer Ω, and
the L∞(B) norm of the scatterer, the scattering is weak when the third one is small.
Especially for the given scatterer q(x), i.e., the norm and the compact support are
fixed, the scattering is weak when the wavenumber is small.

Remark 2.2. For a general wavenumber, from (2.8) the uniqueness and existence
follow from the Fredholm alternative. If the scatterer q(x) is more regular, say of
C2

0 (B) [8], unique continuation may be used to prove the uniqueness and thus the
existence of the forward scattering problem (1.6), (1.7) for all k > 0. Otherwise, if
k2 is not the eigenvalue for Maxwell’s equations in the domain B, then the operator
I + k2A has a bounded inverse. However, the bound depends on the wavenumber.
Therefore, the constant C in the estimate (2.2) depends on the wavenumber.

From the above discussion, we have the following theorem on the well-posedness
of the variational problem (2.1).

Theorem 2.2. Given the scatterer q ∈ L∞(B), for all but possibly a discrete
set of wavenumbers, the variational problem (2.1) admits a unique weak solution in
Himp(curl, B), given by E = u + ∇p, while u ∈ X, p ∈ H1

0 (B).

3. Inverse medium scattering. In this section, a regularized recursive lin-
earization method for solving the inverse medium scattering problem of Maxwell’s
equations in three dimensions is proposed. The algorithm, obtained by a continua-
tion method on the wavenumber, requires multifrequency scattering data. At each
wavenumber, the algorithm determines a forward model which produces the prescribed
scattering data. At a low wavenumber, the scattered field is weak. Consequently, the
nonlinear equation becomes essentially linear, known as the Born approximation. The
algorithm first solves this nearly linear equation at the lowest wavenumber to obtain
low-frequency modes of the true scatterer. The approximation is then used to linearize
the nonlinear equation at the next higher wavenumber to produce a better approxi-
mation which contains more modes of the true scatterer. This process is continued
until a sufficiently high wavenumber, where the dominant modes of the scatterer are
essentially recovered.

3.1. Low-frequency modes of the scatterer. Rewrite (1.6) as

∇× (∇× E) − k2E = k2q(x)(Ei + E),(3.1)
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where the incident wave is taken as Ei = ik�p1e
ikx·�n1 . Consider a test function F =

ik�p2e
ikx·�n2 , where �p2, �n2 ∈ S2 satisfy �p2 · �n2 = 0. Hence F satisfies (1.5).

Multiplying (3.1) by F and integrating over B on both sides, we have∫
B

F · [∇× (∇× E)]dx− k2

∫
B

F · Edx = k2

∫
B

q(x)F · Eidx + k2

∫
B

q(x)F · Edx.

Integration by parts yields∫
B

E · [∇× (∇× F )]dx +

∫
S

[
E × (∇× F ) − F × (∇× E)

]
· νds− k2

∫
B

F · Edx

= k2

∫
B

q(x)F · Eidx + k2

∫
B

q(x)F · Edx.

We have, by noting (1.5),∫
S

[
E × (∇× F ) − F × (∇× E)

]
· νds = k2

∫
B

q(x)F · Eidx + k2

∫
B

q(x)F · Edx.

Using the boundary condition (1.7) of the scattered field and the special form of the
incident wave Ei and F , we get

−
∫
S

(ν × E) · (�n2 × �p2)e
ikx·�n2ds +

∫
S

[
ν × (ν × E)

]
· �p2e

ikx·�n2ds

=

∫
B

q(x)F · Eidx +

∫
B

q(x)F · Edx.

A simple calculation yields∫
B

q(x)eikx·(�n1+�n2)dx =
1

(�p1 · �p2)k2

∫
S

(ν × E) · (�n2 × �p2 + ν × �p2)e
ikx·�n2ds

+
i

(�p1 · �p2)k

∫
B

q(x)�p2 · Eeikx·�n2dx.(3.2)

From Theorem 2.1 and Remark 2.1, for a small wavenumber, the scattered field
is weak and the inverse scattering problem becomes essentially linear. Dropping the
nonlinear (second) term of (3.2), we obtain the linearized integral equation∫

B

q0(x)eikx·(�n1+�n2)dx =
1

(�p1 · �p2)k2

∫
S

(ν × E) · (�n2 × �p2 + ν × �p2)e
ikx·�n2ds,(3.3)

which is the Born approximation. The function q0(x) will be used as the starting
point for our recursive linearization algorithm.

Since the scatterer q0(x) has a compact support, we use the notation

q̂0(ξ) =

∫
B

q0(x)eikx·(�n1+�n2)dx,

where q̂0(ξ) is the Fourier transform of q0(x) with ξ = k(�n1 + �n2). Choose

�nj = (sin θj cosφj , sin θj sinφj , cos θj), j = 1, 2,
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where θj , φj are the latitudinal and longitudinal angles, respectively. It is obvious that
the domain [0, π]× [0, 2π] of (θj , φj), j = 1, 2, corresponds to the ball {ξ ∈ R3 : |ξ| ≤
2k}. Thus, the Fourier modes of q̂0(ξ) in the ball {ξ : |ξ| ≤ 2k} can be determined.
The scattering data with the higher wavenumber must be used in order to recover
more modes of the true scatterer.

Define the data

G(ζ) =

{ 1
(�p1·�p2)k2

∫
S
(ν × E) · (�n2 × �p2 + ν × �p2)e

ikx·�n2ds for |ζ| ≤ 2k,

0, otherwise,

where ζ = ζ(k, θ1, φ1, θ2, φ2) ∈ R3. The linear integral equation (3.3) can then be
formally reformulated as ∫

R3

q0(x)eix·ζdx = G(ζ).(3.4)

Taking the inverse Fourier transform of (3.4) leads to

1

(2π)
3

∫
R3

e−ix·ζ
[∫

R3

q0(y)e
iy·ζdy

]
dζ =

1

(2π)
3

∫
R3

e−ix·ζG(ζ)dζ.

By the Fubini theorem, we have

1

(2π)
3

∫
R3

q0(y)

[∫
R3

ei(y−x)·ζdζ

]
dy =

1

(2π)
3

∫
R3

e−ix·ζG(ζ)dζ.

Using the inverse Fourier transform of the Dirac delta function

1

(2π)
3

∫
R3

ei(y−x)·ζdζ = δ(y − x),

we deduce ∫
R3

q0(y)δ(y − x)dy =
1

(2π)
3

∫
R3

e−ix·ξG(ξ)dξ,

which gives

q0(x) =
1

(2π)
3

∫
R3

e−ix·ζG(ζ)dζ.(3.5)

In practice, the integral equation (3.5) is implemented by using the FFT.

3.2. Recursive linearization. As discussed in the previous section, when the
wavenumber is small, the Born approximation allows a reconstruction of those Fourier
modes less than or equal to 2k for the function q(x). We now describe a procedure
that recursively determines qk at k = kj for j = 1, 2, . . .with increasing wavenumbers.

Suppose now that the scatterer qk̃ has been recovered at some wavenumber k̃, and that

the wavenumber k is slightly larger than k̃. We wish to determine qk, or equivalently,
to determine the perturbation

δq = qk − qk̃.
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For the reconstructed scatterer qk̃, we solve at the wavenumber k the forward
scattering problem

∇× (∇× Ẽ) − k2(1 + qk̃)Ẽ = k2qk̃E
i, x ∈ B,(3.6)

ν × (∇× Ẽ) + ikν × (ν × Ẽ) = 0 onS.(3.7)

For the scatterer qk, we have

∇× (∇× E) − k2(1 + qk)E = k2qkE
i, x ∈ B,(3.8)

ν × (∇× E) + ikν × (ν × E) = 0 onS.(3.9)

Subtracting (3.6), (3.7) from (3.8), (3.9) and omitting the second order smallness in
δq and in δE = E − Ẽ, we obtain

∇× (∇× δE) − k2(1 + qk̃)δE = k2δq(Ei + Ẽ), x ∈ B,(3.10)

ν × (∇× δE) + ikν × (ν × δE) = 0 onS.(3.11)

For the scatterer qk and the incident wave Ei, we define the map S(qk, E
i) by

S(qk, E
i) = E,

where E is the scattered field at the wavenumber k. Let γ be the trace operator to
the boundary S of the ball B. Define the scattering map

M(qk, E
i) = γS(qk, E

i).

It is easily seen that the scattering map M(qk, E
i) is linear with respect to Ei but

is nonlinear with respect to qk. For simplicity, denote M(qk, E
i) by M(qk). By the

definition of the trace operator, we have

M(qk) = ν × E|S .

We refer to [1] for the Fréchet differentiability of the scattering map. Let DM(qk̃) be
the Fréchet derivative of M(qk), and denote the residual operator

R(qk̃) = ν × δE|S .

It follows from [1] that

DM(qk̃)δq = R(qk̃).(3.12)

The regularized least-squares solution of (3.12) is

δq = [αI + DM∗(qk̃)DM(qk̃)]
−1DM∗(qk̃)R(qk̃),

where DM∗(qk̃) is the adjoint operator of DM(qk̃), I is the identity operator, and
α is some suitable positive number. In practice, the main difficulty is the enormous
computational cost of solving linear systems with huge full matrix. Here, we consider
an alternative way of solving (3.12) which is much less computationally demanding.

To state the approach, we first examine the boundary data ν×E(x; θ, φ; k). Here,
the variable x is the observation point, which has two degrees of freedom since it is
on the sphere S. The terms θ, φ are latitudinal and longitudinal angles, respectively,
of the incident wave Ei. At each frequency, we have four degrees of freedom, and thus
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data redundancy, which may be addressed by fixing one of the incident angles, say θ.
Define φj = (j − 1) ∗ 2π

m , j = 1, . . . ,m, and the residual operator

Rj(qk̃) = ν × E(x; θ, φj ; k)|S − ν × Ẽ(x; θ, φj ; k)|S ,

where m is the total number of the incident waves or sweeps, and Ẽ(x; θ, φj ; k) is
the solution of (3.6), (3.7) with the incident wave of longitudinal angle φj and the
scatterer qk̃. Instead of solving (3.12) for all incident waves simultaneously, we may
solve it for one incident wave at a time while updating the residual operator after
each determination of the incremental correction δq. Thus, for each incident wave
with incident angle φj , we consider the equation

Mj(qk) = ν × E(x; θ, φj ; k)|S ,(3.13)

where Mj(qk) is the scattering map corresponding to the incident wave with longitu-
dinal angle φj . It follows from [1] that

DMj(qk̃)δqj = Rj(qk̃),(3.14)

where DMj(qk̃) is the Fréchet derivative of the scattering map Mj(qk). The nonlinear
Landweber iteration for (3.13) yields

δqj = βkDM∗
j (qk̃)Rj(qk̃),(3.15)

where DM∗
j (qk̃) is the adjoint operator of DMj(qk̃), and βk is some relaxation pa-

rameter [7].
Remark 3.1. For a fixed wavenumber, the stopping index of nonlinear Landweber

iteration (3.15) could be determined from the discrepancy principle. However, in
practice, it is not necessary to do many iterations. Our numerical results indicate
that the iterative process for different incident angles φj , j = 1, . . . ,m, is sufficient to
obtain reasonable accuracy.

Next, we discuss the role of the relaxation parameter βk in the iteration (3.15),
which may be understood more clearly by considering the iteration from a different
point of view.

Consider the optimization problem of (3.13),

min
qk

‖ Mj(qk) − ν × E(x; θ, φj ; k) ‖2
(L2(S))3.(3.16)

The first order optimality condition for the problem (3.16) is given by

DM∗
j (qk̃) (Mj(qk) − ν × E(x; θ, φj ; k)) |S = 0.(3.17)

To solve the optimality equation (3.17), the time marching scheme proposed in [22]
consists of finding the steady state of the following parabolic equation:

dqk
dt

= DM∗
j (qk̃) (ν × E(x; θ, φj ; k) −Mj(qk)) |S .

The numerical solution could be computed from the explicit method

δqj = τDM∗
j (qk̃)Rj(qk̃),
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where τ is the discretized time step. Thus, the relaxation parameter βk is essentially
the step size of time marching, whose length is restricted by the stability of the explicit
method.

In order to compute the correction δqj , we need some efficient way to compute
DM∗

j (qk̃)Rj(qk̃), which is given by the following theorem.
Theorem 3.1. Given the residual Rj(qk̃), there exits a function Fj satisfying the

adjoint equations

∇× (∇× Fj) − k2(1 + qk̃)Fj = 0, x ∈ B,(3.18)

∇× Fj − ikν × Fj = Rj(qk̃) onS,(3.19)

such that the adjoint Fréchet derivative DM∗
j (qk̃) satisfies

[
DM∗

j (qk̃)Rj(qk̃)
]
(x) = k2(Ei

j(x) + Ẽj(x)) · Fj(x),(3.20)

where Ei
j is the incident wave with the longitudinal angle φj and Ẽj is the solution of

(3.6), (3.7) with the incident wave Ei
j.

Proof. Let Ẽj be the solution of (3.6), (3.7) with the incident wave Ei
j . Consider

the equations as follows,

∇× (∇× δE) − k2(1 + qk̃)δE = k2δq(Ei
j + Ẽj), x ∈ B,(3.21)

ν × (∇× δE) + ikν × (ν × δE) = 0 onS,(3.22)

and the adjoint equations (3.18) and (3.19), which take the variational form

(∇× Fj ,∇× φ) − k2((1 + qk̃)Fj , φ) − ik〈ν × Fj , ν × φ〉
= 〈Rj(qk̃), ν × φ) ∀φ ∈ Himp(curl, B).

The existence and uniqueness of the weak solution for the adjoint equations may be
proved in the same way as for the scattered field. The proof is omitted.

Multiplying (3.21) with the complex conjugate of Fj and integrating over B on
both sides, we obtain∫

B

F j ·
[
∇× (∇× δE)

]
dx− k2

∫
B

(1 + qk̃)F j · δEdx = k2

∫
B

δq(Ei
j + Ẽj) · F jdx.

Integration by parts yields∫
S

[
δE × (∇× Fj) − F j × (∇× δE)

]
· νds = k2

∫
B

δq(Ei
j + Ẽj) · F jdx.

Using the boundary condition (3.22), we deduce∫
S

(ν × δE) · (∇× Fj + ikν × Fj)ds = k2

∫
B

δq(Ei
j + Ẽ) · F jdx.

It follows from (3.14) and the boundary condition (3.19) that∫
S

[DMj(qk̃)δq] ·Rj(qk̃)ds = k2

∫
B

δq(Ei
j + Ẽj) · F jdx.

We know from the adjoint operator DM∗
j (qk̃) that∫

B

δq DM∗
j (qk̃)Rj(qk̃)dx = k2

∫
B

δq(Ei
j + Ẽj) · F jdx.
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Table 1

Recursive linearization reconstruction algorithm for inverse medium scattering.

Initialization:
k = kmin smallest kmin

q0 Born approximation
Reconstruction loop:

FOR k = kmin : kmax march along wavenumbers
FOR j = 1 : m perform m sweeps over incident angles

solve (3.6)–(3.7) for Ẽj one forward problem
solve (3.18)–(3.19) for Fj one adjoint problem

δqjk = βkk
2(Ei

j + Ẽj) · Fj

qjk := qjk + δqjk
END
qk := qmk

END
q := qkmax final reconstruction

Since this holds for any δq, we have

DM∗
j (qk̃)Rj(qk̃) = k2(Ei

j + Ẽj) · F j .

Taking the complex conjugate of the above equation yields the result.
Using this theorem, we can rewrite (3.15) as

δqj = βkk
2(Ei

j(x) + Ẽj(x)) · Fj(x).(3.23)

Thus, for each incident wave with a longitudinal angle φj , we solve one forward
problem (3.6), (3.7) and one adjoint problem (3.18), (3.19). Since the adjoint problem
has a variational form similar to that of the forward problem, we need to compute
essentially two forward problems at each sweep. Once δqj is determined, qk̃ is updated
by qk̃ + δqj . After completing the mth sweep, we get the reconstructed scatterer qk
at the wavenumber k.

The recursive linearization for inverse medium scattering of Maxwell’s equations
can be summarized in Table 1.

4. Numerical experiments. In this section, we discuss the numerical solu-
tion of the forward scattering problem and the computational issues of the recursive
linearization algorithm.

As for the forward solver, we adopt the edge elements which were developed orig-
inally for the finite element solution of Maxwell’s equations [20, 12] in the early 1980s.
From the mathematical point of view, these are natural approximation spaces for the
Hilbert space H(curl, B), which is the adequate functional space for the variational
formulation of Maxwell’s equations. Vector fields in such finite element (FE) spaces
have continuous tangential traces, which is consistent with the physics. Therefore,
the natural degrees of freedom for these elements are related to tangential traces
along edges or faces. Here, we take the symmetric second order edge elements for
tetrahedral edge elements [13]. When the unknowns are ordered according to the
reverse Cuthill–McKee (RCM) ordering [9], the profile of FE matrix is highly banded,
which improves the condition number of the FE coefficient matrix. The sparse large
scale linear system can be most efficiently solved if the zero elements of the coefficient
matrix are not stored. We use the commonly used compressed row storage (CRS)
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Fig. 1. Sparsity pattern of an FE matrix with 1820 unknowns: (a) original ordering, (b) RCM
ordering.

format, which makes no assumptions about the sparsity structure of the matrix and
does not store any unnecessary elements. In fact, from the variational formula of our
direct problem (2.1), the coefficient matrix is complex symmetric. Hence, only the
lower triangular portion of the matrix needs to be stored. Figure 1 shows a typical
sparsity pattern of an FE matrix with 1820 unknowns from the symmetric second
order edge element. Regarding the linear solver, either biconjugate gradient (BiCG)
or quasi-minimal residual (QMR) algorithms with diagonal preconditioning may be
employed to solve the sparse, symmetric, and complex system of the equations. It
appears for our experiments that the QMR is more efficient.

In the following, we present two numerical examples where the number of the
incident wave m = 20, the incident latitudinal angle θ = 0, and the incident longitu-
dinal angle φj = (j − 1) ∗ 2π

m , j = 1, . . . ,m. The relaxation parameter βk is taken to
be 0.1/k for the tested examples. For stability analysis, some relative random noise
is added to the data; i.e., the tangential trace of the electric field takes the form

ν × E|S := (1 + σ rand) · (ν × E|S).

Here, rand gives uniformly distributed random numbers in [−1, 1], and σ is a noise
level parameter taken to be 0.02 in our numerical experiments. Define the relative
error by

e2 =

(∑
i,j,k |qijk − q̄ijk|2

) 1
2(∑

i,j,k |qijk|2
) 1

2

,

where q̄ is the reconstructed scatter and q is the true scatterer.
Example 4.1. Reconstruct a scatterer defined by

q(x, y, z) =

{
1 −

√
x2

12 + y2

0.82 + z2

0.52 for x2

12 + y2

0.82 + z2

0.52 ≤ 1,

0, otherwise.

The compact support of this scatterer is an ellipsoid contained in the unit ball. For
simplicity, we take �n1 = �n2 and �p1 = �p2 to test the forward solver. The numerical
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Fig. 2. (a) Integrals at different wavenumbers for the fixed incident angle θ = π
3

and φ = π
3
.

Solid curve: the exact integral value of the left-hand side of (3.2), +: the computed integral value of
the first term of the right-hand side of (3.2), ∗: the computed integral value of the second term of
right-hand side of (3.2), ◦: the computed integral value of the right-hand side of (3.2). (b) Integrals
with different θ for the fixed wavenumber k = 2.0 and φ = π

3
. Solid curve: the exact integral value of

the left-hand side of (3.2), ◦: the computed integral value of the right hand-side of (3.2). (c) Integrals
with different φ for the fixed wavenumber k = 2.0 and θ = π

3
. Solid curve: the exact integral value

of the left-hand side of (3.2), ◦: the computed integral value of the right-hand side of (3.2).

Table 2

Relative error at different wavenumbers.

k 1 2 3 4 5 6
e2 0.5494 0.4876 0.3197 0.1856 0.1534 0.0895

results are shown in Figure 2. In Figure 2(a), for the fixed incident latitudinal angle
θ = π

3 and the longitudinal angle φ = π
3 , the forward problem is solved at different

wavenumbers. In Figure 2(b) and 2(c), for the fixed wavenumber k = 2, the numerical
results are shown with different latitudinal angles θ ∈ [0, π] (fix φ = π

3 ) and φ ∈ [0, 2π]
(fix θ = π

3 ), respectively. It is easily seen from Figure 2(a) that the first term of
the right-hand side of the integral equation (3.2) is dominant compared with the
second (nonlinear) term when the wavenumber is small, which validates the Born
approximation. Figure 3 shows the slices of the true scatterer, and Figure 4 gives the
reconstruction at the wavenumber k = 6. The relative errors are shown in Table 2 at
different wavenumbers.
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Fig. 3. True scatterer of Example 4.1: (a) the slice x = 0; (b) the slice y = 0; (c) the slice z = 0.
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Fig. 4. Reconstruction of Example 4.1: (a) the slice x = 0; (b) the slice y = 0; (c) the slice z = 0.

Example 4.2. Reconstruct a scatterer defined by

q(x, y, z) =

⎧⎪⎨
⎪⎩

sin( 4π
25 )− sin

(
(x2+ (y + 0.5)2 + z2)π

)
for x2 + (y + 0.5)2 + z2 ≤ 0.42,

sin( 4π
25 )− sin

(
(x2+ (y − 0.5)2 + z2)π

)
for x2 + (y − 0.5)2 + z2 ≤ 0.42,

0, otherwise.

The compact support of this scatterer is two isolated balls with the same radius of
0.4 and the centers at (0,−0.5, 0) and (0, 0.5, 0). For simplicity, we take �n1 = �n2
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Fig. 5. (a) Integrals with different wavenumbers for the fixed incident angle θ = π
3

and φ = π
3
.

Solid curve: the exact integral value of the left-hand side of (3.2), +: the computed integral value of
the first term of the right-hand side of (3.2), ∗: the computed integral value of the second term of
right-hand side of (3.2), ◦: the computed integral value of the right-hand side of (3.2). (b) Integrals
with different θ for the fixed wavenumber k = 3.0 and φ = π

3
. Solid curve: the exact integral value of

the left-hand side of (3.2), ◦: the computed integral value of the right hand-side of (3.2). (c) Integrals
with different φ for the fixed wavenumber k = 3.0 and θ = π

3
. Solid curve: the exact integral value

of the left-hand side of (3.2), ◦: the computed integral value of the right-hand side of (3.2).

Table 3

Relative error at different wavenumbers.

k 1 2 3 4 5 6 7
e2 0.6963 0.6479 0.5891 0.4951 0.3376 0.2568 0.2221

and �p1 = �p2 in the test of the forward solver. The numerical results are given in
Figure 5. In Figure 5(a), for the fixed incident latitudinal angle θ = π

3 and the
longitudinal angle φ = π

3 , the forward problem is solved at different wavenumbers.
In Figure 5(b) and 5(c), for the fixed wavenumber k = 3, the numerical results are
shown with different latitudinal angles θ ∈ [0, π] (fix φ = π

3 ) and φ ∈ [0, 2π] (fix
θ = π

3 ), respectively. It is easily seen from Figure 5(a) that the first term of the
right-hand side of the integral equation (3.2) is dominant compared with the second
(nonlinear) term when the wavenumber k is small, which once again validates the
Born approximation. Figure 6 shows the slices of the true scatterer and Figure 7
gives the reconstruction at the wavenumber k = 7. The relative errors are shown in
Table 3 at different wavenumbers.

5. Concluding remarks. The proposed recursive linearization algorithm is sta-
ble and efficient for solving the inverse medium scattering problem with multiple
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Fig. 6. True scatterer of Example 4.2: (a) the slice x = 0; (b) the slice y = −0.5; (c) the slice
z = 0.
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Fig. 7. Reconstruction of Example 4.2: (a) the slice x = 0; (b) the slice y = −0.5; (c) the slice
z = 0.

frequency scattering data in three dimensions. Theoretically, scattering data with
even higher wavenumbers could be used to recover more complicated scatterers which
contain higher-frequency features, i.e., more Fourier modes. However, the difficulty
lies in the fact that the forward model becomes difficult to solve due to the highly
oscillatory nature of the solution. For a larger k, the mesh size has to be smaller,
which makes numerical solution more expensive. Finally, we point out two important
future directions of this research. The first concerns the convergence analysis of the
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recursive linearization algorithm, which is currently in progress and will be reported
elsewhere. Another challenging project is to develop an efficient algorithm for the
inverse medium scattering with fixed frequency scattering data.
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STIMULUS-LOCKED TRAVELING WAVES AND BREATHERS IN
AN EXCITATORY NEURAL NETWORK∗

STEFANOS E. FOLIAS† AND PAUL C. BRESSLOFF∗

Abstract. We analyze the existence and stability of stimulus-locked traveling waves in a one-
dimensional synaptically coupled excitatory neural network. The network is modeled in terms of a
nonlocal integro-differential equation, in which the integral kernel represents the spatial distribution
of synaptic weights, and the output firing rate of a neuron is taken to be a Heaviside function of
activity. Given an inhomogeneous moving input of amplitude I0 and velocity v, we derive conditions
for the existence of stimulus-locked waves by working in the moving frame of the input. We use
this to construct existence tongues in (v, I0)-parameter space whose tips at I0 = 0 correspond to the
intrinsic waves of the homogeneous network. We then determine the linear stability of stimulus-locked
waves within the tongues by constructing the associated Evans function and numerically calculating
its zeros as a function of network parameters. We show that, as the input amplitude is reduced, a
stimulus-locked wave within the tongue of an unstable intrinsic wave can undergo a Hopf bifurcation,
leading to the emergence of either a traveling breather or a traveling pulse emitter.

Key words. traveling waves, traveling breathers, inhomogeneous neural media
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1. Introduction. Understanding the conditions under which traveling waves of
activity can propagate in cortical neural tissue is becoming an increasingly active
area of research. Experimentally, these waves can be induced by a brief electrical
stimulation of a disinhibited in vitro cortical slice [7, 14, 39, 29, 30]. The underlying
mechanism for the propagation of such waves appears to be synaptic in origin rather
than diffusive, with action potentials traveling along the axons of individual neurons.
Axonal waves are modeled in terms of reaction diffusion equations based on either the
four-variable Hodgkin–Huxley equations [20] or the reduced two-variable FitzHugh–
Nagumo equations [12]. On the other hand, synaptic waves are typically modeled in
terms of nonlocal integro-differential equations of the form [27]

τ
∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x|x′)f(u(x′, t))dx′ − βq(x, t) + I(x, t),

1

ε

∂q(x, t)

∂t
= −q(x, t) + u(x, t),(1.1)

where τ is a membrane or synaptic time constant, u(x, t) is a neural field that rep-
resents the local activity of a population of excitatory neurons at position x ∈ R,
I(x, t) is an external input current, f(u) denotes the output firing rate function, and
w(x|x′) is the strength of connections from neurons at x′ to neurons at x. The neu-
ral field q(x, t) represents some form of local negative feedback mechanism such as
spike frequency adaptation or synaptic depression, with β, ε determining the relative
strength and rate of feedback. This form of inhibitory feedback is distinct from non-
local synaptic inhibition, which tends to favor the formation of stationary bumps of
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activity rather than traveling waves [38, 1, 28]. The nonlinear function f is typically
taken to be a sigmoid function f(u) = 1/(1 + e−γ(u−κ)) with gain γ and threshold
κ. Since there is strong vertical coupling between cortical layers, it is possible to
treat a thin vertical cortical slice as an effective one-dimensional medium. Analysis
of the model provides valuable information regarding how the speed of a traveling
wave, which is relatively straightforward to measure experimentally, depends on vari-
ous features of the underlying neural tissue [27]. Indeed, one prediction of the model,
concerning how the speed of the wave depends on the firing threshold of the neu-
rons, has recently been confirmed experimentally in disinhibited rat cortical slices
[32]. External electric fields are used to modulate the threshold and thus control wave
propagation.

One of the common assumptions in the analysis of traveling wave solutions of (1.1)
is that the system is spatially homogeneous, that is, that the external input I(x, t) is
independent of both x and t and the synaptic weights depend only on the distance
between presynaptic and postsynaptic cells, w(x|x′) = w(x − x′). The existence of
traveling waves can then be established for a class of positive, bounded weight distri-
butions w(x) that includes the exponential function (2d)−1e−x/d, where d determines
the range of synaptic coupling. For appropriate choices of network parameters, one
finds that a single right- or left-moving traveling front exists in the absence of any
feedback [4, 9, 21], whereas a pair of right- or left-moving traveling pulses exists when
there is significant feedback [27]; numerically it is found that the faster pulse is stable,
whereas the slower pulse is unstable. Following the original work of Amari [1], exact
traveling wave solutions can be constructed by taking the high gain limit γ → ∞, for
which f(u) = H(u − κ), where H is the Heaviside step function; that is, H(u) = 1
if u ≥ 0 and H(u) = 0 if u < 0. The stability of traveling wave solutions of (1.1)
in the case of a Heaviside firing rate function has recently been analyzed by Zhang
[42, 43] using an Evans function approach. This is a technique for analyzing wave
stability in unbounded domains that was originally developed within the context of
reaction diffusion equations describing the axonal propagation of action potentials
[10, 11, 22]. The basic idea is to linearize the full nonlinear equations about the
traveling wave solution and to construct a complex analytic function known as the
Evans function, whose zeros correspond to the point spectrum of the associated linear
operator. Having established that the essential spectrum lies in the left-half complex
plane, the wave is linearly stable if no eigenvalues have a positive real part and the
zero eigenvalue is simple; the existence of the latter reflects the translation invariance
of the system. Evans functions have now been applied to a variety of dissipative and
Hamiltonian PDE systems [35], as well as a number of nonlocal integrodifferential
equations [42, 43, 23, 34]. In the case of traveling wave solutions of (1.1), Zhang
[42] derived an analytical expression for the Evans function using a variation of the
parameters method to solve the inhomogeneous ordinary differential equation arising
from linearization about the traveling wave solution. In the scalar case (zero feed-
back), the eigenvalues can be calculated explicitly and the associated front shown to
be stable. On the other hand, for the full vector equation (1.1), it has been possible
to prove stability of the fast traveling pulse only in the singular limit of slow feedback
(small ε). However, one can still numerically evaluate the zeros of the Evans function
outside this regime. This has been implemented by Coombes and Owen [8], who have
extended the Evans function approach of Zhang [42] to a more general class of network
models that incorporates discrete axonal delays and dendritic processing.

We have recently been interested in the effects of stationary inhomogeneous inputs
on wave propagation and its failure in excitatory networks described by (1.1). As one
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might expect intuitively, a sufficiently large variation in input blocks wave propagation
(in one dimension) by spatially pinning the activity of the network. In particular, a
step input or ramp results in a stationary front, whereas a local Gaussian input
induces a stationary pulse. We have analyzed the stability of these stationary solutions
for a Heaviside firing rate function, and shown how reducing the amplitude of the
input can induce a Hopf bifurcation leading to the formation of a stable, spatially
localized oscillatory solution, or breather [5, 13]. In the case of fronts, we have further
shown that there is a critical level of negative feedback at which the homogeneous
system undergoes a symmetry-breaking front bifurcation, whereby a stationary front
loses stability and bifurcates into a pair of stable counterpropagating fronts. The
front bifurcation acts as an organizing center for the formation of a breather in the
presence of a weak input inhomogeneity [13]. Analogous results have been found
for fronts [36, 18, 19, 2, 31] and pulses [33] in reaction diffusion systems. One of the
potential difficulties in experimentally testing our predictions regarding input-induced
coherent oscillations in cortical slices is that persistent currents tend to destroy the
neurons. Although it might be possible to circumvent this problem using other forms
of stimulation such as external electric fields [32], an alternative strategy is to consider
the effects of moving stimuli. This is also more realistic from the perspective of the
intact cortex, which is constantly being bombarded by nonstationary sensory inputs.

In this paper we extend the Evans function approach of Zhang [42] and our own
previous work on stationary inhomogeneous inputs, in order to analyze the existence
and stability of traveling waves locked to a moving input of constant speed v. In order
to construct exact traveling wave solutions, we follow previous treatments [1, 27, 42]
by considering a Heaviside firing rate function and a homogeneous weight distribution,
for which (1.1) becomes

τ
∂u(x, t)

∂t
= −u(x, t) − βq(x, t) +

∫ ∞

−∞
w(x− x′)H(u(x′, t) − κ)dx′ + I(x− vt),

1

ε

∂q(x, t)

∂t
= −q(x, t) + u(x, t).(1.2)

We assume throughout that w(x) is a positive symmetric function that is monotoni-
cally decreasing on [0,∞) and satisfies the normalization condition

∫∞
−∞ w(x)dx < ∞.

The input is written as I(x−vt) = I0 χ(x−vt), with χ a fixed spatial profile that is ei-
ther a bounded monotonically decreasing function in the case of fronts, or a unimodal
Gaussian-like function in the case of pulses. The input amplitude I0 and velocity v
are treated as bifurcation parameters. Working in the moving frame of the input, we
derive threshold-crossing conditions for the existence of a stimulus-locked wave, and
use this to construct existence tongues in (v, I0)-parameter space whose tips at I0 = 0
correspond to the intrinsic waves of the homogeneous network, assuming that the lat-
ter exist. In the particular case of an exponential weight distribution, we show that
there are two tongues in the positive v domain, corresponding to an unstable/stable
pair of right-moving intrinsic waves. We determine the stability of the waves within
these existence tongues by first constructing the Evans function for a general weight
distribution w satisfying the properties listed below (1.2) and then numerically cal-
culating the zeros of the Evans function for the exponential weight distribution. We
show that as the input is reduced, a stimulus-locked wave within the tongue of the
unstable intrinsic wave can undergo a Hopf bifurcation leading to the emergence of a
traveling oscillatory wave. The latter takes the form of a breather or a pulse emitter
in the moving frame of the stimulus. In the limit v → 0 our results reduce to those
previously obtained for stationary inputs [6, 13].
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Note that analogous wave instabilities have been found in a scalar network with
asymmetric lateral inhibition [40]. Such a network consists of a Mexican hat weight
function w◦ that models short-range excitation and long-range inhibition, which is
shifted asymmetrically from the center such that w(x|x′) = w◦(x − x′ − s) for some
fixed displacement s. This displacement introduces a form of directional selectivity, in
which the network responds preferentially to stimuli moving in a particular direction,
and has thus been suggested as a possible recurrent mechanism for the directional
selectivity of neurons in visual cortex [37, 25]. Xie and Giese [40] have analyzed the
existence and stability of stimulus-locked pulses in an asymmetric lateral inhibition
network. They effectively construct the associated Evans function, although they
do not identify it as such, and show how the pulse can destabilize when the stimulus
velocity differs significantly from the natural velocity of unidirectional intrinsic waves;
this instability generates a transition to a so-called lurching wave. Yet another neural
system in which a traveling pulse can undergo a Hopf bifurcation leading to the
formation of lurching waves is a synaptically coupled integrate-and-fire network with
discrete axonal delays [15, 16]. Here a pulse consists of a single propagating spike, and
the instability is due to fluctuations in the sequence of neuronal firing times, which
start to grow at a critical value of the delay [3]. This example applies to intrinsic
waves in a homogeneous network.

The structure of the paper is as follows. In order to illustrate the general ap-
proach, we begin by considering the simpler case of zero negative feedback (β = 0),
for which (1.1) reduces to a scalar equation in u (section 2). The corresponding
existence tongues for stimulus-locked fronts and their stability can be completely de-
termined analytically. We next consider the existence of stimulus-locked pulses in the
full vector system (1.1), numerically solving a set of nonlinear functional equations in
order to construct the associated tongues (section 3). We then develop the linear sta-
bility analysis of stimulus-locked pulses in order to determine the stability of solutions
within the tongues (section 4). Finally, we present numerical simulations illustrating
the formation of traveling breathers and pulse emitters. Although we focus on travel-
ing pulses rather than fronts in the case of the full system (1.1), it is straightforward
to carry over our results to the case of stimulus-locked fronts, as briefly reported else-
where [6]. Throughout the paper we work with dimensionless units. The fundamental
time scale is taken to be the membrane time constant τ , which is assumed to be of the
order 10 msec. The fundamental length scale is taken to be in the range d of synaptic
coupling, which can vary from a few hundred micrometers to a few millimeters.

2. Stimulus-locked traveling fronts in a scalar equation. In this section
we carry out a complete analysis of the existence and stability of stimulus-locked
fronts in a scalar version of (1.2). As an illustrative example, we construct tongue
diagrams for an exponential weight distribution, showing how the existence regions of
fronts in the (v, I0)-plane deform as the threshold κ is varied. We also establish that
the fronts within the existence tongues are always stable.

2.1. Existence of stimulus-locked fronts. Consider

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− y)H(u(y, t) − κ)dy + I(x− vt),(2.1)

where the input is taken to be a positive bounded monotonic function. We seek
traveling front solutions of the form u(x, t) = U(ξ), where ξ = x− vt and

U(ξ) > κ, ξ < ξ0; U(ξ0) = κ; U(ξ) < κ, ξ > ξ0,
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for some ξ0 ∈ R. The wave of excitation is assumed to travel at the same velocity
as the input, though the relative positions of the active region (above threshold) and
the input may vary with respect to the velocity and the input strength. Thus, the
active region is locked to the input but may precede or succeed the input in position.
We take U ∈ C1(R,R), where Cn(R,R) denotes the set of all n-times continuously
differentiable functions f : R −→ R that are bounded with respect to the sup norm.
If I0 = 0, then the system is translationally invariant and ξ0 becomes a free parameter.
In this case we refer to traveling waves as intrinsic or natural waves. The profile of
the front is determined according to

−v
dU(ξ)

dξ
= −U(ξ) +

∫ ξ0

−∞
w(ξ − η)dη + I(ξ).(2.2)

Setting

W (ξ) =

∫ ξ

−∞
w(η)dη,

we can integrate (2.2) over [ξ,∞) for v > 0 to obtain

U(ξ) =
1

v

∫ ∞

ξ

e(ξ−η)/vNe(η; ξ0)dη,

where

Ne(ξ; ξ0) = 1 −W (ξ − ξ0) + I(ξ).

We are assuming that w is normalized such that
∫∞
−∞ w(η)dη = 1. Similarly, for v < 0

we integrate over (−∞, ξ] to find

U(ξ) = −1

v

∫ ξ

−∞
e(ξ−η)/vNe(η; ξ0)dη.

The threshold condition for the existence of a stimulus-locked front is κ = U(ξ0).
As a specific example, we consider a Heaviside input I(ζ) = I0H(−ζ) and an

exponential weight function

w(x) =
1

2d
e−|x|/d,(2.3)

with the length scale fixed by setting d = 1. The resulting threshold condition is

κ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2(1 + v)
+

⎧⎨
⎩

0, ξ0 ≥ 0,

I0(1 − eξ0/v), ξ0 < 0,

⎫⎬
⎭ v > 0,

1 + 2|v|
2(1 + |v|) +

⎧⎨
⎩

I0e
ξ0/v, ξ0 > 0,

I0, ξ0 ≤ 0,

⎫⎬
⎭ v < 0.

(2.4)

In the absence of an input (I0 = 0), the threshold condition reduces to

κ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2(1 + v◦)
, v ≥ 0,

1 + 2|v◦|
2(1 + |v◦|)

, v < 0,
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where v◦ is the natural speed of the wave. Solving for v◦ in terms of κ, we find that
v◦ is a sigmoidal function of κ:

v◦(κ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 − κ

κ
, 0 < κ ≤ 1

2 ,

1
2 − κ

(κ− 1)
, 1

2 < κ < 1.

The homogeneous network supports a stationary natural front (v◦ = 0) when κ = 1
2 ,

a front moving to the right for 0 < κ < 1
2 , and front moving to the left for 1

2 < κ < 1.
Moreover, v◦ → ∞ as κ → 0 and v◦ → −∞ as κ → 1. It does not support a natural
front when κ > 1, as any heteroclinic orbit joining the equilibrium {0, 1} at infinity
does not satisfy the threshold behavior used to define a traveling front solution. This
recovers a result from [9].

We now analyze (2.4) for I0 > 0 in order to determine the regions of the (v, I0)-
parameter subspace for which stimulus-locked waves exist. We first consider the case
v > 0. For ξ0 ≥ 0 we have the threshold condition

κ =
1

2(1 + v)
,

and hence there are infinitely many waves parameterized by ξ0 ∈ [0,∞), all of which
travel with the natural speed v = 1−2κ

2κ for 0 < κ < 1
2 . This degeneracy is a con-

sequence of using the Heaviside input and would not occur if a continuous strictly
monotonic input were used; however, the analysis is considerably more involved. For
ξ0 < 0 we have instead

κ =
1

2(1 + v)
+ I0(1 − eξ0/v).

As the right-hand side is monotonic in ξ0, we can solve for ξ0 as a function of v to
obtain

ξ0(v) = v ln

[
1 − 1

I0

(
κ− 1

2(1 + v)

)]
.

Since ξ0 < 0 and v > 0, we see that solutions exist only if

0 < 1 − 1

I0

(
κ− 1

2(1 + v)

)
≤ 1

or, equivalently,

2(κ− I0) <
1

1 + v
≤ 2κ.(2.5)

The right inequality of (2.5) implies that, if κ < 1
2 , then v > v◦(κ), where v◦ is the

corresponding natural velocity. Similarly, the left inequality implies that, if I0 < κ,
then 0 < v < v1(κ − I0), with v1(s) = 1

2s − 1. Hence, for 0 < κ ≤ 1
2 we obtain the

existence regions in the (v, I0)-plane shown in Figure 2.1(a)–(b). The left boundary
is given by v = v◦(κ) and the right boundary by v = v1(κ− I0). The two boundaries
form a tongue that emerges from the natural speed v◦(κ) at I0 = 0.
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Fig. 2.1. Deformation of existence regions (gray) for stimulus-locked traveling fronts as κ
varies in the scalar equation. Particular values of κ are as follows: (a) κ = 0.125, (c) κ = 0.95, (e)
κ = 1.25.

Now consider v < 0. For ξ0 < 0 we have the threshold condition

κ =
1 + 2|v|

2(1 + |v|) + I0,

which implies

|v| =
1 − 2(κ− I0)

2(κ− I0 − 1)
≡ v2(κ− I0).

Again we have an infinite family of waves corresponding to a single speed. Since
|v| ≥ 0, such solutions exist only for

κ− 1 < I0 < κ− 1

2
.

On the other hand, for ξ0 ≥ 0 we have the threshold condition

κ =
1 + 2|v|

2(1 + |v|) + I0e
ξ0/v.

Monotonicity of the right-hand side again allows us to solve for ξ0(v) to find

ξ0(v) = v ln

[
1

I0

(
κ− 1 + 2|v|

2(1 + |v|)

)]
,

and, since v < 0 and ξ0 ≥ 0, it follows that waves exist only for v satisfying

κ− I0 ≤ 1 + 2|v|
2(1 + |v|) < κ.(2.6)

The right inequality of (2.6) implies that if 1
2 < κ < 1, then v◦(κ) < v < 0. Thus, for

1
2 < κ < 1 we obtain the existence region shown in Figure 2.1(c); the left boundary
is given by v = v0(κ) and the right boundary by v = v2(κ − I0) for v < 0 and
v = v1(κ− I0) for v > 0. Again there is a tongue with tip at the natural speed. For
κ > 1 the left boundary disappears, and one finds stimulus-locked waves only when
I0 > κ− 1, i.e., when there no longer exist natural waves. The left inequality of (2.6)
implies that if 1

2 < κ − I0 < 1, then v < v2(κ − I0) < 0, whereas if κ − I0 > 1, then
no solution exists. For all κ > 1 the region of existence is identical to that for κ = 1,
though it is shifted vertically by κ− 1, as shown in Figure 2.1(d)–(e).
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2.2. Stability of stimulus-locked fronts. Consider the evolution of small
smooth perturbations ϕ̄ of the stimulus-locked front solution U . Linearizing (2.1)
about the wave, the perturbations evolve according to

∂ϕ̄

∂t
− v

∂ϕ̄

∂ξ
+ ϕ̄ =

∫
R

w(ξ − η)H ′(U(η) − κ)ϕ̄(η)dη.(2.7)

Separating variables, ϕ̄(ξ, t) = ϕ(ξ)eλt, we find that ϕ ∈ C1(R,C) satisfies the eigen-
value problem

(L + Ns)ϕ = λϕ,(2.8)

where

Lϕ = v
∂ϕ

∂ξ
− ϕ, Nsϕ (ξ) =

w(ξ − ξ0)

|U ′(ξ0)|
ϕ(ξ0).(2.9)

We need to characterize the spectrum of the linear operator L + Ns : C1(R,C) −→
C0(R,C) in order to determine the linear stability of the traveling pulse. The following
definitions concern linear operators T : D(T) −→ B, where B is a Banach space and
the domain D(T) of T is dense in B [41]. In our case D(L + Ns) = C1(R,C), which is
dense in C0(R,C). λ is in the resolvent set ρ if λ ∈ C is such that T − λ has a range
dense in B and a continuous inverse (T − λ)−1; otherwise λ is in the spectrum σ. We
decompose the spectrum into the following disjoint sets: λ is an element of the point
spectrum σp if T − λ is not invertible; λ is an element of the continuous spectrum σc

if T − λ has an unbounded inverse with domain dense in B; λ is an element of the
residual spectrum σr if T − λ has an inverse (bounded or not) whose domain is not
dense in B. We refer to elements of the point spectrum as eigenvalues and the union
of the continuous and residual spectra as the essential spectrum.

Regarding the essential spectrum, we mention that Ns is a compact linear opera-
tor. The consequence is that, since Ns is compact, the operators L + Ns and L have
the same essential spectra [24, 23]. To see that the operator is compact, we define Ns

by the composition TS, where

Sϕ = ϕ(ξ0), (T z)(ξ) =
w(ξ − ξ0)

|U ′(ξ0)|
z.

Since S : C1(R,C) −→ C has a finite-dimensional range, it is a compact linear operator.
Moreover, since T : C −→ C0(R,C) is a bounded linear operator, it follows that the
composition TS is a compact linear operator.

Resolvent and the point spectrum. We seek to construct a bounded inverse by
solving the inhomogeneous equation

(L + Ns − λ)ϕ = −f,(2.10)

where f ∈ C0(R,C), using a variation of parameters approach along the lines of Zhang
[42]. We write (2.10) as

∂

∂ξ

(
e−( 1+λ

v )ξ ϕ(ξ)
)

= −1

v
e−( 1+λ

v )ξ
(
Nsϕ(ξ) + f(ξ)

)
.(2.11)

For Re(λ)+1
v > 0, integrating (2.11) over [ξ,∞) yields

ϕ(ξ) − Λ+(λ; ξ)ϕ(ξ0) = Hf (ξ),(2.12)
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where

Λ+(λ; ξ) =
1

v|U ′(ξ0)|

∫ ∞

ξ

w(η − ξ0)e
( 1+λ

v )(ξ−η)dη,

Hf (ξ) =
1

v

∫ ∞

ξ

e(
1+λ
v )(ξ−η)f(η)dη.

Using the Hölder inequality, it can be shown that both Λ+(λ; ξ) and Hf (ξ) are
bounded for all ξ ∈ R and f ∈ C0(R,C). It is then seen from (2.12) that ϕ(ξ) is
determined by its restriction ϕ(ξ0), in which case we obtain

(1 − Λ+(λ; ξ0))ϕ(ξ0) =
1

v

∫ ∞

ξ0

e(
1+λ
v )(ξ−η)f(η)dη.

This can be solved for ϕ(ξ0) and hence for ϕ(ξ) if and only if

1 − Λ+(λ; ξ0) �= 0.

This results in a bounded inverse which is defined on all of C0(R,C), and therefore
all corresponding λ are in the resolvent set. On the other hand, we cannot invert the
operator for λ such that

1 − Λ+(λ; ξ0) = 0.

In this case

(L + Ns − λ)ϕ = 0(2.13)

has nontrivial solutions, indicating that λ is in the point spectrum. Moreover, if we
define the function

E+(λ; ξ0) = 1 − Λ+(λ; ξ0),
Re(λ) + 1

v
> 0,

we see that eigenvalues form the zero set. Similarly for Re(λ)+1
v < 0, integrating (2.11)

over (−∞, ξ0] yields a similar condition for the existence of eigenfunctions

1 = Λ−(λ, ξ0),
Re(λ) + 1

v
< 0,

where

Λ−(λ; ξ) = − 1

v|U ′(ξ0)|

∫ ξ

−∞
w(η − ξ0)e

( 1+λ
v )(ξ−η)dη.(2.14)

The Evans function is then defined as

E(λ; ξ0) = 1 − Λ±(λ; ξ0),
Re(λ) + 1

v
≷ 0.
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Essential spectrum. Since Ns does not contribute to the essential spectrum of
L + Ns, we need only calculate the essential spectrum of the linear operator L. The
essential spectrum is the set of λ = −1 + ivρ, where ρ ∈ R. Since this has negative
real part, the essential spectrum does not contribute to any wave instabilities. We
demonstrate that, for these values of λ, there exist bounded functions for which the
inverse operator (L−λ)−1 becomes unbounded, indicating that λ is a member of the
continuous spectrum.

Suppose that λ = −1 + ivρ, and consider the sequence of bounded functions [43]

ϕm(ξ) = (1 − e−ξ2/2m2

)eiρξ, m ∈ N,

for which

‖ϕm‖∞ = 1 ∀ m ∈ N, ρ ∈ R.

However,

(L − λ)ϕm(ξ) =
v

m2
ξe−ξ2/2m2

eiρξ,

which implies that∥∥∥(L − λ)ϕm

∥∥∥
∞

=
v

m2

∥∥∥ξe−ξ2/2m2
∥∥∥
∞

−→ 0 as m −→ ∞.

Hence, (L − λ)−1 is unbounded, and the set of λ = −1 + ivρ, where ρ ∈ R, form the
essential spectrum. The residual spectrum in this case is empty, though we shall see
that the vector system does, in fact, have a nonempty residual spectrum.

Evans function for an exponential weight distribution. We now explicitly calcu-
late the zeros of the Evans functions for a Heaviside input and exponential weight
distribution. The region in the complex plane D = {z : Re(z) > −1} is the domain
of the Evans function E+, and we need only consider this region to determine the
stability of the wave. For v > 0 and λ ∈ D,

E+(λ, ξ0) = 1 − 1

v|U ′(ξ0)|

∫ ∞

ξ0

w(η − ξ0)e
( 1+λ

v )(ξ0−η)dη

= 1 − 1

2(1 + λ + v)

1

|U ′(ξ0)|
,

and similarly for v < 0 and λ ∈ D,

E−(λ, ξ0) = 1 +
1

v|U ′(ξ0)|

∫ ξ0

−∞
w(η − ξ0)e

( 1+λ
v )(ξ0−η)dη

= 1 +
1

2(1 + λ + v)

1

|U ′(ξ0)|
.

Note that this recovers the Evans function obtained by Zhang [42] in the case of a
homogeneous input. From this we can directly solve E±(λ; ξ0) = 0 for λ:

λ = − (1 + |v|) +
1

2|U ′(ξ0)|
, v ∈ R,(2.15)
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with U ′(ξ0) determined from (2.2),

U ′(ξ0) =
1

v

(
U(ξ0) −

∫ ξ0

−∞
w(ξ0 − η)dη − I(ξ0)

)

=
1

v

(
κ− 1

2
− I(ξ0)

)

and κ satisfying the self-consistency conditions (2.4).
In the case I0 = 0 the eigenvalues are given by

λ = −(1 + |v|) +
|v|

2
∣∣κ− 1

2

∣∣ , v ∈ R,(2.16)

where v is the natural wave speed. Substituting (2.4) into (2.16), we find that the
only eigenvalue in D is the zero eigenvalue λ = 0. Moreover, it can be shown that the
eigenvalue is simple [42] and hence that the natural front is linearly stable, modulo
uniform translations.

In the case of an inhomogeneous input (I0 > 0), we have to deal with each of the
separate subdomains of the threshold conditions (2.4). First, for v > 0, ξ0 > 0 we
notice that I(ξ0) = 0 and κ is identical to the case of a natural wave; hence, λ = 0 is
the only eigenvalue in D. If v > 0, ξ0 < 0, substituting (2.4) for κ into (2.15) yields
the eigenvalue

λ = −1 − v +
v

2|κ− 1
2 − I0|

= (1 + v)

[
−1 +

v∣∣v + 2(1 + v)I0(1 − eξ0/v)
∣∣
]
.

Since I0(1 − eξ0/v) > 0 for all v > 0, ξ0 < 0, I0 > 0, it follows that λ < 0 and the
corresponding front is always stable. On the other hand, if v < 0 and ξ0 < 0, we
find λ = 0, again indicating stability with respect to the degenerate family of waves
corresponding to the boundary of the tongue. For ξ0 > 0 we similarly calculate

λ = (1 + |v|)
[
−1 +

|v|∣∣|v| + 2(1 + |v|)I0eξ0/v
∣∣
]
.

Since 2(1 + |v|)I0eξ0/v > 0 for v < 0, ξ0 > 0, I0 > 0, it again follows that λ < 0 and
the corresponding front is always stable.

3. Stimulus-locked traveling pulses in the vector system. In this section
we construct stimulus-locked traveling pulse solutions of (1.2) in the case of a uni-
modal input moving with constant velocity v. We first derive the formal solution for a
general weight distribution w, and then use this to construct existence tongues in the
(v, I0)-plane for an exponential weight distribution and a Gaussian input of ampli-
tude I0.

3.1. Existence of stimulus-locked pulses. Consider a traveling pulse that
is generated by, and locked to, an inhomogeneous input I traveling with constant
speed v. Such a wave has permanent or stationary form; i.e., it translates as a rigid
structure. Define the traveling wave coordinates (ξ, t), where ξ = x − vt and v is
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the velocity associated with the input. A stimulus-locked traveling pulse is a pair of
functions (U,Q), with U,Q ∈ C1(R,R), which in traveling wave coordinates satisfy
the conditions

U(ξi) = κ, i = 1, 2; U(ξ) −→ 0 as ξ −→ ±∞;

U(ξ) > κ, ξ1 < ξ < ξ2; U(ξ) < κ, otherwise,

with ξ1, ξ2 defining the points at which the activity U crosses threshold. Taking
u(x, t) = U(x− vt) and q(x, t) = Q(x− vt), the profile of the pulse is governed by

−v Uξ = −U − βQ +

∫ ξ2

ξ1

w(ξ − η)dη + I(ξ),

−v

ε
Qξ = −Q + U.

In general, we take the excitatory weight function w(x) to be nonnegative, continuous,
symmetric in x, and monotonically decreasing in |x|. Let s = (U,Q)T and W denote
an antiderivative of w; we can rewrite the system more compactly as

Ls ≡
(

vUξ − U − βQ
vQξ + εU − εQ

)
= −

(
Ne

0

)
,(3.1)

where

Ne(ξ) = W (ξ − ξ1) −W (ξ − ξ2) + I(ξ).(3.2)

We use variation of parameters to solve this linear equation. The homogeneous
problem Ls = 0 has the two linearly independent solutions,

S+(ξ) =

(
β

m+−1

)
exp(μ+ξ), S−(ξ) =

(
β

m−−1

)
exp(μ−ξ),

where

μ± =
m±

v
, m± =

1

2

(
1 + ε±

√
(1 − ε)2 − 4εβ

)
.

We set

s(ξ) =
[
S+

∣∣S−

]( a(ξ)
b(ξ)

)
,

where a, b ∈ C1(R,R) and [A|B] denotes the matrix whose first column is defined by
the vector A and whose second column is defined by the vector B. Since LS± = 0,
(3.1) becomes

[
S+

∣∣S−

] ∂

∂ξ

(
a(ξ)
b(ξ)

)
= −1

v

(
Ne(ξ)

0

)
.(3.3)

Since [S+|S−] is invertible, we find

∂

∂ξ

(
a(ξ)
b(ξ)

)
= − 1

vβ(m+ −m−)

[
Z+

∣∣Z−

]T(Ne(ξ)
0

)
,
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where

Z+(ξ) =

(
1−m−

β

)
exp(−μ+ξ), Z−(ξ) = −

(
1−m+

β

)
exp(−μ−ξ).

For v > 0, we integrate over [ξ,∞) to obtain(
a(ξ)
b(ξ)

)
=

(
a∞
b∞

)
+

1

vβ(m+ −m−)

∫ ∞

ξ

[
Z+

∣∣Z−

]T(Ne(η)
0

)
dη,

where a∞, b∞ denote the values of a(ξ), b(ξ) as ξ −→ ∞. Thus

s(ξ) =
[
S+

∣∣S−

](
a∞
b∞

)
+

1

vβ(m+ −m−)

[
S+

∣∣S−

] ∫ ∞

ξ

[
Z+

∣∣Z−

]T(Ne(η)
0

)
dη.

(3.4)

Using the Hölder inequality and that Ne ∈ C0(R,R), it is straightforward to show
that the integral term in (3.4) is bounded for all ξ ∈ R; hence, a bounded solution s
exists only if a∞ = b∞ = 0. The general stimulus-locked pulse is given by

s(ξ) =
1

vβ(m+ −m−)

[
S+

∣∣S−

] ∫ ∞

ξ

[
Z+

∣∣Z−

]T(Ne(η)
0

)
dη.

Furthermore, if we define the functions

M±(ξ) =
1

v(m+ −m−)

∫ ∞

ξ

eμ±(ξ−η)Ne(η)dη,

we can express the solution (U,Q) as follows:

U(ξ) = (1 −m−)M+(ξ) − (1 −m+)M−(ξ),(3.5)

Q(ξ) = β−1(m+ − 1)(1 −m−)
[
M+(ξ) − M−(ξ)

]
.(3.6)

Since Ne(ξ) is dependent upon ξ1, ξ2, the threshold conditions U(ξi) = κ, where
i = 1, 2 and ξ1 < ξ2, determine the relationship between the input strength I0 and
the position of the pulse relative to the input I. This provides the following consistency
conditions for the existence of a stimulus-locked traveling pulse, which, we note, reduce
to the case of natural waves for I0 = 0:

κ = (1 −m−)M+(ξ1) − (1 −m+)M−(ξ1),(3.7)

κ = (1 −m−)M+(ξ2) − (1 −m+)M−(ξ2).(3.8)

3.2. Pulses for an exponential weight distribution. Consider, in particular,
an exponential weight distribution given by (2.3) with d = 1 and a Gaussian input

I(x) = I0 e
−(x/σ)2 .(3.9)

Existence conditions determined from (3.7) and (3.8) yield the following system of
nonlinear equations that determines the relationship between the input parameters
(v, I0) and the threshold points (ξ1, ξ2):

κ = K(ξ1 − ξ2) + T+(ξ1) − T−(ξ1),(3.10)

κ = J(ξ1 − ξ2) + T+(ξ2) − T−(ξ2),(3.11)
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Fig. 3.1. Bifurcation curves for the existence of natural traveling pulses (I0 = 0) for the vector
system (1.2) in (a) the (ε, a)-plane and (b) the (ε, v)-plane, illustrating that natural waves exist only
for small ε. Here a = ξ2 − ξ1 denotes the width of a pulse. The stable branch (black), characterized
by wide (large a), fast pulses, and the unstable branch (gray), characterized by narrow, slow pulses,
annihilate in a saddle-node bifurcation at a critical value εc. In this case κ = 0.3, β = 2.5, and
εc ≈ 0.341.

where

K(ζ) = K0 + K1e
ζ −K+e

μ+ζ + K−e
μ−ζ , J(ζ) =

v + ε

2(v + m+)(v + m−)

(
1 − eζ

)
,

K1 =
1

2

v − ε

(v −m+)(v −m−)
, K± =

v2(1 −m∓)

m±(v2 −m±
2)(m+ −m−)

,

K0 =

(
(1 −m−)(2v + m+)

2m+(v + m+)(m+ −m−)

)
−
(

(1 −m+)(2v + m−)

2m−(v + m−)(m+ −m−)

)
,

T±(ζ) =

√
π σI0
2 v

(
1 −m∓

m+ −m−

)
exp

(
(μ±σ)2

4
+ μ±ζ

)
erfc

(
ζ

σ
+

μ±σ

2

)
,

and erfc(z) denotes the complementary Error function.
Natural traveling pulses (I0 = 0). Numerically solving (3.10) and (3.11) for I0 =

0, we find that for sufficiently small ε there exists a pair of traveling pulses arising
from a saddle-node bifurcation. Numerical simulations suggest that the larger and
faster pulse is stable while the smaller slower pulse is unstable and acts as a separatrix
between the fast pulse and the rest state [27]. Zhang’s analysis has shown the fast
pulse to be stable in the singular limit ε −→ 0 [42]. In Figure 3.1 we present bifurcation
diagrams using ε as a bifurcation parameter to demonstrate the existence and stability
of natural waves; stability is determined by numerically solving for the zero set of the
Evans function, constructed in section 4.2. It is found that the larger, faster wave is
stable (black), while the smaller, slower wave is unstable (gray).

Stimulus-locked traveling pulses. Numerically solving (3.10) and (3.11) for I0 > 0,
we can determine the regions in the (v, I0)-plane where one or more stimulus-locked
waves exist. First, performing a continuation from the pair of natural waves, we
generate a corresponding pair of existence tongues with tips at I0 = 0. These are
illustrated in Figure 3.2 with the left-hand (right-hand) tongue emerging from the
unstable (stable) natural wave. We then note that the left-hand tongue includes



STIMULUS-LOCKED TRAVELING WAVES AND BREATHERS 2081

0

0.5

1

1.5

2

2.5

3

Io

0.2 0.4 0.6 0.8 1 1.2
v

s

u

s

vsvu

Fig. 3.2. Regions of existence of the stimulus-locked traveling pulses in the (v, I0)-plane for
σ = 1.0, κ = 0.3, ε = 0.03, and β = 2.5. The left and right regions form tongues that issue from the
unstable vu and stable vs natural traveling pulses, respectively. The Hopf curve within the left-hand
tongue is shown in gray. Stationary pulses correspond to the intersection of the tongue and the line
v = 0.

stationary pulses at v = 0. In previous work we have shown how a stationary unimodal
input can generate a stable stationary pulse that bifurcates to a stable breather via a
Hopf bifurcation as the input amplitude is reduced [5, 13]. In section 4 we construct
the associated Evans function for traveling pulses within the tongue regions and use
this to determine the stability of stimulus-locked pulses. We find that there is a Hopf
curve within the left-hand tongue that is a continuation of the Hopf bifurcation point
for stationary pulses (v = 0); this is shown in Figure 3.2 by the gray curve. Above
the Hopf curve the pulse is stable, while it is unstable below. On the other hand
the pulse within the right-hand tongue is always stable. Finally, note that there also
exist additional stimulus-locked pulse solutions in certain subregions inside as well as
outside of the tongues; however, these are found to be always unstable.

4. Stability of the stimulus-locked traveling pulse. We begin by analyzing
the resolvent and the spectrum of the operator associated with the linearization of
the vector system (1.2) about the general stimulus-locked traveling pulse constructed
in section 3.1. This analysis indicates that potential instabilities arise only due to the
behavior of eigenvalues, which can be determined by calculation of the zero set of the
Evans function. We then present the explicit construction of the Evans function for
the stimulus-locked traveling pulse in the particular case of the exponential weight
distribution, and calculate the zero sets of this Evans function for the pulse existence
tongues shown in Figure 3.2, thereby determining their stability.

4.1. Spectral analysis of the linearized operator. Consider the evolution
of small smooth perturbations of the stimulus-locked traveling pulse with stationary
form (U,Q),

u = U + ϕ̄,

q = Q + ψ̄.
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Substituting into the system expressed in traveling wave coordinates and linearizing,
we find that the perturbations, to first order, satisfy

∂ϕ̄

∂t
− v

∂ϕ̄

∂ξ
+ ϕ̄ + βψ̄ =

∫
R

w(ξ − η)H ′(U(η) − κ)ϕ̄(η)dη,(4.1)

∂ψ̄

∂t
− v

∂ψ̄

∂ξ
− εϕ̄ + εψ̄ = 0.(4.2)

Separating variables, (
ϕ̄(ξ, t)
ψ̄(ξ, t)

)
=

(
ϕ(ξ)
ψ(ξ)

)
eλt,(4.3)

the spatial components ϕ,ψ ∈ C1(R,C) satisfy the spectral problem

(L + Ns)

(
ϕ
ψ

)
= λ

(
ϕ
ψ

)
,(4.4)

where

L = v
∂

∂ξ
− A, A =

[
1 β
−ε ε

]
,(4.5)

Ns

(
ϕ
ψ

)
=

( w(ξ−ξ1)
|U ′(ξ1)| ϕ(ξ1) + w(ξ−ξ2)

|U ′(ξ2)| ϕ(ξ2)

0

)
.(4.6)

Resolvent and the point spectrum. Letting z = (ϕ,ψ)T , we seek to construct a
bounded inverse by solving

(L + Ns − λ)z = −f ,

where f = (f1, f2)
T and f1, f2 ∈ C0(R,C). Following the variation of parameters

approach of Zhang [42], we find that the linearly independent solutions of the homo-
geneous problem (L − λ)φ = 0 are

Φ+(ξ, λ) =

(
β

m+−1

)
e

(
λ+m+

v

)
ξ,

Φ−(ξ, λ) =

(
β

m−−1

)
e

(
λ+m−

v

)
ξ,

in which case we set

z(ξ) =
[
Φ+

∣∣Φ−

]( ā(ξ)
b̄(ξ)

)
.

Subsequently, the coefficient functions are determined according to[
Φ+

∣∣Φ−

] ∂

∂ξ

(
ā
b̄

)
= −1

v

(
Nsz + f

)
.(4.7)

Inversion of [Φ+|Φ−] leads to

∂

∂ξ

(
ā
b̄

)
= − 1

vβ(m+ −m−)

[
Ψ+

∣∣Ψ−

]T(
Nsz + f

)
,(4.8)
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where

Ψ+(ξ, λ) =

(
1−m−

β

)
e−

(
λ+m+

v

)
ξ,

Ψ−(ξ, λ) = −
(

1−m+

β

)
e−

(
λ+m−

v

)
ξ.

For Re(λ) > −m−, we integrate over [ξ,∞) to obtain(
ā(ξ)
b̄(ξ)

)
=

(
ā∞
b̄∞

)
+

1

vβ(m+ −m−)

∫ ∞

ξ

[
Ψ+

∣∣Ψ−

]T (
Nsz + f

)
dη,

where ā∞, b̄∞ denote the values of a(ξ), b(ξ) as ξ −→ ∞. Thus

z(ξ) =
[
Φ+

∣∣Φ−

](
ā∞
b̄∞

)
+

1

vβ(m+ −m−)

[
Φ+

∣∣Φ−

] ∫ ∞

ξ

[
Ψ+

∣∣Ψ−

]T (
Nsz + f

)
dη.

As we shall discuss, the integral term is bounded for all ξ, and, consequently, for a
bounded solution to exist, we must require that ā∞ = b̄∞ = 0. Thus

z(ξ) =
1

vβ(m+ −m−)

[
Φ+

∣∣Φ−

] ∫ ∞

ξ

[
Ψ+

∣∣Ψ−

]T (
Nsz + f

)
dη,

which can be rewritten as(
ϕ(ξ)
ψ(ξ)

)
− Λ1(λ, ξ)

(
ϕ(ξ1)

0

)
− Λ2(λ, ξ)

(
ϕ(ξ2)

0

)
= H(ξ),(4.9)

where

Λi(λ, ξ) =
1

vβ(m+ −m−)

[
Φ+

∣∣Φ−

] ∫ ∞

ξ

[
Ψ+

∣∣Ψ−

]T w(η − ξi)

|U ′(ξi)|
dη,

H(ξ) =
1

vβ(m+ −m−)

[
Φ+

∣∣Φ−

] ∫ ∞

ξ

[
Ψ+

∣∣Ψ−

]T
f(η) dη.

Elements of Λi and H are finite sums of terms of the forms∫ ∞

ξ

e

(
λ+m±

v

)
(ξ−η)

w(η − ξi)dη,

∫ ∞

ξ

e

(
λ+m±

v

)
(ξ−η)

fi(η)dη.

Using the Hölder inequality, it is straightforward to show that these terms, and hence
Λi and H, are bounded for all ξ ∈ R and for all fi ∈ C0(R,C). Now we must determine
the conditions under which (4.9) has a unique solution. Since the solution z(ξ) is
determined completely by the restrictions z(ξ1) and z(ξ2), we obtain the following
finite-dimensional system by substituting ξ = ξ1, ξ2 into (4.9):(

I − Δ(λ)

)(
ϕ(ξ1)
ϕ(ξ2)

)
=

(
H1(ξ1)
H1(ξ2)

)
,

where H = (H1,H2)
T , Λ̄i(λ, ξ) = ( 1 0 ) Λi(λ, ξ) ( 1 0 )T , and

Δ(λ, ξ1, ξ2) =

(
Λ̄1(λ, ξ1) Λ̄2(λ, ξ1)

Λ̄1(λ, ξ2) Λ̄2(λ, ξ2)

)
.
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This system has a unique solution if and only if det(I−Δ(λ)) �= 0, resulting in a
bounded inverse defined on all of C0(R,C) × C0(R,C). All such λ are elements of the
resolvent set. Conversely, we cannot invert the operator for λ such that

det
(
I − Δ(λ, ξ1, ξ2)

)
= 0,

in which case

(L + Ns − λ)z = 0

has nontrivial solutions and λ is an element of the point spectrum. As in the scalar
front case, the function

E(λ, ξ1, ξ2) = det
(
I − Δ(λ, ξ1, ξ2)

)
, Re(λ) > −m−(4.10)

identifies eigenvalues with its zero set, indicating that E is an Evans function for the
set for which Re(λ) > −m−. In a similar fashion, a resolvent and an Evans function
can be defined on the set for which Re(λ) < −m+; however, we do not pursue the
explicit construction, as it does not reflect an instability of the stimulus-locked wave.

Continuous spectrum. Using arguments similar to those of the case of the scalar
equation, it can be shown that the operator Ns : C1(R,C) × C1(R,C) −→ C0(R,C) ×
C0(R,C) is compact. Again this implies that the essential spectrum of L + Ns is
identical to that of L. In the case of the vector operator L, the continuous spectrum
is the union of the disjoint sets of λ = −m±+ivρ, where ρ ∈ R. To see this, assume such
λ and consider the sequence of functions φ±

n ∈ C1(R,C)×C1(R,C), where n is a positive
integer; Y± are the eigenvectors of the matrix A defined in (4.5), corresponding to
the eigenvalues m±; and

φ±
n(ξ) = eiρξ

(
1 − e−ξ2/2n2)Y±.

If Y± are normalized to unity, then
∥∥φ±

n

∥∥
∞ = 1 for all n; however,

∥∥∥Lφ±
n

∥∥∥ =
v

n2

∥∥∥ξe− ξ2

2n2

∥∥∥−→ 0 as n −→ ∞.

Hence, (L − λ)−1 is unbounded, and λ is a member of the continuous spectrum of
L + Ns.

Residual spectrum. To complete the characterization of the spectrum, we demon-
strate that the set {λ ∈ C : Re(λ) ∈ (−m+,−m−)} defines the residual spectrum of
L + Ns. We must show that for such λ there exists a bounded inverse whose domain
is not dense in C0(R,C)×C0(R,C). Consider our previous construction of the inverse
operator (L + Ns − λ)−1. Since we need calculate only the residual spectrum of L,
we integrate (4.8) over [c, d], neglecting Ns, to obtain

(
ā(d)
b̄(d)

)
−
(
ā(c)
b̄(c)

)
= − 1

vβ(m+ −m−)

∫ d

c

[
Ψ+

∣∣Ψ−

]T
f(η)dη.

There are only two cases to consider. First, taking c = ξ and d = ∞, we examine the
integral term of z(ξ), components of which have the form∫ ∞

ξ

e

(
λ+m±

v

)
(ξ−η)

[
(1 −m∓)f1(η) + βf2(η)

]
dη.
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Since λ + m− < 0 and v > 0, all components are bounded, and hence L + Ns − λ is
bounded only if f either decays sufficiently fast such that∫ ∞

ξ

e

(
λ+m+

v

)
(ξ−η)

[
(1 −m−)f1(η) + βf2(η)

]
dη < ∞, ξ ∈ R,

or satisfies (1−m−)f1(η) + βf2(η) = 0 for all η. Similarly, for c = −∞ and d = ξ, we
must require that

∫ ξ

−∞
e

(
λ+m−

v

)
(ξ−η)

[
(1 −m+)f1(η) + βf2(η)

]
dη < ∞, ξ ∈ R,

or (1 −m+)f1(η) + βf2(η) = 0 for all η. Since the union of all such f is not dense in
C0(R,C) × C0(R,C), we conclude that λ lies in the residual spectrum.

4.2. Evans function for stimulus-locked traveling pulses. The following
gives the explicit construction of the Evans function for stimulus-locked waves in
the case of a Gaussian input, Heaviside firing rate function, and exponential weight
distribution. Note that this includes natural waves where I0 = 0. After a lengthy
calculation,

E(λ, ξ1, ξ2) = det
(
I − Δ(λ, ξ1, ξ2)

)
Re(λ) > −m−

=

(
1 − Θ+(λ)∣∣U ′(ξ1)

∣∣
)(

1 − Θ+(λ)∣∣U ′(ξ2)
∣∣
)

− Θ+(λ)Γ(λ)∣∣U ′(ξ1)U
′(ξ2)

∣∣e(ξ1−ξ2),(4.11)

where

Γ±(λ) =
(1 −m∓)v

(m+ −m−)(v2 − (λ + m±)2)
,

Θ±(λ) =
1

2(m+ −m−)

(
1 −m−

λ + m+ ± v
− 1 −m+

λ + m− ± v

)
,(4.12)

Γ(λ) = Θ−(λ)e(ξ1−ξ2) + Γ+(λ)e

(
λ+m+

v

)
(ξ1−ξ2) − Γ−(λ)e

(
λ+m−

v

)
(ξ1−ξ2).

Since the zero set of the Evans function (4.11) comprises solutions of a transcendental
equation, we solve for the eigenvalues numerically by finding the intersection points
of the zero sets of the real and complex parts of the Evans function. This leads to
the stability results shown in Figure 3.2, namely, that pulses within the right-hand
tongue are stable whereas pulses within the left-hand tongue are stable only if they lie
inside the region enclosed by the Hopf curve. An example of a zero set construction
is shown in Figure 4.1 for fixed I0 and various values of v.

Linear stability of the traveling pulse solution is characterized by all eigenvalues
of the linearization having negative real part, with the possible exception that λ = 0
is a simple eigenvalue. Moreover, Hopf bifurcations may be identified by a pair of
complex eigenvalues crossing the imaginary axis from the left-half plane. It has been
found in many infinite-dimensional dynamical systems, such as semilinear parabolic
equations, that the criterion for a Hopf bifurcation carries over from ordinary dif-
ferential equations. Although smoothness properties of the flow are required for its
proof using invariant manifold theory, the result is essentially based on the behavior
of eigenvalues of the linearized operator [26]. We shall assume this and use numerical
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(d) v = 0.1175

Fig. 4.1. Graphs of the zero sets of the real (dark curves) and imaginary (light curves) parts
of the Evans functions for I0 = 2.0 and a sequence of stimulus speeds v; intersection points indicate
eigenvalues. Note that the horizontal gray line is part of the zero set of the imaginary part. The
vertical shaded region Re(λ) ≤ −m− indicates the essential spectrum. This sequence of plots indi-
cates that two Hopf bifurcation points occur, thus defining the boundary of the stable region within
the left tongue depicted in Figure 3.2. Case (a) is associated with the existence of a stable stationary
breather, case (b) with a stable traveling pulse, and cases (c) and (d) with a traveling emitter. See
text for more details.

simulations, as discussed in the following section, to explore the behavior of the model
near these bifurcation points. Note, for I0 > 0, λ = 0 is not an eigenvalue and does
not complicate the eigenvalue criteria of the standard Hopf bifurcation theorem, as
would be the case with natural waves.

4.3. Numerical simulations. In this section we explore the behavior of the
vector system (1.2) in all regions of the (v, I0)-plane shown in Figure 3.2. In particular,
we describe the various types of solutions that emerge beyond the Hopf bifurcation
curve, as well as beyond the existence tongues.

For parameter values supporting natural traveling waves, and in the absence of
an input (I0 = 0), an initial sufficiently large local displacement of the activity u from
rest induces a locally excited region of activity, which rapidly develops into a pair of
diverging natural traveling pulses, as in the reaction diffusion analogue. Similarly, for
parameter values supporting stable stimulus-locked waves in the presence of an input
(I0 > 0), an initial displacement of u near the input (or no initial displacement in
the case of sufficiently large input strength I0) rapidly approaches the stable traveling
pulse. For certain speeds v the initial transient can generate an additional single or
pair of traveling waves that propagate away from the input. As expected, the speed
and width of the stimulus-locked traveling pulse closely match those of the theory.

Interestingly, for the parameter values in Figure 3.2, numerical simulations suggest
that the left-hand branch of the Hopf curve (gray) corresponds to a supercritical
bifurcation, while the right-hand branch is subcritical without a sharp transition to
a breathing pulse. We first characterize the nature of solutions obtained by crossing
the subcritical branch of the Hopf curve. We find a region of activity moving with
the input whose right boundary oscillates with increasing amplitude. After a critical
point, the system emits a natural traveling pulse, whose speed is faster than that
of the input, as shown in Figure 4.2. The region between the one excited by the
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Fig. 4.2. Instability of the stimulus-locked traveling pulse in the presence of two complex conju-
gate eigenvalues with positive real part for I0 = 1.0, v = 0.07, σ = 1, κ = 0.3, ε = 0.03, and β = 2.5.
In this case the bifurcation appears subcritical with the absence of a sharp jump to a stable breathing
pulse. Instead, instability manifests itself as a periodic cycling of an initial phase of periodically
modulated growth of the active region, followed ultimately by the shedding of a natural traveling
pulse. (a) Space-time plot showing one cycle of the instability, where the vertical axis represents
time and the horizontal axis represents space. (b) Graph of the corresponding zero set of the Evans
function. The periodic process of shedding or emitting natural traveling pulses becomes more rapid
as the real part of the eigenvalue increases.

input and the new natural wave recovers, and the process repeats periodically. Such
solutions we refer to as pulse-emitters. The smaller the real part of the eigenvalue,
the slower the instability grows and the more time is required for the wave to be
emitted. As v is increased, the real part of the eigenvalue grows and the number
of oscillations occurring before the shedding of natural waves decreases, until the
eigenvalues become real, as illustrated in the figure sequence 4.1(b)–(d), and the
pulse rapidly emits natural pulses. This behavior continues until v is increased to
the boundary of the right-hand tongue where there is a smooth transition to a stable
stimulus-locked pulse.

When the left-hand supercritical branch of the Hopf curve is crossed by reduc-
ing I0 or v, we find a smooth transition to a stimulus-locked traveling breather. In
the special case of a stationary stimulus (v = 0), reducing I0 generates a stationary
breather, as we have shown previously [5, 13]. The breathing solutions continue to
persist in a subregion of the (v, I0)-plane bounded to the right by the left (supercriti-
cal) branch of the Hopf curve in 3.2. As one moves in this subregion away from the left
Hopf branch, the amplitude of the oscillations grows. After some point, the breathing
solution disappears, and a new type of temporally periodic solution appears, each
cycle of which is characterized by one or more breathing pulse oscillations followed by
the emission of a pair of natural waves, possibly intermixed with interludes of sub-
threshold behavior. An example of such a transition is illustrated in Figure 4.3. This
type of pulse-emitting solution appears to be part of a family of related responses
of the system to a localized input, which also includes the pulse-emitting behavior
associated with the region between the subcritical Hopf curve and the stable right
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(a) v = 0.01
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(b) v = 0.014
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(c) v = 0.03
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Fig. 4.3. Sequence of space-time plots for fixed input I0 = 1.5, illustrating the transition from
pulse emitter, to breather, to stimulus-locked pulse as v increases through the supercritical branch of
the Hopf curve shown in Figure 3.2. Other parameters are ε = 0.03, κ = 0.3, β = 2.5, σ = 1.
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(a) v = 0.04

300

250

200

150

100

50

10 20 30 40 50

350

400

450

space (in units of d)

ti
m

e
 (

in
 u

n
it

s 
o
f 

τ)

(b) v = 0.05
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(c) v = 0.07
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Fig. 4.4. Transitions between various pulse-emitting solutions for fixed I0 = 0.9 as v is in-
creased. These solutions exist within the unstable part of the left-hand tongue of Figure 3.2, suf-
ficiently below the Hopf curve such that stable breathers no longer exist. Other parameters are
ε = 0.03, κ = 0.3, β = 2.5, σ = 1.

tongue shown in Figure 3.2. Furthermore, there is a smooth transition of behaviors
joining the two regions, as shown in Figure 4.4.

Although the above account applies to the case σ = 1, most features are valid for
more general σ. One main point of difference lends insight into the disappearance of
the breather. If we consider stationary pulses for σ =

√
2 and explore the evolution

of the breathing pulse as we further decrease I0 beyond the bifurcation point, we find
that a secondary bifurcation occurs, giving rise to two modes of breathing rather than
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(b) I0 = 2.3
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(c) I0 = 2.2

Fig. 4.5. Sequence of period-doubling bifurcations of a breathing pulse for σ =
√

2. The left-
hand column shows space-time plots for different values of current amplitude beyond the initial Hopf
bifurcation point, with an orbit corresponding to the center spatial point plotted in the (u, q)-phase
plane in the right-hand column; other spatial points are qualitatively similar. Other parameter values
are κ = 0.3, β = 2.5, ε = 0.03, v = 0. (Note that at higher resolution each loop in (c) is actually a
pair of closely spaced loops, indicating that it corresponds to the third doubling in the sequence.)

one. By graphing, in the (u, q)-phase plane, the orbit corresponding to a spatial point
at the center of the input, we find that the evolution of the orbit, as I0 is decreased,
strongly resembles that of a period-doubling bifurcation, as shown in Figure 4.5(a)–
(b). Decreasing I0 leads to additional period doublings, as illustrated in Figure 4.5(c).
Ultimately, decreasing I0 leads to behavior similar to that found for σ = 1. This
suggests that for σ = 1 the first period-doubling bifurcation may be subcritical, and
the orbit instead weaves its way around the unstable limit cycle giving rise to the
sequence of breathing pulses and emission, as shown in Figure 4.6.
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Fig. 4.6. (a) Space-time plot of a stationary (v = 0) pulse-emitter for σ = 1, I0 = 1.35, κ = 0.3,
β = 2.5 and ε = 0.03. (b) Corresponding phase portrait showing the orbit (gray trajectory) of the
center spatial point plotted in the (u, q)-phase plane. Also shown is the corresponding orbit (black
trajectory) of the stable breather that exists when I0 = 1.4.

5. Discussion. In this paper we have shown how to extend the analysis of the
existence and stability of pulses arising from a stationary stimulus input to that of
a input moving with constant speed. We described the continuation from the un-
stable/stable pair of natural waves by constructing a corresponding pair of existence
tongues emerging from the natural waves at I0 = 0, with the left-hand tongue includ-
ing stationary pulses at v = 0, for a particular choice of parameter values supporting
natural waves. We have extended Zhang’s analysis of stability of natural waves to
that of stimulus-locked waves and numerically evaluated the Evans function to deter-
mine eigenvalues away from the singular limit ε → 0. This allowed us to analyze the
stability of the existence tongues in the (v, I0)-plane and show the continuation of the
Hopf bifurcation found for stationary pulses. Numerically this Hopf curve was found
to have a supercritical branch, from which breathing pulses emerge and a subcritical
branch from which no breathing pulse emerges. In general for parameter values that
do not support either stimulus-locked pulses or breathers, the system generates more
complicated behavior, including the emission of natural traveling waves when such
waves exist.

It would be interesting to contrast the type of local inhibition analyzed in this
paper, which is primarily due to intrinsic neuronal properties, with that of nonlocal
inhibition, arising from the ubiquitous inhibitory populations of neurons found in
cortex. From previous work [1, 28], we know that the two-population, excitatory-
inhibitory system supports stable stationary pulses which, moreover, can undergo a
subcritical Hopf bifurcation. In this case no breathing pulse emerges; however, it is
possible that the presence of a localized input is capable of stabilizing such a breathing
pulse solution. In addition, it would be interesting to provide a more thorough analysis
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of the scalar model considered by Xie and Giese [40], by constructing tongue diagrams
and Hopf bifurcation curves and, furthermore, considering the effect of varying the
degree of nonlocal inhibition.

From a more general perspective, the analysis presented here and in related work
[6, 13] has established that the combined effect of local inhomogeneities and recur-
rent synaptic interactions can result in nontrivial forms of coherent oscillations and
waves. Although we have focused on rather abstract neural field equations, we ex-
pect our results to carry over (at least qualitatively) to more biophysically realistic
conductance-based models. Indeed, elsewhere we have confirmed the existence of sta-
tionary breathers and pulse emitters in the case of a modified Traub model [13]. One
of the advantages of studying simplified models is that it can generate predictions
regarding how dynamical properties such as wave speed depend on characteristic fea-
tures of neural tissue. One striking demonstration of this is the recent study of wave
propagation in disinhibited cortical slices, where the speed of the wave was controlled
by external electric fields, confirming predictions based on homogeneous neural field
equations [32]. Our own work predicts that coherent oscillations can be induced by
local inhomogeneities. Such inhomogeneities could arise from external stimuli or re-
flect changes in the excitability of local populations of neurons. The former suggests
a network mechanism for stimulus-induced oscillations, which may play an important
role in visual processing [17], whereas the latter suggests a network mechanism for
generating epileptiform activity.
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Abstract. This paper relates the existence and uniqueness of constrained energy maximizers
to the occurrence of negative temperatures in a recent statistical mechanics model of the energy-
enstrophy theory. We construct examples of steady state solutions of the vorticity equation which
break SO(3) symmetry from the negative temperature vorticity distributions in the spherical model.
These vortex states correspond to solid-body rotation flows at rotation rates Θ, which depend only

on the fixed value of enstrophy Γ, that is, Θ =

√
Γ/(4

∫
S2 cos2 θ dx). They are robust in the sense

that they constitute most probable states in a spherical model of the statistical energy-enstrophy
theory at negative temperatures, and have exponentially large Gibbs probability relative to any other
macrostates. The existence and uniqueness of energy maximizers in a variational formulation of the
new energy-enstrophy theory also give a necessary condition for the spherical model energy-enstrophy
theory to be well defined at all temperatures.

Key words. energy maximizers, energy-enstrophy model on a sphere, spherical model, negative
temperature
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1. Introduction. Negative temperatures exist in many physical systems includ-
ing lasers. The work of Onsager [3], Montgomery and Joyce [2], and Eyink and
Spohn [4] shows that negative temperatures arise in two-dimensional (2d) point vor-
tex statistics. We have extended this to vortex statistics on the nonrotating sphere
by constructing a convergent family of lattice spin models HN . In each member of
the family parametrized by the number N of lattice nodes placed on the sphere S2,
we construct a well-defined equilibrium statistic, using a new version of the energy-
enstrophy theory known as the spherical model:

ZN =

∫
(Πdsj)δ

(
NΓ −

∑
s2
j

)
exp [−βHN ] .(1.1)

One can regard the spin state �s(N) = (s1, . . . , sN ) as a macrostate or coarse-grained
vorticity distribution for which there are many equivalent microstates, each of which
can be viewed as a rearrangement of distinguishable vorticity parcels of similar strength
between lattice cells/sites. A spin state �s tends in the continuum/thermodynamic
limit to a vorticity function w(θ, φ) ∈ L2(S

2), where L2(S
2) denotes the Hilbert

space of square-integrable measurable functions on the sphere S2 with coordinates
given by co-latitude θ and longitude φ. We sketch one derivation of the spherical
model in this paper.
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This new version was done for two specific reasons: the classical energy-enstrophy
theory based on a Gibbs canonical ensemble in the energy and enstrophy [8] is equiv-
alent to the Gaussian model [13], [12], [1] and has a vanishingly small temperature
range of validity in the continuum limit (only for β = 0); changing the canonical
constraint on the enstrophy to a microcanonical constrain converted the resulting
statistics into that of Kac’s spherical model, which is exactly solvable in the contin-
uum limit of N tending to infinity and, more importantly, it is valid for all values
of inverse temperature β, including negative ones. The exact solution in the con-
tinuum/thermodynamic limit of the spherical model for energy-enstrophy theory has
been discussed in Lim [13], [12] and simulated in Lim and Nebus [29]. One of the
main conclusions from this work is that for large values of kinetic energy H relative
to the enstrophy Γ, when β < 0, there is only one most probable vorticity distribution,
namely, the solid-body rotation state [13], [12], [29]. This macrostate is directly re-
lated to the spherical harmonic Y10 corresponding to the smallest positive eigenvalue
of the Laplace–Beltrami operator −Δ on the sphere S2.

In this paper, we go deeper into the relationship between negative temperature
states in the spherical model for energy-enstrophy theory and the existence of unique
maximal energy states in a variational formulation of the constrained enstrophy prob-
lem. The main results of the paper are the existence and uniqueness of these maximal
energy states modulo a symmetry group in a variational formulation of the problem
on the surface of the sphere, and two applications. First, we discuss an important ap-
plication to statistical physics in the following subsection, concerning a necessary con-
dition for a statistical mechanics energy-enstrophy theory to be well defined, namely,
bounds on the energy. The second application concerns the existence and robustness
of symmetry-breaking steady-states of the Euler equations and the ergodicity of in-
viscid vortex dynamics on a nonrotating sphere. This application is motivated by
Shepherd’s discovery that on a rapidly rotating sphere, inviscid single layer vortex
dynamics is highly anisotropic and nonergodic. His proof of nonergodicity does not
extend to the nonrotating sphere. We have implicitly assumed that inviscid vortex
dynamics on the nonrotating sphere are ergodic when formulating the spherical model
energy-enstrophy theory.

1.1. Unboundedness in the classical energy-enstrophy theory. What
then is the main advantage of the spherical model over the older Kraichnan energy-
enstrophy theory? The results in this paper establish a necessary condition for the
spherical model to be well defined for all temperatures; that is, the energy H[w] has
a finite upper bound for fixed enstrophy Γ[w]. This is not the case in the Kraich-
nan energy-enstrophy theory where, because enstrophy is constrained in a canonical
manner, the augmented energy has the form

E[w] = H[w] +
μ

β
Γ[w].

We have recently shown in [25] that E[w] has no upper bound for μ
β < 0 when

−2
μ

β
< ‖G‖,

where G is the integral operator whose kernel is the Green’s function of the Laplace–
Beltrami operator on the sphere S2 when

∫
S2 w dx = 0. A more serious difficulty

arises for the classical energy-enstrophy theory for inviscid flows on a nonrotating
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sphere when the temperature is positive. Namely, for β > 0 and μ > 0, the unique
global minimizer wm of E[w] is the trivial vorticity wm = 0 [25]; that is

E[wm] = min∫
S2

wdx=0

E[w] = 0.

This positive temperature difficulty is not as serious in Kraichnan’s original energy-
enstrophy theory for inviscid flows on the plane as it is for the sphere S2, because∫
wdx need not be zero for planar flows.

General dissatisfaction with the classical energy-enstrophy theory has led to sev-
eral new directions for research. Works criticizing the classical energy-enstrophy the-
ory include the Miller–Robert theory [19], [18], which invokes an infinite number of
vorticity constraints; the Turkington–Majda model [21], [22], which is based on in-
formation theoretic Bayesian statistics; and the spherical model of energy-enstrophy-
circulation theory [13], [12], [14], which is based on a microcanonical constraint on
enstrophy rather than the canonical one in Kraichnan’s theory [8]. Like the Miller–
Robert [19], [18] and Turkington–Majda [21], [22] theories, the spherical model has
predicted much the same results obtained by the older energy-enstrophy theories.
They are all capable of supporting negative temperatures and the inverse energy cas-
cade, which are ubiquitous in 2d flows, when the effective rotation rates are small
enough or zero. The advantages of the spherical model over the other recent the-
ories lie in its relative simplicity of constraining only energy and enstrophy—which
follows from the deep relationships between them and has important consequences
further discussed below—and the fact that there is an exact analytical solution for its
partition function [14].

1.2. Ergodicity and robust symmetry breaking. This paper also examines
the phenomena of symmetry breaking in inviscid vortex dynamics on a nonrotating
sphere in relation to its ergodicity. We will discuss the following questions: (a) Do
inviscid 2d flows on a nonrotating sphere exhibit anisotropy strong enough to imply
nonergodicity? (b) Is this symmetry breaking robust in some other suitable sense?
The answer to the first question is yes, there is symmetry breaking or anisotropy, but
there is no evidence of nonergodicity of 2d inviscid flows on a nonrotating sphere.
The answer to the second question is also yes, the symmetry breaking that we dis-
cover for vortex dynamics on the nonrotating sphere is robust in the sense of having
exponentially high probability in a Gibbs canonical ensemble.

Invoking statistical mechanics to prove the robustness of the symmetry breaking
basic states on the nonrotating sphere is more than just a convenient and physically
valid tool. There is no known Lyapunov stability result for the zonally symmetric basic
states in this problem, unlike the case of a strongly rotating sphere [6]. Moreover,
rigorous arguments prove that in most high dimensional Hamiltonian systems, some
trajectories near these steady states must escape along a chain of whiskered tori [28].
Without recourse to results on dynamical stability, the tools of equilibrium statistical
mechanics are indispensable. Provided we are satisfied that the problem is ergodic,
only the issue of which statistical mechanics model to use matters, and is one of the
main topics of discussion in this paper.

An elegant paper by Shepherd [6] argued convincingly that inviscid 2d flows on the
beta plane and rotating sphere are nonergodic for sufficiently large beta and rotation
rates. His arguments are based on a version of Arnold’s stability theorems for zonally
symmetric basic solutions. This method requires the beta or rotation rate to be not
only nonzero but large. Numerical experiments confirm this anisotropy in unforced
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flows on the sphere [15], [16] and forced flows [20]. The anisotropy discovered by
Shepherd [6] and the resulting nonergodic property of the (large beta) beta plane
and strongly rotating sphere models put into question whether equilibrium statistical
mechanics is valid for these models.

On the other hand, there is no known proof that vortex dynamics on the nonro-
tating sphere is nonergodic. But like many other parts of physics, there is no proof of
ergodicity either. In light of this situation, we have the usual physicist’s justifications
to use equilibrium statistical mechanics to demonstrate the robustness of symmetry
breaking.

There are two special relationships between energy and enstrophy which make
them natural constraints in any statistical mechanics theory for inviscid flows. First
and foremost is the fact that the enstrophy is just the L2 norm of the vorticity w, and
the kinetic energy is the quadratic form whose kernel is the Green’s function of the
Laplace–Beltrami operator in the problem. Poincaré’s inequality then implies that
the Dirichlet quotient of enstrophy over energy is bounded below by the spectrum of
the Laplace–Beltrami operator in the domain. This yields a very natural variational
framework which is further exploited in this paper.

Next is the powerful theory called the principle of selective decay [7] or minimum
enstrophy, which tells us that the Dirichlet quotient tends to a nontrivial and fixed
minimum in the unforced periodic 2d Navier–Stokes equations, even as the energy
and the enstrophy separately tend to zero under the effect of viscosity. This principle,
which provides a valuable link between inviscid models and the long time dynamics
of damped 2d flows, is again based only on the two quadratic forms of energy and
enstrophy.

As far as we know, there are no equally compelling results for higher vorticity
moments as there are for the energy and enstrophy. Several important issues for
inviscid vortex dynamics have been discussed in relation to the number of vorticity
constraints to keep in any physically relevant statistical theories of 2d flows. Kraich-
nan [8], Leith [9], Chorin [10], [11], and Majda and Holen [17] have all argued for
the sufficiency of the first two in equilibrium statistical mechanics, namely total cir-
culation and enstrophy, in addition to energy. Nonetheless, there are subtle issues
concerning the role of higher order vorticity moments in the variational theory of the
Barotropic vorticity equation, which are discussed in a recent work [30].

Our third and most important reason for using a statistical mechanics model with
only the energy and enstrophy constraints is the simple fact that we are interested
in the robustness of truly global energy maximizers which break SO(3) symmetry.
Adding more constraints to the canonical probability measure will increase the num-
ber of terms and Lagrange multipliers in the corresponding enthalpy functional. Like-
wise, adding more microcanonical constraints is equivalent to the more constrained
variational problem of finding energy extrema on the intersection of more than one
manifold in phase space, which must necessarily yield suboptimal extrema instead of
the global energy maximizer we are looking at.

1.3. Summary of content. We discuss the relationships between energy, en-
strophy and total circulation of inviscid vortex dynamics on a nonrotating sphere
in a deterministic variational setting to show that unique energy maximizers are re-
lated to negative temperatures in a family of lattice spin models for energy-enstrophy
theory on a sphere. To show that symmetry breaking solutions are robust in a physi-
cally meaningful sense, we use this equilibrium statistical mechanics energy-enstrophy
model to prove that the energy maximizers are in fact most probable macrostates
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in a Gibbs ensemble. For this argument to work, negative temperatures must be
supported in this model. The rigorous proof of negative temperatures in the spher-
ical model for energy-enstrophy theory is given in exact solutions of the spherical
model [13], [12], [14]. The main results on which these applications are based are
the existence and uniqueness of constrained energy maximizers on the intersection of
iso-enstrophy and iso-circulation manifolds. Finally, we end with a discussion of the
relationship between the constrained energy maximizer (shown to exist in this paper)
and the maximizer of the free energy.

2. Inviscid vortex dynamics on a nonrotating sphere. Without loss of
generality we will discuss only the case of flows on the unit sphere S2. Inviscid flows
on the nonrotating sphere are governed by the equation

D

Dt
w = 0,(2.1)

where w is the absolute vorticity, which further satisfies the zero total circulation
condition

K[w] =

∫
S2

wdx = 0.

The Casimir symmetries of (2.1) imply that in addition to the kinetic energy of flow
(from time invariance)

H[w] =
1

4

∫
S2

dxw(x)

∫
S2

dx′w(x′) ln
1

|x− x′|(2.2)

and the usual momenta (from SO(3) symmetry), the inviscid vortex dynamics gov-
erned by (2.1) conserves an infinite number of vorticity moments [10]. The first two
of these moments are total circulation K[w] and enstrophy

Γ[w] =

∫
S2

w2dx.

We recall that any spherical harmonic Ylm (that is, any eigenfunction of the
Laplace–Beltrami operator on the unit sphere) is a steady solution of the equation of
motion. Thus, any zonally symmetric harmonic such as Y10 = k cos θ, where θ is the
co-latitude, is a steady solution of (2.1). These are symmetry breaking solutions. In
other words, instead of the full SO(3) symmetry of (2.1), the zonal harmonics Yl0 are
only SO(2) symmetric.

Recall that for any given zonal basic solution in Shepherd’s proof, there is a small
enough rotation rate Ω of the sphere which results in the vanishing of the meridional
gradient of the total vorticity Q(cos θ) somewhere on the sphere. This spoils the upper
bound in the Lyapunov stability theorem, which so effectively controlled the growth
of the enstrophy of the disturbance vorticity q in the problem of the strongly rotating
sphere [6]. Thus Shepherd’s proof does not work here since the rate of rotation Ω = 0.

Without results as strong as those in [6], a generic stability analysis of these zonal
basic states within the framework of high-dimensional Hamiltonian dynamics reveals
that there are nearby solutions that escape to infinity via the well-known phenomena
of Arnold’s whiskered tori and Nekhoroshev’s theory [28]. There is, as far as we know,
no proof of nonergodicity in the case of the nonrotating sphere. That is not to say
that there is a known proof of ergodicity, which is a notoriously difficult result to
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obtain. Thus, without any definite evidence to the contrary, we bow to the wisdom of
physicists and assume that inviscid vortex dynamics on the surface of the nonrotating
sphere is ergodic [10]. We will construct an equilibrium statistical mechanics theory
for this problem. But before we do that, we will formulate a pair of optimization
problems related to the definition of the statistical theory and to symmetry breaking
in vortex dynamics on a sphere.

3. Variational analysis. We will show that kinetic energy, enstrophy, and total
circulation conservation yield a dual pair of related optimization problems for inviscid
vortex flows on the nonrotating sphere. The first problem is to maximize the energy
H for fixed enstrophy Γ; i.e.,

maxH[w] = Hmax(Γ) < ∞,

w ∈ W (Γ), K[w] =

∫
S2

wdx = 0,

where W (Γ) consists of all vorticity distributions w in L2(S2), which has fixed L2

norm or enstrophy. The dual problem is to minimize the enstrophy for fixed energy.
Existence of a unique energy maximizer w0(Γ) such that H[w0] = Hmax(Γ) < ∞
is an important result with subsequent applications in constructing a well-defined
statistical mechanics theory.

3.1. Upper bound and energy maximizers. The kinetic energy H[w0] of a
purely solid-body rotation vorticity distribution

w0 = k(Θ) cos θ

(at spin rate Θ, with θ denoting the co-latitude and assuming unit fluid density on
the unit sphere S2) is given by

H[w0] = 4Θ2

∫
S2

sin2 θ dx.(3.1)

The enstrophy of the same vorticity distribution w0 is

Γ = 4Θ2

∫
S2

cos2 θ dx.(3.2)

Rayleigh’s (or Poincaré’s) variational inequality [26] implies that

H[w]

Γ[w]
=

1
2 〈w,G(w)〉

〈w,w〉 ≤ D−1,

where

G(w)(x) =
1

2

∫
S2

w(x′) ln
1

|x− x′|dx
′(3.3)

is the integral operator inverse to −Δ on S2 with K[w] = 0 and D is the smallest
positive eigenvalue of −Δ on S2. The Dirichlet quotient is thus bounded below by

Q[w] =
Γ[w]

H[w]
=

∫
S2 w

2dx
1
2 〈w,G(w)〉

≥ D.
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Since the ratio

Γ/H(w0(Γ)) =

∫
S2 cos2 θ dx∫
S2 sin2 θ dx

= D

is a universal constant that does not depend on Γ, w0(Γ) is an energy maximizer for
any finite enstrophy Γ; that is,

H[w0] = Hmax(Γ).

The maximum value of the kinetic energy Hmax(Γ) is therefore given by the above
simple calculation to be

Hmax(Γ) = DΓ.

3.2. Concavity and uniqueness. Next we show that w0(Γ) is the unique zon-
ally symmetric energy maximizer modulo the group SO(3). That is, if H[w′] =
Hmax(Γ) = DΓ, w′ ∈ W (Γ), K[w′] = 0, and w′ is SO(2) symmetric, then w′ = γw0

for some γ ∈ SO(3). Uniqueness of this type can be obtained from the observa-
tions that any w ∈ L2(S2) can be decomposed into a linear combination of spherical
harmonics Ylm; the value 1/D = l(l + 1) = 2 (with l = 1) is the smallest positive
eigenvalue of the Laplace–Beltrami operator on S2; and the eigenspace associated
with 1/D has dimension 2l + 1 = 3 (with l = 1) modulo SO(3), that is, any eigen-
function in this subspace is equal to γw0, γw1, or γw−1 for some γ ∈ SO(3). Here w0,
w1, and w−1 correspond to the spherical harmonics Y10, Y11, and Y1,−1, respectively.
Only w0 is zonally or SO(2) symmetric.

We will prove a stronger result from which uniqueness follows, namely, the strict
concavity of the augmented energy functional

H ′[w(x)] = H[w(x)] −DΓ[w](3.4)

on a convex subset; that is,

H ′[λp + (1 − λ)q] > λH ′[p] + (1 − λ)H ′[q](3.5)

for any λ ∈ (0, 1) and for p and q in M(Γ) such that

(1) K[p] = K[q] = 0,

(2) p− q is not identically zero, and(3.6)

(3) only one of p or q is in the SO(3) orbit of span(Y10, Y11, Y1,−1).

It is well known (from Ekeland and Temam [27]) that the maximizer set

M(Γ) = {w ∈ W (Γ) | K(w) = 0 and H[w] = Hmax(Γ)}

of the first optimization problem is a convex set if it is nonempty. The existence
of the maximizer w0(Γ) means that this set M(Γ) is nonempty and, thus, a convex
set for any enstrophy Γ < ∞. The convexity of M(Γ) allows the argument in the
next paragraph to be carried out. The convexity of the set W (Γ) is needed in the
usual calculus of variations framework to prove the existence of energy maximizers.
Fortunately for us, the existence of this maximizer was derived above by other means.
The set W (Γ) is in fact not convex.
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Let w′ be a different energy maximizer than w0 that has zero total circulation
and the same enstrophy Γ as w0 and satisfies the third condition in (3.6) in the sense
that w′ is not in the SO(3) orbit of span(w0, w1, w−1). Let

w∗ = λw′ + (1 − λ)w0

for λ ∈ (0, 1). Then H ′[w∗] < 0 because w∗ is neither identically zero for any λ ∈ (0, 1)
nor in the eigenspace containing Y10. This contradicts the strict concavity theorem
(3.5) which states that

H ′[w∗] > λH ′[w′] + (1 − λ)H ′[w0] = 0,

where the equality comes from the fact that both w0 and w′ are energy maximizers
in M(Γ), i.e.,

H ′[w0] = H ′[w′] = 0.

Thus we have proven the uniqueness result.

3.3. Proof of the strict concavity of H ′[w]. From the definition of H ′[w] it
follows that

H ′[λp + (1 − λ)q] =
1

2

∫
S2

d�x

∫
S2

d�x′

× [λ2p(�x)p(�x′) + λ(1 − λ)p(�x)q(�x′)

+λ(1 − λ)q(�x)p(�x′) + (1 − λ)2q(�x)q(�x′)] ln
1

|�x− �x′|
− 2DΓ[λp + (1 − λ)q]

=
1

2
λ2

∫
S2

d�x

∫
S2

d�x′p(�x)p(�x′) ln
1

|�x− �x′|

+
1

2
(1 − λ)2

∫
S2

d�x

∫
S2

d�x′q(�x)q(�x′) ln
1

|�x− �x′|

+λ(1 − λ)

∫
S2

d�x

∫
S2

d�x′q(�x′)p(�x) ln
1

|�x− �x′|

− 2D

∫
S2

(λ2p2(�x) + 2λ(1 − λ)q(�x)p(�x) + (1 − λ)2q2(�x))d�x.

Defining

G[p, q] = λ(1 − λ)

∫
S2

d�x

∫
S2

d�x′q(�x′)p(�x) ln
1

|�x− �x′|

− 4Dλ(1 − λ)

∫
S2

q(�x)p(�x)d�x,

as in another paper by Lim and Zhu [25], we will prove

λ2H ′[p] + (1 − λ)2H ′[q] + G[p, q] > λH ′[p] + (1 − λ)H ′[q],(3.7)

which is equivalent to

H ′[p] + H ′[q] <

∫
S2

d�x

∫
S2

d�x′q(�x′)p(�x) ln
1

|�x− �x′|

− 4D

∫
S2

q(�x)p(�x)d�x.
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By splitting the term on the right into two equal pieces, we see that we will need to
prove

1

2

∫
S2

d�x

∫
S2

d�x′p(�x)p(�x′) ln
1

|�x− �x′|
− 2D

∫
S2

p2(�x)d�x

+
1

2

∫
S2

d�x

∫
S2

d�x′q(�x)q(�x′) ln
1

|�x− �x′|
− 2D

∫
S2

q2(�x)d�x

− 1

2

∫
S2

d�x

∫
S2

d�x′q(�x′)p(�x) ln
1

|�x− �x′|
+ 2D

∫
S2

q(�x)p(�x)d�x

− 1

2

∫
S2

d�x

∫
S2

d�x′q(�x′)p(�x) ln
1

|�x− �x′|
+ 2D

∫
S2

q(�x)p(�x)d�x

< 0.

The left side of the inequality is just H ′[p−q], as seen in the following rearrangement:

1

2

∫
S2

d�x

∫
S2

d�x′p(�x′)(p(�x) − q(�x)) ln
1

|�x− �x′|

+
1

2

∫
S2

d�x

∫
S2

d�x′q(�x′)(q(�x) − p(�x)) ln
1

|�x− �x′|

− 2D

∫
S2

d�xp(�x)(p(�x) − q(�x)) + 2D

∫
S2

d�xq(�x)(p(�x) − q(�x))

=
1

2

∫
S2

d�x

∫
S2

d�x′(p(�x) − q(�x))(p(�x′) − q(�x′)) ln
1

|�x− �x′|

− 2D

∫
S2

d�x(p(�x) − q(�x))2

= H ′[p− q].

In the existence of the upper bound Hmax[Γ] = DΓ, we have shown that H ′[w] ≤ 0
for any nonzero w ∈ W (Γ) such that K[w] = 0. Thus H ′[p− q] ≤ 0. But for p and q
satisfying the conditions in (3.6), we have

H ′[p− q] < 0

because p− q is not identically zero and is not in the eigenspace containing Y10. The
proof of the strict concavity of H ′[w] is now complete. The weaker statement of
concavity follows from the existence of the upper bound H ′[p− q] ≤ 0.

This completes the proof that for a fixed finite enstrophy, the kinetic energy H(w)
is bounded above by a finite positive value, i.e.,

H(w) ≤ Hmax(Γ) = DΓ < ∞.

Moreover the energy maximum is achieved by a unique zonal vorticity distribution
w0 modulo the group of rotations SO(3).

4. Statistical mechanical proof of robust symmetry breaking. Next, we
show that the solid-body rotation state w0 that maximizes the energy H[w] (along
with the remaining spherical harmonics w1 and w−1 in the first eigenspace) is robust
in the sense that the most probable macrostate in an equilibrium statistical mechanics
theory has overwhelming probability relative to other allowed macrostates. For this
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we need a physically meaningful statistical mechanics energy-enstrophy theory of 2d
inviscid flows on the nonrotating sphere, in which the solid rotating state w0 arises
naturally as its most probable macrostate.

The discussion on the relative merits of the spherical model in the introduction
to this paper centers on the minimum required conditions in a statistical model for
demonstrating the robustness of truly global energy maximizers such as the zon-
ally symmetric states. A further necessary condition for any equilibrium statistical
mechanics theory to be able to support such a most probable state w0, which is, more-
over, an energy maximizer for fixed enstrophy, is that negative inverse temperatures
are allowed in this theory. This is because the Gibbs probability measure has the
form

P (w) =
e−βH[w]δ(Γ[w] − Γ′)

Z(β,Γ)

for w ∈ W (Γ), where β denotes the inverse temperature.
The spherical model energy-enstrophy theory with zero total circulation [13] is

such a theory. It predicts that for negative inverse temperatures β < 0, there is a
unique most probable macrostate (solid-body rotation)

w0 = k cos θ = cY10(4.1)

which maximizes the kinetic energy H[w] = Hmax(Γ) under the microcanonical con-
straint of fixed total enstrophy Γ[w] = Γ > 0. This can be seen by solving for the
explicit form of its partition function. The somewhat lengthy derivation of the closed-
form partition function from the expression

Z(β,Γ) =

∫
W (Γ)

e−βH[w]δ(Γ − Γ∗)dw(4.2)

can be found in [13], [12], [14] and will not be repeated here. The value of k = k(Γ)
in (4.1) depends on the fixed value of the enstrophy Γ, which means that the rate of
rotation Θ(w0) of the solid-body rotation flow w0 depends on the enstrophy Γ, i.e.,

Θ2(w0) =
Γ

4
∫
S2 cos2 θ dx

.

4.1. Derivation of the spherical model. The name spherical model comes
from the fact that in a lattice approximation, the conservation of enstrophy takes
the form of a hyperspherical constraint in vorticity phase space (4.3), as shown next.
Using a uniform mesh M of N points {x1, . . . , xN} on S2 and the Voronoi cells based
on this mesh, approximate the vorticity by

w(x) 	
N∑
j=1

sjHj(x),

where sj = w(xj) and Hj is the indicator function on the Voronoi cell Dj centered at
xj [29]. The truncated kinetic energy of flow in (2.2) now takes the standard form of
a spin lattice model Hamiltonian,

HN = −1

2

N∑
j=1

N∑
k=1

Jjksjsk,
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where

Jjk =

∫
S2

dxHj(x)

∫
S2

dx′ ln |1 − x · x′|Hk(x
′)

	 16π2

N2
ln |1 − xj · xk| for N 
 1.

The truncated relative enstrophy is likewise given by

ΓN =

∫
S2

dxw2 =

∫
S2

dx

(
N∑
j=1

sjHj(x)

)2

=
4π

N

N∑
j=1

s2
j .(4.3)

Last, the truncated total circulation is given by

TCN =

∫
S2

dxw =

∫
S2

dx

N∑
j=1

sjHj(x) =
4π

N

N∑
j=1

sj .

Thus, the microcanonical constraint δ(Γ−Γ∗) in (4.2) is approximated in this lattice
formulation by a hyperspherical constraint,

N∑
j=1

s2
j =

N

4π
Γ∗.

The canonical constraint on kinetic energy H[w] should be taken to mean that in
a numerical simulation of its equilibrium statistics, one sets the value of the inverse
temperature of an infinite energy reservoir and allows the energy to flow between the
vortex system and this reservoir and, thence, towards equilibrium. On the other hand,
the microcanonical constraint on the enstrophy implies that in the same simulation,
the value of the enstrophy is held fixed while the energy flows between the vortex
system and the energy reservoir. Total circulation is held fixed at zero throughout
such simulations (cf. Lim and Nebus [29]). As the simulation proceeds, the value
of the energy changes and finally fluctuates around its equilibrium value 〈H〉(β,Γ∗).
Similarly, all other conserved quantities of the Euler equations on a sphere that are
not explicitly built into this model, including the angular momentum of the fluid, will
in general fluctuate as the simulation runs.

Indeed our experience shows Monte Carlo simulations of the spherical model
have the following robust behavior: the angular momentum which is often set to zero
initially changes significantly and then settles on a nonzero value given by

Λ[u] =

∫
S2

u(θ) sin2 θdθdφ,

where u(θ) is the zonal velocity of the solid-body rotation vorticity state w0(Γ
∗)

and θ is the co-latitude on the unit sphere S2. Clearly, the angular momentum
(per unit density) Λ[u] = f(Γ∗) depends on the enstrophy Γ∗ or equivalently the
energy H = 2DΓ∗. From the point of view of globally maximizing the kinetic energy,
the addition of a fixed angular momentum constraint into the statistical mechanics
formulation must lead to undesired local energy maximizers.

This completes our demonstration that symmetry breaking of the SO(3) sym-
metry by global energy maximizers in the problem of nonrotating spheres is robust
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in a statistical sense. The same arguments can be used to prove the robustness of
other symmetry breaking spherical harmonic vortex states Ylm on the nonrotating
sphere. The principle of selective decay then implies that the asymptotic vorticity of
decaying 2d Navier–Stokes flows on S2 is the ground state Y10 found, thus providing
an important connection between the results on ideal flows and more realistic flows
with nonzero viscosity.

5. Statistical thermodynamics of ideal flows on a sphere. We end with
a discussion of the relationship between the constrained energy maximizer and the
maximizer of the free energy. Since the work of Planck, it is well known that the most
probable state in the statistics of the partition function (1.1) represents a minimum
of the free energy F = E − TS, where E is the internal energy, T = β−1 is the
temperature, and S is the entropy. Dynamic equilibria of the underlying dynamical
system, on the other hand, are related to the extremals of the energy functional E. In
recent work [24], [23] on the Onsager vortex gas problem on the unbounded plane, we
have asked the question, under what conditions are the minima of F well approximated
by the energy extremals of E? It turns out that for low positive temperatures, this
approximation is excellent, even for relatively small numbers M of point vortices, and
for order one temperatures.

We first use the exact solution of the spherical model for energy-enstrophy theory
to confirm the validity of this approximation in situations with negative temperatures
and in systems that are based, not on a particle method like the Onsager problem,
but on a lattice or spatial discretization like the family of spherical models in this
paper. From the expression F = E − TS, one should expect from general principles
that if

T < 0, |T | → 0,(5.1)

and

〈E〉 is not small compared to S when both are
(5.2)

evaluated at the most probable state w0(T ),

then a similar approximation is again valid:
(1) The maximizers w0 of F are the most probable states for T < 0;
(2) These maximizers are close to the maximizers w′

0 of E.
We show that for the spherical model of ideal fluid flows on a nonrotating sphere,

this approximation is actually valid for all negative temperatures, but for reasons
that are different than (5.1) and (5.2). The exact solution of the spherical model
for energy-enstrophy theory has the important consequence that for any negative T ,
large or small in numerical value, the expected value 〈E〉 of the energy has a maximal
ratio to the given value of the enstrophy Γ. This ratio is given by the reciprocal of
the smallest positive eigenvalue of the Laplace–Beltrami operator on the sphere S2.
This is known as Rayleigh’s inequality and is related to Poincaré’s inequality, and the
corresponding eigenfunction is the spherical harmonic Y10 = d cos θ with θ equal to
the co-latitude on S2. Thus, for all T < 0, E is maximally related to the enstrophy Γ.

Furthermore, the entropy

S(�s(N)) = k logR(�s(N)),

where R(�s(N)) is the number of rearrangements of vorticity parcels between lattice
sites corresponding to a particular spin state �s(N) = (s1, . . . , sN ). Since, in the
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continuum limit,

�s(N) → w(θ, φ) ∈ L2(S
2),

the family of spin states {�s0(N)}∞1 which has minimal entropy SN = S(�s0(N)) for
each N , corresponds to a most probable vorticity distribution w0(θ, φ) ∈ L2(S

2).
Under generic conditions, the most probable state w0 corresponds to the uniform
function which is the spherical harmonic ψ00 on the sphere (cf. Lieb and Loss [5]).
But in this particular problem, under the additional condition

∫
S2 w0dx = 0 of zero

total circulation which comes from Stokes’s theorem, the most probable vorticity is
not dψ00, and it may not be possible to use the method of rearrangement in [5] to
find the most probable vorticity w0. Nonetheless, the exact solution of the spherical
model’s partition functions ZN implies that the most probable spin states

�s0(N) → w0(θ, φ) = dψ10 ∈ L2(S
2)

for all T < 0. Thus, in the continuum limit, the unique most probable vorticity
function w0 = dψ10 is the solid-body rotation state for all negative temperatures.

Therefore, the same vorticity function dψ10 simultaneously maximizes the energy
E and minimizes the entropy S for all T < 0. This certainly proves that the maximizer
w0(T ) of F for T < 0 is exactly equal to the maximizer w′

o(T ) of the energy E, but
we had to use the exact solution of the spherical model to establish the validity of the
approximation.

In problems where the validity of this approximation can be established by a
priori means (that is, without solving the full partition function), one can in principle
compute the most probable state w0(T ), that is, maximizers of the free energy F , at
T < 0 by performing the easier task of computing the maximizer w′

0(T ) of the energy
E. The natural question to ask at this point is whether one can establish the validity
of this approximation without using the exact solution of the partition function (1.1).
It is not clear this can be done.

Future work will include further attempts to give a priori derivations of the above
approximation, and the extension of the results in this paper to the barotropic vorticity
equation on a rotating sphere, where the variational theory is richer and exhibits
interesting bifurcations when the rate of rotation of the sphere changes relative to the
total enstrophy.
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RECONSTRUCTION OF A SMALL INCLUSION IN
A TWO-DIMENSIONAL OPEN WAVEGUIDE∗
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Abstract. We consider wave propagation in a perturbed open waveguide. We provide a new
asymptotic expansion for the scattered wave when the inclusion is of small diameter. We design a
MUSIC (multiple signal classification) type of algorithm for locating the inclusion and illustrate its
viability in numerical examples.
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1. Introduction. Optical waveguides are the basis of the optoelectronics and
telecommunications industry. It is important in engineering design of optical commu-
nication devices not only to find out whether a defect is present or absent in a device,
but also to precisely locate it and accurately characterize its size.

In this paper we discuss wave propagation in a perturbed optical waveguide. The
perturbation in the electromagnetic characteristics of the waveguide is caused by a
small electromagnetic inclusion. The waveguide we consider is half space (y > 0) with
the Dirichlet boundary condition on y = 0. The region 0 < y < h is considered the
core of the fiber, while the remainder is considered the cladding. The electromagnetic
characteristics of the waveguide are constant in each part. The electric permittivity
and the magnetic permeability are then given by

ε(y) =

{
ε1 in ]0, h[,

ε2 in ]h,+∞[

and

μ(y) =

{
μ1 in ]0, h[,

μ2 in ]h,+∞[,

where ε1μ1 ≥ ε2μ2 and μ1 �= μ2.
We suppose that there is an electromagnetic inclusion D in the core of the wave-

guide, of the form D = Z + αB, where B ⊂ R2 is a bounded, smooth (C∞) domain
containing the origin. The point Z = (zx, zy) ∈ R×]0, h[, which determines the
location of the inclusion, is assumed to satisfy h − d0 ≥ zy ≥ d0 > 0. The value of
α is the order of magnitude of the diameter of the inclusion. Let μ∗ and ε∗ denote
the magnetic permeability and the electric permittivity of the inclusion D; we shall
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assume that these are positive constants. Using these notations, we introduce the
piecewise constant magnetic permeability

μα(x, y) :=

⎧⎨
⎩

μ∗ in D,
μ1 in R× ]0, h[\D̄,
μ2 in R× ]h,+∞[ .

If we allow the degenerate case α = 0, then

μ0(x, y) :=

{
μ1 in R× ]0, h[,
μ2 in R× ]h,+∞[ .

The piecewise constant electric permittivity εα(x, y) is defined analogously.
An incident wave u0, in the form of a guided mode, is sent along the perturbed

waveguide. It encounters the inclusion D in the core region of the waveguide and
is scattered. Our first goal in this work is to provide an asymptotic formula for the
scattered wave when α goes to zero. Our second goal is to use this expansion for
efficiently determining the location and the shape of the inclusion D.

To set the problem mathematically, let uα satisfy the Helmholtz equation(
∇ · 1

μα
∇ + ω2εα

)
uα = 0 in R× ]0,+∞[ ,(1)

and uα − u0 satisfy some form of radiation condition. Unfortunately, not much is
known about the exact form of this condition due to the fact that the waveguide
extends from −∞ to +∞. We avoid this issue by first obtaining a representation of
the Green’s function of the homogeneous waveguide. The Green’s function we give
is based on the requirement that waves be outgoing and remain bounded. Using
the obtained Green’s function, we derive an asymptotic expansion of the solution
uα of the inhomogeneous waveguide problem. We shall mention the work by Zhang
and Chandler-Wilde [23], which discusses the issue of radiation conditions for the
scattering by an infinite layer. However, these conditions do not rule out the guided
waves localized in the layer.

Let us emphasize here that the use of the formal equivalence between electromag-
netics and linear acoustics, by term-to-term replacing permittivity and permeability
by compressibility and volume density of mass, and the scalar electric field by the
scalar acoustic pressure characteristic of compressional waves inside fluid media, opens
up the investigation of this paper to many other applications, such as ocean-acoustics,
even though the type of materials and of geometrical configurations investigated and
the range of values that are allowed to be taken by the two sets of parameters in the
two disciplines may differ considerably in practice. The configuration considered in
this paper has also been used as a model of underwater acoustics. The area of appli-
cations is the identification of mines, submarines, or submerged obstacles in harbors
and other shallow bodies of water.

The paper is organized as follows. In section 2, we construct the Green’s function
corresponding to the unperturbed waveguide. The main ingredient for doing this is an
inverse transform formula from [5]. A similar formula was first derived by Magnanini
and Santosa [12], [13]. Section 3 is devoted to the derivation of the leading-order term
in the asymptotic expansion of the scattered wave. In section 4 we exploit this formula
for recovering the location and the shape of the inclusion. A MUSIC (multiple signal
classification) type of algorithm is developed for locating the inclusion. Numerical
examples are given in section 5. A discussion section ends the paper.
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Finally, we shall mention, in connection with our asymptotic expansion for the
scattered wave, the nice work by Vogelius and Volkov [20].

2. Green’s function for the unperturbed waveguide. This section is de-
voted to the derivation of an expression of the Green’s function. We will separate the
Green’s function into three components: the guided component, the radiated com-
ponent, and the evanescent component. We will also provide asymptotic results that
show how the nonguided part of the Green’s function decays along the core of the
waveguide. Our approach for constructing the Green’s function follows [12]. We note
that one can also employ complex analysis for deriving an explicit representation of
the Green’s function, starting with the assumption of its separability in the variables x
and y, and a representation in terms of a contour integral in the separation parameter;
see [9].

For a function f , continuous of compact support, let u satisfy the Helmholtz
equation (

∇ · 1

μ0
∇ + ω2ε0

)
u = f in R2

+ := R× ]0,+∞[ ,(2)

with the boundary condition u = 0 on y = 0.
We introduce the following notation:

q(y) = ω2(ε1μ1 − ε(y)μ(y)),

d2(ω) = ω2(ε1μ1 − ε2μ2) ≥ 0.

Let g(y, λ) be defined by⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂yyg(y, λ) + (λ− q(y))g(y, λ) = 0 in ]0, h[ ∪ ]h,+∞[,

[g(., λ)] = 0 on y = h,[
1

μ
∂yg(., λ)

]
= 0 on y = h,

g(0, λ) = 0 and ∂yg(0, λ) =
√
λ.

(3)

Setting φ(y, λ) = sin(
√
λy), we then write

g(y, λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ(y, λ) if y ∈ ]0, h[,

φ(h, λ) cos
[√

λ− d2(y − h)
]

+
μ2

μ1

∂yφ(h, λ)√
λ− d2

sin
[√

λ− d2(y − h)
]

if y ∈ ]h,+∞[.

For λ ≥ d2, g(y, λ) is bounded. For λ < d2, in view of the above expression of g,
we impose the dispersion relation

φ(h, λ) +
μ2

μ1

∂yφ(h, λ)√
d2 − λ

= 0,

or equivalently, √
d2 − λ tan

√
λh +

μ2

μ1

√
λ = 0,(4)
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to make g(y, λ) bounded in R+. It is straightforward to see that there are a finite
number of roots λl(ω) of (4) with associated solutions: g(y, λl) for l = 1, 2, . . . ,m.
Moreover, the set of eigenfunctions g(y, λ), λ ∈ ]0,+∞[ is complete in L2(R+). When
the magnetic permeabilities μ1 and μ2 are equal (μ1 = μ2), the completeness of the
associated eigenvalue problem has been proved and an inverse transform formula has
been rigorously derived in [12]. See also [21], [22], where the spectrum of the Pekeris
operator is investigated. Here the following more general inverse transform formula
from [5] will be needed. Let f ∈ L2(R+,

dy
μ(y) ). We have the inverse transform formula

f(x) =
m∑
l=1

2μ1

√
d2 − λl

∫ +∞
0

g(y, λl)f(y) dy
μ(y)

μ1

μ2
φ(h, λl)2 + 2

√
d2 − λl

∫ h

0
φ(y, λl)2dy

g(x, λl)

+
1

π

∫ +∞

d2

μ2

√
λ− d2

∫ +∞
0

g(y, λ)f(y) dy
μ(y)

(λ− d2)φ(h, λ)2 + (μ2

μ1
)2∂yφ(h, λ)2

g(x, λ)dλ(5)

almost everywhere.

We now return to the Helmholtz equation (2). Let

U(x, λ) =

∫ +∞

0

u(x, y)g(y, λ)
dy

μ(y)
.

Multiplying (2) by 1
μ(y)g(y, λ) and integrating with respect to the variable y over the

interval ]0,+∞[, after some straightforward manipulations for x ∈ R we obtain

∂xxU(x, λ) + (ω2ε1μ1 − λ)U(x, λ) =

∫ +∞

0

f(x, η)g(η, λ)
dη

μ(η)
.(6)

The solution of (6), which is outgoing for 0 ≤ λ < ω2ε1μ1 and decays expo-
nentially for λ > ω2ε1μ1 as |x| → +∞, is readily given for x ∈ R by the following
expression:

U(x, λ) =

∫ ∞

−∞

ei|x−ζ|
√

ω2ε1μ1−λ

2i
√
ω2ε1μ1 − λ

∫ +∞

0

f(ζ, η)g(η, λ)
dη

μ(η)
dζ.(7)

By the inversion formula (5), we have

u(x, y) =
m∑
l=1

2μ1

√
d2 − λlU(x, λl)

μ1

μ2
φ(h, λl)2 + 2

√
d2 − λl

∫ h

0
φ(y, λl)2dy

g(y, λl)

+
1

π

∫ +∞

d2

μ2

√
λ− d2U(x, λ)

(λ− d2)φ(h, λ)2 + (μ2

μ1
)2∂yφ(h, λ)2

g(y, λ)dλ ∀ (x, y) ∈ R2
+;

hence, by (7) and by interchanging the order of integration, we obtain that the solution
u of (2) corresponding to the case where no energy is radiated from the far field
(x2 + y2 → +∞, y > 0) can be represented by

u(x, y) =

∫
R2

+

G(x, y, ζ, η)f(ζ, η) dζdη,
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where the Green’s function G is given by

G(x, y, ζ, η)

:=

m∑
l=1

2μ1

√
d2 − λl

μ1

μ2
φ(h, λl)2 + 2

√
d2 − λl

∫ h

0
φ(y, λl)2dy

(
ei|x−ζ|

√
ω2ε1μ1−λl

2i
√
ω2ε1μ1 − λl

)
g(y, λl)g(η, λl)

+
1

π

∫ +∞

d2

μ2

√
λ− d2

(λ− d2)φ(h, λ)2 + (μ2

μ1
)2∂yφ(h, λ)2

(
ei|x−ζ|

√
ω2ε1μ1−λ

2i
√
ω2ε1μ1 − λ

)
g(y, λ)g(η, λ)dλ.

Note that the Green’s function G has been constructed so that all the waves are
outgoing.

Following [12], we now separate the Green’s function G into three components
G = Gg + Gr + Ge. The guided component

Gg(x, y, ζ, η)

:=
m∑
l=1

2μ1

√
d2 − λl

μ1

μ2
φ(h, λl)2 + 2

√
d2 − λl

∫ h

0
φ(y, λl)2dy

(
ei|x−ζ|

√
ω2ε1μ1−λl

2i
√
ω2ε1μ1 − λl

)
g(y, λl)g(η, λl)

corresponds to the solution that is concentrated near the core. The radiated compo-
nent

Gr(x, y, ζ, η)

:=
1

π

∫ ω2ε1μ1

d2

μ2

√
λ− d2

(λ− d2)φ(h, λ)2 + (μ2

μ1
)2∂yφ(h, λ)2

(
ei|x−ζ|

√
ω2ε1μ1−λ

2i
√
ω2ε1μ1 − λ

)
g(y, λ)g(η, λ)dλ

and the evanescent component

Ge(x, y, ζ, η)

:=
1

π

∫ +∞

ω2ε1μ1

μ2

√
λ− d2

(λ− d2)φ(h, λ)2 + (μ2

μ1
)2∂yφ(h, λ)2

(
ei|x−ζ|

√
ω2ε1μ1−λ

2i
√
ω2ε1μ1 − λ

)
g(y, λ)g(η, λ)dλ

are radiated away from the source at (ζ, η).
We will need to estimate Gr and Ge for fixed y and η. Following [12] once again,

we can apply Laplace’s method [6], and obtain for |x− ζ| → +∞ that

Ge(x, y, ζ, η) = O

(
1

ω|x− ζ|

)
.(8)

Moreover, making use of the method of steepest descent [6], we can show that

Gr(x, y, ζ, η) = O

(
1

ω|x− ζ|

)
as |x− ζ| → +∞.(9)

We can therefore conclude that for a fixed y, as one looks down the core of the
waveguide, the nonguided components of the waves die off like O(1/ω|x|).

Let X = (x, y) and Y = (ζ, η). Observe that the Green’s function for the problem,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇X · 1

μ0
∇XG0(X,Y ) = δY in R× ]0, h[∪R× ]h,+∞[,

G0

∣∣
+

= G0

∣∣
−,

1

μ2

∂G0

∂y

∣∣∣∣
+

=
1

μ1

∂G0

∂y

∣∣∣∣
−

on y = h,

G0 = 0 on y = 0,
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is given by the following explicit formula. If 0 < η < h, then

G0(X,Y )

= μ1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2μ2

μ1 + μ2

[
Γ(X − Y ) − Γ(X − Y )

]
, y > h,[

Γ(X − Y ) − Γ(X − Y )
]
+

μ2 − μ1

μ1 + μ2

[
Γ(X − Y + (0, 2h)) − Γ(X − Y − (0, 2h))

]
,

0 < y < h.

(10)

Here Γ(X) = (1/(2π)) log |X| is the fundamental solution for the Laplacian and
X = (x,−y). If η > h, the formula takes the form

G0(X,Y )

= μ2×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
Γ(X − Y ) − Γ(X − Y )

]
+
μ1 − μ2

μ1 + μ2

[
Γ(X − Y + (0, 2h)) − Γ(X − Y − (0, 2h))

]
,

y > h,
2μ1

μ1 + μ2

[
Γ(X − Y ) − Γ(X − Y )

]
, 0 < y < h.

(11)

We will need the following lemma.
Lemma 2.1. For each M and a fixed but arbitrary (ζ, η) with 0 < η < h,

R(x, y, ζ, η) := G(x, y, ζ, η) −G0(x, y, ζ, η)(12)

is C1 in (x, y) for |x−ζ| ≤ M and 0 ≤ y ≤ h, and its C1-norm is bounded independently
of (ζ, η).

Proof. Fix (ζ, η) and let v(x, y) := G(x, y, ζ, η) and w(x, y) := G0(x, y, ζ, η).
Choose M > 0 so that on the domain ΩM := ]ζ −M, ζ + M [× ]0, h[ the problem⎧⎪⎨

⎪⎩
(
∇ · 1

μ0
∇ + ω2ε0

)
u = 0 in ΩM ,

u = f on ∂ΩM

is well posed. Since (∇ · 1
μ0
∇+ω2ε0)v = δ(ζ,η) and ∇ · 1

μ0
∇w = δ(ζ,η), the function R

given by (12) satisfies(
∇ · 1

μ0
∇ + ω2ε0

)
R = −ω2ε0w in ΩM .

Moreover, R|∂ΩM
is a piecewise C1-function, and R(x, y) = 0 if y = 0. Define

W (x, y) := −ω2ε0

∫
ΩM

G0(x, y, ζ, η)w(ζ, η)dA.

Then one can easily see from the explicit forms (10) and (11) of G0 that W is C1 on
ΩM and ‖W‖C1(ΩM ) ≤ C uniformly in (ζ, η). Observe that R−W satisfies(

∇ · 1

μ0
∇ + ω2ε0

)
(R−W ) = −ω2ε0W in ΩM ,
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and hence by the standard regularity theorem for the elliptic equations we get

‖R−W‖C1(ΩM/2) ≤ C

for some C uniformly in (ζ, η). This completes the proof.

3. Asymptotic expansion of the scattered wave. In this section we derive
an asymptotic formula for the perturbation uα−u0 due to the presence of the inclusion
D = Z + αB as α tends to 0.

For k > 0, let the fundamental solution Γk be defined by

Γk(X) = −
(
i

4

)
H

(1)
0 (k|X|) for X �= 0,

where H
(1)
0 is the Hankel function of the first kind of order 0. For a bounded smooth

domain D in R2, let Sk
D be the single layer potential defined by Γk; that is, for

φ ∈ L2(∂D),

Sk
Dφ(X) =

∫
∂D

Γk(X − Y )φ(Y )dσ(Y ), X ∈ R2.

Let S̃D be the single layer potential defined by G; that is, for ψ ∈ L2(∂D),

S̃Dψ(X) =
1

μ1

∫
∂D

G(X,Y )ψ(Y )dσ(Y ), X ∈ R2.

Suppose that the following assumption (H1) holds: the trivial solution is the
unique solution to the Helmholtz equation(

∇ · 1

μα
∇ + ω2εα

)
u = 0 in R2

+,

with the boundary condition u = 0 on y = 0 and the decay estimates∣∣∣∣ul(x) ∓ iβl
dul

dx
(x)

∣∣∣∣ = O

(
1

|x|

)
as x → ±∞,

for l = 1, . . . ,m, where ul(x) =
∫ +∞
0

u(x, y)g(y, λl) dy.
Following [2], an integral representation formula for the outgoing solution uα of

(1) can be proved.
Lemma 3.1. Suppose that ω

√
ε1μ1 is not a Dirichlet eigenvalue of −Δ on D,

and let k∗ := ω
√
ε∗μ∗. The solution uα of (1) can be represented by

uα(X) =

{
u0(X) + S̃Dψ(X), X ∈ R2

+ \D,

Sk∗
D φ(X), X ∈ D,

(13)

where the pair (φ, ψ) ∈ L2(∂D) × L2(∂D) is the unique solution to the system of
integral equations⎧⎪⎪⎨

⎪⎪⎩
Sk∗
D φ− S̃Dψ = u0 on ∂D,

1

μ∗

∂Sk∗
D φ

∂ν

∣∣∣∣
−
− 1

μ1

∂S̃Dψ

∂ν

∣∣∣∣
+

=
1

μ1

∂u0

∂ν
on ∂D.

(14)
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Here ν denotes the outward unit normal to ∂D; subscripts + and − indicate the
limiting values as we approach ∂D from outside D and from inside D.

Proof. Define the operator T : L2(∂D) × L2(∂D) → L2(∂D) × L2(∂D) by

T (φ, ψ) =

(
Sk∗
D φ− S̃Dψ,

1

μ∗

∂Sk∗
D φ

∂ν

∣∣∣∣
−
− 1

μ1

∂S̃Dψ

∂ν

∣∣∣∣
+

)
.

By (12), T is a Fredholm type of operator. Thus, in order to prove the existence and
uniqueness of a solution to (14), it is enough to show that T is injective. Let the
pair (φ, ψ) ∈ L2(∂D)×L2(∂D) be a solution to the following homogeneous system of
integral equations: ⎧⎪⎪⎨

⎪⎪⎩
Sk∗
D φ− S̃Dψ = 0 on ∂D,

1

μ∗

∂Sk∗
D φ

∂ν

∣∣∣∣
−
− 1

μ1

∂S̃Dψ

∂ν

∣∣∣∣
+

= 0 on ∂D.

Introduce

v(X) =

{
S̃Dψ(X), X ∈ R2

+ \D,

Sk∗
D φ(X), X ∈ D.

It is easy to see that v satisfies the equation (∇ · (1/μα)∇ + ω2εα) v = 0 in R2
+, with

the boundary condition v = 0 on y = 0 together with the decay estimates∣∣∣∣vl(x) ∓ iβl
dvl
dx

(x)

∣∣∣∣ = O

(
1

|x|

)
as x → ±∞,

for l = 1, . . . ,m, where

vl(x) =

∫ +∞

0

v(x, y)g(y, λl) dy,

which hold because of the form of the Green’s function G. Then, it immediately
follows from (H1) that v = 0 in R2

+. Next, the unique continuation for the operator

(Δ + ω2ε∗μ∗) yields Sk∗
D φ = 0 in D. Since (Δ + ω2ε1μ1)S̃Dψ = 0 in D and ω

√
ε1μ1

is not a Dirichlet eigenvalue of −Δ on D, then S̃Dψ = 0 in R],× ]0, h[, which leads to

a contradiction because of the jump of the normal derivative of S̃Dψ on ∂D.
The derivation of the asymptotic formula for uα − u0 relies on the representa-

tion formula (13) and is parallel to that in [2]. However, there are some technical
differences, and so we include the main steps for its derivation.

Let us introduce two more layer potentials. Define

SDφ(X) =

∫
∂D

Γ(X − Y )φ(Y )dσ(Y ), X ∈ R2,

where Γ(X) is the fundamental solution for the Laplacian Δ. We also define

S0
Dφ(X) =

1

μ1

∫
∂D

G0(X,Y )ψ(Y )dσ(Y ), X ∈ R2.

Let

φ̂(Y ) := φ(Z + αY ), ψ̂(Y ) := ψ(Z + αY ), Y ∈ ∂B.(15)



SMALL INCLUSION IN AN OPEN WAVEGUIDE 2115

Because of (12), we have

G(Z + αX,Z + αY ) = G0(Z + αX,Z + αY ) + C + O(α|X − Y |)
= G0(X,Y ) + C + O(α|X − Y |), X, Y ∈ ∂B,

for some constant C. Therefore,

S̃Dφ(Z + αX) = αS0
Bφ̂(X) + C + O(α2), X ∈ ∂B,

where O(α2) ≤ Cα2‖φ̂‖L2(∂B). Here and in what follows, C denotes a constant which
may be different at each occurrence. Since Γk∗(X) − Γ(X) is C1(R2), we also have

Sk∗
D φ(Z + αX) = αSBφ̂(X) + C + O(α2), X ∈ ∂B.

Since u0(Z +αY ) = u0(Z)+α∇u0(Z) ·Y + o(α), the integral equation (14) takes the
form ⎧⎪⎪⎨

⎪⎪⎩
SBφ̂− S0

Bψ̂ = C + ∇u0(Z) · Y + O(α) on ∂B,

1

μ∗

∂SBφ̂

∂ν

∣∣∣∣
−
− 1

μ1

∂S0
Bψ̂

∂ν

∣∣∣∣
+

=
1

μ1
∇u0(Z) · ∂Y

∂ν
+ O(α) on ∂B.

(16)

Let (f, g) be the solution to⎧⎪⎨
⎪⎩

SBf − S0
Bg = C + ∇u0(Z) · Y on ∂B,

1

μ∗

∂SBf

∂ν

∣∣∣∣
−
− 1

μ1

∂S0
Bg

∂ν

∣∣∣∣
+

=
1

μ1
∇u0(Z) · ∂Y

∂ν
on ∂B.

(17)

Then

ψ̂ = g + O(α) on ∂B.(18)

Since C + ∇u0(Z) · Y is harmonic in B, the first equation in (17) yields

SBf(Y ) − S0
Bg(Y ) = C + ∇u0(Z) · Y, Y ∈ B,

and hence

∂SBf

∂ν

∣∣∣∣
−
− ∂S0

Bg

∂ν

∣∣∣∣
−

= ∇u0(Z) · ∂Y
∂ν

on ∂B.

Combining this with the second equation in (17), we get

∂S0
Bg

∂ν

∣∣∣∣
+

− μ1

μ∗

∂S0
Bg

∂ν

∣∣∣∣
−

=

(
μ1

μ∗
− 1

)
∇u0(Z) · ∂Y

∂ν
on ∂B.(19)

Observe that for each h ∈ L2(∂B) with
∫
∂B

hdσ = 0 there exists a unique solution
g ∈ L2(∂B) with

∫
∂B

gdσ = 0 to the equation

∂S0
Bg

∂ν

∣∣∣∣
+

− μ1

μ∗

∂S0
Bg

∂ν

∣∣∣∣
−

= h on ∂B.

This fact can be proved using the method in Chapter 1 of [1], and so we omit its
proof.
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Let Y = (y1, y2) and ψj , j = 1, 2, be the solution to

∂S0
Bψj

∂ν

∣∣∣∣
+

− μ1

μ∗

∂S0
Bψj

∂ν

∣∣∣∣
−

=

(
μ1

μ∗
− 1

)
∂yj
∂ν

on ∂B.(20)

It then follows from (18) and (19) that

ψ̂ =

2∑
j=1

∂u0

∂xj
(Z)ψj + O(α) on ∂B.(21)

We are now ready to derive an asymptotic formula for uα − u0. According to
(13),

uα(X) = u0(X) +

∫
∂D

G(X,Ξ)ψ(Ξ)dσ(Ξ).

Making the change of variables Ξ → Z + αY , Y ∈ ∂B, we get

uα(X) = u0(X) + α

∫
∂B

G(X,Z + αY )ψ̂(Y )dσ(Y ),

where

ψ̂(Y ) := ψ(Z + αY ), Y ∈ ∂B.

Since

G(X,Z + αY ) = G(X,Z) + α∇Y G(X,Z) · Y + o(α)

for X away from D, we get

uα(X) = u0(X) + αG(X,Z)

∫
∂B

ψ̂dσ + α2∇Y G(X,Z) ·
∫
∂B

Y ψ̂(Y )dσ(Y ) + o(α2)

(22)

for X away from D.
By (14) we have

ψ =
μ1

μ∗

∂Sk∗
D φ

∂ν

∣∣∣∣
−
− ∂u0

∂ν
− ∂S̃Dψ

∂ν

∣∣∣∣
−
,

and hence it follows that

α

∫
∂B

ψ̂dσ =

∫
∂D

ψdσ

=
μ1

μ∗

∫
D

ΔSk∗
D φ−

∫
D

Δu0 −
∫
D

ΔS̃Dψ

=
μ1

μ∗
ω2ε∗μ∗

∫
D

Sk∗
D φ− ω2ε1μ1

∫
D

u0 − ω2ε1μ1

∫
D

S̃Dψ

= ω2μ1(ε∗ − ε1)

[∫
D

u0 +

∫
D

S̃Dψ

]
,
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where the last equality follows from (14). Note that

∫
D

u0 = α2u0(Z)|B| + O(α3).

We also have ∫
D

S̃Dψ = O(α3).(23)

In fact, since
∫
∂B

ψjdσ = 0, equation (21) yields
∫
∂B

ψ̂dσ = O(α), and hence

S̃Dψ(Z + αX) = αS0
Bψ̂ + O(α)O(α).

Thus we have (23). Therefore, we obtain

α

∫
∂B

ψ̂dσ = α2ω2μ1(ε∗ − ε1)u0(Z)|B| + O(α3).(24)

On the other hand, it follows from (21) that

∫
∂B

Y ψ̂(Y )dσ(Y ) = M∇u0(Z) + O(α),(25)

where M = (Mij) and

Mij =

∫
∂B

yjψi(Y )dσ(Y ), i, j = 1, 2.(26)

By (22), (24), and (25), we finally arrive at the following theorem.

Theorem 3.2. Let uα be the solution of (1), and let M be the polarization tensor
defined by (26). Then, for X = (x, y) bounded away from D, we have the pointwise
expansion

uα(X) = u0(X) + α2

[
∇Y G(X,Z) ·M∇u0(Z)

+ω2μ1ε1

(
ε∗
ε1

− 1

)
|B|G(X,Z)u0(Z)

]
+ o(α2).

(27)

A few words are in order on the matrix M defined by (26). It follows from the
jump relation of the single layer potential and (20) that

∫
∂B

yjψidσ =

∫
∂B

yj

[
∂S0

Bψj

∂ν

∣∣∣∣
+

− ∂S0
Bψj

∂ν

∣∣∣∣
−

]
dσ

=

(
μ1

μ∗
− 1

)∫
∂B

yj
∂Φi

∂ν

∣∣∣∣
−
dσ,

where

Φi(Y ) = yi + S0
Bψi(Y ), Y ∈ R2.
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Note that Φi(Y ) for Y = (y1, y2) is the solution to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔΦi = 0 in B ∪
(

R ×
]
− zy

α
,
(h− zy)

α

[
\B

)
∪ R ×

]
(h− zy)

α
,+∞

[
,

Φi is continuous across ∂B and y2 =
(h− zy)

α
,

∂Φi

∂ν

∣∣∣∣
+

− μ1

μ∗

∂Φi

∂ν

∣∣∣∣
−

= 0 on ∂B,

∂Φi

∂y

∣∣∣∣
+

− μ2

μ1

∂Φi

∂y

∣∣∣∣
−

= 0 on y2 =
(h− zy)

α
,

Φi(Y ) − yi → 0 as |Y | → ∞,

Φi(Y ) = 0 on y2 = −zy
α
.

In its appearance Mij may seem to be dependent on α. However, Mij = constant +
O(α). To see this, let us investigate three typical cases: (i) when D = Z + αB is
away from the interface y2 = h and the boundary y2 = 0, (ii) when D is close to the
interface, (iii) when D is close to the boundary.

(i) Suppose that D is away from the interface and the boundary. In this case,
after scaling, the distance from B to the interface y2 = (h− zy)/α and the boundary
is of order 1/α. Thus one can see from (10) that

G0(X,Y ) = μ1Γ(X − Y ) + O(α), X, Y ∈ ∂B,

and hence (20) can written as

∂SBψj

∂ν

∣∣∣∣
+

− μ1

μ∗

∂SBψj

∂ν

∣∣∣∣
−

=

(
μ1

μ∗
− 1

)
∂yj
∂ν

+ O(α) on ∂B.(28)

Let gj be the solution of (28) without O(α)-term on the right-hand side. Then, M(μ1

μ∗
)

defined by

Mij

(
μ1

μ∗

)
:=

∫
∂B

yjgidσ

is the Pólya–Szegö polarization tensor whose properties were extensively studied in
[1]. We get from (28) that

M = M

(
μ1

μ∗

)
+ O(α),

and hence, in this case, the formula (27) holds with M replaced with M(μ1

μ∗
). Recall

that if the inclusion B is a disk, then its polarization tensor M(μ1

μ∗
) takes the following

explicit form:

M =
2(μ1 − μ∗)

μ1 + μ∗
|B| I2,(29)

where I2 is the 2 × 2 identity matrix.
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(ii) Suppose that D is close to the interface and that the distance between them
is of order α. In this case, one can see from (10) that

G0(X,Y ) = μ1

(
Γ(X − Y ) − μ2 − μ1

μ1 + μ2
Γ(X − Y − (0, 2h))

)
+ O(α), X, Y ∈ ∂B.

By a similar argument one can show that

Mij =

(
μ1

μ∗
− 1

)∫
∂B∗

yj
∂Φ̂i

∂ν

∣∣∣∣
−
dσ + O(α) := Pij

(
μ∗
μ1

,
μ1

μ2

)
+ O(α),

where B∗ = B − (0, (h− zy)/α) and Φ̂i, i = 1, 2, is the solution to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔΦ̂i = 0 in B∗ and in (R× ]−∞, 0[ \B∗) ∪ R× ]0,+∞[,

Φ̂i is continuous across ∂B∗ and y2 = 0,

∂Φ̂i

∂ν

∣∣∣∣
+

− μ1

μ∗

∂Φ̂i

∂ν

∣∣∣∣
−

= 0 on ∂B∗,

∂Φ̂i

∂y

∣∣∣∣
+

− μ2

μ1

∂Φ̂i

∂y

∣∣∣∣
−

= 0 on y2 = 0,

Φ̂i(Y ) − Ŷi → 0 as |Y | → ∞.

Here

Ŷ = (Ŷ1, Ŷ2) =

⎧⎪⎨
⎪⎩

(y1, y2) for y2 > 0,(
y1,

μ1

μ2
y2 + 1

)
for y2 < 0.

Thus in this case, we obtain that for X = (x, y), 0 < y < h, bounded away from D,
the following pointwise expansion holds:

uα(X) = u0(X) + α2

[
∇Y G(X,Z) · P

(
μ∗
μ1

,
μ1

μ2

)
∇u0(Z)

+ ω2μ1ε1

(
ε∗
ε1

− 1

)
|B|G(X,Z)u0(Z)

]
+ o(α2).

The feature of the above formula is that it is expressed in terms of the new polarization
tensor P = (Pij).

The case when D is close to the boundary can be treated in a similar way, which
we omit.

4. Reconstruction of the inclusion. In this section we develop a MUSIC type
of algorithm for recovering the inclusion D from measurements of propagated modes
excited by incident waves. MUSIC is generally used in signal processing problems as
a method for estimating the individual frequencies of multiple-harmonic signals [19].
The MUSIC algorithm makes use of the eigenvalue structure of the so-called response
matrix. A more detailed description of this algorithm can be found in [10], [7], and [3];
see also [17], [11], [14], and [15] for further background on closely related time-reversal
methodologies and on MUSIC in this specific context.
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Let βl =
√
ω2ε1μ1 − λl, and let

cl = −i
μ1

√
d2 − λl

μ1

μ2
φ(h, λl)2 + 2

√
d2 − λl

∫ h

0
φ(y, λl)2dy

for 1 ≤ l ≤ m.
When the incident wave is a guided mode (of the unperturbed waveguide), then

u0(x, y) = g(y, λl0)e
−iβl0

x

for some 1 ≤ l0 ≤ m. Recall that X = (x, y) and Z = (zx, zy).
We compute

∇u0(Z) =

(
iβl0g(zy, λl0)

g′(zy, λl0)

)
e−iβl0

zx ,

and, by making use of (8) and (9), we obtain that

∇G(X,Z) ≈
m∑
l=1

cl
βl
eiβlxe−izx(βl0

+βl)

(
−iβlg(zy, λl)

g′(zy, λl)

)
g(y, λl)

as x → +∞.
Suppose for the sake of simplicity that B is a disk; then, using (29), it follows

that

(uα − u0)(X) ≈ |D|
m∑
l=1

cl
βl
eiβlxg(y, λl)e

−izx(βl0
+βl)

×
[
2(μ∗ − μ1)

μ∗ + μ1

(
βl0βlg(zy, λl)g(zy, λl0) + g′(zy, λl)g

′(zy, λl0)
)

+ω2μ1ε1

(
ε∗
ε1

− 1

)
g(zy, λl)g(zy, λl0)

]
as x → +∞.

The coefficients of the scattered modes Cll0 , which are excited by the incident
wave u0, are then approximated by

Cll0 ≈ |D|e−izx(βl0
+βl)

[
2(μ∗ − μ1)

μ∗ + μ1

(
βl0βlg(zy, λl)g(zy, λl0) + g′(zy, λl)g

′(zy, λl0)
)

+ω2μ1ε1

(
ε∗
ε1

− 1

)
g(zy, λl)g(zy, λl0)

]
.

Define the (response) matrix C = (Cll0)l,l0=1,...,m. We now show how to apply
the MUSIC algorithm for recovering the location Z and the volume |D| of the inclu-
sion from the above approximate formula for the matrix C ∈ Cm×m. We consider
separately three cases in stating the following lemma.

Lemma 4.1.

(a) Suppose μ∗ = μ1. For X = (x, y) in the core of the waveguide, define the
vector gx,y ∈ Cm by

gx,y =
(
g(y, λ1)e

−ixβ1 , . . . , g(y, λm)e−ixβm
)T

,

where T denotes the transpose. Then

gx,y ∈ Range(C) iff x = zx and y = zy.(30)



SMALL INCLUSION IN AN OPEN WAVEGUIDE 2121

(b) Suppose ε∗ = ε1. For X = (x, y) in the core of the waveguide, define the
vector gx,y ∈ C2m by

gx,y =
(
(β1g(y, λ1), g

′(y, λ1))
T e−ixβ1 , . . . , (βmg(y, λm), g′(y, λm))T e−ixβm

)T
.

(31)

Then

gx,y ∈ Range(C) iff x = zx and y = zy.

(c) Suppose μ∗ �= μ1 and ε∗ �= ε1. For X = (x, y) in the core of the waveguide,
define the vector gx,y ∈ C3m by

gx,y =
(
(β1g(y, λ1), g

′(y, λ1), g(y, λ1))
T e−ixβ1 , . . . ,

(βmg(y, λm), g′(y, λm), g(y, λm)T e−ixβm
)T

.

Then

gx,y ∈ Range(C) iff x = zx and y = zy.

Proof. The idea of the proof of the characterization of the location of the inclusion
in terms of the range of the matrix C is the same for the three cases above. Let us
then for the sake of simplicity consider only the first case. For X = (x, y) suppose
that gx,y ∈ Range(C) and X �= Z. Then

gx,y is proportional to the vector
(
g(zy, λ1)e

−iβ1zx , . . . , g(zy, λm)e−iβmzx
)T

.(32)

Consider now the Green’s functions G(·, X) and G(·, Z). Identity (32) yields that
the guided components of these Green’s functions are proportional. This implies that
the Green’s functions G(Y,X) and G(Y,Z) are proportional for any Y in the core,
Y /∈ {X,Z}. The singularity of G(·, X) at the source X (see Lemma 2.1) then leads
to a contradiction.

The MUSIC algorithm is as follows. Denote by P the orthogonal projection onto
the left null space (noise space) of C, which can be computed via a singular value
decomposition (SVD) of the matrix C. We can form an image of the location Z by
plotting, at each point X = (x, y), the quantity

(a) W := ‖gx,y‖/‖Pgx,y‖ if μ∗ = μ1.
(b) Wb := ‖b · gx,y‖/‖P (b · gx,y)‖ for b ∈ R2 \ {0} if ε∗ = ε1.
(c) Wc := ‖c · gx,y‖/‖P (c · gx,y)‖ for c ∈ R3 \ {0} if μ∗ �= μ and ε∗ �= ε1.
In the case (a) (resp., (b), (c)), the matrix C has 1 (resp., 2, 3) significant singular

values. The image space of C is of dimension 1 (resp., 2, 3).
This MUSIC type of algorithm can be used to recover the location of n well-

separated electromagnetic inclusions, provided that m > n (case (a)), m > 2n
(case(b)), and m > 3n (case (c)).

5. Numerical results. Consider the function f(λ) defined by

f(λ) =
√
d2 − λ tan

√
λh +

μ2

μ1

√
λ, λ ∈ ]0, d2[.(33)

From (4), the isolated eigenvalues λl, l = 1, . . . ,m, are defined by

f(λl) :=
√
λl − d2 tg

√
λlh +

μ2

μ1

√
λl = 0, l = 1, . . . ,m.

We set μ1 = 2, ε1 = 2 and μ2 = 1, ε2 = 1, ω = 4, and h = 4. For this set of
parameters, the function f(λ) has 8 zeros, λl, l = 1, . . . , 8.
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Fig. 1. Case (a) (dielectric contrast only): distribution of the singular values of C (left) and
in the case of noisy data (12 dB) (right).
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Fig. 2. Case (a) (dielectric contrast only): gray-level (or color) maps of the amplitudes of W
(left) and Ddiel (right).

5.1. Reconstruction of one inclusion. We consider a small homogeneous
circular disk D of diameter α = 0.1, centered at Z = (−0.45, 2.03) within a rectangle
search box prescribed as Ω = [−3, 3]× [δ, h− δ] ⊂ R2, where δ = 0.3. The parameters
of the inclusion are set to ε∗ = 5 and/or μ∗ = 5. We need one more notation:

g1
x,y =

(
β1g(y, λ1)e

−ixβ1 , . . . , βmg(y, λm)e−ixβm
)T

,

g2
x,y =

(
g′(y, λ1)e

−ixβ1 , . . . , g′(y, λm)e−ixβm
)T

,

τ1 = |D|2(μ∗ − μ1)

μ∗ + μ1
and τ2 = |D|ω2ε1μ1

(
ε∗
ε1

− 1

)
.

Using this notation, the vector gx,y, defined by (31), can be written as gx,y =
[g1

x,yg
2
x,y].

5.1.1. Dielectric inclusion. We set ε∗ = 5 and μ∗ = μ1 = 2. The singular
values of the matrix C ∈ C8×8 and those in the case of noisy data (white Gaussian
noise for both the amplitude and the phase of the scattered modes) with 12 dB signal-
to-noise ratio are displayed in Figure 1. The maps of the amplitudes of W and the
product Ddiel = (v1v

∗
1)gx,y in the case of noisy data are shown in Figure 2. Here

v1 denotes the first singular vector of the matrix C (i.e., the first eigenvector of the
matrix CC∗).

The numerical results obtained here are easy to interpret. One singular value
emerges from the seven others in the noise subspace. As for the singular vector,
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Fig. 3. Case (b) (permeable contrast only): distribution of the singular values of C (left) and
in the case of noisy data (12 dB) (right).
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Fig. 4. Case (b) (permeable contrast only): gray-level maps of the amplitudes of Wb, b =
(1, 0), (0, 1) (ordered from left to right).
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Fig. 5. Case (b) (permeable contrast only): gray-level map of the amplitude of Dperm.

once operated upon by gx,y, it focuses onto the inclusion as expected. Note that,
in this simple case, v1 = gzx,zy/‖gzx,zy‖, with corresponding singular value σ1 =
‖gzx,zy‖2|D|ω2ε1μ1(ε∗/ε1 − 1).

5.1.2. Permeable inclusion. In this case we set μ∗ = 5 and ε∗ = ε1 = 2. The
singular values of C and those in the case of noisy data with 12 dB signal-to-noise
ratio are shown in Figure 3. The maps of the amplitudes of Wb, b = (1, 0) or (0, 1),
in the case of noisy data are depicted in Figure 4. Here, the numerical results show
that the first singular vector v1 corresponds to g1

x,y. The map of the amplitude of the
product Dperm = (v1v

∗
1)g1

x,y + (v2v
∗
2)g2

x,y is shown in Figure 5. The vectors v1 and
v2 denote the first two eigenvectors of the matrix CC∗.

As previously, the results obtained in this case are easy to interpret. Only two
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Fig. 6. Case (c) (dielectric and permeable contrasts): distribution of the singular values of C
(left) and in the case of noisy data (12 dB) (right).
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Fig. 7. Case (c) (dielectric and permeable contrasts): gray-level maps of the amplitudes of Wc,
c = (1, 0, 0) (left), c = (0, 1, 0) (right).
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Fig. 8. Case (c) (dielectric and permeable contrasts): gray-level maps of the amplitudes of Wc,
c = (0, 0, 1) (left), and D (right).

singular values emerge from noise. The inclusion is clearly discriminated from the
background, the visual aspect depending upon the choice of b. The focusing of the
singular vectors is rather good.

5.1.3. Dielectric and permeable inclusion. We set μ∗ = 5 and ε∗ = 5. The
singular values of C and those in the case of noisy data with 12 dB signal-to-noise ratio
are shown in Figure 6. The maps of the amplitudes of Wc, c = (1, 0, 0), (0, 1, 0), in the
case of noisy data are shown in Figure 7. The map of the amplitude of Wc, c = (0, 0, 1),
for noisy data is shown in Figure 8 (left). In this case, the numerical results show that
all information about the location of the inclusion is contained in the first singular
vector v1. The map of the amplitude of the product D = (v1v

∗
1)g1

x,y + (v1v
∗
1)gx,y in
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Fig. 9. Case (c) (dielectric and permeable contrasts): distribution of the singular values of C
(left) and those in the case of noisy data (12 dB) (right).
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Fig. 10. Case (c) (dielectric and permeable contrasts): gray-level maps of the amplitudes of
Wc, c = (1, 0, 0) (left), c = (0, 1, 0) (right).

the case of noisy data is shown in Figure 8 (right).
The results obtained in this case are less easy to interpret than before due to

the more complicated character of the inclusion. However, the singular values of the
signal subspace still emerge from the noise. The inclusion is clearly discriminated
from the background (except for c = (0, 1, 0)), the visual aspect depending upon the
choice of c.

5.2. Reconstruction of multiple inclusions. We set, as in the case of one
inclusion, μ1 = 2, ε1 = 2, μ2 = 1, ε2 = 1, and h = 4, but now we take ω = 6. For
these parameters the function f(λ), which is defined by (33), has more than twelve
zeros.

We consider two small homogeneous circular disks D1 and D2 of diameter α = 0.1,
centered at z1 = (1.53, 2.03) and z2 = (−1.03, 2.03), within the rectangle search box
Ω = [−3, 3] × [δ, h − δ] ⊂ R2, δ = 0.3. The parameters of the inclusions are set to
ε∗,1 = ε∗,2 = 5 and μ∗,1 = μ∗,2 = 5.

The singular values of C and those in the case of noisy data with 12 dB signal-
to-noise ratio are shown in Figure 9. The maps of the amplitudes of Wc, c =
(1, 0, 0), (0, 1, 0), in the case of noisy data are shown in Figures 10 and 11 for c =
(0, 0, 1).

6. Conclusion. In this paper we have derived a new asymptotic formula for
the scattered wave in an open waveguide in the presence of an inclusion of small
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Fig. 11. Case (c) (dielectric and permeable contrasts): gray-level maps of the amplitudes of
Wc, c = (0, 0, 1).

diameter. We then successfully used this formula for the purpose of locating the
inclusion from measurements of the propagated modes excited by incident waves, in
the form of guided modes of the reference structure. In the case of multiple inclusions,
improvements may include the use of a recursive procedure in which the function
W·(z) is changed after each inclusion is found; i.e., a new function W·(z) is adjusted
recursively by projecting the signal space away from the subspace spanned by the
inclusions found [16]. Indeed, using more singular vectors than theoretically needed
in the presence of noisy data seems to be useful [18].

A mathematical study of the properties of the eigenstructure of the response
matrix C can be made following the arguments given in [4]. However, the analysis
becomes more complicated because of the form of the Green’s function G of the
unperturbed waveguide.
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TRANSPORT OF NUTRIENTS IN BONES∗
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Abstract. Lacunar-canalicular systems are networks of pores (lacunae) interconnected by thin
channels (canaliculi) that are embedded in bones. The efficient transport of nutrients within lacunar-
canalicular systems is necessary to keep bones healthy. Several theories have been proposed to identify
the physical phenomena responsible for this efficient transport. In this paper, we develop and study
a mathematical model motivated by one of those theories.

Key words. bones, porous media, nutrient transport, solute transport, effective diffusion,
mathematical modeling

AMS subject classifications. 76S05, 76R50, 92B05

DOI. 10.1137/040616632

1. Introduction. As illustrated in Figure 1.1, we consider long bones of our
extremities such as the femur. Bones are porous media with complex microgeometry.
The particular components of bones that we discuss here are osteons. These are
cylindrical structures of about 120 μm radii that extend along the long axis of the
bone (see Figure 1.1). An osteonal canal is located at the center of osteons. This
canal contains blood vessels, a nerve, and bone fluid (see Figure 1.1). Pores, called
lacunae, are distributed within the osteon. Thin channels, called canaliculi, and the
lacunae form a connected system known as the lacunar-canalicular system, which
is filled with fluid and is connected to the osteonal canal. A cartoon of the osteon
microgeometry is given in Figure 1.1. More details on the structure of bones are given
in [4, 12, 13, 2, 14] among numerous other articles.

Fig. 1.1. At left is the cartoon of a bone. A horizontal cross section (view from the top) is
shown in the middle figure. The right-most image is a cartoon of the microgeometry of a section of
an osteon (also viewed from the top); the white region is the solid part of the bone.

Bones consume nutrients and produce waste products. It is believed that nutrients
are transported from the osteonal canal into the rest of the osteon through the lacunar-
canalicular system (see [17] and references therein). Waste products, on the other
hand, are produced within the osteon and need to be transported to the osteonal
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Fig. 1.2. Cartoon of a vertical longitudinal section (parallel to the direction of the bone) of
part of an osteon. The bone is supporting a load in the left-hand image. The load is removed in the
right-hand image. The arrows at the bottom denote the direction of the flow.

Fig. 1.3. One-dimensional lacunar-canalicular system.

canal so that they can be disposed of. Thus, efficient transport within the lacunar-
canalicular system is necessary to maintain a healthy bone.

The solid part of the bone is an elastic material. Thus, activities that apply
and remove loads to bones, such as walking, produce small deformations of the bone.
As a consequence, the incompressible fluid that fills the lacunar-canalicular system
is squeezed, producing fluid flow. This is illustrated in Figure 1.2. As shown in the
left-hand image, when a bone is subjected to a load, fluid is squeezed out of the
lacunar-canalicular system and into the osteonal canal. Once the load is removed, an
equal volume of fluid flows back from the osteonal canal into the lacunar-canalicular
system (see the right-hand image in Figure 1.2). After each cycle of a periodic load,
there is no net volume of fluid transported from the osteonal canal into the lacunar-
canalicular system simply because the volume of the bone does not change after each
cycle.

In this paper we study the ideal one-dimensional lacunar-canalicular system il-
lustrated in Figure 1.3. The length of each canaliculus is L− �, and the diameter of
each lacuna is of the order � (recall that the diameter of a set Ω is supx,y∈Ω ‖x− y‖,
where ‖x − y‖ is the distance from x to y). As suggested by Figure 1.3, we assume
that L � �.

We assume that there is a periodic exchange of fluid between the osteonal canal
and the lacunar-canalicular system and denote that period by t0. Motivated by the
above discussion on flows in lacunar-canalicular systems induced by periodic applied
loads, we assume that there is no net transport of any volume of fluid between the
osteonal canal and the lacunar-canalicular system after each period. More precisely,
we assume that there is t� < t0 such that a volume VF of fluid flows from the osteonal
canal into the lacunar-canalicular system during the time interval (0, t�) and the same
volume of fluid flows back into the osteonal canal during the time interval (t�, t0).

We denote by V� the volume of each lacuna. Let D be the coefficient of diffusion
of nutrients in the host liquid. Due to diffusion, the mixing of nutrients with the host
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Fig. 1.4. Nutrient concentration within the lacunar-canalicular system at four different times.
The shades represent the concentration of nutrients. The darker the region, the higher the concen-
tration of nutrients.

fluid within each lacuna occurs in times of order �2/D. The time that an element
of fluid stays in a lacuna is of the order V�t0/VF . We restrict our attention to the
parameter regime

�2/D � min

{
1,

V�

VF

}
t0.(1.1)

Thus, since we are interested in events that occur in the time scale of t0, we can and
do assume that mixing is instantaneous within each lacuna.

Within the canaliculi, nutrients are transported along the direction of the x-axis
by convection and an effect known as Taylor dispersion (that is the result of fluid
motion and diffusion); see [16, 1]. Note that velocities within the canaliculi are of
the order VF /(at0), where a is the cross-sectional area of each canaliculus. Thus, in
a period of time of the order t0, the distances traveled by nutrients due to Taylor
dispersion are of the order

√
(D + V 2

F /(48at20D))t0; see [16, 1]. We will assume that

√
Dt0 +

V 2
F

48at0D
� L.(1.2)

Since, as we will see later in the paper, we are interested in the parameter regime
where fluid is convected from one end of a canaliculus to the other in times smaller
than t0, we can and do neglect diffusion and Taylor dispersion within the canaliculi
in the direction of the x-axis.

The osteonal canal acts as a reservoir of nutrients, and thus the concentration
of nutrients within the osteonal canal remains constant in time. Assume that the
lacunar-canalicular system does not contain any nutrients initially. If VF < Vc, where
Vc is the volume of a canaliculus, the nutrients that enter the lacunar-canalicular
system in the time interval (0, t�) do not reach the first lacuna. Since there is no dis-
persion within the canaliculi and there is no net transport of volume of fluid between
the osteonal canal and the lacunar-canalicular system after each period, all the nu-
trients that enter the system flow back to the osteonal canal during the time interval
(t�, t0). Therefore, there is no transport of nutrients at the end of a cycle.

Assume now that VF > Vc. In Figure 1.4 we show the osteonal canal and part
of the lacunar-canalicular system (that includes only one lacuna) at four different
times. The shades represent the concentration of nutrients: the darker the region,
the higher the concentration of nutrients. At t = 0, the lacunar-canalicular system
does not contain any nutrients. The times t1 and t2 satisfy 0 < t1 < t2 < t�. The
volume of fluid that enters the system in the time interval (0, t1) is smaller than Vc.
As soon as some nutrient from the osteonal canal reaches the first lacuna, there is
instantaneous mixing (of the nutrients with the host fluid) in that lacuna, and the
fluid that flows from that lacuna into the second canaliculus carries nutrients (at some
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lower concentration). This is illustrated in Figure 1.4; at t = t2, the fluid that entered
the system had reached the first lacuna. After a complete period, i.e., t = t0, nutrient
that was initially in the osteonal canal will be left in the lacunar-canalicular system
(see Figure 1.4). In fact, if n is a positive integer such that nVc < VF , after a complete
cycle there will be nutrients left in the first n lacunae and n canaliculi. Hence, there is
a net transport of nutrients after each period. Moreover, in this paper we show that,
in the parameter regime Vc � VF , the system exhibits a diffusion-like macroscopic
behavior with effective diffusion coefficient

Deff =

(
V�

Vc + V�

)2 (
VF

Vc + V�

)(
L2

t0

)
.(1.3)

This paper is motivated by the work in [17], where the authors make the key
assumptions of instantaneous mixing within lacunae and negligible Taylor dispersion
within canaliculi. They argue that these assumption are valid by showing that (1.1)
and (1.2) are satisfied for typical parameter values (see also [18]). They consider a one-
dimensional lacunar-canalicular system with five lacunae, where neighboring lacunae
are connected by ten canaliculi. They propose a numerical algorithm and explore
the system numerically. Our work is based on the same key physical assumptions.
Our new contribution is a detailed mathematical analysis, from which a more explicit
description of the behavior of the system is achieved; in particular, we obtain (1.3).

Identifying the phenomena responsible for nutrient transport in bones has been a
subject of study for several years. It was first proposed in [15] that convection in the
lacunar-canalicular system induced by loading and unloading the bone increases the
transport of nutrients (see also [11]). This phenomenon was studied experimentally
in [5]. However, this is a partial picture of the relevant phenomena, and there is no
agreement among the scientific community on the complete set of physical mechanisms
responsible for the transport of nutrients in bones. See [17, 3, 6, 7, 8, 11, 9, 10, 18]
for some of the proposed theories and related experiments.

The content of the rest of this paper is the following. In section 2 we derive
the governing equations. In section 3 and the appendix we obtain the asymptotic
approximation to the governing equations in the limit of a thin canaliculus. In section
4 we consider some examples. The paper ends with conclusions in section 5.

2. Governing equations. The lacunar-canalicular system we consider, dis-
played in Figure 1.3, extends to infinity in one direction. The right wall of the osteonal
canal is the origin of the coordinate system, x = 0; the location of the ith canaliculus
is the segment [(i− 1)L, iL− �]; and the location of the ith lacuna is [iL− �, iL]. The
cross-sectional area of a canaliculus is a. We denote by Vc = (L − �)a and V� the
volumes of the canaliculus and lacuna, respectively. We assume a, Vc, and V� to be
constants. An incompressible fluid, of constant density both in space and time, fills
the lacunar-canalicular system. The concentration of nutrients in the osteonal canal
remains at the constant value c0 at all times t.

We denote by ci(t) the concentration of nutrients at time t in the ith lacuna,
and thus ρfci(t) is the density of nutrients at time t in the ith lacuna, where ρf is
the fluid density. For x in the canaliculi, we denote by c(x, t) the concentration of
nutrients at x and time t. Since Taylor dispersion is neglected within the canaliculi,
nutrients flow with the same velocity as the fluid v = v(x, t) within the canaliculi (more
precisely, v(x, t) is the average fluid velocity in the cross-section of the canaliculi at
x). Fluid incompressibility and mass conservation imply that v is independent of x;
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i.e., v = v(t). Thus, conservation of nutrients within the canaliculi reduces to

∂c

∂t
+ v

∂c

∂x
= 0(2.1)

for all x in canaliculi.
Whenever the velocity is positive, nutrients flow from the ith canaliculus into the

ith lacuna at a rate aρfv(t)c(iL − �, t). Nutrients also flow out of that same lacuna
into the (i + 1)th canaliculus at a rate aρfv(t)ci(t). Analogously, when the velocity
is negative, nutrients flow from the (i+ 1)th canaliculus into the ith lacuna at a rate
−aρfv(t)c(iL, t) and flow out of that same lacuna into the ith canaliculus at a rate
−aρfv(t)ci(t). This implies

V�
dci
dt

=

{
av (c(iL− �, t) − ci(t)) when v(t) > 0,
av (ci(t) − c(iL, t)) when v(t) < 0

(2.2)

for all positive integers i.
Whenever the velocity is positive, there is flow from each lacuna into the canalicu-

lus located at its right, and thus the concentration of nutrients in the left end of a
canaliculus is equal to the concentration of nutrients in the adjacent lacuna. Analo-
gously, whenever the velocity is negative, the concentration of nutrients in the right
end of a canaliculus is equal to the concentration of nutrients in the lacuna located
at the right end of the canaliculus. Thus,

c((i− 1)L, t) = ci−1(t) if v(t) > 0,
c((i + 1)L− �, t) = ci+1(t) if v(t) < 0,

(2.3)

the first of the above equations being valid for all integers i ≥ 2 and the second for
all integers i ≥ 0. Similarly, whenever the velocity is positive, there is flow from the
osteonal canal into the first canaliculus, and thus the concentration of nutrients in
the left end of the first canaliculus is equal to c0, the concentration of nutrients in the
osteonal canal,

c(0, t) = c0 if v(t) > 0.(2.4)

Consistent with our discussion in the introduction, we assume that the flow ve-
locity in the canaliculi v is a known periodic function with period t0 and zero time
average

∫ t0

0

v(t) dt = 0.(2.5)

To simplify our analysis we assume that there exist 0 < t� < t0 such that v(t) > 0
if t ∈ (0, t�) and v(t) < 0 if t ∈ (t�, t0). Thus, the volume of fluid that flows from the
osteonal canal into the lacunar-canalicular system in the time interval (0, t�) is

VF = a

∫ t�

0

v(t)dt.(2.6)

Equations (2.1)–(2.4) can be solved once initial conditions and boundary condi-
tions at ∞ are provided.
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3. Solution to the governing equations in the thin canaliculus limit.
Assume that the initial conditions on the concentration of nutrients is regular enough
that there exists a smooth function ρin = ρin(z) (except probably in isolated points)
defined for all z ≥ 0 such that

ρin(iL) = ci(0) for all positive integers i,(3.1)

and the limit

c∞ = lim
i→∞

ci(0)(3.2)

exists. (More precisely, we need that ρ′in = O(Vc/(VFL)) except in isolated points.)
Let ρ = ρ(z, t) be the solution

∂ρ

∂t
= Deff

∂2ρ

∂z2
for t > 0 and z > 0,(3.3)

where Deff was defined in (1.3), subject to the initial conditions

ρ(z, 0) = ρin(z) for z > 0(3.4)

and boundary conditions

ρ(0, t) = c0 and lim
z→+∞

ρ(z, t) = c∞ for t ≥ 0.(3.5)

We extend the definition of ρ to z < 0 as follows,

ρ(z, t) = c0 if z ≤ 0,(3.6)

and let zi = zi(t) be defined as

zi(t) = iL− aL

V� + Vc

∫ t

0

v(s) ds.(3.7)

In the appendix we show that ρ gives the asymptotic approximation of the concen-
trations; more precisely,

ci(t) 	 ρ (zi(t), t) if VF � Vc.(3.8)

From (3.3) and (1.3) and the fact that distance between zi and zi+1 remains equal
to L for all i and all t, it follows that Deff given in (1.3) is the effective diffusion
coefficient of nutrients in the lacunar-canalicular system.

4. Examples. As an example, we now assume that there are no nutrients within
the lacunar-canalicular system initially. This corresponds to the initial condition

ρ(z, 0) = ρin(z) = 0 for all z > 0,(4.1)

and the condition at ∞

lim
z→+∞

ρ(z, t) = 0 for t ≥ 0.(4.2)

Given these conditions, ρ can be obtained explicitly; more precisely,

ρ(z, t) = c0 − c0
2√
π

∫ z/(2
√
Deff t)

0

e−s2 ds.(4.3)
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Fig. 4.1. Plot of the concentration of nutrients in the lacunae ci(t) � ρ(zi(t), t) versus i for
different fixed values of t.

Fig. 4.2. Plot of concentration of nutrients in the 15th lacuna, c15(t) � ρ(z15(t), t) (dashed
line), and the envelopes ρ(15L, t) (lower solid line) and ρ((15 − α)L, t) (upper solid line) versus
normalized time t/t0.

In the example presented in this section, we select the velocity

v(t) =
πVF

at0
sin

(
2πt

t0

)
,(4.4)

and the parameters VF , Vc, and V� satisfy Vc = 0.01V� and V� = 0.2VF .
In Figure 4.1, we show a plot of the concentration of nutrients in the lacunae,

using the approximation ci(t) 	 ρ(zi(t), t), versus i for different fixed values of t.
We define the parameter α as follows:

α =
VF

Vc + V�
.(4.5)

Figure 4.2 shows the evolution of concentration in the fifteenth lacuna c15(t) 	
ρ(z15(t), t) plotted against normalized time t/t0. The oscillations in concentration
reflect the evolution in concentration in each cycle of the periodic velocity field v. We
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Fig. 4.3. Plot of the envelopes of the concentration of nutrients in the 15th lacuna, ρ(15L, t)
and ρ((15 − α)L, t), versus normalized time t/t0 in log scale.

have also plotted the envelopes that are ρ(15L, t) (lower envelope) and ρ((15−α)L, t)
(upper envelope) versus normalized time t/t0. Figure 4.3 also shows the envelopes
ρ(15L, t) and ρ((15−α)L, t) in a longer time scale to illustrate the convergence to c0
of the concentration in the fifteenth lacuna after a large number of cycles.

5. Conclusions. In this paper we studied the transport of nutrients in a one-
dimensional model lacunar-canalicular system. Our motivation was a recently pro-
posed explanation of how nutrients are transported within bones [17]. We have shown
that the system exhibits a diffusion-like macroscopic behavior with effective diffusion
coefficient, given in (1.3). Note that the effective diffusion coefficient is explicitly given
in terms of the geometry of the system and the applied velocity field. Our analysis is
the simplest possible that keeps the relevant physics. Nevertheless, our analysis can
be extended to include effects neglected here, such as considering a finite and elastic
system instead of a rigid and infinite one (as we do in this work). More experimental
and theoretical studies are required for a better and more clear understanding of the
processes responsible for the transport of nutrients in bones. We hope our work will
prove to be an important step toward that goal.

Appendix. Asymptotic analysis of the thin canaliculus limit. Our anal-
ysis is valid for thin canaliculus; more precisely, we assume that Vc, the volume of
each canaliculus, is much smaller than VF , the volume of fluid that enters the lacunar-
canalicular system during the part of the period where v > 0; i.e.,

ε =
Vc

VF
� 1.(A.1)

We first write the velocity v in the form

v(t) =
VF

at0
f

(
t

t0

)
.(A.2)
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Note that f = f(s) is a periodic function of s with period 1 and that

∫ 1

0

|f(s)| ds = 2.(A.3)

We define

β = t0ε

(
1

|f(t/t0)|
+ ε

f ′(t/t0)

2f3(t/t0)
+ O(ε2)

)
.(A.4)

In the subsection A.1 we show that

c(iL− �, t) = ci−1(t− β) if v(t) > 0,
c(iL, t) = ci+1(t− β) if v(t) < 0.

(A.5)

We use (A.5) to transform (2.2) into

V�
dci
dt

=

{
av (ci−1(t− β) − ci(t)) when v(t) > 0,
av (ci(t) − ci+1(t− β)) when v(t) < 0

(A.6)

for all positive integers i, where β is again given by (A.4).
We now propose the ansatz

ci(t) 	 ρ

(
y = εi, τ =

t

t0

)
,(A.7)

where ρ(y, τ) is a smooth function. We define the parameter

λ =
Vc

V� + Vc
.(A.8)

In subsection A.2 we show that, given the ansatz (A.7), equations (A.6) reduce to the
single PDE

∂ρ

∂τ
+ λf

∂ρ

∂y
	 ε

λ|f |
2

(
∂2ρ

∂y2
+

2

f

∂2ρ

∂y∂τ
+

1

f2

∂2ρ

∂τ2
− f ′

f3

∂ρ

∂τ

)
,(A.9)

where ρ and its derivatives are evaluated in (y, τ) and f and f ′ are evaluated in τ
(terms of higher order in ε are neglected).

Our next step, which we carry out in subsection A.3, is to show that, neglecting
corrections of order ε2, equation (A.9) reduces to

∂ρ

∂τ
+ λf

∂ρ

∂y
	 ε

λ|f |
2

(1 − λ)2
∂2ρ

∂y2
.(A.10)

Finally, the asymptotic approximation of section 3 results from the two-time-scale
analysis of subsection A.4.

A.1. Derivation of (A.4) and (A.5). Let X(s) be the solution of

X ′(s) = v(s) and X(t) = iL− �,(A.11)

where X ′ is the derivative of X. Fix t and let β > 0. If (i− 1)L ≤ X(s) ≤ iL− � for
all s ∈ [t − β, t], then (2.1) implies that c is constant along the characteristic paths;
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i.e., c(X(s), s) is independent of s for s ∈ [t − β, t]. Assume that v(s) is positive for
all s ∈ [t− β, t] and β is implicitly given by the equation

X(t− β) = (i− 1)L.(A.12)

We have that c(iL− �, t) = c(X(t), t) = c(X(t−β), t−β) = c((i− 1)L, t−β). On the
other hand, since v(t−β) > 0, equation (2.3) implies that c((i−1)L, t−β) = ci−1(t−β).
Thus,

c(iL− �, t) = ci−1(t− β).(A.13)

To compute β, we first use the expression for v given in (A.2) and expand v in
powers of (s− t) to get

v(s) 	 VF

at0
f

(
t

t0

)
+

VF

at20
f ′

(
t

t0

)
(s− t).(A.14)

We then integrate this approximation of v and use the condition X(t) = iL− � to get

X(s) 	 iL− � +
VF

at0
f

(
t

t0

)
(s− t) +

VF

2at20
f ′

(
t

t0

)
(s− t)2.(A.15)

Next use this approximation of X(s) in (A.12) to get

(i− 1)L 	 iL− �− VF

at0
f

(
t

t0

)
β +

VF

2at20
f ′

(
t

t0

)
β2.(A.16)

We subtract (i − 1)L on both sides of the above equation, then multiply by a/VF ,
note that a(L− �) = Vc, and recall that ε = Vc/VF to get

0 	 ε− f

(
t

t0

)
β

t0
+

1

2
f ′

(
t

t0

)(
β

t0

)2

.(A.17)

Once we note that we are considering the case v(t) > 0, and thus f(t/t0) > 0,
equation (A.17) and elementary calculations show the validity of (A.4) for t such that
v(t) > 0. The case v(t) < 0 results from a similar analysis.

A.2. Derivation of (A.8). Use the ansatz (A.7) and the expression (A.2) for
the velocity in (A.6), multiply that equation by t0/VF , recall that ε = Vc/VF , make
the change of variables τ = t/t0, and define b = β/t0 to get

V�

VF

∂ρ

∂τ
(iε, τ) =

{
f(τ) (ρ((i− 1)ε, τ − b) − ρ(iε, τ)) if f(τ) > 0,
f(τ) (ρ(iε, τ) − ρ((i + 1)ε, τ − b)) if f(τ) < 0,

(A.18)

where

b = ε
1

|f(τ)| + ε2 f ′(τ)

2f3(τ)
+ O(ε3).(A.19)

Expanding in powers of ε, we have that, when f(τ) > 0,

ρ((i− 1)ε, τ − b) 	 ρ− ε

(
∂ρ

∂y
+

1

f

∂ρ

∂τ

)
+

ε2

2

(
∂2ρ

∂y2
+

2

f

∂2ρ

∂y∂τ
+

1

f2

∂2ρ

∂τ2
− f ′

f3

∂ρ

∂τ

)
.

Analogously, when f(τ) < 0, we have

ρ((i + 1)ε, τ − b) 	 ρ + ε

(
∂ρ

∂y
+

1

f

∂ρ

∂τ

)
+

ε2

2

(
∂2ρ

∂y2
+

2

f

∂2ρ

∂y∂τ
+

1

f2

∂2ρ

∂τ2
− f ′

f3

∂ρ

∂τ

)
.

In the last two equations ρ and its derivatives are evaluated in (εi, τ), and f and f ′

are evaluated in τ . Once we plug these expressions into (A.18) and perform simple
algebraic manipulations, we obtain (A.9).
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A.3. Derivation of (A.10). From (A.9) we infer that

∂ρ

∂τ
= −λf

∂ρ

∂y
+ O(ε).(A.20)

Taking derivatives with respect to y in (A.20), we get

∂2ρ

∂y∂τ
= −λf

∂2ρ

∂y2
+ O(ε).(A.21)

On the other hand, taking derivatives with respect to τ in (A.20) and using (A.21),
we have

∂2ρ

∂τ2
= −λf

∂2ρ

∂y∂τ
− λf ′ ∂ρ

∂y
+ O(ε) = λ2f2 ∂

2ρ

∂y2
− λf ′ ∂ρ

∂y
+ O(ε).(A.22)

Once we replace ∂ρ/∂τ , ∂2ρ/∂y∂τ , and ∂2ρ/∂τ2 in the right-hand side of (A.9) by
the expressions obtained in the last three equations and neglect terms of order ε2, we
obtain (A.10).

A.4. Two-time-scale analysis on (A.10). We now follow the standard pro-
cedures in two-time-scale asymptotics. We introduce a second time scale

θ = ελ(1 − λ)2τ.(A.23)

We need to replace ∂ρ/∂τ by ελ(1 − λ)2∂ρ/∂θ + ∂ρ/∂τ in (A.10), treat τ and θ as
independent variables, and assume that ρ depends on the three variables y, τ , and θ;
i.e., ρ = ρ(y, τ, θ). Equation (A.10) becomes

ελ(1 − λ)2
∂ρ

∂θ
+

∂ρ

∂τ
+ λf

∂ρ

∂y
= ε

λ|f |
2

(1 − λ)2
∂2ρ

∂y2
.(A.24)

Next we expand ρ in powers of ε,

ρ = ρ0 + ερ1 + ε2ρ2 + · · · ,(A.25)

and require that ρ1 = ρ1(y, τ, θ) be periodic (with period 1) in τ (this requirement
makes the asymptotic approximation valid for long values of τ). We then plug this
ansatz into (A.24) and collect powers of ε. At order 1 we get

∂ρ0

∂τ
+ λf

∂ρ0

∂y
= 0,(A.26)

and at order ε

λ(1 − λ)2
∂ρ0

∂θ
+

∂ρ1

∂τ
+ λf

∂ρ1

∂y
=

λ|f |
2

(1 − λ)2
∂2ρ0

∂y2
.(A.27)

From (A.26), we obtain that the dependence of ρ0 on y and τ is through the
variable η defined as

η = y − λ

∫ τ

0

f(s) ds.(A.28)

Thus, if we change independent variables from (y, τ, θ) to (η, τ, θ), we have

ρ = ρ(η, θ) and ρ1 = ρ1(η, τ, θ).(A.29)
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In the new independent variables, (A.27) becomes

λ(1 − λ)2
∂ρ0

∂θ
+

∂ρ1

∂τ
=

λ|f |
2

(1 − λ)2
∂2ρ0

∂η2
.(A.30)

Finally we take the average of the above equation with respect to τ , keeping η and θ
fixed. Since ρ1 is periodic in τ , we have∫ 1

0

∂ρ1

∂τ
dτ = 0.(A.31)

Recalling the definition of f and its properties (see (A.2) and (A.3)), we have
∫ 1

0
|f |dτ =

2. Thus, given that ρ0 is independent of τ , we have that, after averaging with respect
to τ , (A.30) becomes

∂ρ0

∂θ
=

∂2ρ0

∂η2
.(A.32)

We define the spatial variable

z =
L

ε
y − aL

V� + Vc

∫ t

0

v(s) ds.(A.33)

From the different changes of variables made, it follows that

η =
Vc

VFL
z and θ =

V 2
c V

2
�

VF (V� + Vc)3
t

t0
.(A.34)

The last three equations imply that ρ0 satisfies (3.3). Thus, dropping the subindex 0
and observing the appropriate boundary and initial conditions, we obtain the asymp-
totic approximation of section 3.
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FIELD-INDUCED MOTION OF NEMATIC DISCLINATIONS∗

PAOLO BISCARI† AND TIMOTHY J. SLUCKIN‡

Abstract. An individual defect in a nematic liquid crystal moves not only in response to its
interaction with other defects but also in response to external fields. We analyze the motion of a
wedge disclination in the presence of an applied field of strength H. We neglect backflow and seek
steadily traveling patterns. The stationary picture yields a semi-infinite wall of strength π, bounded
by the defect line. We find that the disclination advances into the region containing the wall at
velocity v(H), where v scales as H/| logH| as long as the magnetic coherence length is greater than
the core radius. When the external field is applied in the presence of a pair of disclinations, their
dynamics is strongly influenced. We compute the expected relative velocity of the disclinations as
a function of distance and field. The natural tendency for the disclinations to annihilate each other
can be overcome by a sufficiently strong field suitably directed.

Key words. nematic liquid crystals, dynamics, π-walls

AMS subject classifications. 76A15, 82D30

DOI. 10.1137/040618898

1. Introduction. Singularities in liquid crystals, or defects, have played a fun-
damental role not only in the development of the understanding of the physics of
liquid crystals but also in the later development of the topological theory of defects
in condensed matter. In nematic liquid crystals, point, line, and wall defects can be
found. Line defects were first classified by Sir Charles Frank, who noted that line
defects came in classes with an integer or half-integer charge [1]. Later workers, us-
ing the topological theory of defects, realized that nematic liquid crystals sustain a
topologically unique line defect [2, 3, 4]. However, Frank’s näıve classification, which
effectively supposes that the nematic order parameter is restricted to a plane, remains
important in providing guidance and intuition for the physics of defects in nematic
liquid crystals.

The topological total charge of a system is conserved during its evolution. Under
many circumstances this remains true for Frank’s definition of charge; this is a stronger
condition. For instance, defects of opposite charges may annihilate, and defects of
higher topological charges may decay to a bunch of defects of smaller topological
charges. Topological dipoles may even be nucleated from a smooth field [5].

In this paper we focus on nematic disclinations, i.e., line defects. According to
Frank’s definition, the topological charge of a line defect is defined as the number of
turns the director performs along a closed path surrounding the defect. This number
may be half-integer because of the head-and-tail symmetry of nematic liquid crystal
molecules. When the final director is rotated by an angle π with respect to the initial
director, the physical state they describe does not exhibit any discontinuity.

The physical manifestation of the topological theory of defects in nematic liquid
crystals concerns escape into the third dimension. Nematic disclinations of integer
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charge are not topologically stable. A suitable continuous transformation, involving
the third previously neglected dimension, dissolves the singularity and leaves behind
a regular field [6]. In a similar manner, all half-integral disclinations can be distorted
into each other. However, free energy criteria often impede this process, and the
Frank classification remains useful. In particular, annihilation of opposite-charge
half-integral defects is favored, but of same-charge defects is hindered.

Defect dynamics has been widely studied either in the classical Oseen–Zocher–
Frank (OZF) theory [7, 8, 1], or within the extended de Gennes–Ericksen theory
[9, 10]. However, there are fundamental dilemmas in treating defect motion. The
OZF theory is not a dynamical theory, and defect cores are regions in which, strictly
speaking, the OZF theory does not apply. The theory can be extended to deal with
moving defects, but only by introducing a phenomenological dissipation function using
director rate of change. This minimal extension is incorrect; the full extension involves
hydrodynamic terms which depend on the local director [11]. But the local director
is not defined in the defect region, and so this extension is also inadequate to describe
defect motion. The alternative de Gennes–Ericksen approach (now usually called the
Q-tensor theory) is in principle up to the task, but now the defect regions are no
longer special. In addition, it is now necessary to consider a whole set of new degrees
of freedom. In fact, however, these new degrees of freedom are important only inside
the core region.

Despite these problems, some theoretical progress has been made, in part because
some authors have detected analogous topological structures in liquid crystals and
cosmological models. A single disclination may move through an otherwise smooth
field [12, 13], but then the problem is why the defect is moving in the first place.
An implicit response to this question is to devote more attention to the interaction
between two or more defects. In such cases the defects move, slowly, to reduce their
elastic energy. For example, attraction between two point defects of opposite charges
has been studied in both planar [14, 15, 16] and cylindrical [17, 18, 19] geometries.
The attraction between two oppositely charged smectic disclinations has been studied
in [20].

More precise quantitative descriptions of the defect evolution must necessarily
take into account backflow effects [21, 22, 23], i.e., the interactions between director
rotation and macroscopic molecular motion. The first analytical attempt to introduce
backflow effects was performed in [24], where the macroscopic velocity field was cou-
pled to the degree of orientation, though not to the director field. A series of recent
numerical simulations [25, 26, 27, 28, 29] have determined the main effects of backflow
coupling. The dynamical director patterns turn out to be strongly influenced in the
final part of the annihilation process, but some effects may be noted even during all
the defect evolution. In particular, the disclination speeds may be different [25], and
recent numerical simulations suggest that positively charged disclinations can move
almost twice as fast as those with negative charge [28].

In this paper we investigate the effect of an applied external field on the defect
dynamics. We consider a simple geometry: a single + 1

2 , or a dipole of ± 1
2 disclina-

tions, in planar symmetry. We compute the defect speed with the aid of the Leslie’s
dissipation balance [11]. It turns out that the external field exerts a profound effect
on the defect dynamics and the defect interaction. By suitably adjusting the exter-
nal field strength and direction, it is possible to drive a single disclination through
the sample, as has been experimentally observed [30, 31]. More interestingly, the
effect of the external field may go beyond a simple acceleration or deceleration of the
annihilation process. The field can also stop the defects, or even reverse their veloc-
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ities, thus transforming an attractive into a repulsive interaction. Depending on the
external field direction, a critical defect distance may arise, which characterizes the
defect interaction. They annihilate each other if they come closer than that distance;
otherwise, they repel.

Throughout our presentation we will introduce and discuss some assumptions
that simplify our analytical calculations. The 1-constant approximation in the elastic
free energy, and a parabolic approximation in the magnetic energy, linearize the free
energy derivatives. We remark that the parabolic approximation would have to be
abandoned if we were to generalize the present study to highly charged defects. We
also neglect backflow. This approximation allows us to derive an analytical condi-
tion which determines the defect velocity, and in particular the critical distance that
reverses the defect interaction. A numerical analysis would correct these computed
values, even if the described phenomena will certainly remain.

The plan of the paper is as follows. In section 2 we analyze the motion of a single
disclination in an external field. Section 3 describes the defect interaction, and how
it can be reversed with the aid of the applied field. In section 4 we summarize our
results and compare them with the observed experimental data.

2. Single defect motion. We consider a + 1
2 disclination embedded in an ex-

ternal magnetic field. This field will favor the director orientation of one side of the
defect with respect to the other side. This asymmetry is sufficient, as we shall see, for
energy considerations alone to determine that the defect will move and to determine
the direction of its motion. Our task is to determine the magnitude of the veloc-
ity as a function of the field intensity. We adopt the 1-constant approximation and
neglect backflow. This latter approximation implies that our estimated velocity will
certainly be smaller than the actual velocity. In fact, backflow effects reduce the total
dissipation, thus allowing faster director dynamics.

s = + 1
2

Φ

H

v

x

y

Fig. 1. Geometric setting for the analysis of the single defect motion. The defect occupies the
origin of the comoving reference frame and moves towards the π-wall. The angle Φ is determined
by the director and the motion direction (parallel to the external field).

Let us consider the reference frame illustrated in Figure 1. It moves with the
disclination, which sits at the origin O. The x-axis is parallel to the external field.
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Given any point P in the plane, let ϑ be the polar angle between the radial direction
OP and the x-axis. Disclinations of half-integer charge do not benefit from escaping
into the third dimension. Thus, we restrict our interest to the situation in which the
director n is confined to the plane, and let Φ(P) be the angle between the nematic
director at P and the x-axis.

In the absence of a field, the 1-constant approximation implies that the director
angle varies linearly with the polar angle: Φ = 1

2 ϑ. In the presence of the field, the
same linear dependence holds, roughly speaking, on length scales smaller than the
magnetic coherence length ξ. So long as we confine ourselves to these length scales,
the elastic energy overwhelms the external field. However, far from the defect, the
magnetic energy forces the system toward its preferred value Φ = 0. On the other
hand, over a closed path around the defect, no matter how far that path may be from
the defect, topology forces the angle Φ to rotate through π. This creates a dilemma,
for the system must rotate through an angle π and yet remain at Φ = 0.

These two constraints are reconciled by restricting the region over which Φ rotates.
This region is a topologically irreducible wall between regions of space whose director
is oppositely oriented. Associated with the wall is a well-defined surface free energy
analogous to the surface tensions of fluid mechanics. This is a π-wall, since the
director concentrates its π-rotation in it. In the presence of the field, the previously
isolated defect line has been transformed into the trailing edge of a wall defect. The
disclination then moves into the wall in order to reduce the wall area and consequently
the free energy of the system.

2.1. Dissipation principle. We determine both the director field and the value
of the disclination velocity by imposing the energy balance between the free-energy
loss-rate and the dissipation [11]:

Ḟ + D = 0.(2.1)

In the 1-constant approximation, the free-energy functional is given by

F [Φ] =

∫
R2

(
K
∣∣∇Φ

∣∣2 + χaH
2 sin2 Φ

)
da,(2.2)

where K is an average elastic constant, χa is the magnetic anisotropy, and H is the
strength of an external magnetic field.

It is well known that a +1
2 disclination possesses an infinite core energy. The

elastic free-energy density diverges at the defect, and the singularity is not integrable.
There are two ways to avoid this divergence. The first consists of excluding from
our integration region a small disk centered in the defect, the core region B◦. The
radius of the excised disk, the core radius r◦, is usually much smaller than all other
characteristic lengths entering the problem, so that many studies have been performed
in the limit of vanishing r◦ [32]. A more precise physical description of the defect
requires an extension of the classical OZF theory, and the replacement of the nematic
director with the nematic order tensor [33]. We will choose the first option and
perform all the integrations in the pierced domain, which excludes B◦. We further
assume that the core radius is fixed. The basic physics of the phenomenon is well
described using these approximations. However, in order to deal with external fields
of any intensity, it would be interesting to apply the techniques of [34] to determine
how and when the magnetic coherent length influences the core radius.

A second, though less worrying, free-energy divergence comes from the supposedly
infinite size of the domain. The domain may extend indefinitely in the y-direction



FIELD-INDUCED MOTION OF NEMATIC DISCLINATIONS 2145

without inducing any singularity, since both the elastic and the magnetic energy
densities vanish away from the x-axis. On the other hand, there will be few cases
in which a large-x cut will be needed to keep energies finite. In those cases we will
assume that our domain is bounded by |x| ≤ L. Whenever possible, we will perform
the L → +∞ limit, and we will notice that the large scale length L will not finally
enter in the defect velocity.

Our final approximation concerns the magnetic free energy. We will perform the
parabolic approximation sin2 Φ � Φ2. This approximation allows us to obtain linear
field equations in Φ. It can be used in the whole domain, provided that we define
Φ ∈ [−π

2 ,
π
2 ], since in that case all the values attained by the director angle belong

to the potential well of the equilibrium configuration Φ = 0. We remark that this
approximation would not be valid if we were interested in analyzing the equilibrium
configurations of more complex defects.

When we neglect backflow, the dissipation assumes the simple expression

D = γ1

∫
B◦

Φ̇2 dx dy,(2.3)

where the pierced integration domain B◦ comes into play since the dissipation density
also diverges in the core region.

Let us perform an infinitesimal displacement δΦ of the director field. If we make
use of the divergence theorem, the dissipation principle (2.1) requires∫

∂B◦

δΦ
(
2K∇Φ

)
· ν d	 +

∫
B◦

δΦ
[
γ1 Φ̇ − 2KΔΦ + 2χaH

2Φ
]
da = 0 ∀ δΦ,(2.4)

where ν is the outer normal along ∂B◦. The arbitrariness of δΦ requires that the
quantity in square brackets in the second integral must vanish identically:

γ1 Φ̇ = 2KΔΦ − 2χaH
2 Φ.(2.5)

Equation (2.5) is the well-known time-dependent Ginzburg–Landau evolution equa-
tion of the system. It will supply us the director field. However, the Ginzburg–Landau
equation alone is not able to guarantee the dissipation principle. We must check that
the first integral in (2.4) also vanishes. The boundary ∂B◦ is made of two parts: a
small circle around the defect and a large boundary at infinity. The integral around
the latter vanishes, since at infinity ∇Φ fades everywhere except along the π-wall,
where it is orthogonal to the outward normal. We are then left with the first integral
in (2.4), performed along the boundary of the core region. This quantity has a simple
physical meaning [35]: it is the power supplied by the core region to the rest of the
domain. Thus, to require that all the free-energy loss be dissipated within the system
is equivalent to requiring that no energy be supplied to it, either from the outside or
from the core region.

2.2. Steadily moving defects. We will look for stationary solutions of equation
(2.5). They aim at representing a defect moving at a constant speed v towards the
π-wall. We will find that, for any positive value of v, it is possible to find a solution of
(2.5) which satisfies the boundary conditions. However, there is just one value of the
velocity which also cancels the first integral in (2.4) (or, equivalently, that satisfies
the global dissipation condition). It is the only velocity at which the defect is able to
move without any external boost.
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In a steadily moving reference frame, traveling with the defect itself, the relative
stationary differential equation follows by replacing the time derivative in (2.5) with
v ∂x. We thus obtain

ΔΦ − λ

ξ

∂Φ

∂x
− Φ

ξ2
= 0,(2.6)

where ξ :=
√

K
χaH2 is the magnetic coherence length, and λ := γ1

2
√
Kχa

v
|H| is a dimen-

sionless quantity. We look for solutions of the eigenvalue problem (2.6) that satisfy
the symmetry requirement Φ(x,−y) = −Φ(x, y) for all y 	= 0, and the boundary
conditions

Φ(x, 0+) =

⎧⎨
⎩

0 if x > 0,
π

2
if x < 0,

and lim
y→∞

Φ(x, y) = 0 ∀x ∈ R,(2.7)

where the latter condition is determined by the presence of the magnetic field. The
boundary conditions (2.7) are singular only at the origin, where a disclination of
topological charge +1

2 stands. Indeed, the discontinuity that the angle Φ suffers
along the negative x-axis does not induce any physical singularity, since Φ = π/2 and
Φ = −π/2 describe the same director orientation.

Among the solutions of the eigenvalue problem (2.6)–(2.7), the dissipation prin-
ciple (2.1) will single out the only physical one.

2.3. Director field. We solve the linear partial differential equation (2.6) with a
Fourier transform. To this end, it is useful to write the first of the boundary conditions
(2.7) as

Φ(x, 0+) =
π

4
− 1

4i
PV

∫
R

eiqx

q
dq ∀x 	= 0,(2.8)

where PV denotes the Cauchy principal value of an integral. We then look for solu-
tions of (2.6) of the form

Φ(x, y) =
π

4
g1(y) −

1

4i
PV

∫
R

eiqx

q
g2(q, y) dq,(2.9)

with

g1(0) = g2(q, 0) = 1 and lim
y→∞

g1(y) = lim
y→∞

g2(q, y) = 0 ∀ q ∈ R.(2.10)

If we insert (2.9) into (2.6), we obtain

π

4

(
g′′1 − 1

ξ2
g1

)
− 1

4i
PV

∫
R

eiqx

q

[
∂2g2

∂y2
− k2(q) g2

]
dq = 0,(2.11)

where k(q) will henceforth denote the positive-real-part square root of k2(q) = q2 +
iqλ
ξ + 1

ξ2 . The solution of (2.11) and (2.10) in the upper half-plane {y ≥ 0} is

Φ(x, y) =
π

4
e−

y
ξ − 1

4i
PV

∫
R

eiqx−k(q)y

q
dq,(2.12)
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Fig. 2. Density plots of the magnetic (upper graph) and elastic (lower graph) parts of the free-
energy density, computed from the analytical solution (2.13). The elastic energy is localized close to
the defect. In contrast, the magnetic energy is mostly packed around the π-wall. The defect core is
not symmetric with respect to the defect position; it is slightly shifted behind it with respect to the
direction of motion.

whereas, by symmetry, the solution in the whole plane is given by

Φ(x, y) = ε(y)

[
π

4
e−

|y|
ξ − 1

4i
PV

∫
R

eiqx−k(q)|y|

q
dq

]
,(2.13)

with

ε(y) :=

{
1 if y ≥ 0,

−1 if y < 0.
(2.14)

Figure 2 illustrates the solution (2.13). More precisely, in the upper plot it is possible
to observe how the magnetic free-energy density is concentrated on the π-wall, whereas
the lower plot shows that the elastic free-energy density is mostly localized on the
defect. In both cases, it is possible to notice that the decay pattern from Φ = ±π

2 on
the left x-axis to the equilibrium value Φ = 0 becomes constant when we move some
magnetic coherence lengths away from the defect.

We notice that no use of the core region has been made for the time being. In
fact, the differential problem (2.6)–(2.7) admits a solution in R

2 \ (0, 0), without any
need to excise a finite region around the defect. We will see below that this will not
be the case when we have to deal with the derivatives of the field, and in particular
with the dissipation (2.3).

2.4. Disclination velocity. We have succeeded in finding a solution of the
stationary Ginzburg–Landau equation for any value of v. We will now complete the
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eigenvalue analysis and determine the correct disclination velocity by imposing the
global dissipation condition (2.1).

We have already noticed that, in the moving reference frame, time derivatives
transform into spatial derivatives. Thus,

Ḟ = v

∫
B◦

∂

∂x

(
K
∣∣∇Φ

∣∣2 + χaH
2Φ2

)
dx dy = v

[∫
R

(
K
∣∣∇Φ

∣∣2 + χaH
2Φ2

)
dy

]x=+∞

x=−∞
.

(2.15)

When |x| is very large, the principal value of the q-integral in (2.13) is dominated by
the low q values:

lim
x→±∞

1

4i
PV

∫
R

eiqx−k(q)y

q
dq =

1

4i
lim

x→±∞
PV

∫
R

eiqx− y
ξ

q
dq = ± π

4
e−

y
ξ .(2.16)

Thus,

Ḟ = −π2Kv

ξ2

∫ +∞

0

e−
2y
ξ dy = −π2Kv

2ξ
.(2.17)

The result (2.17) admits a simple physical interpretation, which already exhibits in
(2.15). The quantity within square brackets in (2.15) is the free energy contained in
an infinite vertical strip of unit width, centered at x. When x → +∞, both the elastic
and magnetic energy densities relax to 0, as Figure 2 shows. As a consequence, the
total energy stored in the right-side strip is negligible. The picture completely changes
in the x → −∞ limit. A unit-width strip crossing the π-wall stores a finite amount
of free energy, measured in (2.17). In fact, it is precisely the difference between the
energies stored in those strips that keeps the defect moving. In unit time, the defect
motion replaces a left-side strip of width v, with free energy given in (2.17), with a
right-side strip of equal width, with no free energy.

While the free-energy variation depends only on the asymptotic structure of the
director field, dissipation takes place in the whole domain. Indeed, it is so strong
close to the moving defect that we will be forced to exclude the core region in order
to avoid an infinite dissipation. We have

D = γ1

∫
R2

Φ̇2 dx dy = γ1v
2

∫
R2

(
∂Φ

∂x

)2

dx dy

=
γ1v

2

16

∫
R2

dxdy PV

∫
R

dq PV

∫
R

dq′ei(q+q′)x−(k(q)+k(q′))|y|

=
γ1v

2

8
PV

∫
R

dq PV

∫
R

dq′
2πδ

(
q + q′

)
k(q) + k(q′)

=
πγ1v

2

2

∫ qM
2π

0

dq√
q2 + iqλ/ξ + 1/ξ2 +

√
q2 − iqλ/ξ + 1/ξ2

= − iπKv

2ξ

∫ ξ
r◦

0

(√
1 +

iλ

s
+

1

s2
−
√

1 − iλ

s
+

1

s2

)
ds,(2.18)

where δ denotes the Dirac delta function. The high-q cutoff is needed in order to avoid
the logarithmic divergence which the disclination induces both in the free energy (but



FIELD-INDUCED MOTION OF NEMATIC DISCLINATIONS 2149

10−1 100 101 102 103 104 105
10−1

100

101

102

ξ/r◦

λ

Fig. 3. Disclination velocity as a function of the external applied field.

not in its time-derivative) and in the dissipation. This is related to the inverse of the
core radius: qM = 2π/r◦.

When we substitute (2.15) and (2.18) into the dissipation principle (2.1), we
obtain the self-consistency equation that determines λ (i.e., v), as a function of the
ratio ξ/r◦:

∫ ξ
r◦

0

(√
1 +

iλ

s
+

1

s2
−
√

1 − iλ

s
+

1

s2

)
ds = iπ.(2.19)

The most interesting region in physical applications is ξ � r◦. The integral on the
left-hand side is dominated by its logarithmic high-s divergence, and we obtain

iλ log
ξ

r◦
= iπ =⇒ v =

2π
√
Kχa

γ1 log
(
ξ/r◦

) |H| when ξ � r◦.(2.20)

However, it is interesting to push the analysis of (2.19) into the opposite regime,
ξ � r◦. The low-s terms dominate the integral on the left-hand side, and we find

iλ
ξ

r◦
= iπ =⇒ v =

2πχar◦
γ1

H2 when ξ � r◦.(2.21)

The quite intriguing quadratic behavior predicted by (2.21) must be handled carefully.
When the external field becomes so intense that ξ becomes of the order of r◦, we have
to question our assumption that r◦ is independent from ξ. A more complete theory,
which can be derived following the steps of [34], would yield an r◦(ξ), and thus a
disclination velocity depending only on the strength of the applied field.

Figure 3 shows the numerical solution of (2.19). The plot highlights that the
transition between the two asymptotic regimes derived above occurs for ξ � r◦. Even
though this is the limit up to which we can seriously trust our analytical result, Figure
3 suggests that the nonlinear effects increase the disclination velocity.
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3. Defect interaction. Let us now consider two nematic defects of opposite
topological charges s = ± 1

2 placed on the x-axis at a distance Δ = 2d, but in the
absence of any external field. After a certain period of time these defects amalgamate
and thus annihilate each other. The two cores disappear at once, with a large and
rapid reduction in free energy [14, 16, 28]. Imagine, however, that we apply a magnetic
field that favors the director orientation of the molecules that lie within the defects.
The defect speed will certainly be reduced. In this section we show that it can even be
reversed. There exists a critical distance such that the defect interaction is attractive
only if their mutual distance is smaller than the critical one. Otherwise, they repel.

Throughout this section, we will work out in detail the geometry illustrated in
Figure 4. The applied field lies parallel both to the line connecting the defects and
to the director orientation between them. In this geometry, the defects may only
approach or separate, thus avoiding even more complicated motions such as mutual
rotations.

s = + 1
2 s = − 1

2

Φ

Δ

H

x

y

Fig. 4. Two attracting defects placed at a distance Δ along the x-axis. The external field is
parallel both to the line connecting the defects and to the director orientation between them.

We compute the speed of two stationarily moving defects. We will show below
that the stationarity assumption holds approximately even when the defect distance
becomes of the order of, or smaller than, the magnetic coherence length. It must
certainly be abandoned when one wants to describe the complete annihilation process,
and in particular when the defect distance becomes of the order of the core radius.

In the final subsection we will briefly analyze the case when the external field
determines a generic angle α with respect to the defect line. In this case the motion
may be much more complicated. However, we are able to estimate how the nature
of the defect interaction depends on α. More precisely, we will determine for which
values of α the defect interaction may become repulsive, and how the critical distance
depends on the external field direction.

The time-dependent Ginzburg–Landau equation (2.6) is linear, due to the parabolic
approximation we used for the magnetic energy. We can thus obtain a solution de-
scribing two stationarily approaching (or separating) defects by simply superposing
two functions of the type (2.13). More precisely, we add a solution describing a defect
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placed at x = +d, traveling with velocity −v, and a solution describing a defect placed
at x = −d, traveling with velocity +v. The velocity v(d) will be determined later,
again using the dissipation principle. The director field is given by

Φ(x, y) = ε(y)

[
π

2
e−

|y|
ξ +

1

4i
PV

∫
R

eiq(x−d)−k(q)|y| − eiq(x+d)−k(−q)|y|

q
dq

]

= ε(y)

[
π

2
e−

|y|
ξ −

∫ +∞

0

cos qx sin
(
qd + Im k(q) |y|

)
e−Re k(q) |y| dq

q

]
.(3.1)

Figure 5 illustrates the countervailing tendencies of the elastic and magnetic en-
ergies: the elastic contribution aims at annihilating the defects in order to relax the
infinite core energy. In contrast, the magnetic field tries to broaden the intermediate
region, where all the molecules are already correctly aligned.

Fig. 5. Density plot of the magnetic free-energy density (upper graph) and the elastic free-energy
density (lower graph), computed from the analytical solution (3.1). For these particular values of
the distance and the magnetic coherence length, it will turn out that the defects are separating (that
is, v < 0). Both the magnetic and the elastic free-energy densities are mainly concentrated on the
defect walls. Between the defects, the free-energy density is negligible.

The free energy associated with the traveling configuration (3.1) is given by

F(Δ, λ) = Kπ

[
πL

ξ
+ arcsinh

ξ

r◦
−K0

(
Δ

ξ

)
− πΔ

ξ
+ 2

∫ ∞

0

sin2 Δs
2ξ

s2
√

1 + s2
ds

+ F1(Δ, λ) + F2(λ)

]
.(3.2)

The first term in (3.2) diverges in the L → +∞ limit. (L is the horizontal scale of
the system: x ∈ [−L,L].) This term corresponds to the energy of the two walls.
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The second term is related to the infinite elastic energy stored in the defects. (r◦ is
the core radius as in the preceding section.) The next three terms depend only on
the defect distance, and are independent of their velocity. In particular, the term
containing the modified Bessel function of the second kind K0 is able to cancel the
free-energy divergence when Δ � r◦. Finally, both F1 and F2 are velocity corrections,
which vanish if λ (i.e., v) vanishes:

F1(Δ, λ) :=
1

2

∫ ∞

0

Re

[(
μ(λ, s) − μ(0, s) +

1

μ(λ, s)
− 1

μ(0, s)

)(
1 − e−isΔ/ξ

)] ds

s2

− 1

2

∫ ∞

0

Re

[(
1

μ(λ, s)
− 1

μ(0, s)

)
e−isΔ/ξ

]
ds,(3.3)

F2(λ) :=

∫ ∞

0

(
1

μ(λ, s) + μ(−λ, s)
− 1

2μ(0, s)

)
ds

− 1

4

∫ ∞

0

(
μ(λ, s) − μ(−λ, s)

)2
μ(λ, s) + μ(−λ, s)

(
1 +

1

μ(λ, s)μ(−λ, s)

)
ds

s2
,(3.4)

where μ(λ, s) is the positive-real-part square root of μ2(λ, s) = 1 + isλ + s2, and
λ = γ1

2
√
Kχa

v
|H| , as in the preceding section.

In the absence of backflow, the dissipation stems only from the director rotation.
When computing Φ̇, we assume that only the defect position d depends on time.
In our stationary approximation, we thus neglect the time derivative of the velocity
v. However, we remark that when we want to determine the nonstationary effects
depending on v̇, we are no longer allowed to use the solution (3.1). The dissipation
function is given by

D = γ1

∫
R2

Φ̇2 dx dy =
πḋ2

2

[
arcsinh

ξ

r◦
+ K0

(
Δ

ξ

)
+ G1(Δ, λ) + G2(λ)

]
,(3.5)

with

G1(Δ, λ) :=

∫ ∞

0

Re

[(
1

μ(λ, s)
− 1

μ(0, s)

)
e−isΔ/ξ

]
ds and(3.6)

G2(λ) := 2

∫ ∞

0

(
1

μ(λ, s) + μ(−λ, s)
− 1

2μ(0, s)

)
ds.(3.7)

The functions G1 and G2 vanish in the low-velocity limit v → 0. The dissipation
principle delivers the self-consistency equation that determines the defect velocity
v = −ḋ :

∂F
∂d

ḋ + D = 0 ⇐⇒

K1

(
Δ

ξ

)
+

Δ

ξ

∫ ∞

0

sin s ds

s
√

Δ2

ξ2 + s2
+ ξ

∂F1

∂Δ

− λ

2

[
arcsinh

ξ

r◦
+ K0

(
Δ

ξ

)
+ G1(Δ, λ) + G2(λ)

]
= π.(3.8)

Before analyzing the solutions λ(Δ) of (3.8), we want to stress the importance of the
first two terms on its left-hand side. In fact, if we define

f(x) := K1(x) + x

∫ ∞

0

sin s

s
√
x2 + s2

ds,(3.9)
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Fig. 6. Defect velocity as a function of the external field for different values of the core radius
r◦: ξ/r◦ = 10 (dotted line), 100 (dashed), 1000 (full). For any value of the core radius, the defects
attract only if their distance is smaller than Δcr.

we have

∂F
∂Δ

∣∣∣∣
v=0

=
Kπ

ξ

[
f

(
Δ

ξ

)
− π

]
.(3.10)

Thus, in general, the defects will approach or separate, depending on whether f(Δ/ξ)
exceeds π or not. We postpone the analysis of the properties of f to the next subsec-
tion, when we will generalize (3.10) to the case of tilted applied fields. For now, we
only remark that f(x) = π when x = xcr

.
= 0.377388. The function f is greater than

π (thus inducing defect attraction) when Δ < xcr ξ. Defect repulsion is induced at
distances greater than xcr ξ.

Figure 6 illustrates the numerical solutions of (3.8) for three different values of
the ratio between the magnetic coherence length and the core radius. They exhibit
the following properties:

• In the large distance limit, all Bessel functions decay exponentially with Δ/ξ.
The functions G1, G2, and the derivative of F1 vanish too. Furthermore,

lim
x→∞

x

∫ ∞

0

sin s

s
√
x2 + s2

ds =

∫ ∞

0

sin s

s
ds =

π

2
.(3.11)

Thus, the large-distance limit of λ is given by

lim
Δ→∞

λ(Δ) = − π

arcsinh(ξ/r◦)
=⇒ v � − 2π

√
Kχa |H|

γ1 arcsinh(ξ/r◦)
when Δ � ξ.

(3.12)

The defects repel and move at a constant speed. In fact, if we compare (3.12)
with (2.20), we notice that in the large-distance limit the defects behave
independently, each moving at the velocity computed in the 1-defect case,
since arcsinh(ξ/r◦) � log(ξ/r◦) when ξ � r◦.

• The critical distance at which the defect interaction changes sign does not
depend on the core radius r◦; all plots in Figure 6 cross the x-axis at Δ = xcr ξ.

• In the small-distance limit, the stationary approximation we have used is not
well justified. In this limit, the velocity diverges, and all terms depending
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on v̇ must be taken into account in the equation of motion. In any case, we
remark that the Bessel function K1 induces a divergence in the derivative
of the free-energy that scales as the inverse of the defect distance. Figure 6
suggests that the fully nonlinear regime is limited to distances much smaller
than the magnetic coherence length.

3.1. Tilted external fields. Let us now imagine that the external field is ro-
tated by an angle α with respect to the direction of Figure 4. In this case, the nematic
director is forced to relax to the external field direction everywhere but on the topo-
logically irreducible π-wall. The motion will be much more complex—the defects will
rotate, and the π-wall will not necessarily be straight at all times. However, it is
possible to ascertain whether the defect interaction will lead to attraction or repul-
sion. To this end, we pin the defects at a distance Δ, and we look for the stationary
director field in the presence of a tilted external field. Then, we compute the free
energy of the stationary solution, and we check the sign of its derivative with respect
to the distance. We stress that it is not possible to use this derivative in a dissipation
principle to obtain a defect velocity. However, its sign will determine whether or not
the defects, whatever their complex motion, will approach each other.

The stationary director field can be simply derived by running through the above
steps again. In the presence of two defects placed at x = ±d, and an external field
tilted at an angle α with respect to the x-axis, the stationary configuration is given
by

Φ(x, y) = ε(y)

[
α +

(π
2
− α

)
e−

|y|
ξ −

∫ +∞

0

cos qx sin qd e−k0(q) |y| dq

q

]
,(3.13)

where k0(q) coincides with the zero-velocity limit of k(q) above: k0(q) :=
√
q2 + 1/ξ2 .

If we compute the free energy associated with (3.13), and differentiate it with
respect to Δ, we obtain the generalization of (3.10):

∂F
∂Δ

∣∣∣∣
v=0

=
Kπ

ξ

[
f

(
Δ

ξ

)
−
(
π − 2α

)]
,(3.14)

with the same f defined in (3.9). The left panel of Figure 7 shows the plot of f . It
enjoys the following properties:

• f ′(x) = 1
2

(
K0(x) −K2(x)

)
< 0 for all x > 0. Thus, the critical distance at

which the defect interaction becomes repulsive increases when the external
field is tilted. Furthermore, the free energy is a concave function of the
distance between the defects.

• limx→0 f(x) = +∞ and limx→∞ f(x) = π
2 . More precisely,

f(x) =
1

x
− x

2
log x + O(x) as x → 0+ and(3.15)

f(x) =
π

2
+ o

(
e−x

)
as x → +∞.

Thus, the equation

∂F
∂Δ

= 0 ⇐⇒ f(x) = π − 2α,(3.16)

which determines the equilibrium distances, possesses exactly one solution if
and only if α < π

4 . This limiting value for the tilting angle could be predicted
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Fig. 7. Left: Plot of the function f defined in the text. Right: Critical value of the defect
distance as a function of the tilt angle α.

easily. In fact, if the external field determines an angle greater than π
4 with the

defect line, the director orientation between the defects costs more magnetic
energy than the director orientation outside the defects. Thus, in this case,
the external field strengthens the defect attraction at any distance.

In summary, we have the following:
• When α = 0, the defects attract if Δ < Δcr

(
π
2

)
= 0.3774ξ; they repel when

Δ > Δcr

(
π
2

)
.

• When α > 0, the critical distance Δcr(β) increases. It diverges when α → π
4
−.

• When α ≥ π
4 , there is no critical distance: the defects always attract (the

external field enhances the attraction).

4. Discussion. We have studied the motion of a single disclination, and a discli-
nation dipole in an external field. Our results show that it is possible to drive the
disclinations by suitably adjusting the external field direction and strength.

In the case of a single disclination, we have shown that the disclination velocity
depends almost linearly on the field strength, since the coefficient depends on the
logarithm of (2.20). Figure 3 shows that the linear scaling is abandoned when ξ � r◦.
Equation (2.21) shows that below this regime the disclination velocity is expected to
scale as the square of the applied strength. However, this last prediction should be
tested carefully, since it is surely influenced by our assumption that the core radius
does not depend on the field strength.

A comparison between our analytical results and the experimental observations
confirms our predictions and gives an estimate of the quantitative corrections that
backflow effects require. If we again let v be the defect speed and H the external
field intensity, the pioneering work of Geurst, Spruijt, and Gerritsma [30] reported a
quadratic scaling v ∼ H2. However, their geometry is completely different from ours,
since in this work the defect was confined in a very thin cell. Indeed, those authors
observed that their measured velocity was consistent with the assumption that the
presence of the external field did not influence the director field at all. The nematic
cell was wider in the measurements reported by Cladis, van Saarloos, and Kortan
[31], whose data fitted almost perfectly a linear relation similar to (2.20). This latter
group realized that the defect speed is determined by a balance between the free
energy gained by reducing the wall area and the dissipation stemming from the defect
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core. Their estimate of the free energy gain coincides with ours (see (2.17)), but again
they neglected the electric field effects when (over)estimating the dissipation. If we
insert their numerical values into (2.20), we obtain a much closer value for the slope
of their linear fit: their estimated defect speed was 0.43 times the actual measured
speed, while, if we replace in (2.20) the same values for the same material parameters,
the derived defect speed turns out to be 0.73 times the observed velocity.

We have also computed the velocity of two opposite disclinations in the presence of
a field that promotes the director orientation between them. The velocity depends on
the defect distance Δ, but, whatever the value of the ratio ξ/r◦, the defects approach
if Δ is smaller than a critical distance Δcr; otherwise, they repel. We have finally
generalized our calculations in order to deal with rotated external fields. Figure 7
(right) shows how the Δcr depends on the angle α, which the external field determines,
with the lie, which connects the defects.

The introduction of backflow may change the picture we have developed, in both
the one- and two-disclination cases. In the one-disclination case the dissipation may
sometimes be significantly reduced. The system can match the disclination motion
with a flow that almost cancels the dissipation in the crucial core region. Whether this
occurs seems likely to depend on the charge of the central disclination. We note that
central physical and mathematical issues associated with backflow in nematic liquid
crystal problems remain open even over a quarter of a century after its essential role
was first realized [21].

Likewise in the two-disclination problem, our computed defect velocity is sym-
metrical in both disclinations. This is also an effect of the no-backflow simplification.
A generalization of the present study should allow one to compute the different ap-
proaching or separating velocities. It could even happen that one defect moves towards
the other, but that the other retreats faster still, allowing the defects eventually to
separate. However, the existence of a critical distance that reverses the defect in-
teraction cannot be erased by backflow effects. The critical distance stems from the
balance between the elastic and magnetic free-energy gains. The magnetic gain does
not depend on the defect distance, while the elastic gain vanishes when the defects
move apart. Thus, at some intermediate distance one overwhelms the other.

Acknowledgments. P. B. acknowledges the hospitality of the University of
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Abstract. A solution of the nonlinear Klein–Gordon equation perturbed by a small external
force is investigated. The frequency of the perturbation varies slowly and passes through a resonance.
The resonance generates solitary packets of waves. The full asymptotic description of this process is
presented.
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Introduction. This work is devoted to the problem of generation of a nearly
monochromatic weakly nonlinear dispersive wave with small amplitude in a strong
nonlinear media. It is well known that packets of nearly monochromatic waves prop-
agate without changing their shape when the envelope function of the packet is a
soliton of the nonlinear Schrödinger equation (NLSE). The solitary packets of waves
would be more suitable for communication in optical fibers over a large distance if
one could control the parameters of the envelope function for such packets. The wave
packets have a soliton-like shape form for sufficiently large range of initial data. But
the parameters of such self-generated solitons are difficult to predict in practice. This
is explained by an instability of the parameters for solitons with respect to the initial
data.

Here we propose a new approach for the generation of solitary packets of waves
with given parameters. In our approach the wave packets appear due to a slow
passage of the external driving force through the resonance. After the resonance,
the envelope function of the wave packet is determined by the NLSE. In the most
important cases the envelope function is a sequence of solitary waves which are called
solitons. The wave packets, with the solitons as the envelope function, are propagated
without dissipation. The parameters of the solitons are obviously defined by the value
of the driving force on a resonance curve. We demonstrate this phenomenon for the
perturbed nonlinear Klein–Gordon equation.

Here we give the mathematical basis for the proposed approach. This basis allows
us to derive explicit formulas that define parameters for the solitary packets of waves
with respect to the external driving force. Generation of the solitary packets of waves
by the small driving force is described in detail. The formulas for the asymptotic
solution before, after, and in the neighborhood of the resonant curve are obtained.

The proposed approach is based on a local resonance phenomenon. The local
resonance in linear ordinary differential equations was investigated in papers [1, 2].
Later this phenomenon was studied in partial differential equations in the linear case
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[3] and in the weak nonlinear case [4, 5]. In these papers it was shown that the
amplitude of the wave increases linearly when the wave passes through the local
resonance. The increase of the amplitude is proportional to the width of the local
resonance layer.

After the resonance a special proportion between the order of the solution and
scales of independent variables appears. This magic proportion gives the NLSE for
the envelope function. The deriving of the NLSE in such a case is a well-known result
[6, 7, 8]. This result is justified in [9].

An important kind of solution of the NLSE is the soliton. The phenomenon
of the generation of solitary waves for some nonlinear equations due to modulation
instability is a well-known result [10]. For example, the detailed analytical description
of the disappearance (generation) of the soliton due to modulation instability in the
case of the Kadomtsev–Petviashvili equation was done in [11]. Some results about an
appearance of solitons in the nonlinear Schrödinger equation due to instability were
presented in [12]. The structural instability of the solitons for the Davey–Stewartson
equation was shown in [13]. Such perturbations do not allow us to obtain solitons
with the given parameters.

The generation of solitary waves by a small external resonant force was found
by numerical simulation [14]. This simulation shows the possibility of generation of
solitons by the external driving force. But it does not allow us to relate the parameters
of the solitons and the perturbation. Therefore the problem about the generation of
the soliton with the given parameters was still open.

The goal of this paper is to show that the process of generation of the solitary
waves due to the local resonance is universal. This process allows us to control the
parameters of the generated waves. This phenomenon previously was asymptotically
investigated in the case of the nonlinear Schrödinger equation in [15]. In our work
we consider the similar phenomenon in the nonlinear Klein–Gordon equation. Our
approach demonstrates that solitary waves with the given parameters can be obtained
for nonlinear systems.

This paper has the following structure. Section 1 contains the main result and
an example of numerical simulations. Section 2 contains the asymptotic construction
in the preresonant domain. In section 3 we construct the asymptotic solution in
the neighborhood of the resonant curve. Section 4 is devoted to the construction of
the postresonant asymptotics. All asymptotic approximations are matched. In the
Summary (section 5) we outline the results and open problems.

1. Statement of the problem and result.

1.1. Statement of the problem. Let us consider the Klein–Gordon equation
with a cubic nonlinearity

∂2
tU − ∂2

xU + U + γU3 = ε2f(εx) exp

{
i
S(ε2t, ε2x)

ε2

}
+ c.c., 0 < ε � 1.(1)

Here γ = constant and c.c. stands for complex conjugate; f(y) is smooth and rapidly
vanishes as y → ±∞. The phase function S(y, z) of the driving force and all deriva-
tives with respect to y, z are bounded. Here and below we use the following notation:

xj = εjx, tj = εjt, j = 1, 2;

l(t2, x2) ≡ (∂t2S)2 − (∂x2S)2 − 1.
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We will construct a special asymptotic solution of (1) in a strip of finite width
with respect to x2, t2. This domain covers the resonant curve l = 0. This asymptotic
solution corresponds the forced oscillations as l < 0,

U ∼ −ε2 f

l
exp

(
iS(t2, x2)

ε2

)
+ c.c.(2)

1.2. Main result. Let us formulate the main result of the work. If the solution
of (1) has the form (2) when l < 0, then in the domain l > 0 this asymptotic solution
is

U(x, t, ε) ∼ εΨ(x1, t1, t2) exp

{
iϕ(x2, t2)

ε2

}
+ c.c.(3)

The phase function ϕ satisfies the eikonal equation

(∂t2ϕ)2 − (∂x2ϕ)2 − 1 = 0

with conditions

ϕ|l=0 = S|l=0, ∂t2ϕ|l=0 = ∂t2S|l=0.

The envelope function of the leading-order term is a solution of the NLSE

2i∂t2ϕ∂t2Ψ + ∂2
ξΨ + i[∂2

t2ϕ− ∂2
x2
ϕ]Ψ + γ|Ψ|2Ψ = 0,

where the ξ is defined by

dx1

dξ
= ∂t2ϕ,

dt1
dξ

= ∂x2
ϕ.

The initial condition for Ψ is

Ψ|l=0 =

∫ ∞

−∞
dσf(x1) exp

(
i

∫ σ

0

dμλ(x1, t1, ε)

)
.(4)

The integration in this integral is done in the characteristic direction related with
(24), (25).

1.3. Higher-order terms and matching. The structure of the constructed
asymptotic solution when l < 0 and l > 0 is sufficiently obvious. We concentrate on
the description of the changing of the solution from the preresonant to postresonant
form. This transition takes place in the thin layer near the curve l = 0. In this
transition layer the amplitude of the solution increases due to the resonant pumping.
The value of the amplitude is defined by the width of the resonant layer. We found
the width of the layer by construction and analysis of the higher-order terms of the
asymptotic solution in all domains. This analysis looks very complicated, but it is
necessary to match the asymptotics of the solution in different domains and obtain
formula (4). This formula defines the leading-order term of the solution after the slow
passage through the resonance.
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Fig. 1. This picture shows the generation of the solitary packet of waves for (1) with special
right-hand side (5) and at ε = 0.1. Initial conditions are U |t=0 = −ε2f exp(iS/ε2)|t=0, ∂tU |t=0 =
−ε2∂t(f exp(iS/ε2))|t=0. The resonant curve is t = 100.

1.4. Numeric simulations. To illustrate the obtained result we consider (1)
with γ = 2 and the simplest driving force, where

S =
t22
2
, f =

2
√

2√
π cosh(2x1)

.(5)

In this case the curve of the local resonance is the line t2 = 1. The preresonant
solution has the form

U ∼ −ε2

(t2 − 1)

2
√

2√
π cosh(2x1)

cos

(
it22
ε2

)
, 0 < t2 < 1.

In the domain t2 > 1 the solution has the form

U ∼ ε exp{iϕ
{

(x2, t2)

ε2

}
Ψ(x1, t1, t2) + c.c.

Here ϕ = t2 − 1/2. The function Ψ(x1, t1, t2) is the solution of the Cauchy problem
for the NLSE:

2i∂t2Ψ + ∂2
x1x1

Ψ + 2|Ψ|2Ψ = 0,

Ψ|t2=1 =

√
2(1 + i)

cosh(2x1)
.

The solution of this Cauchy problem is the pure soliton. This soliton is the
envelope function of the fast oscillating carrier in the postresonant solution of (1).
The carrier with the soliton as the envelope function is the single solitary packet of
waves. This packet is propagated in the nonlinear media without dispersion.

The numerical simulation at ε = 0.1 is given in Figure 1. The profile of the
generation process for the solitary packet of waves can be seen in Figure 2.
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Fig. 2. This picture shows a profile (U(x, t)|x=0) of the generation process for the solitary
packet of waves.

1.5. Qualitative analysis. Here we explain the behavior of the solution for
(1). All domains where we construct the solution are separated on three pairwise
joint domains. The preresonant domain corresponds to the forced oscillations with
amplitude of order ε2. This oscillations down when the driving force becomes resonant.

The resonant layer is a thin domain near the resonant curve l(x2, t2) = 0. In this
layer the amplitude of the oscillations increases up to the order ε:

U(x, t, ε) ∼ εW1,1(x1, t1, x2, t2) exp

{
iS

ε2

}
+ c.c..

The coefficient W1,1(x1, t1, x2, t2) is defined by nonautonomous first-order partial dif-
ferential equation

2i∂t2S∂t1W1,1 − 2i∂x2S∂x1W1,1 − λW1,1 = f,

with a given asymptotic behavior:

W1,1 ∼ −f

λ
, λ → −∞.

Here λ = l/ε.
The asymptotic behavior of W1,1 as λ → ∞ allows us to relate formulas (2) and

(3).
The equation for W1,1 may be written in the form of a first-order ordinary differ-

ential equation along the characteristic direction

d

dσ
W1,1 + λW1,1 = f.

Such an ordinary equation appears under studying of slow passage through resonance
for a one-dimensional oscillator with slowly varying frequency [1]. The solution of
equations of such type is defined by Fresnel integrals.

After the passage through this thin layer, the driving force becomes nonresonant.
In this postresonant domain the amplitude of the solution has the order ε. In Figure
3 one can see the schematic position of the domains mentioned above.

Remark on WKB asymptotics. In this work we describe the special asymptotic
solution of (1). This solution is defined by the driving force in the domain l < 0. One
can add any solution of WKB type [16] of the order ε2 to this constructed solution,
leading to an asymptotic solution for (1) in the form

Ũ = U(t, x, ε) +

N∑
n≥2

εnUn(t, x, ε).
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Fig. 3. Schematic position of domains.

The coefficients Un(t, x, ε) of the asymptotics are calculated by standard methods of
WKB-theory. This additional term leads to ponderous formulas and does not change
the leading-order term of the postresonant asymptotics.

2. Preresonance expansion. In this section the formal asymptotic solution
is constructed in the domain before the resonance. This domain is defined by the
condition l < 0. The asymptotic expansion has a WKB-type form. The leading-order
term of the asymptotics has the order of the driving force and oscillates with the
frequency of the perturbation. The constructed asymptotics is valid when −l � ε.
The result of this section is formulated below.

Theorem 1. In the domain −l � ε the formal asymptotic solution of (1) modulo
O(εN+1) has the form

U =

N∑
n≥2

εnUn(t, x, ε),(6)

where

Un =
∑
k∈Ωn

Un,k(t2, x2, εx) exp

{
ik

S(t2, x2)

ε2

}
.

The set Ωn for the higher-order term is described by the formula

Ωn =

{
{±1}, n ≤ 5,

{±1,±3, . . . ,±(2l + 3)}, l =
[
(n− 6)/4

]
, n ≥ 6.

The functions Un,k and Un,−k are complex conjugated.
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The coefficients of the asymptotics Un,k are defined out of algebraic equations (7),
(8), (9), and (11).

The proof of the theorem contains two steps. In the first step (subsection 2.1) we
construct the coefficients of (6), and in the second step (subsection 2.2) we determine
the domain of validity for (6).

2.1. Construction of preresonant asymptotics. Let us substitute (6) into
(1) and collect the terms of the same order of ε. As a result we obtain a recurrent
sequence of algebraic equations,

U2,1 = −f

l
,(7)

U3,1 = 2i
∂x1

f∂x2S

l2
,(8)

U4,1 =
2if [∂t2S∂t2 l − ∂x2S∂x2 l] − 4(∂x2S)2∂2

x1
f

l3

−
2i∂t2f∂t2S + ∂2

x1
f + i∂2

t2Sf

l2
,(9)

where

l = (∂t2S)2 − (∂x2S)2 − 1.

The curve where the phase function S satisfies the eikonal equation is called the
resonant curve,

l[S] = (∂t2S)2 − (∂x2
S)2 − 1 = 0.(10)

The amplitude Un,1 has a singularity on this curve.
The formula for the nth-order term has the form

Un,k =
1

l

⎡
⎢⎢⎢⎣∂2

t2t2Un−4,k + 2ik∂t2S∂t2Un−2,k + ikSt2t2Un−2,k − 2ik∂x2S∂x2Un−2,k

− ik∂2
x2
SUn−2,k − ∂2

x1x1
Un−2,k − 2∂2

x1x2
Un−3,k − ∂2

x2x2
Un−4,k

− 2ik∂x2S∂x1Un−1,k + γ
∑

n1+n2+n3=n,
k1+k2+k3=k

k∈Ωn

Un1,k1
Un2,k2

Un3,k3

⎤
⎥⎥⎥⎦ .

(11)

The first step of the proof of Theorem 1 is completed.

2.2. The asymptotic behavior of the coefficients. To realize the second
step of the proof for Theorem 1 we need to determine the behavior of the coefficients
of (6) as l → −0.

Lemma 1. The coefficient Un,k has the following behavior:

Un,k = O(l−(n−k)), k > 0, l → −0.(12)
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Proof. Let us prove this formula at k = 1. The validity of formula (12) for
n = 2, 3, 4 obtains from (7), (8), (9). Now suppose that this formula is valid for
the term Un−1,1. The increase of the order of the singularity when l → 0 occurs
due to differentiation with respect to x2, t2 and the nonlinear term in formula (11).
Differentiation of the terms in formula (11) leads to formula (12).

Let us consider Un,k for k > 1. The validity of formula (12) for small values of
n and k obtains by direct calculations. Consider the nth-order term. It contains the
terms with different values of k. The higher-order terms with k = 3 have the greatest
order of singularity,

Un,3 = O(l−(n−3)), l → −0.(13)

It takes place because the right-hand side of (11) contains the term Un−4,±1U2,±1·
U2,±1. The calculation of the order of singularity for this term leads to formula (13).
The terms of the type of Un3,±3Un1,∓k1Un2,±k1 , n1 + n2 + n3 = n, lead to weak
singularities; for example, for k1 = 3 we obtain that the order of singularity is equal
to n− 9.

Consider the nonlinear term Un1,k1
Un2,k2

Un3,k3
from right-hand side of (11) when

the number of the higher-order term is equal to n. Calculate the order of the sin-
gularity for this term using the (n − 1)th step of the induction. The indexes of the
amplitudes are related by formulas

n1 + n2 + n3 = n, k1 + k2 + k3 = k.

Using (12) for n1, n2, n3 < n, we obtain, that the order of the singularity for this term
is equal to (n− k).

The right-hand side of (11) contains derivatives of previous terms with respect to
x2, t2. It leads to the increase of the order of the singularity, but the leading order
nevertheless we obtain from nonlinear terms. The lemma is proved.

Domain of validity. The domain of validity as l → −0 for the formal asymptotic
solution in form (6) is defined by

εmax
x2,t2

|Un+1| = o

(
max
x2,t2

|Un|
)
, l < 0, ε → 0.

Using Lemma 1, we obtain

−l � ε.

Theorem 1 is proved.
Remark. The constructed asymptotic solution (6) is also valid in the domain

l � ε. However, we use the asymptotics for the preresonant domain (when l < 0)
only.

Lemma 1 gives the asymptotic representation for (6), as l → −0 has the form

U =
N∑

n=2

εn
∑
k∈Ωn

exp

{
ikS

ε2

} ∞∑
j=−(n−k)

U j
n,k lj , l → −0.(14)

3. Internal asymptotics. This part of the paper contains the asymptotic con-
struction of the solution for (1) in the neighborhood of the curve l = 0. The domain
of validity of this asymptotics intersects with the domain of validity of expansion (6).
These expansions are matched.
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Theorem 2. In the domain |l| � 1 the formal asymptotic solution for (1) modulo
O(εN+1) has the form

U =

N∑
n≥1

εnWn(t1, x1, t2, x2, ε),(15)

where

Wn =
∑
k∈Ωn

Wn,k(x2, t2, x1, t1) exp

{
ik

S(t2, x2)

ε2

}
.(16)

The function Wn,1 is a solution of the problem for (21), (23) with zero condition as
λ → −∞. When k �= 1, Wn,k is the solution of algebraic equation (23). The functions
Wn,k and Wn,−k are complex conjugated.

There is an essential difference between asymptotics (15) and external prereso-
nance asymptotics (6). In the first place the leading-order term in (15) has order ε,
while the leading order term in (6) has order ε2. In the second place the coefficients
of asymptotics (15) depend on fast variables x1 = x2/ε and t1 = t2/ε.

The proof of theorem 2 consists of three steps. In the first step (subsection3.1) we
derive equations for coefficients of the asymptotics. In the second step (subsection3.2)
we solve the problems for the asymptotic coefficients. In the third step (subsection3.3)
we determine the domain of the validity for expansion (15).

3.1. The equations for coefficients. Let us construct the internal asymptotic
expansion in the domain |l| � 1. Define

λ(x1, t1, ε) =
1

ε
l(εx1, εt1).(17)

In the domain 1 � −λ � ε−1 both asymptotics (6) and (15) are valid. This
fact allows us to obtain the asymptotic representation for coefficients of the internal
asymptotics. Substituting l = ελ into formula (14) and expanding the obtained
expression in powers of ε, we find that

Wn,k =

∞∑
j=(n−k+1)

λ−jU j
n+1,k(x2, t2, x1), k ∈ Ωn, λ → −∞.(18)

Let us obtain the differential equations for the coefficients of asymptotics (15).
Substituting (15), (16) into (1) and collecting the terms with equal powers of small pa-
rameter and exponents, we find the equations for coefficients Wn,k. In particular, the
terms of order ε2 give us the equations for the leading-order terms of the asymptotics,

2i∂t2S∂t1W1,1 − 2i∂x2S∂x1W1,1 − λW1,1 = f,(19)

and the complex conjugated equation for W1,−1.
The relation of order ε3 in (1) gives us four equations. Two of them are complex

conjugate differential equations for W2,1 and W2,−1:

2i∂t2S∂t1W2,1 − 2i∂x2
S∂x1

W2,1 − λW2,1 = ∂2
x1
W1,1 − ∂2

t1W1,1

− i[∂2
t2S − ∂2

x2
S]W1,1 − 2i∂t2S∂t2W1,1 + 2i∂x2

S∂x2
W1,1 − 3γ|W1,1|2W1,1.(20)
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Two another equations are algebraic. These last equations allow us to determine the
function W3,3

W3,3 =
γ

8
(W1,1)

3.

The higher-order terms are calculated in the same way. In particular, the term
Wn,1 is determined by the differential equation

2i∂t2S∂t1Wn,1 − 2i∂x2S∂x1
Wn,1 − λWn,1 = Fn,1.(21)

The right-hand side of (21) has the form

Fn,1 = −2i∂t2S∂t2Wn−1,1 + 2i∂x2S∂x2Wn−1,1 + (∂t2S)2Wn−1,1 − (∂x2S)2Wn−1,1

− ∂2
t1Wn−1,1 + ∂2

x1
Wn−1,1 − ∂t2∂t1Wn−2,1 + ∂x2∂x1Wn−2,1

− ∂2
t2Wn−3,1 + ∂2

x2
Wn−3,1 − γ

∑
n1 + n2 + n3 = n + 1,

k1 + k2 + k3 = 1,
kj ∈ Ωnj

, j = 1, 2, 3

Wn1,k1Wn2,k2Wn3,k3 .(22)

The term Wn,k, k �= 1 is determined by algebraic equation

Wn,k =
γ

k2 − 1

(
− 2i∂t2S∂t2Wn−2,k + 2i∂x2S∂x2Wn−2,k

+ (∂t2S)2Wn−2,k − (∂x2
S)2Wn−2,k

− ∂2
t1Wn−2,k + ∂2

x1
Wn−2,k − ∂t2∂t1Wn−3,k + ∂x2

∂x1Wn−3,k

− ∂2
t2Wn−4,k + ∂2

x2
Wn−4,k −

∑
n1 + n2 + n3 = n + 1,

k1 + k2 + k3 = k,
kj ∈ Ωnj

, j = 1, 2, 3

Wn1,k1Wn2,k2Wn3,k3

)
.(23)

Thus we complete step 1 of the proof for Theorem 2.

3.2. Solvability of equations for higher-order terms. In this subsection we
present the explicit form for higher-order term Wn,1 and investigate the asymptotic
behavior as λ → ±∞.

3.2.1. Characteristic variables. The function Wn,1 satisfies (21). The solu-
tion is constructed by the method of characteristics. Define the characteristic variables
σ, ξ. We choose a point (x0

1, t
0
1) such that ∂x2

l|(x0
1,t

0
1)

�= 0 is an origin, and denote by

σ the variable along the characteristics for (21). We suppose σ = 0 on the curve
λ = 0. The variable ξ measures the distance along the curve λ = 0 from the point
(x0

1, t
0
1). This point (x0

1, t
0
1) corresponds to ξ = 0. The positive direction for parameter

ξ coincides with the positive direction of x2 in the neighborhood of (x0
1, t

0
1).

The characteristic equations for (21) have a form

dt1
dσ

= 2∂t2S(εx1, εt1),
dx1

dσ
= −2∂x2

S(εx1, εt1).(24)

The initial conditions for the equations are

x1|σ=0 = x0
1, t1|σ=0 = t01.(25)
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Lemma 2. The Cauchy problem for characteristics has a solution when |σ| <
c1ε

−1, c1 = const. > 0.
Proof. The Cauchy problem (24), (25) is equivalent to the system of integral

equations

t1 = t01 + 2

∫ σ

0

∂t2S(εx1, εt1)dζ, x1 = x0
1 − 2

∫ σ

0

∂x2
S(εx1, εt1)dζ.(26)

Substituting t̃2 = (t1 − t01)ε, x̃2 = (x1 − x0
1)ε, we obtain

t̃2 = 2

∫ εσ

0

∂t2S(x̃2 − εx0
1, t̃2 − εt01)dζ, x̃2 = −2

∫ εσ

0

∂x2S(x̃2 − εx0
1, t̃2 − εt01)dζ.

The integrands are smooth and bounded functions on the plane x2, t2. There exists
the constant c1 = const. > 0 such that the integral operator is a contraction operator
when ε|σ| < c1. Lemma 2 is proved.

It is convenient to use the following asymptotic formulas for the change of variables
(x1, t1) → (σ, ξ).

Lemma 3. In the domain |σ| � ε−1 the asymptotics as ε → 0 of the solutions
for Cauchy problem (24), (25) have the form

x1(σ, ξ, ε) − x0
1(ξ) = −2σ∂x2

S + 2

N∑
n=1

εnσn+1gn(εx1, εt1) + O(εN+1σN+2),(27)

t1(σ, ξ, ε) − t01(ξ) = 2σ∂t2S + 2

N∑
n=1

εnσn+1hn(εx1, εt1) + O(εN+1σN+2),(28)

where

gn = − dn

dσn
(∂x2S)

∣∣∣∣
σ=0

, hn =
dn

dσn
(∂t2S)

∣∣∣∣
σ=0

.

The lemma can be proved by integration by parts of (26).
The next claim gives us the asymptotic formula which relates the variables σ and

λ as σ, λ → ±∞.
Lemma 4. Let be σ � ε−1; then

λ = ϕ(ξ)σ + O(εσ2), ϕ(ξ) =
dλ

dσ

∣∣∣∣
σ=0

as σ → ∞.

Proof. From formula (17) we obtain the representation

λ =

∞∑
j=1

λj(x1, t1, ε)σ
jεj−1,

where

λj(x1, t1, ε) =
1

j!

dj

dσj
λ(x1, t1, ε)|σ=0.

It yields

λ =
dλ

dσ

∣∣
σ=0

σ + O

(
εσ2 d

2λ

dσ2

)
.
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Let ∣∣∣∣ d2l

dσ2

∣∣∣∣ ≥ const. ξ ∈ R.

The function dλ/dσ is not equal to zero:

dλ

dσ
=

1

2
(−∂x2λ∂x2S + ∂t2λ∂t2S) �= 0.

Let us suppose dλ/dσ > 0. It yields

λ = ϕ(ξ)σ + O(εσ2), ϕ(ξ) =
dλ

dσ

∣∣∣∣
σ=0

.

The lemma is proved.

3.2.2. Solutions of the equations for higher-order terms. The higher-
order terms Wn,±1 are solutions of (21) with the given asymptotic behavior λ → −∞.
Equation (21) can be written in characteristic variables as

i
d

dσ
Wn,1 − λWn,1 = Fn,1.(29)

Lemma 5. The solution of (21) with the asymptotic behavior (18) as λ → −∞
has the form

Wn,1 = exp

(
−i

∫ σ

0

dζλ(x1, t1, ε)

)∫ σ

−∞
dζFn,1(x1, t1, ε) exp

(
−i

∫ ζ

0

dχλ(x1, t1, ε)

)
.

(30)

Proof. By direct substitution we see that expression (30) is the solution of (29).
The asymptotics of this solution as λ → −∞ can be obtained by integration by parts
and substitution:

d

dσ
= 2∂t2S∂t1 − 2∂x2S∂x1 .

This yields

Wn,1 =

∞∑
j=0

(
2∂t2S∂t1 − 2∂x2S∂x1

iλ

)j[
Fn,1

iλ

]
, λ → −∞.(31)

From formula (22) we obtain that formulas (31) and (18) are equivalent. The lemma
is proved.

Thus we complete step 2 of the proof for Theorem 2.

3.3. Asymptotics as λ → ∞ and domain of validity of the internal
asymptotics. The domain of validity of the internal expansion is determined by
the asymptotic behavior of higher-order terms. In this section we show that the
nth-order term of the asymptotic solution increases as λn−1 when λ → ∞. This
increase of higher-order terms allows us to determine the domain of validity for internal
asymptotics (15) as λ → ∞.
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3.3.1. Asymptotics of higher-order terms. This section contains two propo-
sitions concerning asymptotic behavior as λ → ∞ for higher-order terms in (15). The
first lemma describes the asymptotic behavior of higher-order terms as λ → ∞, and
the second one contains a result about asymptotics of the phase function.

Lemma 6. The asymptotic behavior of Wn,1 when 1 � λ � ε−1 has the form

Wn,1 =

n−1∑
j=0

j−1∑
k=0

(
λj lnk |λ|W (j,k)

n,1 (ξ)
)
exp

(
−i

∫ σ

0

dζλ(x1, t1, ε)

)

+

∞∑
j=0

(
2∂t2S∂t1 − 2∂x2

S∂x1

iλ

)j[
Fn,1

iλ

]
.(32)

Proof. The asymptotic behavior of the coefficients Wn,1 is calculated recurrently.
Let us calculate the asymptotic behavior of the leading-order term

W1,1 = exp

(
−i

∫ σ

0

dζλ(x1, t1, ε)

)∫ ζ

−∞
dζf(x1) exp

(
i

∫ σ

0

dχλ(x1, t1, ε)

)

= exp

(
−i

∫ σ

0

dζλ(x1, t1, ε)

)∫ ∞

−∞
dζf(x1) exp

(
i

∫ ζ

0

dχλ(x1, t1, ε

)

− exp

(
−i

∫ σ

0

dζλ(x1, t1, ε)

)∫ ∞

−σ

dζf(x1) exp

(
i

∫ ζ

0

dχλ(x1, t1, ε)

)
.

Further, by integration by parts of the last term, we obtain formula (32) at n = 1,
where

W
(0,0)
1,1 (ξ) =

∫ ∞

−∞
dσf(x1) exp

(
i

∫ σ

0

dχλ(x1, t1, ε)

)
,

F1,1 = f(x1).

To calculate the asymptotics of Wn,1 in formula (30) we use the asymptotics with
respect to σ of the previous correction terms. In this case the integral (30) contains
the increasing terms with respect to σ. We eliminate this growing part from the
integral explicitly. The residual integral converges as σ → ∞. It can be calculated in
the same manner as it was calculated for W1,1 and yields formulas (32) for any n,

W
(k,0)
n,1 (ξ) =

1

k
W

(k−1,0)
n−1,1 (ξ) +

γ

k

∑
W (κ1,0)

m1,χ1
(ξ)W (κ2,0)

m2,χ2
(ξ)W (κ3,0)

m3,χ3
(ξ),

where m1 + m2 + m3 = n + 1, κ1 + κ2 + κ3 = k − 1, χ1 + χ2 + χ3 = 1, and

W
(j,k)
n,1 (ξ) =

1

j
W

(j−1,k)
n−1,1 (ξ) +

1

k
W

(j−1,k−1)
n−1,1 (ξ) + Σ1 + Σ2.

We define

Σ1 =
γ

j

∑
W (κ1,ν1)

m1,χ1
(ξ)W (κ2,ν2)

m2,χ2
(ξ)W (κ3,ν3)

m3,χ3
(ξ),

where m1 +m2 +m3 = n−1, κ1 +κ2 +κ3 = j−1, χ1 +χ2 +χ3 = 1, ν1 +ν2 +ν3 = k,
and

Σ2 =
γ

k

∑
W (κ1,ν1)

m1,χ1
(ξ)W (κ2,ν2)

m2,χ2
(ξ)W (κ3,ν3)

m3,χ3
(ξ),

where m1+m2+m3 = n−1, κ1+κ2+κ3 = j−1, χ1+χ2+χ3 = 1, ν1+ν2+ν3 = k−1.
The lemma is proved.
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To complete the proof of Theorem 2 we need to obtain the domain of validity of
asymptotics (15). The formal series (15) is asymptotic when

ε max
x1,x2,t1,t2

|Wn+1| = o

(
max

x1,x2,t1,t2
|Wn|

)
, ε → 0.

Lemma 6 gives λ � ε−1. After substitution λ = εl, we obtain l � 1. Theorem 2 is
proved.

3.4. Asymptotics of the phase function as λ → ∞. To obtain the asymp-
totics as λ → ∞ we need to derive the asymptotics of the phase function in formula
(32).

Lemma 7. As λ → ∞,∫ σ

0

dξλ =
S

ε2
+

1

ε
(∂x2S(x1 − x0

1) + ∂t2S(t1 − t01)) + O(ελ3).(33)

Proof. Substitute the asymptotics of λ from Lemma 6. Calculate the asymptotics
of the integral in formula (33)∫ σ

0

dζλ(x1, t1, ε) =

∫ σ

0

dζ

2

[
(−∂x2 l∂x2S + ∂t2 l∂t2S)ζ + O(εζ2)

]

= (−∂x2 l∂x2S + ∂t2 l∂t2S)
σ2

4
+ O(εσ3).

The asymptotics of the phase function S(x2, t2) in the neighborhood of the curve l = 0
is represented by a segment of the Taylor series. It yields

S

ε2
=

1

ε
(∂x2

S(x1 − x0
1) + ∂t2S(t1 − t01))

+
1

2
(Sx2x2(x1 − x0

1)
2 + 2Sx2t2(x1 − x0

1)(t1 − t01) + St2t2(t1 − t01)
2)

+O(ε(|t1 − t01| + |t1 − t01|)3).

Substitute instead of (x1 − x0
1) and (t1 − t01) their asymptotic behavior with respect

to ε from Lemma 3. This substitution and the result of Lemma 4 complete the proof
of Lemma 7.

The asymptotics as λ → −∞ contains fast oscillating terms with phase functions
kS, k ∈ Z. The leading-order term of the asymptotics as λ → ∞ contains the os-
cillations with an additional phase function. We obtain this result from Lemma 6.
Denote this new phase function by ϕ(x2, t2)/ε

2. The asymptotics of this function is
obtained in Lemma 7. The nonlinearity and additional phase function lead to more
complicated structure of the phase set for higher-order terms of the asymptotics as
λ → ∞.

Lemma 8. The phase set Kn for the nth-order term of the asymptotics as λ → ∞
is determined by formula

K1 = ±ϕ, K2 = ±ϕ,±S, Kn = ∪j1+j2+j3=nχj1 + χj2 + χj3 , χjk ∈ Kjk .

Proof. The proof of this lemma follows from the asymptotic formula for the nth-
order term. Representation (15), formula (32), and Lemma 6 allow us to construct
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the asymptotics as λ → ∞ of the internal expansion in an explicit form:

U =

N∑
n=1

εn

⎛
⎝n−1∑

j=0

n−2∑
k=0

λj lnk |λ|W (j,k)
n,1 (ξ)

⎞
⎠

× exp

[
− i

(
1

ε
(∂x2S(x1 − x0

1) + ∂t2S(t1 − t01)) + O(ελ3)

)]

+
N∑

n=1

εn

⎛
⎝ ∞∑

j=0

(
2∂t2S∂t1 − 2∂x2

S∂x1

iλ

)j[
Fn,1

iλ

]⎞⎠ exp

{
i
S(t2, x2)

ε2

}

+
N∑

n=2

εn

⎛
⎝ ∑

k∈Ω,k �=±1

Wn,k exp

{
ik

S(t2, x2)

ε2

}⎞
⎠ + c.c.(34)

This representation and formula (23) complete the proof of the lemma.

4. Postresonant expansion. This section contains the construction of the
asymptotics of the solution for (1) after the passage through the resonance. The
constructed solution has the order ε and oscillates. The envelope function of these
oscillations satisfies the nonlinear Schrödinger equation. This section consists of two
parts. The first part contains the construction of the formal asymptotic solution. We
obtain the equations for the higher-order terms of the asymptotics. The asymptotic
behavior for the higher-order terms as l → +0 follows from section 3.4. In the second
part of this section we determine the domain of validity for this external asymptotics
near the resonant curve l(x2, t2) = 0. The matching method gives us the initial
conditions for higher-order terms of the asymptotics.

The main result of this section is formulated in the following theorem.
Theorem 3. In the domain l � ε the formal asymptotic solution of (1) modulo

O(εN+1) has the form

U(x, t, ε) =
N∑
1

εn
n−2∑
k=0

lnk(ε)

⎛
⎝∑

±ϕ

exp

{
± iϕ(x2, t2)

ε2

}
Ψn,k,±ϕ(x1, t1, t2)

+
∑

χ∈K′
n,k

exp

{
iχ(x2, t2)

ε2

}
Ψn,k,χ(x1, t1, t2)

⎞
⎠ .(35)

Here the function ϕ(x2, t2) satisfies the eikonal equation

(∂t2ϕ)2 − (∂x2ϕ)2 − 1 = 0(36)

and initial condition on the curve l = 0:

ϕ|l=0 = S|l=0, ∂t2ϕl=0 = ∂t2S|l=0.

The leading-order term of the asymptotics is a solution of the Cauchy problem for the
nonlinear Schrödinger equation

2i∂t2ϕ∂t2Ψ1,0,ϕ + ∂2
ξΨ1,0,ϕ + i[∂2

t2ϕ− ∂2
x2
ϕ]Ψ1,0,ϕ + γ|Ψ1,0,ϕ|2Ψ1,0,ϕ = 0,

Ψ1,0,ϕ|l=0 =

∫ ∞

−∞
dσf(x1) exp

(
i

∫ σ

0

dχλ(x1, t1, ε)

)
,
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where ξ is defined by

dx1

dξ
= ∂t2ϕ,

dt1
dξ

= ∂x2
ϕ.

The coefficients Ψn,k,±ϕ are determined from Cauchy problems for linearized Schrödinger
equation (42). The coefficients Ψn,k,χ, χ ∈ K ′

n,k, are determined from algebraic equa-
tions (43). The set K ′

n,k = Kn,k\{±ϕ}.
The proof of this theorem contains two steps. In the first step (subsection 4.1)

we derive the recurrent system of the problems for the coefficients of the expansion
(35). In the second step (subsection 4.1) we define the domain of validity for (35).

4.1. Structure of the second external asymptotics. Let us construct the
formal asymptotic solution from Theorem 3.

Lemma 9. The coefficients of formal asymptotic solution (35) satisfy recurrent
system of equations (36), (41), (42), and (43).

Proof. Substitute (35) into (1) and collect the terms of the same order with
respect to ε. This yields N + 1 equations and a residual of the order εN+1. After
collecting the terms with the same phase functions, we obtain the recurrent system
of the equations for the coefficients of (35).

The terms with the phase function ϕ/ε2 and of the order ε1 give us (36) for the
phase function of eigenoscillations. The initial data is determined by the matching
condition and represented by the value of the driven phase S on the resonance curve
l = 0,

ϕ|l=0 = S|l=0, ∂t2ϕ|l=0 = ∂t2S|l=0.

The terms of the order ε2,

2i (∂t2ϕ∂t1Ψ1,0,ϕ − ∂x2ϕ∂x1Ψ1,0,ϕ) = 0,

give us the homogeneous transport equation

∂t2ϕ∂t1Ψ1,0,ϕ − ∂x2
ϕ∂x1

Ψ1,0,ϕ = 0.(37)

This equation allows us to determine the dependence with respect to the characteristic
variable ζ of the leading-order term. Equation (37) along the characteristics

dx1

dζ
= −∂x2ϕ,

dt1
dζ

= ∂t2ϕ(38)

can be written in the form of an ordinary differential equation:

dΨ1,0,ϕ

dζ
= 0.(39)

This gives us that Ψ1,0,ϕ depends on ξ. The variable ξ is defined by

dx1

dξ
= ∂t2ϕ,

dt1
dξ

= ∂x2
ϕ.

The terms of the order ε3 which oscillate as exp(iϕ/ε2) are

2i (∂t2ϕ∂t1Ψ2,0,ϕ − ∂x2
ϕ∂x1

Ψ2,0,ϕ)

+ 2i∂t2ϕ∂t2Ψ1,0,ϕ + [(∂t1ξ)
2 − (∂x1ξ)

2]∂2
ξξΨ1,0,ϕ

+ i[∂2
t2ϕ− ∂2

x2
ϕ]Ψ1,0,ϕ + γ|Ψ1,0,ϕ|2Ψ1,0,ϕ = 0.
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It is convenient to write this equation in the form of an ordinary differential equation
in terms of the characteristic variables:

dΨ2,0,ϕ

dζ
= −2i∂t2ϕ∂t2Ψ1,0,ϕ − [(∂t1ξ)

2 − (∂x1
ξ)2]∂2

ξξΨ1,0,ϕ

− i[∂2
t2ϕ− ∂2

x2
ϕ]Ψ1,0,ϕ − γ|Ψ1,0,ϕ|2Ψ1,0,ϕ.(40)

Equation (39) shows that the right-hand-side of (40) does not depend on ζ. To
avoid the secular terms in the asymptotics we demand that the right-hand side of
the equation be equal to zero. This allows us to determine the dependence of the
leading-order term on the slow variable t2,

2i∂t2ϕ∂t2Ψ1,0,ϕ + [(∂t1ξ)
2 − (∂x1ξ)

2]∂2
ξξΨ1,0,ϕ

+ i[∂2
t2ϕ− ∂2

x2
ϕ]Ψ1,0,ϕ + γ|Ψ1,0,ϕ|2Ψ1,0,ϕ = 0.(41)

The equations for the higher-order terms are obtained in the same manner,

2i (∂t2ϕ∂t1Ψn+1,k,ϕ − ∂x2ϕ∂x1Ψn+1,k,ϕ) = 2i∂t2ϕ∂t2Ψn,k,ϕ − ∂2
ξξΨn,k,ϕ

− i[∂2
t2ϕ− ∂2

x2
ϕ]Ψn,k,ϕ + ∂t1ξ∂

2
ξt2Ψn−1,k,ϕ

− γ
∑

k1,k2,l1,l2,m1,m2,α,β,δ

Ψk1,k2,αΨl1,l2,βΨm1,m2,δ,

where k1 + l1 + m1 = n + 2, k2 + l2 + m2 = k, α + β + δ = ϕ, α ∈ Kk1,k2
, β ∈

Kl1,l2 , δ ∈ Km1,m2
.

To construct the uniform asymptotic expansion with respect to ζ we obtain the
linearized Schrödinger equation for higher-order term

2i∂t2ϕ∂t2Ψn,k,ϕ + ∂2
ξξΨn,k,ϕ + i[∂2

t2ϕ− ∂2
x2
ϕ]Ψn,k,ϕ

= −∂t1ξ∂
2
ξt2Ψn−1,k,ϕ − γ

∑
k1,k2,l1,l2,m1,m2,α,β,δ

Ψk1,k2,αΨl1,l2,βΨm1,m2,δ,(42)

where k1 + l1 + m1 = n + 2, k2 + l2 + m2 = k, α + β + δ = ϕ, α ∈ Kk1,k2 , β ∈
Kl1,l2 , δ ∈ Km1,m2 .

The amplitudes Ψn,χ at χ �= ±ϕ are determined by the algebraic equations[
−(∂t2χ)2 + (∂x2χ)2 + 1

]
Ψn,k,χ = Fn,k,χ, χ �= ±ϕ.(43)

Here the right hand-side of the equation depends on the previous terms and their
derivatives

Fn,k,χ = −2iχt2∂t1Ψn−1,k,χ + 2iχx2
∂x1

Ψn−1,k,χ − 2iχt2∂t2Ψn−2,k,χ

− i [χt2t2 − χx2x2 ] Ψn−2,k,χ − ∂2
t1t2Ψn−3,k,χ − ∂2

t2t2Ψn−4,k,χ

− γ
∑

k1,k2,l1,l2,m1,m2,α,β,δ

Ψk1,k2,αΨl1,l2,βΨm1,m2,δ,

where k1 + l1 + m1 = n − 4, k2 + l2 + m2 = k, α + β + δ = χ, α ∈ Kk1,k2 , β ∈
Kl1,l2 , δ ∈ Km1,m2 .
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These equations are similar to the equations for the amplitudes from the pre-
resonance section. Lemma 9 is proved.

The right-hand side of (42) has a singularity as l → 0. The singularity appears
due to Ψn,k,χ at χ �= ±ϕ. The analysis of the right-hand side of the equation allows
us to calculate the order of singularity as l → 0. It is equal to O(l−(n−1)). Below we
prove the solvability of (42) with the given asymptotics as l → 0.

Lemma 10. The asymptotics as l → 0 of the solution of (42) has the form

Ψn,k,ϕ(x1, t1, t2) =

1∑
j=−(n−2)

j−1∑
m=0

Ψj,m
n,k,ϕ(x1, t1) lj(ln l)m + O(1), l → 0.(44)

Proof. Determine the order of the singularity of the right-hand side of the equation
as l → 0. Consider (42) for n = 3, k = 0. The solution of this equation gives us the
coefficient Ψ3,0,ϕ. The nonlinearity contains the term |Ψ2,0,S |2Ψ1,0,ϕ. The function
Ψ2,0,S has the singularity of the order l−1 as l → 0. It determines the order of the
singularity for the right-hand side l−2. We construct the asymptotics of Ψ3,0,χ in the
form

Ψ3,0,ϕ = Ψ−1,0
3,0,ϕl

−1 + Ψ0,1
3,0,ϕ ln(l) + Ψ1,1

3,0,ϕl ln(l) + Ψ̂3,0,ϕ.(45)

Substitute (45) into (42) for n = 3. It leads to a recurrent system of equations for

coefficients Ψ
(j,k)
3,0,ϕ:

−2i∂t2ϕ∂t2 lΨ
(−1,0)
3,0,ϕ = −Ψ1,0,ϕ|Ψ2,0,S |2l2,

2i∂t2ϕ∂t2 lΨ
(0,1)
3,0,ϕ = L[Ψ

(−1,0)
3,0,ϕ ],

2i∂t2ϕ∂t2 lΨ
(1,1)
3,0,ϕ = L[Ψ

(0,1)
3,0,ϕ].

Here we denote the linear operator by

L[Ψ] = 2i∂t2ϕ∂t2Ψ + ∂2
ξΨ + i[∂2

t2ϕ− ∂2
x2
ϕ]Ψ + γ

(
2|Ψ1,0,ϕ|2Ψ + (Ψ1,0,ϕ)2Ψ∗).

The regular part Ψ̂3,0,ϕ of the asymptotics satisfies the nonhomogeneous linear
Schrödinger equation. The right-hand side of the equation is smooth,

L[Ψ̂3,0,ϕ] = −l ln |l|L[Ψ
(1,1)
3,0,ϕ] − 2i∂t2ϕ∂t2 lΨ

(1,1)
3,0,ϕ.

The initial condition for the regular part of the asymptotics is determined below by
matching with the internal asymptotic expansion.

The structure of the terms Ψn,k,±ϕ for n > 3 has a similar form. The right-hand
side of (42) depends on junior terms. These singularities can be eliminated:

Fn,k,ϕ =

−(n−2)∑
j=0

−j+1∑
m=0

lj lnm |l|f (j,m)
n,k,ϕ + F̂n,k,ϕ.

The coefficients f
(j,m)
n,k,ϕ do not contain singularities as l → 0. These coefficients are

easy calculated.
The direct substituting of (44) into (42) and collecting the terms with the same

order of l completes the proof of Lemma 10.
Thus we complete step 1 of the proof of Theorem 3.
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4.2. The domain of validity of the second external asymptotics and
matching procedure. The domain of validity of the second external asymptotics is
determined by

ε max
ξ,t2,x2

|Vn+1| = o

(
max
ξ,t2,x2

|Vn|
)
, ε → 0.

Formulas (35) and (44) give the condition

l � ε.

The domain |l| � 1 of validity of the internal asymptotics and domain of validity
of the second external asymptotics intersect. This fact allows us to complete the
construction of the second external asymptotics by a matching method [17]. The
structure of singular parts of the internal asymptotics as λ → +∞ and external
asymptotics as l → 0 are equivalent. The coefficients are coincident due to our
construction. The matching of regular parts of these asymptotics takes place due to

Ψn,0,ϕ|l=0 = W (0,0)
n (ξ).

The function W
(0,0)
n (ξ) is determined in Lemma 6.

In particular, the initial condition for the leading-order term has the form

Ψ1,0,ϕ|l=0 =

∫ ∞

−∞
dσf(x1) exp

(
i

∫ σ

0

dχλ(x1, t1, ε)

)
.

The soliton theory for the nonlinear Schrödinger equation leads us to the fact that
the function Ψ1,0,ϕ contains the solitary waves when f(x1) is sufficiently large.

Theorem 3 is now proved.

5. Summary. In this work we found the formula connecting the form of the
resonant pumping and the shape of the solution after the slow passage through the
resonance. In particular, it gives the mathematical basis for a solution of the impor-
tant problem of nonlinear optics about the generation of the solitary packets of nearly
monochromatic weakly nonlinear dispersive waves. We present the obvious form for
the perturbation which generates such packets with a soliton as an envelope function.

The proposed approach opens ways for solving similar problems in pure and ap-
plied mathematics. The pure mathematical problem is a justification of the con-
structed asymptotic formulas obtained in this work. The applied problems are the
generation of the solitary packet of waves with few carrier frequencies. One more
applied problem is a pumping of the amplitudes of nonlinear waves up to the order of
1. Such resonant pumping would be useful for magnetics, Josephson junctions, and
other applications in physics.

Acknowledgments. We are grateful to I. V. Barashenkov, L. A. Kalyakin, and
B. I. Suleimanov for helpful comments and for help in improving the mathematical
presentation of the results.
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Abstract. This paper is concerned with the theory and modeling of plasma instabilities in the
ionosphere. We first consider the so-called striation model, which consists of balance equations for the
density and momenta of the plasma species, coupled with an elliptic equation for the potential. The
linearized instability of this model is analyzed in the framework of Fourier theory, both for smooth and
discontinuous steady states. Then, we show that the dissipation mechanisms at work in the more
refined “dynamo model” allow us to stabilize high wave-number perturbations. We also analyze
turbulence as a possible source of additional dissipation (in a similar way as in fluid mechanics).
To this aim, we use the statistical approach to turbulence and derive a so-called turbulent striation
model, of which we analyze the stability properties. Numerical experiments are used to support our
investigations.

Key words. Euler–Maxwell system, dynamo model, striation model, ionospheric plasma, stri-
ations, turbulence, statistical approach, linearized stability analysis
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1. Introduction. This paper is concerned with the modeling and analysis of
plasma instabilities in the ionosphere, at altitudes ranging between a few hundred
and a thousand kilometers (the F region). The plasma may be created, either by
the natural ionization of the atmosphere or by possible artificial causes (such as, e.g.,
thermonuclear explosions [31], [43], [19]). The ionospheric plasma is strongly struc-
tured by the earth’s magnetic field. Indeed, the mobility of the ionized species (i.e.,
their velocity in response to an external electric field) is strongly anisotropic: while
field-aligned mobilities (i.e., mobilities in the direction of the magnetic field) are large,
transverse mobilities (also called Pedersen mobilities) are quite small. Additionally,
a component of the plasma velocity orthogonal to both the electric and magnetic
fields appears as a result of the Hall effect. This component is the major actor in the
so-called E ×B drift instability, which we are going to discuss in the present paper.

At lower altitudes, the density of the neutral atmosphere is large, and the plasma
is dragged by the motion of the neutral molecules (or neutral wind). As a result, a
net electrical current flows across the magnetic field lines and generates an induced
electric field. This is the so-called ionospheric dynamo effect [1]. The reader can refer
to [37], [21], [9], and [2] for reviews about ionospheric physics. In the presence of a
gradient in the plasma density, the neutral wind can trigger the E×B drift instability,
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Route de Narbonne, 31062 Toulouse Cedex 4, France (besse@mip.ups-tlse.fr, degond@mip.ups-tlse.fr,
deluzet@mip.ups-tlse.fr).
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which bears strong similarities to the Rayleigh–Taylor instability in fluid mechanics
[10]. This instability produces strong inhomogeneities (the ionospheric striations),
which soon propagate over hundreds of kilometers along the magnetic field lines. The
generation of plasma irregularities is reviewed in [13], [14], [36].

Our goal is to discuss some aspects of the mathematical and numerical modeling
of this instability. Striations as well as related instability phenomena of the iono-
spheric plasma have been the subject of a wide literature (see, e.g., discussions of the
“Spread F” in [44], [26], [34]; of the equatorial electrojet in [8], [41], [38], [39]; and of
Barium releases experiments in [12]). The well-accepted mathematical model for these
phenomena is the “dynamo” model [44], [12], which consists of mass and momentum
balance equations for the plasma species. A simpler model, the “striation” model,
is obtained when the field-aligned mobilities are supposed infinite. The derivation of
these models and their interrelations are reviewed in [3] and will be briefly recalled in
section 2.

The E×B drift instability is well described in the framework of the striation model
(see section 3). A linear stability analysis indeed shows that exponential density
profiles are unstable (see the review in [14] and section 3.2). Exponential density
profiles are the only nonconstant smooth stationary states which allow analytical
computations (via Fourier analysis). However, they are quite unrealistic, and a better
theory should consider discontinuous density profiles. We consider this problem in
section 3.3 and show that the striation model is also unstable in this case for certain
configurations of the neutral wind. In a companion work [6], we show that smooth
density profiles which are linearly unstable are nonlinearly unstable. However, the
proof of [6] does not extend to discontinuous solutions. Similarly, we do not know,
even for smooth density profiles, whether linear stability implies nonlinear stability.

In practice, the instability saturates and cascades towards smaller scales by non-
linearity [13], [39], [41], [25], [33], until it is ultimately damped by dissipation. In the
striation model, however, all dissipation mechanisms have been removed. In section
4, we reintroduce dissipation effects by considering the dynamo model, where both
finite temperature and finite conductivity effects are retained. A linearized stability
analysis shows that high-wave-number perturbations are damped. However, in prac-
tice, the magnitude of the dissipation is too small, and we must consider other sources
of dissipation.

In this paper, we investigate the possible influence of fluid turbulence. In fluid
mechanics, it is a well-known fact that turbulence may enhance dissipation (see [32]
and references therein). The statistical approach to fluid turbulence considers averages
of the Navier–Stokes equations over various approximate realizations of the same
solution. The chains of resulting statistical equations are closed by various types of
phenomenological assumptions, which are still mathematically unjustified except in
very simple cases, such as that considered in [27]. The models obtained (such as
the K-ε model) involve additional terms compared with the standard Navier–Stokes
equations, which describe the enhancement of diffusion by turbulence.

In section 5, we develop a similar statistical framework to model turbulence within
the striation model (see also [28] for an application to MHD theory). We first de-
rive an averaged striation model, for which we propose a closure ansatz inspired by
[27]. This leads to a diffusive version of the striation model, the “turbulent striation
model.” To find the value of the turbulent diffusion constant, a stability analysis of the
model is performed. It allows us to relate the threshold wave-number for instability
(i.e., the typical size of the finest persisting structures in the plasma, which can be
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experimentally observed) with the value of this constant.
Section 6 is devoted to two-dimensional numerical simulations. Their goal is to

provide numerical and quantitative evidence of the features predicted in section 5,
namely to show that the turbulent striation model produces persisting structures
whose typical sizes are related to the magnitude of the diffusion. Three-dimensional
simulations of the striation model are shown in [4]. A review collecting material from
[3], [4], [6] as well as from the present paper is presented in [5].

Turbulence modeling in ionospheric plasmas has been widely investigated in the
literature. Most of the approaches rely on nonlinear Fourier analysis [39], [22], [23]
and bear similarities with the spectral approach to turbulence in fluid mechanics [29]
(see also [15] for applications of these ideas to other plasma physics contexts). In
using the statistical approach, we have chosen a slightly different route.

2. The “dynamo” and “striation” models of the ionospheric plasma.
We consider two different species of particles: electrons and one-ion species. They
are assumed so dilute that they have no influence on the dynamics of the neutrals,
the velocity of which un(x, t) (also called the neutral wind) is supposed known. In
[3], a hierarchy of models for the ionospheric plasma has been derived. Of particular
interest in the present study are the “dynamo” and “striation” models. The dynamo
model is written as follows:

∂tn + ∇ · (nui) = 0,(2.1)

−∇φ + ue,i ×B = κqe,i [νe,i(ue,i − un) + η∇ log n] ,(2.2)

∇ · j = 0, κj = n(ui − ue),(2.3)

where we denote by n(x, t) the density of the plasma; ue(x, t), ui(x, t) the electron
and ion velocities; j(x, t) the plasma current; φ(x, t) the electric potential; B(x) the
earth magnetic field; and νe(x), νi(x) the electron-neutral and ion-neutral collision
frequencies, respectively. These quantities depend on the three-dimensional position
coordinate x and on the time t ≥ 0. The parameters η and κ are dimensionless and
defined below. Equation (2.2) actually consists of two equations, one for the electrons
(with the index “e” chosen everywhere) and one for the ions (with the index “i”).
We let qi = 1, qe = −1. We suppose that the geomagnetic field B(x) is unperturbed
by the presence of the plasma and is known. Similarly, the collision frequencies
νe(x), νi(x), which primarily depend on the neutral density, are supposed known.
The plasma is supposed quasi-neutral; i.e., the electron and ion densities coincide
with n. Despite the quasi-neutrality, the electron and ion velocities can be different,
giving rise to a nonzero plasma current j. We have supposed that the electron and
ion gases are isothermal with the same uniform temperature, which seems a valid
physical hypothesis for the earth ionosphere [7]. The ionization-recombination terms
which should appear on the right-hand side (r.h.s.) of (2.1) have been omitted as
well. Typical ionization-recombination times are of the order of several hours, which
is about the typical growth time of the instability. Therefore, these terms would make
only a small correction to the analysis below and have been omitted for the sake of
simplicity.

System (2.1)–(2.3) is written in dimensionless units. The scaling units and their
typical values in the situations of interest are summarized in Table 2.1 below. The
parameters η and κ are given by

η =
kBT̄

miū2

1

ν̄it̄
κ =

meν̄e
eB̄

=
miν̄i
eB̄
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Table 2.1

Scaling units.

Quantity Scaling unit Value
Time t̄ 103 s
Length x̄ 105 m
Velocity ū = x̄/t̄ 102 ms−1

Density n̄ 1012 m−3

Temperature T̄ 103 K
Magnetic field B̄ 10−5 T
Electric potential φ̄ = ūB̄x̄ 102 V
e-n collision frequency ν̄e 102 s−1

i-n collision frequency ν̄i = me
mi

ν̄e 10−2 s−1

(where kB is the Boltzmann constant) and respectively measure the ratio of the ther-
mal energy to the ion drift energy and the typical number of electron-neutral or
ion-neutral collisions per rotation period in the geomagnetic field. These two param-
eters have typical values (according to Table 2.1) η ∼ 101, κ ∼ 10−4. Since κ is small,
it is meaningful to investigate the limit of the dynamo model when κ → 0. This leads
to the so-called striation model that we give in more detail below.

Before doing so, we rewrite the dynamo model in a more appropriate form. In a
local reference frame in which the last basis vector is aligned with the magnetic field,
the ion and electron mobility matrices Me and Mi are given by

Me =

⎛
⎝μP

e −μH
e 0

μH
e μP

e 0

0 0 μ
‖
e

⎞
⎠ , Mi =

⎛
⎝ μP

i μH
i 0

−μH
i μP

i 0

0 0 μ
‖
i

⎞
⎠ ,

where the electron and ion Pedersen, Hall, and field-aligned mobilities are respectively
defined by

μP
e,i =

κνe,i
(κνe,i)2 + |B|2 , μH

e,i =
|B|

(κνe,i)2 + |B|2 , μ
‖
e,i =

1

κνe,i
.

In the situation κ → 0, the electron or ion field-aligned mobilities tend to infinity.
Thanks to the mobility matrices, (2.2) and (2.3) may be rewritten as

ue,i = Me,i (−qe,i∇φ + κ(νe,iun − η∇ log n)) ,(2.4)

−∇ · (n(Mi + Me)∇φ))

= −κ∇ · (n[Mi(νiun − η∇ log n) − Me(νeun − η∇ log n)]) .(2.5)

It is clear that the conductivity matrix n(Mi +Me) is positive definite (provided that
νi or νe is positive and finite). Therefore, (2.5) is a three-dimensional elliptic equation
for φ.

Now, we assume that the magnetic field is constant and uniform (see Figure 2.1).
An extension to the nonuniform B case is given in [3] and [4]. Let us denote by
(x̂1, x̂2, x̂3) the orthonormal coordinate basis, with x̂3 aligned with B. We can choose
the scaling units such that |B| = 1, so that B = x̂3. We denote by x = (x1, x2) the
position vector in the two-dimensional plane orthogonal to B and by ∇ = (∂x1 , ∂x2)
the two-dimensional gradient. For any three-dimensional vector a = (a1, a2, a3), we
define a = (a1, a2) as its projection onto this plane.
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Fig. 2.1. Geometry of the earth environment and reduction to a Cartesian geometry.

When κ → 0, the dynamo model reduces to the so-called striation model [3]:

∂tn + ∇ · (nu) = 0,(2.6)

u = −∇φ×B + ((un − ην−1∇ log n) ·B)B,(2.7)

∇ · (−σ(x)∇φ + (Un − 2η∇N) ×B) = 0,(2.8)

with φ = φ(x), σ(x) =
∫
nνdx3, Un =

∫
nνundx3, N =

∫
ndx3, ν = νi + νe, and

ui = ue = u. The striation model couples a three-dimensional convection-diffusion
equation (2.6), (2.7) for the density n with a two-dimensional elliptic equation (2.8)
for the electric potential φ. The coefficients of the elliptic equation (2.8) involve
integrals of n over x3, i.e., along the magnetic field lines. The infinite conductivity
of the plasma along the magnetic field lines constrains the electric potential to be
constant along these lines, i.e., to depend only on the two-dimensional coordinate x.

If we additionally suppose that un is orthogonal to B and that all data and
unknowns are independent of x3, the striation model reduces to the following mono-
layer striation model:

∂tn + ∇ · (nu) = 0, u = −∇φ×B,(2.9)

∇ · (nh) = 0, h = ν
(
−∇φ + (un − 2ην−1∇ log n) ×B

)
,(2.10)

where now all variables and vectors are two-dimensional (except B = x̂3) and 2-
dimensional vectors are now left without being underlined. The quantity h represents
the electron-ion relative velocity. We remark that ∇ · u = 0. Therefore, we can write
relation (2.9) as

∂tn + (u · ∇)n = 0.(2.11)

As we will next see, the pressure term ∇ log n does not change the linearized stability
properties of the striation model. When η = 0, (2.10) becomes

∇ · (nh) = 0, h = ν (−∇φ + un ×B) .(2.12)

In the next section, we analyze the linearized stability of this model.

3. Stability analysis of the striation model.
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3.1. Introduction and phenomenology. The striation model exhibits an in-
stability, the gradient-drift or E × B drift instability [13], [14]. In a recent work [6],
local-in-time existence and uniqueness of solutions for this model have been proven
and, following the methodology of [18], [20], [11], [24], smooth stationary density pro-
files which are linearly unstable have been shown to be nonlinearly unstable. However,
it is still open whether the converse is true. In [6], a variational formulation for the
instability growth rate is given. In the present work, we are aiming at a more quan-
titative result for certain specific classes of stationary profiles.

We restrict ourselves to two particular kinds of steady-state profiles. The first
ones are smooth with an exponentially increasing density in one direction; they have
already been investigated [13], [14], and we shall only summarize the results. The
second ones are discontinuous density profiles; their analysis is, to the best of our
knowledge, new. In passing, we shall have to show that it is meaningful to consider
discontinuous solutions of the striation model.

We first give a phenomenological view of the instability of the striation model.
We consider a steady state consisting of a discontinuous density n(x) = n for x2 < 0
and n = n > n for x2 > 0, with ∇φ = 0 and un = (0, U). We slightly perturb
the interface, which is now represented by the graph of the function x2 = ε sin(ξx1),
where ε represents the magnitude of the perturbation (ε � 1) and ξ is its spatial
frequency.

The term un ×B in (2.12) creates a charge modulation along the interface which
is alternately positive and negative. A nonzero electric field −∇φ parallel to the
interface with a similar sign modulation is generated according to (2.12). Then, by
(2.9), a nonzero component of the velocity u in the direction normal to the interface is
created with again an alternating sign. According to the sign of un, this component of
the velocity tends to either damp the modulation of the interface or increase it. The
former case is a stable one, while the latter is an unstable one. The precise geometric
configuration is depicted in Figures 3.1 and 3.2.

un

x1

x2

u u

u

E E

E

un ×B

n

n

Fig. 3.1. Stable configuration.

un

x1

x2

u

u

u

E E

E

un ×B
n

n

Fig. 3.2. Unstable configuration.

This behavior can be recovered by the linear stability analysis. We first turn to
the analysis of the exponential density profile. In the remainder of this section, we
assume that ν is a uniform constant and, by a convenient choice of the scaling units,
we let ν = 1.

3.2. Linear stability analysis: The exponential density profile. Let us
denote by (n0, u0, h0, φ0) the unperturbed state, i.e., a time-independent solution
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of the striation system (2.9), (2.12). We consider an exponential density profile in
the x2-direction, i.e., n0 = N exp(x2/λ), where λ > 0 is the gradient length, while
(u0, h0,∇φ0) are uniform constants. We suppose that the neutral wind is uniform as
well and has components un = (V,U). In this configuration, a necessary and sufficient
condition for (n0, u0, h0, φ0) to form a steady state is that u0 = (V, 0), h0 = (νU, 0),
−∇φ0 = (0, V ). In this analysis, we suppose that η = 0 unless otherwise specified.

Then, we introduce the perturbation n = n0(1 + εn1 +O(ε2)), (u, h, φ) = (u0, h0,
φ0)+ε(u1, h1, φ1)+O(ε2), with ε � 1 in the striation model, and neglect the terms of
order higher than ε. The neutral wind, being a datum, remains unperturbed. We note
that ∇n0 = (0, n0/λ). An easy computation gives the linearized system governing the
first order perturbation:

∂tn
1 + λ−1∂x1φ

1 + V ∂x1n
1 = 0,(3.1)

−λ−1∂x2
φ1 − Δφ1 + U∂x1

n1 = 0.(3.2)

Remark 3.1. If the pressure gradient terms are retained in the model (i.e., if
η �= 0), the steady state is modified only through the expression of h0, which should
be taken as h0 = (U − 2ηλ−1, 0). However, the first order perturbation equations are
the same as (3.1), (3.2). The details are left to the reader.

We develop the solution of (3.1), (3.2) into plane waves, i.e., (dropping the su-
perscripts “1” for clarity) (n, φ) = (n̄, φ̄λ|U |) exp(iλ−1(ξ1x1 + ξ2x2 − ωt|U |)), where
ξ = (ξ1, ξ2) is the (normalized) wave-vector of the perturbation and ω its frequency.
Introducing this ansatz into (3.1), (3.2), we get

−ωn̄ + ξ1φ̄ = 0, iσξ1n̄ + (ξ2
1 + ξ2

2 − iξ2)φ̄ = 0,(3.3)

with σ = sign(U) ∈ {−1, 1}. This system has a nontrivial solution iff its determinant
is nonvanishing. This condition yields the dispersion relation

ω =
−iσξ2

1

(ξ2
1 + ξ2

2)2 + ξ2
2

(ξ2
1 + ξ2

2 + iξ2).(3.4)

We now recall the following standard definition.
Definition 3.2. The perturbation is stable if n and φ stay bounded for all times

t ≥ 0 and unstable in the converse situation. Therefore, a perturbation is stable iff
	m(ω) ≤ 0 and unstable iff 	m(ω) > 0. A stationary state is called stable if all its
perturbations are stable for all wave vectors ξ. It is unstable as soon as there exists a
wave vector ξ giving rise to an unstable perturbation.

Thanks to (3.4), we have sign(	m(ω)) = −σ. We then conclude the following
result.

Proposition 3.3. The steady-state configuration with an exponential density
profile is stable iff U ≥ 0, i.e., if the x2-component of the neutral wind points in the
same direction as the density gradient. Furthermore, in the case U < 0, all wave
vectors ξ �= 0 are unstable, and for ξ2 = 0 the growth rate is independent of ξ1.

As seen above, exponential density profiles allow explicit computations. However,
they are fairly unrealistic, as the density tends to infinity on one side and degenerates
to zero (and the elliptic problem (2.12) as well) on the other side. In order to study
a more realistic situation, we extend our analysis to the case of discontinuous density
profiles in the next section.
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Fig. 3.3. Discontinuity curve of n.

3.3. Linear stability analysis: Discontinuous density profiles. We con-
sider a density profile which is piecewise constant and discontinuous across a parame-
trized curve C(t) given by the equation x2 = f(x1, t), where f ∈ C1(R × [0,+∞[),
i.e., (see Figure 3.3)

n(x, t) =

{
n for x2 < f(x1, t) ,
n for x2 > f(x1, t) .

(3.5)

First, we must give a meaning to discontinuous solutions of this kind. Toward
this aim, we use the notion of a weak solution of (2.11).

Definition 3.4. Let u ∈ C1(R2 × [0,∞[). A function n ∈ L∞
loc(R

2 × [0,∞)) is a
weak solution of (2.11) with initial data n0 iff n verifies∫

R2×[0,∞)

n

(
∂ϕ

∂t
+ ∇ · (uϕ)

)
dx dt +

∫
R2

n0 ϕ(x, 0) dx = 0(3.6)

for all functions ϕ(x, y, t) ∈ C1
c (R2 × [0,∞)), where C1

c defines the space of functions
of class C1 with compact support.

The solution of (3.6) can be obtained through the method of characteristics. In
particular, it satisfies the maximum principle. Therefore, if there exist two constants
n∗, n∗ such that 0 < n∗ < n0(x) < n∗, this inequality is satisfied at all times:
0 < n∗ < n(x, t) < n∗.

This notion has to be extended to the case of discontinuous velocities. Suppose
that u = (u1, u2) is taken in the space L1

loc([0,∞), Hdiv), with Hdiv(R
2) = {u ∈

L2(R2), s.t. ∇ · u ∈ L2(R2)}. Then, ∇ · (uϕ) ∈ L1
loc(R

2 × [0,∞)) for all test functions
ϕ, and the expression (3.6) still has a meaning. Now, in the striation model, u is a
given by u = −∇φ × B, where φ is a solution of (2.12). To solve (2.12), we use the
following (classical) proposition.

Proposition 3.5. Let un ∈ L2(R2) and n be such that there exist two constants
n∗, n

∗ with 0 < n∗ < n(x, t) < n∗. Then, (2.12), which can be written

∇ · (n∇φ) = ∇ · (nun ×B),

has a solution in the space L1
loc([0,∞), H), with H = {φ ∈ D′(R2), ∇φ ∈ L2(R2)},

unique up to an additive constant.
Since u satisfies ∇ · u = 0, this proposition guarantees that u belongs to L1

loc

([0,∞), Hdiv(R
2)). For such velocities, this allows us to define n as a weak solution

of (2.11) in the sense of (3.6). Therefore, it is meaningful to look for solutions with
discontinuous densities. Of course, we have not shown the actual existence of such
solutions, which will be the subject of future work. Now, we recall the following
classical trace property (see [16]).
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Lemma 3.6. Let C be a regular orientable curve of R2. Then the mapping
γN : v → (v · N)|C (with N the unit normal vector to C) defined on D(R2) can be
extended by continuity to a linear and continuous mapping, still denoted by γN , from
Hdiv(R

2) into H−1/2(C).
We are now ready to determine the conditions that f must fulfill for n to be a

weak solution. We have the following.
Proposition 3.7. Let u belong to L1

loc([0,∞), Hdiv(R
2)). A function n defined

by (3.5) is a weak solution to (2.11) iff f is a smooth solution to the equation

∂tf = (u ·N)
(
1 + (∂x1f)2

)1/2
, (x1, t) ∈ R × [0,∞) ,(3.7)

where N is the unit normal vector to the curve of discontinuity C(t) (pointing towards
x2 > 0) and (u · N) is the trace along C(t) as defined by Lemma 3.6. We can write
(u · N)(1 + (∂x1

f)2)1/2 = [u2 − u1∂x1f ] |C , where the index C indicates that this
quantity is the common limit of the bracket as x2 → f(x1, t) from above and below.

Proof. We insert the expression for n into (3.6). We get

0 = n

∫
x2<f, t≥0

(∂tϕ + ∇ · (uϕ)) dx dt + n

∫
x2>f, t≥0

(∂tϕ + ∇ · (uϕ)) dx dt .

Since ϕ is compactly supported, we have
∫

R2×[0,∞)
(∂tϕ + ∇ · (uϕ)) dx dt = 0. We

regard ϕ as compactly supported in R2 × (0,∞) since the treatment of the initial
condition at t = 0 is standard. We deduce that

0 = (n− n)

∫
x2<f, t≥0

(∂tϕ + ∇ · (uϕ)) dx dt .(3.8)

In order to apply the Green formula, we use Lemma 3.6. We define the surface
Σ = {(x, t) ∈ R2× [0,∞), x ∈ C(t)} and the open sets O(t) = {x ∈ R2, x2 < f(x1, t)}
and Ω = {(x, t) ∈ R2 × [0,∞), x ∈ O(t)}. Let Ñ = (Ñ1, Ñ2, Ñt) be the outgoing unit
normal to Ω at (x, t) of Σ and Ñx = (Ñ1, Ñ2). Thanks to Lemma 3.6, we can apply
the Green formula and get∫

Ω

(∂tϕ + ∇ · (uϕ)) dx dt =

∫
Σ

ϕ
(
Ñt + u · Ñx

)
dΣ(x, t) ,

where the integrals on Σ should be understood as the duality L∞([0,∞), H1/2(C(t)))
against L1([0,∞), H−1/2(C(t))). Now, we have ÑdΣ(x, t) = (−∂x1

f, 1, −∂tf) dx1 dt,
which implies ÑxdΣ(x, t) = (1 + (∂x1

f)2)1/2N dx1 dt. Assuming that n �= n, (3.8)
gives ∫

R×[0,∞)

ϕ
(
(u ·N)

(
1 + (∂x1f)2

)1/2 − ∂tf
)
dx1 dt = 0.(3.9)

Since (3.9) has to be verified for all test functions ϕ, we deduce (3.7).
Then, the striation model (2.9), (2.12) for weak solutions can be written

∂tf = [∂x2φ∂x1f + ∂x1φ] |C(t) ,(3.10)

−∇ · ((nχf + n(1 − χf ))(∇φ− un ×B)) = 0,(3.11)

with χf = 1 if x2 < f(x1, t) and χf = 0 otherwise.
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We now turn to the stability analysis of the striation model with discontinuous
initial density. A steady state of this model is given by f0 = 0, ∇φ0 = (0,−V ),
un = (V,U). We define the small perturbations of order ε as f = εf1, φ = φ0 + εφ1,
with ε � 1. We introduce this ansatz in (3.10), (3.11) and keep only the terms of
order ε. We get(

∂tf
1 + V ∂x1f

1 − ∂x1φ
1
)
|(x1,0,t) = 0,(3.12)

−∇ · (n0∇φ1) = −U lim
ε→0

ε−1∂x1
(nχ(εf1) + n(1 − χ(εf1))),(3.13)

where n0 = nχ0 +n(1−χ0) is the unperturbed density profile. A simple computation
leads to ∂x1χ(εf) = ε(∂x1f)δx2=0 +O(ε2), where the distribution g(x1)δx2=0 is defined
through the relation 〈g(x1)δx2=0, ϕ〉 =

∫
R
ϕ(x1, 0)g(x1) dx1 with ϕ(x) ∈ C∞

c . Then
(3.13) reads

−∇ · (n0∇φ1) = U(n− n)∂x1f
1 δx2=0 .(3.14)

Like in the exponential density profile case, we develop the solution as a plane wave
in the x1 direction: (f1, φ1) = (f̄ , φ̄(x2)) exp i(ξx1 − ωt), where f̄ and φ̄(x2) must be
determined.

We introduce the plane-wave ansatz in (3.12), (3.14), and we get

−iωf̄ + iV ξf̄ = iξφ̄(0) ,(3.15)

−
(
∂x2

(
n0∂x2 φ̄

)
− ξ2n0φ̄

)
= U(n− n)iξf̄δx2=0 .(3.16)

If we solve (3.16) away from the point x2 = 0 and look for a bounded solution when
|x2| → ∞, we find φ̄(x2) = φ̄(0)e−|ξ||x2|. Then, in the distributional sense on R, we
have

−
(
∂x2

(
n0∂x2 φ̄

)
− ξ2n0φ̄

)
= −(n + n)|ξ|φ̄(0)δx2=0 .(3.17)

We introduce (3.17) in (3.16) and find

iξf̄δx2=0 −
n + n

n− n

|ξ|
U

φ̄(0)δx2=0 = 0 .(3.18)

Solving for f̄ thanks to (3.15) and inserting it into (3.18) allows us to find the disper-
sion relation

ω = −V ξ − i U
n− n

n + n
ξ.(3.19)

We can easily deduce the following stability result.
Proposition 3.8. Let us assume that n > n. Steady states defined by (3.5) with

f = 0 are stable iff U ≥ 0. Furthermore, if U < 0, all wave-vectors ξ are unstable.
The growth rate of the instability is given by

|	m(ω)| =
n− n

n + n
U |ξ|.(3.20)

This theorem makes the formal analysis of section 3.1 more quantitative. We note
that the growth rate increases linearly as a function of ξ, while it was a constant in
the exponential density case (section 3.2). This feature prevents us from extending
the nonlinear instability theorem of [6] to the discontinuous case.
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3.4. Conclusion of the stability analysis. The instability contributes to the
development of smaller and smaller structures in the plasma. Quickly, the plasma
becomes chaotic (see section 6). In practice, the instability saturates after reaching
some level by the effects of physical dissipation mechanisms, which are not accounted
for so far in the model. We can think of three sources of physical dissipation: (i) finite
temperature effects, (ii) finite conductivity effects, (iii) turbulence effects. By Remark
3.1, we have seen that finite temperature effects alone do not change the results of the
stability analysis. Therefore, we must simultaneously introduce finite temperature
and finite conductivity effects; i.e., we must go back to the full dynamo model (2.1)–
(2.3). In section 4, we perform the stability analysis of the dynamo model and show
that large wave-vector perturbations are stable. However, the level of dissipation, i.e.,
the threshold wave-number for stability, is too large to match practical observations.
Therefore, in section 5, we investigate the effects of fluid turbulence.

4. Stability analysis of the dynamo model (2.1)–(2.3). This analysis can
be found, in parts, in [13], [14]. We consider steady states with exponential density
profiles. Due to diffusion, discontinuous density profiles are not steady states of the
dynamo model any longer, and there is no point in trying to analyze their stability. To
simplify the analysis and to make it as close as possible to that of the striation model
in section 3.2, we still consider a uniform magnetic field pointing in the x3-direction,
and we suppose that un is orthogonal to B. All unknowns are independent of x3, and
vectors are contained in the plane (x1, x2). We assume that νe and νi are constants
and such that ν = νe + νi = 1.

The steady state is given by

n0 = N exp
(x2

λ

)
, un = (V,U) , h0 =

(
U − 2ηλ−1

)
x̂1,

u0
i =

{
κνe(U − 2ηλ−1) + V

}
x̂1, u0

e =
{
−κνi(U − 2ηλ−1) + V

}
x̂1,

∇φ0 = (−κ2νiνe(U − 2ηλ−1),−κ(νe − νi)(U − ηλ−1) − V ) .

We proceed to the linear stability analysis as in section 3.2. We introduce the
perturbation n = n0(1 + εn1 +O(ε2)), ui,e = u0

i,e + εu1
i,e +O(ε2), and φ = φ0 + εφ1 +

O(ε2) in the dynamo model (2.1)–(2.3). We keep only order ε terms and develop the
solution as a plane wave according to the same ansatz as in section 3.2. Let us define

μH
− = μH

i − μH
e , μH

+ = μH
i + μH

e , μP
− = μP

i − μP
e , μP

+ = μP
i + μP

e ,

X = ξ1μ
H
i − ξ2μ

P
i , Y = ξ1μ

H
− − ξ2μ

P
+ , Z = ξ1μ

H
+ − ξ2μ

P
− ,

AX = μP
i |ξ|2 + iX , AY = μP

+|ξ|2 + iY , AZ = μP
−|ξ|2 + iZ .

Then, we get the dispersion relation

ω =
A∗

Y

|U ||AY |2

(
ξ1u

0
ixAY − i

κη

λ
AXAY − ξ1h

0
xAX + i

κη

λ
AXAZ

)
,(4.1)

where h = ui − ue and the star denotes the complex conjugate. The expression of
	m(ω) may be simplified as follows:

	m(ω) =
2κη

λ|U ||AY |2
μP
i μ

P
e μ

P
+|ξ|2P (ξ), P (ξ) = −|ξ|4 + (a + 1)ξ2

1 + 2cξ1ξ2 − ξ2
2 ,

(4.2)
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with a = −Uλ ( 2κηνeνiμ
P
+ )−1, c = μH

− (μP
+)−1.

If κ → 0, the dynamo model reduces to the striation model with nonzero temper-
ature, which has the same dispersion relation (3.4) as the striation model with zero
temperature (see Remark 3.1). We can verify this property on the dispersion relation
(4.2). Indeed, as κ → 0, we have a ∼ −Uλ ( 2ηνeνi )

−1κ−2, c ∼ κ(νe − νi). Therefore,
P (ξ) ∼ −Uλ ( 2ηνeνi )

−1ξ2
1κ

−2, and we have P (ξ) < 0 if U > 0 (resp., P (ξ) > 0 if
U < 0). Thus, we recover the results of section 3.2 for the striation model.

On the other hand, if we let the temperature go to zero (i.e., η → 0) in (4.2)
while keeping κ finite, we find a = O(η−1) while c = O(1). Therefore, P (ξ) ∼
−Uλ(2κνiνeμ

+
P η)

−1, and again the stability conditions for this model are the same as
those of the striation model; i.e., the model is unstable for all wave-vectors if U < 0
and stable otherwise. Therefore, for the model to exhibit a stable range of wave-
vectors, we need at the same time a finite conductivity and a finite temperature. We
now show that this is indeed the case.

Proposition 4.1. Suppose that η > 0 and κ > 0. Then,
(i) the dynamo model (2.1)–(2.3), linearized about the above-defined steady states,

is stable iff Uλ > 2ηκ2νeνi;
(ii) if Uλ < 2ηκ2νeνi, there exists R0(η, κ) > 0 such that if ξ is an unstable

wave-vector, then |ξ| < R0. Furthermore, R0 = O((
√
ηκ)−1) as

√
ηκ → 0.

We note that the stability criterion for the dynamo model is more restrictive than
that of the striation model. The quantity Uλ needs to be not only positive, but
also large enough. However, in the unstable case, when Uλ is not large enough, the
instability region is a bounded domain in wave-vector space (by contrast with the case
of the striation model, in which the instability domain is unbounded). The instability
region grows as η or κ decreases to 0, and ultimately fills the entire wave-vector space
in the limit.

Proof. We introduce polar coordinates ξ1 = r cos θ and ξ2 = r sin θ. We can write
P = −r2Q with Q = r2 − F (θ) with

F (θ) = (a + 1) cos2 θ + 2c cos θ sin θ − sin2 θ = δ cos(2θ − α) +
(a

2

)
and δ = (((a/2)+1)2+c2)1/2, α = tan−1(a/(a+2)). Therefore, Q = 0 iff cos(2θ−α) =
δ−1(r2 − (a/2)). For this equation to have roots, we need that −1 ≤ δ−1(r2 −
(a/2)) ≤ 1. Therefore, if −a/(2δ) > 1, this equation cannot have any root, for
any value of r > 0. Conversely, if −a/(2δ) ≤ 1, this equation has roots as long as
(a/2) − δ ≤ r2 ≤ (a/2) + δ. Therefore, the case −(a/(2δ)) > 1 characterizes the
stable cases. This condition is equivalent to a + 1 + c2 < 0, or, after some easy
computations, to Uλ > 2ηκ2νeνi. In the unstable case, the instability domain, i.e.,
the set of wave-vectors ξ leading to unstable modes, is contained in the ball centered
at 0 and of radius R0 with R2

0 = (a/2) + δ. As κ or η tend to 0, we notice that
R2

0 ∼ |Uλ|(2νeνi)−1(ηκ2)−1, which ends the proof of Proposition 4.1.
The fact that the model is stable apart from a bounded region of wave-vectors can

be seen as a favorable feature. Indeed, in such a case, small wave-vector (i.e., long
wave-length) perturbations first grow exponentially due to the instability, but also
undergo a mode cascade towards higher wave-numbers due to nonlinearity. Once the
wave-vectors are large enough to reach the stability region, they are damped by the
dissipation. We therefore expect that only structures of typical size R−1

0 will remain
for long times.

However, the values of the physical parameters in the dynamo model are too
small to ensure a viable stabilization process. Indeed, we see that R0 = O((κ2η)−1/2)
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when κ or η → 0. This is too large compared with the observations (see, e.g., [13],
[14]). Therefore, another dissipation mechanism must be present. In this paper, we
postulate that the turbulence of the plasma induced by the instability modifies the
dissipation constants in a way similar to what happens in fluid mechanics (see, e.g.,
[32] and references therein). To make this assumption more quantitative, in the next
section we develop a statistical approach to turbulence adapted to the striation model.

5. A “turbulent” striation model.

5.1. Derivation of the “turbulent” striation model. To produce this new
model, we follow the statistical approach to turbulence [32] (see also [28] for an ap-
plication to MHD). We suppose that the unknowns (n, u, φ, h) in the striation model
(2.9), (2.12) are random variables representing the possible realizations of the flow.
Any of these quantities a can be decomposed according to a = ā + a′, where ā is its
mean value and a′ is a random fluctuation about this average. Since the random-
ness concerns the realization of the flow, the mean value operator commutes with the
space and time derivatives. Therefore, we have (ā) = ā, a′ = 0, ∇a = ∇ā + ∇a′,
∂ta = ∂tā + ∂ta

′. If b is a nonfluctuating quantity, we have ba = bā, and for two ran-
dom quantities a and b, ab �= āb̄ unless they are statistically independent. However,

we note that ab̄ = āb̄.
We assume that un and ν are nonfluctuating quantities. Under this assumption,

by averaging the striation model (2.9)–(2.12), we obtain

∂tn̄ + ∇ · (nu) = 0, ū = −∇φ̄,(5.1)

∇ · (nh) = 0, h̄ = −ν(ū− un) ×B.(5.2)

We can write nu = n̄ū + n′u′ with n′u′ �= 0, since n′ and u′ are in general not
independent random variables. In a same way, we have nh = −ν(n̄ū+n′u′−n̄un)×B �=
n̄h̄.

To close the model, we need a prescription for the correlation n′u′ as a function of
the mean quantities. As in fluid turbulence (see, e.g., [32]), we model this correlation
by means of a diffusion term acting on the density, i.e., n′u′ = −D∇n̄, where D > 0
is a diffusion coefficient. The use of this ansatz can be formally justified by invoking
Kesten–Papanicolaou’s theorem [27] (see also [32] for a review and [35] for a related
result). For simplicity, we assume that D is a constant. Under this assumption, and
noting that ∇ · (n′u′ ×B) = −D∇ · (∇n×B) = 0, system (5.1)–(5.2) reduces to the
following (turbulent striation) model (dropping the bars):

∂tn + ∇ · (nu) −∇ · (D∇n) = 0, u = −∇φ×B,(5.3)

∇ · (nh) = 0, h = ν (−∇φ + un ×B) .(5.4)

The difficulty is now to find the correct value for the diffusion coefficient D. For
this purpose, we again proceed to a stability analysis, in a similar fashion as what
was done in sections 3.2 and 4.

5.2. Stability analysis of the turbulent striation model. We again choose a
steady state characterized by an exponential density profile and uniform neutral wind
un = (V,U) and electric field. The unperturbed state is defined by n0 = Nex2/λ,
u0 = (V, 1/λ) = (−∂x2φ0, ∂x1φ0). We introduce D̄ such that D = |U |λD̄. We proceed
as in sections 3.2 and 4 and we get the following imaginary part of the dispersion
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relation (with σ = sign(U)):

	m(ω) =
N
D , N = −D̄|ξ|2(|ξ|4 + ξ2

2) − (σ − D̄)ξ2
1 |ξ|2, D = |ξ|4 + ξ2

2 .(5.5)

Since D ≥ 0, we just have to discuss the sign of N . We introduce the polar coordinates
ξ1 = r cos θ and ξ2 = r sin θ. Then, N = −D̄r4(r2 + sin2 θ − (1 − σD̄−1) cos2 θ). The
domain I defined in polar coordinates by r ≤ r(θ) := {(1 − σD̄−1) cos2 θ − sin2 θ}1/2

(for all θ such that the expression inside the square root is positive) characterizes the
(bounded) instability domain. We can summarize the results in the following.

Proposition 5.1. (i) If σ = 1 (stable case for the original striation model) and
D̄ < 1, the turbulent striation model (5.3), (5.4) linearized about the above-defined
stationary states is stable.

(ii) If (σ = 1 and D̄ > 1) or σ = −1, the turbulent striation model is unstable for
wave-vectors lying in the instability domain I. I is bounded and contained in the ball
centered at the origin and of radius (1 − σD̄−1)1/2.

We note this strange feature that adding too large a diffusion can destabilize
the striation model in the case where the unperturbed striation model is stable (case
σ = 1 and D̄ > 1).

Thanks to this stability result, we can return to the problem of finding the value
for D. Suppose that we know (from experimental observations, for instance) that no
structures finer than a certain scale � can persist. This means that all perturbations
with a wavelength less than � are stable (i.e., are damped by dissipation), or equiva-
lently, that all wave-vectors ξ larger than 1/� lie in the stability domain. To ensure
this property, it is enough to have 1/� > (1 + D̄−1)1/2. (We take σ = −1 because,
in practice, there are always regions where the density gradient and the neutral wind
have configurations which trigger the instability; see, e.g., the numerical results in sec-
tion 6.) This condition translates into D̄ ≥ �2(1 − �2)−1. In practice, it is legitimate
to assume that � � 1 (because the typical size of the ultimate permanent structures
is far smaller than the typical size of the observation domain). Going back to the
unscaled value of the diffusion constant D, we get

D
≥
≈ �2λ|U | .(5.6)

In the next section, we present numerical simulations which display the relation
between the typical size of the persisting structures triggered by the instability and
the value of this diffusion coefficient.

6. Numerical experiments. In this section, we present some numerical simu-
lations of the striation model (2.9), (2.12) and of the turbulent striation model (5.3),
(5.4). The elliptic equation (2.12) or (5.4) is discretized by a conservative finite differ-
ence method. The plasma velocity is computed by means of finite differences applied
to the second equation of (2.9) or (5.3) on staggered grids. The transport equation
(first equation of (2.9) or (5.3)) is discretized thanks to a classical TVD-scheme [17],
[42], [30]. In order to deal with steep density gradients, the diffusion operator in (5.3)
is implicitly discretized, and we make use of a Strang splitting for the overall time
discretization of this equation. A preconditioned gradient method [40] is applied to
solve the linear systems resulting from the discretization of the elliptic equation (2.12)
or (5.4) and from the implicit discretization of the diffusion equation (5.3).

Our first test problem is intended to mimic that of [44]. The initial density is a
random perturbation of a uniform density in the x1-direction with a Gaussian profile
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Fig. 6.1. Initial plasma density (m−3).

Table 6.1

Number of cells and mesh sizes.

Nb. of cells Δx, Δy (m)

Mesh 1 200 × 200 0.1 103

Mesh 2 400 × 400 0.05 103

Mesh 3 800 × 800 0.025 103
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(a) t = 196 s.
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(b) t = 392 s.
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(c) t = 588 s.

Fig. 6.2. Plasma density at various times given by the striation model discretized on mesh 1.

in the x2-direction (cf. Figure 6.1). The neutral wind un is directed along the x2-axis
and has a value of 45 ms−1. Different mesh sizes listed in Table 6.1 are considered.
When the turbulent striation model is considered, the diffusion length � (which sets
the value of the diffusion coefficient through (5.6)) is equal to 0.1 × 103 m (a scale
resolved by all mesh steps). In practice, its value should be prescribed by comparing
with experimental measurements (see, for instance, [8]). However, our purpose here
is towards qualitative rather than quantitative results.

We first consider the original striation model (2.9), (2.12). Figure 6.2 displays the
time evolution of the plasma density as a function of the two-dimensional coordinate
x. Periodic boundary conditions are used. We see that the upper side (with respect
to the orientation of the figure) of the density gradient is unstable, while the lower
side is stable. The instability produces finger-like structures which rise in the positive
x2-direction and eventually (by periodicity) appear as originating from the lower
boundary. In Figure 6.3 we represent the plasma density computed on the different
meshes (see Table 6.1) at time t = 804 s. The mesh-size is divided by a factor 2
from panel (a) to panel (b) and from panel (b) to panel (c). One can notice that the
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(a) Mesh 1 (200 × 200).
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(b) Mesh 2 (400 × 400).
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(c) Mesh 3 (800 × 800).

Fig. 6.3. Plasma density at t = 804 s given by the striation model discretized on the three
different meshes of Table 6.1.
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Fig. 6.4. Spectral density of the plasma density n computed on the coarsest and the finest meshes
of Table 6.1 (mode magnitude versus dimensionless spatial frequency). The spatial frequency scale
is set to �−1, where �, given by (5.6), is equal to 0.1 103 m.

number of persisting structures grows with the number of cells, while their typical
size decreases with the mesh-size. This remark can be made more quantitative as in
Figure 6.4, where the spectral density (i.e., the modulus of the Fourier transform) of
the plasma density is displayed for the coarsest and finest meshes (dashed curves).
We can see that high frequency modes (corresponding to space scales ranging from
2 to 5 times the value of �) have a significantly larger contribution when the finest
mesh is used. Correspondingly, in Figure 6.3, we notice that the structures are all the
tinier as the mesh becomes finer.

This behavior can be related to the instability of the model. Indeed, numerical
diffusion is the only damping mechanism, and the numerical diffusivity is proportional
to the mesh size [17], [42], [30]. According to the stability analysis in section 5.2,
the diffusive striation model becomes stable for wave-vectors of the order of 1/

√
D,

which is proportional to 1/
√

Δx. Therefore, the size of the typical persisting structures
must be divided by a factor

√
2 each time the mesh-size is divided by 2. This is,

roughly speaking, what we observe in Figure 6.5, where cuts of the density along lines
x2 = constant are plotted. The calculation carried out on the coarsest mesh (solid line
of Figure 6.5(a)) exhibits five to six main structures (areas where the density varies
significantly) in the last quarter of the x1 range. In the same interval approximately
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Fig. 6.5. Plasma density profiles along the line x2 = 2 km at time t = 392 s.
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Fig. 6.6. Number of local maxima along
the lines x2 = 18, 1, 6 km (circles, squares,
and triangles, respectively) as a function of
time for the turbulent striation model (a),
(b) and the classical one (c) computed on the
three meshes of Table 6.1. The number of lo-
cal maxima is computed as half the number
of sign changes in the density derivative.

14 main structures are counted for the density profile computed with the finest grid
(solid line of Figure 6.5(b)). Note that small patterns can exist in addition to the
persisting structures. Indeed there are seven and more than twenty local maxima for
meshes 1 and 3, respectively. The same ratio is observed in Figure 6.6, where the
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(a) Mesh 1 (200 × 200).
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(b) Mesh 2 (400 × 400).
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(c) Mesh 3 (800 × 800).

Fig. 6.7. Plasma density at t = 804 s, given by the turbulent striation model discretized on the
three different meshes of Table 6.1.

time evolution of the number of local maxima is displayed. For long time evolution
(greater than 600 (s.)) the number of local maxima can be estimated as 25 for the
coarsest mesh and 85 for the finest one. These results confirm the mesh-dependence
of the simulations.

We next consider the turbulent striation model (5.3), (5.4). Figure 6.7 demon-
strates the stability brought by the diffusion: the number and size of the structures
remain almost the same when the mesh resolution increases. The dashed curves of
Figure 6.5 display cuts of the density on a line x2 = constant for the coarsest and
finest meshes, respectively. The small patterns which could be observed on the re-
sults computed with the classical striation model (solid curves) have disappeared.
Moreover, the number of local maxima (six for the coarsest mesh, seven for the finest
one) observed in Figure 6.5 are now quite independent of the grid resolution. This
invariance of the number of local maxima with respect to the grid resolution can be
observed in the course of the time evolution (see Figure 6.6). Indeed, this number
remains almost constant in time, and equal to 9 when the mesh-size varies. These
results therefore show a significant difference between the turbulent striation model
and the original one. The spectral densities computed with the turbulent striation
model are displayed in Figure 6.4. The diffusion damps out the high frequency modes,
and the curves computed with the two different mesh-sizes are very similar, whatever
space scales are considered, in contrast with the behavior of the original striation
model. Note that the characteristic size of the striations observed in Figures 6.7 and
6.5 amounts to a few kilometers, which fits well with experimental observations.

The second simulation is aimed at illustrating the results of the stability analysis
developed in the discontinuous density profile framework (see section 3.3). To this
purpose, we consider a set of simulation parameters similar to those above, except
for the initial density and the neutral wind. The initial density consists of a plasma
bubble (density equal to one) in a quasi-vacuum medium (very small density). This
initial data is perturbed by a random noise. The neutral wind is oriented along the
x1-axis; its speed is set to 100 m · s−1. Simulations performed on mesh 2 (Table 6.1)
with the classical striation model are displayed in Figure 6.8(a), 6.8(b), and 6.8(c),
respectively, at time t = 0, 281.4, and 562.8 seconds. The plasma bubble is set into
motion by the neutral wind, and since periodic boundary conditions are used, the
bubble seems to go out of the domain through the right boundary of the frame and to
re-enter the computational box through the left boundary. The instability develops
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(a) Initial density.
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(b) t = 281.4 s.
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(c) t = 562.8 s.

Fig. 6.8. Plasma density at various times given by the classical striation model discretized on
mesh 2 in the case of a discontinuous initial density.
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(a) Striation model on
mesh 1.
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(b) Turbulent striation
model with low diffusion.

−10 −5 0 5 10
0

5

10

15

20

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x1 (km)

x
2

(k
m

)

(c) Turbulent striation
model with high diffusion.

Fig. 6.9. Plasma density at t = 562.8 s given by the classical striation model on mesh 1 (a),
the turbulent striation model with a moderate diffusion on mesh 2 (b), and the turbulent striation
model with a large diffusion on mesh 2 (c), with the discontinuous initial density of Figure 6.8(a).

along the right edge of the bubble, the other edge being unaffected.
The same simulation run on mesh 1 produces the result displayed on Figure 6.9(a)

and shows the sensitivity of the instability pattern with respect to the grid resolution.
The last two panels of the figure, (b) and (c) show calculations performed with the
turbulent striation model on mesh 2. The diffusion parameter used in Figure 6.9(c)
is four times as big as the one considered for 6.9(b). When comparing Figures 6.8(c)
(without any diffusion) and 6.9(b), we get the same conclusion as before: diffusion
brings stability for small space scales, since the tiniest patterns have disappeared from
Figure 6.9(b). More diffusion can also bring stability for all space scales and prevent
the growth of the instability, as demonstrated by the results of Figure 6.9(c).

7. Conclusion. In this paper, we have been concerned with the modeling of
ionospheric plasma instabilities. The first main point of this work was to remark that
the “striation model” allows for discontinuous solutions, and that discontinuous steady
states may be unstable in a similar way as are smooth ones. The second point was to
propose that the turbulence induced by the instability may actually produce diffusion,
in a way similar to what occurs in fluid mechanics, and that this diffusion may actually
contribute to stabilizing large wave-number perturbations. Following the statistical
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approach to turbulence, we have derived and analyzed a “turbulent striation model.”
Numerical simulations have been produced in support of our analysis.
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